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Abstract

Motion Planning for Wheeled Nonholonomic Systems

by

Linda Grace Bushnell

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor S. Shankar Sastry, Chair

S. Shankar Sastry

Chair

This dissertation solves important cases ofthe motion planning problem for wheeled
nonholonomic systems. Given initial and final positions and orientations of a mobile robot
in its environment workspace, the problem is to generate a path specifying a continuous
sequence ofpositions and orientations that do not collide with the workspace obstacles and
to generate the control inputs needed to steer the robot along this path.

The two dual methods of geometric nonlinear control theory and exterior differ
ential systems for transforming kinematic models ofwheeled nonholonomic systems with
two or more inputs into chained form or Goursat normal form are presented. Conversion
to chained form using vector field methods only gives sufficient conditions, but is easy to
apply. Conversion to Goursat normal form gives necessary and sufficient conditions, but
requires using subtleties ofexterior differential systems. Once the system is in chained form
or Goursat normal form, various open-loop, point-to-point steering methods can easily be
constructed to steer the mobile robot between any two given configurations. Algorithms are
given for steering with sinusoidal, polynomial and piecewise constant control inputs. The
examples used to iUustrate the theory include afire truck, or tiller truck, and amultiple-
steering, multiple-trailer mobile robot. These systems are drift-free and the nonholonomic
behavior comes from non-slipping constraints on the wheels.

For amobile robot configured as acar pulling trailers connected by off-axle hitches,



an upper bound is computed on the maximal distance that the trailers and kingpin hitches

swingoff the lead car's path when the carchanges from a straight line to an arc of a circle,

or vice versa. The trailersare shown to exponentiallyconverge to their steady-state circular

paths when the lead car is moving on a circular path. If the turning radius of the lead car is

upper bounded, then a reduced visibility graph method is proposed to find a collision-free

path. Otherwise, path planners from the literature for a car-like mobile robot are modified.

The methodology presented in this dissertation guarantees that the trailers do not collide

with the obstacles for forward motions of the lead car.
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Chapter 1

Introduction

This dissertation solves some problems of motion planning for wheeled nonholo

nomic systems. Specifically, several control inputs are designed to steer systems such as

a car, a car pulling trailers, a fire truck, and a multiple-steering, multiple-trailer vehicle

between two given configurations in a given amount of time. For some systems, obstacles

may be taken into account in planning the path. Even though only the kinematic models

of the systems, i.e., without mass and forces are considered, the problem is interesting since

the number of control inputs is less than the dimension of the state space of the system.

In addition to wheeled nonholonomic systems, a satellite [82], a falling cat [21], a hopping
robot in flight (hopping gymnast) [10, 33], and multiple-fingered robotic hands [55] are

all examples of nonholonomic systems. A system is called nonholonomic if either rolling

constraints are imposed on the system from bodies in contact with each other that roll with

out slipping, or conservation laws (dynamic constraints) are observed on the system when

angular momentum is conserved. Mobile robots and multiple-fingered robotic hands have

linear velocity constraints that require the wheels or the fingers to roll without slipping.
The satellite, falling cat, and the hopping gymnast conserve angular momentum when they
move in space.

This research extends two dual methods of analysis for nonholonomic systems

with two inputs to systems with greater than two inputs. The approaches are geometric

nonlinear control theory and the theory of exterior differential systems, and each has its

own advantages. Geometric nonlinear control was used in the development of a class of

systems, called chained form, which can be easily steered using sinusoidal inputs. Mur

ray and Sastry [57] presented sufficient conditions for transforming kinematic equations of



nonholonomic systems with two inputs (as for example, the car, which has the two inputs
of driving and steering) to a chained form with one chain. Extending the same two-input
problem, Sordalen [68] and Tilbury et a/. [76] were able to convert a car pulling N trailers
to chained form.

In geometric nonlinear control theory, nonholonomic systems are considered not

from the point of view of their constraints, but rather from the point of view of a control
system with the allowable motions in the span of the input vector fields. The dual to the

chained form is the Goursat normal form. Although the mathematics literature abounds

with the theory ofexterior differential systems (see [15, 25, 87] as a survey), only recently
have there been attempts to apply this machinery to solve general control problems for
steering nonholonomic systems. On the one hand, conversion to chained form using vector
field methods only gives sufficient conditions, but is easy to apply; it is analogous to the
method for exact linearization of a nonlinear system [28]. Conversion to Goursat normal

form, on the other hand, gives necessary and sufficient conditions, but requires using sub
tleties ofexterior differential systems. We found it beneficial to look at a system from both
the vector field and exterior differential systems points of view.

The unique contributions ofthis dissertation are the presentation ofnecessary and
sufficient conditions for converting a nonholonomic system with two or more inputs into
Goursat normal form, sufficient conditions for transforming these systems to chained form,
and steering methods to control chained form systems. A three-input system (the fire truck
or tiller truck) and amultiple-input system (multiple-steering, multiple-trailer vehicle) are
introduced as examples of nonholonomic systems that can be converted and controlled in

chained form. The steering algorithms presented construct sinusoidal, polynomial, and
piecewise constant control inputs. In addition, numerical simulation results are given that
show how extra steering wheels result in greater maneuverability.

Minimizing the distance between any two configurations (as in [62] for a car) is
difficult to define because there may be more than one trajectory or vehicle to consider. In
the multiple-steering, multiple-trailer vehicles, for example, we may want to optimize the
trajectories of all the trailers, not just the lead car. The input effort (maximum input value),
defined as some weighted combination ofthe driving velocity and the steering velocities of
the system, could also be minimized. The methods presented in this dissertation, namely
the sinusoidal, polynomial, and piecewise constant methods, however, are optimal in the
sense that theyminimize thenumber ofreversals in the trajectories. We have found that for



a parallel parking typeof trajectory, sinusoidal inputs work well since thevehicle makes one

reversal during the entire trajectory. Using polynomial inputs for this trajectory, however,
requires dividing the path into two parts and treating the reverse part of the maneuver as
a second trajectory. Generally, the polynomial and piecewise constant methods work well

when there are no reversals in the trajectory.

Another unique contribution of this dissertation is the presentation of a path
planning algorithm for a car pulling trailers connected by off-axle hitches. If the lead car's

turning radius is upper bounded by the radius ofan "enlarged" circular robot superimposed
on the car, then a visibility graph algorithm is given to plan a collision-free path. If the
turning radius isnot constrained, then an alternate algorithm that modifies existing obstacle
avoidance planners that use a configuration space approach to plan a path for a single
car to be planners for the multiple-trailer vehicle is proposed. Both algorithms use the
additional restriction that the lengths ofthe links in the kingpin hitching are all equal. The
key difference between designing path planners for single cars and multiple-trailer vehicles
relieson defining an off-tracking bound, which is the maximal distance that the trailers and

kingpin hitches deviate from the lead car's track when the car changes from one path to
another. In addition, the trailers are shown to exponentially converge to their steady-state
circular paths when the lead car ismoving on a circular path. The methodology presented
in this dissertation guarantees that the trailers do not collidewith the obstacles for forward

motions of the lead car.

There are many applications of this research for path planning of wheeled non

holonomic systems. One such application is for training drivers of trucks with multiple
trailers that have off-axle hitching. Using this research, we suggest attaching "whiskers"
to the truck to notify the driver how close she can drive near the obstacles. The length of
the whiskers would be directly proportional to how many trailers the vehicle has. Then,
if the driver avoids hitting obstacles with the whiskers, the trailers will also avoid those

obstacles. Another application of thisresearch is to help in steering multiple-trailer vehicles

in manufacturing plants, nuclear power plants or any area unsafe for human operators or
made up of narrow passageways. The goal is to have fully automated vehiclesin these areas

or to assist an operator by steering other axles in the vehicle. The extra steering wheels
give greater maneuverability in the narrow, winding passageways.

The outline of this dissertation is as follows. Chapter 2 gives the mathematical

preliminaries for both geometric nonlinear control theory and exterior differential systems.



Chapter 3 presents the methods for transforming nonholonomic systems with two or more

inputs into a multiple-input chained form and extended Goursat normal form. The con

trollability of chained form systems is also discussed. Chapter 4 presents different steering

methods for the system in chained form and stabilization issues. Chapter 5 gives examples

to illustrate the theory. The fire truck and a multiple-steering, multiple-trailer system are

the main examples presented. The systems are transformed into chained form or Goursat

normal form and numerical simulations are performed. The simulation results are pre

sented for different trajectories such as parallel parking, turning left and right corners, and

changing lanes. The fire truck's performance is compared to a similar vehicle without the

tiller steering. Chapter 6 presents an obstacle avoidance algorithm for a car pulling many

trailers. We find that a collision-free path need only be planned for an "enlarged" front car

and the trailers will avoid the same obstacles. Chapter 7 presents open problems in the

area of nonholonomic path planning. Chapter 8 summarizes the results presented in this

dissertation.



Chapter 2

Mathematical Preliminaries

In this chapter, tutorials on geometric nonlinear control theory and exterior dif

ferential systems will be presented. These will be referred to in the next chapter when the

two dual methods for converting a multiple-input nonholonomic system to either chained

form or Goursat normal form are discussed.

2.1 A Tutorial for Geometric Nonlinear Control Theory

In this section, a variety of results from geometric nonlinear control theory, dif

ferential geometry and introductory nonholonomic systems will be presented, covering the

Frobenius Theorem, the concept of controllability, and exact linearization, which will all

prove useful when analyzing nonholonomic system. To minimize the mathematical pre

requisites, all calculations are performed in Rn. All of the essential ideas, however, are

covariant and thus carry over to the context ofmanifolds. We suggest Isidori [28] and Ni-

jmeijer and van der Schaft [59] for an introduction to nonlinear control theory, Spivak [70]
for an introduction to differential geometry, and Murray, et a/. [54] for an introduction to

nonholonomic motion planning. The presentation of [54] is followed here.

2.1.1 Vector Fields and Flows

The tangent space to Rn at a point x € Rn is denoted as T»Kn. A vector field
f : Rn -* TxRn defined on an open set U C Rn is a smooth map, assigning to each point
x = (xi,... ,zn) € U the n-dimensional tangent vector f(x) GTxRn. The map / is said
to be smooth, or C^R"), ifits partial derivatives of any order with respect to (xly... ,xn)



exist and are continuous, analytic if it is smooth and for each point x0 G Rn there exists a

neighborhood U of x0 such that the Taylor series expansion of / at x0 converges to f(x) for

all x GU, and meromorphic if it is a ratio of analytic functions. The map / is represented

in coordinates as a column vector

( /*(*) >
/= ;

^ /nto >

or if xi,... , xn are local coordinates for Rn, / is written as

where the symbol ~ is the iih basis element for TxRn with respect to a given set of

coordinates. A vector field is smooth if each f*(x) is smooth. Alternatively, a vector field

can be thought of as the right hand side of a differential equation

* = /(*) • (2.1)

The symbol ^f- reminds us that vector fields act by differentiation in the sense that the

derivative of a smooth function h :Rn —♦ R along a vector field g is denoted as the mapping

£fl : R -• R,

This is also called the Lie derivative of h along g.

The flow of a vector field is defined to be the solution of the differential equa

tion (2.1). That is, 6{ :Rn —• Rn is the state ofthe differential equation at time t starting
from x G Rn at time t = 0. It therefore satisfies the differential equation

!^(i)=/(tf(*)).
A vector field is said to be complete if its flow is defined for all t. From the existence

and uniqueness theorem ofordinary differential equations, <j>{ is alocal diffeomorphism (or,
global on its domain of definition) of Rn onto itself for each fixed *. It also satisfies the

following group property

<j>{o<j>'a=<i>{+s (2.2)

for all t, s, where o stands for the composition of the two flows.



Figure 2.1: ALie bracket motion resulting from flowing around a square defined by two
vector fields.

2.1.2 Lie Brackets and the Frobenius Theorem

Given two vector fields / and g, the composition oftheflow of/ for t seconds with
the flow ofg for s seconds is given by the map <£f o</>{. In general, this map isdifferent from
the composition in the reverse order <f>{ o<£f. Figure 2.1 illustrates a Lie bracket motion.

Proposition 1 The net motion from traveling along f for €seconds, g for e seconds, -f
for e seconds, and -g for e seconds starting at the point x(0) = x0 satisfies

q>:° o07/ o# o#(x0) = *o + €2[/,g]{x0) + 0(e*) . (2.3)

The notation 0(e2) represents terms oforder e3 and higher. That is, ifwe take theleft hand
side ofequation (2.3) and divide by e3, the limit ofthis expression as 6approaches zero is
not necessarily zero.

Proof. The Taylor series in €is evaluated for the differential equation

x = f(x)ux+g(x)u2

with the inputs u := (m15 «2) being

ti(<) = a

(1,0) *G[0,€)

(0,1) *G[e,2e)

(-1,0) *G[2e,3e)

I (0,-1) *G[3e,4e)



for e > 0. After the first step,

x(C) = x(0) +€x(0) +ie2x(0) +O(63)

= *o +6/(x0) +e2i§£(x0)/(x0) +0(€3) ,
where 0(ei) represents terms of order e{ and higher. The second step gives

x(26) = x(6) +€5(x(e))-f.2i||(x(€)Mx(€)) +0(63)
= ^0 + €(/(Xo)+^(Xo))

+* (^(Xo)/(a?o) +2(Xo)/(a;o)+5c8(*o)*(Xo)) +°& •
where we have used the fact that p(x0 +ex2) = p(x0) +eff(x0)x! +0(e2). The third step
gives

X(3€) = x(26)-€/(x(26)) +€2i^(x(2€))/(x(2€))+0(63)

where all functions are evaluated at x0. At the last step,

x(4e) = a:(3e)-€p(x(3e)) +€2i^(x(36)Mx(3€)) +0(€3)

=*+'(g'-&)+<*'>-
The net motion x(4e) - x0 is defined to be the Lie bracket between the two vector fields /
and g up to order e3; that is,

ad*s(i) := [/(i),ad*-*S(i)] ,

where ad°#(x) :=g(x).

If the two vector fields commute, i.e., [f,g] = 0, then there is no net motion. In

fact, in this case <f>{ o<j>f = <£f o<f>{. For s =t, the calculation follows easily from the first two
steps of the proof of Proposition 1 and the assumption that §*/(x) = f£g(x). In general,
we have the following proposition (see [1] page 282 for a different proof that treats vector
fields as differential operators).



Proposition 2 Let x GRn and vector fields f and g be defined on Rn with flows <j> and yj,
respectively. Then [/, g) = 0 if and only if <j>toyjB = ip9 o <j>t.

Prc>o/.[84] We first define the mappingh :R xRxRn i-> Rn by /i(s,t,x) := <fcl0^,0^01,
and show that the following are equivalent:

(i) <f>t o V, = tp9o<f>t

(ii) /i(s,r,x) = ^3

(iii) -§;h = 0 for all s and x

(iv) ££>i = 0

(v) [/,g] = 0.

The first equivalence between (i) and (ii) is clear by the definition of h.

If (iii) is true, then h is not a function of t. Thus, h($, t, x) = h(s,0,x) = fa1 o

^,o0ooi = rf>3 ox since <?t at t = 0 is the identity map. Conversely, if (ii) is true, then

J^/i = 0 since %l>a is not a function of t.
By composition of flows,

/i(s,f,x) = ^1(*,^(«,^(f,»)))

**(yx) = A*rN«+A*rlA«W«Lo, (2.4)
£7r <=0

where .D,- represents the derivative with respect to the ith argument of the function. If (iii)
is true, then clearly (iv) is true. If (iv) is true, then -^h would not be a function of s.
Equation (2.4), however, shows that it is a function of s. Therefore, the only way for (iv)

to be true is if J^/i = 0 for all s.
Taking the derivative of this expression with respect to s gives

d dh(s,t,x)
ds dt

d= 5- (JDifl-1 +D^D^D^t)

D2Q71 at t = 0 is the identitymatrixsince D2<j>t at t = 0is the identitymatrix. Also, Di<f>t =

^ot = / bythedefinition oftheflow of/. Furthermore, when s = 0,i?1^71(t, ipa(s, x))|t=0 =

~/(O,0,(s,x)); therefore £.Di0rx(*i.?M*»s))|tao = -D2fDxi\)a = -Df g. Similarly, we
find D2*l>s = Dg. Combining this information with equation (2.5) gives

d 5/i(s, t, x)
= -Df g + Dgf = [f,g),

ds dt t=o

showing that (iv) and (v) are equivalent.

(2.5)



10

The Lie bracket has three basic properties (see [28] for the proof).

Proposition 3 (Properties of the Lie Bracket) Consider the vector fields f,g,h de
fined on Rn and real numbers rur2. The Lie bracket satisfies the following properties:

(i) \fi9] ——fa>/] (skew commutativity)

(*) [/, fa, h]] + fa, [h, /]] + [h, [/, g]] = 0 (Jacobi identity)

(iii) [rxf + r2/i, g] = rj[/,g] + r2[/i,g] and [/, rxg +r2h] = r2[/,g] +r2[/, h] (bilinearity over
r;.

Note that a Lie product is defined as a nested set of Lie brackets. Inaddition, the following
properties of the Liebracket will be useful. Given vectorfields /, g and a real-valuedsmooth

functions a, /?, Aall defined on an open set U C Rn,

[cv/, 0g](x) = a(x)/3(x)[/,g] + a(x)(Lf/3(x))g(x) - /3(x)(V*(x))/(x) (2-6)

L[f,g)Kx) = X/LflA(x) - Xsi/A(x) (2.7)

for x G Rn.

A distribution A smoothly assigns a subspace ofTRn to each point in Rn. Using
a basis of smooth vector fields /i,... , /j, a distribution is defined as

A = span{/!,...,/d} .

A assigns to each point x G U C Rn a subspace spanned by the values at x of the smooth

vector fields fc defined on U. At any point x GU, A is a linear subspace of the tangent
space

A(x) = span{/!(x),... , /,(*)} C TxRn .

The vector fields /i,... , fa arecalled the local generators ofA, since any vector field / GA
can be written as

for g in a neighborhood of x, where a* are smooth functions. Thus, the distribution is a

fundamental object. If the basis vector fields fu... , fd are thought of as the right hand
side of the differential equation

*(*) = /x(*)«i(*)a + •••+ h(x)ud{t) ,
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then A is the subspace of allowable velocities of this system.

A distribution, A, is said to be involutive if it is closed under the Lie bracket

operator:

/,0GA=^[/,0]GA.

The involutive closure of A, denoted as A, is the smallest distribution containing A such
that

/,pGA=»[/,0]GA.

A distribution is said to be regular or nonsingular if the dimension of the subspace A(x)

does not vary with x. A regular distribution A(x) = span-f/^x),... , /d(x)}, defined on an

open set U of Rn, is said to be completely integrable if for each point x0 of U there exist a

neighborhood U° of x0 and n-d real-valued smooth functions hu... ,hn-d such that

dh{ •fj(x) = 0 , fj; GA 1 < i < n - d

for all x G U°.

Theorem 4 (Frobenius) A nonsingular distribution is completely integrable if and only
if it is involutive.

See [28] for a proof.

In analogy to defining vector fields on TzRn, their dual can be defined on T*Rn

(the set of linear functions taking values in TxRn): for each x GRn, define w(x) G7£Rn to

be a one-form. In local coordinates (xi,... ,xn) for Rn, a smooth one-form is written as

w(x) = ui(x)dxi + hun(x)dxn ,

where each u\- is smooth. The symbols dxi represent the dual basis and are defined as

d

dxi (dxi)=6ii'
where 6{j is the Kronecker delta function, which takes values 1 for i = j and 0 for iI ^ j. A

one-form acts on a vector field to give a real-valued function on Rn:

UJ '•(s^-fe^-s^-
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A distribution spanned by linearly independent one-forms

Q(x) :=span^x),... ,wfc(x)} (2.8)

smoothly assigns a subspace of T*R to each x G Rn. In analogy to vector fields, any
one-form w G fi can be written as

E
*=i

«ta) = I>Wto)

for q in a neighborhood of x, where a{ are smooth functions of q. Thus, Q is a unique
subspace of T*Rn, while the one-forms w* are a non-unique basis of Q.

2.1.3 An Introduction to Nonholonomic Systems

A nonholonomic constraint on a system is a non-integrable kinematic constraint.

Forwheeled systems, theseconstraints express that the relative velocity between the contact

point on the rolling wheel and the ground is zero. A system is said to be nonholonomic if

its motions are constrained by nonholonomic constraints.

