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Abstract

Motion Planning for Wheeled Nonholonomic Systems
by
Linda Grace Bushnell
Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences
. University of California at Berkeley
Professor S. Shankar Sastry, Chair

LJ , I“
S. Shankar Sastry
Chair

This dissertation solves important cases of the motion planning problem for wheeled
nonholonomic systems. Given initial and final positions an.d orientations of a mobile robot
in its environment workspace, the problem is to generate a path specifying a continuous
sequence of positions and orientations that do not collide with the workspace obstacles and
to generate the control inputs needed to steer the robot along this path.

The two dual methods of geometric nonlinear control theory and exterior differ-
ential systems for transforming kinematic models of wheeled nonholonomic systems with
two or more inputs into chained form or Goursat normal form are presented. Conversion
to chained form using vector field methods only gives sufficient conditions, but is easy to
apply. Conversion to Goursat normal form gives necessary and sufficient conditions, but
requires using subtleties of exterior differential systems. Once the system is in chained form
or Goursat normal form, various open-loop, point-to—point steering methods can easily be
constructed to steer the mobile robot between any two given configurations. Algorithms are
given for steering with sinusoidal, polynomial and piecewise constant control inputs. The
examples used to illustrate the theory include a fire truck, or tiller truck, and a multiple-
steering, multiple-trailer mobile robot. These systems are drift- free and the nonholonomxc
behavior comes from non-slipping constraints on the wheels.

For a mobile robot configured as a car pulling trailers connected by off-axle hitches,



an upper bound is computed on the maximal distance that the trailers and kingpin hitches
swing off the lead car’s path when the car changes from a straight line to an arc of a circle,
or vice versa. The trailers are shown to exponentially converge to their steady-state circular
paths when the lead car is moving on a circular path. If the turning radius of the lead car is
upper bounded, then a reduced visibility graph method is proposed to find a collision-free
path. Otherwise, path planners from the literature for a car-like mobile robot are modified.
The methodology presented in this dissertation guarantees that the trailers do not collide

with the obstacles for forward motions of the lead car.
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Chapter 1

Introduction

This dissertation solves some problems of motion planning for wheeled nonholo-
nomic systems. Specifically, several control inputs are designed to steer systems such as
a car, a car pulling trailers, a fire truck, and a multiple-steering, multiple-trailer vehicle
between two given configurations in a given amount of time. For some systems, obstacles
may be taken into account in planning the path. Even though only the kinematic models
of the systems, i.e., without mass and forces are considered, the problem is interesting since
the number of control inputs is less than the dimension of the state space of the system.
In addition to wheeled nonholonomic systems, a satellite [82], a falling cat [21), a hopping
robot in flight (hopping gymnast) (10, 33], and multiple-fingered robotic hands [55] are
all examples of nonholonomic systems. A system is called nonkolonomic if either rolling
constraints are imposed on the system from bodies in contact with each other that roll with-
out slipping, or conservation laws (dynamic constraints) are observed on the system when
angular momentum is conserved. Mobile robots and multiple-fingered robotic hands have
linear velocity constraints that require the wheels or the fingers to roll without slipping.
The satellite, falling cat, and the hopping gymnast conserve angular momentum when they
move in space.

This research extends two dual methods of analysis for nonholonomic systems
with two inputs to systems with greater than two inputs. The approaches are geometric
nonlinear control theory and the theory of exterior differential systems, and each has its
own advantages. Geometric nonlinear control was used in the development of a class of
systems, called chained form, which can be easily steered using sinusoidal inputs. Mur-

ray and Sastry [57] presented sufficient conditions for transforming kinematic equations of



nonholonomic systems with two inputs (as for example, the car, which has the two inputs
of driving and steering) to a chained form with one chain. Extending the same two-input
problem, Sgrdalen [68] and Tilbury et al. [76] were able to convert a car pulling N trailers
to chained form.

In geometric nonlinear control theory, nonholonomic systems are considered not
from the point of view of their constraints, but rather from the point of view of a control
system with the allowable motions in the span of the input vector fields. The dual to the
chained form is the Goursat normal form. Although the mathematics literature abounds
with the theory of exterior differential systems (see [15, 25, 87 as a survey), only recently
bave there been attempts to apply this machinery to solve general control problems for
steering nonholonomic systems. On the one hand, conversion to chained form using vector
field methods only gives sufficient conditions, but is easy to apply; it is analogous to the
method for exact linearization of a nonlinear system [28]. Conversion to Goursat normal
form, on the other hand, gives necessary and sufficient conditions, but requires using sub-
tleties of exterior differential systems. We found it beneficial to look at a system from both
the vector field and exterior differential systems points of view.

The unique contributions of this dissertation are the presentation of necessary and
sufficient conditions for converting a nonholonomic system with two or more inputs into
Goursat normal form, sufficient conditions for transforming these systems to chained form,
and steering methods to control chained form systems. A three-input system (the fire truck,
or tiller truck) and a multiple-input system (multiple-steering, multiple-trailer vehicle) are
introduced as examples of nonholonomic systems that can be converted and controlled in
chained form. The steering algorithms presented construct sinusoidal, polynomial, and
piecewise constant control inputs. In addition, numerical simulation results are given that
show how extra steering wheels result in greater maneuverability.

Minimizing the distance between any two configurations (as in [62] for a car) is
difficult to define because there may be more than one trajectory or vehicle to consider. In
the multiple-steering, multiple-trailer vehicles, for example, we may want to optimize the
trajectories of all the trailers, not just the lead car. The input effort (maximum input value),
defined as some weighted combination of the driving velocity and the steering velocities of
the system, could also be minimized. The methods presented in this dissertation, namely
the sinusoidal, polynomial, and piecewise constant methods, however, are optimal in the

sense that they minimize the number of reversals in the trajectories. We have found that for



a parallel parking type of trajectory, sinusoidal inputs work well since the vehicle makes one
reversal during the entire trajectory. Using polynomial inputs for this trajectory, however,
requires dividing the path into two parts and treating the reverse part of the maneuver as
a second trajectory. Generally, the polynomial and piecewise constant methods work well
when there are no reversals in the trajectory.

Another unique contribution of this dissertation is the presentation of a path
planning algorithm for a car pulling trailers connected by off-axle hitches. If the lead car’s
turning radius is upper bounded by the radius of an “enlarged” circular robot superimposed
on the car, then a visibility graph algorithm is given to plan a collision-free path. If the
turning radius is not constrained, then an alternate algorithm that modifies existing obstacle
avoidance planners that use a configuration space approach to plan a path for a single
car to be planners for the multiple-trailer vehicle is proposed. Both algorithms use the
additional restriction that the lengths of the links in the kingpin hitching are all equal. The
key difference between designing path planners for single cars and multiple-trailer vehicles
relies on defining an off-tracking bound, which is the maximal distance that the trailers and
kingpin hitches deviate from the lead car’s track when the car changes from one path to
another. In addition, the trailers are shown to exponentially converge to their steady-state
circular paths when the lead car is moving on a circular path. The methodology presented
in this dissertation guarantees that the trailers do not collide with the obstacles for forward
motions of the lead car.

There are many applications of this research for path planning of wheeled non-
holonomic systems. One such application is for training drivers of trucks with multiple
trailers that have off-axle hitching. Using this research, we suggest attaching “whiskers”
to the truck to notify the driver how close she can drive near the obstacles. The length of
the whiskers would be directly proportional to how many trailers the vehicle has. Then,
if the driver avoids hitting obstacles with the whiskers, the trailers will also avoid those
obstacles. Another application of this research is to help in steering multiple-trailer vehicles
in manufacturing plants, nuclear power plants or any area unsafe for human operators or
made up of narrow passageways. The goal is to have fully automated vehicles in these areas
or to assist an operator by steering other axles in the vehicle. The extra steering wheels
give greater maneuverability in the narrow, winding passageways.

The outline of this dissertation is as follows. Chapter 2 gives the mathematical

preliminaries for both geometric nonlinear control theory and exterior differential systems.



Chapter 3 presents the methods for transforming nonholonomic systems with two or more
inputs into a multiple-input chained form and extended Goursat normal form. The con-
trollability of chained form systems is also discussed. Chapter 4 presents different steering
methods for the system in chained form and stabilization issues. Chapter 5 gives examples
to illustrate the theory. The fire truck and a multiple-steering, multiple-trailer system are
the main examples presented. The systems are transformed into chained form or Goursat
normal form and numerical simulations are performed. The simulation results are pre-
sented for different trajectories such as parallel parking, turning left and right corners, and
changing lanes. The fire truck’s performance is compared to a similar vehicle without the
tiller steering. Chapter 6 presents an obstacle avoidance algorithm for a car pulling many
trailers. We find that a collision-free path need only be planned for an “enlarged” front car
and the trailers will avoid the same obstacles. Chapter 7 presents open problems in the
area of nonholonomic path planning. Chapter 8 summarizes the results presented in this

dissertation.



Chapter 2

Mathematical Preliminaries

In this chapter, tutorials on geometric nonlinear control theory and exterior dif-
ferential systems will be presented. These will be referred to in the next chapter when the
two dual methods for converting a multiple-input nonholonomic system to either chained

form or Goursat normal form are discussed.

2.1 A Tutorial for Geometric Nonlinear Control Theory

In this section, a variety of results from geometric nonlinear control theory, dif-
ferential geometry and introductory nonholonomic systems will be presented, covering the
Frobenius Theorem, the concept of controllability, and exact linearization, which will all
prove useful when analyzing nonholonomic system. To minimize the mathematical pre-
requisites, all calculations are performed in R™. All of the essential ideas, however, are
covariant and thus carry over to the context of manifolds. We suggest Isidori [28] and Ni-
jmeijer and van der Schaft [59] for an introduction to nonlinear control theory, Spivak [70]
for an introduction to differential geometry, and Murray, et al. [54] for an introduction to

nonholonomic motion planning. The presentation of [54] is followed here.

2.1.1 Vector Fields and Flows

The tangent space to R™ at a point z € R™ is denoted as I.R". A vector field
f:R™ — T:R" defined on an open set U C R™ is a smooth map, assigning to each point
z = (x1,...,Z) € U the n-dimensional tangent vector f(z) € T,R". The map f is said

to be smooth, or C=(R"), if its partial derivatives of any order with respect to (z;,... yZn)



exist and are continuous, anelytic if it is smooth and for each point zo € R™ there exists a
neighborhood U of z, such that the Taylor series expansion of f at z, converges to f(z) for
all z € U, and meromorphic if it is a ratio of analytic functions. The map f is represented

in coordinates as a column vector
fi(z)
f=|
(=)

or if z,,... ,z, are local coordinates for R*, f is written as
(7] 0
S— 1 — * . n —
fo) = fla)ge o+ @5

where the symbol a—i'.- is the i** basis element for T,R™ with respect to a given set of
coordinates. A vector field is smooth if each f*(z) is smooth. Alternatively, a vector field

can be thought of as the right hand side of a differential equation
z = f(z). : (2.1)

The symbol al:‘ reminds us that vector fields act by differentiation in the sense that the
derivative of a smooth function & : R" — R along a vector field g is denoted as the mapping
L,:R—R,

oh
Lgh(z) = %9(-") .
This is also called the Lie derivative of I along g.
The flow of a vector field is defined to be the solution of the differential equa-

tion (2.1). That is, ¢/ : R® — R™ is the state of the differential equation at time ¢ starting

from z € R™ at time t = 0. It therefore satisfies the differential equation
d,
Z6l(@) = 1(¢l(z) .

A vector field is said to be complete if its flow is defined for all . From the existence
and uniqueness theorem of ordinary differential equations, ¢{ is a local diffeomorphism (or,
global on its domain of definition) of R™ onto itself for each fixed t. It also satisfies the
following group property .

of o ¢! = ¢{,, (2.2)

for all t, s, where o stands for the composition of the two flows.



Figure 2.1: A Lie bracket motion resulting from flowing around a square defined by two

vector fields.

2.1.2 Lie Brackets and the Frobenius Theorem

Given two vector fields f and g, the composition of the flow of f for t seconds with
the flow of g for s seconds is given by the map 9o #{. In general, this map is different from

the composition in the reverse order ¢{ o #9. Figure 2.1 illustrates a Lie bracket motion.

Proposition 1 The net motion from traveling along f for € seconds, g for € seconds, —f

for € seconds, and —g for € seconds starting at the point z(0) = zo satisfies
9.7 0 077 0 97 0 ¢1(20) = 2o + €[, g)(zo) + O(€®) . (2.3)

The notation O(e®) represents terms of order € and higher. That is, if we take the left hand
side of equation (2.3) and divide by €, the limit of this expression as € approaches zero is
not necessarily zero.

Proof. The Taylor series in ¢ is evaluated for the differential equation
z = f(z)u; + g(z)up
with the inputs u := (u;, u;) being

(1,0) te[o,¢)
(0,1) tele2e)
(=1,0) t € [2¢3€)
(0,-1) t € [3¢,4¢)

u(t) =



for € > 0. After the first step,

() = 2(0)+ex(0)+ %e’:’i:(O) +0(&)

= zZo+€f(zo) + 62%%(-%”(%) +0() ,

where O(€’) represents terms of order € and higher. The second step gives

220 = () +eo(e(e) + €2 X (a(g(z(e) + O(€)
= o+ €(f(20) + 9(20))
+8 (552 @) (@) + S (@) (o) + 5 22 zololan)) + O

where we have used the fact that g(zo + €z,) = g(xo) + €22(zo)z; + O(€?). The third step

gives

z(3e) = 3(26)—6f(9-‘(2€))+€’ (x(2€))f($(2€))+0(€3)

dg 6f 13dg 3
To+eg+€ (8xf 3291 25,9 )+0(e),

where all functions are evaluated at z,. At the last step,
z(4e) = z(3¢) — eg(z(3¢)) + €’ (2(36))9(3(36)) +0(¢°)
= zo+é (&'f- ag) +0(€3) .

The net motion z(4€) — z, is defined to be the Lie bracket between the two vector fields f
and g up to order €°; that is,

o) = 225(e) - Logay
adg(z) [f(x),ad""g(w)],

where ad}g(z) := g(z). O

If the two vector fields commute, i.e., [f, g] = 0, then there is no net motion. In
fact, in this case ¢ o ¢ = ¢ o¢f. For s = t, the calculation follows easily from the first two
steps of the proof of Proposition 1 and the assumption that £2f(z) = &g(z). In general,
we have the following proposition (see [1] page 282 for a different proof that treats vector
fields as differential operators).



Proposition 2 Let € R" and vector fields f and g be defined on R™ with flows ¢ and Y,
respectively. Then [f,g] = 0 if and only if ¢, 09, = ¢, 0 ¢.

Proof.[84] We first define the mapping h : R x R x R® — R™ by h(s,t,z) := ¢; 01h, 0 ¢ 07,
and show that the following are equivalent:

(i) ¢rov, =1, 0

(ii) h(s,t,z) =1
(iii) 2k =0 for all s and =
() 24k

(v) [f.ql=

The first equivalence between (i) and (ii) is clear by the definition of k.

If (iii) is true, then h is not a function of t. Thus, k(s,t,z) = h(s,0,z) = ¢3' 0
¥, 000 0z =1, 0z since ¢, at t = 0 is the identity map. Conversely, if (ii) is true, then
£h = 0 since ¥, is not a function of t.

By composition of flows,

h(s,t,z) = o7 (t,vs(s, du(t,z)))

Oh(s.t, ;
I(Zt x) = D1¢t_l|t=o + D2¢:1D2¢3D1¢¢|¢=0 ’ (2'4)
t=0

where D; represents the derivative with respect to the i** argument of the function. If (jii)
is true, then clearly (iv) is true. If (iv) is true, then 2k would not be a function of s.
Equation (2.4), however, shows that it is a function of s. Therefore, the only way for (iv)
to be true is if £h =0 for all s.
Taking the derivative of this expression with respect to s gives
565 %é;ﬂ o = a—as' (D167t + D3¢ Dytp, Dy by) o (2.5)
D,¢;! at t = 0is the identity matrix since D,¢; at t = 0 is the identity matrix. Also, D,¢; =
20, = f by the definition of the flow of f. Furthermore, when s = 0, Dy¢; (2, %,(s, 2)) |¢e=0 =
—£(0,¥4(s,z)); therefore £D1¢7*(t,¥,(5,2))|t=0 = —D2fD1%, = —Df g. Similarly, we
find D,y, = Dg. Combimng this information with equation (2.5) gives
% ———ah(sa’:’z) = -Df g+ Dg f =1f,g],

showing that (iv) and (v) are equivalent. O
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The Lie bracket has three basic properties (see [28] for the proof).

Proposition 3 (Properties of the Lie Bracket) Consider the vector fields fy9,h de-

fined on R" and real numbers ry,r,. The Lie bracket satisfies the following properties:
() [f,9) = —lg, f] (skew commutativity)
(%) [f,1g. k]l + [g, [h, £1] + [, [f, 9]) = O (Jacobi identity)

(iii) [ryf +r2h, g] = ri[f, g] + r2[h, 9] and [f,r1g+ r2h] = ry[f, g] + r2[f, h] (bilinearity over
R).

Note that a Lie product is defined as a nested set of Lie brackets. In addition, the following
properties of the Lie bracket will be useful. Given vector fields f, g and a real-valued smooth
functions a, 3, A all defined on an open set U C R?,

[@f.B9)(z) = a()B(2)lf,9]+a(z)(LsB(z))g(z) - Blz)(Lea(2))f(z)  (2.6)
LisgMz) = LsLoA(x) ~ LeLsA(z) (2.7)

for z € R™.
A distribution A smoothly assigns a subspace of TR to each point in R™. Using

a basis of smooth vector fields fi...., f4, a distribution is defined as

A = span{fy,... yJa} .

A assigns to each point z € U C R™ a subspace spanned by the values at z of the smooth
vector fields f; defined on U. At any point z € U, A is a linear subspace of the tangent

space
A(z) = span{fi(z),..., fa(z)} C T.R™.

The vector fields fy,... , fs are called the local generators of A, since any vector field JeA
can be written as
d
f(@) =Y ai9)fila)

=1
for ¢ in a neighborhood of x, where a; are smooth functions. Thus, the distribution is a
fundamental object. If the basis vector fields f;,... , f4 are thought of as the right hand
side of the differential equation

#(t) = fi(z)m(t)a+ - + fa(z)ua(t) ,
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then A is the subspace of allowable velocities of this system.
A distribution, A, is said to be involutive if it is closed under the Lie bracket

operator:

f,9eA=[fgleA.

The involutive closure of A, denoted as A, is the smallest distribution containing A such
that

f,9eA=|[f,g]eA.

A distribution is said to be regular or nonsingular if the dimension of the subspace A(z)
does not vary with z. A regular distribution A(z) = span{f(z),... , fa(z)}, defined on an
open set U of R", is said to be completely integrable if for each point z, of U there exist a
neighborhood U° of zy and n — d real-valued smooth functions Ay, ..., h,_q such that

dh,f,(x)=0, fJEA lszSn—d
for all z € U°.

Theorem 4 (Frobenius) A nonsingular distribution is completely integrable if and only

if it is involutive.

See [28] for a proof.
In analogy to defining vector fields on T,R™, their dual can be defined on TR
(the set of linear functions taking values in TR"): for each x € R", define w(z) € T:R" to

be a one-form. In local coordinates (zy,... ,z,) for R*, a smooth one-form is written as
w(z) = wy(z)dz) + - - - + wo(z)dz,
where each w; is smooth. The symbols dz; represent the dual basis and are defined as

7]
da:.- (-5;;) = 5,-5 N

where §;; is the Kronecker delta function, which takes values 1 for i = j and O for ¢ #7. A

one-form acts on a vector field to give a real-valued function on R™:

w-f= (Zw,dz,) . (Zf’ai%) =Zw,~fi .

i=1 J=1 =1
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A distribution spanned by linearly independent one-forms
Q(z) := span{w!(z),... ,w*(z)} (2.8)

smoothly assigns a subspace of T;R to each z € R”. In analogy to vector fields, any
one-form w € 2 can be written as
k . 3
w(g) =) _a‘(g)w'(g)
=1
for ¢ in a neighborhood of x, where a* are smooth functions of gq. Thus, € is a unique

subspace of T;R"™, while the one-forms w* are a non-unique basis of Q.

2.1.3 An Introduction to Nonholonomic Systems

A nonholonomic constraint on a system is a non-integrable kinematic constraint.
For wheeled systems, these constraints express that the relative velocity between the contact
point on the rolling wheel and the ground is zero. A system is said to be nonholonomic if
its motions are constrained by nonholonomic constraints.

Let a configuration of the robot system be represented by n parameters, or coor-
dinates, (z;,... ,,) where n is the dimension of the configuration space. For example, the
configuration of a two-axle kinematic car could be represented by (z, y, 4, #), where z and
v are the Cartesian coordinates of the center of the rear axle, 4 is the body orientation,
and ¢ is the angle of the front (steerable) wheels. The configuration space for this car is
R? x S* x S, where S* denotes the unit circle. In the following, we assume, without loss
of generality, that the configuration space is R™ and follow the presentation in [8]). Suppose

the motion of the general system is constrained by a scalar constraint of the form
F(z,t)=0, (2.9)

where F is a smooth function with a non-zero derivative. This equation can be used to
solve for one of the z; in terms of the other z;, j # i, thereby reducing the dimension of the
configuration space to n — 1. This constraint (2.9) is called a holonomic equality constraint
of the system. In general, if there are k independent constraints of the form (2.9), the
configuration space can be reduced to be (n — k)-dimensional. There can also be holonomic
inequality constraints of the form F(z,t) < 0 or < 0.
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Now suppose the motion of the system is constrained by the scalar constraint
G(z,z,t)=0, (2.10)

where & € T;R", the space of velocities of the system. The constraint (2.10) is holonomic
if it is integrable, that is, if £ appears linearly in equation (2.10) so that the constraint
has the form £ F(z,t) = 0, which can then be integrated to give equation (2.9). If (2.10)
is not integrable, it is said to be a nonholonomic equality constraint, restricting the space
of velocities achievable by the system at any configuration to an (n — 1)-dimensional lin-
ear subspace of T;R™ without affecting the dimension of the configuration space R*. In
general, if there are k independent constraints of the form (2.10), the space of achievable
velocities is reduced to an (n — k)-dimensional subspace of T,R". As above, there can also
be nonholonomic inequality constraints of the form G(z,,t) < 0 or < 0.

There are two types of motions caused by two rigid bodies in contact: rolling and
sliding. For rolling with sliding motion, the nonholonomic constraint (2.10) is a nonlinear
expression in . For rolling without sliding, the nonholonomic constraint is linear in &. The
latter is assumed throughout this dissertation.

One of the first tasks in analyzing nonholonomic systems is to convert them into
control systems. The kinematic constraints of the nonholonomic system with state space

z € R™ are written as

where the one-forms «* are written as
w(z) = wi(z)dzy + -+ - + wi(z)dz, .

The one-form dz; represents the basis dual to the basis a%.- on T.R™.
For a given distribution A = span{gy, ... ,gn--1}, its corresponding codistribution
Q = span{w’,... ,w"} is defined to be the subspace of T;R™ that is the annihilator of A,

i.e.,  is the set of all one-forms that vanish on A:
w-g;=0 i=1,...,k, j=0,...,n-k—-1. (2.11)

Alternatively, given a set of nonholonomic constraints {2 = span{w?,... ,w*} for a system,

there exist vector fields g;, j = 0,...,n — k — 1, that annihilate the one-forms «* as in
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equation (2.11) such that the g; are smooth and linearly independent over the ring of
smooth functions. We say that A = Q*.

The control system arising from the given kinematic constraints is thus written as
z = go(T)uo + * * + Gnwk—1(T)Un-i-1 ,

where the u; are the freely specified control inputs to the system, and the g; are called the

input vector fields.

2.1.4 Nonlinear Controllability

From the above discussion, we can now treat the nonholonomic motion planning
problem as a control problem and concentrate on the controllability issues. We further
restrict our consideration to control systems without drift (when all the control inputs are

set to zero, the system does not drift):
z= go(z)“o + oot gm(x)um (212)

with z in an open set U C R, u € R™?!, m + 1 < n and g; smooth, linearly independent
vector fields defined on U. It is also assumed that the g; are complete (lows defined for
all time). This system is said to be controllable if for any z4,z; € U, there existsa T > 0
and an input u : [0,T] — R™! such that 2(0) = o and z(T') = z;. In the following, the
formulation of Hermann and Krener [26] is applied to drift-free systems (2.12).

The system is said to be small-time locally controllable at z, if nearby points can
be reached in arbitrarily small amounts of time and the system stays near z, at all times.

Given 7o and z; in an open set V' C R", define

RY(z0,T) := {z € R"| there exists u: [0,T] = R™*! that steers (2.12) from
z(0) = 2o to z(T') = z; and satisfies z(t) € V for 0< t < T},

which is the set of states that are reachable from z, in time T that remain in V, and

RY(z0,<T):= |J RY(zo,7).

0<r<T

A control system is said to be small-time locally controllable, or just locally controllable, if
RV (zo, < T) contains a neighborhood of z, for all neighborhoods V of 2 and T > 0.
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Let A := span{go,... ,9m} be the input distribution associated with the control
system (2.12) and recall that A is the involutive closure of A. A is referred to as the
controllability distribution. Controllability of the system (2.12) can be characterized in
terms of the Lie algebra generated by the smooth, linearly independent input vector fields
g;- The conditions for local controllability are given by the following theorem [18].

Theorem 5 (Chow) The distribution A, = T.R" for allz € U = the interior of the set
RY (29, < T) is not empty <= the system (2.12) is locally controllable on U.

See [54] for a proof. Chow’s Theorem states that if the system (2.12) can be steered in every
direction using Lie bracket motions of any order, then it is controllable. In practice, local
controllability can be checked by checking the rank of the controllability distribution A. This
is referred to as the controllability rank condition. Chow’s Theorem is a non-constructive
procedure for generating trajectories for the control system (2.12). A constructive method

is the subject of Chapters 3 and 4 of this dissertation.

2.1.5 Exact Linearization

One of the main topics in this dissertation is the conversion of the control sys-
tem (2.12) to a canonical chained form, which is easy to steer. One method used for this
constructive transformation resembles that for linearizing a nonlinear system. Consider the

following nonlinear system with drift

= f(z)+a(@)u+: -+ gm(T)um
yi = ’l;(l‘) i=1,...,m, (2.13)

with z in an open set U C R*, u € R™, g; are smooth, linearly independent vector fields
defined on U, and h; are smooth functions defined on U, and define the distributions

GO = span{gl, oo 1gm}

G; = spanfadjg;:1<k<i1<j<m} for 1<i<n~-1. (2.14)
A multiple-input, multiple-output (MIMO) system (2.13) is said to have vector relative
degree 71, ... ,Tm at o if

i) L, Lkhy(r) = 0forall1 < j<m, 0<k<y—-1,1<i<mandforal zina
9f
neighborhood of z,
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(i) the m x m matrix A(z) with elements [Ly, LY *h;]; ; is nonsingular at z = z,.

Assuming that the system (2.13) has vector relative degree v; + -+ + 7,, = n at z, with
respect to the system outputs hy(z),... ,hm(z), the following theorem can be stated that
gives the necessary and sufficient conditions for transforming a nonlinear system with drift
to a linear form via state feedback and a coordinate transformation. The theorem holds
within a neighborhood of z, (this is in contrast to Jacobian linearization, which linearizes

around a point) and the size of the neighborhood is unspecified.

Theorem 6 (Exact Linearization via Feedback) Given an initial state zo for the above
system (2.18) with drift f(z) and g(z) := [g1(2) - - - gm(z)] having full rank at z = x,, then
there ezists a neighborhood U of o, a feedback u = a(z) + B(z)v, and a coordinate trans-
formation z = ®&(z) defined on U such that

2 = Az+4+Bv
y = C:z (2.15)
if and only if the following conditions are satisfied:
(i) the distribution G; has constant dimension near 7o for0 <i<n-—-1
(i) the distribution G,._, has dimension n
(#i) the distribution G; is involutive for 0 < i< n -2,

The exact state space linearization problem for single-input systems was posed and solved
by Brockett [12]. For multiple-input systems, the problem was solved by Jakubczyk and
Respondek [31]. Su [71] and Hunt, Su, and Meyer [27] independently presented a different
formulation in addition to a procedure for constructing the linearizing transformation.