Let a configuration of the robot system be represented by n parameters, or coor

dinates, (x1?... ,xn) where n is the dimension ofthe configuration space. For example, the
configuration ofa two-axle kinematic car could be represented by (x,y,0,0), where x and
y are the Cartesian coordinates of the center of the rear axle, 6 is the body orientation,
and o is the angle of the front (steerable) wheels. The configuration space for this car is

R2 x S1 x S1, where S1 denotes the unit circle. In the following, we assume, without loss
ofgenerality, that the configuration space is Rn and follow the presentation in [8]. Suppose
the motion of the general system is constrained by a scalar constraint of the form

F{x,t) = 0% (2.9)

where F is a smooth function with a non-zero derivative. This equation can be used to

solve for one of the xt- in terms of the other Xj, j ^ f, thereby reducing the dimension of the

configuration space to n —1. This constraint (2.9) is called a holonomic equality constraint

of the system. In general, if there are k independent constraints of the form (2.9), the
configuration space can be reduced to be (n - &)-dimensional. There can also be holonomic

inequality constraints of the form F(x, t) < 0 or < 0.
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Now suppose the motion of the systemis constrained by the scalar constraint

G(x,x,t) = 0, (2.10)

where x GTxRn, the space of velocities of the system. The constraint (2.10) is holonomic
if it is integrable, that is, if x appears linearly in equation (2.10) so that the constraint

has the form ^F(a;,t) = 0, which can then be integrated to give equation (2.9). If (2.10)
is not integrable, it is said to be a nonholonomic equality constraint, restricting the space

of velocities achievable by the system at any configuration to an (n —l)-dimensional lin

ear subspace of TJln without affecting the dimension of the configuration space Rn. In

general, if there are k independent constraints of the form (2.10), the space of achievable

velocities is reduced to an (n - A;)-dimensional subspace of TxUn. As above, there can also

be nonholonomic inequality constraints of the form G(x, x, t) < 0 or < 0.

There are two types of motions caused by two rigid bodies in contact: rolling and

sliding. For rolling with sliding motion, the nonholonomic constraint (2.10) is a nonlinear

expression in x. For rolling without sliding, the nonholonomic constraint is linear in x. The

latter is assumed throughout this dissertation.

One of the first tasks in analyzing nonholonomic systems is to convert them into

control systems. The kinematic constraints of the nonholonomic system with state space
x G Rn are written as

w* • x = 0 i = 1,... , k k <n

where the one-forms a.*' are written as

u){(x) = u)\(x)dxx + •••+ u>n(x)dxn .

The one-form dxi represents the basis dual to the basis ^ onTxRn.

For a given distribution A = span{^05 ••. ,<7„_fc-i}, its corresponding codistribution

Q = span-fa;1,... ,u;fc} is defined to be the subspace of T^Rn that is the annihilator of A,
i.e., Q is the set of all one-forms that vanish on A:

w*.^ =0 i = l,...,*, j =0,... ,n-fc-l . (2.11)

Alternatively, given a set of nonholonomic constraints Q= span{w1,... ,cj*} for a system,

there exist vector fields p,, j = 0,... ,n - k - 1, that annihilate the one-forms u>* as in
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equation (2.11) such that the gj are smooth and linearly independent over the ring of
smooth functions. We say that A = Q±.

The control system arising from the given kinematic constraints is thus written as

X= g0(x)u0 + 1- 0n-fc-l(z)Un-fc-l ,

where the Uj are the freely specified control inputs to the system, and the gj are called the

input vector fields.

2.1.4 Nonlinear Controllability

From the above discussion, we can now treat the nonholonomic motion planning

problem as a control problem and concentrate on the controllability issues. We further

restrict our consideration to control systems without drift (when all the control inputs are

set to zero, the system does not drift):

x = g0{x)u0 + -" + gm(x)um (2.12)

with x in an open set U C Rn, u GRm+1, m+l<n and gj smooth, linearly independent

vector fields defined on U. It is also assumed that the gj are complete (flows defined for

all time). This system is said to be controllable if for any x0,x/ GU, there exists a T > 0

and an input u : [0, T] -• Rm+1 such that x(0) = x0 and x(T) = xf. In the following, the

formulation ofHermann and Krener [26] is applied to drift-free systems (2.12).

The system is said to be small-time locally controllable at x0 if nearby points can

be reached in arbitrarily small amounts of time and the system stays near x0 at all times.

Given x0 and X/ in an open set V C Rn, define

1Zv(x0, T) := {x GRn| there exists u: [0, T] -• Rro+1 that steers (2.12) from

x(0) = x0 to x(T) = xf and satisfies x(t) GV for 0 < t < T} ,

which is the set of states that are reachable from x0 in time T that remain in V, and

Hv(x0,<T):= |J 1Zv(x0,t).
0<t<T

A control systemis said to be small-time locally controllable, or just locally controllable, if

Hv(x0. < T) contains a neighborhood of x0 for all neighborhoods V of x0 and T > 0.
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Let A := span{p0, ••• , <7m} be the input distribution associated with the control

system (2.12) and recall that A is the involutive closure of A. A is referred to as the

controllability distribution. Controllability of the system (2.12) can be characterized in

terms of the Lie algebra generated by the smooth, linearly independent input vector fields

gj. The conditions for local controllability are given by the following theorem [18].

Theorem 5 (Chow) The distribution Ax = TxRn for allx eU =» the interior of the set

fcv{x0, < T) is not empty <=> the system (2.12) is locally controllable on U.

See [54] for a proof. Chow's Theorem states that if the system (2.12) can be steered in every

direction using Lie bracket motions of any order, then it is controllable. In practice, local

controllability can be checked by checking the rank of the controllability distribution A. This

is referred to as the controllability rank condition. Chow's Theorem is a non-constructive

procedure for generating trajectories for the control system (2.12). A constructive method

is the subject of Chapters 3 and 4 of this dissertation.

2.1.5 Exact Linearization

One of the main topics in this dissertation is the conversion of the control sys

tem (2.12) to a canonical chained form, which is easy to steer. One method used for this

constructive transformation resembles that for linearizing a nonlinear system. Consider the

following nonlinear system with drift

x = f(x)-rgi{x)u1-r'"-rgm(x)um

y{ = /ii(x) i = l,...,m, (2.13)

with x in an open set U C Rn, u G Rm, gj are smooth, linearly independent vector fields

defined on U, and h{ are smooth functions defined on U, and define the distributions

G0 := span{0!,... ,gm}

d := span{adjpj : 1< k< i,1< j < m} for 1 < i < n - 1 . (2.14)

A multiple-input, multiple-output (MIMO) system (2.13) is said to have vector relative

degree 71,... ,7m at x0 if

(i) LgiL)hi(x) = 0 for all 1 < j < m, 0 < A; < 7,- - 1, 1 < i < m and for all x in a
neighborhood of x0
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(ii) the mxm matrix A(x) with elements [L9iLy hi[iyi is nonsingular at x = x0.

Assuming that the system (2.13) has vector relative degree 71 H 1- jm = n at x0 with

respect to the system outputs hi(x),... , hm(x), the following theorem can be stated that

gives the necessary and sufficient conditions for transforming a nonlinear system with drift

to a linear form via state feedback and a coordinate transformation. The theorem holds

within a neighborhood of x0 (this is in contrast to Jacobian linearization, which linearizes

around a point) and the size of the neighborhood is unspecified.

Theorem 6 (Exact Linearization via Feedback) Given an initial state x0 for the above

system (2.13) with drift f(x) andg(x) := [pi(x) ••-gm(x)] having full rank atx = x0, then

there exists a neighborhood U ofx0, a feedback u = a(x) + P(x)v, and a coordinate trans

formation z = $(x) defined on U such that

z = Az + Bv

y = Cz (2.15)

if and only if the following conditions are satisfied:

(i) the distribution G{ has constant dimension near xo for 0 < i < n —1

(ii) the distribution Gn_i has dimension n

(iii) the distribution G* is involutive for 0 < i < n —2.

The exact state space linearization problem for single-input systems was posed and solved

by Brockett [12]. For multiple-input systems, the problem was solved by Jakubczyk and

Respondek [31]. Su [71] and Hunt, Su, and Meyer [27] independently presented a different

formulation in addition to a procedure for constructing the linearizing transformation.

For reference, the Brunovsky normalform of the system (2.15) is

ij = v{

zx = z0

4, = 4,-1 (2.16)

for 1 < 1 < m with rij -I (-nm + m = n.
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2.2 A Tutorial for Exterior Differential Systems

In this section, a tutorial for exterior differential systems is presented. This is the
basis for understanding how to convert a multiple-input nonholonomic systems to extended
Goursat normal form. Agood collection of references for exterior differential systems is [25,
15, 11, 87, 70, 17, 22, 76, 44].

2.2.1 Exterior Algebra

An exterior algebra is first constructed on p-vectors for p = 0,... ,n, then basic
properties of these algebras are given.

Define A°L := R to be the space of real numbers, or 0-vectors, with elements
a, b,c,... .

Define A1!, := L = Rn as an n-dimensional vector space over R, or the space of
1-vectors, with elements a, /3,7,... . Let {a1,... , crn\ be a basis for L. The dimension of

A1L is I J = n, the number of combinations of n things taken one at a time.

Define A2L to be the space of2-vectors by defining the wedge product as a skew-
symmetric bilinear map A : AlL x AlL -> A2L that satisfies

(i) (a1Qf1+a2o2) A/3 = a^a1 A./?) +a2(a2 A/3) where aua2 GR anda1,a2,/?are 1-vectors

(ii) q A(b^1 + b232) = 61(or AQ1) + b2(a A£2) where bx, b2 GR and fi\ 02, a are 1-vectors

(iii) q A a = 0

(iv) a A # = -0 Aa.

The notation a A/? is called the exterior product of the vectors a and (3. That is, Ais a
bilinear, associative, distributive, non-commutative product mapping A1!, x A1L —*• A2L.
A basis for A2L is given by {a* AaJ , 1 <i <j <n}, since

0= EjO.-a' and Q= J^V
i

combine as

aAp = ^2(aibj - ajbi) a1 Aaj .
i<3



It follows that the dimension of A2L is I ], the number of combinations ofn things

taken two at a time.

APL for 2 < p < n is the spaceof p-vectors consisting of all formal sums

^/a(a1 A---Aap) aGR

with the properties

(i) [aa + 6/3) Aa2 A•••Aap = a(a Aa2 A•••Aap) + b(@ Aa2 A•••Aap)

(ii) a1 A •••A ap = 0 if for some i ^ j we have o* = aJ

(iii) a1 A •••Aap changes sign if any two a* are interchanged.

If the indices H := {/i,, /i2,... ,hp : 1 < hj < h2 < •••< hp < n} are defined, the basis for

APL is given by the totality of aH = crhl A •••Aah*. Then any Ain Ap£ can be written as

if

where the sum is over all the ordered sets H. The dimension of AVL is [ ], the number
of combinations of n things taken p at a time. Thus, the dimension of AnZ is 1. Ap is not

defined for p> n, but sometimes it is convenient to set Ap= 0 for p > n.

The exterior multiplication operator, A, is therefore defined in general as

A: (ApL) x (A«I) -> AP+«I

and has the following properties for A G APL and \x G A9L:

(i) XAfi is associative: AA (// A7) = (A A fi) A7

(ii) A A p is bilinear in A,/*: for aua2%61,62 G R,

(a^ + a^An = ai^AAO +a^A/i)

AA(61^1 + 62/i2) = WAA^ + yAA//2)

(iii) AA/i isanticommutative: ^ AA= (-1)M AA//, where /i isa p-form and Aisa g-form.

Thus, the exterior product over the vector space L is used to form the vector space APL.

Proposition 7 The vectors a1,... ,aa are linearly dependent if and only if

a1 A-Aa4=0 . (2.17)

18
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2.2.2 Differential Forms

The exterior product over a vector space L* (the dual of L) can now be used to
form a vector space AP(L*) := QP(L). As before, everything will bedefined on thespace Rn
(instead of on a manifold). The tangent space to Rn at a point x, TxRn, is a vector space
of dimension n. The vector space Ap(TxRn) consists of all p-vectors. Attaching Ap(TxRn)
to each point x GRn gives a bundle structure on Rn, denoted by Ap(Rn). Similarly, the
bundle ftp(Rn) is defined using the dual space T'Rn. An element of fip(Rn) is called an
exterior differential p-form on Rn, fip(Rn) is called the totality ofp-forms on Rn, and fi(Rn)
is called the exterior differential algebra of p-forms on Rn.

Given the local coordinates x1; x2,... ,xn on Rn, the dual bases are defined as

T;Rn = spui{dxu...,dxn}

such that

dxi'W"*"
where Sij is the Kronecker delta function, which takes values 1 for i = j and 0 for i ^ j. In
these coordinates, a vector field / : Rn —• TxRn is written as

/w=E/i(x)A,

where /*(x) are smooth functions.

The ftp(Rn) spaces (spaces of p-forms) for p = 0,1,..., n are constructed as fol

lows, noting that:

(i) Q°(Rn) := rx*Rn is defined to bea space ofsmooth functions, called 0-forms, on Rn

(ii) ft^R") is defined to be the space of covector fields, or one-forms.

A one-form, w : TxRn -+ Rn = nJ(Rn), is written as

n

i=i
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where Uj(x) are smooth functions. A p-form is written in this basis as

u> =^aH(x) dxH
H

for a multi-index H := {hu... ,hp : 1 < ht < •••< hp < n}, where dx11 :=dxh* A-•-Adx**

and aH are smooth functions on an open set U in Rn. If u is the p-form above and 17 is the
q-form

then

•n = ^bK(x) dxK ,
K

Exterior Derivatives

Define the exterior derivative on fifc(Rn) as the unique map

d : fifc(Rn) -» nfc+1(Rn)

with the properties

(i) da is linear in a: d(axal + ^a2) = axdal + a2da2, where aua2 GR and o1,^ are
fc-forms

(ii) d\ satisfies the product rule: d(\ A/i) = dX An + (-l)fcA Adfi, where A is a fc-form

and /i is a one-form

(iii) d(da) = 0, i.e., cPa = 0 for any Morm a

(iv) for a 0-form a, i.e., a = / GC0C(Rn) relative to a local coordinate chart, df is the
one-form that is the differential of /: df= £?=i $£dxi.

A Motto, a is said to be closed if da = 0. It is called exact if there exists a

(k - l)-form p such that o = dp. The following lemma associates these two concepts.

Lemma 8 (Poincare Lemma) A closed form is locally exact, i.e.t ifda = 0, then there
is a neighborhood about each point on which a = dp.
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To illustrate the use of the exterior derivative, consider the following example. For
R3 with x := (xl5 x2, x3) the 0-form / is written as

and is called the differential of /. For the one-form

u> = P dxi + Q dx2 + R dx3 ,

is called the curl of uj. For the two-form

or = A dx2 Adx3 + B dx3 Adxx+C dxx Adx2i

, (QA , dB dC\ J
dQ={dT1 +dx-2 +dx-J d*^dx2Adxz

is called the divergence of a.

2.2.3 Exterior Differential Systems

Some ofthe mathematical tools from exterior differential systems that areused in
this dissertation will now be presented. Amore thorough description can be found in [15].

An algebraic ideal I C fi(Rn) is a collection of smooth differential forms on Rn
that satisfies

(i) if or1,a2 GJ and fu f2 GC°°(R"), then ha1 + fro2 el

(ii) if a GJ and p Gft(Rn), then aAptl.

Given a collection T of smooth differential forms, the smallest algebraic ideal of smooth
differential forms that includes T is called the algebraic ideal generated by T.

An exterior differential system I on Rn is an algebraic ideal that, in addition, is
closed under exterior differentiation, i.e.,

for any a GJ, da GI.

In short notation, this is written asdl C I. The set dl consists of exterior derivatives of
elements of J.
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A Pfaffian system, denoted by I, on Rn is a submodule of the module of differential

one-forms n*(Rn) over the commutative ring ofsmooth functions C°°(Rn). A codimension
two Pfaffian system is generated by a set of n - 2 linearly independent one-forms

a0 = a1 = ••• = an"3 = 0 ,

as

1=JE Aq" • for /* €C°°(Rn)| . (2.18)
In the context of wheeled nonholonomic systems, the one-formsare the kinematic constraints

of the system, i.e., the directions in which the system cannot move instantaneously. Since

the kinematic constraints are imposed onthesysteminaneighborhood of some initial point,
the Pfaffian system is also local.

Let I be defined as the codistribution spanned by a set of linearly independent
one-forms

7= {o°,...,an-3}.

The codistribution is the annihilator of the distribution of allowable velocities of the non

holonomic system, as described in Section 2.1. The ideal generated by I is

I={J} = {<7Gfi : <7Aa°A...Aan-3 = 0}.

J is integrable if there exists functions /i0,... ,/*„_3 such that I = {dh0,... ,dhn-z}.
The Frobenius Theorem 4 of nonlinear control theory has the following dual in

exterior differential systems.

Theorem 9 (Frobenius Integration Theorem) Consider a Pfaffian system generated
by linearly independent one-forms a0,... ,an"3. If these one-forms satisfy the Frobenius
condition

n-3

dak = ^2eikAai 0<fc<n-3 (2.19)
«=o

for some one-forms 6%k, then the Pfaffian system is completely integrable, i.e., there exist
functions /£, and hi satisfying

n-3

ak =^2 flkdhi for 0<k< n- 3 .
»=o
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See [15] or [22] for a proof. The frobenius condition (2.19) is equivalent to

dak AaQ A•••Aan_3 =0 0< fc <n - 3 . (2.20)

A useful tool in analyzing exterior differential systems is the derived flag. Define
the codistributions

J(0) .= /={a0al jan-3}

I(,) := {AG/***-1* : dA =0 modl^}

for i = 1,... ,A', where N is the stepin which this procedure terminates, i.e., JW+1) = /<*>.

The notation mod I means modulo the algebraic ideal generated by I; that is, given two

one-forms a and P in Q, a = P mod I if there exists a one-form rj GI such that a = /?+tj.
The set of codistributions

/ = /(0)D/(i)Dj(2)D..Ojr(iv)

is called the derived flag of the Pfaffian system I and N is called the derived length. U
I is completely integrable, then N = 0 and J(1) = J(0) by the Frobenius Theorem 9. In

fact, IiN) is always integrable since da = 0 mod J(Ar) for all a GI{N). I(N) is the largest
integrable subsystem contained in I. Therefore, if I{N) isnon-empty, e.g., contains one-forms

a0,... ,a*"1, then there exists functions /i0,... ,/ifc_! such that HN> = {d/*0, ••• ,<Wifc-i}.
This means the system is not controllable since there exist algebraic functions that give a
foliation of the state space and the solution trajectories of I are constrained to lie on level

surfaces of {/i0,... , hk-i}.

A Pfaffian system is called nonholonomic if J(1) is a proper subset of I. The

following discussion is restricted to the class of systems that are maximally nonholonomic,
or completely controllable, i.e., HN) = {0}. Consider the derived flag with basis {a*}
adapted to the derived flag, that is, a basis such that the basis of Jk'+1> is a subset of the

basis of J(i) for j = 0,... , N - 1:

7<0):=7 := {a0,a1,... ,an~3}

J(1) := {a0, a1,..., a""4}

flN-l> := {a0}

IiN) := {0}. (2.21)
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Theorem 10 (Chow) Given aPfaffian system generated by smooth, linearly independent
one-forms a0,... ,an~3 and a derived flag for this system, there exists apath x(t) between
any two points satisfying

a* • x = 0 0 < i < n - 3

*/ and only if there exists an integer K such that HK) = {0}.

The proof consists ofconverting the problem to the vector field version and following the
proof in [54].

A basic problem in exterior differential systems is to study the integral manifolds,
or solutions, of a system a = 0. In local coordinates, this is a system of partial differential
equations. For example,

Cx(xu . . . ,Xn) rfXj + •••+ CniXx, . . . ,Xn) dxn = 0

is called a Pfaffian equation. Pfaff's problem is to find the integral manifolds of maximal

dimension. Consider Pfaff's problem and solution for aexterior differential system consisting
of one equation

a = 0 , (2.22)

where a is a one-form. The rank of a is the smallest integer r such that

(da)rAa ^ 0

(da)r+1Aa = 0.

Theorem 11 (Pfaff's Problem) Assume a in equation (2.22) has constant rank r in a
neighborhood ofx0 GRn. Then there exists a coordinate system xu... ,xn (possibly in a
smaller neighborhood of x0) such that a can be written in the normal form

a := dxi + x2dx3 H \- x2rdx2r+1 .

The proof can be found in [15]. For the rank 1 case, the proof reduces to finding two
functions fi and f2 satisfying

dahaAdfi=0 and oAd/^0

aAdfiA df2 = 0 and dfx Adf2^0

from which a can be scaled such that

Q := df2 -f gxdfi = dxx + x2rfx3 .



25

Theorem 12 (Engel's Normal Form) Given a codimension two Pfaffian system in R4
with the derived flag satisfying

dimJ(1) = l and J(2) = {0} ,

there exist local coordinates z$, z0, z\, z2 such that

I = {dz2 - z^dzl, dzx - z0dz°} , (2.23)

which is called Engel's normal form.

Proof [15, 76]. The proof is repeated here since the concepts will be used later when a

Pfaffian system is transformed into Goursat normal form.

Choose a basis for the codimension two Pfaffian system I = {a0, a1} that is
adapted to the derived flag. By a dimension count, da0 Aa0 ^ 0 and (da0)2 Aa0 = 0,
giving a0 rank 1. Hence, Pfaff's Theorem 11 can be used to find coordinates zj, zu z2 such
that a0 = dz2 - Zidz%.

Byconstruction a0 GJ(0), i.e., da0 Aa0 Aa1 = 0. Since da0 = -dzxAdzl, a1 must
have the structure

a1 = a dzi -f 6 dzj mod a0 .

Since a1 ^ 0, a and 6 cannot both be zero. There are two cases to consider to find the

coordinate z0.

Case 1: (a ^ 0). Since a1 is only determined mod a0, a1 can be scaled by a non-zero
function as

-a1 =dzi + -dz% mod q° . (2.24)

Choosing z0 = -b/a then completes the set of coordinates for the basis for the codistribution

I, which is in Engel's normal form. Notice that this basis is a transformed version of the

original basis

a0 = a0 = dz2-Zldz*

& = ic^ + Ao:0 = dzx-zQdzl

where A is chosen such that equation (2.24) is an equality, i.e., no mod a0.
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Case 2: (6^0). In this case, a1 is scaled as

-a1 = Tdzi + dzl mod a0 ,
bo

and z0 is chosen as —a/6 to complete the set of coordinates for the basis for the codistribution

J, which is in the normal form

d° = dz2 —Z\dz\

a1 = dzl - z0dZl . (2.25)

This normal form is diffeomorphic to Engel's normal form via the following change of

coordinates:

*?o = *i

r}0 = z0 =*• d° = dr)2 - T/idq0,

m = *S &1 = diii - lodriZ
rj2 = z2 —ZiZq . q

A generalization of Engel's normal form is stated as follows.

Theorem 13 (Goursat Normal Form) Given a codimension two Pfaffian system

I = {a°,...,an-*} (2.26)

in Rn, if there exists an integrable one-form jt ^ 0 mod J satisfying the Goursat congru
ences

da{ = 7r Aai+1 mod a0,... ,a* , 0 < i < n - 4

da1l~3 ^ 0 modi, (2.27)

then there exist local coordinates zj, z0, zx,... , zn_2 such that

I = {dzn_2 - zn-zdzl, ..., dzx- z0dz%} . (2.28)

Equation (2.28) is called the Goursat normal form of the Pfaffian system (2.26).

This theorem requires the existence of a basis {a*} and a one-form ir of certain

structure. The basis is, however, adapted to the derived flag of the system, as can be verified

by a simple calculation. Therefore, if we start with the basis adapted to the derived flag,
we only need to find a one-form it that satisfies the Goursat congruences (2.27). Finding
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this 7T can be difficult and involves further scaling ofthe basis while preserving the adapted
structure.

Reference [15] gives a complete proof of Theorem 13. The following algorithm
for converting a codimension two Pfaffian system into Goursat normal form summarizes

the proof. It is based on the Gardner and Shadwick algorithm [24], which is a feedback
linearization version of this algorithm.

Algorithm 1 (Conversion to Goursat Normal Form)

Consider a codimension two Pfaffian system I = {a0,... ,an~3} in Rn. The following steps
will transform the Pfaffian system into the Goursat normal form (2.28).

(i) Construct a basis I = {u>°,... ,wn-3} that is adapted to the derived flag ofthe Pfaffian
system.

(ii) Find an integrable one-form ir for which the Goursat congruences (2.27) are satisfied
with this basis. The coordinate 2J is chosen such that dz% = ir.

(iii) From the Goursat congruences, u,«0 and u1 satisfy dw° Alj° Aw1 = 0. Therefore, use
the proof of Engel's Theorem 12 tofind coordinates *n_2, zn_3, zn_4 such that

w° = dzn-2 - zn.3dzl

u)1 = dzn-3 - zn_tdzl .

This may involve scaling the basis ofu* while preserving the adapted structure and a
change ofcoordinates to convert between the two normal forms in the proof ofEngel's
Theorem 12.

(iv) Find the remaining coordinates by algebraically solving the equations

uk = dzn_fc_2 - 2„-fc-3^J mod u>°,... ,uk k=2,... ,n- 3 . (2.29)

The proof ofthe Goursat normal form Theorem 13 is essentially toshow that equation (2.29)
always has a solution.

Remark. The Goursat normal form is dual to what is called a two-input, single-generator
chained form, which was introduced in Murray and Sastry [57]. Considering the codimension
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two case in Rn, the systemin Goursat normal form (2.28) can be written asa control system
in chained form by choosing the vector fields

d , o d , d
dzi^"Qdz^ " n-3a*n-2

d
9i = 0^>> (2.30)

which form a basis for the distribution annihilated by J = {a0,... ,an~3}. Thus, the

problem of finding a basis for the constraints a* in Goursat normal form is equivalent to

finding a feedback transformation to the chained form (this transformation will be discussed

in detail in Section 3.1).

Finding the integrable one-form n for the Goursat normal form can be difficult.

In [52], Murray completely characterizes the setofcodimension two systems that are equiv

alent to a system in chained or Goursat normal form. Let I = {a0,... ,an~3} be a codis

tribution on Rn and write A = I-1 for the distribution that annihilates J. For example,

A = span{0O!0i} with g0 and gx as in equation (2.30). Two filtrations are defined as

E0:= A G0:= A

Ei := Eq + [E0, E0] Gx := G0 + [G0, G0]

E2:= Er + ^Ei] G2 := Gi+ [Gi,Go] (2.31)

Ei+1:= Ei + lEi.Ei] Gi+1:= Gi+ ^Go].

The filtration {GJ is the one that usually appears in the context of nonlinear feedback

linearization (see equation (2.14)) and contains allLie bracketsup to order i. The filtration

{E{} also contains Lie brackets of order i, but may also contain higher-order Lie products
(up to order 2*"1). This is due to the recursive construction of Ei asopposed to the iterative

construction ofGj. The filtration {Ei} is the sequence ofdistributions that is perpendicular

to the derived flag of J = A1. Using these filtrations, [52] gives the following two results.

Theorem 14 (Murray) There exists a basis {u°,... ,wn~3} for a codimension two Pfaf
fian system I = Ax that is in Goursat normal form (2.28) if and only if

dimJE, = dimG,- = i + 2 for 0<i<n-2.

See [52] for a proof. The following corollary uses the fact that the Goursat normal form

and the chained form are dual forms.
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Corollary 15 (Murray) There exists afeedback transformation that converts a two-input
nonholonomic system into chained form if and only if

dimEi = dimGi = i + 2 for 0 < i < n - 2 .

Consider now what happens when there are more than two inputs, which cor

responds to a Pfaffian system with codimension greater than two. In general, a Pfaffian

system I = {a0,... ,a"'1} is said to have codimension m if s + m = n, the dimension of

the state space Rn. A tower of the derived flag must first be defined. In the codimension

two case, there is only one tower in the derived flag, which consists of the basis adapted to
the derived flag in equation (2.21).

Definition 1 (Towers of a derived flag) Let I be a collection ofn1-r'"-rnm smooth
linearly independent one-forms defined on an open set UCRn with n = m+ 1+ J^Lin >

J = {wj,wjl...,w£i:j =l,...,m}. (2.32)

Thus, I is a codimension m+ 1 Pfaffian system. Let the one-form n ^ 0 modI be such
that for j = 1,... ,m,

dui = TrAu3k+1 mod/(n'-fc) , k= l,...,nj-l
du3n. ^ 0 mod I . (2.33)

These congruences imply that the derived flag associated with the system I has the form

I{i) = {u:i,4,...,ui..i:j = l,...,m} i = 0,...N ,

where N is the step where !<"> = 7<Ar+1>. // i > nj} then none of the constraints u> :=
(u{,u?2,... ,u3n.) will appear in the ith derived system. Under this construction, we say the
derived flag ofI has m towers. The set ofrelations (2.33) will be referred to as the extended
Goursat congruences.

In other words, when considering Pfaffian systems with codimension m+1, we use a derived
flag with m towers. This is the dual to what is called a single-generator, (m + l)-input,
chained form with m chains.

If the filtration {Ei} as in equation (2.31) is constructed for A=span{^0,... ,gm},
this filtration is still the sequence of distributions that is perpendicular to the derived flag of
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I = A-1- with mtowers. Theorem 14 cannot, however, be extend to this higher codimension
case, since the distribution F{ may contain more vector fields than E{ due to the many
possible combinations ofLie brackets between the gj GA. Thus for m > 1 (more than two
inputs), the filtration {FJ cannot be guaranteed to grow as {Ei} grows.

Gardner and Shadwick [24] extend Theorem 13 to a system with codimension
greater than two with the following theorem.

Theorem 16 (Extended Goursat Normal Form) Let U be an open subset o/Rn and

I = {wj,^,...,wn. :j = l,...,m}

be a collection ofnx-\ \-nm smooth linearly independent one-forms defined on U, where
n = m + 1+ £J!Li Uj. If there exists an integrable one-form ir ^ 0 mod I such that the
extended Goursat congruences (2.33) are satisfied, then there exists a set ofn coordinates
on U such that I can be written as

I = {<*< - <-i<kJ,•••, dz{; - zldzl : j = 1,... ,m} . (2.34)

See [24, 52] for proof. Equation (2.34) represents an extended Goursat normal form system
with m towers.

Remark. It is necessary to have an integrable w in order to construct the coordinates for

the extended Goursat normal form. This was not stated in [24] since the ir for their control

system was always equal to dt. If the one-form n in the above theorem is not integrable,
then the Frobenius Theorem 9 cannot be used to find the z\ coordinates for I [77, 53]. In
the case where only one tower is the longest, Lemma 17 below shows that if there exists

any n that satisfies the extended Goursat congruences, then there exists an integrable n'
that also satisfies these congruences (under a rescaling ofthe basis one-forms). In the case
where ni = n2, or at least two towers have the longest length, however, this is no longer
true. Therefore, assuming ir is integrable in Theorem 16 is necessary.

Lemma 17 Consider the case where one tower has the longest length. If there exists a

single one-form it ^ 0 mod I that satisfies the extended Goursat congruences (2.33), then
there exists an integrable one-form it' that also satisfies these congruences.

Proof. Without loss of generality, consider the case when the first tower is the longest.
Given that there exists a ic ^ 0 that satisfies the extended Goursat congruences (2.33), the



derived flag has the structure

The last Goursat congruence

J<»»-1> = {WJ}

/<*>> = {0}.
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a\)\ = 7r Au\ mod w} (2.35)

implies that u\ has rank 1. Thus, from the solution to Pfaff's problem, there exists a

function fx satisfying the equation du>\ Aw} Adfx = 0. Substituting du\ from (2.35) gives
7T Au\ Ajj{ Adfx = 0, which shows that dfx is linearly dependent on ?r, w|, and w}, i.e.,

4fi = *o(z) t + &i(x) wj + fc2(:r) w2 ,

where x = (xl5... ,xn) are the local coordinates on Rn. Define ic' = dfx and note that any
such it' with fc0 # 0 also satisfies the extended Goursat congruences (2.33). _



Chapter 3

Conversion to Chained and

Extended Goursat Normal Forms
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In this chapter, methods are developed for converting the kinematic model of

nonholonomic wheeled vehicles into chained form and extended Goursat normal form. The

two methods presented are duals ofeach other: geometric nonlinear control theory and the
theory of exterior differential systems. Sufficient conditions for converting to chained form
are derived using vector field methods. Using techniques from exterior differential systems,
both necessary and sufficient conditions can be derived for transforming into extended
Goursat normal form.

3.1 Conversion to Chained Form

In this section, a method to convert systems into a special canonical form of

systems called chained form systems is presented. Once inchained form, thesystem can be
easily steered using various methods discussed in Chapter 4.

We are interested in steering mechanical systems with nonholonomic, or non-
integrable, linear velocity constraints

(ji{x).x = 0, i = l,2,...,fc,

where x € Rn is the state of the system and the u/(x) € Rn are row vectors, or one-forms.
For mobile robots, these constraints arise when a wheel rolls without slipping on a surface
expressingthat the relative velocity of the two points in contact is zero.
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The a;*, are assumed to be linearly independent and smooth. The corresponding

codistribution Sl(x) = span{a;1(x),... ,wk(x)} has dimension k. Therefore, an (n - k)-
dimensional distribution A(x) = span{p0(a:), ••. ,0n-fc-i(z)} can be found with all g^x) 6
Rn, such that A = Q1, i.e., u{(x) •g^x) = 0 for all u{ € Q, gj € A. Then a kinematic

system with the above nonholonomic constraints can be represented as a control system

with inputs Uj as follows:

x = g0(x)u0(t) + •••+ pn_fc_1(x)un_fc_1(t) .

The motion planning problem therefore consists of controlling the drift-free system

x(t) = g0{x)u0(t) + •••+ gm(x)um(t)

where x is in the open set U C Rn, Uj(t) € R, m + 1 < n, and the gj are smooth, linearly

independent vector fields. All subsequent conditions are assumed to hold on the open set U.

Given x° and xf, the goal is to find a control law u= (u0(t),... ,um(t)) to steer x(0) = x°
to x(T) = xf on the time interval [0, T].

Chained form systems were first introduced by Murray and Sastry [57] as a class of

systemsinspired by Brockett [13] to which one could convert a number of interesting exam

ples, including a car and a car with one trailer, and for which it was easy to derive sinusoidal

steering control laws. These examples have two inputs and their chained forms have one

chain. If the system meets certain sufficient conditions allowing it to be transformed into

what is called a single-chain, single-generator chained form, defined by

Zq — v0 Z\ — Vx

Z2 = ZxVq

in-l = Zn-2V0 (3.1)

after a nonlinear change of coordinates and state feedback, then the system may be steered

by setting the inputs v0 and vx to be sinusoids at integrally related frequencies. This is

called a chained form system because the derivative of each state depends on the state

directly above it in a chained fashion. This particular chained form is reminiscent of a

Brunovsky normal form. Indeed, with the input v0 set to 1, the coordinates Zx,... ,zn-i

are in Brunovsky canonical form (2.16). Chained form systems, however, are nonlinear,
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drift-free, and bilinear in the input and state variables. The input v0 that appears in the

chain is called the generating input, thus the name "single-generator chained form." A more

general chainedform is discussed in Chapter 7 (see also [57]) that can have more than one

generating input and multiple chains leading down from each input. In this section, we are

only interested in chained form systems that have a single generator.

In the following, systems with three or more inputs are converted into a chained

form with more than one chain. In this special form, the system can be controlled using

sinusoidal, polynomial, or piecewise constant input functions as described in Chapter 4.

The outline of this section is as follows. In Section 3.1.1, sufficient conditions

are presented for transforming a three-input nonholonomic system into a two-chain, single-

generator chained form. In Section 3.1.2, the controllability of chained form systems is

discussed. In Section 3.1.3, these ideas are generalized to (m + l)-inputs.

3.1.1 Converting to Two-chain, Single-generator Chained Form

As will be seen in the example section, finding the control inputs {uj} that will

steer the state x £ Rn from an initial configuration to a final configuration may be difficult

if the kinematic equations are complicated. Converting to chained form greatly simplifies

this task: the structure of the chained form system allows one to easily construct sinusoidal,

polynomial, or piecewiseconstant control inputs.

Deriving conditions to transform a nonholonomic system with two or more inputs

into chained form is straightforward when we recall the method for exact linearization

of a nonlinear system with drift via state feedback and a coordinate transformation as

presented in Section 2.1.5. In analogy to this method, the following theorem that gives

sufficient conditions for transforming a three-input, drift-free, nonholonomic system into

chained form can be stated.

Theorem 18 (Converting to Two-chain, Single-generator Chained Form)

Consider a three-input, drift-free, nonholonomic system

x = go(x)u0 + gx(x)ux + g2(x)u2 (3.2)

with smooth, linearly independent input vector fields g0, glf g2. There exists a feedback



transformation on some open set U C Rn

w = /?(rc)u

that transforms the system (3.2) into two-chain, single-generator chained form

fo = v0 Co = t>i ?)o = v2

Ci = Co^o r)x = »7o«o

: Vn3 = ?7»2-lU0

Cn, = Cn,-lV0

if there exists a basis f0, flf f2 for A0 := span{g0,gx,g2} that has the form

h =£*.>£
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(3.3)

A = E^Wgr (3.4)
«=2 C/X*

such that the distributions

G0 := span{fx,f2}

Gx := span{fx,f2,adfJx,adfJ2}

Gn-x := «panW}0/i,ad*/o/2:0<i<n--l} (3.5)

Aave constant dimension onU, are all involutive, and Gn-i Aas dimension n - 1 on 17.

Proo/. First denote the dimension of each distribution as d< := dimGj. By construction
do = 2 and by assumption, dn_i = n - 1. Since £0 C Gi C ••• C Gn-i,

2 = do < di < ••• < dn_i = n —1 .

Let rii be the smallest integer less than n such that

dim<2ni = n-\

dimGn,_i = n-2
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and let n2 be the integer when dimGna_i first drops by two. Thus, ad^0/i and ad^0/2 each
give new directions up to some level, n2, when one chain saturates and the other chain

continues to give new directions until the state space is spanned:

(2(t + l) 2= 0,. ..,n2

(i + 1) + (n2 + 1) f = n2,... , nx

n- 1 i = ni,... ,n- 1

with n2 + rii + 2 = n —1. Without loss of generality, this proofwill use the case nx > n2.

A basis for G„_i can then be chosen that is given by the first nx brackets of f0 with fx and
the first n2 brackets of /0 with f2:

Gn_i = •••= Gni = span{/i, ad/o/i,..., ad£/i, f2, ad/o/2,... ,ad£/2} ,

where fx and f2 have been renumbered if necessary.

Because of the special form (3.4) of the vector fields, none of the vector fields in

Gn-x has an entry •£-, thus

span{/0, /i,ad/o/i,... ,adn0V„ /2,ad/o/2,... ,adnoa/2}

has dimension n on U. Then since the distribution Gn_i is involutive and of dimension

d„_i = n - 1 on U, frobenius Theorem 4 shows that there exists n - dn_! = 1 smooth

function h0 : U -> R such that dh0 •X = 0 for all X € G„_i. Furthermore, dh0 •f0(x) =
a0{x) ^ 0. With /o in the special form of equation (3.4), h0 can be chosen to be Xx, which
gives d/i0 • fo(x) = 1. It can also be verified that none of the vector fields in Gn_i has

an entry in the first coordinate, giving dho •X = 0 for all X € Gn-x. By the dimension

argument, G< = <?n_i for i = nu... ,n - 2, thus d/i0 X G{ for i = nx,... ,n - 1.

The distribution Gn,_i drops dimension by one by removing the vector field ad^/i
from G„_i = Gni. Since this distribution is involutive and dn,_! = n - 2, there exist two

smooth functions whose derivatives span G^. One of these functions is h0 since dhQ
annihilates Gni D G„,»i. Let hx be the second function independent of h0 and note that
dfci.ad£/i(x):=ai(s)^0.

At the next step, the vector field adj0,_1/i is removed from Gni_i to get the
involutive distribution Gni_2 of dimension dni_2 = n - 3. The one-forms dh0 and dhx
annihilate Gnj-.2. Using the property ofLie derivatives given inequation (2.7) ofChapter 2
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and the fact that dhx annihilates G„,_i, we find dLfohx annihilates G„,_2 since

0 = dhx-**yk =L^fhx=L[h^
= -dL/0/ii.ad£7fc l<j<ni-l fc = l,2. (3.6)

Furthermore,

ax(x) = d/ii-ad^/^-d^/ii-ad^-1/!.

This procedure continues to the distribution G„2, which is annihilated by d/i0, dhx, dLfQhx,

...,dLyo-n^hx.
Starting with the involutive distribution Gna_i, the distributions drop dimension

by two. For Gna_i, the vector fields adj02/i and ad"oa f2 are removed from Gna. The one-forms

dh0, dhx, dLfiihx,..., dLnfl~ni~lhx annihilate Gna_! C Gna. In addition, equation (2.7) and
the fact that dLnsl~n*~lhx annihilates Gna give

dL^-^/ii-ad^1^/* = 0 l<j<m-l fc = l,2,

which shows dLnfl"n2hx annihilates G„,_i. There is one more function whose differential

also annihilates Gna_i; we call it h2 and note that d/i2 •3id^f2(x) :=o2(x) ^ 0.