For reference, the Brunovsky normal form of the system (2.15) is

= 24 (2.16)

fori<i<mwithn 4+ -+n,+m=n.
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2.2 A Tutorial for Exterior Differential Systems

In this section, a tutorial for exterior differential systems is presented. This is the
basis for understanding how to convert a multiple-input nonholonomic systems to extended
Goursat normal form. A good collection of references for exterior differential systems is [25,
15, 11, 87, 70, 17, 22, 76, 44].

2.2.1 Exterior Algebra

An exterior algebra is first constructed on p-vectors for p = 0,... , 1, then basic
properties of these algebras are given.

Define A°L := R to be the space of real numbers, or 0-vectors, with elements
a.b,ec,....

Define A'L := L = R™ as an n-dimensional vector space over R, or the space of
1-vectors, with elements a, 3,7,... . Let {0?,...,0™} be a basis for L. The dimension of

AlLis ( = n, the number of combinations of n things taken one at a time.
1

Define A%L to be the space of 2-vectors by defining the wedge product as a skew-
symmetric bilinear map A : A!L x A'L — A2L that satisfies

(i) (a10' +a20®)AB = ay(a® AB)+az(c? AB) where ay,a, € R and a!, a2, 3 are 1-vectors
(ii) a A (518" +528%) = by(a A BY) + by(a A B?) where by, b, € R and B2, 82, a are 1-vectors
(iii) aAha=0
(iv) anB3=-8BAa.

The notation o A 3 is called the exterior product of the vectors o and 5. That is, Aisa
bilinear, associative, distributive, non-commutative product mapping AL x A'L — AZL.
A basis for A%L is given by {0 Ao? , 1< i< j < n}, since

a= Y00 and 8= Zb,-a-"
J
combine as

aAB=) (ab;—a;b;) o* Ao .

i<j
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It follows that the dimension of A%L is ( ; ), the number of combinations of n things

taken two at a time.

APL for 2 < p < n is the space of p-vectors consisting of all formal sums
Ea(a‘/\-n/\a’) ea€R
with the properties
(i) (aa+bB)APA---AaP =a(aAd®A---Aa?) +b(BACPA---AaP)
(i) o A--- Aa? = 0 if for some i # j we have o' = o’
(ili) @ A--- A a” changes sign if any two o are interchanged.

If the indices H := {hy, hs,... ,hp, : 1 < hy < hy < -+ < h, < n} are defined, the basis for
APL is given by the totality of 0¥ = o A...Ao". Then any ) in APL can be written as

A =Z(130‘H .
H

where the sum is over all the ordered sets H. The dimension of A?L is " , the number
p
of combinations of n things taken p at a time. Thus, the dimension of A®L is 1. A? is not

defined for p > n, but sometimes it is convenient to set A? =0 for p > n.

The ezterior multiplication operator, A, is therefore defined in general as
A: (APL) x (AIL) — AP*HeL
and has the following properties for A € APL and u € AL:
(i) AAp is associative: AA (g AY) = (AAp) Ay
(ii) A A u is bilinear in A, u: for ay,as, b;,b, € R,
(@ X' +aX®)Ap = a;(AN'Ap)+a;(\2Ap)
AN (bapt +bap®) = bi(AA) +B(AA?)
(iii) AAp is anticommutative: A X = (—1)P? XA p, where p is a p-form and ) is a g-form.
Thus, the exterior product over the véctor space L is used to form the vector space A?L.
Proposition 7 The vectors a',... ,a* are linearly dependent if and only if

a'A---ANa*=0. (2.17)
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2.2.2 Differential Forms

The exterior product over a vector space L* (the dual of L) can now be used to
form a vector space AP(L*) := QF(L). As before, everything will be defined on the space R™®
(instead of on a manifold). The tangent space to R™ at a point z, T.R", is a vector space
of dimension n. The vector space A?(T.R") consists of all p-vectors. Attaching AP(T,R")
to each point € R™ gives a bundle structure on R”, denoted by AP(R"). Similarly, the
bundle P(R") is defined using the dual space T;R". An element of Q?(R™) is called an
exterior differential p-form on R", QP(R™) is called the totality of p-forms on R", and Q(R*)
is called the ezterior differential algebra of p-forms on R™.

Given the local coordinates z,, z,,... ,z, on R”, the dual bases are defined as

. ) )
Tz)R = span{a—zl,... ,a—xn}

T;R" = span{dz,,...,dz,}
such that

0

where §;; is the Kronecker delta function, which takes values 1 for i = j and 0 for i # j. In

these coordinates, a vector field f : R® — T,R" is written as

n ; F;)
f(z) =§f (")a—x,. ,
where fi(z) are smooth functions.

The QP(R™) spaces (spaces of p-forms) for p = 0,1,...,n are constructed as fol-

lows, noting that:
(i) Q°(R") := T;R" is defined to be a space of smooth functions, called 0-forms, on R"
(i) Q*(R") is defined to be the space of covector fields, or one-forms.

A one-form, w : T,R® —» R* = ! (]R"j, is written as

w(z) =3 wi(z)ds; |

i=1
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where w;(z) are smooth functions. A p-form is written in this basis as
w=)_ag(z) dz¥
H

for a multi-index H := {hy,... ,hy, : 1 < hy <.+ < h, < n}, where dz¥ := dz™ A- . -Adz>
and ay are smooth functions on an open set U in R™. If w is the p-form above and 7 is the

q-form
n=)_ bx(z) dz¥ ,
K
then

wAn=)_ aybx dz? Adz¥ .
HX

Exterior Derivatives

Define the ezterior derivative on Q*(R™) as the unique map
d: Qk(Rn) N QH"I(]R")
with the properties

(i) do is linear in o: d(a;a! + a;0?) = ayda’ + axda?, where a;,a, € R and o, o? are

k-forms

(ii) dX satisfies the product rule: d(A A u) = dA A p + (=1)*A A dp, where ) is a k-form

and u is a one-form
(iii) d(da) =0, i.e., d®a = 0 for any k-form a

(iv) for a O-form o, ie., @ = f € C(R") relative to a local coordinate chart, df is the
one-form that is the differential of f: df = 30, 2Ldz;.

i=1 oz;
A k-form o« is said to be closed if da = 0. It is called ezact if there exists a

(k — 1)-form 3 such that o = dg. The following lemma associates these two concepts.

Lemma 8 (Poincaré Lemma) A closed form is locally ezact, i.e., if dor = 0, then there

is a neighborhood about each point on which o = df3.
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To illustrate the use of the exterior derivative, consider the following example. For

R? with z := (z;, 73, z3) the O-form f is written as

o & s 2

and is called the differential of f. For the one-form

df = dz1 + dz, ,

w=Pdz, +Q dz, + Rdz; ,

OR 8Q 0P OR 0Q OoP
(3_:,;2—63;3) d:cz/\d Ii"'(ams azl) szAdxl+(a T, azz) dzlAdzz

is called the curl of w. For the two-form

a=Ad:tgAdza+Bda:;,/\da:1+C'dx1/\dzz,

da_(a_A+6B+80
" " \0z, ' Oz, @ Oz,

is called the divergence of a.

) d.’L‘l A dx, /\d$3

2.2.3 Exterior Differential Systems

Some of the mathematical tools from exterior differential systems that are used in
this dissertation will now be presented. A more thorough description can be found in [15].

An algebraic ideal T C Q(R™) is a collection of smooth differential forms on R™
that satisfies

(i) if a’,a® € T and fi, f2 € C®(R"), then fia! + fro? € T
(ii) if & € 7 and B € Q(R™), then a A B € T.

Given a collection F of smooth differential forms, the smallest algebraic ideal of smooth
differential forms that includes F is called the algebraic ideal generated by F.
An ezterior differential system I on R™ is an algebraic ideal that, in addition, is

closed under exterior differentiation, i.e.,
forany o €Z,daeT.

In short notation, this is written as dZ C Z. The set dZ consists of exterior derivatives of

elements of Z.
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A Pfaffian system, denoted by I, on R" is a submodule of the module of differential
one-forms Q!(R") over the commutative ring of smooth functions C*(R"). A codimension

two Pfaffian system is generated by a set of n — 2 linearly independent one-forms

QA = @ = s = 0’”_3=0,

n-3
I= {E feo*, for fie€ cw(m")} . (2.18)

k=0

In the context of wheeled nonholonomic systems, the one-forms are the kinematic constraints

of the system, i.e., the directions in which the system cannot move instantaneously. Since

the kinematic constraints are imposed on the system in a neighborhood of some initial point,
the Pfaffian system is also local.

Let I be defined as the codistribution spanned by a set of linearly independent

one-forms
I= {a,...,a"3)}.

The codistribution is the annihilator of the distribution of allowable velocities of the non-

holonomic system, as described in Section 2.1. The ideal generated by I is
I={I})={0c€eN:ocAd’A---Aa"?=0}.

7 is integrable if there exists functions hy,... ,h,_3 such that 7 = {dho, ... ,dh,_3}.
The Frobenius Theorem 4 of nonlinear control theory has the following dual in

exterior differential systems.

Theorem 9 (Frobenius Integration Theorem) Consider a Pfaffian system generated

by linearly independent one-forms a°,...,a"=3. If these one-forms satisfy the Frobenius
condition
n=3
do* =3 "60ine' 0<k<n-3 (2.19)
i=0

for some one-forms 0}, then the Pfaffian system is completely integrable, i.e., there exist
functions fi, and h; satisfying

n-3
o*=>"fidh; for 0<k<n-3.

=0
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See [15] or [22] for a proof. The Frobenius condition (2.19) is equivalent to
do*Ac® A A" ?=0 0<k<n-3. (2.20)

A useful tool in analyzing exterior differential systems is the derived flag. Define
the codistributions

IO = I={ad,...,0a"%)}

IO = {AeIM : d\=0 mod IV}

fori =1,...,N, where N is the step in which this procedure terminates, i.e., I(¥+1) = ("),
The notation mod I means modulo the algebraic ideal generated by I; that is, given two
one-forms o and Bin , = 8 mod I if there exists a one-form 7 € I such that o = B+1.

The set of codistributions
I.._..I(O) DI(I) 3](2) ... DI(N)

is called the derived flag of the Pfaffian system I and N is called the derived length. If
I is completely integrable, then N = 0 and I) = I® by the Frobenius Theorem 9. In
fact, I'™ is always integrable since da = 0 mod I'™ for all & € I'™. IM is the largest
integrable subsystem contained in I. Therefore, if I¥) is non-empty, e.g., contains one-forms
a,...,a*1, then there exists functions hy,... ,hs_, such that I™) = {dh,,... ydhi1}.
This means the system is not controllable since there exist algebraic functions that give a
foliation of the state space and the solution trajectories of I are constrained to lie on level
surfaces of {ho,... ,hx_1}.

A Pfaffian system is called nonholonomic if I'¥) is a proper subset of I. The
following discussion is restricted to the class of systems that are mazimally nonholonomic,
or completely controllable, i.e, I'") = {0}. Consider the derived flag with basis {a‘}
adapted to the derived flag, that is, a basis such that the basis of U+ is a subset of the
basis of I for j =0,... ,N - 1:

ID:=1 = {ada,...,a"%}
M = {a%d,...,a" %}
-0 = (o9

™ .= {o0}. (2.21)
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Theorem 10 (Chow) Given a Pfaffian system generated by smooth, linearly independent
one-forms °,... a3 and a derived flag for this system, there ezists a path z(t) between
any two points satisfying
o' i=0 0<i<n-3

if and only if there ezists an integer K such that IX) = {0}.
The proof consists of converting the problem to the vector field version and following the
proof in [54].

A basic problem in exterior differential systems is to study the integral manifolds,

or solutions, of a system o = 0. In local coordinates, this is a system of partial differential

equations. For example,
c1(T1s--. 1 Tn) dZy + -+ - + a2y, ... ,2,) d2, =0

is called a Pfaffian equation. Pfaff’s problem is to find the integral manifolds of maximal
dimension. Consider Pfaff’s problem and solution for a exterior differential system consisting

of one equation
a=0, (2.22)
where « is a one-form. The rank of « is the smallest integer r such that
(da)"Aa # 0
(d)Ae = 0.
Theorem 11 (Pfaff’s Problem) Assume o in equation (2.22) has constant rank r in o

neighborhood of zg € R®. Then there ezists a coordinate system zy,... ,z, (possibly in a

smaller neighborhood of zo) such that a can be written in the normal form
a:=dzy + Zodzs + -+ + T2,dT504y .

The proof can be found in [15]. For the rank 1 case, the proof reduces to finding two
functions f, and f, satisfying

daAaAdfy=0 and aAdfi#0

aAdfyAdf; =0 and dfyAdf; #0
from which a can be scaled such that

o :=dfy + g1dfy = dzy + T2dz; .
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Theorem 12 (Engel’s Normal Form) Given a codimension two Pfaffian system in R*
with the derived flag satisfying

dimIM =1 and I®={0},
there exist local coordinates zJ, zy, z,, 2, such that

I = {dz; — z,dzg, dz; — 20d2]} , (2.23)
which is called Engel’s normal form.

Proof [15, 76]. The proof is repeated here since the concepts will be used later when a
Pfaffian system is transformed into Goursat normal form.

Choose a basis for the codimension two Pfaffian system I = {a° a'} that is
adapted to the derived flag. By a dimension count, da® A a® # 0 and (da®)? A o® = 0,
giving a° rank 1. Hence, Pfaff’s Theorem 11 can be used to find coordinates 29, 2, 23 such
that a® = dz, — 2,d2.

By construction o® € I?, j.e., da® Aa® Aa® = 0. Since da® = —dz) Adz0, o* must

have the structure
a' =adz +bdz) moda®.

Since a* # 0, a and b cannot both be zero. There are two cases to consider to find the
coordinate z,.
Case 1: (a # 0). Since o' is only determined mod a°, o® can be scaled by a non-zero

function as
:11-01 =dz + %dzg mod a° . (2.24)

Choosing zo = ~b/a then completes the set of coordinates for the basis for the codistribution
I, which is in Engel’s normal form. Notice that this basis is a transformed version of the

original basis

& = o = dz; — z,dz}
a = '+ x® = dz; - zd2?

where A is chosen such that equation (2.24) is an equality, i.e., no mod a°.
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Case 2: (b# 0). In this case, o’ is scaled as

1 a

7 Fdn + dz) mod o’

and z, is chosen as —a/b to complete the set of coordinates for the basis for the codistribution

I, which is in the normal form

A
|

0
de - zldzo

dzd — z0dz, . (2.25)

Q
il

This normal form is diffeomorphic to Engel’s normal form via the following change of

coordinates:
'73 =2
Mo = 2o = &° =dn, — ndn
m = 2§ @ = dn — nodnf
N2 =2y — 2] . O

A generalization of Engel’s normal form is stated as follows.

Theorem 13 (Goursat Normal Form) Given a codimension two Pfaffian system
I={d...,a"%} (2.26)

in R", if there ezists an integrable one-form = # 0 mod I satisfying the Goursat congru-

ences
do' = wAa**! moda’...,a',0<i<n—-4¢
da"™® # 0 modI, | (2.27)
then there exist local coordinates 29, 2, 2y,. .. , 2n—a Such that
I={dza2 — 2a3dz), ..., dz; — 20d2]} . (2.28)

Equation (2.28) is called the Goursat normal form of the Pfaffian system (2.26).

This theorem requires the existence of a basis {a'} and a one-form 7 of certain
structure. The basis is, however, adapted to the derived flag of the system, as can be verified
by a simple calculation. Therefore, if we start with the basis adapted to the derived flag,
we only need to find a one-form 7 that satisfies the Goursat congruences (2.27). Finding
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this 7 can be difficult and involves further scaling of the basis while preserving the adapted
structure.

Reference [15] gives a complete proof of Theorem 13. The following algorithm
for converting a codimension two Pfaffian system into Goursat normal form summarizes
the proof. It is based on the Gardner and Shadwick algorithm [24], which is a feedback
linearization version of this algorithm.

Algorithm 1 (Conversion to Goursat Normal Form)
Consider a codimension two Pfaffian system I = {a°,... ,a"3} in R™. The following steps

will transform the Pfaffian system into the Goursat normal form (2.28).

(i) Construct a basis I = {u°,... ,w""2} that is adapted to the derived flag of the Pfaffian

system.

(i) Find an integrable one-form m for which the Goursat congruences (2.27) are satisfied

with this basis. The coordinate z{ is chosen such that dz8 = 7.

(iti) From the Goursat congruences, w° and w' satisfy dw® Aw® Aw! = 0. Therefore, use

the proof of Engel’s Theorem 12 to find coordinates z,_g, 2,3 s Zn-4 Such that

W’ = dzn_p — 2,_3d2]

w' = dzu_g—z,-4d2] .

This may involve scaling the basis of w* while preserving the adapted structure and a
change of coordinates to convert between the two normal forms in the proof of Engel’s
Theorem 12.

(tv) Find the remaining coordinates by algebraically solving the egquations

w* = dzn_gp—zn-4-3dz] modu®,...,w* k=2,...,n-3. (2.29)

The proof of the Goursat normal form Theorem 13 is essentially to show that equation (2.29)
always has a solution.

Remark. The Goursat normal form is dual to what is called a two-input, single-generator

chained form. which was introduced in Murray and Sastry [57). Considering the codimension
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two case in R", the system in Goursat normal form (2.28) can be written as a control system

in chained form by choosing the vector fields

0 o O
g = a—zg'l-zoa—zl-F'“‘i‘Zn-aazn_z
a
N = 628 ’ (2.30)

which form a basis for the distribution annihilated by I = {a?,...,a®3}. Thus, the
problem of finding a basis for the constraints o* in Goursat normal form is equivalent to
finding a feedback transformation to the chained form (this transformation will be discussed
in detail in Section 3.1).

Finding the integrable one-form 7 for the Goursat normal form can be difficult.
In [52], Murray completely characterizes the set of codimension two systems that are equiv-
alent to a system in chained or Goursat normal form. Let I = {a?,...,a" %} be a codis-
tribution on R™ and write A = I+ for the distribution that annihilates I. For example,
A = span{go, g, } with g, and g, as in equation (2.30). Two filtrations are defined as

E, = A Go:= A
Ey:= Eo+[E0nE]  Gii= Go+[Go,Go

Ez . El + [El, E1] Gz = G1 + [G;, Go] (2.31)

Eiyy = E;+[Ei, Ej Girr:= Gi+[G;,Go)] .

The filtration {G;} is the one that usually appears in the context of nonlinear feedback
linearization (see equation (2.14)) and contains all Lie brackets up to order 7. The filtration
{E:} also contains Lie brackets of order i, but may also contain higher-order Lie products
(up to order 2°~!). This is due to the recursive construction of E; as opposed to the iterative
construction of G;. The filtration {E;} is the sequence of distributions that is perpendicular
to the derived flag of I = A*. Using these filtrations, [52] gives the following two results.

Theorem 14 (Murray) There ezists a basis {°,... , w3} for a codimension two Pfaf-

fian system I = A* that is in Goursat normal form (2.28) if and only if
dimE; =dimG;=i4+2 for 0<i<n-2.

See [52] for a proof. The following corollary uses the fact that the Goursat normal form

and the chained form are dual forms.
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Corollary 15 (Murray) There ezists a feedback transformation that converts a two-tnput

nonholonomic system into chained form if and only if
dmE; =dimG;=i+2 for 0<i<n-2.

Consider now what happens when there are more than two inputs, which cor-
responds to a Pfaffian system with codimension greater than two. In general, a Pfaffian
system I = {a®,... ,a°"!'} is said to have codimension m if s + m = n, the dimension of
the state space R". A tower of the derived flag must first be defined. In the codimension
two case, there is only one tower in the derived flag, which consists of the basis adapted to

the derived flag in equation (2.21).

Definition 1 (Towers of a derived flag) Let I be o collection of ny + - - - + n,, smooth

linearly independent one-forms defined on an open set U CR™ withn=m+ 1+ =1 T,

I = {w{,wﬁ,...,wf;,,:j=1,...,m}. (2.32)

Thus, I is a codimension m + 1 Pfaffian system. Let the one-form = # 0 mod I be such
that forj=1,...,m,

du] = wAw{“ mod I~k | k=1,...,n;-1

dwi # 0 modI. (2.33)
These congruences imply that the derived flag associated with the system I has the form
I“’:{w{,wﬁ,...,w,{)_,-:j:1,...,m} i=0,...N,

where N is the step where I'N) = JON¥1), Jfi > n.. then none of the constraints wi :=
(wi,ud,... ywj ) will appear in the i** derived system. Under this construction, we say the
derived flag of I has m towers. The set of relations (2.93) will be referred to as the extended

Goursat congruences.

In other words, when considering Pfaffian systems with codimension m + 1, we use a derived
flag with m towers. This is the dual to what is called a single-generator, (m + 1)-input,
chained form with m chains.

If the filtration {E;} as in equation (2.31) is constructed for A = span{go,...,gm},
this filtration is still the sequence of distributions that is perpendicular to the derived flag of
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I = At with m towers. Theorem 14 cannot, however, be extend to this higher codimension
case, since the distribution F; may contain more vector fields than E; due to the many
possible combinations of Lie brackets between the g; € A. Thus for m > 1 (more than two
inputs), the filtration {F;} cannot be guaranteed to grow as {E;} grows.

Gardner and Shadwick [24] extend Theorem 13 to a system with codimension
greater than two with the following theorem.

Theorem 16 (Extended Goursat Normal Form) Let U be an open subset of R and
I = {wi,uj,... ,wi, :j=1,...,m}

be a collection of ny + -+ + n, smooth linearly independent one-forms defined on U, where
n=m+1+ Y72, n;. If there ezists an integrable one-form = # 0 mod I such that the
eztended Goursat congruences (2.33) are satisfied, then there exists a set of n coordinates

on U such that I can be written as
I={dz} —2} _,d2j,..., dzj —z{ds} : j=1,...,m}. (2.34)

See [24, 52] for proof. Equation (2.34) represents an extended Goursat normal form system

with m towers.

Remark. It is necessary to have an integrable 7 in order to construct the coordinates for
the extended Goursat normal form. This was not stated in [24] since the 7 for their control
system was always equal to di. If the one-form 7 in the above theorem is not integrable,
then the Frobenius Theorem 9 cannot be used to find the 27 coordinates for I [77, 53]. In
the case where only one tower is the longest, Lemma 17 below shows that if there exists
any 7 that satisfies the extended Goursat congruences, then there exists an integrable n’
that also satisfies these congruences (under a rescaling of the basis one-forms). In the case
where n; = ny, or at least two towers have the longest length, however, this is no longer

true. Therefore, assuming 7 is integrable in Theorem 16 is necessary.

Lemma 17 Consider the case where one tower has the longest length. If there exists a
single one-form = # 0 mod I that satisfies the eztended Goursat congruences (2.83), then

there ezists an integrable one-form ' that also satisfies these congruences.

Proof. Without loss of generality, consider the case when the first tower is the longest.
Given that there exists a 7 # 0 that satisfies the extended Goursat congruences (2.33), the
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derived flag has the structure

™= = fwl)
™ = {o}.

The last Goursat congruence
dw} =7 Aw; mod w} (2.35)

implies that w] has rank 1. Thus, from the solution to Pfaff’s problem, there exists a
function f, satisfying the equation dw] A w} A dfy = 0. Substituting dw} from (2.35) gives
T Awj Awj Adfy =0, which shows that df is linearly dependent on 7, w3, and w}, i.e.,

dfy = ko(x) 7 + k1(z) wi + ko(z) wi

where z = (z,,... ,Z,) are the local coordinates on R™. Define 7' = df; and note that any

such 7’ with ko # 0 also satisfies the extended Goursat congruences (2.33). 0
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Chapter 3

Conversion to Chained and

Extended Goursat Normal Forms

In this chapter, methods are developed for converting the kinematic model of
nonholonomic wheeled vehicles into chained form and extended Goursat normal form. The
two methods presented are duals of each other: geometric nonlinear control theory and the
theory of exterior differential systems. Sufficient conditions for converting to chained form
are derived using vector field methods. Using techniques from exterior differential systems,
both necessary and sufficient conditions can be derived for transforming into extended

Goursat normal form.

3.1 Conversion to Chained Form

In this section, a method to convert systems into a special canonical form of
systems called chained form systems is presented. Once in chained form, the system can be
easily steered using various methods discussed in Chapter 4.

We are interested in steering mechanical systems with nonholonomic, or non-

integrable, linear velocity constraints
wiz)-2=0, i=1,2,...,k,

where z € R" is the state of the system and the w'(x) € R™ are row vectors, or one-forms.
For mobile robots, these constraints arise when a wheel rolls without slipping on a surface,

expressing that the relative velocity of the two points in contact is zero.
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The w’, are assumed to be linearly independent and smooth. The corresponding
codistribution (z) = span{w'(z),...,w*(z)} has dimension k. Therefore, an (n — k)-
dimensional distribution A(z) = span{go(z),... ,gn-k-1(z)} can be found with all g;(z) €
R", such that A = Q*, ie., w(z)- g;(z) = 0 for all v’ € Q, g; € A. Then a kinematic
system with the above nonholonomic constraints can be represented as a control system

with inputs u; as follows:
z = go(T)uo(t) + -+ + Gn-ic—1(T)thn—r-1(t) .

The motion planning problem therefore consists of controlling the drift-free system
£(t) = go(z)uo(t) + -+ * + gm(z)um(?)

where z is in the open set U C R™, u;(t) € R, m 4+ 1 < n, and the g; are smooth, linearly
independent vector fields. All subsequent conditions are assumed to hold on the open set U.
Given z° and z/, the goal is to find a control law u = (uy(t),... ,um(t)) to steer z(0) = z°
to z(T) = z/ on the time interval [0, T).

Chained form systems were first introduced by Murray and Sastry [57] as a class of
systems inspired by Brockett [13] to which one could convert a number of interesting exam-
ples, including a car and a car with one trailer, and for which it was easy to derive sinusoidal
steering control laws. These examples have two inputs and their chained forms have one
chain. If the system meets certain sufficient conditions allowing it to be transformed into

what is called a single-chain, single-generator chained form, defined by

Z.o =Yy 2.'1 = Y
éz = 1Y
Z.,,__l = Zp-2Yg (3.1)

after a nonlinear change of coordinates and state feedback, then the system may be steered
by setting the inputs vy and v; to be sinusoids at integrally related frequencies. This is
called a chained form system because the derivative of each state depends on the state
directly above it in a chained fashion. This particular chained form is reminiscent of a
Brunovsky normal form. Indeed, with the input vy set to 1, the coordinates z,... ,z,_,

are in Brunovsky canonical form (2.16). Chained form systems, however, are nonlinear,
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drift-free, and bilinear in the input and state variables. The input v, that appears in the
chain is called the generating input, thus the name “single-generator chained form.” A more
general chained form is discussed in Chapter 7 (see also [57]) that can have more than one
generating input and multiple chains leading down from each input. In this section, we are
only interested in chained form systems that have a single generator.

In the following, systems with three or more inputs are converted into a chained
form with more than one chain. In this special form, the system can be controlled using
sinusoidal, polynomial, or piecewise constant input functions as described in Chapter 4.

The outline of this section is as follows. In Section 3.1.1, sufficient conditions
are presented for transforming a three-input nonholonomic system into a two-chain, single-
generator chained form. In Section 3.1.2, the controllability of chained form systems is

discussed. In Section 3.1.3, these ideas are generalized to (m + 1)-inputs.

3.1.1 Converting to Two-chain, Single-generator Chained Form

As will be seen in the example section, finding the control inputs {u;} that will
steer the state z € R™ from an initial configuration to a final configuration may be difficult
if the kinematic equations are complicated. Converting to chained form greatly simplifies
this task: the structure of the chained form system allows one to easily construct sinusoidal,
polynomial, or piecewise constant control inputs.

Deriving conditions to transform a nonholonomic system with two or more inputs
into chained form is straightforward when we recall the method for exact linearization
of a nonlinear system with drift via state feedback and a coordinate transformation as
presented in Section 2.1.5. In analogy to this method, the following theorem that gives
sufficient conditions for transforming a three-input, drift-free, nonholonomic system into

chained form can be stated.

Theorem 18 (Converting to Two-chain, Single-generator Chained Form)

Consider a three-input, drift-free, nonholonomic system
& = go(z)uo + g1(2)ur + g2(z)u2 (3.2)

with smooth, linearly independent input vector fields go, g1, g2. There exists a feedback
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transformation on some open set U C R™

&Cn) = &(z)
u = fB(z)v

that transforms the system (3.2) into two-chain, single-generator chained form

& = vy G = v T = v

él = (Covo m = Novp

(3.3)
f)n, = Mny—1Y
(n; = Cﬂa-lvo
if there ezists a basis fo, f1, f2 for Ay := span{g,, 91,92} that has the form
7} =\ i\ O
fo = 3—:::1+iz=;f°(x);9;:
fo= 3RS
=2 ! 6:r,~
ho= e (3.4
i=2 2 Oz;
such that the distributions
Gy = sPan{flafz}
Gi := span{fy, fo, ady, f1, ady, f2}
Gau-1 = span{ady fi,ed} f2:0<i<n~1} (3.5)

have constant dimension on U, are all involutive, and G,_, has dimension n — 1 on U.

Proof. First denote the dimension of each distribution as d; := dimG;. By construction,
do = 2 and by assumption, d,; =n —1. Since Go C G, C --- C G,,,

2=dy<dy <" Ldpy=n-1.
Let n, be the smallest integer less than n such that

dimG,, = n-1

dmG,,_;, = n-2



36

and let n; be the integer when dimG,,,—, first drops by two. Thus, ad‘o f1 and a,d‘h f2 each
give new directions up to some level, n,, when one chain saturates and the other chain

continues to give new directions until the state space is spanned:

2(: +1) i=0,...,n,
di=9{ (i+1)+(n2+1) i=n,...,n,
n-1 i=ng;...,n—1

with n; + n; + 2 = n — 1. Without loss of generality, this proof will use the case n; > n,.
A basis for G,-; can then be chosen that is given by the first n, brackets of f, with f1 and
the first n, brackets of f, with f,:

Gn-l == Gm = SPan{fh adfofla'” ,ad?:fl’ f2vadfof2a°” ) ’;:fZ} ’

where f; and f, have been renumbered if necessary.
Because of the special form (3.4) of the vector fields, none of the vector fields in

G,-; has an entry é, thus

span{fo, fi,adp fi, ... sadg fr, fa,adg fos . »ady f2}

has dimension » on U. Then since the distribution G,_, is involutive and of dimension
d.-y = n—1 on U, Frobenius Theorem 4 shows that there exists n — d,_; = 1 smooth
function hg : U — R such that dho - X = 0 for all X € G,_;. Furthermore, dh, - fo(z) =
ao(z) # 0. With f, in the special form of equation (3.4), ko can be chosen to be z,, which
gives dhg - fo(z) = 1. It can also be verified that none of the vector fields in G,-; has
an entry in the first coordinate, giving dho - X = 0 for all X € G,_,. By the dimension
argument, G; = G, fori=n,,... ,n -2, thus dhy L G; fori=n,,... ,n-1.

The distribution G,,-; drops dimension by one by removing the vector field ady fy
from G, = G,,. Since this distribution is involutive and d,,; = n — 2, there exist two
smooth functions whose derivatives span G;,_,. One of these functions is h, since dhy
annihilates G, 2 Gn,-1. Let h; be the second function independent of hy and note that
dh, - ad}) fi(z) := a,(z) #0. ‘

At the next step, the vector field a,d';o"1 f1 is removed from G,,_; to get the
involutive distribution G,,-, of dimension d,,_; = n — 3. The one-forms dhy and dh,

annihilate G,, ;. Using the property of Lie derivatives given in equation (2.7) of Chapter 2
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and the fact that dh; annihilates G,,-,, we find dL h; annihilates G, since

0 = dhy-adjfi= Lad’}., pla= Llfo.ad’}o' '
= —dLph-ad}'fie 1Sj<m-1 k=12. (3.6)

]hl = LhLad;:lfkhl - Lad’;;’ thohl

Furthermore,
ay(z) = dhy-ad}fy=—dLyhi-ad 7

This procedure continues to the distribution G.,,, which is annihilated by dho, dh,, dLs,h;,
ey AL 0y,

Starting with the involutive distribution G,,-,, the distributions drop dimension
by two. For G,,-,, the vector fields ad}’ f; and ady; f, are removed from G,,. The one-forms
dho, dhy, dLghy, ..., dL} "2 h; annihilate G,,-; C Gy,. In addition, equation (2.7) and
the fact that dL}'~"*~'h, annihilates G,, give

dL}::—n:hl -ad}:""""’fk =0 1< J <n; -1 k= 1,2,

which shows dL7!™"*h; annihilates G,,-1. There is one more function whose differential
also annihilates Gn,-,; we call it h, and note that dh, - ad}} f>(z) := az(z) # 0.

At the next step, the vector fields ad}* ™ f; and ad}* ™" f, are removed from G,,—;
to get the involutive distribution G,,—, of dimension d,,— = 2(n; — 1). The one-forms
dho,dhy,dLghy, ... ,dL3 "™ hy,dh, annihilate G,,,—; € Gn,-;. To see that the one-forms
dL}‘;"‘""lhx and dLg,h, also annihilate G,,_2, we use equation (2.7) and the fact that
dL% "™ h, and dh; annihilate G,,-; to get

dLp ™™ hy cadl™ ™7 = 0 1<j<m -1 k=1,2
and
0 = dhy-ad) fi=—-dLphy-ad} ' fi 1<j<n,—1 k=1,2.
Furthermore,
ay(z) = dhy-ady fy=—dLyhy-ad}'f, .

This procedure continues to the distribution G,, which is annihilated by dh,, dh,, ..
dL}‘:-lhl, dhz, ey d ’;:-lhz.
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In summary, the three functions A, hi, and h, have been found such that

dhy L G, 0<j<n-1
dLl;ohl.LGj Ongn;—l, OSkSnl—l—j (3.7)
dL:h, LG; 0<j<n,—1, 0<k<ny—1-j.

These three functions are used to define the chained form coordinates as follows

§o = ho G = Luh o = Lph,
G o= Lp~'h m = L} 'h

(3.8)
My-1 = Lfoh2

Gas-1 = Lyh My = hy

Cﬂ: = hl o

To verify that the above coordinate transformation is valid, we show it is a local
diffeomorphism. First the derivatives of the coordinate transformation, &, are calculated
with respect to z. This is then multiplied on the right by a nonsingular matrix M whose
columns are the n independent vector fields fp, f;,ad fof1.o .. adP fi, fo,ady, oy .. ad}’ fo:

d’lo
dL% hy

dLs hy
—_— M= dh, [fo fir adgfy .- ad}':fl f2 adgf oo ad’}:le (3.9)
dL%2h,

dLhy
dhz




*

*

*

0

0
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0 0 0 0
* * %
0
*
0 a(z) O 0
*  ay(z) * *
0 +a,(z)
: : *
0 * 0 0 ay(z)

The functions a;(z) and a,(z) are nonzero by definition. Equation (3.7) is used to get the

zeros in the matrix. It can be shown that the above matrix, under row operations, is similar

to a nonsingular diagonal matrix with

1,%xa,(x),... ,a:(z), £azx(z),... ,a2(z)

on the diagonal, and thus has full rank. Therefore the Jacobian matrix -g—: must also

be nonsingular locally, implying (£,({,n7) = ®(z) is a local diffeomorphism and a valid

coordinate transformation on the open set U by the inverse function theorem.

To compute the input transformation, we take derivatives of the transformed co-

ordinates, cancelling terms by using the zero entries of the above matrix %% - M:

&
Go
G
-
7o

T

Tina

Ug
L}‘:"'lhluo + Lf, L?: hlul + L,,L’}:hlug

L3 hyuo = Gouo
L!o hl‘llo = Cﬂx -1
L?:+1112U0 + L!, L?: hgﬂz

L';: hzuo = ToUp

Ly haug = Mny-1Yp
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Therefore the input transformation

Vo = U
vy = L?:+1’lluo + LI,L?: hlul + Lf,L?: hlllg

UV = L’;:+lhzu° + LhL}‘: hz‘Ug

will result in the two-chain, single-generator chained form (3.3). a

Remark. The condition that Gy,... ,G,_; all be involutive is somewhat redundant, as in
the exact linearization conditions in [28] (Section 5.2.6, page 256), since the involutivity of

some distributions in the sequence may imply the involutivity of others.

3.1.2 Controllability of Chained Form Systems

In this section a system in two-chain, single-generator chained form is shown to be
completely controllable. Since controllability is unaffected by state feedback and coordinate

transformation, it will follow that the original system is also completely controllable.

Theorem 19 ( Controllability of Two-chain, Single-generator Chained Form Sys-
tems) The three-input, two-chain, single-generator chained form system in equation (3.3),

where (£,(.n) € U CR™ and n = n, + n, + 3, is completely controllable.

Proof. The chained form system equations are written as
£
é = Xo(f, Cs ’7)00 + Xl(ga Ca 77)”1 + X2(§1 C’ '7)”2 3
i
where (£,¢.17) = (&:60s-+- +Cnys 705+ - - 17n,) and the corresponding input vector fields are

Xo = 2 + ZCﬁ-xa%_ +2ﬂi—1ain_

33 i=1 i=1
7
Xy = —
! 8o
o
X, = —.
2 Ono

Recall from Section 2.1 that a system of the form 2 = 372, X;(z)v; is completely
controllable if the involutive closure of the distribution Ao = span{Xj,...,X,,} at each
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configuration is equal to the entire state space R®. Define Ay = span{Xy, X;, X;}. The
existence of n independent vector fields in the involutive closure, Ao, will imply complete
controllability. Consider the n-dimensional distribution, a subset of A, resulting from
taking successive Lie brackets with Xj:

A = span{Xy, X),adx,X,...,ad} X, X5,adx, X, ... yady X}

r p'

1 0 0 .+ 0 0 +ev v 0
0
Co 0 1
=span{ G, .1 e I
0 0 1
o : : 0 1
: 0
[t 0 -+ o 00 e 0 1|

The columns are linearly independent vector fields for each z € U. Therefore the system is

completely controllable. O

Remark. It could have proven directly that the original system is completely controllable
by defining A to be the span of the columns of the nonsingular matrix M in equation (3.9).
3.1.3 Multiple-input, Single-generator Chained Form Systems

The above results can be generalized to (m + 1)-input nonholonomic systems.

Proposition 20 (Converting to m-chain, Single-generator Chained Form)

Consider the drift-free nonholonomic system

&= go(z)up + +++ + gm(T)tpm (3.10)

with smooth, linearly independent input vector fields g;. There ezists a Jeedback transfor-

mation on some open set U C R™

z = &)
u = f(z)v



that transforms the system (3.10) into m-chain,

28 =V

0 2':3 = U
1 32 e 2
20Y0 2] = ZY
1
zn; -lvo
32 o 2
2n, = Zp,-10

”m
29

”m
2

5 m
2,
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single-generator chained form

Um

29"V

(3.11)

m
Zpm—1Y0

if there ezists a basis fy,... , fm for Ao := span{go,... ,gm} that has the form

such that the distributions

fo = 3_n+§f°(z)6_z;
n 8
fi = Ef,’(l‘)a—n

=2

1<j<m

G; = span{ad’ fi,...,0d% fn:0<i<j} 0<j<n-1

have constant dimension on U, are all involutive, and G,—, has dimensionn—1 on U.

The proof follows the same method as in the proof of Theorem 18.

Finding the coordinate transformation to the (m + 1)-input chained form uses the

same method as for the three-input case. We first find m + 1 smooth functions hy,... ,hn

and use the following formula:

0 1

2

L’;o‘ hl Zg

Lfo hl

hl 27213—1
zz

n2

= Lihs
= Ly h

= Lfo ’lz

= hg

Then the m + 1 chained form inputs are set to be

v,i=2y 0<i<m.

N
Lfo m

o
(3.12)

Lshm
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Proposition 21 (Controllability of m-chain, Single-generator Chained Form Sys-
tems) The (m+1)-input, m-chain, single-generator chained form system in equation (8.11),

where z € U CR® andn=m+ 14 X7, nj, is completely controllable.

The proof follows the same method as in the proof of Theorem 19.

3.2 Conversion to Extended Goursat Normal Form

In this section, a method is presented that only uses the constraints on the system
to transform the kinematics of a mobile robot into extended Goursat normal form. The
constraints can be written as o = 0, where the o* are one-forms on the robot’s configuration
space. In the previous section, nonholonomic systems were considered not from the point
of view of their constraints, but rather from the point of view of a control system with the
allowable motions in the span of the input vector fields. Sufficient conditions in terms of
the vector fields were given for converting multiple-input control systems to chained form.
The conditions presented in this section, however, are necessary and sufficient.

The dual to the chained form, in the sense of one-forms, is the Goursat normal
form. Although the mathematics literature abounds with the theory of exterior differential
systems (see [15, 25, 87] as a survey), only recently have there been attempts to apply this
machinery to solve general control problems in steering nonholonomic systems.

Murray [52] first described the connection between the chained form and the Gour-
sat normal form. Tilbury et al. [76] applied these results to show how to convert the system
of a car with IV trailers, a two-input control system or codimension two Pfaffian system,
into Goursat normal form. The calculations in this context were simplified by the use of a
coordinatization of the state space introduced by Sgrdalen in [68].

In fact, the techniques of Sgrdalen are a way of systematically converting mobile
robot systems of N trailers into two-chained form by noticing that the trajectory of the
(z,y) position of the last trailer determines the evolution of all the state variables of the
system. Tilbury et al. [78] also use this technique for transforming the kinematic model of a
multiple-steering, multiple-trailer mobile robot system to multiple-input chained form. The
physical intuition about the system is used to identify the states that determine all of the

trajectories of the system. These states become the bottoms of the chains of integrators in
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the chained form (3.11)
z3(t) 2, (), 2 (2)
and the rest of the coordinate transformation is found through differentiation
]
z,?=-%0’ 1<j<m, 0<ign;—-1. (3.13)

In related work by Fliess et al. [23, 64], the idea that certain variables determine
the entire state of the system has been formalized in a more general setting, and these
system variables are referred to as flat outputs. The formal definition of flatness is given
in the language of differential algebra and will not be discussed here. Informally [64], a
set of outputs y = h(z, u) with € R™ and u,y € R™ is said to be (differentially) flat for
the meromorphic! system z = f(z,u) if all of the system variables (states and inputs) are
differentiable functions of the outputs y, i.e., z and u are meromorphic functions of the
outputs y and finitely many of their derivatives. Intuitively, the flat outputs are outputs
with respect to which the system has no zero dynamics in the sense of nonlinear systems [28].
A system is called differentially flat if a set of flat outputs can be found. Moreover, there
may be many choices for the flat, or linearizing, outputs. The multiple-input chained
form of (3.11) is differentially flat with flat outputs 29,2} ,..., 27 , although chained form
systems with more than one generator are not, in general, flat.

In this section tools from exterior differential systems (refer to Section 2.2) are
used to convert Pfaffian systems of codimension greater than two into extended Goursat
normal form. Recall that a Pfaffian system of k one-forms (constraints) on a state space R®
is said to have codimension n — k. We refer to Theorem 16 from Section 2.2, which states
the necessarj' and sufficient conditions for the existence of a coordinate transformation to
extended Goursat normal form. If one cannot constructively find these coordinates, however,
the theorem is not useful for nonholonomic motion planning since the steering algorithms use
the transformed coordinates. A constructive algorithm for finding the extended Goursat
normal form coordinates is proposed in this section and modified in Section 5.4, in the
context of an example, to include the method of partial prolongations.

If the constraints of the Pfaffian system

I= {w{,wg,...,wz;j:j=1,...,m} (3.14)

1The proof of flatness in [64] requires that the space for = be a field, not a ring, which can only be
guaranteed if f(z,u) is 2 meromorphic function.
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satisfy the extended Goursat congruences

dwi = TAwl, modI™® k=1, ,n;-1

dwi # 0 modI (3.15)

for j = 1,...,m, then, by Theorem 16, there exist coordinates for the extended Goursat

normal form
I={dz] - zf;j_ldzg, ooy dz] —23d28 ¢ j=1,...,m}. (3.16)

In this section, a purely algebraic algorithm is presented that finds the coordinates. The
algorithm is similar to the one used in [24] for linearization to Brunovsky normal form.

For codimension two systems, or systems with only one tower, I = {w},wi,..., wh,
with n; +2 = n, the transformation is straightforward: the generator coordinate, 2§ and the
coordinate for the bottom of the tower, z,, are found from the solution to Pfaff’s problem
(Theorem 11, Section 2.2), then the rest of the coordinates are found through differentiation
by equation (3.13). This is summarized in Algorithm 1 from Section 2.2 and presented in
detail in [76)].

The difficulty with having more than one tower is that the constraints must be
modified to decouple the towers so that the solution to Pfaff’s problem can be used to
find the coordinates for each tower. The following discussion is restricted to the case of
the first tower being the longest tower so that if a 7 is found that satisfies the extended
Goursat congruences, an integrable 7’ can be found that satisfies these congruences by using
Lemma 17 from Section 2.2. For the case n; = n,, or when at least two towers have the
longest length, if a 7 is found that satisfies the extended Goursat congruences, we may not

be able to construct an integrable #’. There is no restriction on the lengths n,;, ng, ..., n,,.

Algorithm 2 (Conversion to Extended Goursat Normal Form)
Step 1 For the Pfaffian system
I = {a°d,...,0a" ™2} (3.17)
on R", compute the derived flag

IO=1 = {a®a!,... ,ar~m=2}

I® = {AeItV:dr=0 mod IV}
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Jori=1,... ,N, where N is the step in which this procedure terminates, i.e., [(N+1) =

IN), The one-forms o come from the kinematic constraints of the system.

Step 2 Construct m towers (8.14) using an integrable © such that the Goursat congru-
ences (3.15) are satisfied.

Step 3 From the Goursat congruence
de} =7 Aw} mod I™-Y |

the rank of wi is one since dwj Aw} # 0 and (dw})® Aw} = 0. Therefore, use the
solution to Pfaff’s problem (Theorem 11) to compute the coordinates for the first tower
of the normal form as follows:

(i) Define df, := n. This satisfies the first Pfaff equation
dot Awj Adfy =0 and w!Adf,#0.
Find a function f, satisfying the second Pfaff equation
wiAdfiAdf,=0 and dfyAdf,#0. (3.18)

(ii) Define zJ := f, as the generator coordinate and z) = f, as the coordinate

corresponding to the bottom of the first chain.

(i) Since wi satisfies the Pfaff equation (8.18), it can be modified as
w; = blq) df; —a(q) dzg

for some smooth functions a(g) and b(g), where g € R™ is the total state of the
system. b(q) # O for if it were, dw] = dz{Ada(q) =0 mod w}, which contradicts
the Goursat congruences (3.15). Therefore, this constraint can be modified as

l:):-_—dfg-@dzg.

b(g)
Define the coordinate z1 _, to be a(q)/b(q).

ny-1
(iv) Modify w} for i = 2,...,n, by using the form constraints in I™~9) from the

Goursat congruence equation (8.15) to satisfy
‘Dtl = dz‘llll—l.-f-l - cfll;-t'(q) dzg

and define 2} _; to be c!

ny=~1t ny—1i°

coordinates for the first tower.

This is a purely algebraic step that gives all the
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Step 4 Compute the coordinates for the second tower as follows:

(1) Modify w? by using the form constraints in I"2=)) from the Goursat congruence

equation (3.15) to satisfy the equation
@? = dh(q) — c(q) d2? , (3.19)
where h(g) and c(q) are smooth functions. The rank of & is one since do? A@? #
0 and (d@?)> A@? =0.
(i) This satisfies the first Pfaff equation with g, = f;,

do} A& Adgy =0 and @2 Adg, #0.
The second Pfaff equation is satisfied with g, = h from eguation (3.19),
@ ANdg;ANdg; =0 and dg, Adg, #0 .

(iii) Define 22, := g, = h as the coordinate corresponding to the bottom of the second

chain.
(iv) From equation (3.19), define the coordinate c(q) to be 22,_,.

(v) Modify w? for i = 2,...,n, by using the form constraints in I~ from the

Goursat congruence equation (8.15) to satisfy

-2 2 2 0
W= dznz—l"l'l - cn:—i(q) dzo

and define ¢}, _; to be 22, _;. This is o purely algebraic step that gives the coordi-

nates of the second tower.

Step 5 Compute the coordinates for the other towers using the same method as for the

second tower.

The above algorithm constructs coordinates {27} such that

I = {w{,...,wj;) :j=1,...,m}

_ 1 _ 1 0 1_,1 4.0 0
= {dz;, — 23,1 d2g,..., d2j — 25 d2,..., dz? — 27 _ d20,... dz" — 23 d2},

n Nm—1

which is the dual of the multiple-input, single-generator chained form in equation (3.11).
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In the preceding algorithm, there is flexibility in the choice of @]. More precisely,
an “integrating factor”, y(g), needs to be chosen such that

7a) @) =dzf, - 2, dsf . (3.20)

In practice, it is difficult to choose 7(g) appropriately to solve for the 22 ;-1 coordinate.
Therefore, a method using partial prolongations of the exterior differential system that
more readily yields extended Goursat normal form coordinates is developed Section 5.4 in
the context of an example. The basic idea is to use partial prolongations to add more one-
forms to some of the towers in the system so that it is easier to find an integrating factor
for equation (3.20) and to solve for the coordinates. These one-forms are the constraints of
“virtual axles” strategically added onto the multiple-steering, multiple-trailer system. The
example considered only has two towers in its derived flag, but the procedure developed in
Section 5.4 easily extends to general m tower systems.

In summary, this chapter has presented two methods for transforming a multiple-
input drift-free nonholonomic system into chained form and extended Goursat normal form.
The first method gave sufficient conditions for transforming the kinematic system to a
multiple-chain, single-generator chained form using a coordinate transformation and state
feedback. In this special form, the system was shown to be completely controllable. The
second method presented an algorithm with necessary and sufficient conditions to find the
extended Goursat normal form coordinates. The algorithm used the fact that the one-form
= that satisfies the extended Goursat congruences is integrable. Once the system is in
extended Goursat normal form or multiple-input chained form, there are many methods
available for steering and stabilization of such systems, which are the topics presented in

the next chapter.
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Chapter 4

Steering and Stabilization

In this chapter, different open-loop methods for steering wheeled nonholonomic
systemsin chained form between two given configurations are presented. The first algorithm
uses sinusoidal control inputs; steering one level in the chains at a time in a step-by-step
fashion, or steering all levels in the chains at once. The steering method using polynomial
control inputs was presented in detail in [57, 78, 76] and will be briefly mentioned here.
The method of steering nonholonomic systems using piecewise constant inputs was first
introduced in [49] as multirate digital control. The basic idea behind each of the steering
methods is to parameterize the input space with at least as many parameters as there
are states, integrate the chained form equations symbolically, and then solve for the input
parameters in terms of the desired initial and final states.

As mentijoned in the introductory chapter, we make no attempt to find the “opti-
mal” control inputs since the criteria for optimality may change with the different mobile
robot systems considered. We have found, however, that although all of the steering algo-
rithms will find a path between any two given configurations, the resulting trajectories look
“nicer” for some methods than for others. Using the step-by-step sinusoidal method is not
recommended in practice, but only included here to show the ease of steering at each level
in the chained form. The all-at-once sinusoidal method is best used for trajectories that
bave a reversal, such as parallel parking. Polynomial and piecewise constant control inputs
work better for trajectories without reversals.

The control problem considered in this chapter is stated as follows: given a system
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of equations in extended Goursat normal form

— 1 _ 1 0 1 1 0 1 1 3.0
I -— {dzm 2“1_1 dzO, dz,"_l - z"’_z dzo, ceey dzl - z° dzo,

m m 0 m m 0 m 0
s Az -z dzg, dal - 2T, d2,..., d2f -2 dz}, (4.1)

or chained form

25 =1 2y v 23 () o= v,
2 = z}y 22 = 22y P = 2Py
" . (4.2)
%py T Zpy-1V0
22— L2
Zng = Zpa
> - m
an = an_l‘vo ’

a desired initial state £° := (2°,z%,...,2™)° and final state & := (2°,21,... ,2™)f, and a
time T > 0, find inputs {v;(t) : ¢t € [0,T], 0 < i < m} that will steer the system from the
initial state to the final state in [0, T].

Various approaches for feedback stabilization of chained form systems are also
briefly mentioned. Although most of the work in this area has concentrated on two-input
systems, the decoupled form of the multiple-input chained form system allows the techniques
to be generalized.

4.1 Steering with Sinusoidal Inputs

In this section, two algorithms are presented for steering a system in chained form
from a given initial configuration to a desired final configuration. Both algorithms use
sinusoidal inputs, but the first algorithm steers the system by steering one level in the
chained form at a time, and the second algorithm steers all of the states in the chained
form at the same time. Steering chained form systems with sinusoids was introduced by
Murray and Sastry [55]. We have found steering with the step-by-step sinusoidal method
not to be practical in the sense that it produces trajectories with more reversals than are
minimally needed, and recommend replacing it by the all-at-once sinusoidal method or one
of the other two methods presented in this chapter.

As was stated in the introductory chapter, using sinusoids to steer chained form

systems is optimal in the sense that the “input effort” (maximum input value) is minimized.
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Consider the optimal control problem for the chained form system
£=B(¢) v
where £ : R® — R™, v: R — R™*! and B(£) : R® s R**(™+1) that is written as
minimize 1 J; |v|?dt
subject to £(0)=¢° and £(1)=¢7.

The solution to this problem is periodic: sinusoidal for n = 3 and elliptic for n > 3. For

example, if we consider the system in R3
éx =1 éz =Y
é:s = &

with £(0) = £° and £(1) = £/, the optimal control problem becomes

minimize 1 [ (€2 + £2)dt

subject to £(0) =€°, £(1) =€/, and & — vy =0.
By the Calculus of Variations, the Lagrangian is

1. . .
L(§,6) = 3(E+ &) + M& - &&) -

Solving the Euler-Lagrange equation

doL 0oL

dt 9¢ Ot

(5) (5 0)(2) (%)

where A is a constant skew-symmetric matrix. Solving for v = (v, v;) gives

gives

v(t) = e**v(0) .
By Rodrigues’ formula, with A = AS where S is unit skew matrix,
e* =T+ SsinA+5%(1-cos)).

This gives

sin At
At

eM = cos Mt + A,
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which shows that the inputs are sinusoids. If the additional assumption is made that t = 1,
€° = (0,0,0), and &/ = (0,0, a) for some constant a, then A = 27n and et = [ , showing
that the inputs are sinusoids at integrally related frequencies.

The above shows the existence of sinusoids as inputs to steer systems in chained
form for the case of £ € R® when the cost is the input effort. This does not mean that
sinusoids are the best practical method for steering these systems, as will be seen in the
examples in Chapter 5.