At the next step, the vector fields adj02_1/i and adj3"1^ are removed from G„a_i
to get the involutive distribution Gna_2 of dimension dna_2 = 2(n2 —1). The one-forms

dho,dhx,dLf0hx,... ,dL^"nihx,dh2 annihilate G„a_2 C G„a_i. To see that the one-forms

d£JJ~n2+1/ji and dLfoh2 also annihilate Gna_2, we use equation (2.7) and the fact that
dL^~n2hx and dh2 annihilate Gna_i to get

rfZn1-n2+l/li.ad;-n1+n2-lA = Q J < j < ^ _ ! fc = ^ 2

and

0 = dh2'ad>fJk = -dLfoh2-aidif;1fk l<j<n2-l fc=l,2.

Furthermore,

a2(x) = d/i2.adno8/2 = -dI/o/i2.ad;oJ-1/2.

This procedure continues to the distribution G0, which is annihilated by dh0, dht,
dU}l'1hx,dh2,...,dU}l'lh2.



In summary, the three functions h0, *i, and h2 have been found such that

dh0 ±Gj 0<j<n-l

dLkfohx±Gj 0<j<ni-l, 0<k<ni-l-j
dLkfoh2±Gj 0<j<n2-l, 0<k<n2-l-j .

These three functions are used to define the chained form coordinates as follows

£o = h0 Co = U)lhx rjo = L%h2
Ci = Lnfr% % = xy-%

Cn,-1 = Lj0hx

Cn, = hx .

^nj-l = Lfoh2

1m = h2

38

(3.7)

(3.8)

To verify that the above coordinate transformation is valid, we show it is a local
diffeomorphism. First the derivatives of the coordinate transformation, $, are calculated
with respect to x. This is then multiplied on the right by a nonsingular matrix M whose
columns are the nindependent vector fields /0, hMfJu ••.,ad£/i, f2, ad/o/2,... ,adn0a/2:

dh0

dU}lhx

0$ _
dx ~~

dLfohx

dhx

dU}lh2

dLfoh2

dh2

[fo /i ad,,/, ••• ad?.'/! f2 ad/o/2 ••• ad '̂/s] (3.9)



1 0 0 . ... 0 0 0 ... 0

* ±ax(x) * . ... ♦ * ... ... *

* 0 ±0!(x) '* •

0
•.

'.

•

•
0

•

1 J
*'• '•.

•

•

: : *
•

"*• *

* 0 0 • 0 ax(x) 0 ... ... 0

* 0 * . ... * ±a2(x) * ...

*

• 0 0 0 ±a2(x) '•. •

I I . •

•. •.
*

* 0 0 • 0 * 0 ... 0 a2(x) m
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The functions ax(x) and a2(x) are nonzero by definition. Equation (3.7) is used to get the

zeros in the matrix. It can be shown that the above matrix, under row operations, is similar

to a nonsingular diagonal matrix with

l,±ai(a;),... ,ax(x),±a2(x),... ,a2(x)

on the diagonal, and thus has full rank. Therefore the Jacobian matrix f^ must also

be nonsingular locally, implying (£,C>»?) = $(x) is a local diffeomorphism and a valid

coordinate transformation on the open set U by the inverse function theorem.

To compute the input transformation, we take derivatives of the transformed co

ordinates, cancelling terms by using the zero entries of the above matrix f^ •M:

So = «o

Co = Lnfl^hxn0-rLflU}lhxUx + Lf3U}lhxU2

Ci = I/01/iiUo = CoWo

Cn, = Lfjlxllo = Cn,-1«0

770 = Lnf;+1h2u0 + LhLnf;h2u2

fix = L1};h2uo = rj0Uo

T)„a = Lf0h2U0 = 77n2-lW0 .
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Therefore the input transformation

v0 = U0

1/1 = L^lhxUQ-rLhU}lhxUx + LhU}lhxn2
v2 = Lnf;+1h2u0 + LhLnf;h2u2

will result in the two-chain, single-generator chained form (3.3).

Remark. The condition that G0,... ,Gn_i all be involutive is somewhat redundant, as in
the exact linearization conditions in [28] (Section 5.2.6, page 256), since the involutivity of
some distributions in the sequence may imply the involutivity of others.

3.1.2 Controllability of Chained Form Systems

In this section a system in two-chain, single-generator chained form is shown to be

completely controllable. Since controllability is unaffected bystate feedback and coordinate

transformation, it will follow that the original system is also completely controllable.

Theorem 19 (Controllability of Two-chain, Single-generator Chained Form Sys
tems) The three-input, two-chain, single-generator chained form system in equation (3.3),
where (f, C, rj)eU C Rn and n = nx + n2 + 3, is completely controllable.

Proof. The chained form system equations are written as

(i\

where (£, C, l) = (foi Co. ••• ,Cn,. Vo, ••• , In,) and the corresponding input vector fields are

X - ±

X - ±
drjo

Recall from Section 2.1 that a system of the form i = £?L0 Xi(z)vi is completely

controllable if the involutive closure of the distribution A0 = span{J^0, ••• iXm} at each
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configuration is equal to the entire state space Rn. Define A0 = span{X0,Xx,X2}. The
existence of n independent vector fields in the involutive closure, A0, will imply complete

controllability. Consider the n-dimensional distribution, a subset of A0, resulting from
taking successive Lie brackets with X0:

A = span{A'0, Xuad*0Xx,..., ad%XltX2, *dXoX2,..., ad£ X2}

(

= span i

1 0 0 •• 0 0 ... ... 0

0 1 0 •• 0 0 ... ... 0

Co 0 1 •. I

Cni-l
:

•

•. 1
:

0 0 1 ••. •

lo •
0 1 "'•

i

: • '. : "•• *•. 0

Vn3-1 0 ... •• 0 0 0 1

The columns are linearly independent vector fields for each z 6 U. Therefore the system is
completely controllable. n

Remark. It could have proven directly that the original system is completely controllable
by defining Ato be the span of the columns of the nonsingular matrix Min equation (3.9).

3.1.3 Multiple-input, Single-generator Chained Form Systems

The above results can begeneralized to (m + l)-input nonholonomic systems.

Proposition 20 (Converting to m-chain, Single-generator Chained Form)
Consider the drift-free nonholonomic system

x = g0{x)u0 + •••+ gm(x)ut (3.10)

with smooth, linearly independent input vector fields gj. There exists afeedback transfor
mation on some open set U C Rn

z = $(x)

u = P(x)v



that transforms the system (3.10) into m-chain, single-generator chained form

Zq=V0 i1zo = Vx zo2 = v2 •• z0 = Vm

z1 = ^oyo i? = 4vo zl zs z?v0

z1 = z1 1*>0

«.

;

4.-1*>0

':
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(3.11)

t/ f/iere ero'sfc a ftosis /0,... , fm for A0 := spon{^0)• •• ,gm} that has the form

d vU ,f/ v d

»=2 C7X*

5^c/i J/tat tfie distributions

Gj = span{ad}0/1,...,ad,/o/m:0<i<j} 0 < j < n - 1

have constant dimension on U, are all involutive, andGn-\ has dimension n —1 on U.

The proof follows the same method as in the proof of Theorem 18.

Finding the coordinate transformation to the (m + l)-input chained form uses the

same method as for the three-input case. We first find m + 1 smooth functions ho,... ,hm

and use the following formula:

4 = ho zi = U)lhx z2 = U}lh2 ... if = U}-hm

<-, = Lfohi : :

4, = hx z2zn2-l = LfM •

. < == h2 Znro-1
y*n
*nm

=

Then the m + 1 chained form inputs are set to be

Vi := i« 0 < t < m .

(3.12)
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Proposition 21 (Controllability of m-chain, Single-generator Chained Form Sys

tems) The (m+1)-input, m-chain, single-generator chained form system in equation (3.11),
where zelfcK" and n = m + 1+ Y%Li njt & completely controllable.

The proof follows the samemethod as in the proof of Theorem 19.

3.2 Conversion to Extended Goursat Normal Form

In this section, a method is presented that only uses the constraints on the system

to transform the kinematics of a mobile robot into extended Goursat normal form. The

constraints can be written as a* = 0, wherethe a* areone-forms on the robot's configuration

space. In the previous section, nonholonomic systems were considered not from the point

of view of their constraints, but rather from the point of view of a control system with the

allowable motions in the span of the input vector fields. Sufficient conditions in terms of

the vector fields were given for converting multiple-input control systems to chained form.

The conditions presented in this section, however, are necessary and sufficient.

The dual to the chained form, in the sense of one-forms, is the Goursat normal

form. Although the mathematics literature abounds with the theory of exterior differential

systems (see [15, 25, 87] as a survey), only recently have there been attempts to apply this

machinery to solve general control problems in steering nonholonomic systems.

Murray [52] first described the connection between the chained form and the Gour

sat normal form. Tilbury et al. [76] applied these results to showhow to convert the system

of a car with N trailers, a two-input control system or codimension two Pfaffian system,

into Goursat normal form. The calculations in this context were simplified by the use of a

coordinatizationof the state space introduced by S0rdalen in [68].

In fact, the techniques of Sordalen are a way of systematically converting mobile

robot systems of Ar trailers into two-chained form by noticing that the trajectory of the

(x, y) position of the last trailer determines the evolution of all the state variables of the

system. Tilbury et al. [78] alsouse this technique for transforming the kinematic model of a

multiple-steering, multiple-trailer mobile robot system to multiple-input chained form. The

physical intuition about the system is used to identify the states that determine all of the

trajectories of the system. These states become the bottoms of the chains of integrators in
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the chained form (3.11)

and the rest of the coordinate transformation is found through differentiation

P.
-fr- 1< j < m, 0 < i < nj - 1 . (3.13)

z,

In related work by Fliess et al. [23, 64], the idea that certain variables determine

the entire state of the system has been formalized in a more general setting, and these

system variables are referred to as flat outputs. The formal definition of flatness is given

in the language of differential algebra and will not be discussed here. Informally [64], a

set of outputs y = h(x, u) with x € Rn and u,y € Rm is said to be (differentially) flat for

the meromorphic1 system x = f(x, u) if all of the system variables (states and inputs) are
differentiable functions of the outputs y, i.e., x and u are meromorphic functions of the

outputs y and finitely many of their derivatives. Intuitively, the flat outputs are outputs

with respect to which thesystem has no zero dynamics in thesense ofnonlinear systems [28].

A system is called differentially flat if a set of flat outputs can be found. Moreover, there

may be many choices for the flat, or linearizing, outputs. The multiple-input chained

form of (3.11) is differentially flat with flat outputs zJJ, *ni,... , z™m, although chained form

systems with more than one generator are not, in general, flat.

In this section tools from exterior differential systems (refer to Section 2.2) are

used to convert Pfaffian systems of codimension greater than two into extended Goursat

normal form. Recall that a Pfaffian system of k one-forms (constraints) on a state space Rn

is said to have codimension n —k. We refer to Theorem 16 from Section 2.2, which states

the necessary and sufficient conditions for the existence of a coordinate transformation to

extended Goursatnormal form. If onecannot constructivelyfind these coordinates,however,

the theorem is not useful for nonholonomicmotion planning since the steering algorithms use

the transformed coordinates. A constructive algorithm for finding the extended Goursat

normal form coordinates is proposed in this section and modified in Section 5.4, in the

context of an example, to include the method of partial prolongations.

If the constraints of the Pfaffian system

J = {*{,<*{,...,u'n. :j = l,...,m} (3.14)

1The proof of flatness in [64] requires that the space for x be a field, not a ring, which can only be
guaranteed if /(z, u) is a meromorphic function.
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satisfy the extended Goursat congruences

dw{ = 7rAu;j+1 modJ(n'-fc) , Jfc = l,... ,n3-l

duJn. ^ 0 mod/ (3.15)

for j = 1,... , m, then, by Theorem 16, there exist coordinates for the extended Goursat

normal form

I = {dzi. - zJn._xdz°0, ...,dz(- z30dz00 : j = 1,... ,m} . (3.16)

In this section, a purely algebraic algorithm is presented that finds the coordinates. The

algorithm is similar to the one used in [24] for linearization to Brunovsky normal form.

For codimension two systems, or systemswithonly one tower, I = {w\, lj\ ,... ,wTO }

with rii+ 2 = n, the transformation is straightforward: the generator coordinate, 2° and the

coordinate for the bottom of the tower, zni are found from the solution to Pfaff's problem

(Theorem 11, Section 2.2), then the restof the coordinates are found through differentiation

by equation (3.13). This is summarized in Algorithm 1 from Section 2.2 and presented in

detail in [76].

The difficulty with having more than one tower is that the constraints must be

modified to decouple the towers so that the solution to Pfaff's problem can be used to

find the coordinates for each tower. The following discussion is restricted to the case of

the first tower being the longest tower so that if a 7r is found that satisfies the extended

Goursat congruences, an integrable nf can be found that satisfies these congruences byusing
Lemma 17 from Section 2.2. For the case nx = n2, or when at least two towers have the

longest length, if a tt is found that satisfies the extended Goursat congruences, we may not
be able to construct an integrable it'. There is no restriction on the lengths n2, n3, ..., nro.

Algorithm 2 (Conversion to Extended Goursat Normal Form)

Step 1 For the Pfaffian system

I = {a°,a\...,an—-2} (3.17)

on Rn, compute the derived flag

/(°) = 7 = {a\a\...,an-m-2}

/<*> = {A € J(i-1): d\ =0 mod J<i"1>}
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for i = 1,... ,N, where N is the step in which this procedure terminates, i.e., HN+V =
I{N). The one-forms a% come from the kinematic constraints of the system.

Step 2 Construct m towers (3.14) using an integrable k such that the Goursat congru
ences (3.15) are satisfied.

Step 3 From the Goursat congruence

du\ = nAul mod J(n,_1) ,

the rank ofu>\ is one since du\ Au\ ^ 0 and (dw\)2 Awj = 0. Therefore, use the
solution to Pfaff's problem (Theorem 11) to compute the coordinates for the first tower
of the normal form as follows:

(i) Define dfx := n. This satisfies the first Pfaff equation

du\ Au\ Adfx = 0 and u\Adfx^0.

Find a function f2 satisfying the second Pfaff equation

u\ Adfx Adf2=0 and dfxAdf2^0. (3.18)

(ii) Define z° := /i <w the generator coordinate and znj := f2 as the coordinate
corresponding to the bottom of the first chain,

(iii) Since u{ satisfies the Pfaff equation (3.18), it can be modified as

"l = b(q)df2-a(q)dz°o

for some smooth functions a(q) and b(q), where q € Rn is the total state of the

system. b(q) ^ 0 for if it were, du\ = dz^Ada(q) = 0 mod u\, which contradicts
the Goursat congruences (3.15). Therefore, this constraint can be modified as

Define the coordinate 2ni_i to be a(q)/b(q).

(iv) Modify u>} for i = 2,... ,% by using the form constraints in /(»»-»> from the

Goursat congruence equation (3.15) to satisfy

and define z)Xl^ to be cni-i. This is a purely algebraic step that gives all the
coordinates for the first tower.
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Step 4 Compute the coordinates for the second tower as follows:

(i) Modify wj by using the form constraints in J*"*-1) from the Goursat congruence
equation (3.15) to satisfy the equation

Q2 = dh(q) - c(q) dzl , (3.19)

where h{q) and c(q) are smooth functions. The rank ofu>\ is one since du)\ AQ\ ^
0 and(du>2)2Au>2 = 0.

(ii) This satisfies the first Pfaff equation with gt = flf

d£)\ Aq\ Adgx = 0 and wj Adgx ^ 0 .

The second Pfaff equation is satisfied with g2 = h from equation (3.19),

£'i Adgx Adg2 = 0 and dgx Adg2 ^ 0 .

(iii) Define z22 := g2 = h as the coordinate corresponding to the bottom of the second
chain.

(iv) From equation (3.19), define the coordinate c(q) to be zj^_2.

(v) Modify J2 for i = 2,... ,n2 by using the form constraints in J<n*-*> from the
Goursat congruence equation (3.15) to satisfy

*? = <-*i - <-M) dzl

and define <£,_,• to be zl3_{. This is apurely algebraic step that gives the coordi
nates of the second tower.

Step 5 Compute the coordinates for the other towers using the same method as for the
second tower.

The above algorithm constructs coordinates {z{} such that

I = {ul,... ,u>3nj : j = l,... ,m}

= {<*< " 4,-1 dzl, •••, dz\ - Adzl --idzZ- zZ-x dzl •••, dz? - z? dz°0},

which is the dual of the multiple-input, single-generator chained form in equation (3.11).
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In the preceding algorithm, there is flexibility in the choice of wj. More precisely,
an "integrating factor", 7(g), needs to be chosen such that

7(9) S4 =dz'n. - z'n._x dz° • (3.20)

In practice, it is difficult to choose y(q) appropriately to solve for the z^ coordinate.
Therefore, a method using partial prolongations of the exterior differential system that
more readily yields extended Goursat normal form coordinates is developed Section 5.4 in
the context of an example. The basic idea is to use partial prolongations to add more one-
forms to some of the towers in the system so that it is easier to find an integrating factor
for equation (3.20) and to solve for the coordinates. These one-forms are the constraints of

"virtual axles" strategically added onto the multiple-steering, multiple-trailer system. The
example considered only has two towers in its derived flag, but the procedure developed in
Section 5.4 easily extends to general m tower systems.

In summary, this chapter has presented two methods for transforming amultiple-
inputdrift-free nonholonomic systeminto chained form and extended Goursat normal form.

The first method gave sufficient conditions for transforming the kinematic system to a
multiple-chain, single-generator chained form using a coordinate transformation and state

feedback. In this special form, the system was shown to be completely controllable. The

second method presented an algorithm with necessary and sufficient conditions to find the

extended Goursat normal form coordinates. The algorithm used the fact that the one-form

tc that satisfies the extended Goursat congruences is integrable. Once the system is in

extended Goursat normal form or multiple-input chained form, there are many methods
available for steering and stabilization of such systems, which are the topics presented in
the next chapter.



49

Chapter 4

Steering and Stabilization

In this chapter, different open-loop methods for steering wheeled nonholonomic

systems inchained form between two given configurations are presented. The first algorithm
uses sinusoidal control inputs; steering one level in the chains at a time in a step-by-step
fashion, or steering all levels in the chains at once. The steering method using polynomial
control inputs was presented in detail in [57, 78, 76] and will be briefly mentioned here.

The method of steering nonholonomic systems using piecewise constant inputs was first
introduced in [49] as multirate digital control. The basic idea behind each of the steering
methods is to parameterize the input space with at least as many parameters as there

are states, integrate the chained form equations symbolically, and then solve for the input
parameters in terms of the desired initial and final states.

Asmentioned in the introductory chapter, we make no attempt to find the "opti
mal" control inputs since the criteria for optimality may change with the different mobile

robot systems considered. We have found, however, that although all of the steering algo
rithms will find apath between any two given configurations, the resulting trajectories look
"nicer" for some methods than for others. Using the step-by-step sinusoidal method is not
recommended in practice, but only included here to show the ease ofsteering at each level
in the chained form. The all-at-once sinusoidal method is best used for trajectories that
have areversal, such as parallel parking. Polynomial and piecewise constant control inputs
work better for trajectories without reversals.

The control problem considered in this chapter is stated as follows: given asystem
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of equations in extended Goursat normal form

/ = {<*< - <-. dzl <<-, - <_2 dzl, ...,dzl- 4 dzl

-.*£.- C-i **. *£_ - C„-s *!, ••• , if " *T *!}. (4.1)

or chained form

zl = v0 z1zo = Vl Z2z0 = v2 z0
= vm

ij = zo*>o i? = zoVo Zl = ZoVo

*A, ss <-, v0

«. = Zn2-1*>0

irn

•

Cm-i«o

(4.2)

a desired initial state f° := (z°,z1,...,zm)° and final state (' := (z°,z1,... ,zm)f, and a
time T > 0, find inputs {vi(t) : t G[0,T], 0 < i < m} that will steer the system from the
initial state to the final state in [0,T].

Various approaches for feedback stabilization of chained form systems are also

briefly mentioned. Although most of the work in this area has concentrated on two-input
systems, the decoupled form ofthe multiple-input chained form system allows thetechniques
to be generalized.