For the first algorithm, comsider the system in the chained form (4.2) with the
lengths of the chains such that n; < n;,,. This step-by-step sinusoidal algorithm exploits
the decoupling of the chains, allowing for simultaneous steering of each level. The main
idea, considering for a moment only the first chain with 2!, is that if vy = asinwt and
v; = Bcoslwt, then Zj will have a frequency component at fw, 2} will have a frequency
component at (£ — 1)w, ..., and 2} will have a frequency component at zero. By simple
integration over one period, this yields net movement in 2} while 23,... ,2}_, return to their
previous values. Thus, at the £** step in the algorithm, the states at the £** level in the
chain are driven to their final positions. ‘

The following algorithm is an extension of the algorithm for two-input systems in
Murray and Sastry [56].

Algorithm 3 (Step-by-step Steering with Sinusoids for Multiple-input Systems)

Step 0 Steer the top-level coordinates, {z, j=0,... y,m} by choosing constant values for

Vo; V1,... ,Um On the time interval [0,T):
1
(B - ()

wo= 2@ - (@)

Yo

o= (Y - ).

Step 1 Steer the coordinates at the first level down by choosing a sinusoid on v, and out-
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of-phase sinusoids on the other inputs with w = 2% over the time interval [T, 2T):

Y9 = oasinwt
vy = [coswt
U = “coswi
Vn = vceOsSwt .,
Choose a, 3, ... ,v such that
af
() -@) = 3T
av
(Y -(T) = 5T,
which causes the states {z], j=1,...,m} to reach their final values at time 2T.

Step k (for k =2,...,ny,) Steer the coordinates at level k from the top. If n; < k < Nig1,
then only chains i+ 1,...,m will be affected. A single frequency sinusoid is used for
the first input, while multiple frequency sinusoids are used for the other inputs with
w = 2% over the time interval [kT, (k + 1)T):

T
vp = asinwt
v = 0
v = 0
Vig1 = (coskwt
vy = vcoskwt.

Choose (, ... ,v such that

S+ i+ =
(zlc ) zk (kT) (2w)’°k!T
k
(z0) - p(kT) = ——T,
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which causes the states {zi, j=i+1,... ym} to reach their desired final values at
time (k + 1)T.

After each step k, the states closer to the top of the chain than level k will have
returned to the same values they reached after the previous step (k — 1). The states lower
in the chain than level k will move as a result of the inputs at step k by some amount. This
movement is ignored since those states are steered to their desired final values in subsequent
iterations.

Although this method works well, it can be tedious in practice because of the
many steps that are needed. In addition, the trajectories that are generated consist of many
segments and do not always follow a direct path between the start and goal configurations.

In [76] an “all-at-once” sinusoidal method was proposed for the two-input case; we
extended it here to multiple-input systems. In this method, only one step is used with all

of the necessary frequencies set in the inputs:

Yo = ap+a;sinwt

vy = by+bycoswt+---+b,, cosnywt

Um = Vo+vicoswt+---+ v, cosn,wt. (4.3)

The existence of the parameters ao, @1, bg, ... ,bn,,... V0, ..., Vn,, is stated in the following
proposition, which was proven for single-chain systems in [76]. The main idea of the proof
of the proposition is to symbolically integrate the chained form equations (4.2) with the all-
at-once sinusoidal inputs (4.3) to get £(t) := (2°(2), 2*(2),... ,z™(t)), which are functions
of the initial state and input parameters. If {(T) is evaluated with T = 27/w, all the
sinusoidal functions integrate to 1 or 0. Setting £(T’) to be the given final state £/, gives a
set of n polynomials in the n 41 input parameters ao,ay, bo,... ,bnyy ..., g,... ,Vn_. This

proposition guarantees local existence of solutions to these equations.

Proposition 22 (Steering with All-at-once Sinusoids) Consider the multiple-input
chained system in equation (4.2) with initial and final states such that |€° — €| < & for
some 6§ > 0 sufficiently small. Then there exist input parameters ao,ay, by,... ,b,,, ...,
Vos--- s Vn,, Such that the inputs in equation (4.3) steer the system from the initial to final

state in time T = 27 /w.
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Proof. Without loss of generality, consider the case where the number of chains is m = 2.
Let £(t) == (23(2), 23(t), .- - , 23,(t), 22(t), ... , 22,(t)) and define the following map for n =

m+1+ '.“=1nj:
¢:R* » R"
(ao';bOa'--abm’cO’-“scnz) — Ef'

Define ¢(ag,bo;--- ;bn,,Co:-.. ,Cn,) to be the value of £(T') when the chained form sys-
tem (4.2) with m = 2 is integrated over [0, T}, starting at the given initial state £° with the
inputs (4.3). We choose a, # 0 and show that ¢ is a local diffeomorphism.

Let {e;}i; be the standard basis for R" and let ¢ be small. With the input

parameterized by ee,,
Vg = € + a, sinwt =0 v,=0,
the chained form equations are integrated and evaluated at T to give
(cer) = £" + (eT;0,0(e), ... ,0(e); 0, 0(¢), ... , 0(e)) ,

where o(€) represents terms of linear and higher order in . For k = 2,..., ﬁl + 2 with an

input parameterized by ee;,
Yo =asinwt vy =e€cos((k—-2)wt) v,=0,
the chained form equations are integrated and evaluated at T to give

o(eer) = €° + (00,... ,0,pi(€), o(€), ... , 0(€); 0, . .. ,0)

with
k-2
_ a; T
Pee) = Ty - (4.4
Similarly, for k = n, 4 3,... ,n; + n; + 3 with an input parameterized by ee;,

Yo=asinwt v =0 vy=ecos((j—2uwt) j=k-n;—1,

the chained form equations are integrated and evaluated at T to give

o(eer) = £° +(0;0....,0;0,..., 0, pj(e), ofe), ... ,0(€))
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with p;(e) defined as in (4.4). These n, + n, +3 directional derivatives are linearly indepen-
dent, implying that the Jacobian of ¢ is nonsingular. Therefore, ¢ is a local diffeomorphism
and the parameters for the inputs (4.3) can be found by selecting a value for a, and taking
the inverse transformation ¢~!(¢f). In practice, the final state is not within a 6 ball around
the initial state. In this case, the two given states are connected by a finite number of
6 balls, and the above method is applied within each ball. It is not clear how to apply
this method when the transformation to chained form has singularities since in the original
coordinates, the parameter § may be a function of z. Extending this proof to the case of

m chains is tedious, but straightforward since the chains are decoupled. O

Both of the sinusoidal methods require one more parameter than state and this
parameter, ¢ in Algorithm 3 and a, in Proposition 22, is the magnitude of the first input
vo. The main drawback to this approach is that there will be some interference between the
levels, although not between chains, which requires solving nonlinear algebraic equations

for the input parameters.

4.2 Steering with Polynomial Inputs

In this section, the method of steering multiple-input chained form systems in
equation (4.2) with polynomial inputs is presented. This method was introduced in [76] for
two-input systems and extended to multiple-input systems in [78).

In this method, the first input, vy, is constant over the entire trajectory and the

other inputs are Taylor polynomials

Y = 1

vy = bo+b1t+"'+bn,tn'

v2 = Cc+cl+-o+ cnztn’ (4‘5)
UYn = Vo+ Vlt +0e 4 Unmtn'“

with the number of parameters on each input chosen to be equal to the number of states
in its chain. The time needed to steer the system is determined from the change in the 2§

coordinate,

T = ()’ ~ ()" (4.6)
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Let £(t) := (2(t),2'(t),...,z™(t)). Integrating the chained form equations (4.2) with
inputs as in (4.5), initial condition £(0) = £°, and evaluating at time T, the parameters
bo;- -+ ybpy3€0s-vn 3Cngyeve yVoy- - ,Vy,, can be found in terms of the initial and final states
from setting £(T) = &/. Since the chains are decoupled, each chain’s parameters can be

independently found from the equations

bo [ ()
My(T)| ¢ [+ f(z}0),T) = :
bﬂ) L (2311)!
Vo [ (=)
M(T)| @ | +f(™0),T) = : . (4.7)
Unm L (z::,,)f
The entries of the matrices have the form
G

M;; = (i+j-1)

showing that the matrices are nonsingular for T 3 0. Equations (4.7) are easily solved for
the parameters b;,c;,. .. ,v; by inverting the matrices, which are linear in the parameters.

A word of caution is needed if by chance equation (4.6) yields a time T = 0. In this
case, this method will not work. This corresponds in a mobile robot system to the “parallel-
parking” maneuver. An easy way to remedy this situation is to pick an intermediate point,
with 2§ not equal to the given (zJ)°, (zJ)/, and then plan the path in two pieces. For
the parallel-parking trajectory, the intermediate point is chosen to be that point where the
vehicle would change directions to start backing up.

4.3 Steering with Piecewise Constant Inputs

In this section, a piecewise constant steering method is presented that steers the
chained form system in equation (4.2). The method of steering nonholonomic systems
using multirate digital control was first introduced by Monaco and Normand-Cyrot [49].
If the system can be discretized exactly, this method will generate exact point-to-point
trajectories. For our purposes, these controls are interpreted as piecewise constant inputs.

An algorithm using piecewise constant inputs for steering mobile robots was given in [75] in
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the context of the fire truck example, and in [78] for steering a multiple-steering, multiple-
trailer vehicle.

As in the method with polynomial inputs, the first input v, in equation (4.2) is
chosen to be constant over the entire trajectory and the other m inputs are parameterized.
Having v, constant over the whole trajectory guarantees the linearity of the equations
that need to be solved for the other input parameters. The other inputs are chosen to be
piecewise constant. For the first input v,, for example, the time interval is divided into
n; + 1 intervals

0<th <<t

and v, is set to a constant value over each [t,%x4;). To make sure that the resulting
equations have a solution, each input should switch constant values at least as many times as
there are states in its chain. For this discussion, n; is assumed to be < n,,, in equation (4.2)
so that the m** input will have the largest number of switches.

Let the time for the trajectory be denoted as T. The first input is chosen to be

constant over the entire trajectory:
vw(t)=vy forte0,T],

where v is chosen such that the first chained form state z9 will go from its initial to its

final position over the time period, i.e.,
1 i
o = 2 () - () . (48)

The other inputs are chosen to be piecewise constant as follows. Let the switching times be

chosen as
O=t<ti<---<t) , =T 1<j<m.

There are n; + 1 switching times for each input vy, ... , v, since there are n; + 1 states in
the j** chain. Many different methods are available for choosing these times; we choose
them so that for the m** input (with the most switching times) the holding times between
switches will be equal. The switching times for the other inputs are then chosen to be some

subset of the switching times for the m** input. Therefore, the inputs are of the form

vi(t) =), fort€fte,teps) 1<j<m
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These inputs are substituted into equation (4.2) and the equations are integrated
using a symbolic manipulation software package. The final state can be expressed in terms
of the inputs and the initial state as

I- 7 ] [ vh ]
P . vP
(T) = M;(2,2(0)) | "

L zgl,' J L le:')ﬂj o

where the matrices M; are assured to be nonsingular whenever the first input v? is nonzero
[49]. As in steering with polynomial inputs, if the first input is zero from equation (4.8),
then a slight modification of this method is necessary. One can either add a piecewise
constant input to vp using at least two time periods, or an intermediate point can be chosen

and the path can be planned as two separate trajectories.

4.4 Stabilization of Multiple-input Chained Form Systems

In this section, some methods from the literature for stabilization of chained form
systems are brief’y discussed. These systems are open-loop controllable, as shown in the
previous sections by the various point-to-point steering algorithms, but are not stabilizable
to a point by pure smooth static-state feedback (see Brockett [14]). The reason for this is
that chained form systems & = 372 g;(z)u; fail the necessary condition that the mapping

7:R*xR™ — R"
m
vi(zu) = Y gi()u;
3=0
be onto an open set containing the origin. This mapping for chained form systems fails
to map small regions in R™ x R™ into small regions about the origin in R". Bearing this
result in mind, various researchers have tried to stabilize such systems by time-varying or
non-smooth state feedback.

Many of the algorithms for point stabilization require the system to be in chained
form. For two-input systems, a class of smooth, time-varying control laws for local and
global asymptotic stabilization to a point was presented by Teel et al. [74]. This method

consists of taking the chained form system and converting it into power form, which has
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the structure

% = v
B = vy
3 = you

. 1
22 = 5(1/0)201

. 1 n—
Inz = o (Y0)" s

(n=2)!
It was shown that the following control laws locally asymptotically stabilize the origin of

the power form system:

Vo = —Yo+ (ﬂz-f(zk)"’) (cost —sint)
as

v = —y1+ ) cxzxcos(kt)
k=1

for constants ¢; < 0.
This procedure was extended by Walsh and Bushnell [85) to locally asymptotically
stabilize the origin of (m + 1)-input, m-chain, single-generator chained form systems. As

above, the chained form system is first converted to power form

y; = v; for 0<j<m
1
k!

where z is the k** level state in chain j. The origin (y, z) = (0,0) is locally asymptotically

# = Z(w)v; for 1<k<n;, 0<j<m,

stable under the action of the controls

Vo = —Yo+ (i i(z{)’) (cost —sint)

J=1 k=1

v; = —y;+ 3 cizicos(kt) for 1<j<m,
k=1

where each ¢ < 0. This reference also uses the fire truck as an example to illustrate the
proposed stabilizing control law.
In Walsh et al. [83], a technique for stabilizing nonholonomic systems to trajectories

is presented. An explicit control law is constructed to locally exponentially stabilize the
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system to a desired trajectory, which has been generated by an open-loop path planner. The
method is to linearize the system about the given trajectory, check to see if the resulting
time-varying linear system is uniformly completely controllable, and if so, construct a linear
time-varying feedback control law to locally stabilize the system about the trajectory.

In Murray et al. [58], a non-smooth, time-varying feedback control law achieving
local exponential convergence to a neighborhood of the origin for two-input chained form
systems was presented.

Sgrdalen and Egeland [69] present a method of globally stabilizing about the origin
with exponential convergence for a two-input, chained form system. Here, the feedback
control laws were developed for the system in chained form instead of power form.

Pomet [61) presents a constructive approach for deriving a time-varying smooth
feedback control law that can be applied to globally uniformly asymptotically stabilizing
chained form systems to the origin.

In summary, different methods for steering wheeled nonholonomic systems in
chained form and various approaches for feedback stabilization were described. The steer-
ing method using sinusoids in a step-by-step manner was used to show the construction of
chained form systems, but is not advised in practice. The “all-at-once” sinusoidal method
is easier to use, and works well for paths that require at least one reversal. Polynomial
and piecewise constant control inputs are recommended for paths without reversals. If the
path does have a reversal, as in the parallel parking maneuver, one can use polynomial or
piecewise constant inputs if the path is planned in two parts: first for the forward direction,

then for the reverse direction.
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Chapter 5

Examples of Wheeled

Nonholonomic Systems

In this chapter, the theory discussed in earlier chapters is illustrated with exam-
ples of wheeled nonholonomic systems. Two mobile robot examples are considered in detail:
the fire truck, which has three axles and three inputs (steering on the front and back axles
plus driving), and an “extended fire truck” that has five axles and three inputs. The intro-
duction of the fire truck system allowed us to generalize many of the ideas developed for
two-input nonholonomic systems as presented by Murray and Sastry [57), where a two-axle
car was converted to chained form, and by Sgrdalen [68], where a car pulling N trailers
was converted to chained form. Considering the more general multiple-input wheeled non-
holonomic systems also prompted us to look into the theory of exterior differential systems,
extending the ideas of Tilbury et al. [76], where a car pulling N trailers was converted to
Goursat normal form, and dualizing the ideas presented in Tilbury et al. [78], where a gen-
eral multiple-steering, multiple-trailer system was converted to chained form by the method
of dynamic state feedback.

Our investigation of the fire truck system has been fundamental to understanding
multiple-steering, multiple-trailer nonholonomic systems, which may be used in practice in
manufacturing plants, nuclear power plants, or any area unsafe for human operators.

The outline of this chapter is as follows. In Section 5.1, the kinematic equations
of the fire truck system are converted to chained form. In Section 5.2, the kinematics of

the fire truck are converted to extended Goursat normal form, showing the differences and
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Figure 5.1: The configuration of the fire truck.

similarities between the two dual conversion methods. In Section 5.3, numerical simulation
results of the fire truck system are presented, demonstrating the advantage of having the
extra steering wheel. In Section 5.4, a five-axle, two-steering mobile robot is converted
to extended Goursat normal form. In Section 5.5, numerical simulation results of this
“extended fire truck™ are presented. In Section 5.6, converting mobile robots configured
with off-axle, or kingpin, hitching to chained form or Goursat normal form is studied.

5.1 Converting the Fire Truck to Chained Form

In this section, the kinematic model of a fire truck mobile robot is converted to
chained form using the results stated in Section 3.1. Fire trucks are used to carry aerial
ladders, tools, and equipment and have the main purpose of rescue and ventilation. They
are mainly used by fire departments in large cities in the United States and have great
maneuverability through narrow city streets due to the extra steering on the third axle, or
tiller.

5.1.1 The Fire Truck System

The fire truck is an example of a three-input nonholonomic system. It is mathemat-
ically modeled as two planar rigid bodies supported by three axles. Assuming axle-to-axle
hitching, the support of the trailer is over the center of the rear axle of the truck. The first
and third axles are allowed to pivot, while the middle axle is rigidly fixed to the truck’s

body. The wheels are assumed to roll but not slip, thus giving linear velocity constraints.
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The derivation of the kinematic equations for the fire truck refers to Figure 5.1,
where the two rigid bodies are emphasized. The states of the kinematic model, all functions
of time, are chosen as follows: (z,,y;) is the Cartesian location of the center of the rear
axle of the truck, ¢, is the steering angle of the front wheels with respect to the truck’s
body, and 6, is the orientation of the truck’s body with respect to the horizontal axis of the
inertial frame. The states (z2, y2, ¢2,6,) are described similarly for the trailer, except that
2 is the angle of the rear wheels with respect to the trailer’s body.

Let the distance between the front and rear axles of the truck be Ly, and the
distance between the centers of the rear axles of the truck and trailer be L,. This gives the

holonomic constraints

o= T+ Lo cosﬂ, Yo= Wn+ Lo sin01

To= Iy — Ll cost Y= Y — L1 sin02 .

Thus, the six coordinates z := (z1, y1, 91,61, ¢2,6,) are sufficient to represent. the positions
and orientations of the truck, trailer, and wheels.

For a mechanical system with wheels rolling and turning on a surface, the non-
slipping constraint states that the velocity of a body in the direction perpendicular to each
wheel must be zero. In terms of coordinates, for a wheel centered at location (z,y) and at
an angle o with respect to the horizontal axis of the fixed frame, the constraint is written

as
0 =v,sinp — v cosp .

In order to simplify the kinematic model of the fire truck, each pair of wheels is
modeled as a single wheel centered at the midpoint of the axle!. Requiring that the wheels

do not slip gives the three linear velocity constraints

0 = i,sin(6) + ¢;) — g1 cos(6; + ¢1) — 6,Lo cos ¢,
0 = z;sin6, — 3, cosb,
0 = .'i:; sin(ﬂg + ¢2) - !}1 COS(og + ¢3) + éng COos ¢2 .

It may be shown (see the appendix) that in fact the two wheels have different angles and their normals
all intersect at a single point. If, for example, ¢} and ¢? are the angles of the front wheels of the truck, a
holonomic constraint can be derived that eliminates one of these two variables. Thus, only one of the wheel
angles needs to be in the state of the system.
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These constraints can be expressed more compactly as w'(z) - £ = 0, where the covectors

w'(z) are written in coordinates in R® as

wi(z) = [ sin(6i+¢;) —cos(y+¢,) 0 —Lycosd; 0 0 ]
wiz) = [  sing, —cosé, 0 0 0 0 ] (5.1)
w’(z) = [ Sin(eg + ¢2) - 008(02 + ¢2) 0 0 0 L1 cos ¢3 ] .

The corresponding codistribution is (z) = span{w!(z),w?(z),w?(z)}. Since 0
has dimension three and the state space is of dimension six, a three-dimensional distribution
A(z) := span{go(z), 91(z), g2(x)} can be found such that w'(z) - gi(z) = 0, for all w* €
Q. g; € A. A simple calculation will show that the following vector fields form a basis for
A:

( cos b, \ { 0 \\ ( 0 )
sin 6, 0 0
0 1 0
= = = 5.2
9o r’;tan b4 [} 0 92 0 (5.2)
0 0 1
\ —ﬁsec:}&zsin(éz—gx + 6;) / \ 0 ) \ 0 )

The nonholonomic constraints w¥(z) - £ = 0 for all w* € Q are equivalent to having
I € A, i.e., £ is a linear combination of vector fields in A with functions of z as coefficients.
Therefore the kinematic model of the fire truck as a control system with three inputs can

be written as

T = go(x)uo + g1(z)u; + ga(2)u, . (5.3)

The basis {go, 91, 9.} for A is chosen so that the input u, corresponds to the forward driving
velocity of the truck, u, corresponds to the steering velocity of the front wheels of the truck

and u, corresponds to the steering velocity of the rear wheels of the trailer.

5.1.2 Converting to Chained Form

Theorem 18 in Section 3.1.1 is now used to find the chained form equations for the
fire truck system. The vector fields fo, fi, f2, which will be shown to satisfy the conditions
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of the proposition, are

( 1 \ (0 (0)
ta.nGl 0 0
0 1 0
= ) = s = , 5.4
fo %oseca, tan ¢, f 0 f2 0 54
0 0 1
\ —%‘secolsec¢2sin(¢z-01+02) ) \0} \OJ

where f, = sec,go with g, as in equation (5.2). These can be considered as the original
input vector fields after the input transformation i, = ug cos 6,. In this representation,
three of the states are controlled directly: z;, ¢;, ¢;, so their velocities are the inputs.
The distributions G; in equation (3.5) are now constructed, and their involutivity
will be checked. By way of notation, define fi:=adsfi, fo ;= ad, f; and f; := a.d"}o fi.
Recall that z = (zy, ¥, ¢1, 61, ¢2, 0,).

Go = span{fy, f2}
G = span{fi,ady, f1, f2,ady, fo}
G: = span{fi,ady, f1,ad}, f1, f2,ady, f, ad}, f}
= span{fy,ady, f1,ad}, fi, fa, ady, f2} = span{fi, fs, fs, fa, fa}

((0) ( 0 \ ¢/ 0 \
0 0 £ sec? ¢, sec® 6,
- el | ! 0 0
- 0| I sec? ¢, sech, ’ 0 ’
0 0 0
Ao/ A 0 J \ T cos(¢2 + 62) sec? ¢, sec ¢, sec? 6, J
(o) ( 0 \)
0 0
0 0
0 0 f
1 0
\ 0 ) \ L%cos(ez — 0,) sec? ¢, sech, ) )

The distribution G; has dimension n —1 =5 on U = {z : 6, — 6,,4¢,, ¢»,6, #
xZ}cC R® since the five vector fields that define G, along with f, are linearly independent,
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ie.,

cos(8; — 6;) sec* ¢, sec? g, sec® 8, .

det[fo f1 f2 5 fu fi] = L’L

It may also be verified that G,, G; and G, are involutive on U and that the functions
hy = z,, hy =y, and h, = 6, satisfy

dhy L G; j=0,1,2
dhy LG;  j=0,1
dL,,hy L Go

dhy L Gy,

which is equation (3.7) from Section 3.1.1withn=6,n; =2,n,=1,and G, =G5 = G4 =
Gs = G,_;. Note that there is a lack of uniqueness in the h functions.

Remark. In the open set U C R®, the fire truck is not in the jack-knife configuration, that
is, the wheels are less than 7/2 relative to their respective bodies, and the truck’s body
angle is not £7/2. Sometimes using higher-order Lie brackets allows the spanning of the
whole space R®, including the singularities. Out of all the distributions with at most second
order Lie brackets, the distribution

span{f1,ady, f1, ad?,,fn fa, adzofz}

was found to span U" = {z : ¢;,¢;,60; # :i:%} C RS, which eliminates the singularity at the
jack-knife configuration but still requires 8, # 7 /2. Allowing third order Lie brackets, the

distributions

spa'n{flaadfofl ad‘zfofhad f11f2}
span{fha'dfoflsad;ofhf2sad f2}

both span U”, and

span{flyadfofltadz}ofh f21adfof2}

spans U.
The coordinate transformation (£,¢,n) = ®(z) from equation (3.8) is computed
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as follows:

o= hy =1z
1
CO = L;ohl = L_o tan ¢1 SeC3 01
Cl = Lfohl = tan01
G= N~ =
1
= Lph, = I sin(¢; — 0, + 6,) sec ¢, secd,
1
171 b—1 hz - 62 . (5-5)
This is a valid coordinate transformation since the matrix %:i is nonsingular.
The derivatives of the chained form coordinates are taken with respect to time and
substituted into % from % = foup + fiu, + fauz with f; as in equation (5.4). This gives the

following equations showing the required state feedback to transform the system equations

into the two-chain, single-generator chained form:
§o = =1
: 3. 2 49 =~ 1 _ 2 3
G = Y tan® ¢, tan 6, sec* 6, iy + f;sec d15eC’ 6, u; = v,
0
. 1 .
(i1 = —tang¢,sec®d, iy = (v

L,
G2 = tanéb, 4y = (v

) 1 , -
o = cos(¢; + 6,) tan ¢, sec ¢, sec® 8, i,
LoL,
1 . -
+L_§ cos(¢2 — 01 + 6,) sin(¢, — 0, + 6,) sec® ¢, sec? 6, i,

—Ll cos(6, — 6,) sec® g, sech; uy = v,
1

. 1 . .
n o= - sin(@; — 6 + 62) sec ¢, sech; iip = novy . (5.6)
1

Remark. Using the fire truck system as a reference, we can infer characteristics of chained
form systems. The generating input, v, is related to the driving velocity of the system by
ug = sec6,vy. For the fire truck, the first chain corresponds to the first two axles (one
steerable, one passive) and the second chain corresponds to the third steerable axle. In
general multiple-steering, multiple-trailer systems, the single-generator chained form can
be applied with the number of chains corresponding to the number of steerable axles in

the system. The paper by Tilbury et al. [78] shows that such a composite system can be
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converted into multiple-input chained form; but that, in general, dynamic state feedback is
needed to achieve the transformation. This will be discussed in the context of an example

in Section 5.4.

5.2 Converting the Fire Truck to Extended Goursat Nor-

mal Form

In this section, Algorithm 2 described in Section 3.2 is used to transform the
kinematic equation of a three-input wheeled nonholonomic system into extended Goursat
normal form. The example of the fire truck, as shown in Figure 5.1, is used again since it
provides a simple illustration.

With the state space parameterized by = = (z,, 1, ¢1, 61, &2, 62) as in the previous
section, the three nonholonomic linear velocity constraints for the fire truck can be written

as one-forms as follows (refer to equation (5.1)):

Oo = sin(01 + ¢1)dx1 - 008(01 <+ ¢1)dy1 - Lo cos ¢1d01
a = siné,dz; — cosb,dy,

0'2 = sin(02 + ¢2)d$1 - COS(ez + ¢2)dy1 + L1 Ccos ¢2d02 .
The Pfaffian system associated with the fire truck can therefore be written as
I={a’a"a%}.

The first step in Algorithm 2 is to compute the derived fag for this system. First,

the basis of the constraints is completed with

a® := cosf,dz, + sin6,dy,
o = d¢,
o® = d¢,.

The exterior derivatives of a°, o', and o? are then computed, writing them in terms of the



70

basis of two-forms given by {a* Aad : 0< i< j < 5):

do® = cos ¢, cos b, sisnu;(? ;‘;'101_) sin’ ¢,) sin 6, o’ Ad® mod d (5.7)
# 0 modI

do = —%&i a® Ad® mod ! (5.8)
= 0 modI

do® = sec¢,cos(6; —6,) a* Ao® mod I (5.9)
# 0 modI.

From this representation, a! is the only constraint that drops to the I(*) level in the derived
fag:
I=19 = {aa',a?}
IV = {a'}
9 = {0}.