4.1 Steering with Sinusoidal Inputs

In this section, two algorithms are presented for steering a system in chained form

from a given initial configuration to a desired final configuration. Both algorithms use

sinusoidal inputs, but the first algorithm steers the system by steering one level in the

chained form at a time, and the second algorithm steers all of the states in the chained

form at the same time. Steering chained form systems with sinusoids was introduced by

Murray and Sastry [55]. We have found steering with the step-by-step sinusoidal method

not to be practical in the sense that it produces trajectories with more reversals than axe

minimally needed, and recommend replacing it by the all-at-once sinusoidal method or one

of the other two methods presented in this chapter.

As was stated in the introductory chapter, using sinusoids to steer chained form

systems is optimalin the sense that the "inputeffort" (maximuminput value) is minimized.



51

Consider the optimal control problem for the chained form system

i = B(S)v

where ^:RnHRn,i;;RH HLm+1, and B(£): Rn «-• R»x("»+1) that is written as

minimize \ jj \v\2dt
subject to f (0) = {° and £(1) = £' .

The solution to this problem is periodic: sinusoidal for n = 3 and elliptic for n > 3. For

example, if we consider the system in R3

£i =Vo f2 = Vx

6 = &i>o

with f (0) = £° and f (1) = £f, the optimal control problembecomes

minimize \ /„* (£j +£j)dt
subject to f (0) = f° , f (1) = (f , and & - 6«o = 0 .

By the Calculus of Variations, the Lagrangian is

J«.d-5(«? +g)+A(6-«i).
Solving the Euler-Lagrange equation

±9L_dL_Q
dt d£ d£ ~~

gives

U\ Jo a|M mAU
where A is a constant skew-symmetric matrix. Solving for v = (v0, Vx) gives

v(t) = eA*u(0) .

By Rodrigues' formula, with A = \S where 5 is unit skew matrix,

eA5 = I + Ssm\ + S2 (1-cosA) .

This gives

a* \,. t sin At .eAt = cosXtl + —-—A ,
AX
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which shows that the inputs are sinusoids. If the additional assumption is made that t =1,
f° =(0,0,0), and tf =(0,0, a) for some constant a, then A=2irn and eA =I, showing
that the inputs are sinusoids at integrally related frequencies.

The above shows the existence ofsinusoids as inputs to steer systems in chained
form for the case of x GR3 when the cost is the input effort. This does not mean that
sinusoids are the best practical method for steering these systems, as will be seen in the
examples in Chapter 5.

For the first algorithm, consider the system in the chained form (4.2) with the
lengths of the chains such that n{ < ni+i. This step-by-step sinusoidal algorithm exploits
the decoupling of the chains, allowing for simultaneous steering of each level. The main
idea, considering for a moment only the first chain with z1, is that if v0 = a smut and
vx = Pcos£ut, then ij will have a frequency component at £u, z\ will have a frequency
component at (£ - l)w, ..., and ij will have a frequency component at zero. By simple
integration over one period, this yields net movement in z\ while z\,... ,z\_x return to their
previous values. Thus, at the tth step in the algorithm, the states at the Ph level in the
chain are driven to their final positions.

The following algorithm is an extension of the algorithm for two-input systems in
Murray and Sastry [56].

Algorithm 3 (Step-by-step Steering with Sinusoids for Multiple-input Systems)

Step 0 Steer the top-level coordinates, {zl, j = 0,... ,m} by choosing constant values for
t'o, Vx,... , vm on the time interval [0,T):

«o = £(«)'-«)•)
«. = ^((*oV - (*o')°)

Step 1 Steer the coordinates at the first level down by choosing a sinusoid on v0 and out-
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of-phase sinusoids on the other inputs with w= ^ over the time interval [T,2T):

Vq = a sin art

Vx = 0COSUJt

v2 = 7 cos art

vm = vcosut .

Choose a,/?,... ,v such that

MJ'-'ICO = gr

(*r)'-*r(T) = ^r,
ty^ic/i causes the states {z{, j = 1,... ,m} to reach their final values at time IT.

Step k (for k= 2,... ,nm) Steer the coordinates at level k from the top. Ifnt<k< ni+1,
then only chains i + 1,... ,m will be affected. A single frequency sinusoid is used for

the first input, while multiple frequency sinusoids are used for the other inputs with

w= ^ over the time interval \kT, (k + 1)T):

Vo = a sin art

vx = 0

Vi = 0

i>,+i = Ccos fckrt

vm = i/cosfcurt .

Choose C,... ?i> 5«c/i tfia*

(4«)'-4+'(*T) =^T

<*>'-^r> = j£kT'



54

which causes the states {z{, j = i+1,... ,m} to reach their desired final values at
time (k + 1)T.

After each step k, the states closer to the top of the chain than level A; will have
returned to the same values they reached after the previous step (k - 1). The states lower
in the chain than level kwill move as aresult ofthe inputs at step kbysome amount. This
movement is ignored since those states are steered to their desired final values insubsequent
iterations.

Although this method works well, it can be tedious in practice because of the
many steps that are needed. In addition, the trajectories that are generated consist ofmany
segments and do not always follow adirect path between the start and goal configurations.

In [76] an "all-at-once" sinusoidal method was proposed for the two-input case; we
extended it here to multiple-input systems. In this method, only one step is used with all
of the necessary frequencies set in the inputs:

Vo = a0 + axsmut

Vx = 60 + 6iCosurtH K&ni COSUxUt

vm = Vq + V\ cosut + h vnm cosnmu)t . (4.3)

The existence of the parameters a0, ax, b0,... , feni,... ,u0,... , i/nm is stated in the following
proposition, which was proven for single-chain systems in [76]. The main idea of the proof

of the proposition is to symbolically integrate the chained form equations (4.2) with the all-

at-once sinusoidal inputs (4.3) to get f(t) := (z0^)^1^),... ,zm(t)), which are functions

of the initial state and input parameters. If £(T) is evaluated with T = 2ir/uj, all the

sinusoidal functions integrate to 1 or 0. Setting f (T) to be the given final state £f, gives a

set of n polynomials in the n +1 input parameters a0, ai, b0,... ,bni, ..., j/0,..., unm. This

proposition guarantees local existence of solutions to these equations.

Proposition 22 (Steering with All-at-once Sinusoids) Consider the multiple-input

chained system in equation (4-2) with initial and final states such that |f° —£'| < 6 for

some 6 > 0 sufficiently small. Then there exist input parameters a0,ax, b0,... ,bni, ...,

vo, ••• ,Vn„ such that the inputs in equation (4.3) steer the system from the initial to final

state in time T = 2tt/uj.
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Proof. Without loss of generality, consider the case where the number of chains is m = 2.

Let £(t) := (zl(t),zl(t),... ,2n,M,zoW>--- >zn3W) and define the following map for n =

<£:Rn i-> Rn

{a0,b0,... ,bni,Co,... ,Cn2) i-> (f .

Define p(a0,60,... ,6ni,Co,... ,c„a) to be the value of £(T) when the chained form sys
tem (4.2) with m = 2is integrated over [0,T], starting at the given initial state f° withthe
inputs (4.3). We choose ax ^ 0 and show that <j> is a local diffeomorphism.

^ {e»}£a be tlie standard basis for Rn and let e be small. With the input
parameterized by eelt

Vq = e + ax smut v2 = 0 v2 = 0 ,

the chained form equations are integrated and evaluated at T to give

<i>(eex) =? + («T; 0, o(e),... ,o(e); 0, 0(e),... ,o(e)) ,

where o(e) represents terms of linear and higher order in c. For A; = 2,... ,nx + 2 with an
input parameterized by eefc,

t'o = ai sinwt ui = ecos((& - 2)wt) v2 = 0 ,

the chained form equations are integrated and evaluated at T to give

*(<**) = f° +(0;0,... ,0,pfc(e),o(€),...,o(e);0,... ,0)

with

ak~2 T

Pk{€) =(fc-2)!(2")fc-2 ' (4-4)
Similarly, for k= nx +3,... ,nx + n2 +3with an input parameterized by eek,

v0 = ax smut vx = 0 v2 = ecos((j - 2)ut) j = k - nx - 1 ,

the chained form equations are integrated and evaluated at T to give

*(«*) =e + (0;0,... ,0;0,... ,0,p,(€),o(e),...,o(e))
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with p5{e) defined as in (4.4). These nx +n2 +3directional derivatives are linearly indepen
dent, implying that the Jacobian of <j> is nonsingular. Therefore, <f> is alocal diffeomorphism
and the parameters for the inputs (4.3) can be found by selecting avalue for ax and taking
the inverse transformation <i>'1(^f). In practice, the final state isnot within a 6 ball around
the initial state. In this case, the two given states are connected by a finite number of
6 balls, and the above method is applied within each ball. It is not clear how to apply
this method when the transformation to chained form has singularities since in the original
coordinates, the parameter 6 may bea function of x. Extending this proof to the case of
m chains is tedious, but straightforward since the chains are decoupled.

Both of the sinusoidal methods require one more parameter than state and this

parameter, a in Algorithm 3 and ax in Proposition 22, is the magnitude of the first input
v0. The maindrawback to this approach is that there will be some interference between the

levels, although not between chains, which requires solving nonlinear algebraic equations
for the input parameters.

4.2 Steering with Polynomial Inputs

In this section, the method of steering multiple-input chained form systems in
equation (4.2) with polynomial inputs is presented. This method was introduced in [76] for
two-input systems and extended to multiple-input systems in [78].

In this method, the first input, v0, is constant over the entire trajectory and the
other inputs are Taylor polynomials

v0 = 1

vx = &o + &i*+--- + 6nitni

v2 = c0 + Ci* + •••+ cn2tn> (4.5)

with the number of parameters on each input chosen to be equal to the number of states

in its chain. The time needed to steer the system is determined from the change in the z°
coordinate,

T= (*„V - (4)°- (4.6)
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L«t £{t) := (zKt)^1^),... ,zm(t)). Integrating the chained form equations (4.2) with
inputs as in (4.5), initial condition f(0) = f°, and evaluating at time T, the parameters
&o, ••• ,bni,Co,... ,c„2,... , i/0,... , vnm can be found in terms of the initial and final states

from setting £(T) = f. Since the chains are decoupled, each chain's parameters can be
independently found from the equations

l\ftt)
Mb(T) + /(^(0),T) =

lK j I tt,)' J

*>o
m\f

(zom)
M„(T) + f(zm(0),T) = (4.7)

I/« (zm Y

The entries of the matrices have the form

_ u -1)! r»>-'
"- (i+j-1)1 '

showing that the matrices are nonsingular for T ^ 0. Equations (4.7) are easily solved for
the parameters &*, ct,... ,v{ by inverting the matrices, which are linear in the parameters.

A word of caution isneeded if by chance equation (4.6) yields a time T = 0. In this

case, this method will not work. This corresponds inamobile robot system to the "parallel-
parking'5 maneuver. Aneasy way to remedy this situation is to pick an intermediate point,
with zl not equal to the given (2J)0, (z$)f, and then plan the path in two pieces. For
the parallel-parking trajectory, the intermediate point is chosen to be that point where the
vehicle would change directions to start backing up.

4.3 Steering with Piecewise Constant Inputs

In this section, a piecewise constant steering method is presented that steers the

chained form system in equation (4.2). The method of steering nonholonomic systems
using multirate digital control was first introduced by Monaco and Normand-Cyrot [49].
If the system can be discretized exactly, this method will generate exact point-to-point
trajectories. For our purposes, these controls are interpreted as piecewise constant inputs.
An algorithm using piecewise constant inputs for steering mobile robots was given in [75] in
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the context of the fire truck example, and in [78] for steering amultiple-steering, multiple-
trailer vehicle.

As in the method with polynomial inputs, the first input v0 in equation (4.2) is
chosen to be constant over the entire trajectory and the other m inputs are parameterized.
Having vQ constant over the whole trajectory guarantees the linearity of the equations
that need to be solved for the other input parameters. The other inputs are chosen to be
piecewise constant. For the first input vu for example, the time interval is divided into

nx +1 intervals

0<ti<---<*ni+i

and vx is set to a constant value over each [tk,tk+x). To make sure that the resulting
equations have asolution, each input should switch constant values at least as many times as
there are states in its chain. For this discussion, nt- is assumed to be <ni+1 in equation (4.2)
so that the mth input will have the largest number of switches.

Let the time for the trajectory be denoted as T. The first input is chosen to be
constant over the entire trajectory:

«&(*) = «? for i 6 [0,21,

where vj? is chosen such that the first chained form state *J will go from its initial to its
final position over the time period, i.e.,

»f=f (M)' - (4Y) • (4.8)

The other inputs are chosen to be piecewise constant as follows. Let the switching times be
chosen as

o= tj<*j<...<tii+1 = r l<j<m.

There are n,+1switching times for each input vu... ,vm since there are n,- + 1states in
the j* chain. Many different methods are available for choosing these times; we choose
them so that for the mth input (with the most switching times) the holding times between
switches will be equal. The switching times for the other inputs are then chosen to be some

subset of the switching times for the mih input. Therefore, the inputs are of the form

»i(') = t& hi te[tk,tk+l) l<j<m.
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These inputs are substituted into equation (4.2) and the equations are integrated
using asymbolic manipulation software package. The final state can be expressed in terms
of the inputs and the initial state as

zo

z3zi

z3L "n,

(T) = Mj(v0D,z3(0))

vD

J3,l

L 3,nj J

where the matrices M, are assured to be nonsingular whenever the first input v? is nonzero
[49]. As in steering with polynomial inputs, ifthe first input is zero from equation (4.8),
then a slight modification of this method is necessary. One can either add a piecewise
constant input to v0 using at least two time periods, or an intermediate point can bechosen
and the path can be planned as two separate trajectories.

4.4 Stabilization of Multiple-input Chained Form Systems

In this section, some methods from the literature for stabilization of chained form
systems are briefy discussed. These systems are open-loop controllable, as shown in the

previous sections by the various point-to-point steering algorithms, but are not stabilizable

to a point by pure smooth static-state feedback (see Brockett [14]). The reason for this is
that chained form systems x=£™0g3(x)uj fail the necessary condition that the mapping

7 : Rn x RT Rn

3=0

be onto an open set containing the origin. This mapping for chained form systems fails
to map small regions in Rn x Rm into small regions about the origin in Rn. Bearing this
result in mind, various researchers have tried to stabilize such systems by time-varying or
non-smooth state feedback.

Many of the algorithms for point stabilization require the system to be in chained
form. For two-input systems, a class of smooth, time-varying control laws for local and
global asymptotic stabilization to a point was presented by Teel et al. [74]. This method
consists of taking the chained form system and converting it into power form, which has
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2/o = v0

2/i = vx

zi = 2/oVx

z2 = 2^°)2ui
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in"2 = {n~2ySyo)n~2vi '
It was shown that the following control laws locally asymptotically stabilize the origin of
the power form system:

dMv0 = -y0 + I2L^{zk) ) (cost - smt)

n-2

vi = -J/i +^ cfc2fc cos(fct)
fc=l

for constants ck < 0.

This procedure was extended by Walsh and Bushnell [85] to locally asymptotically
stabilize the origin of (m + l)-input, m-chain, single-generator chained form systems. As
above, the chained form system is first converted to power form

2/j = Vj for 0 < j < m

zk = tf(yo)kvi for 1<^<«i , 0<j <m,

where z3k is the kth level state in chain j. The origin {y, z) =(0,0) is locally asymptotically
stable under the action of the controls

/ m n, \

vo = -yo + I£ X>j)2 I (cos t - sin t)

n'

Vj = -yi +^cjzjcos(A:0 for l<j<m,
fc=i

where each c{ < 0. This reference also uses the fire truck as an example to illustrate the
proposed stabilizing control law.

In Walsh et al [83], atechnique for stabilizingnonholonomic systems to trajectories
is presented. An explicit control law is constructed to locally exponentially stabilize the
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system to a desired trajectory, which has been generated by an open-loop path planner. The

method is to linearize the system about the given trajectory, check to see if the resulting

time-varying linear system is uniformly completely controllable, and if so, construct a linear

time-varying feedback control law to locally stabilize the system about the trajectory.

In Murray et al. [58], a non-smooth, time-varying feedback control law achieving

local exponential convergence to a neighborhood of the origin for two-input chained form

systems was presented.

Sordalen and Egeland [69] presenta method of globallystabilizing about the origin

with exponential convergence for a two-input, chained form system. Here, the feedback

control laws were developed for the system in chained form instead of power form.

Pomet [61] presents a constructive approach for deriving a time-varying smooth

feedback control law that can be applied to globally uniformly asymptotically stabilizing

chained form systems to the origin.

In summary, different methods for steering wheeled nonholonomic systems in

chained form and various approaches for feedback stabilization were described. The steer

ing method using sinusoids in a step-by-step manner was used to show the construction of

chained form systems, but is not advised in practice. The "all-at-once" sinusoidal method

is easier to use, and works well for paths that require at least one reversal. Polynomial

and piecewise constant control inputs are recommended for paths without reversals. If the

path does have a reversal, as in the parallel parking maneuver, one can use polynomial or

piecewise constant inputs if the path is planned in two parts: first for the forward direction,

then for the reverse direction.
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Examples of Wheeled

Nonholonomic Systems
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In this chapter, the theory discussed in earlier chapters is illustrated with exam
ples ofwheeled nonholonomic systems. Two mobile robot examples are considered in detail:
the fire truck, which has three axles and three inputs (steering on the front and back axles
plus driving), and an "extended fire truck" that has five axles and three inputs. The intro
duction of the fire truck system allowed us to generalize many of the ideas developed for
two-input nonholonomic systems as presented by Murray and Sastry [57], where atwo-axle
car was converted to chained form, and by Sordalen [68], where a car pulling N trailers
was converted to chained form. Considering the more general multiple-input wheeled non
holonomic systems also prompted us to look into the theory of exterior differential systems,
extending the ideas of Tilbury et al. [76], where a car pulling N trailers was converted to
Goursat normal form, and dualizing the ideas presented in Tilbury et al. [78], where agen
eral multiple-steering, multiple-trailer system was converted to chained form by the method
of dynamic state feedback.

Our investigation of the fire truck system has been fundamental to understanding
multiple-steering, multiple-trailer nonholonomic systems, which may beused in practice in
manufacturing plants, nuclear power plants, or any area unsafe for human operators.

The outline of this chapter is as follows. In Section 5.1, the kinematic equations
of the fire truck system are converted to chained form. In Section 5.2, the kinematics of

the fire truck are converted to extended Goursat normal form, showing the differences and
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^V. '^rX

<x2>y2)J>

Figure 5.1: The configuration of the fire truck.

similaritiesbetween the two dual conversion methods. In Section 5.3, numerical simulation

results of the fire truck system are presented, demonstrating the advantage of having the
extra steering wheel. In Section 5.4, a five-axle, two-steering mobile robot is converted

to extended Goursat normal form. In Section 5.5, numerical simulation results of this

"extended fire truck" are presented. In Section 5.6, converting mobile robots configured
with off-axle, or kingpin, hitching to chained form or Goursat normal form is studied.

5.1 Converting the Fire Truck to Chained Form

In this section, the kinematic model of a fire truck mobile robot is converted to

chained form using the results stated in Section 3.1. Fire trucks are used to carry aerial
ladders, tools, and equipment and have the main purpose of rescue and ventilation. They
are mainly used by fire departments in large cities in the United States and have great
maneuverability through narrow city streets due to the extra steering on the third axle, or
tiller.

5.1.1 The Fire Ttuck System

The fire truck isanexample ofa three-input nonholonomic system. It ismathemat
ically modeled as two planar rigid bodies supported by three axles. Assuming axle-to-axle
hitching, the support ofthe trailer isover the center ofthe rear axle ofthe truck. The first
and third axles are allowed to pivot, while the middle axle is rigidly fixed to the truck's
body. The wheels are assumed to roll but not slip, thus giving linear velocity constraints.
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The derivation of the kinematic equations for the fire truck refers to Figure 5.1,
where the two rigid bodies are emphasized. The states ofthe kinematic model, all functions
of time, are chosen as follows: (xx,yx) is the Cartesian location of the center of the rear

axle of the truck, fa is the steering angle of the front wheels with respect to the truck's
body, and 6X is the orientation of the truck's body with respect to the horizontal axisof the

inertial frame. The states (x2,y2, fa,02) are described similarly for the trailer, except that
<j>2 is the angle of the rear wheels with respect to the trailer's body.

Let the distance between the front and rear axles of the truck be L0, and the
distance between the centers ofthe rear axles ofthe truck and trailer be Lx. This gives the
holonomic constraints

%o = Xx + L0cosOx yo = Vi + L0sm$x

x2= xx— Lxcos62 y2= yx-Lxsin^2 •

Thus, the six coordinates x := (xuyufa,0x,fa,62) are sufficient to represent the positions
and orientations of the truck, trailer, and wheels.

For a mechanical system with wheels rolling and turning on a surface, the non-

slipping constraint states that the velocity of a body in the direction perpendicular to each

wheel must be zero. In terms of coordinates, for a wheel centered at location (x, y) and at
an angle p with respect to the horizontal axis of the fixed frame, the constraint is written

as

0 = vxsin <p —vy cos (p .

In order to simplify the kinematic model of the fire truck, each pair of wheels is

modeled as a singlewheel centered at the midpoint of the axle1. Requiring that the wheels

do not slip gives the three linear velocity constraints

0 = xx sin(^! + (j>x) - yi cos(0! + fa) - 0i£o cos fa

0 = ix sin 0i — ifx cos^i

0 = xx sm(62 + fa)-yx cos(82 + fa) + 02Lx cos fa .

*It may be shown (see the appendix) that in fact the two wheels have differentanglesand their normals
all intersect at a single point. If, for example, <j>\ and <f>\ are the angles of the front wheels of the truck, a
holonomic constraint can be derived that eliminates one of these two variables. Thus, only one of the wheel
angles needs to be in the state of the system.
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These constraints can be expressed more compactly as u{(x) •x = 0, where the covectors
lj*(x) are written in coordinates in R6 as

ujx{x) = [ sm(6x + fa) -cos^-f-^) 0 -L0cosfa 0 0
u>2(x) = [ sin^ -cos$x 0 0 0 0 ] (5.1)
w3(x) = [ sin(02 + <fe) -cos(02 + 02) 0 0 0 Lxcosfa ].

The corresponding codistribution is fl(x) = span{u1(x),u2(x),u3(x)}. Since fi
has dimension three and the state space isofdimension six,a three-dimensional distribution

A(x) := span{g0(x),gx(x),g2(x)} can be found such that lj{(x) •gj(x) = 0, for all w»* e
Q, p, € A. A simple calculation will show that the following vector fields form a basis for
A:

/

go =

COS#!

sin0!

0

^tan&
0

\ - fj- sec fa sin(92 - 0\ + 02) )

The nonholonomic constraints u\x)•x= 0for all u>»' € fi are equivalent to having
x € A, i.e., i is a linear combination ofvector fields in A with functions ofx as coefficients.
Therefore the kinematic model of the fire truck as a control system with three inputs can
be written as

\

01 =

/0\

0

1

0

0

x = go(x)uo + gx(x)ux + g2(x)u2 .

92 =

/o\

0

0

0

1

]

(5.2)

(5.3)

The basis {^0, Pi, g2} for Ais chosen so that the input u0 corresponds to the forward driving
velocity of the truck, Ui corresponds to the steering velocity of the front wheels of the truck
and u2 corresponds to the steering velocity of the rear wheels of the trailer.

5.1.2 Converting to Chained Form

Theorem 18 in Section 3.1.1 is now used to find the chained form equations for the
fire truck system. The vector fields f0, fx, f2, which will be shown to satisfy the conditions



of the proposition, are

1 \

tan^j

0

jTj-sec#i tan^j

0

\ -j^sec^sec&sin^-fli +flj) J

where f0 =sec0^0 with g0 as in equation (5.2). These can be considered as the original
input vector fields after the input transformation «0 =«0cos6y In this representation,
three of the states are controlled directly: Xl, fa, fa, so their velocities are the inputs.

The distributions G{ in equation (3.5) are now constructed, and their involutivity
will be checked. By way of notation, define /3 := ad^, /4 := ad/o/2 and /5 := ad^/j.
Recall that x = (xu yx, fa, Ox, fa, 02).

G0 = span{/i,/2}

Gx = span{fx,adfofx,f2,SidfJ2}

G2 = span^ad/J^ad^/^ad^ad^}

= span^ad^ad2,,/!,/^,,/,} =span{fx, f3, f5, f2, f4}

/o\

0

1

0

0

/o\

0

0

0

1

/o =

f/o\

0

1

0

0

i v o y

/o\

0

0

0

1

\oy

= span<

I o \

0

0

^szc2 faszcOx
0

0

/ 0

0

0

0

0

\ ± cos(02 - Ox) sec2 fa secOx J t

Lo

/i = /2 =

I 0

•^sec^fasec^Ox
0

0

0

V I^cosOk +^sec^secfosec3^ ;
M

66

(5.4)

The distribution G2 has dimension n - 1 = 5 on U = {x : 0X - 02, fa, fa, Ox #
±f}cR6 since the five vector fields that define G2 along with f0 are linearly independent,
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i.e.,

det[/o fx f2 h U h] = 777- cos(0! - 02) sec4 fasec2 fasec5 Ox .

It may also be verified that G0, Gx and G2 are involutive on U and that the functions

h0 = Xx, hx = yx and h2 = 02 satisfy

dh0±Gj j = 0,1,2

rf/lj X Gj j = 0,1

dLfohx -L G0

dh2 ± G0 ,

which is equation (3.7) from Section 3.1.1 with n = 6, nx = 2, n2 = 1, and G2 = G3 = G4 =

£5 = Grn_!. Note that there is a lack of uniqueness in the h functions.

Remark. In the open set U C R6, the fire truck is not in the jack-knife configuration, that

is, the wheels are less than ir/2 relative to their respective bodies, and the truck's body

angle is not ±ir/2. Sometimes using higher-order Lie brackets allows the spanning of the
wholespace R6, including the singularities. Out of all the distributions with at most second

order Lie brackets, the distribution

span{/!, ad/Ji, ad^A, /2, adJ0/2}

was found to span U' = {x:fa, fa, Ox # ±f} C R6, which eliminates the singularity at the
jack-knife configuration but still requires 0X ^ ±n/2. Allowing third order Lie brackets, the
distributions

span{/1, ad/o/1? adj0/i, adj^, f2}

span{/1? ad/o/!, ad^, f2, &d2fJ2}

both span U', and

span{/!, ad/o/!, ad^/j, f2, ad/o/2}

spans U.

The coordinate transformation (f,C,»7) = $(x) from equation (3.8) is computed



as follows:

fo = h0 = xx

Co = L2fo hx = — tanfa sec3 Ox
^>o

Ci= Lfohx =tan^

C2 = hx = yx

770 = Lfoh2 = -— sin(<p2 - Ox + 02) sec<£2 sec^

rjx = /i2 = 02 .
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(5.5)

This is avalid coordinate transformation since the matrix ff is nonsingular.
The derivatives of the chained form coordinates are taken with respect to time and

substituted into xfrom x=/0w0 +fxux +/2iz2 with f{ as in equation (5.4). This gives the
following equations showing the required state feedback to transform the system equations
into the two-chain, single-generator chained form:

f0 = «o = v0
3 1

Co = J2 tan2 fa tan 0X sec4 0X u0 + -- sec2 fa sec3 0X «i = u,
•^o i^o

Ci = 7- tan <^ sec3 0! w0 = Co*>0
•^0

C2 = tamOx Uo = QxVo

Vo = y^l cos(^2 + ^2) tan &sec fa sec3 02 u0

+p-cos(^2 - 02 +02) sin(^2 - Ox + 02) sec2 <£2 sec2 02 u0

--=- cos(02 - Ox) sec2 <£2 sec02 u2 = v2
•^1

^1 = - £- sin(02 - #i +02) sec<£2 sec02 u0 = t70v0 . (5.6)

Remark. Using the fire truck system as a reference, we can infer characteristics of chained
form systems. The generating input, v0 is related to the driving velocity of the system by
tx0 = secOxv0. For the fire truck, the first chain corresponds to the first two axles (one
steerable, one passive) and the second chain corresponds to the third steerable axle. In
general multiple-steering, multiple-trailer systems, the single-generator chained form can
be applied with the number of chains corresponding to the number of steerable axles in
the system. The paper by Tilbury et al. [78] shows that such a composite system can be
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converted into multiple-input chained form; but that, in general, dynamic state feedback is

needed to achieve the transformation. This will be discussed in the context ofan example
in Section 5.4.

5.2 Converting the Fire Truck to Extended Goursat Nor

mal Form

In this section, Algorithm 2 described in Section 3.2 is used to transform the

kinematic equation of a three-input wheeled nonholonomic system into extended Goursat

normal form. The example of the fire truck, as shown in Figure 5.1, is used again since it
provides a simple illustration.

With thestate space parameterized by x = (x2, y2, fa, 0X, fa, 02) as in the previous
section, the three nonholonomic linear velocity constraints for the fire truck can be written

as one-forms as follows (refer to equation (5.1)):

q° = sm(0x +fa)dxx-cos(0x +fa)dyx-L0 cos fadOx
a1 = sin Oxdxx —cos 91dy1

a2 = sin(02 + fa)dxx - cos(02 + fa)dyx + Lx cos fad02 .

The Pfaffian system associated with the fire truck can therefore be written as

I = {a°,a\a2}.

The first step in Algorithm 2is to compute the derived fag for this system. First,
the basis of the constraints is completed with

a

a4

a5

= cosOxdxx + s'mQxdyx

= dfa

= dfa .

The exterior derivatives of a0, a1, and c? are then computed, writing themin terms of the
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basis of two-forms given by {a* Aa3 : 0 < i < j < 5}:

» o sm(fa+0x) , ,
da = : a • 1 , /-, >2 , x • „ a3Aa5 mod J (5.7)cos<px cos0j sin fa + (1 - sin2 pj) sin0X v '

^ 0 mod/

da1 = _£££ZiQ°Aa5 modo1 (5.8)
= 0 mod/

da2 = secfacos(0x-O2) a4 Aa5 mod/ (5.9)

?£ 0 mod / .

From this representation, a1 is the only constraint that drops to the /(1) level in the derived

fag:

/ = /«» = {a0, a1, a2}

/(1> = {a1}

/(2) = {0}.

The second step of Algorithm 2 constructs two towers by finding an integrable 7r
to satisfy the Goursat congruences (3.15). Choose

•;} = -1uk = a

The Goursat congruence for this one-form isdu)\ = tt AwJ mod u\. FVom equation (5.8), if

jr = a5 ^0 mod/

u>2 = y-secfaa0 ,

then a\j\ = f A u)\ mod cj}. On the other hand, if n is chosen as

7r: = cos0if + sin0!U/J = dxx ,

it is integrable and dw\ = ttAwJ mod u\. Since there are only three constraints in /, there
are two towers: one with rij = 2 and the other with n2 = 1,

J(2> = {0}
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where lj2 := a2.

The third step of Algorithm 2 solves the coordinate transformation for the first

tower by using the solution to Pfaff's problem (see Theorem 11 in Section 2.2). The rank

of the one-form uj\ is one, since

du\ = cos 0xd0x A dxx + sinOxdOx Adyx

du\ Au)\ = dOx Adyx Adxx ^ 0

and

duj\ A duj\ Auj\ = (cosOxdOx Adxx + sinOxdOx Adyx) AdOx Adyx Adxx = 0 .

With a rank of one, there exists a function fx satisfying

du\ Auj{ Adfx =0 and w}Ad/i^0.

Clearly, dfx = dxx = n satisfies this equation.

Let the coordinate zj be defined from ir as zj = Si. A function /2 satisfyingPfaff's

equation is

uj\ Adfx Adf2 = 0 and rf/i A df2 ^ 0 , (5.10)

noting that

u;J A 7r = cos(^! + 0x)dxx Adyx .

Therefore, let f2 = yx and set the last coordinate in the first chain to be z\ = f2 = yx.

The solution to Pfaff's problem gives u\ An Adf2 = 0, which meansu\ is a linear

combination of tt and df2,

u\ = —cos0xdf2 + sm0xTt.

We would like to rescale u)\ to be of the form

G)\ = dz\ —z[dzQ .

Therefore, let

u~}\ = -sec^iw} = dzl ~~ tan^idzj ,



from which the coefficient ofdzj is set to z\ = tan02.
The one-form u\ is next modified to be of the form

0} = dz\-zldz«.

To do this, let u\ be a linear combination ofu}\ and a;}

q\ = - sec2 Qxu\ - -— sec2 Bx sec fa cosifa +Qx)Q\
Lx

= - sec2 Ox j- secfa(sin(fa +Ox)dxx - cos(fa +01)dyl

-Lx cosfadOx) - j-sec20xsecfacos(fa +Ox)(dyx - tanOxdxx)

= sec2 OxdOx - j- sec3 0X tan <M*i
•^1
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and set the coefficient of dxx = dz° to be zj = -^sec^tan^. This completes the
coordinate transformation for the first tower.

The fourth step in Algorithm 2 finds a coordinate transformation for the second
tower. This does not involve a Goursat congruence equation since there is only a single
one-form in the second tower. First, the rank ofw2 := a2 is computed to be one as follows:

du;2 = cos(fa +O2)(d02 Adxx +dfa Adxx) +sm{fa +02)(dO2 Adyx +dfa Adyx)
+LX sin fadfa A d02

du:2 Awj = - cos2(c>2 +0i)(d02 Adxx Adyx +dfa Adxx Adyx)

-Lx cos fa cos(^2 +02)dfa Adxx Ad02 - Lx sin fa cos(^2 +02)dfa Ad02 Adyx
-Lx cos fa sin(02 +02)dfa Adyx Ad02 +L,sin fa sin(<£2 +02)dfa Ad02 Adxt

+sin2(<£2 +02)(dO2 Adyx Adxx + dfa Adyt Adxx) ^0

and

du)\ Adu)\Au\ = 0 .

With a rank of one, there exists a function fx satisfying

dw\ AuJAdgx = 0 and u)\ Adgx # 0 .

If gx is chosen to be cos(<£2 + 02)dxx + sin(02 + 02)dyx, then the equation is satisfied. For

the second tower, however, it must be that dgx = dfx = it in order for the coordinate
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transformation to work. In this case, w2 must be modified by adding terms in the one-form

basis /,

Q\ = u\ + cos(<^2 + 02)G)\

= (sin(<£2 -f 02) - cos(<^2 + 02) tan 0x)dxx + L2 cos fad02

= secOx sin(^2 + 02 - 0X )dxx + L2 cos fad02
t secOxsm(fa-r02-01)J

= au2 + - aix .
L2cos fa

If dgx = dfx = tt = dxx, then da;2 Awj A dgx = 0 and u\ Adgx # 0. From the equality

Q2 A n = d02 A dx! ,

a function g2 satisfying Pfaff's equation (5.10) is found to be g2 —02. The last coordinate

in the second chain is set as z\ —g2 = 02.

The one-form u>2

u>2 = dzl ~~ 2o^2o = d02 —*o^xi

is already in the correct form for reading off the next coordinate. Setting zj to be the

coefficient of dxlt gives

2 _ secfljsin(ft2 + 02 —0x)
zo "~ f 1 •L2 COS <f>2

Therefore, we have found coordinates z\ such that

/ = {©}, wj,Q2} = {dzl ~ z\*zl dz\ ~ 4dz0o, dz\ - z2dz°0} ,

which is the dual of the chained form

zo = v0 z\ = vx zl = v2

z\ = zo v0 z\ - z\ v0
Z2 = Z\ Vq .

5.3 Simulation of the Fire Truck

In this section, numerical simulation results for the fire truck system are pre
sented. The symbolic manipulation software Mathematica2 and the numerics software pack
age MATLA& are used to perform the simulations and plot theresults. The simulation is

2Copyright Wolfram Research, Inc.
3Copyright The Math Works, Inc.
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performed on the system in chained form

fo = v0 Co = Vx fa = v2

Ci = CoVo Vi = *7o*>o (5.11)
C2 = Ci«o .

The transformed states are steered from an initial configuration to a final configuration by
using the transformed inputs as constructed in the step-by-step sinusoidal steering algo
rithm, the all-at-once sinusoidal steering algorithm, or the polynomial steering algorithm.
Then the inverse coordinate transformation

Xx = fo

yi = C2

fa = tan^LoCoCos^tan^Ci))

Ox = tan-1 C

fa = 7/! - tan"1 Ci + tan"1^! 770 cosftan"1 &) sec^ - tan"1 &))

^ = % (5.12)

with L0 = 1and Lx = 4is calculated to extract the trajectory of the fire truck in the original
coordinates. The total vehicle length for all of the simulations is 6.5 units. The results are

presented for the parallel-parking maneuver using sinusoidal inputs. An arbitrary trajectory
with both step-by-step sinusoidal inputs and all-at-once sinusoidal inputs is used to show

the difference between these two steering methods. To see the advantage of having the
extra steering wheel, both left and right corner trajectories and a change-lane trajectory
using polynomial inputs for the fire truck and the same system without tiller steering are
simulated.

Remark. Since the coordinate transformation to chained form is a diffeomorphism on the

open set U = {x : 0X -02, fa,fa,0X ^ ±f} C R6, these singular points must be avoided when
the initial and final configurations are chosen for the simulation. One practical solution is

to plan a path that does not start or end the fire truck in a singular configuration, then

rotate the resulting trajectory about the origin to yield the desired trajectory. This willbe

explained later.

Remark. In order to limit the size of the configuration states or the inputs, one must

take into account the coordinate transformation to chained form since the simulation is
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Step-by-step sinusoidal inputs. All-at-once sinusoidal inputs.

Figure 5.2: Comparing the step-by-step and all-at once sinusoidalmethods for initial config

uration (xj,yi) = (4,0) with the body angles 6\ = 0.78, 02 = 1 and steering angles fa = 0,

fa = 0.21 and final configuration (x2, yx) = (12,5) with all body and steering angles at zero.

performed on the system in chained form. From the equations of the fire truck system, the

steering wheel angles can take values between —90° and 90°. In reality4, the front steering

wheel angle is limited to —45° < fa < 45° and the tiller steering wheel angle is limited to

-15° < fa < 15°.

Figure 5.2 compares the step-by-stepand the all-at-once sinusoidal steeringmeth

ods for arbitrary initial and final configurations. We found that the all-at-once sinusoidal

method was easier to execute and produces a more direct trajectory. The all-at-once method

uses the inputs

Vq = a0 + cix sin ut

Vx = b0 + bx coswt + ^cos(2u;t)

v2 = Co + Cicoswt (5.13)

in one step. The step-by-step method, however, is performed in three separate steps.
Figure 5.3 shows the phase plots that correspond to the trajectory resulting from using
step-by-step sinusoidal inputs shown in Figure 5.2. The first part of the path, labeled A,

corresponds to Step 0 and uses constant input to steer the transformed coordinates f0, Co»
?7o to their final values. In the original coordinates with small angles, this means x2 and

4Data from Berkeley Fire Department Station No. 2.
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0i vs- xi Ox vs. xi Vl vs. xx

Figure 5.3: Sample phase plots from using step-by-step sinusoidal inputs showing the Lis-
sajous figures for the trajectory in Figure 5.2.

fa are steered to their final positions while the other four states drift. The second part,
labeled B, corresponds to Step 1and uses sinusoidal input to steer £ and rjt to their final
values. Referring to equation (5.12) with small angles, this means the body orientations 0X
and 02 are steered to their final positions. The wheel orientation fa is now also at its final

position. The last part, labeled C, drives yx to its final position and returns the other states
to their final positions.

The state X! is controlled directly by the input «0 and therefore is moved in the

direction of vector field f0. Similarly, fa is moved in the fx direction. Taking first-order
Lie brackets shows that Ox is moved in the direction adfofx. The state yx is driven in the

direction of the second-order Lie bracket ad*0/i. The number of loops is determined by
the order of the Lie bracket needed to get net motion in a desired direction. Referring to
the portion of the trajectory labeled C in Figure 5.3, in order to get net motion in the yx
direction, the fa-Xx phase plot has a Lissajous figure with two loops and the 0x-Xx phase
plot has one loop.

Figure 5.4 shows the parallel parking maneuver that results from using the step-
by-step sinusoidal steering method or the all-at-once sinusoidal steering method. In the

original coordinates, this corresponds to steering the fire truck from yt = 5 to zero with

all other coordinates starting and ending at zero. The inputs for this trajectory are found

from the last step of the step-by-step sinusoidal algorithm, where the only state that must

be changed is j/i = C2? the last coordinate of the £ chain, or from the all-at-once sinusoidal

method with inputs as in equation (5.13) with a0 = b0 = &i = Co = cx = 0, at = 2,
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Figure 5.4: The parallel parking trajectory for the fire truck using sinusoidal inputs. The

fire truck starts at yx = 5 and ends at zero, with all other coordinates starting and ending

at zero.

b2 = —1.5915, and uj = 1 over the interval [0,2ir].