The second step of Algorithm 2 constructs two towers by finding an integrable =
to satisfy the Goursat congruences (3.15). Choose

wi=cal.
The Goursat congruence for this one-form is dw} = 7 Awj mod w}. From equation (5.8), if

f = a #0 modl

1

1 0

W, = I secPa ,
1

then dw} = # Awl mod w}. On the other hand, if 7 is chosen as
T: = cosby¥ +sinbw! =dz,,

it is integrable and dw] = T Awj; mod w}. Since there are only three constraints in I, there

are two towers: one with n; = 2 and the other with n, =1,
I=1O = {uw}w,uwi}
M = i)
I = {0}
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where w? := o?.
The third step of Algorithm 2 solves the coordinate transformation for the first
tower by using the solution to Pfaff’s problem (see Theorem 11 in Section 2.2). The rank

of the one-form wj is one, since

dw] = cos#,db, Adz, +sin6,db, Ady,
dul Aw] = do Ady, Adz, #0

and
dw} Adw] Aw} = (cos6,df, Adz, +sindydb; Ady,) Adb, Adyy Adzy, =0.
With a rank of one, there exists a function f, satisfying
dol AwlAdfy =0 and w]Adfy#0.

Clearly, df; = dz; = 7 satisfies this equation. |
Let the coordinate zJ be defined from 7 as 2z = z,. A function f, satisfying Pfaff’s

equation is
wj AdfyAdf, =0 and dfyAdf2#0, (5.10)
noting that
w) AT = cos(@; + 6,)dz, Ady, .

Therefore, let f, = y, and set the last coordinate in the first chain to be z} = f, = 3.
The solution to Pfaff’s problem gives wj A w A df, = 0, which means w! is a linear

combination of 7 and dfs,
wj = -—cosbdf; +sinb7 .

We would like to rescale w} to be of the form

Therefore, let

& = —secbw! =dz} —tanb,d2 ,
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from which the coefficient of dz{ is set to z! = tan#,.

The one-form wj is next modified to be of the form
@3 = dz} —23dz0 .

To do this, let @} be a linear combination of w? and @}

@ = —sec?byul — Li sec’ 0, sec ¢, cos(¢, + 6, )?
1
1 .
= —sec?d, 7 sec $1(sin(éy + 6;)dz, — cos(¢y + 6))dy,
1

—L, cos ¢,dé,) - Li sec’ 0, sec d; cos(¢ + 6;)(dy; — tan 6,dz,)
1
= sec?6,dd, — Ll sec® 0, tan ¢,dz,
1

and set the coefficient of dz; = dzJ to be = —LL‘ sec’6; tan ¢,. This completes the
coordinate transformation for the first tower.

The fourth step in Algorithm 2 finds a coordinate transformation for the second
tower. This does not involve a Goursat congruence equation since there is only a single

one-form in the second tower. First, the rank of w} := o? is computed to be one as follows:

dw? = cos(¢; + 6,)(db Adzy + dd, A dz,) + sin(¢; + 6;)(db2 A dy, + do, A dy,)
+L1 sin (ﬁzd@z A dez

duf Awi = —cos’(0y + 6,)(d0; Adzy Ady; + des Adzy A dy,)
=L, cos ¢, cos(¢; + 6,)dé; A dzy A df; — Ly sin ¢; cos(¢y + 62)dé; A d, A dy,
- —L; cos ¢z sin(d2 + 62)dé, A dy; Ad, + Ly sin ¢, sin(¢; + 6;)dg, A db, A dz,
+sin®(¢z + 6,)(d9; A dyy Adz, +ddy Ady, Adzy) %0

and
du? NduiAw? =0.
With a rank of one, there exists a function f, satisfying
dw?Aw?Adg =0 and w?Adg, #0.

If g, is chosen to be cos(¢; + 6;)dz, + sin(¢; + 6;)dy,, then the equation is satisfied. For

the second tower, however, it must be that dg;, = df;, = 7 in order for the coordinate
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transformation to work. In this case, w? must be modified by adding terms in the one-form

basis I,

@7 = w}+ cos(¢z+ 6))
= (sin(@; + 62) — cos(¢, + 6;) tan 8;)dz, + L, cos ¢.db,

= secl,sin(¢; + 02 — 6,)dz, + L, cos ¢,db,

_ sec 6y sin(@; + 6, — 6)
= dag + Lz COS¢2 d:cl .

If dg, = df; = m = dz,, then dw? A w? Adg; = 0 and w? A dg, # 0. From the equality

D2 AT =db, Adz, ,

a function g, satisfying Pfaff’s equation (5.10) is found to be g, = @,. The last coordinate
in the second chain is set as 22 = g, = 6. '

The one-form @?
-2 _ 2.2 230 _ 2

is already in the correct form for reading off the next coordinate. Setting z2 to be the
coefficient of dz,, gives

2 = sec, sin(¢, + 6, — 6,)
o - Lycos ¢, '

Therefore, we have found coordinates 2] such that
= {5 o ~2Y = fdo] — 210,00 .1 0
I = {&,w3,&7} ={dz; — 27d2), dz} — 23dz], dz? - 22dz0} ,

which is the dual of the chained form

)
|

Z.} = 23 Vo Zf = Zg Vo
2 = zly.

5.3 Simulation of the Fire Truck

In this section, numerical simulation results for the fire truck system are pre-
sented. The symbolic manipulation software Mathematica® and the numerics software pack-
age MATLAB® are used to perform the simulations and plot the results. The simulation is

2Copyright Wolfram Research, Inc.
3Copyright The Math Works, Inc.
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performed on the system in chained form

éo = Y C.o = 9 o = L]
G = (oo n = TNoYo (5'11)
G = Guo.

The transformed states are steered from an initial configuration to a final configuration by
using the transformed inputs as constructed in the step-by-step sinusoidal steering algo-
rithm, the all-at-once sinusoidal steering algorithm, or the polynomial steering algorithm.
Then the inverse coordinate transformation

T = &

nh o= Q

¢1 = tan~}(Ly (o cos’(tan~ (;))

6, = tan~!(;

¢ = m—tan~' ¢ + tan™ (L, ny cos(tan™? (;) sec(n, — tan? (;))

6, = n (5.12)

with Ly = 1 and L, = 4 is calculated to extract the trajectory of the fire truck in the original
coordinates. The total vehicle length for all of the simulations is 6.5 units. The results are
presented for the parallel-parking maneuver using sinusoidal inputs. An arbitrary trajectory
with both step-by-step sinusoidal inputs and all-at-once sinusoidal inputs is used to show
the difference between these two steering methods. To see the advantage of having the
extra steering wheel, both left and right corner trajectories and a change-lane trajectory
using polynomial inputs for the fire truck and the same system without tiller steering are

simulated.

Remark. Since the coordinate transformation to chained form is a diffeomorphism on the
openset U = {z: 6,—0,, 1, ;,6, # £3} C R®, these singular points must be avoided when
the initial and final configurations are chosen for the simulation. One practical solution is
to plan a path that does not start or end the fire truck in a singular configuration, then
rotate the resulting trajectory about the origin to yield the desired trajectory. This will be

explained later.

Remark. In order to limit the size of the configuration states or the inputs, one must

take into account the coordinate transformation to chained form since the simulation is

-
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Step-by-step sinusoidal inputs. All-at-once sinusoidal inputs.

Figure 5.2: Comparing the step-by-step and all-at once sinusoidal methods for initial config-
uration (Z1,%:) = (4,0) with the body angles 6, = 0.78, 6; = 1 and steering angles ¢, =0,
@2 = 0.21 and final configuration (z;,%;) = (12, 5) with all body and steering angles at zero.

performed on the system in chained form. From the equations of the fire truck system, the
steering wheel angles can take values between —90° and 90°. In reality?, the front steering
wheel angle is limited to —45° < ¢; < 45° and the tiller steering wheel angle is limited to
~-15° < ¢, < 15°.

Figure 5.2 compares the step-by-step and the all-at-once sinusoidal steering meth-
ods for arbitrary initial and final configurations. We found that the all-at-once sinusoidal
method was easier to execute and produces a more direct trajectory. The all-at-once method

uses the inputs

Y9 = ag+a;sinwt
vy = by + by coswt + by cos(2wt)

V2 = co+ccoswi (5.13)

in one step. The step-by-step method, however, is performed in three sépa.rate steps.
Figure 5.3 shows the phase plots that correspond to the trajectory resulting from using
step-by-step sinusoidal inputs shown in Figure 5.2. The first part of the path, labeled A,
corresponds to Step 0 and uses constant input to steer the transformed coordinates &, o,

To to their final values. In the original coordinates with small angles, this means z, and

“Data from Berkeley Fire Department Station No. 2.
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Figure 5.3: Sample phase plots from using step-by-step sinusoidal inputs showing the Lis-
sajous figures for the trajectory in Figure 5.2.

¢, are steered to their final positions while the other four states drift. The second part,
labeled B, corresponds to Step 1 and uses sinusoidal input to steer ¢; and 7, to their final
values. Referring to equation (5.12) with small angles, this means the body orientations 6
and 6, are steered to their final positions. The wheel orientation ¢, is now also at its final
position. The last part, labeled C, drives y, to its final position and returns the other states
to their final positions.

The state z, is controlled directly by the input u, and therefore is moved in the
direction of vector field fo. Similarly, ¢, is moved in the fi direction. Taking ﬁrst-ofder
Lie brackets shows that 6, is moved in the direction ady, fi. The state y, is driven in the
direction of the second-order Lie bracket adz fi. The number of loops is determined by
the order of the Lie bracket needed to get net motion in a desired direction. Referring to
the portion of the trajectory labeled C in Figure 5.3, in order to get net motion in the y,
direction, the ¢,-z; phase plot has a Lissajous figure with two loops and the 0,-z, phase
plot has one loop.

Figure 5.4 shows the parallel parking maneuver that results from using the step-
by-step sinusoidal steering method or the all-at-once sinusoidal steering method. In the
original coordinates, this corresponds to steering the fire truck from y; = 5 to zero with
all other coordinates starting and en&ing at zero. The inputs for this trajectory are found
from the last step of the step-by-step sinusoidal algorithm, where the only state that must
be changed is y; = (2, the last coordinate of the { chain, or from the all-at-once sinusoidal

method with inputs as in equation (5.13) with ap = by = by = ¢y = ¢; = 0, a; = 2,
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Figure 5.4: The parallel parking trajectory for the fire truck using sinusoidal inputs. The
fire truck starts at y; = 5 and ends at zero, with all other coordinates starting and ending

at zero.

b, = —1.5915, and w = 1 over the interval [0, 2x).

In Figure 5.5, the chained form and original input functions needed to parallel
park the fire truck as in Figure 5.4 are shown. The chained form inputs are the open-loop
control laws for the system in two-chain, single-generator chained form. The physical inputs,

however, depend on the states of the system, as can be seen in the following equations:

Ug = seC 01 ()
u = Lo CQS2 ¢1 COS3 01 (‘Ul -V z?% ta.nz ¢1 tan 01 sec‘ 01)
0
v = —L, cos® ¢ cos b, ( _ ( cos(¢; + 6;) tan ¢,
2 cos(f; — ;) 20 LoL, cos ¢, cos? 6,
+ cos(¢; — 6, + 6,) sin(@, ~ 6, + 92)))
L2 cos? ¢, cos? 4, ’

Polynomial inputs are now used to show the control design and performance dif-
ferences when the fire truck does not have tiller steering. For the system without a tiller,
the following coordinate transformation to chained form (from using h; = z, and hy =y,

in equation (3.8) from Section 3.1 without the 5 chain and following the procedure as for
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Physical inputs. Chained form inputs.

Figure 5.5: Physical and chained form inputs for the parallel parking trajectory shown in

Figure 5.4. For the inputs, uy, v, are the solid lines, u;, v, are the dotted line, and u,, v,
are the dashed line.

the fire truck, or following the procedure in [76]) is used

€o
Co

G
G2
Gs

T2
sec* 0, sec?(6, — 6,) ( . 2 L, tan ¢,
LoL? 3Lo sin (01 02) tan 02 Lo tan(0, 02) + m)
2 sec® 8, tan(6; — 6,)
L,
tan @,
Y2 , (5.14)

which kinematically is a two-axle car pulling one trailer.

For the fire truck in the chained form of equation (5.11), there are two chains, one

of length three and one of length two, so the following polynomial control inputs are used

Vo = 1
v, = bo+ byt + bt?

V2 = Cotct.

For the fire truck without tiller steering of equation (5.14), there is only one chain of length

four, so the two inputs are

Vg = éo=1

v1 = Co=bo+ byt +bst?+bst® .
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With tiller steering. Without tiller steering.

Figure 5.6: The fire truck with and without tiller steering for a 90° right hand turn in an
intersection. The fire truck is steered from an initial state (z;,3;) = (0,4) with the body
angles 6, = 0, = 7/2 and steering angles ¢; = ¢, = 0 to a final state (z,,¥;) = (9.6, 10.6)

with body and steering angles all zero.

In all of the following simulations, the initial and final states of the two systems are the
same.

Figures 5.6 and 5.8 show the advantage of having tiller steering when making 90°
right and left hand turns. For both of these trajectories, the fire truck goes through the
singular point 6, = 7/2. To avoid this singularity for the right hand turn, the trajectory
was simulated with the initial and final configurations at /4 and —x /4, respectively. Then
the entire resulting path was rotated by n/4. The left hand turn was simulated similarly,
noting that the path is wider than the right hand turn in the same intersection due to the
convention of driving on the right hand side of the road.

The inputs with and without tiller steering for the right hand turn trajectory are
shown in Figure 5.7, which shows that the steering velocity for the system without tiller
steering, which is just the steering velocity of the front wheels, switches back and forth
more. Of greater interest, however, is that the magnitude of the input u; without tiller
steering is larger than the inputs of the fire truck with tiller steering. In some sense, the
control for the system without tiller steering has to work harder.

Figure 5.9 shows how the tiller steering assists the vehicle when it changes lanes

on a freeway. The vehicle moves a total of 13 units in the z direction and 5 units in the Y
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Figure 5.7: The inputs for the fire truck with and without tiller steering for the 90° right

hand turn trajectory shown in Figure 5.6. The driving velocity u, is the solid line, the

steering velocity of the front wheels u, is the dotted line, and the steering velocity of the

tiller u, is the dashed line.

N AT i O
S!:S::‘:a;s;-_i‘:'.‘:';;_,{ -

e e a0 3
([ bR LA
.,\s’:‘«:_?»"—-.'ﬂxq\ NG
o\

With tiller steering.

Without tiller steering.

Figure 5.8: The fire truck with and without tiller steering for a 90° left hand turn in the same
intersection. The fire truck is steered from an initial state (z,,%:) = (0,4) with the body
angles 6, = 6; = 7/2 and steering angles ¢; = ¢, = 0 to a final state (z,,y,) = (-14,15)

with body angles 7 and steering angles at zero.
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With tiller steering. Without tiller steering.

Figure 5.9: The fire truck with and without tiller steering for changing lanes on a freeway.
The fire truck is steered from an initial position (z,,y;) = (4,0) with the body and steering
angles all zero to a final position (z;,y;) = (17,5) with body and steering angles all zero.

direction. :

Figures 5.10 and 5.11 show the simulation results of steering the fire truck with
and without tiller steering through a 75° right hand turn. These results confirm our findings
that the system without tiller steering works harder than with tiller steering. In addition,
for the right hand corner trajectories, the system without a tiller crosses over into the lane
of on-coming traffic. All of the above maneuvers are smoother for the fire truck, which
justifies our initial hypothesis that the tiller adds maneuverability.

5.4 Converting the Extended Fire Truck to Extended Gour-

sat Normal Form

In this section, Algorithm 2 of Section 3.2 is used to transform a mobile robot with

five axles and two steering wheels into an extended Goursat normal form
I = {dz;, =z, d2),..., dz} — 23 d2f, dz2, - 22 _, d2,..., dz? — 22 dz3}

with two towers. Our main goal is to easily find the extended Goursat normal form coordi-
nates, zJ. Following the steps of Algorithm 2 exactly for this mobile robot system, this goal

cannot be achieved since Step 4 of the algorithm does not give the coordinates for the second
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With tiller steering. Without tiller steering.

Figure 5.10: The fire truck with and without tiller steering for a 75° right hand turn in an
intersection. The fire truck is steered from an initial position (z,,3;) = (0,4) with the body
angles 6, = 6, = m/2 and steering angles ¢; = ¢, = 0 to a final state (%1,71) = (9.6,10.9)
with body angles 6, = 6, = —x/12 and steering angles at zero.
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Figure 5.11: The inputs for the fire truck with and without tiller steering for the 75° right
hand turn trajectory shown in Figure 5.10. The driving velocity u, is the solid line, the
steering velocity of the front wheels u, is the dotted line, and the steering velocity of the
tiller u, is the dashed line.
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Figure 5.12: Configuration of a five-axle, two-steering mobile robot.

tower. Finding one of these coordinates involves solving a partial differential equation that
we do not know how to solve. To resolve this, a modified procedure is suggested involving
the use of partial prolongations. This will be discussed in more detail in the following.
Consider now the five-axle, two-steering mobile robot as shown in Figure 5.12. The
front steering train consists of three axles: the front steering wheel and the next two passive
axles. The second steering train consists of the second steering wheel and the passive axle
behind it. The one-form constraints for this system, labeling the axles with the constraints

a® to a* from right to left, are

a® = siné, dzo — cosby dy, =0
o' = siné, dz; —cosb; dy, =0
o’ = sinf, dz, — cosf, dy, =0

a® =

sin @5 dz; — cosf; dy; =0
o* = sinf, dzy —cos, dy, =0 .
The Pfaffian system associated with this mobile robot is written as I = {a?, a!, a2, a?, ot}

and the derived fag has the form
I=I®={ a° o o? o ot}

IM = { o', a?, at}
I?) = { 0'2}
©={ 0,

which shows the two groupings of constraints corresponding to the two steering trains.
Let the state space be parameterized by ¢ := (z,y, 6y, 6,, 6,65, 6,, 0s). The Carte-

sian coordinates of the axles are related by the holonomic constraints

iy = z;+ L;cosb; Yi-1 = ¥i+ L;sinf; i=1,2,3,4.
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Proposition 23 The five-azle mobile robot with steering on the first and fourth azles, with
L; # L; as shown in Figure 5.12, whose Pfaffian system is extended by partial prolongation

can be transformed into extended Goursat normal form.

Proof. First the constraints are written with (z,¥) = (z2,¥2) since the o? steering train
is the longer. The state space R® is thus parameterized by g := (z3, y2, 6y, 6,, 8,, 65, 04,65).
This front steering train’s coordinates are constructed as stated in Algorithm 2. In deriving
the second steering train’s coordinates using z§ = z,, however, we find that the partial

differential equation that yields the coordinate z3 cannot be integrated. For the constraint
o* =sinf, dr — cosb, dy + L, cos(8, — 65) db; + L, dé, ,

the Goursat congruences allow only o® and o? to be used to scale af. We would like to
modify a to be of the form

4 _ 2 2 0

which would give the coordinate z2. Using only a! and o? to scale a*, the partial differential

equation
dz} = y(g)L; cos(6, — 65) db; + v(q)L, db, (5.15)

must be integrated for some integrating factor 7(g). Finding the factor 7(g) proved to be
so difficult in the case L; # L, that we opted for a new procedure to find the coordinates®.

Motivated by our recent work [78] and the literature on partial prolongations of
exterior differential systems [66, 67], Algorithm 2 can be improved to handle this case. The
basic idea used was introduced in [78], which uses dynamic state feedback to augment the
state space of a multiple-steering, multiple-trailer system so that the kinematic equations are
easily convertible to multiple-input chained form. The new augmented states ai'e interpreted
as “virtual” axles extending in front of the steerable axles (except the lead car). The number
of virtual axles added to a steering train equals the total number of passive axles in front
of it.

In exterior differential systems, augmenting the system corresponds to adding the

new constraints of the virtual axles to the Pfaffian system. Moreover, the derived fag

If Ly = La, an integrating factor can be easily found. For let yw := dz? in equation (5.15) with
Ls = Ly = 1. Then dw A w = 0, which means there exists an f and g such that w = fdg.
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Figure 5.13: Configuration of a five-axle, two-steering mobile robot with virtual axles added

in front of the second steerable axle.

changes to our advantage, allowing the use of more forms to modify the constraints to have

the structure
7(g) @ = dz; — ¢(g) dzj ,

from which the coordinate 2;_, is assigned to be c(q).

Using this new method, the constraints are now written using the Cartesian coor-
dinates (z.y) = (4, ys) and partial prolongation is used to add two new constraints to the
system. These constraints, w! and w?, correspond to the two virtual axles with angles 6
and 6,, respectively, added onto the second steering train as shown in Figure 5.13.

The state space R® is now parameterized by ¢ := (z4)¥4,00,06,,02,065,04,65) and
the derived fag is computed to be

I=I%={ o o) o w? W, o af}

Im ={ o!, a2, w!, o®, ot}
I® = { o?, o, a'}
I® = { at}

I® ={ 0}.



showing the two steering trains, where the constraints are written as

o’ = sinby dz, — cosfy dys — L, cos(6 — 6,) db, — L, cos(fy — 03) db;
~L; cos(6 - 6;) db; — L, cos(6y — 6,) db,

a' = sin6, dz, — cosb, dy, — L, cos(d; — 8,) df, — L, cos(8, — 6;) dbs
~L, cos(6, — 6;) db,

o® = sinb, dzs — cosf, dy, — L, cos(, — 6,) db, — L, cos(6; — 65) db;

o® = sinbs dzs — cosbs dy, — Ly cos(fs — 6,) db,

a* = siné, dzs — cosb, dy,

w! = sinfs dzy — cosfg dys — Ls cos(6s — 65) dfs — L, cos(0s — 64) db,

w? = sin6; dzy — cosb; dy, — Lg cos(6; — 0) dfs — L cos(07 — 65) dbs
=L, cos(67 — 64) db, .
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(5.16)

First choose 7 = dz,, which is integrable, and modify the constraints in the first

tower, which is the o* tower. The Goursat congruences for this system are

do* = dzsAa® modot
do® = dzyAw' moda? d®,o?
dv' = dzg Aw? modal,a?, o, at,w?

d? # 0 modI
do® = dryAc' moda? a’ ot
do’ = dryAc® moda?,a? 0?0t w!
da® # 0 modI.
Following the notation of Algorithm 2, set w! := a* and scale this constraint as
@) = —secl; w] = dy, — tanb, dz, .
This one-form has rank 1 since
dat Al = —§ec284 dbsAdzgAdy, # 0O
doj AdoiA@! = 0.
Therefore from the solution to Pfaff’s problem, f, = z, satisfies

doj AD}Adfi= 0 and @*Adfi# 0

(5.17)

(5.18)
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and f, = y, satisfies
S AdfiAdfy= 0 and dfyAdf;# O.

Setting the generating coordinate z) = f; = z, and the coordinate for the bottom of the first
chain z§ = f; = y,, the next coordinate is read as the coefficient of dz, in equation (5.18)
as z] = tané,.

The second constraint wj := o in the first tower is used to find the next coordinate,
z;. From the Goursat congruences (5.17), o® and o* can be used to transform wj into the
form

wy =dz3 — z} dz)) .
The one-form w} is scaled, @] is used to eliminate the dy, term

@l = --;— sec? 0y sec(fs — ;) (w} + cosfs @})
4

= sec?0,do, — Ll sec® 0, tan(6s — 6,) dz,
4
= dZ; - Li SeC3 04 tan(05 - 04) ng ,
4
and the coefficient of dzJ is set to be zJ.

The third constraint w3 := w! in the first tower is modified as follows, noting that

dz} = L sec® 0y sec?(6s — 6,) dbs + Li (3sec® 0, tan 6 tan(fs — 6,)
4 4
— sec® 0y sec?(6; — 6,)) db,
= B5(q) dbs + B4(g) db, .

Define the coefficients
1
kola) = 7 sec(fs —85)6s(q)
5

kala) = 7o sec(fs — 60) (ala) L cos(l — 6,) + Au(a)
k2(q) = (ko(g)cosbe + ki(g) cosbs)secd, .

The one-form wj is scaled to match the dzj coefficient of dfs, w} is used to modify the

coefficient of df, to match that of dz}, and w] is used to eliminate the dy, term

@3 = ko(q) w3 + ki(q) wj + ka(g) w}
= .dz; — (kosinbs + k; sin 65 + k, sin6,) dz? ,
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from which the coordinate 2} is read as the coefficient of the dz{ term.
The fourth constraint wj := w? in the first tower is modified in a similar manner,

using all of the other constraints to get the form
@y =dz} — 28 d2f

from which the coefficient of dzg is assigned to be the last coordinate in the first chain, 2.
The explicit calculations are omitted here. Thus, all of the Goursat congruences (5.17) are
satisfied for the first tower.

In the second tower, the first constraint w? := o® has rank 1 since
duinwi# 0 and du?Adu?Aw?= 0.

Therefore from Pfaff’s problem it must be that g, = f; = z,, as in the first tower, since the

same generator is used in the second tower. The function g; satisfies
dolAwiAdg;= 0 and w?Adg,# 0.

Define the coefficients

1
ko(g) : T, (02 — 6s)

ki(q) : -Ll—4 sec(0s — 0,) (ko(g)L4 cos(6; — 0))
k2(q) := (ko(g)cos8; + ky(g)cosbs)sech, .

First, w} is scaled to have a term df;. Then, w} is used to eliminate the d, term and wj is

used to eliminate the dy, term:

@ = ko(g) i+ ki(g) i + ka(q) w}
= dzg - (ko sin02 + kl sin05 + kgsin04) dzg ’

giving the coordinate 23 = 6. The coordinate 2] is the coefficient of the dz? term. The

solution to Pfaff’s problem gives g, = 6; = 22, which satisfies
@ AdgiAdgo= 0 and dgyAdg.# 0.

The next two constraints, w? := o' and w? := o° are modified in a similar manner

as above. The coordinates z} and 22 are found from these calculations, respectively.
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Figure 5.14: The three other cases to consider for a five-axle, two-steering mobile robot.

The placement of the second steering axle changes the analysis.

The resulting coordinates transform the system into the extended Goursat normal

form:

— -1 =1 =1 =1 -2 =2 =2
I = {&, @&, @5, &, &, 33, @3}

= {dzj - z3 dzg, dz3 — 23 dz§, dz} — 2} dz§, dz} — 2} d20,

dz} - 23 dzg, dz2j — 23 dz§, dz} - 22 dz0} . -

The three other steering configurations for the example of a five-axle, two—steéring

mobile robot, as shown in Figure 5.14, are now considered.

Proposition 24 The five-azle mobile robot with steering on the first two azles, as shown

in Figure 5.1{ (a), can be transformed into extended Goursat normal form without partial

prolongation.

Proof. The derived fag for this mobile robot, labeling the axles with the constraints a® to
o? from right to left, is

I=I®={ a° a! o? o3, o’}
IM={ a?, of, at}
I ={ a®, ot}
I® ={ at}

I ={ 0}.
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in Figure 5.14(b). This corresponds to the new constraint w®. The new derived fag is

I=I9={ o, o) o', & o, o)

Im={ al, a?, o®, ot}

I® = o®, af} (5.21)
I ={ ot}

=4 0},

which “pushes down” the second steering train so that o? can now use a? in addition to o

and a* for modification into the form
o' =dz2 - 23dz) .

The first tower’s (second steering train's) coordinates are found as in Algorithm 2, with one
extra coordinate due to the new w' constraint. The second tower’s (front steering train’s)
coordinates are found as in Algorithm 2, using the new Goursat congruences with the extra
form constraint. The Goursat congruences are satisfied with 7 = dz, and Pfaff’s problem

yields z§ = x4, z} = y, and 22 = 6,. 0

Proposition 26 The five-azle mobile robot with steering on the first and last azles, as
shown in Figure 5.14 (c), can be transformed into ezxtended Goursat normal form without

partial prolongation.

Proof. The derived fag in this case is

I=I0={ o a' & o* at}

Im = o, @, o)
1o ={ @, o)
I ={ o*}
I ={ 0},

which shows four axles in the front steering train and one axle, o#, in the second steering
train. Write the constraints with (z,y) = (z3,¥s) since the a® tower is the longer. The
state space R8 is thus parameterized by q := (3,93,00,01,0,,03,04,05). The first tower is
then the second steering train and Algorithm 2 can be used to find the coordinates for both
towers. The extended Goursat congruences are satisfied with 7 = dz; and Pfaff’s problem
yields z) = z3, 2} = y; and 22 =6,. O

-
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Remark. In essence, partial prolongation is used to “push down” those towers in the
derived fag that correspond to the steering trains that have extra virtual axles added on.
For example in case (b) above, the second tower in the derived fag (5.19) consists of the
third, fourth and fifth axles. The second tower is structured such that the last passive axle in
the steering train is the one whose constraint drops through to the system I, the second
to last axle’s constraint drops through to IY), while the constraint of the steerable axle
only appears in the top system I®). Thus, when one virtual axle is added onto the second
steering train, this becomes the new virtual steering wheel, causing the real steering wheel
to be treated as a passive axle. This results in the new derived fag shown in equation (5.21).
The net gain of using partial prolongation is that more constraints can be used to modify
the one-forms in the second tower of the derived fag of the Pfaffian system so that the
extended Goursat congruences can be satisfied.

In summary, a methodology for finding a coordinate transformation to extended

Goursat normal form for multiple-steering, multiple-trailer systems is as follows.

Methodology using Algorithm 2

Step 1 Compute the derived fag using the given constraints.

Step 2 Separate the derived fag into towers corresponding to the steering trains, i.e., all

of the axles in a steering train are in the same tower.

Step 3 If partial prolongation is needed, add new constraints to those towers corresponding

to those steering trains that have virtual axles added to them.

Step 4 Using the longest tower as the first tower, the (z,y) coordinate is the coordinate
of the axle whose constraint drops to the bottom of this tower. Pfaff’s problem gives
fi = z and f, = y, which correspond to the z) coordinate and the last coordinate,
z,, in the first chain of the extended Goursat normal form, respectively. Follow
Algorithm 2 using 7 = dz.

Step 5 For the j** tower, Pfaff’s problem requires that g, = f; = z still, and g, is chosen
to be the hitch angle between the j** and (j — 1) steering trains. This hitch angle
then becomes the last coordinate, z}_, in the j** chain of the extended Goursat normal
form. Follow Algorithm 2 using 7 = dz.
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Figure 5.15: The five-axle, two-steering mobile robot used in the simulations.

5.5 Simulation of the Extended Fire Truck

In this section, numerical simulation results for the five-axle, two-steering mobile
robot system described in Section 5.4 (as case (b)) and shown in Figure 5.15 are presented.
This simulation is not as extensive as for the fire truck, since only two passive trailers are
being added to that system. The coordinate transformation to chained form is similar to
that of the fire truck, choosing 2 = z,, 2} = y,, and 22 = 6, as the bottoms of the chains
and using equation (3.12) from Section 3.1 to find the rest of the coordinates.

Once the kinematic equations of the extended fire truck are in multiple-input
chained form, which includes the extra state 6 from the virtual axle, the system can be
steered by one of the algorithms discussed in Chapter 4. For the following simulations, the
lengths of the hitchesare L, =Ly =L, =5, L, =3 and Ly = 1.

The first trajectory is the parallel parking maneuver with initial point (z,y) =
(0,20) and final point (z4,ys) = (0, 0) (the coordinates of the midpoint of the last axle) and
all of the body angles (including the virtual axle at angle ) aligned with the horizontal
axis in both the initial and final configurations. The simulation is performed on the sys-
tem equations in chained form using polynomial control inputs. As noted in Section 4.2,
polynomial inputs are not immediately suited to this type of trajectory since the time
needed to steer the system, computed from equation (4.6), would be zero and the algorithm
would fail. Therefore the trajectory is planned in two steps, choosing an intermediate point
(z.y) = (30,10).

Figure 5.16 shows the resulting parallel parking trajectory. The path taken by the



94

Eﬂl:l TS ™,
[ = TEJI-TTE .
A,

Figure 5.16: The parallel parking trajectory for the extended fire truck using polynomial
inputs. The vehicle starts at y; = 20 and ends at zero, with all other coordinates starting

and ending at zero.

virtual axle is not shown. The second path simulated is shown in F igure 5.17. This shows

the system backing up from a far distance of (z4, y4) = (35, 35) into the same parking space.

5.6 Mobile Robots with Kingpin Hitching

In this section, the class of mobile robots with off-axle hitches is studied. The goal
is to determine if these vehicles are convertible to chained form and if they are controllable.
In the following, a two-axle car pulling one trailer attached by a kingpin hitch is transformed
into Goursat normal form, hence chained form. When there are two or more trailers,
however, the system cannot be transformed into chained form. In addition, the procedure
for transforming the fire truck with axle-to-axle hitching into chained form, as presented in
Section 5.1, applies with no modification when the hitch point is off the axle.

Recall from Section 5.3, that a two-axle car pulling one trailer attached by an
axle-to-axle hitch (the fire truck without tiller steering) is transformable to chained form.
A two-axle car pulling IV trailers with axle-to-axle hitching was shown to be convertible to
chained form in [68, 76)].
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Figure 5.17: The back-up trajectory for the extended fire truck using polynomial inputs.
The vehicle starts at (x4, y4) = (35, 35) and ends at zero, with all other coordinates starting

and ending at zero.

5.6.1 A Car Pulling One Trailer with Kingpin Hitching

First consider the system of a two-axle car pulling one trailer that is attached by
a kingpin hitch as shown in Figure 5.18. In [65] (see also [45]), the linearizing outputs were
given that show the system is flat, essentially meaning that there exists local coordinates
to transform the system into Goursat normal form. The explicit calculations proving the
system can be transformed into Goursat normal form were omitted from both [65] and [45]
and will be presented here.

Using the notation shown in Figure 5.18 with absolute angles, the kinematic model
of this system can be derived. The non-slipping constraints for the three axles from front

to back are written as one-forms

a = osinfy — go cosb,
a = :.81 sin01 - !]1 00801

a® = I,sinf; — g, cosb, .
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Figure 5.18: Configuration of a two-axle car pulling one trailer attached by a kingpin hitch.

This system can be converted into chained form.

Using the equalities

ZTo = Z; + Lo cosé, Yo =11 + Losiné,
T2 =1z, — Lycosf, — Lycosb, Yy2=y1 — L,siné; — L,sinb,
the three constraints can be expressed in coordinates in R® as as
o®(z) = [ sin6p —cosfp 0 —Locos(6p—6,) 0 ]
a'(z) = [ sinf; -cosf O 0 0 ]
o®(z) = [ sinG; —cosf, 0 L,cos(6,— 6,)) L, ]
where the state space is parameterized by z := (z,,;, 6o, 61, 6;) € RS.
Since the state space is of dimension five and there are three constraints on the
system, two vector fields go and g; can be found such that o’(z) - g;(z) = 0, for i = 1, 2,3
and j = 1,2. A simple calculation shows that the following vector fields form a basis for
A(z) := span{go(z), g:(7)}:

( cos 6, \\ ( 0 \

sinf, 0
go - 0 L] gl = 1
L tan(6, — 6y) 0

\ ~2 (sin(6z - 61) + £2 cos(8; — 6,) tan(6, ~ 6,)) \ 0/

Thus, the kinematic model of the two-axle car pulling one trailer with kingpin hitching can

be written as

z = go(x)up + g1(z)uy
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where the input %y corresponds to the forward driving velocity of the car and u, corresponds
to the steering velocity of the front wheels of the car.
For the following f, := secfygo and f; := g, are used as a basis for A. The

filtrations E; and G; are formed as follows

E= A Go= A

Ey= Ey+[Ey,E) Gi= Go+[G,, Go)

Ex= E\+[Ey,E] G:= G,+[G1,G))

Ey= E+[E,E] Gi= G+ (G2, Go]
and Theorem 14 and Corollary 15 from Section 2.2 are used to show that the system can
be transformed into chained form.

Using the symbolic manipulation software package Mathematica,
dimEy =dimG, = dimspan{f,f,} =2
dimE; =dimG, = dimspan{ fo, f1,ady, f;} = 3
dmFE, =dimG, = dim span{ f,, flsa-dfoflaadzfla [f1, ads, f1]} =4
since [f1.adg, fi] = 2tan(f, - 6,)ad,, f;. Using E, = span{fo, f1,ady, f1,2d}, f1}, E; is
formed as follows
E; = span{fy, f1, adfofl:ad;,fn ad:;,,fh [f1, ad;,,fx], [a'dfofla 3d§°f1]} .
It has dimension five since [f;, ad§° f1)isin the span of { f, ad fof1s a.d"}o fi} and [ady, f;, adi fi)
is in the span of {f},2dy, f1,ad}, f1,ad}, f,}. Additionally,

G3 = SPan{fo, fl’adfofla adiflsadj‘ofl’ [fla ad?fofl]}

has dimension five from above. Thus, since
dimF; =dimG;=i+2 i= 0,1,2,3

Corollary 15 from Section 2.2 gives that there exists a feedback transformation that trans-
forms the system into chained form.
Rouchon et al. [65] geometrically computed the flat, or linearizing, outputs h =
(hy, hp) for this system to be
L,sin@, — L,sin6,

h, = z1+L,c0502+p(01—92)m
2 1= 1T

Ll cos 01 - Lg cos 02

h: = y+ Lysinb, + p(6; — Gz)m (5.22)
2 1 -
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Figure 5.19: Configuration of a two-axle car pulling two trailers attached by kingpin hitches.

This system cannot be converted into chained form.

with
27463 =6, coso

6, —8,) := L.L / —_— i
P61 =) i=LiL, . VIZ+ILZ-2L,I,cos0

Rouchon found, through a numerical calculation, that the local coordinates 20 = h; and
2} = hy yield the chained form system
Z.g = vo z.o = vl
3 = zly,.
The key numerical calculation was that

23 = 33/23 = (asina - bsinB)/(acosa — beosf) ,

from which the coordinates z} and z} could be found by differentiation.

5.6.2 A Car Pulling Two Trailers with Kingpin Hitching

Consider the system of a two-axle car pulling two trailers attached by kingpin
hitches as shown in Figure 5.19. In [65] it was mentioned that for two or more trailers,
this system cannot be transformed into Goursat normal form; the explicit calculations are

derived here.
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Using the notation shown in Figure 5.19, the four non-slipping constraints are
written from front to back

a® = ysinby — o cosby

o' = i;sinb, — ¢, cosb,

o® = i,sin, — 3, cosb,

a® = 3sinb; — y;cosbs

in coordinates in R® as

a®(z) = [ sinfy —cosfy 0 —L,cos(6p — 6,) 0 0
a'(z) = [ sin6; —cosé O 0 0 0
o®(z) = [ sin6, —cosf, 0 L,cos(d, —6,) L, 0

a*(z) = [ sinf; —cosb; 0 L,cos(f;—6,) (L1 + Ly)cos(6; — 6,) Ls

by using the constraints

Tg = T3 + Lo cos b, Yo =y1 + Losin6,
Ty =T -L1C0502—L2C0801 Y2=0N —L1Sin02—L28in01
Z3 =123 — Lycosf, — Lycosb, Ys=y1 — Lysin@; — Lysin6; .

The state space is parameterized by = := (z,,¥;, 60,61, ,, 6;) € RS,
A basis for the distribution annihilated by the o' contains g; = (0,0,1,0,0,0) and

go =

( cosf; )
sin6,
0
£ tan(fo — 6,)
— 2 (sin(6; - 81) + £ cos(8; — 6,) tan(6, — 6:)

\ %:- (sin(03 —-6,)+ %ﬂ* cos(0; — 6;) tan(6p — 6,) + B(L; + L) cos(f; — 92)) )

]
]
]
]

(5.23)

where 8 = —LL‘ (sin(02 -6+ %01 cos(6; — 6,) tan(f, —- 01)) . Thus, the kinematic model of
the two-axle car pulling two trailers with kingpin hitching can be written as

z = go(z)uo + g1 (z)uy

where the input u, corresponds to the forward driving velocity of the car and u, corresponds

to the steering velocity of the front wheels of the car.
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Again fo :=secf,go and f; := g, are chosen as a basis for A and the recursive and

iterative filtrations F; and G; are formed as follows

E0= A Go= A
E,'= Eo+[E,'_1,E,'-1] G,'= Go+[Go,G,'_1] i=1,...,ﬂ-2.

Using Mathematica,

dimEy, =dimG, = dimspan{f,,fi} =2
dimFE) =dimG, = dimspan{fs, f1,ad;f;} =3
dimE; = dimG, = dimspan{fy, fi,ady, f1,ad}, fi, [f1,ads, f1]} = 4

since [fy,ady, fi] = 2tan(6o — 6,)ady, f,. Using B, = span{f;, f1,ady, fl,adio hi}

E3 = span{fo:flsadfoflsadioflsadaofh[flsad;'oflls [adfofl’adi,fl]} (5’24)

has dimension six. But,

G3 = span{fo, fh adfofh ad?‘,fla ad;,fh [fltadifl]} (525)

only has dimension five. Thus, since

dimEa = 6#dimG3=5,

Corollary 15 shows that there does not exists a feedback transformation that converts the
system to chained form. Extending the same argument, the mobile robot system with more

than two trailers with kingpin hitching cannot be transformed into chained form.

Remark. It is conjectured that in the limit as the hitch length, L,, between the two
trailers goes to zero, the dimension of the distribution E3(L,) in equation (5.24) approaches
the dimension of the distribution G; in equation (5.25), allowing for this system to be

transformed into chained form.

Remark. A robot is said to be completely controllable if it can reach every point in its
free configuration space within the same connected component of its current configuration.
Controllability of an N-body mobile robot system with the standard axle-to-axle hitching
is proven by Laumond [36]. Controllability of a two-body mobile robot system with the
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Figure 5.20: Configuration of the fire truck with off-axle hitching.

non-standard kingpin hitching is also shown by Laumond [37]. All of the systems mentioned
in this section are controllable, even though they cannot be transformed into chained form,

since we can find 7 linearly independent vector fields that span R™, namely
fo, flsadfoflaa'd?ofh e 1ad?°-2fl .

5.6.3 The Fire Truck with Kingpin Hitching

The procedure for transforming the fire truck with axle-to-axle hitching to chained
form, as presented in Section 5.1, applies with no modification when the attachment point
between the truck and trailer is not located at the center of the rear axle of the truck, but
at some distance off of the axle. The kinematic equations and the h functions needed for
transforming this system to chained form are found as follows.

Refer to Figure 5.20 for the system states and parameters and define z := (z,,7,,

@1,61, 92,6;). The three covectors representing the non-slipping constraints have the form

wi(z) = [ sin(6,+ ;1) —cos(6;+4;) O —Lycos¢, 0 0 ]
WAHz) = | sin6, —cosb, 0 0 0 0 ]
wiz) = [ sin(f2+¢2) —cos(6:+¢;) O Lycos(¢p+6;—6,) 0 Lycosg, |.

Following the method used for the fire truck in Section 5.1, a control system can be con-
structed with vector fields go, g1, 9> that are orthogonal to Q(z) = span{w!(z), w?(z),w’(z)}.
The vector fields are chosen such that the inputs have the interpretation that u, is the driv-
ing velocity of the rear wheels of the truck, u, is the steering velocity of the front axle, and
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u; is the steering velocity of the tiller. The control system is then written as
T = go(z)uo + g1(z)us + g2(T)uz , (5.26)
with g; = (0,0, 1,0,0,0)’, g =(0,0,0,0,1,0) and

( cosf, \
sin 6,
0
LLO tan ¢,
0
\ o1 sec &z(Lo sin(@z — 61 + 62) + Ly cos(¢z — 61 + 6;) tan 1) /

9o

It is straightforward to check that equation (5.26) reduces to the original fire truck system
in equation (5.3) when L, = 0.
The chained form coordinates for this system are found in an analogous manner

to those for the original fire truck system (see Section 5.1) using

fo = secb,g0 hi=a f2=g2
ho =2 hl =% hz = 02 .

Note that these are the same h functions used for the fire truck system with axle-to-axle

hitching. The coordinate transformation to chained form is given by

b= he =I

sec® 6, tan ¢,
= Lih = I,
C1 = Lgo h; = tan 01

G= h =y

L01L1 sec 01 sec ¢2(Ln sin(01 - ¢2 - 02) - Lg COS(01 - ¢2 - 02) tan ¢1)
m= hy =6,. (5.27)

e = Lgohg =

This is a valid coordinate transformation since the matrix g—: is nonsingular. The chained
form inputs v, v;, v, are the derivatives of the coordinates &o, o, Mo, respectively.

In summary, the main examples used to illustrate the conversion to chained form
and extended Goursat normal form were a fire truck and a multiple-steering, multiple-

trailer system. We found that for the fire truck system, there was no difference in the two
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conversion methods; both approaches were straightforward and easy to use. In chained
form, the fire truck was steered using sinusoids at integrally related frequencies in both
a step-by-step method and an all-at-once method. Additionally, the fire truck with and
without tiller steering was steered using polynomial inputs to show the advantage of having
tiller steering. In extended Goursat normal form, the extended fire truck was steered using
polynomial inputs. Simulation results showed the effectiveness of the open-loop, point-to-
point control algorithms.

For the five-axle system with two steering wheels, however, the method of convert-
ing to extended Goursat normal form was easier to use. Even though there is a theorem
giving necessary and sufficient conditions for the existence of a coordinate transformation to
extended Goursat normal form, it was shown that for some arrangements of the steerable
and passive axles, finding this transformation may be difficult. This was resolved using
partial prolongations. It is of interest to know necessary and sufficient conditions for using
partial prolongations to transform a general multiple-steering, multiple-trailer system into
extended Goursat normal form. For larger systems, converting to extended Goursat normal
form should be easier than transforming to chained form since the input vector fields would
not have to be computed: the kinematic constraints of the system can be used directly.

The mobile robots configured with off-axle hitching that could be transformed
into chained form, specifically the fire truck and a car pulling a single trailer, are steerable
with the control inputs presented in Chapter 4. The car pulling more than one tréiler
with off-axle hitching, however, could not be transformed into chained form, but is still

controllable.
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Chapter 6

Obstacle Avoidance

In this chapter, the problem of avoiding obstacles for a mobile robot configured as
a car pulling trailers connected by off-axle, or kingpin, hitches is solved. Given initial and
final positions and orientations of a mobile robot in its environment workspace, we would
like to generate a path specifying a continuous sequence of positions and orientations that
do not collide with the workspace obstacles. Navigating a mobile robot in an environment
full of obstacles can be considered more formally as a problem of finding a collision-free
path for a point in the robot’s configuration space [42]. The configuration space, or C-space,
is the space where the robot is represented as a point and into which the obstacles are
mapped. The obstacles are “grown” in the configuration space so that planning a motion
of the robot relative to the obstacles in the workspace is equivalent to planning the motion
of a point relative to the enlarged obstacles in the configuration space.

The motivating application of this research is automatically controlling a car with
many trailers through areas with corridors or lanes such as manufacturing plants or nuclear
power plants. The goal is to have fully automated vehicles in areas where it is unsafe for
human operators or to assist an operator by steering other axles in the vehicle. The extra
steering wheels give greater maneuverability in the narrow, winding passageways.

In the following, a path planning algorithm is developed that will plan a collision-
free path for a car pulling trailers. Instead of using axle-to-axle hitching, however, the
more general kingpin hitching is considered, where the axles are connected by a kingpin
(or kingbolt, the point of articulation) between the bodies. Furthermore, the problem is
restricted to analyzing the special case of equal length kingpin hitches. The key difference

between path planners for a single car and planners for a multiple-trailer vehicle relies on
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defining an off-tracking bound for the trailers and kingpin hitches, which is defined as the
maximal distance deviated from the lead car’s track when the car moves from a straight
line to an arc of a circle, or vice versa, in the forward direction. In addition, the trailers are
shown to exponentially converge, with respect to the distance traveled by the lead car, to
their steady-state circular path when the lead car is moving on a circular path.

If the turning radius of the lead car is upper bounded by the radius of an “en-
larged” circular robot (the radius depends on the number of trailers and the off-tracking
bounds mentioned above) that is superimposed on the car, then a visibility graph method
is proposed to find a collision-free path for the entire vehicle. If the turning radius is not
constrained, an alternate algorithm is presented: existing path planners for a single car that
use a configuration space approach, in which the environment obstacles are mapped into
the configuration space and a path is planned for a point robot in the configuration space,
are modified by using the same enlarged circular robot to grow the obstacles. The potential
field method and methods unique to car-like robots will be modified.

The outline of the chapter is as follows: in Section 6.1, relevant path planners from
the literature are surveyed along with a discussion of the different types of path planning
methods. In Section 6.2, operating trucks pulling trailers in reverse is discussed, using
studies from the literature. In Section 6.3, upper bounds are calculated on the off-tracking
of the trailers and kingpin hitches and the trailers are shown to exponentially converge to
their steady state path with respect to the distance traveled by the lead car. In Section 6.4,
simulation results are presented for a car pulling one trailer and a multiple-trailer mobile
robot to illustrate the off-tracking. In Section 6.5, our obstacle avoidance algorithm is

described in detail.

6.1 Literature Survey of Path Planning Methods

For general path planning of robots, the three basic approaches are the roadmap,
cell decomposition, and potential field (see Latombe [34] for a more thorough description
of all methods). The roadmap approach characterizes the connectivity of the robot’s free
configuration space as a network, or ‘roadmap, of one-dimensional curves lying in the free
space or its closure. The initial and goal configurations are connected to points in the
resulting roadmap, which is then searched for a path between these points. Various al-
gorithms produce roadmaps called the visibility graph, Voronoi diagram, and silhouette.
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The cell decomposition approach is guaranteed to find a path if one exists. This method
decomposes the robot’s free configuration space into cells in which it is easy to construct
a path between any two configurations. The potential field method discretizes the robot’s
configuration space into a grid of configurations, which is then searched for a free path
using a potential field heuristic. In the following, a path planner is called correct if it always
produces an admissible (collision-free) path and complete if it always finds a path if one
exists. A distinction is also made between whether the path planning algorithm is an exact
or approximate method and, if possible, the time complexity of the algorithm is given.

Classical geometric path planning algorithms that generate trajectories for holo-
nomic robots in constrained spaces, however, may not be feasible for mobile robots with
their nonholonomic kinematic constraints. These general algorithms are solutions to the
classical piano mover problem, which consists of moving a piano through obstacles with-
out any constraints on the allowable movements. The problem of moving the piano in the
3-dimensional Euclidean space is transformed into the problem of moving a point in the
configuration space. The existence of a collision-free trajectory for the piano is character-
ized by the existence of a connected component in the admissible configuration space. The
kinematic constraints of the mobile robot, however, cause the number of degrees of freedom
to be less than the dimension of the configuration space. Therefore, an arbitrary path in
the admissible configuration space does not necessarily correspond to a feasible trajectory
for the mobile robot.

In this section, a survey of the literature on path planners for mobile robots is
presented, concentrating on planners that use the visibility graph method, the potential
field method, or a method unique to robots with nonholonomic constraints.

In general geometric planning algorithms described by Latombe [34] that use a
configuration space formulation, the procedure for planning a path for a car with multiple
trailers would be to enclose the whole mobile robot in one circle and use the resulting circular
robot to “grow” the obstacles in the robot’s configuration space. Moravec [51, 50] was the
first to grow obstacles using circles. This procedure essentially represents the environment
obstacles in the robot’s configuration space. The collision-free path for the resulting “point
robot” is then planned in the configuration space. This method produces very conservative
paths when the robot is large.

Reeds and Shepp [62] completely characterize the shortest paths between any two

configurations for a two-axle vehicle that is allowed to move in the reverse direction in an
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environment without obstacles. A set of paths that is sufficient (always contains a shortest
path) and contains at most 68 paths is given by an explicit formula. They show that any
path with greater than two reversals can be reduced to a path with at most two reversals
that may be as long or shorter than the original one. Dubins [20], on the other hand, derives
shortest paths for a system similar to a car-like robot when no reversals are allowed. The
velocity of the system is held constant and the path is made up of straight line segments
and ares of circles. A sufficient set of paths is given in which there are only at most six
candidates for each pair of initial and final configurations. The shortest path out of the six
is then selected.

In [35], Laumond presents an exact, but uncomplete approach for finding collision-
free smooth trajectories for a circular (radius r) mobile robot whose turning radius is lower
bounded by ro. Reversals are not allowed in this planner. The path planning problem is
transformed into a finding polygonal lines in a dual space of the configuration space, called
the space of centers of curvature. The admissible configuration space is obtained by an
isotropic growth of the obstacles by the radius r. The existence of smooth trajectories is
characterized by the existence of paths made up of line segments, circle arcs of radius ro, or
contact arcs of curvature less than 1/r, at any point. The algorithm consists of searching for
the centers of curvature. The search yields the shortest path, although the time complexity
of the algorithm cannot be precisely evaluated. The algorithm is more efficient when the
space is more constrained since the space of solutions is reduced.

A good recent review of nonholonomic motion planning is given by Li and Canny,
eds. [41]. In this collection, Jacobs and Canny [29] present a complete path planner that
calculates a smooth, approximate path for a mobile robot with a minimum turning radius
and no reversals. This paper extends Dubin’s [20] results to collision-free trajectories. First,
a finite set of canonical trajectories that satisfy the nonholonomic constraints is defined.
Then, orientations and positions of the endpoints of the trajectories are quantized, giving
a finite number of possible trajectory segments. A graph search algorithm is then applied
that finds a path (if one exists) in O("{logn + Alog(%})) time, where n is the number
of free trajectories and 6 characterizes the robustness of the path and the accuracy of
the approximation. The initial collision-free subpaths go between points on the obstacle
boundaries and are smoothly concatenated into the final path.

Laumond, Jacobs, Taix, and Murray [30, 39] present a complete and exact motion

planner for a mobile robot whose turning radius is lower bounded. Reeds and Shepp curves
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are used as the basis for their algorithm. A geometric path planning algorithm is used to
compute a collision-free, minimum length path, ignoring the kinematic and curvature con-
straints of the robot and allowing for reversals. The path is then transformed into one that
obeys the nonholonomic and curvature constraints by using subgoals along the initial path.
The basic idea is to try to reach the goal configuration from the current configuration by
using the shortest path. If this shortest path intersects an obstacle, subgoals are generated
from the initial holonomic collision-free path. A finite number of recursive subdivisions may
be used before finding a collision-free trajectory. The subpaths are concatenated to make
the final path, which is then optimized for near-minimal length.

Mirtich and Canny [48] present a path planner for a two-axle car that is also
based on following a nonfeasible (does not consider the nonholonomic constraints) path as
in [30]. The planner uses a novel approach that builds a one-dimensional maximal clearance
skeleton, or roadmap, through the robot’s configuration space using a shortest feasible
path metric (rather than the usual Euclidean metric) that captures the nonholonomy of
the mobile robot. Once the skeleton between the start and goal configurations has been
constructed, it is covered with shortest feasible path balls that lie completely in the free
configuration space. Then a series of “jumps” can be made between a finite number of points
on the skeleton that connect the start to the goal. Canny’s general roadmap a.lgorithm (16] is
then applied to find a feasible path with near minimum number of reversals. This approach
is approximate and the complexity of the path is an increasing function of the arc length of
the path and the number of reversals in the path.