In Figure 5.5, the chained form and original input functions needed to parallel

park the fire truck as in Figure 5.4 are shown. The chained form inputs are the open-loop

control laws for the systemin two-chain, single-generator chained form. The physical inputs,

however, depend on the states of the system, as can be seen in the following equations:

u0 = sec0xv0

ux = L0 cos2 fa cos3 Ox fvi - v0 -p tan2 0itan Ox sec4 Ox)

u2 =
-LxCosPfacosOx ( _ /cos(02 +^2)tan01

cos{02-0x) V2 V° \L0Lx cos fa cos* Ox
cos(<ft2 - Ox + 02) sin(<^2 - 0X + 02)

L\ cos2 fa cos2 0x
+ !))-

Polynomial inputs are now used to show the control design and performance dif

ferences when the fire truck does not have tiller steering. For the system without a tiller,
the following coordinate transformation to chained form (from using hx = x2 and h2 = y2
in equation (3.8) from Section 3.1 without the n chain and following the procedure as for
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Physical inputs. Chained form inputs.

Figure 5.5: Physical and chained form inputs for the parallel parking trajectory shown in
Figure 5.4. For the inputs, Uo,v0 are the solid lines, ux,Vx are the dotted line, and u2,v2
are the dashed line.

the fire truck, or following the procedure in [76]) is used

Co = x2

Co =
_ sec^asec2^-^)

LoL\ (zLo sm2{0x - 02) tan 02 - L0 tanft - 02) + £ltan^ ^
V cos(0!-02)y

Ci = y- sec3 02 tan(0x - #2)
Lx

C2 = tan 02

Ca = J/2 , (5.14)

which kinematically is a two-axle car pulling one trailer.

For the fire truckin the chained form of equation (5.11), there are two chains, one

of length three and one of length two, so the following polynomial control inputs are used

v0 = 1

vx = 60 + M + M2

v2 = Co + Cxt .

For the fire truck without tillersteering of equation (5.14), there is only one chainof length

four, so the two inputs are

vo := & = 1

vx := Co = b0 + bit + 62<2 + 63<3 .
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With tiller steering. Without tiller steering.

Figure 5.6: The fire truck with and without tiller steering for a 90° right hand turn in an

intersection. The fire truck is steered from an initial state (xx,yi) = (0,4) with the body

angles Ox = 02 = ir/2 and steering angles fa = fa = 0 to a final state (xx,yx) = (9.6,10.6)

with body and steering angles all zero.

In all of the following simulations, the initial and final states of the two systems are the

same.

Figures 5.6 and 5.8 show the advantage of having tiller steering when making 90°

right and left hand turns. For both of these trajectories, the fire truck goes through the

singular point Ox = n/2. To avoid this singularity for the right hand turn, the trajectory

was simulatedwith the initialand final configurations at 7r/4 and —tt/4, respectively. Then

the entire resulting path was rotated by tt/4. The left hand turn was simulated similarly,

noting that the path is wider than the right hand turn in the same intersection due to the

convention of driving on the right hand side of the road.

The inputs with and without tiller steering for the right hand turn trajectory are

shown in Figure 5.7, which shows that the steering velocity for the system without tiller

steering, which is just the steering velocity of the front wheels, switches back and forth

more. Of greater interest, however, is that the magnitude of the input ux without tiller

steering is larger than the inputs of the fire truck with tiller steering. In some sense, the
control for the system without tiller steering has to work harder.

Figure 5.9 shows how the tiller steering assists the vehicle when it changes lanes
on a freeway. The vehicle moves a total of 13 units in the x direction and 5units in the y
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With tiller steering. Without tiller steering.

Figure 5.7: The inputs for the fire truck with and without tiller steering for the 90° right
hand turn trajectory shown in Figure 5.6. The driving velocity u0 is the solid line, the
steering velocity of the front wheels ux is the dotted line, and the steering velocity of the
tiller u2 is the dashed line.

With tiller steering. Without tiller steering.

Figure 5.8: The fire truck with and without tiller steering for a 90° left hand turn in the same

intersection. The fire truck is steered from an initial state (xlyyx) = (0,4) with the body

angles 0X = 02 = ir/2 and steering angles fa = fa = 0 to a final state (xx,yx) = (—14,15)
with body angles ir and steering angles at zero.
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With tiller steering. Without tiller steering.

Figure 5.9: The fire truck with and without tiller steering for changing lanes on a freeway.

The fire truck is steered from an initial position (x2, yx) = (4,0) with the body and steering

angles all zero to a final position (x1? yx) = (17,5) with body and steering angles all zero.

direction.

Figures 5.10 and 5.11 show the simulation results of steering the fire truck with

andwithout tiller steering through a 75° right hand turn. These results confirm our findings

that the system without tiller steering works harder than with tiller steering. In addition,

for the right hand corner trajectories, the system without a tiller crosses over into the lane

of on-coming traffic. All of the above maneuvers are smoother for the fire truck, which

justifies our initial hypothesis that the tiller adds maneuverability.

5.4 Converting the Extended Fire Truck to Extended Gour

sat Normal Form

In this section, Algorithm 2 of Section3.2 is used to transform a mobile robot with

five axles and two steering wheels into an extended Goursat normal form

I = {dzi, - <-i *J. •••, dzl " zl dzl dz2na - z2^ dz°, ...,dz2- z\ dz%}

with two towers. Our main goal is to easily find the extended Goursat normal form coordi

nates, z\. Following the steps of Algorithm 2exactly for this mobile robot system, this goal
cannotbe achieved since Step 4 of the algorithm does not give the coordinates for the second
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With tiller steering. Without tiller steering.

Figure 5.10: The fire truck with and without tiller steering for a 75° right hand turn in an
intersection. The fire truck is steered from an initial position (a?i, yx) = (0,4) with the body
angles Ox = 02 = w/2 and steering angles fa = fa =0 to a final state (xx,yt) = (9.6,10.9)
with body angles 0t = 02 = -ir/12 and steering angles at zero.
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With tiller steering. Without tiller steering.

Figure 5.11: The inputs for the fire truck with and without tiller steering for the 75° right
hand turn trajectory shown in Figure 5.10. The driving velocity u0 is the solid line, the

steering velocity of the front wheels Ux is the dotted line, and the steering velocity of the

tiller u2 is the dashed line.
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Figure 5.12: Configuration of a five-axle, two-steering mobile robot.

tower. Finding one of these coordinatesinvolves solving a partial differential equation that

we do not know how to solve. To resolve this, a modified procedure is suggested involving

the use of partial prolongations. This will be discussed in moredetail in the following.

Consider now the five-axle, two-steering mobilerobot as shown in Figure 5.12. The

front steering train consists of threeaxles: the front steering wheel and the next two passive

axles. The second steering train consists of the second steering wheel and the passive axle

behind it. The one-form constraints for this system, labeling the axles with the constraints

a0 to a4 from right to left, are

a° = sin0o dx0 —cos0o dy0 = 0

or1 = sin Ox dxx —cosOx dyx = 0

a2 = sin02 dx2 —cos02 dy2 = 0

a3 = sin05 dxz —cos05 dy3 = 0

a4 = sin04 dx4 - cos04 dy4 = 0 .

The Pfaffian system associated with this mobile robot iswritten as I = {a0, a1, a2, a3, a4}
and the derived fag has the form

/ = /«» = { a0,

JW = {

J<2> = {

J(3) = { 0},

which shows the two groupings ofconstraints corresponding to the two steering trains.
Let the state space be parameterized by q := (x, y,00,0X, 02,03,04,05). The Carte

sian coordinates of the axles are related by the holonomic constraints

a1

a1 a2,

a2}

of a4}

a4}

Xi_j = Xi + Licos Oi yi_x = Vi + Lisin0< 2= 1,2,3,4.
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Proposition 23 The five-axle mobile robot with steering on the first and fourth axles, with
£3 * L4 as shown in Figure 5.12, whose Pfaffian system is extended by paHial prolongation
can be transformed into extended Goursat normal form.

Proof. First the constraints are written with (x,y) =(x2,y2) since the a2 steering train
is the longer. The state space R8 is thus parameterized by q:= (x2,y2,0o,Ox,02,03,0A,Os).
This front steering train's coordinates are constructed as stated in Algorithm 2. In deriving
the second steering train's coordinates using 2° = x2, however, we find that the partial
differential equation that yields the coordinate z\ cannot be integrated. For the constraint

a4 =sin04 dx - cos04 dy +L3 cos(04 - 03) dOz +L4 <f04 ,

the Goursat congruences allow only a1 and a2 to be used to scale a4. We would like to
modify q4 to be of the form

a*=dz2-z2dz°o,

which would give the coordinate z\. Using only a1 and a2 to scale a4, the partial differential
equation

dzl =l(q)L2 cos(04 - 03) rf03 +7(9)I4 d04 (5.i5)

must be integrated for some integrating factor j{q). Finding the factor y(q) proved to be
so difficult in the case L3 ^ L4 that we opted for anew procedure to find the coordinates5.

Motivated by our recent work [78] and the literature on partial prolongations of
exterior differential systems [66, 67], Algorithm 2can be improved to handle this case. The
basic idea used was introduced in [78], which uses dynamic state feedback to augment the
state space ofamultiple-steering, multiple-trailer system so that the kinematic equations are
easily convertible to multiple-input chained form. The new augmented states are interpreted
as "virtual" axles extending in front of the steerable axles (except the lead car). The number
ofvirtual axles added to a steering train equals the total number ofpassive axles in front
of it.

In exterior differential systems, augmenting the system corresponds to adding the
new constraints of the virtual axles to the Pfaffian system. Moreover, the derived fag

5If La = L4, an integrating factor can be easily found. For let yu> := <kf in equation (5.15) with
L3 =L4 = 1. Then du/Au-0, which means there exists an / and gsuch that u> = fdg.
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Figure 5.13: Configuration ofa five-axle, two-steering mobile robot with virtual axles added
in front of the second steerable axle.

changes to our advantage, allowing the use ofmore forms to modify the constraints to have
the structure

7(g) a = dzi - c(q) dzl .

from which the coordinate z^x is assigned to be c(q).

Using this new method, the constraints are now written using the Cartesian coor

dinates (x, y) = (x4, y4) and partial prolongation is used to add two new constraints to the

system. These constraints, a;1 and w2, correspond to the two virtual axles with angles 06
and 07. respectively, added onto the second steering train as shown in Figure 5.13.

The state space R8 is now parameterized by q := (x4,y4,0o,0i,02,03,04,08) and
the derived fag is computed to be

J = /(0) = { Oot ttii Q2}

J(1> = { a1, a2,

J<2> = { a2,

JW = {

J(4> = { 0}

w" WJ

WJ

c?, a4}

a3, a4}

a3, a4}

a4}



showing the two steering trains, where the constraints are written as

a0 = sin 0O dx4 - cos 0O dy4 - L4 cos(0o - 04) d04 - L3 cos(0o - 03) d03
-L2 cos(0o - 02) d02 - Lx cos(0o - 0X) d0t

a1 = sin 0x dx4 - cos 0X dy4 - L4 cos(0! - 04) d04 - L3 cos(0! - 03) d03

—L2 cos(0! —02) d02—L2 cos\px — 02) dv2

a2 = sin 02 dx4 - cos 02 dy4 - L4 cos(02 - 04) d04 - L3 cos(02 - 03) d03

a3 = sin 05 dx4 - cos 05 dy4 - L4 cos(05 - 04) d04

a4 = sin04 dx4 —cos04 dy4

u)1 = sin 06 dx4 —cos<

•u}2 = sin 07 dx4 —cosi

-L4 cos(07 - 04) d04 . (5.16)

First choose tt = dx4, which is integrable, and modify the constraints in the first

tower, which is the a4 tower. The Goursat congruences for this system are

da4 = dx4 Aa3 mod a4

da? = dx4Au)1 mod a2,a3,a4

du;1 = dx4Au)2 mod a1,a2,a3,a4,w1

du;2 # 0 mod/

da2 = dx4AQJ mod a2,a3, a4

da1 = dx4Aa° mod a1, a2, a3, a4,a;1

da0 ^ 0 mod J . (5.17)

Following the notation of Algorithm 2, set a;} := a4 and scale this constraint as

a?} = - sec04 wj =dy4 - tan04 dx4 . (5.18)

This one-form has rank 1 since

dd>} Aw{ = - sec2 04 d04 Adx4 Ady4 ^ 0

du)} Adu\ Au>l = 0 .

Therefore from the solution to Pfaff's problem, fx = x4 satisfies

dull Au>l Adfx = 0 and wjAd/lr4 0

x4 - cos05 dy4 - L4 cos(05 - 04) d04

x4 —cos 04 dy4

x4 - cos06 dy4 - L5 cos(06 - 05) d0s - L4 cos(06 - 04) d04

x4 - cos07 dy4 - L6 cos(07 - 06) d06 - L5 cos(07 - 05) d05

5(07 - 04) d04 .

86
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and f2 = y4 satisfies

u?l Adfx Ad/2 = 0 and dfx Adf2 # 0 .

Setting the generating coordinate zJ = fx = x4 and the coordinate for the bottom of the first

chain z\ = f2 = y4, the next coordinate is read as the coefficient of dx4 in equation (5.18)
as zl = tan04.

The second constraint wj := a3 inthe first tower isused to find thenextcoordinate,
zl. FVom the Goursat congruences (5.17), oi2 and a4 can be used to transform u>l into the
form

ul = dzl-zldz°o.

The one-form wj is scaled, u\ is used to eliminate the dy4 term

©a = -7- sec2 04sec(05 - 04) (wj +cos05 u)J)

= sec2 04d04 - — sec3 04 tan(05 - 04) dx4
L4

= dzl - T sec* e* tan(^s - 04) dzl .

and the coefficient of dzl1S set t0 De zl'

The third constraint u;J := w1 in the first tower ismodified as follows, noting that

dzl = 7- sec3 04 sec2(05 - 04) d05 + — (3 sec3 04 tan 04 tan(05 - 04)
J~>4 L4

-sec304sec2(05-04)) d04

:= &(q)dO5+/34(q)d04.

Define the coefficients

*bfa) = ^sec(06-05)/35(9)

*ifa) = ^sec(05-04)(A:o(g)i4Cos(06-04)+y34(g))
^2(9) = (^o(g)cos06 + kx(q)cos05)sec04 .

The one-form wj is scaled to match the dzl coefficient of d05, wj is used to modify the
coefficient of d04 to match that of dzl, an<^ wi 1S used t0 eliminate the dy4 term

&l = ko(q) ul + ^(g) w1 + k2(q) u\

= .d22 - (k0 sin06 + fei sin05 + k2 sin04) dzj ,
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from which the coordinate z\ is read as the coefficient of the dzl term.
The fourth constraint u\ := u2 in the first tower is modified in a similar manner,

using all of the other constraints to get the form

Q\=dzl-zldzl,

from which the coefficient ofdzj is assigned to be the last coordinate in the first chain, z^.
The explicit calculations are omitted here. Thus, all ofthe Goursat congruences (5.17) are
satisfied for the first tower.

In the second tower, the first constraint u2 := a2 has rank 1 since

du>2Aw2^ 0 and da;2 Aa\)\ Aw2 = 0.

Therefore from Pfaff's problem it must be that gx - fx = x4, as in the first tower, since the
same generator is used in the second tower. The function gx satisfies

duj\ Au)\Adgx= 0 and uJAdgx^ 0 .

Define the coefficients

ko(q) := -=^sec(02-03)

*i(q) := ^-sec(05-04)(fco(g)l4Cos(02-04))
k2(q) := (k0(q) cos 02 + kx(q) cos 05) sec04 .

First, uj\ is scaled to have aterm d03. Then, u>l is used to eliminate the d04 term and wj is
used to eliminate the dy4 term:

u}\ = ko(q) u}\ + kx(q) uj + fc2(g) w}

= dzl ~ (k> sin02 + kx sin05 + A^ sin04) dzl >

giving the coordinate zj = 03. The coordinate z\ is the coefficient of the dzl term. The
solution to Pfaff's problem gives g2 = 03 = z\, which satisfies

a)2 Adgx Adg2= 0 and dgx Adg2^ 0 .

The next two constraints, w| :=a1 and u>l :=a0 are modified in a similar manner

as above. The coordinates z\ and z\ are found from these calculations, respectively.
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(b)

<x4.y4>

(c)

Figure 5.14: The three other cases to consider for a five-axle, two-steering mobile robot.
The placement of the second steering axle changes the analysis.

form:

The resulting coordinates transform the system into the extended Goursat normal

J = {u>}, u)l, Ql, u)\, Q2, Q\, Q2}

= {dzl - zl dzl, dzl " 4 dzl, dzl - zl dz°0, dz\ - z\ dz°0,

dz\ - z\ dzl, dz\ - z\ dzl, dz\ - 4 dz°0} •

The three other steering configurations for theexample ofa five-axle, two-steering
mobile robot, as shown in Figure 5.14, are now considered.

Proposition 24 The five-axle mobile robot with steering on the first two axles, as shown
in Figure 5.14 Mi can be transformed into extended Goursat normal form without partial
prolongation.

Proof. The derived fag for this mobile robot, labeling the axles with the constraints a0 to

a4 from right to left, is

J = /«>) = { Q°, a1, a2, a3, a4}
JU) = { o2, a3} a4}

7<2> = { a3, a4}
J<3> = { a4}

I(4> = { 0}.
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in Figure 5.14(b). This corresponds to the new constraint u1. The new derived fag is

7 = /(o) = { ac5 ai? wif ^ a3? a4j

J(1> = { a1, a2, a3, a4}
/(2) = { a3, a4} (5.21)
/(3) = { a4}

/(4) = { 0},

which "pushes down" the second steering train so that a1 can now use a2 in addition to a3

and a4 for modification into the form

a1 = dz\ - z\dzl .

The first tower's (second steering train's) coordinates are found as in Algorithm2, with one

extra coordinate due to the new w1 constraint. The second tower's (front steering train's)
coordinates are found as in Algorithm 2, using the new Goursat congruences with the extra

form constraint. The Goursat congruences are satisfied with tt = dx4 and Pfaff's problem

yields zl = x4, z\ —y4 and z\ —02.

Proposition 26 The five-axle mobile robot with steering on the first and last axles, as

shown in Figure 5.14 (c), can be transformed into extended Goursat normal form without
partial prolongation.

Proof. The derived fag in this case is

/ = /«» = { o°, a1, a2, a3, a4}

JW = { a1, a2, a3}

J<2> = { a2, a3}

J<3> = { a3}

/(4) = { 0},

which shows four axles in the front steering train and one axle, a4, in the second steering

train. Write the constraints with (x,y) = (x3,y3) since the a3 tower is the longer. The

state space R8 is thus parameterized by q := (x3, y3,00,0i,02,03,04,05). The first tower is
then the second steering train and Algorithm 2 can be used to find the coordinates for both

towers. The extended Goursat congruences are satisfied with w= dx3 and Pfaff's problem
yields zj = x3, z\ = j/3 and z\ = 04.



92

Remark. In essence, partial prolongation is used to "push down" those towers in the

derived fag that correspond to the steering trains that have extra virtual axles added on.

For example in case (b) above, the second tower in the derived fag (5.19) consists of the
third,fourth andfifth axles. The second tower isstructured such that the last passive axle in

the steering train is the onewhose constraint drops through to the system I*2), the second

to last axle's constraint drops through to J(1), while the constraint of the steerable axle

only appears in the top system J<0). Thus, when one virtual axle is added onto the second

steering train, this becomes the new virtual steering wheel, causing the real steering wheel

tobetreated asa passive axle. This results inthe new derived fag shown inequation (5.21).
The net gain of using partial prolongation is that more constraints can be used to modify

the one-forms in the second tower of the derived fag of the Pfaffian system so that the

extended Goursat congruences can be satisfied.

In summary, a methodology for finding a coordinate transformation to extended

Goursat normal form for multiple-steering, multiple-trailer systems is as follows.

Methodology using Algorithm 2

Step 1 Compute the derived fag using the given constraints.

Step 2 Separate the derived fag into towers corresponding to the steering trains, i.e., all
of the axles in a steering train are in the same tower.

Step 3 Ifpartial prolongation isneeded, add new constraints to those towers corresponding
to those steering trains that have virtual axles added to them.

Step 4 Using the longest tower as the first tower, the (x,y) coordinate is the coordinate

ofthe axle whose constraint drops to the bottom ofthis tower. Pfaff's problem gives
fx = x and f2 = y, which correspond to the zj coordinate and the last coordinate,
zj,, in the first chain of the extended Goursat normal form, respectively. Follow
Algorithm 2 using tt = dx.

Step 5 For the jth tower, Pfaff's problem requires that gx- h=x still, and g2 is chosen
to be the hitch angle between the jth and (j - l)3t steering trains. This hitch angle
then becomes the last coordinate, z3n., in the jth chain of the extended Goursatnormal
form. Follow Algorithm 2 using it = dx.
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Figure 5.15: The five-axle, two-steering mobile robot used in the simulations.