Laumond [38] found that planning a path for a mobile robot through highly con-
strained spaces may lead to a trajectory with many back-up maneuvers. Wilfong [86] and
Tournassoud and Jehl [79] both present heuristic path planning algorithms for a mobile
robot with limited steering range when the environment consists of lanes or corridors, such
as in a flexible automated factory. Wilfong presents a correct algorithm that computes
the motion of an autonomous vehicle between two given configurations with a minimum
number of turns in O(m?) time, where m is the number of lanes in the environment. The
algorithm requires O(m?(n?+log m)) pre-processing time, where n is the number of corners
on the polygonal obstacles. The minimum free radius for each turn in the designated lanes
is computed, then the motion of the vehicle is obtained by constructing and searching a
directed graph for a path. This algorithm does not allow reversals and does not necessarily
find the shortest path. Heuristics are added to guarantee that the mobile robot does not
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“hug” the obstacles. Tournassoud and Jehl, on the other hand, present a heuristic path
planning algorithm that divides the robot’s free configuration space into pairs of adjacent
cones, where each pair defines a possible turn for the robot. A Voronoi diagram is con-
structed, which yields the free paths that maximize the clearance between the mobile robot
and the obstacles. For polygonal obstacles, the Voronoi diagram consists of straight line
segments and parabolic segments. The planning is performed using a cost function that
combines the length of a path and a penalty when reversals are necessary.

In the potential field method, the robot’s configuration space is discretized into a
rectangular grid of configurations. The point robot in the configuration space acts under
a certain potential field that is constructed using the obstacles and the goal configuration.
The negated gradient of the total potential field is treated as an artificial force applied to
the robot, causing the robot to be drawn to the desired goal position and repelled from
the obstacles. The major disadvantage to this method is that since it is a fastest descent
optimization method, it may get caught in local minima of the potential field. If the total
potential field has local minima, the minima are connected by a graph that is searched
until the goal is attained. These local minima may arise, for example, when the robot gets
trapped in simple concavities formed by the obstacles, or when conflict occurs when various
control points are concurrently attracted to their respective goal position.

Barraquand and Latombe [9, 6, 7] present a potential field method for path plan-
ning for mobile robots with reversals and for manipulator arms. Both the workspace and
the configuration space of the robot are discretized using a hierarchical bitmap representa-
tion. The obstacles are modeled as distributed bitmap descriptions, rather than the usual
semi-algebraic descriptions. Their approach uses potential fields attached to specific points
on the boundary of the robot. A potential field is computed in O(a + blogb) time, where
a is the number of points in the bitmap array and b is the number of points in an “aug-
mented skeleton,” which is a generalized Voronoi diagram of the robot’s free workspace
that includes a link to the goal configuration. All of the potential fields are summed into
one potential field defined in the configuration space, which is then searched heuristically
for a collision-free path. For searching the graph of local minima of the potential field,
they present a brute force method, which uses a “best-first” algorithm to search for the
local minima in the discretized configuration space and works well for robots with degrees
of freedom less than or equal to four, and a Monte-Carlo procedure, which is better for

systems with large degrees of freedom. The brute-force method is complete at the maximal
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resolution of the bitmap, while the Monte-Carlo procedure is not complete. For mobile
robots, this algorithm is designed to minimize the number of back-up maneuvers.

Laumond, Sekhavat, and Vaisset [40] apply the potential field method of Bar-
raquand and Latombe above to mobile robots with trailers with reversals. A collision-free
path based on the discretization of the configuration space (using potential fields as in [9])
is first planned that does not consider the nonholonomic constraints of the vehicle. In the
absence of obstacles, this path is then approximated by a sequence of feasible, near-optimal
paths (using a scheme based on the method in [39]) that are computed numerically. The
last step of the algorithm smooths out the first path to yield a solution. When the degree of
nonholonomy of the system is d, the complexity of the approximation part of the algorithm
is O(e?), where ¢ is the smallest distance from the initial geometric path to an obstacle.

The visibility graph is a non-directed graph whose nodes are the initial and final
configuration of the point robot and all of the vertices of the obstacles in the workspace. The
nodes that “see each other” are connected by straight line segments that do not intersect
the interiors of the obstacles. The resulting graph is searched by an optimization method
for the shortest (with respect to the Euclidean metric) semi-free (may touch boundary of
the obstacles) path between the start and goal configurations. If there exists a path between
the start and goal configurations, then there exists a shortest path and this path is on the
visibility graph.

Lozano-Pérez and Wesley [43] present a collision avoidance algorithm that com-
putes the shortest path for a polyhedral (polygons on the plane) robot moving among known
convex polyhedral obstacles (any obstacle can be modeled in this way to any desired ac-
curacy). The visibility graph approach for a point robot is generalized to be used for a
non-point robot by growing the obstacles by the robot. This is done, for example, for a
circular robot by displacing the obstacle vertices away from the obstacles at least by the
radius of the robot. The circular robot then moves so that the center point goes through
the displaced vertices. For general robots, a method is presented that takes into account
the orientation when growing the obstacles.

Rohnert [63] constructs a reduced visibility graph, which contains only that part
of the visibility graph that is relevant for finding the shortest path between two points. The
problem considered has n total vertices on f disjoint convex polygons in the Euclidean plane.
It is shown that the shortest path uses only the edges of the polygons and the supporting
segments of pairs of polygons that do not intersect other polygons. The supporting segments
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for two polygons are the common tangent links between two polygons. The reduced visibility
graph is computed in O(n + f? log n) pre-processing time and the shortest path between two
points is found in O(f2 + nlogn) time and O(n + f2) space using Dijkstra’s algorithm [19],
which is a standard single source shortest path algorithm.

Vegter [80] presents a dynamic algorithm that maintains a visibility diagram (a
generalization of the visibility graph) when the set of IV line segments (the obstacles) in the
plane is allowed to change when a line segment is deleted or added to the set. The main
result is that the visibility diagram can be maintained in O(log? N + K log N ) time, where
K is the total number of arcs of the visibility graph that are created or distroyed when a
line segment is added or deleted. The algorithm can be used to plan a feasible path of a
rod moving through the V line segment obstacles in O(N?) time.

Jiang et al. [32] find the minimum time smooth path, as opposed to the usual
minimum distance paths, for a mobile robot without generating the robot’s configuration
space. A reduced visibility graph is constructed, which is then mapped to a feasible reduced
visibility graph using heuristics to include the robot’s kinematics. Finally, a polynomial-
time algorithm is used to search the graph for a safe, minimum time smooth path.

6.2 Operating Tractor-trailer Systems in Reverse

In a California Department of Public Works triple-trailer study [60], an actual
truck tractor pulling three trailers was used to test the backing maneuver. The vehicle was
configured as having two axles on the truck, one axle on the first trailer, and two axles
on both the second and third trailers. The first trailer was connected to the truck tractor
with a fifth wheel type hitch, while the second and third trailers were connected by a pintle
hook on the trailer in front over which is placed the eye of a tow bar of the trailer in back.
This can be treated in our terms as axle-to-axle hitching between the truck and the first
trailer and off-axle (kingpin) hitching between the other trailers. The total vehicle length
was 94 feet 4 inches with each of the trailers being 26 feet 6 inches. For the first test, the
triple trailer started off in a straight line, then backed up until it had folded to the point of
“impending damage” to the vehicle. It was found that the vehicle could back up 47 to 65
feet before jack-knifing. For the second test, the triple trailer was run through 180 degrees
of a 60-foot radius curve, then backed up. It was found that it could only back up 30 feet
before approaching damage. The report concluded that one should never back up one of
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these vehicles unless to clear a stalled vehicle in a lane of traffic.

An instructor’s manual for training tractor-trailer drivers [2] states that the process
of backing up tractor-trailers is a combination of “jacking” and “chasing.” The tractor is
first turned until a jack-knife angle occurs between the tractor and trailer. Once the trailer
is heading in the correct direction, the tractor is then turned so as to follow the trailer. The
idea is to use the rear tractor axle as the trailer’s steering axle, so that one steers in the
opposite direction of the desired trailer path. This procedure is used to train drivers to back
up tractor-trailers along a straight line, into an alley dock, and during parallel parking.

For the system with axle-to-axle hitching and any number of trailers, there is no
difficulty operating in reverse, since the system can be transformed into chained form as
shown in [68, 76]. Once in chained form, any one of the steering methods presented in
Chapter 4 can be used to steer the vehicle in the reverse direction. For kingpin hitching,
as was shown in Section 5.6, the system with one trailer is transformable to chained form,
and hence steerable in the reverse direction. For two or more trailers, however, the system
is not transformable into chained form. The system is still controllable in reverse, but the
steering methods for chained form systems cannot help us steer these systems.

As an experiment, the system of a single-axle car pulling two trailers connected
with equal length kingpin hitches was steered in the reverse direction using the interactive
steering program that will be described in Section 6.4. Using jacking and chasing maneuvers,
it was possible to keep the first trailer moving in front of the car, but the second trailer
reached the jack-knife configuration rather quickly.

6.3 Off-tracking Bounds

In this section, fundamental calculations needed for the proposed obstacle avoid-
ance algorithm for a car pulling trailers connected with off-axle hitches are computed. The
calculations include computing an upper bound on the off-tracking of the trailers and king-
pin hitches and proving that the trailers exponentially converge to their steady state path
with respect to the distance traveled by the lead car.

In (46, 60, off-tracking is defined as the deviation to the right or left of the trailers’
axles from the path of the front steering axle during a turn at slow speed. In [47), a truck
pulling one or more trailers is said to be stable if the path of each trailer does not swing

or deviate more than three inches to either side of the truck when the vehicle moves in a
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Figure 6.1: The car is traveling along a circle of radius r. For axle-to-axle hitching, the
trailer is shown to exponentially converge, with respect to the arc length traveled by the

lead car, to a circle with the same center.

straight line on a level smooth paved surface.

Below the idea of off-tracking is quantified for the case of a car pulling one trailer
(a two-axle system). The results can be easily extended for a car with more than one trailer
by making all of the subsequent calculations for the last trailer in the convoy. In this section,
the trailer is shown to exponentially converge to a circular path when the car is traveling
on a circular path (for straight line, the radius is infinity). In addition, under the condition
of equal length kingpin hitches, an upper bound is computed! on the amount the trailer
and kingpin hitch deviate from the car’s path for the two special cases: (1) the transition
from a straight line to an arc of a circle of radius r, and (2) the transition from an arc of a
circle of radius r to a straight line. The goal is to find a single upper bound that bounds
both the off-tracking of the trailer and the off-tracking of the kingpin hitch for the entire
trajectory when the car is moving in the forward direction. The reverse direction is left as
an open problem (see Chapter 7). An upper bound for the first case is computed using the
off-tracking of the kingpin hitch, while an upper bound for the second case is computed
using the off-tracking of the trailer. The bounds are computed with respect to the distance
traveled by the lead car. In the following, “path of the car” and “path of the trailer” refer
to the trajectory of the center of the respective axle.

Consider Figure 6.1, where the lead car in a two-axle system is traveling counter-

clockwise around a circular path of radius 7. We will show that the trailer exponentially

!Thanks to Brian Mirtich for helping to formulate the proofs presented in this section.
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converges to a steady-state circular path with the same center (when the vehicle travels
clockwise, the derivation is similar). Before attempting this, coordinates must be assigned
to the system. The center of the car’s axle, A, is assigned to be the origin of an z-y moving
frame. A fixed reference frame is attached to the center, C, of the circle. The car has
traveled an angle o with respect to the fixed z-axis. The trailer, which is connected to the
car with an axle-to-axle hitch of length L, is at an angle ¢ from the tangent line to the
circle at point A and at an angle $ from the moving z-axis. Let (z;,y;) be the coordinates
of the car (point A) and (z2,%2) be the coordinates of the trailer (point B).

Lemma 27 The velocity of the lead car, vy, is related to the velocity of the trailer, v, as
Uy = V€050 . (6.1)

Proof. Using the fixed frame, differentiating (z; — z,)? + (y2 — 31)> = L? with respect to

time gives
2z — 21)(22 — 1) + 2(y2 — 1) (@2 — 1) = 0. (6.2)
Defining the angle
B=r+a+7/2+¢=a+¢—-7/2 (6.3)
gives ; — z; = Lcos 3 and y, — y;, = Lsin 8. By calculation,

Tp—1I; = vpcos(f+ ) — vycos(a+ 7/2) = —v,cos 8+ v, sina

Y2—th = vpsin(84 ) — v sin(a+ 7/2) = —v,sin B — vy cosa .

Substituting this into equation (6.2) gives

0 = LcosfB(—vzcosf+ v sina)+ LsinfB(—v; sin B — v, cosa)
= —v+ysin(a—-B) =—v, +v;sin(7/2 — ¢) = —v, + vy cos ¢ . 0
Lemma 28 The angle B changes with respect to time as
dB N
=TT sing . (6.4)
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Proof. The angle the trailer makes with the moving frame z-axis can be defined as

,6=a.1'cta,n(y2 yl) .

T2—I

Using the & arctanu = 4/(1 + u?), the derivative of 8 with respect to time is

ap 1 ((!'Iz = 01)(Z2 — 21) — (£2 — £1)(32 — yx))
dt 1+ (z’_n )2 (z2 — 71)?

= ﬁ((gz — 9)(z2 — 1) — (82 — 1) (32 — 1))

= %((—Ug sin B — v; cosa)L cos B — (~v cos B + v; sina) L sin )

= ——cos(oz ﬁ)..——cos(7r/2 @)= ——sm¢

O
Lemma 29 The angle ¢ changes with respect to @ as
do ro.o
i (1 + fsxntp) . : (6.5)
Proof. From equation (6.3) and Lemma 28,
dﬂ da dé v .
T atn =1 sing . (6.6)
The angle traveled by the car around the circle is defined as
1 14
a(t) =g+ - / v (7)dr , (6.7)
0

where the initial angle, o, is assumed to be zero without loss of generality. Substituting

the derivative of « into equation (6.6),

d(p da douv,

—_— —_— e —— ¢= = —_

dadt  dar
gives equation (6.5). O

From this lemma, when ¢ =0, £2 = -1, i.e., when the trailer is aligned with the

car, it is still moving in towards the center of the circle.

Theorem 30 The angle ¢ locally exponentially converges to the steady state value

a—+00

¢, = lim ¢(a) = arcsin ( L) +2mn n2>0. (6.8)
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Figure 6.2: The phase portrait of ¢. The two equilibrium points are ¢, (sfable) and ¢.;

(unstable). The arrows indicate the direction ¢ moves when near an equilibrium point.

Proof. The equilibrium points of the periodic, nonlinear equation

Z_z = f(¢) = - (1 + %sin ¢) (6.9)

¢ = arcsin (T) +2m n>0

P2 = ﬂ—arcsin(T):lzmm n20 =—arcsin(7):lz7rm m21odd.

To determine the stability of the system (6.9), the Liapunov linearization method [81]
is used. Consider the linearization of equation (6.9) about the equilibrium point ¢, €

{¢ela ¢e2}:

do _ f9)
da 00 lymg.
This gives the autonomous linear equation
dz r
=1 cos . 2 , (6.10)

where z := ¢ — ¢, is the linearized variable. The linearized system has the solution
z(a) = z(0) exp (—% cos ¢, a) .

When ¢, = ¢, cosg.; > 0 and :—; < 0. Thus, z converges exponentially to zero, or ¢
converges to ¢.; exponentially. Therefore, the equilibrium point ¢, is locally exponentially
stable. When ¢, = @.2, cos .o < 0 and j—; 2 0. Thus, z diverges exponentially away from
zero, or ¢ diverges away from ¢, exponentially. Therefore, the equilibrium point Pe2 is
locally unstable. This is illustrated in the phase portrait in Figure 6.2.
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Figure 6.3: The trailer exponentially converges to a circle of radius R, passing through

point D. The unstable equilibrium occurs when the trailer is at point E.

Since the linearized system (6.10) is locally exponentially stable in a neighbor-
hood of the stable equilibrium point ¢, = ¢.;, the nonlinear system (6.9) is also locally
exponentially stable in a neighborhood of ¢.;. O

Figure 6.3 shows the stable and unstable equilibrium positions for this vehicle.
The stable position has the trailer at point D with ADC a right triangle. If ¢ is restricted
as |¢| < 7/2, i.e., where the trailer avoids the jack-knife positions, then ¢ never reaches the
unstable equilibrium. Under this assumption, » > L. The case with r = L is unrealistic
since this corresponds to R = 0 and ¢ = —/2, i.e., the trailer is sitting at the center of the
circle (see Section 6.4, case (c)).

Lemma 31 The distance of the trailer (point B) from the center of the circle (point C)

changes with respect to a as

dR rL T,
o-"F& cos¢ (1 + Esanb) . (6.11)

Proof. Referring to Figure 6.1, the law of cosines on the triangle ABC gives
R* = 124+ I*-2rLcos(n/2+ ¢)
R = (r*+L*+2rLsing)/? . (6.12)

Taking the derivative with respect to « gives

dR _ dRd$ 1

- d¢
o = %5—212(2”:‘:0545)35'

The result follows from substituting in equation (6.5) for e, 0
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Theorem 32 Forr > L, R locally ezponentially converges to the steady state value

R, = ali_ﬂR(d) =vr2-L2, (6.13)
Proof. From equation (6.12),
2 _ .2 _ T2
q’>=arcsin(R—r—L) +2mm n>0,
2rL

which can be used to write the left hand side of equation (6.11) as a function of R:

dR rL R2 — 2 - [2\? R:—r2_ 12
@ = W=-F1-(5r) (v )
2 _ .2 2
-5—4——— g [:’L V@rLy? - (R? —r2 — L2)2 . (6.14)

The equilibrium points of the nonlinear equation (6.14) are
Re1= \/;2—_[42 R¢2= T:i:L.

R., corresponds to the angle ¢ = @, of equation (6.8) and R, corresponds to the angle
¢ = £mn /2 for m odd, i.e, the trailer is in the jack-knife position.

To determine the stability of the system (6.14) around these equilibrium points,
the Liapunov linearization method [81] is again used. Consider the linearization of equa-
tion (6.14) about the equilibrium point R. € {R.;, R.;},

dR _of®)|
do - OR R=R, ’

which gives the autonomous linear equation

Be-r'+17) _2;:; L) V(@rLy — (B2 —r2 — L’)’) z =-A:
where z := R — R, is the linearized variable. When R, = R,,,
g - ~IVET T,

which has the solution

z(a) = z(0) exp (—M a) r>L. (6.15)
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Figure 6.4: For kingpin hitching, the lead car travels along a circle of radius r and the
kingpin travels along a circle of radius r,. The trailer is shown to converge to a circle of
radius R with R? =r? + L - L2

Therefore, z converges exponentially to zero, or R converges to R,; exponentially. Therefore,
the equilibrium point R, = R,, is locally exponentially stable.
When R, = R,,, the function A is not well defined, since the square root term in
f,'f is zero at R.;. For our purposes, this case can be ignored. Refer back to Theorem 30,
which shows the stable and unstable modes of the physical system. O
By the above results, the following lemmas that consider the case of a two-axle
system with kingpin hitching can be stated.

Lemma 33 If the lead car of a two-azle system with kingpin hitching of lengths L, and L,

travels along e path of radius r, then the trailer will converge to a circle of radius

R=/r*+L}-1%, (6.16)
provided r? + L3 > L2.

Proof. The proof refers to Figure 6.4. The system of the kingpin hitch and the trailer
is equivalent to the car and trailer system treated above. Therefore, setting r = r, and
L = L, in equation (6.13) gives R = /1] — L. Since triangle CAD is a right triangle,
1= \/7’+_L1’ . O
Lemma 34 If the lead car of a two-azle system with a kingpin hitch travels a distance s on

a circle of radius r, the kingpin travels a distance s; = s and the trailer travels a distance

S, = /0‘ v1(7) cos ¢(7)dT , (6.17)
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where ¢ is the relative angle between the trailer and the car.

Proof. The proof refers to Figure 6.4. Let C be the origin of the z-y fixed frame. The lead
car (point A) travels an arc length s counterclockwise around a circle of radius r through
an angle a = s/r at a velocity v;. The kingpin hitch (point D) travels a distance s, on
a circle of radius r; through an angle o; = s,/r; with velocity vp. The trailer (point B)
travels a distance s; on a circle of radius R through an angle a; = s,/R at a velocity vs.

Without loss of generality, assume a is initially zero. Then, by equation (6.7),

1
s=ar =/ v (r)dr .
0

By Lemma 27, vp = v,. Therefore, the kingpin hitch travels a distance

81 = ar = ./o‘ vp(7)dr = /ot v(r)dr=s
from its initial point. By Lemma 27, v, = v, cos ¢. Therefore, the trailer travels a distance
s = aR= /o‘ v(7)dT = /ot v (7) cos ¢(7)dT
from its initial point. O

Lemma 35 If the lead car of a two-azle system with equal length kingpin hitches travels

along a path of radius r, then the trailer will ezponentially converge to the same circle.

Proof. The result follows directly from setting L, = L, in equation (6.16). O

The next two theorems assume equal length kingpin hitches, i.e., L := L, = L,.
The goal is to find a single upper bound that bounds both the off-tracking of the trailer and
the off-tracking of the kingpin hitch for the entire trajectory. The first theorem computes
an upper bound using the off-tracking of the kingpin hitch when the car changes from a
straight line to an arc of a circle of radius . The second theorem computes an upper bound
using the off-tracking of the trailer when the car changes from an arc of a circle of radius r
to a straight line. The bounds are computed with respect to the distance traveled by the

lead car.

Theorem 36 If the lead car of a two-azle system with equal length kingpin hitching changes
Jrom a straight line to an arc of a circle of radius r, then an upper bound on the off-tracking
of the trailer, z, and the off-tracking of the kingpin hitch, z, is

\/A2+1_1>
)

#(a)<z(a) <2y =71 ( (6.18)
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Figure 6.5: An upper bound on the off-tracking of the trailer and kingpin hitch is computed
when the lead car changes its path from a straight line DO to an arc of a circle of radius r.

where a is the arc length traveled by the lead car from the instant the car switches to the
circle and A :=r/L.

Proof. The proof refers to Figure 6.5. The car travels from the right to the origin O along a
straight line of length 2L, then at O switches to the arc of a circle of radius r. The kingpin
hitch is at a distance L from the origin (point D) initially, and at point E when the car
switches to the circle. The trailer is at a distance 2L from the origin initially, and at point
B at the switching time.

From Lemma 33, R < r; and r; > r, therefore Z < z, i.e., an upper bound needs
to be computed on the off-tracking of the kingpin hitch.

Let 7 be that angle where z is maximum. This occurs when the kingpin hitch is
at the y-axis (as drawn in the figure). Thus, when a = v, the length of CE is vr2 + L2 =
IVAZT+1 and 7 = arctan(1/)). For 0 < @ < 7, z increases from zero to its maximum
value, giving a bound 2, as in equation (6.18).

For a > v, equation (6.15) gives the bound

2(a) = z(0)exp (—m/ ,\2.- 1) < z3:= z(0) exp (—\/ﬁ tan™! %) (6.19)
with the initial off-tracking of the kingpin hitch

2(0)=m—r=r("\2+1—1) .
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Figure 6.6: Comparing the three off-tracking bounds as a function of A = r/L when the car
switches from a straight line to an arc of a circle. The solid line is z,/r, the dashed line is
z3/r. and the dotted line is z3/r.

Figure 6.6 shows that the bound 2, from equation (6.18) is always greater than the bound
z; from (6.19). Therefore, the first bound is used as the maximum distance the kingpin
hitch and the trailer will swing off the car’s path for this trajectory. O

Theorem 37 If the lead car of a two-azle system with equal length kingpin hitching changes
from an arc of a circle of radius r to a straight line, then an upper bound on the off-tracking

of the trailer, z, ts

z(@) < z:=r (1 - X;- 1) (6.20)

where o is the arc length traveled by the lead car from the instant the car switches to the

circle and A :=r /L.

Proof. The proof refers to Figure 6.7. The car travels counterclockwise around the circle,
then switches to the straight line at the origin O. The trailer is at point D at the switching
time, and at point B when the car has moved a distance L. The kingpin hitch is at point
E initially and follows the straight line path of the car.

From Lemma 33, R < r,. Therefore, the trailer will swing into the circle during
this maneuver. In contrast to the previous theorem, the maximum bound is calculated on
the off-tracking of the trailer (the kingpin off-tracking is actually zero for this case).

Let d be that distance traveled by the car from the origin where z is maximum.
This occurs when the kingpin hitch is at the origin (as drawn in the figure). Thus, when
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Figure 6.7: An upper bound on the off-tracking of the trailer is computed when the lead

car changes its path from an arc of a circle of radius r to a straight line.
d=L, R=vr?— L? and an upper bound on : is given by

N
r~R=r—Vr-Lf=r—r )‘/\ 1"

which is the bound in equation (6.20). 0

Figure 6.6 shows that bound z; from equation (6.20) is greater than bound z; from
equation (6.18). Therefore, in a corner trajectory, the trailer and kingpin hitch initially
swing out of the circle, the trailer converges to the circle, then the trailer will swing into

the circle. The results show that the swing-out is less than the swing-in.

6.4 Simulation of Off-tracking

Using the interactive steering software package that we? developed, we were able
to acquire experimental data supporting the theorems for the off-tracking bounds calculated
in the previous section. In this section, the off-tracking bounds and the convergence rates
are simulated for a car pulling one trailer and a car pulling three trailers.

Consider first the case of a car with one trailer that is attached by means of a

kingpin hitch with lengths L, and L, with total length of 3 units. To investigate what

2Thanks to Anant Sahai and Matthew Secor for writing the software code on a SiliconGraphics worksta-
tion and for performing the simulations presented in this section.
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Figure 6.8: Case (a): L, = 1.5, L, = 0.5. The car (solid line) pulling one trailer (dashed
line) with unequal hitch lengths making a right hand turn.
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Figure 6.9: Case (b): L, = L; = 1.0. The car (solid line) pulling one trailer (dashed line)
with equal hitch lengths making a right hand turn.

happens under different hitching configurations, these lengths are varied for the three test
cases: (a) Ly > Ly, (b) Ly = L,, and (c) L; = 0. The vehicle is driven through a sharp
right turn of radius r = 2.0 and the resulting trajectories of the centers of the axles of the
car and trailer are plotted. In addition, the trailer’s off-tracking is plotted as a function of
the distance traveled by the trailer for each case.

For case (a) with L, = 1.5 > L; = 0.5 as shown in Figure 6.8, the trailer’s path
swings out and rapidly settles to a constant distance away from the circular path of the car.
From equation (6.16), this off-tracking distance is R, — r = v/6 — 2.0 ~ 0.449, which is the
maximum off-tracking for the entire path.

For case (b) with L, = Lz as shown in Figure 6.9, the trailer closely follows the
path of the front car. The initial off-tracking to the left of the car’s track is called the
swing-out [72). For the first half of the path, the maximum off-tracking for the kingpin
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Figure 6.10: Case (c): L, = 0, L, = 2.0. The car (solid line) pulling one trailer (dashed
line) with axle-to-axle hitching making a right hand turn.

Figure 6.11: Configuration of a car pulling three trailers with kingpin hitching.

hitch and the trailer is computed from equation (6.18) with A = 2 to be 0.236. For the
second half of the path, the maximum off-tracking is computed from equation (6.20) with
A =2 to be 0.267. |

The third case (c) with L, = 0 and L, = 2 = r as shown in Figure 6.10 is the axle-
to-axle hitching configuration that has been used widely in the literature. The figure shows
that the trailer has a large off-tracking to the right of the car’s track. In an intersection,
this would cause an intrusion beyond the pavement’s edge.

In comparing the three cases, the case with equal kingpin hitching yields the best
results; the trailer follows more closely to the lead car’s path than with the other two
hitching configurations.

The interactive software package was used to drive a car pulling three trailers as
shown in Figure 6.11. Figure 6.12 shows the trajectories of the centers of the four axles as the
vehicle is driven through an obstacle field. The lengths of all of the hitches were equal and
set to 1.0, giving a total vehicle length of 7 units. As the figure indicates, the path swept out

by the car and its trailers is not much larger than that of a single car. This allows the system
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Figure 6.12: Experimental data showing path of a car pulling three trailers through an
obstacle field. The lengths of the hitches are all set to 1.0, giving a total vehicle length of

7 units. The front car’s trajectory is the solid line.
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Figure 6.13: The actual off-tracking in the obstacle field for the third (solid line) trailer is
less than three times the off-tracking of the first (dotted line) trailer.
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to travel quite easily through narrow passageways. The obstacle avoidance methodology
presented in the next section will take advantage of this fact, treating a multiple-trailer
vehicle as an object whose extent is very close to that of a single car.

In Figure 6.13, the actual off-tracking is shown for the first and third trailers for
the trajectory shown in Figure 6.12. A conservative bound for the first trailer is 0.16. The
off-tracking for the third trailer is less than three times this bound.

6.5 Obstacle Avoidance Algorithm

The path planning algorithm described in this section was inspired from the sim-
ulation results of the previous section.

In this section, the two bounds given by (6.18) and (6.20) are used to define a
“trailer correction factor,” 7, which will be used to design a path planning algorithm that
finds a collision-free path for a mobile robot configured as a car pulling trailers connected
by kingpin hitches. The path planning algorithm is then stated for two cases. If the
turning radius of the lead car is upper bounded by 7 plus the radius, p, of a circular robot
superimposed on its body, then a visibility graph method can be used to plan a path for the
entire vehicle. If the turning radius is not constrained, an alternate algorithm is given that
uses a configuration space approach, growing the environment obstacles in the configuration
space by an “enlarged” circular robot of radius p + 7 that is superimposed on the lead car.
In the second case, path planners from the literature that plan a path for a single car are
enhanced to the case of a multiple-trailer vehicle.

The environment considered for the obstacle avoidance algorithm is one of a fac-
tory or manufacturing plant, where the mobile robot navigates through corridors or lanes,
backing up only when necessary to clear an obstruction in the lane. As mentioned in Sec-
tion 6.2, a car with more than one trailer with kingpin hitching cannot be easily steered
in reverse for long distances. The following discussion is concerned with path planning
algorithms that minimize the number of reversals. In addition, paths that are only made
of straight line segments and arcs of circles are considered, as in [20].

For a single-axle car pulling one trailer with minimum turning radius r and equal
length off-axle hitching, define Z := max(z,, 23), where 2, is the upper bound calculated in
equation (6.18) and z; is the upper bound calculated in equation (6.20). Thus, Z represents
the worst possible off-tracking for a trailer and kingpin hitch over all permissible paths of
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the lead car.

In the previous section, Figure 6.13 shows that the deviation of the third trailer
from the lead cars path is less than three times the deviation of the first trailer. Using this,
a conservative trailer correction factor, 7, can be defined for a car pulling N trailers. We
propose to add the upper bounds for each trailer to define 7 := N - Z. The linear scaling is
justified since the convergence is exponential in the distance traveled and the bounds can

be propagated backwards in the trailer system.

Remark. It is of interest to explore the concept of making the trailer correction factor
time varying, such as having it also depend on the radius of curvature of the circle the lead
car is currently traveling on, which would enable the path planner to produce more agile
trajectories. In addition, for the visibility graph method, the trailer correction factor must
take into account the possibility that the trailers may have a turning radius different from
the lead car. This is left as an open problem (see Chapter 7).

The proposed path planning algorithm can now be stated. In both versions, the
key idea is to use a circular robot of radius p+ 7, where p is the radius of a circle around the
lead car and 7 is the trailer correction factor, to compute the distances to the environment
obstacles.

If the turning radius, r, of the lead car is upper bounded by p + 7, then the
following reduced visibility graph method can be used to plan a path for the entire vehicle.
The car and trailers are hitched together by equal length off-axle hitches.

Algorithm A

Step 1 Check that the turning radius, r, of the lead car is upper bounded by p+ 7, the
radius of the circular robot constructed from the dimension of the lead car increased

by the trailer correction factor.

Step 2 Approximate the generalized polygonal environment obstacle by a set of n line
segments to a desired accuracy. To do this, choose € to be the error parameter for the
distance between a point in the given obstacle and the approximated obstacle. The

number of segments used to approximate an obstacle is proportional to 1 /Ve.

Step 3 Grow the approximated obstacles in the configuration space using the enlarged
circular robot of radius p + 7.



129

Figure 6.14: The obstacles are grown by a circular robot of radius p + 7, which is su-
perimposed on the lead car of a three-trailer system, and the reduced visibility graph is
constructed (links in figure). The shortest path between the start, S, and goal, G, configu-

rations is shown in bold.

Step 4 Construct the visibility graph by connecting the nodes (start and goal configura-
tions and all the vertices of the approximated polygonal obstacles) that “see each

other” with a link. This link will not intersect the obstacles.

Step 5 As in Rohnert [63], consider only the useful supporting segments, or common tan-

gents, to a pair of obstacles.

Step 6 Search the resulting reduced visibility graph for the shortest path using Dijkstra’s
algorithm [19].

Figure 6.14 illustrates how the environment obstacles (shown as convex polygons) are grown
for a car pulling three trailers connected by off-axle hitches. A circular robot of radius p+ 7
is used to grow the obstacles, which consist of straight line segments and arcs of a circle
of radius equal to the turning radius of the car, r. In the figure, the grown obstacles are
drawn with 7 approximately equal to p+ 7.

The construction of the visibility graph is also shown in Figure 6.14. The visibility
graph consists of straight line segments and arcs of a circle of radius equal to the turning
radius of the car, 7. If the turning radius is upper bounded by p + 7, this algorithm is

complete (it will always find a path if one exists) and correct (if a path between the start
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and goal configurations exists, then there exists an admissible path). In addition, with
r < p+ T, the visibility graph method will produce a path without reversals that is, in fact,
the shortest path. The overall complexity of Algorithm A is O(n?/e¢), where n is the total
number of segments used to approximate the polygonal obstacles and ¢ is the error term
for the approximation.

Algorithm A is similar to the path planners of Lozano-Pérez and Wesley [43)
and Rohnert [63] as presented in Section 6.1, which plan a collision-free shortest path for
a circular robot moving among convex polygonal obstacles in the plane. In our case of
a multiple-trailer mobile robot moving among generalized polygons, the key difference is
approximating the generalized polygons and using an enlarged circular robot to’ grow the
obstacles in the configuration space.

If there is no constraint on the turning radius of the car, r, then the above algorithm
cannot be used. In this case, the following algorithm, which modifies existing path planners
from the literature that plan a path for a single car to be a path planner for a multiple-
trailer vehicle can be used. The class of path planners considered use a configuration space
approach, where the environment obstacles are mapped into the robot’s configuration space
and a path is planned for a point robot in the configuration space. The car and trailers are
hitched together by equal length off-axle hitches.

Algorithm B

Step 1 Construct the smallest circle of radius p that encloses the lead car only (the car is
assumed to have the widest body; if it does not, use the widest trailer’s body), making

it a circular robot.

Step 2 Increase the radius of the circular robot by the trailer correction factor, 7, to

account for the multiple trailers.

Step 3 Grow the environment obstacles in the configuration space using the enlarged cir-
cular robot of radius p+ 7.

Step 4 Plan the trajectory for the point robot in the configuration space within the result-
ing highway through the obstacles using a potential field method or a method specific

to car-like robots.

As an example of how to apply this method to plan a path for a multiple-trailer
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vehicle moving in an obstacle field, consider the path planner of Laumond [35] presented
in Section 6.1. In this planner, a collision-free smooth trajectory is found for a circular
robot of radius p whose turning radius is lower bounded. To modify this planner for a
multiple-trailer vehicle, a circular robot is used that is constructed from a circle enclosing
the lead car of radius p increased by the trailer correction factor, 7. The first step grows the
obstacles by the radius of the circular robot, p+ 7. Then the space of centers of curvature
(dual space to configuration space) is searched for the shortest path, which is the solution.

A similar planner by Laumond et al. [30, 39] could be modified in the same way.
The first step consists of using a general geometric path planner, which is modified to use a
circular robot of radius p+7, to compute a collision-free path that ignores the nonholonomic
constraints of the vehicle. The second step transforms this geometric path to one that obeys
the nonholonomic and curvature constraints by exactly characterizing, without considering
the obstacles, the minimal length constrained path connecting any two configurations of the
robot. To acknowledge the obstacles, a set of subgoals is chosen along the initial geometric
path by requiring that the minimum length constrained path connecting successive pairs
of configurations is still collision-free under the kinematic constraints of the robot. The
subpaths are then concatenated to make the final trajectory, which is optimized for near-
minimal length.

As an example of how to apply Algorithm B to a potential field method for planning
a path for a multiple-trailer vehicle moving in an obstacle field, consider the path planner of
Laumond et al. [40] presented in Section 6.1. A collision-free path is first planned without
taking into account the nonholonomic constraints of the mobile robot. To do this, the
numerical potential field method of Barraquand and Latombe [9, 6, 7] is used. In this
method, the environment workspace of the robot is modeled as a multi-scale pyramid of
two-dimensional bitmap arrays. Each element of the array may be thought of as a cell with
value 1 if the cell intersects an obstacle and value 0 otherwise. For every cell of value 0, the L*
distances to the obstacles are computed, normalizing the distance between two neighboring
cells to be one. This construction yields a Voronoi diagram of the workspace, showing
the connectivity of the obstacle-free environment. The robot’s configuration space is also
modeled as a multi-resolution grid pyramid whose resolution is consistent with the resolution
of the workspace grid and the dimension of the robot. It is at this step that the planner is
modified to use a circular robot of radius p + 7 to compute the distance to the obstacles.

Potential fields (navigation functions) are attached to the boundary of this circular robot



132

at certain “control points,” which are then summed into one potential field defined in the
configuration space of the mobile robot. The negative gradient of this field is used to pull
the robot to the desired position. To search the graph of the local minima of the potential
field, a probabilistic method is used that generates random motions when the gradient
method ends up in a local minimum. The resulting path is then smoothed out to remove
unnecessary motions. Next, in the absence of obstacles, the resulting path is numerically
approximated by a sequence of feasible, near-optimal paths using the procedure described
in Laumond et al. [39]. A cost function is defined, and a numerical solution to the optimal
control problem gives the near-optimal path. Finally, this near-optimal geometric path is
approximated by a sequence of optimal paths that are collision-free. If the geometric path
is obstacle-free, the algorithm terminates; else, the path is subdivided. These subdivisions
are then checked for collisions. This recursive subdividing continues until a collision-free
path is found. The resulting path is smoothed out by iteratively repeating the subdividing
procedure on randomly chosen configuration pairs to yield a solution.

In summary, a methodology for path planning in the presence of obstacles for a car
pulling trailers with kingpin hitching has been presented. The main idea was to consider
the lead car alone as a circular robot whose radius is increased by the “trailer correction
factor” defined in this chapter. This factor depended on the number of trailers and the
calculation of upper bounds on the off-tracking of the trailers and kingpin hitches. The
obstacles were then mapped into the configuration space using this enlarged circular robot.
The methodology guarantees that the trailers will avoid the same obstacles that the lead

car avoids.
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Chapter 7

Open Problems

In this chapter, open problems in the area of nonholonomic systems are presented.
The first open problem considers the issue of regions of validity. The second problem con-
siders using vector field methods to find necessary and sufficient conditions for transforming
to single-generator chained form. The third generalizes the notion of chained form systems
with one generator, as considered in this dissertation, to chained form systems with more
than one generator. The fourth open problem considers issues of obstacle avoidance for
mobile robot systems. The last problem considers controlling the system of a car pulling

trailers connected by kingpin hitches in the reverse direction.

7.1 Regions of Validity

In Section 2.1.5 a theorem was presented that gives necessary and sufficient condi-
tions for transforming a nonlinear system with drift into a linear form. The transformation
only holds within a neighborhood of the initial state of the system. In addition, in Chapter 3
two methods for transforming a nonholonomic system into multiple-input chained form or
extended Goursat normal form were presented, where the transformations are also only valid
within a neighborhood of the initial state. The size of neighborhood, however, is unknown.
In all three of these methods, the question that arises is: how useful are these theorems for
systems that have large motions? As with the use of normal forms in bifurcation theory,
it is an important open problem to study the regions of validity of these methods for the
nonholonomic systems considered in this dissertation.

As a way to approach this problem, I suggest applying the conversion methods to
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many examples of nonholonomic systems and observing any patterns in the local and global
results. The goal is to understand why certain systems produce local or global results.

7.2 Single-generator Systems

In this dissertation, necessary and sufficient conditions were given for transforming
a multiple-input nonholonomic system into extended Goursat normal form using techniques
from exterior differential systems. Using vector field methods, however, only sufficient con-
ditions were given to convert to multiple-chain, single-generator chained form. I encountered
difficulty in trying to derive necessary conditions for this transformation using vector field
methods. It is an open problem to use vector field methods to derive necessary and sufficient
conditions for transforming a wheeled nonkolonomic system into chained form.

In Chapter 2, a theorem was presented that gives necessary and sufficient condi-
tions for transformation to chained form or Goursat normal form in terms of the dimensions
of certain filtrations associated with the system. This theorem was only stated for the case
of two inputs. It is an open problem to generalize Murray’s dimension count theorem (see

Theorem 14) to the case with more than two inputs.

7.3 Multiple-generator Systems

The most general form of a chained form system in R™ is the (m + 1)-input,
m(m + 1)-chain, (m + 1)-generator chained form, which is written as

50 — =
2] =v; Jj=0,...,m

51 L0, s g 1 ..,0,0__ .1 . .
zZy=2zv;  1>) and zi=zlz] -2} i<j

sk k—l, . .. -
=2z v t#5 k=23,...n;,

where the vy, ..., v, are referred to as the generators and LijugiMii +3=n.

For example, m = 2 gives a three-generator chained form system with six chains:
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withk=2,... ,n,;.

It is an open problem to classify the set of nonholonomic systems, perhaps under
a prolongation, that can be converted to this form, and if vector field (differential systems)
methods can be used for the transformation. This dissertation uses vector field methods to
derive sufficient conditions for converting the kinematic model of a wheeled nonholonomic
system into chained form with a single generator. For our most general mobile robot
example, the multiple-steering, multiple-trailer system, the number of chains corresponds
to the number of steering trains in the system and the lengths of the chains correspond to
the lengths of the steering trains (including virtual axles added via dynamic state feedback
or partial prolongation). The single generator, v in our case, is the velocity of the front car.
It is unknown what happens when there is more than one generator of if this corresponds
to having more than one driving input.

It is also an open problem whether nonholonomic systems can be converted to the
dual of equation (7.1) using an ezterior differential systems method. For example, for m = 2
as above, I have the following conjecture that generalizes the extended Goursat normal form

theorem (see Theorem 16 in Section 2.2).

Conjecture 38 For nonholonomic systems with three inputs, converting to the dual of the

chained form system (7.1),

= . 3,20 = .
{dz° — 22,d23, k=1,... ,nyo; dz2° = 22°,d20, k=1,... ,ng:
- . 21 - .
dzp! — 21 \d20, k=1,... ng; dzf! — z21 d2}, k=1,... ,ny:

d2? — 22.dz23, k=1,... ,ngy; dzf? — 212 d20, k=1,... s N1z},

requires finding three integrable one-forms mo, 7, w2 such that the following extended Gour-

sat congruences are satisfied:

duwy’ = woAwpy, mod I™Me® k=1 no-1, dw!® #0 mod I
dwp = moAwll, mod I™=® k=1 nyp-1, dw? #0 mod I
duf! = mAwd, mod "0 k=1, ny-1, dwl #0 mod I
df = mAwl, modI™=® k=1_..ny—1, dw? #0 mod]
duf? = mAwR, mod I™R) k=1, ny-1, dw? #0 mod I
dwl? = M Awii, mod I8 k=1 n,-1, dwi? #0 modI.
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Figure 7.1: The configuration of a multiple-steering, multiple-trailer mobile robot.

7.4 Obstacle Avoidance for Mobile Robots

A path planning algorithm was presented in Chapter 6 for the two-input nonholo-
nomic system of a car pulling trailers that are connected by kingpin hitches. This planner
relied on defining off-tracking bounds for the trailers and kingpin hitches. These bounds
were then used to define a “trailer correction factor,” which is used to enlarge a circular
robot superimposed on the lead car in order to grow the environment obstacles in the con-
figuration space. The trailer correction factor used in Chapter 6 was defined to be an upper
bound on the off-tracking times the number of trailers. Linearly adding in a fixed bound for
each trailer was shown to be conservative in the simulation results. It is an open problem
to define a less conservative trailer correction factor, possibly time varying, to be used in
the obstacle avoidance planner presented in this dissertation. In addition, for the visibility
graph method, if the trailers have a turning radius different from that of the lead car, then
it is questionable whether the off-tracking bounds can be added for the trailer correction
factor. It is an open problem to define a trailer correction factor that takes into account the
possibility of the trailers having a turning radius different from the lead car.

It is known, both from practical experience and from the theory in this dissertation,
that for the fire truck (a three-axle nonholonomic system), having the extra steering wheel
for the back axle greatly improves maneuverability along narrow city streets. Numerical

simulation results were presented that support this claim in Section 5.3. The general mobile
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Figure 7.2: The multiple-steering, multiple-trailer mobile robot with added virtual axles,
which are used to convert the system to chained form or Goursat normal form.

robot with multiple trailers and multiple steering wheels is configured as in Figure 7.1. This
system was shown to be convertible to chained form in [78] by using dynamic state feedback.
This conversion method required adding virtual axles in front of the steerable axles, as was
explained in Section 3.2 (see Figures 7.2 and 5.13 from Section 5.3). It is an open problem to
develop an obstacle avoidance path planner for the fire truck and for more general systems of
cars pulling trailers with steering on some of the trailers. It is hoped that the path planner
presented in this dissertation will be extendible to this case.

7.5 Steering Mobile Robots with Trailers in Reverse

In calculating the off-tracking bounds for the trailers and kingpin hitches for a car
pulling trailers in Section 6.3 and simulating the mobile robot system in Section 6.4, only
the forward direction was considered. In principle, it should be possible to drive this system
in the reverse direction, too, by tracking the coordinates of the last trailer and working back
up to determine the coordinates of the lead car. It is an open problem o investigate whether
or not driving the vehicle in reverse is the same as driving the back wheels Jor the case with
equal length kingpin hitches and to calculate the off-tracking bounds Jor the trailers and
kingpin hitches when the vehicle is moving in reverse.
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Chapter 8

Summary

This dissertation developed methods for converting the controlled kinematics of
wheeled nonholonomic vehicles to chained form using vector field methods and to extended
Goursat normal form using exterior differential systems methods. The two methods are
duals of each other. Conversion to chained form only gives sufficient conditions, but is
easy to apply. Conversion to Goursat normal form, however, gives necessary and sufficient
conditions, but requires using subtleties of exterior differential systems.

Different steering algorithms were presented that steer the mobile robots open-
loop between any two given configurations. Steering with sinusoids is the natural method
for controlling systems in chained form, due to its structure, and was developed originally
for optimal control problems. In practice, we have found that steering with sinusoids not to
be optimal in the sense that it produces trajectories with more reversals than are minimally
needed. The step-by-step sinusoidal method presented in this dissertation emphasizes the
chained form structure, but is not recommended in practice. The all-at-once sinusoidal
method works well for trajectories that have a reversal, such as parallel parking. Other
methods that were presented use polynomial control inputs and piecewise constant control
inputs; both work well for trajectories without reversals.

How to convert to chained and extended Goursat normal forms and how to use
the proposed steering algorithms were illustrated with the examples of a fire truck and an
extended fire truck. Generalization to multiple-steering, multiple-trailer systems is straight-
forward, but computationally tedious. Additionally, the fire truck with and without tiller
steering was steered using polynomial inputs to show the advantage of having tiller steer-

ing: the fire truck had greater maneuverability and could execute the same maneuvers in
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a narrower space and with less steering effort, which agrees with the experience of real fire
trucks. The procedure for transforming to chained form also applied with no modification
when the attachment point between the cab and the trailer is not located at the center of
the rear axle of the cab, but at some distance off of the axle, as is commonly the case for
cars pulling trailers.

Another goal of this research was to develop a new path planner for a car pulling
trailers connected by off-axle hitches in the presence of obstacles. This dissertation pre-
sented such an algorithm using a visibility graph method if the lead car’s turning radius is
upper bounded by the radius of an “enlarged” circular robot superimposed on the car. If
the turning radius of the lead car is not constrained, an alternate algorithm was proposed
that modifies existing path planners that use a configuration space approach for planning
paths for a single car to be path planners for the multiple-trailer vehicle. The key differ-
ence between designing path planners for single cars and multiple-trailer vehicles relied on
defining an off-tracking bound, which is the maximal distance that the trailers and kingpin
hitches deviate from lead car’s track when the car moves from one path to another in the
forward direction. In addition, it was shown that the trailers exponentially converge, with
respect to the distance traveled by the lead car, to their steady-state circular path when
the lead car is traveling on a circular path.

The applications of this research are various. In [47], a common error of the
drivers of trucks with multiple trailers that have off-axle hitching was that of excessive
steering inputs. The report suggested training the drivers to minimize the steering inputs
to avoid weaving and swaying instabilities. One method suggested by this dissertation is
to attach flexible “whiskers” to the lead car to notify the driver how close she can come
near the obstacles. The length of the whiskers would be directly proportional to how many
trailers the vehicle has and the off-tracking bounds. Then, if the driver avoids hitting
obstacles with the whiskers, the trailers will also avoid these obstacles. Another application
is to use the motion planning methods developed here to automatically control vehicles
with multiple trailers in manufacturing plants, nuclear power plants, or any areas that
have narrow passageways. For vehicles with more than one steerable axle, the methods
presented here may be used to automatically control the whole vehicle, or just the steerable
axles behind the human driver.
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Appendix A

Appendix

Derivation of the Wheel-angle Condition

In this appendix, a novel derivation of the wheel-angle condition that was studied
by [3, 4, 5, 73] for a two-axle car with front wheel steering is presented. This condition is used
to simplify the derivation of the kinematic model of the autonomous wheeled nonholonomic
systems presented in this dissertation. The net result is that one only needs to keep track
of one of the wheel angles on each axle, and the other wheel angle can be derived from the
wheel-angle condition. For the examples in this dissertation, each axle is modeled instead
as one wheel at the center of the axle.

When driving a two-axle car on a curve in practice, the two front wheels are at
different angles (see Figure A.1): the inner wheel to the curvature is at a sharper angle than
the outer wheel. The wheel-angle condition states that the normals to the two steerable
front wheels and the normal to the rear wheels all intersect at point P, which is the center
of rotation of the circular path that the car is traveling on. This is derived geometrically as

L L

= -2
tang; tan¢, “

or
L cos ¢, sin ¢, = L cos ¢, sin ¢, + 2a sin ¢, sin ¢, . (A.1)

To derive the wheel-angle condition (A.1) using the vector field method presented
in this dissertation, first let the states of the model be (z,y,8, 21,41, ¢1, Z2, ¥2, ¢2), where

(z,y) is the Cartesian location of the center of the rear axle of the car, 6 is the orientation
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Figure A.1: Configuration of a two-axle car showing the intersecting normals. The three
normals to the wheels must all intersect at point P, which is the center of rotation of the

car.

of the car’s body with respect to the horizontal axis of the inertial frame, (z1,) and
(%2, y2) are the Cartesian coordinates of the center pivot points of the left and right front
wheels, respectively, and ¢; and ¢, are the steering angles of the left and right front wheels,
respectively, with respect to the car’s body. Let the distance between the front and rear
axles of the car be L and the width of the axles each be 2a. The two pivot points (z,,¥;)

and (z,,¥.) can be written in terms of the center of the rear axle of the car as
| z + Lcosf —asinb
" Yy Lsin@ + acos6
z Lcosf +asinf
) = + 7 . (A2)
Y2 Y Lsin@ —acosé-

These constraints are holonomic in the sense that they reduce by four the number of vari-
ables needed to specify the state of the system. The five coordinates q = (z,9,0, ¢1,¢2) are
sufficient to represent the positions and orientations of the car and wheels.

For mechanical systems with wheels rolling and turning on a surface, the non-
slipping constraint states that the velocity of the body in the direction perpendicular to
each wheel must be zero. This can be stated in terms of coordinates as follows: for a wheel
centered at location (z,y) and at an angle p with respect to the horizontal axis of the fixed

frame, 0 = v, sin @ — v, cos .
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For a two-axle car, the three non-slipping constraints

0 = zsinf - ycosd
0 = #sin(0 + ¢1) — 41 cos(d + ¢,)
0 = i;sin(6 + ¢2) — 2 cos(6 + ¢5)

can be expressed in the equivalent form by using (A.2) as

0 = zsinf— ycosl
0 = gsin(6+ ¢;) - ycos(d + ¢;) — 6L cos ¢y — fasin ¢,
0 = zsin(0+ ¢2) — ycos(d + ¢2) — 6L cos ¢, + fa sing, .

These constraints are non-integrable, or nonholonomic, and will not further reduce the
reachable configuration space. They can be expressed more compactly as w'(q) - ¢ = 0,
where the entire state is represented as ¢ = (z,y,0,¢;,¢;) and the covectors w*(q) are

expressed in coordinates in R® as

wi(g) = [ siné —cosf 0 0 0]
wi(g) = [ sin(@+¢;) —cos(6+¢1) —Lcosg —asing, 0 0 ] (A.3)
w(q) = [ sin(@+¢;) —cos(6+¢;) —Lcosg,+asing, 0 0 ].

Since wi(g)-¢=0fori=1,2,3,
O=sing, w? - §g—sing, w’-¢.
Substituting in the w'’s, gives
0 = sing, (sin(6 + ¢1)¢ ~ cos(8 + ¢1)j — (Lcos gy +asin $1)6)
—sing,; (sin(0 + ¢2)z — cos(8 + ¢2)y — (L cos ¢, — asin ¢2)é)
= i (sing,sin(f + ¢,) — sin ¢, sin(d + ¢))

~9 (sin ¢ cos(f + ¢,) — sin @, cos(0 + ¢2))
-6 (sin ¢2(L cos ¢, +asin #1) — sin ¢y (L cos ¢, — asin ¢,)) .
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Expanding and rearranging terms

0 = z(sin@(sinfcos¢, + cosfsin ;) — sin ¢;(sin 6 cos ¢, + cosfsin @2))
—Y (sin ¢2(cos@ cos ¢y — sinfsin ¢,) — sin ¢;(cosb cos ¢, — sinfsin ¢,))
-6 (L(sin ¢ cos ¢; — sin ¢, cos ¢2) + a(sin ¢, sin ¢; + sin ¢, sin ¢,))
= & (sind(sin @, cos ¢, — sin @, cos @) + cos f(sin @, sin ¢, — sin ¢, sin @2))
—¥ (cos@(sin ¢, cos @, — sin ¢, cos ¢,) — sin 8(sin ¢, sin ¢, — sin ¢, sin ®2))

-6 (Lsin(@¢2 — ¢1) + 2asin ¢, sin ¢,)
gives the equation
0 = £sinfsin(@2 — 6,) — y cosOsin(¢, — ¢,) — 6 (Lsin(¢; — ¢1) + 2a sin @, sin éy) .
But w! - ¢ =0, where g = (z,¥,0, 61, $2), i.e, £5in6 — 3 cosd = 0. Therefore |
0 = zsinfsin(¢; — @) — ycosfsin(¢, — ¢,) ,
which means
0 = 6(Lsin(¢, - ¢1)+2asing, sing,) . (A.4)

For a car to roll without slipping, two cases arise in equation (A.4). The first case is when
6 = 0, which corresponds to pure translation of the car. The two front wheels are parallel to
each other, causing the center of rotation to be at infinity. The second case is when 6 3 0.

This yields a pure rotation about some point:
0 = Lsin(¢2 — ¢,)+ 2asing,sing, ,

which is the wheel-angle condition. In this case, the two front wheels cannot be parallel to
each other; it must be that ¢; # ¢,. In a pure rotation, the inner wheel to the curvature is
at a sharper angle than the outer wheel.

In this dissertation, the wheel-angle condition is used to keep track of only one of
the front wheel angles of the mobile robot, say ¢,. Then the wheel angle ¢, can always be
found from equation (A.1).
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