5.5 Simulation of the Extended Fire Truck

In this section, numerical simulation results for the five-axle, two-steering mobile
robot system described in Section 5.4 (as case (b)) and shown in Figure 5.15 are presented.
This simulation is not as extensive as for the fire truck, since only two passive trailers are

being added to that system. The coordinate transformation to chained form is similar to

that of the fire truck, choosing z£ = x4, z] = y4, and zf = 02 as the bottoms of the chains

and using equation (3.12) from Section 3.1 to find the rest of the coordinates.

Once the kinematic equations of the extended fire truck are in multiple-input
chained form, which includes the extra state 06 from the virtual axle, the system can be
steered by one of the algorithms discussed in Chapter 4. For the following simulations, the
lengths of the hitches are Lx = £3 = L4 = 5, L2 = 3 and L5 = 1.

The first trajectory is the parallel parking maneuver with initial point (x, y) =
(0,20) and final point (x4, y4) = (0,0) (the coordinates ofthe midpoint ofthe last axle) and
all of the body angles (including the virtual axle at angle 06) aligned with the horizontal

axis in both the initial and final configurations. The simulation is performed on the sys
tem equations in chained form using polynomial control inputs. As noted in Section 4.2,
polynomial inputs are not immediately suited to this type of trajectory since the time

needed to steer the system, computed from equation (4.6), would bezero and the algorithm
would fail. Therefore the trajectory isplanned in two steps, choosing an intermediate point
(x, j,) = (30,10).

Figure 5.16 shows the resulting parallel parking trajectory. The path taken by the
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Figure 5.16: The parallel parking trajectory for the extended fire truck using polynomial
inputs. The vehicle starts at y4 = 20 and ends at zero, with all other coordinates starting
and ending at zero.

virtual axle is not shown. The second path simulated is shown in Figure 5.17. This shows
the system backing up from a far distance of (x4, y4) = (35,35) into the same parking space.

5.6 Mobile Robots with Kingpin Hitching

In this section, the class of mobile robots with off-axle hitches is studied. The goal
is to determine ifthese vehicles are convertible to chained form and ifthey are controllable.
In the following, a two-axle car pulling one trailer attached by a kingpin hitch is transformed
into Goursat normal form, hence chained form. When there are two or more trailers,
however, the system cannot be transformed into chained form. In addition, the procedure
for transforming the fire truck with axle-to-axle hitching into chained form, as presented in
Section 5.1, applies with no modification when the hitch point is off the axle.

Recall from Section 5.3, that a two-axle car pulling one trailer attached by an
axle-to-axle hitch (the fire truck without tiller steering) is transformable to chained form.
Atwo-axle car pulling N trailers with axle-to-axle hitching was shown to be convertible to
chained form in [68. 76].
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Figure 5.17: The back-up trajectory for the extended fire truck using polynomial inputs.
The vehicle starts at (x4, y4) = (35,35) and ends atzero, with all other coordinates starting
and ending at zero.

5.6.1 A Car Pulling One Trailer with Kingpin Hitching

First consider the system of a two-axle car pulling one trailer that is attached by
a kingpin hitch as shown in Figure 5.18. In [65] (see also [45]), the linearizing outputs were
given that show the system is flat, essentially meaning that there exists local coordinates

to transform the system into Goursat normal form. The explicit calculations proving the
system can be transformed into Goursat normal form were omitted from both [65] and [45]
and will be presented here.

Using thenotation shown inFigure 5.18 with absolute angles, thekinematic model
of this system can be derived. The non-slipping constraints for the three axles from front
to back are written as one-forms

o° = x0 sin0O - yo cos 0O

a1 = ii sin0X —yx cos0X

a2 = x2 sin02 - y2 cos02 .
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Figure 5.18: Configuration ofa two-axle car pulling one trailer attached byakingpin hitch.
This system can be converted into chained form.

Using the equalities

x0 = Xx + jL0 cos0! y0 = yx + L0smOx

x2 = xx- Lx cos02 - L2 cosOx 2/2 = 2/1- Lxsin02 - L2sin0j

the three constraints can be expressed in coordinates in R5 as as

a°(x) = [ sin0O -cos0O 0 -10 008(00-0!) 0 ]
q1(x) = [ sin0j -cos0! 0 0 0 ]
a?{x) = [ sin02 -cos02 0 L2Cos(02-0!) Lx ]

where the state space is parameterized by x := (x1? yu0O, $u 02) € K5.

Since the state space is of dimension five and there are three constraints on the

system, two vector fields g0 and gx can be found such that a{(x) •gj(x) = 0, for i = 1,2,3
and j = 1,2. A simple calculation shows that the following vector fields form a basis for
A(x) := span{g0{x),gx(x)}:

(

00 =

V

cosOx

sin Ox

0

^tan(0o-01)

-£ (sin(02 - Ox) +%cos(02 - Ox) tan(0o - Ox)) )
Thus, the kinematic model of the two-axle car pulling one trailer with kingpin hitching can
be written as

x = g0(x)u0 + gi(x)ux

\

9\-

0

1

0
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where the input «0 corresponds to the forward driving velocity of the car and ux corresponds
to the steering velocity of the front wheels of the car.

For the following f0 := sec01po and fx := gi are used as a basis for A. The
filtrations Et and G{ are formed as follows

E0= A G0= A

Ex= Eo + [E0,Eo] Gx= G0 + [G0,Go]
E2= Ex + [Ex, Ex] G2= Gx + [Gx,G0]
E3= E2-r[E2,E2] G3= G2-r[G2,G0]

and Theorem 14 and Corollary 15 from Section 2.2 are used to show that the system can
be transformed into chained form.

Using the symbolic manipulation software package Mathematica,

dim E0 = dim G0 = dim span{/0, /1} = 2

dimS1=dimG1 = dimspan^.A.ad,,/!} = 3

dim£2 =dim(?2 = dimspan{/0,/1,ad/0/1,ad2/0/1,[/1,ad/0/1]} =4

since [fxMfofi] = 2tan(0o - el)adf9fl. Using E2 =spani/o^ad^ad2,^}, Ez is
formed as follows

S3 = spani/o^^ad/J^ad^/^ad^AJ/^ad^AlJad^/^adJ,,/,]}.

It has dimensionfive since [fxM)ji] is in the span of{hMfJiM)ji} and [adj,/i, adJ,/J
is in the span ol{fxMfJiM)jiM)ji}. Additionally,

G3 = 8pan{/0l/lladA/1>adJ,/lladJ,/l,[/1,adJ,/1]}
has dimension five from above. Thus, since

dimEi = dimGi = t + 2 t = 0,1,2,3

Corollary 15 from Section 2.2 gives that there exists a feedback transformation that trans
forms the system into chained form.

Rxrachon et al. [65] geometrically computed the flat, or linearizing, outputs h=
(hx,h2) for this system to be

hx = ~- -i. r- ,^a , rray a) U sin02 - L2 smOx
y/Li + L{- 2LxL2 cos(01 - 02)

2,y/Ui +L\-2LxL2cos(0x -02) (5*22)
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Figure 5.19: Configuration ofatwo-axle car pulling two trailers attached by kingpin hitches.
This systemcannot be converted into chained form.

with

2ir+8 j -02rp(0x - 02) := LXL2 /
Jk

COS<7

=da .
y/hi + Li-2LxL2 cos a

Rouchon found, through anumerical calculation, that the local coordinates zl
zl —h2 yield the chained form system

zl = v0 *o = Vx

zl = zlvo

'2 — ^i Vq

>l — z\vo

= hx and

The key numerical calculation was that

z2 —zzlzo —(a sin or - 6sin/?)/(acosa - bcosfi) ,

from which the coordinates z\ and z\ could be found by differentiation.

5.6.2 A Car Pulling Two Trailers with Kingpin Hitching

Consider the system of a two-axle car pulling two trailers attached by kingpin
hitches as shown in Figure 5.19. In [65] it was mentioned that for two or more trailers,
this system cannot be transformed into Goursat normal form; the explicit calculations are
derived here.
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Using the notation shown in Figure 5.19, the four non-slipping constraints are
written from front to back

,° =&

a1

xosin0o — j/o cos 0O

X! sin 0i — j/i cos 0!

a2 = x2sin02 - y2 cos 02

cv3 = x3 sin03 - j/3 cos03

in coordinates in R6 as

q°(x) = [ sin0o -cos0o 0 -Locos(0o - 0i)
^(x) = [ sin0! -cos0i 0

0

0

Lx

\x) = [ sin?! -cose/i U 0 0

!(x) = [ sin02 -cos02 0 X2cos(02-0i) Lx

?(x) = [ sin03 -cos03 0 L2cos(03-0i) (JDi +L4)cos(03 -02)

ie the constraintsby using the constraints

Xo = Xi -r-Xocos0i

x2 = Xx - Lx cos 02 - L2 cos 0i

= x2 —L4 cos 02 —L3 cos 03

2/o = yi + -Losin0!

2/2 = 2/i- Lxsin02 - L2sin0i

= Vi-L4 sin 02 - L3 sin 03 .

0 ]

0 ]

o ]

£3 ]

0o =

X3 = X2c2 - L4cos02 - L3cos03 2/3 = 2/1- £4sin02 - L3sin03 .

The state space is parameterized by x :=(xi,yi,0o,0i,02,03) € K6.

A basis for the distribution annihilated by the a* contains gt = (0,0,1,0,0,0)' and

' cos 0i \

-^tan(0o-0i)
-± (sin(02 - 0i) +fe cos(02 - 02) tan(0o - Ox))

^ (sin(03 - 0i) +£ cos(03 - 0i) tan(0o - 0i) +P(Lx +L4) cos(03 - 02)) J
=—k fsin(02 - 0i) +|j cos(02 - 0i) tan(0o - 0j)). Thus, the kinematic model of

ailers with kingpin hitching can be written as

\ It (sin(03

where P=-j; (sin(02 - Ox) +£cos(02 - 02)tan(0o - 0j)). Thus, the kii
the two-axle car pulling two trailers with kingpin hitching can be written

x = g0(x)u0 + gx(x)ux

where the input u0 corresponds to the forward driving velocity ofthecar and Ux corresponds
to the steering velocity of the front wheels of the car.



100

Again /0 := sec0i</o and fx := gx are chosen as a basis for A and the recursive and

iterative filtrations Ei and Gi are formed as follows

E0= A G0= A

Ei= £0+ [£,_!,£<_i] Gi= Go + po.ft.J t = l,...,n-2.

Using Mathematica,

dimEo = dim G0 = dimspan{/0,/i} = 2

dirndl = dimGi = dimspan{/0, /i, ad/o/i} = 3

dim£2 = dimG2 = dimspan{/0, fuad/o/i, adj0/i, \JU ad/o/,]} = 4

since [/i,ad/o/i] = 2tan(0o - 0i)ad/e/i. Using E2 = span{/0,/1,ad/o/i,ad^/i},

E3 = span^o^^ad^/^ad^/^ad^/iJ/^ad^/iIJad/J^ad^/!]} (5.24)

has dimension six. But,

G3 = span{/0,/i,ad/o/i,adj0/i,adjo/i,[/i,adjo/i]} (5.25)

only has dimension five. Thus, since

diml?,- = dim<2,= i + 2 i = 0,l,2

dim£?3 = 6^dimG3 = 5,

Corollary 15 shows that there does not exists a feedback transformation that converts the

system to chained form. Extending the same argument, the mobile robot system with more

than two trailers with kingpin hitching cannot be transformed into chained form.

Remark. It is conjectured that in the limit as the hitch length, L4, between the two

trailers goes to zero, the dimension of the distribution E3(L4) in equation (5.24) approaches

the dimension of the distribution G3 in equation (5.25), allowing for this system to be

transformed into chained form.

Remark. A robot is said to be completely controllable if it can reach every point in its

free configuration space within the sameconnected component of its current configuration.

Controllability of an A'-body mobile robot system with the standard axle-to-axle hitching
is proven by Laumond [36]. Controllability of a two-body mobile robot system with the
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Figure 5.20: Configuration of the fire truck with off-axle hitching.

non-standard kingpinhitching is alsoshown by Laumond [37]. Allof the systems mentioned

in this section are controllable, even though they cannot be transformed into chained form,

since we can find n linearly independent vector fields that span Kn, namely

/o, /i, ad/o fx, ad^/i,... ,ad?0~2/i .

5.6.3 The Fire Truck with Kingpin Hitching

The procedure for transforming the fire truck withaxle-to-axle hitchingto chained

form, as presented in Section 5.1, applies with no modification when the attachment point

between the truck and trailer is not located at the centerof the rear axle of the truck, but

at some distance off of the axle. The kinematic equations and the h functions needed for

transforming this system to chained form are found as follows.

Refer to Figure 5.20 for the system statesand parameters and define x := (xi, yu
fa,0\-> fa,02)- The three covectors representing the non-slipping constraints have the form

^(x) = [ sin(0i + 0i) -cos(0i + <£i) 0 -Iocos0i 0 0 ]
u)2(x) = [ sin 0i -cos0i 0 0 0 0]
w3(x) = [ sin(02 + fa) - cos(02 + fa) 0 L2 cos(^2 + 02 - 0i) 0 Lx cos fa ] .

Following the method used for the fire truck in Section 5.1, a control system can be con

structed with vector fields g0, gt, g2 thatare orthogonal toQ(x) = span{u;1(x), w2(x), w3(x)}.
The vectorfields are chosen such that the inputs have the interpretation that u0 is the driv

ingvelocity of the rear wheels of the truck, ux is the steering velocity of the front axle, and
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u2 is the steering velocity of the tiller. The control system is then written as

x = go(x)u0 + pi(x)ui + g2(x)u2 ,

with gx = (0,0,1,0,0,0)', g2 = (0,0,0,0,1,0)' and

(5.26)

/

go =

cos Ox

sin 0i

0

1^tan fa
0

£o =

Co =

Ci =

C2 =

*7o =

m =

V idb sec ^(Lo sin(fa -Ox-r02) + L2 cos(^2 —0i +02) tan fa) J

It is straightforward to check that equation (5.26) reduces to the original fire truck system

in equation (5.3) when L2 = 0.

The chained form coordinates for this system are found in an analogous manner

to those for the original fire truck system (see Section 5.1) using

/o = sec 0i0o /i = 5i /2 = 92

ho = Xx hx = yx h2 = 02 .

Note that these are the same h functions used for the fire truck system with axle-to-axle

hitching. The coordinate transformation to chained form is given by

Llhx

L90hl

hx

LgM

h2

= Xi

_ sec3 0itan fa
" To
= tan 0i

= 2/i

= sec 0i secfa(L0 sin(0i —fa —02) —L2 cos(0i —fa —02) tan fa)
LoLx

= 02 • (5.27)

This is a valid coordinate transformation since the matrix || is nonsingular. The chained

form inputs vQ, Vx, v2 are the derivatives of the coordinates £o, Co? *7o> respectively.

In summary, the main examples used to illustrate the conversion to chained form

and extended Goursat normal form were a fire truck and a multiple-steering, multiple-

trailer system. We found that for the fire truck system, there was no difference in the two
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conversion methods; both approaches were straightforward and easy to use. In chained

form, the fire truck was steered using sinusoids at integrally related frequencies in both
a step-by-step method and an all-at-once method. Additionally, the fire truck with and

without tiller steering was steered using polynomial inputs to show the advantage ofhaving
tiller steering. In extended Goursat normal form, the extended fire truck was steered using
polynomial inputs. Simulation results showed the effectiveness of the open-loop, point-to-
point control algorithms.

For the five-axle systemwith two steering wheels, however, the method of convert

ing to extended Goursat normal form was easier to use. Even though there is a theorem

givingnecessaryand sufficientconditions for the existenceof a coordinate transformation to

extended Goursat normal form, it was shown that for some arrangements of the steerable

and passive axles, finding this transformation may be difficult. This was resolved using
partial prolongations. It is ofinterest to know necessary and sufficient conditions for using
partial prolongations to transform a general multiple-steering, multiple-trailer system into
extended Goursat normal form. For larger systems, converting to extended Goursat normal

form should be easier than transforming to chained form since the inputvector fields would

not have to becomputed: the kinematic constraints of the system can beused directly.
The mobile robots configured with off-axle hitching that could be transformed

into chained form, specifically the fire truck and a car pulling a single trailer, are steerable

with the control inputs presented in Chapter 4. The car pulling more than one trailer

with off-axle hitching, however, could not be transformed into chained form, but is still
controllable.
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Chapter 6

Obstacle Avoidance

In this chapter, the problem ofavoiding obstacles for amobile robot configured as
a car pulling trailers connected by off-axle, or kingpin, hitches is solved. Given initial and

final positions and orientations of a mobile robot in its environment workspace, we would

like to generate a path specifying a continuous sequence of positions and orientations that

do not collide with the workspace obstacles. Navigating a mobilerobot in an environment

full of obstacles can be considered more formally as a problem of finding a collision-free

path for a point in therobot's configuration space [42]. The configuration space, or C-space,
is the space where the robot is represented as a point and into which the obstacles are

mapped. The obstacles are "grown" in the configuration space so that planning a motion
of the robot relative to the obstacles in the workspace isequivalent to planning the motion
of a point relative to the enlarged obstacles in the configuration space.

The motivating application of this research isautomatically controlling a car with
manytrailers through areas with corridors or lanes such asmanufacturing plants ornuclear

power plants. The goal is to have fully automated vehicles in areas where it is unsafe for

human operators or to assist an operator by steering other axles in the vehicle. The extra

steering wheels give greater maneuverability in the narrow, winding passageways.

In the following, a path planning algorithm is developed that will plan a collision-

free path for a car pulling trailers. Instead of using axle-to-axle hitching, however, the
more general kingpin hitching is considered, where the axles are connected by a kingpin
(or kingbolt, the point of articulation) between the bodies. Furthermore, the problem is
restricted to analyzing the special case of equal length kingpin hitches. The key difference
between path planners for a single car and planners for a multiple-trailer vehicle relies on
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defining an off-tracking bound for the trailers and kingpin hitches, which is defined as the
maximal distance deviated from the lead car's track when the car moves from a straight
line to an arc ofa circle, or vice versa, in the forward direction. In addition, the trailers are
shown to exponentially converge, with respect to the distance traveled by the lead car, to
their steady-state circular path when the lead car is moving ona circular path.

If the turning radius of the lead car is upper bounded by the radius of an "en

larged" circular robot (the radius depends on the number of trailers and the off-tracking
bounds mentioned above) that is superimposed on the car, then a visibility graph method
is proposed to find a collision-free path for the entire vehicle. If the turning radius is not
constrained, an alternate algorithm is presented: existing path planners for asingle car that
use a configuration space approach, in which the environment obstacles are mapped into
the configuration space and a path is planned for a point robot in the configuration space,
are modified by using the same enlarged circular robot to grow theobstacles. The potential
field method and methods unique to car-likerobots will be modified.

The outline of thechapter isas follows: in Section 6.1, relevant path planners from
the literature are surveyed along with a discussion of the different types of path planning
methods. In Section 6.2, operating trucks pulling trailers in reverse is discussed, using
studies from the literature. In Section 6.3, upper bounds are calculated on the off-tracking
of the trailers and kingpin hitches and the trailers are shown to exponentially converge to
theirsteady state path with respect to the distance traveled by the lead car. In Section 6.4

simulation results are presented for a car pulling one trailer and a multiple-trailer mobile

robot to illustrate the off-tracking. In Section 6.5, our obstacle avoidance algorithm is
described in detail.

6.1 Literature Survey of Path Planning Methods

For general path planning ofrobots, the three basic approaches are the roadmap,
cell decomposition, and potential field (see Latombe [34] for a more thorough description
of all methods). The roadmap approach characterizes the connectivity of the robot's free

configuration space as a network, or roadmap, of one-dimensional curves lying in the free
space or its closure. The initial and goal configurations are connected to points in the
resulting roadmap, which is then searched for a path between these points. Various al

gorithms produce roadmaps called the visibility graph, Voronoi diagram, and silhouette.
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The cell decomposition approach is guaranteed to find a path if one exists. This method

decomposes the robot's free configuration space into cells in which it is easy to construct
a path between any two configurations. The potential field method discretizes the robot's

configuration space into a grid of configurations, which is then searched for a free path
using a potential field heuristic. In the following, a path planner iscalled correct if it always
produces an admissible (collision-free) path and complete if it always finds a path if one

exists. A distinction is also made between whether the path planning algorithm is anexact

or approximate method and, if possible, the timecomplexity of the algorithm is given.

Classical geometric path planning algorithms that generate trajectories for holo

nomic robots in constrained spaces, however, may not be feasible for mobile robots with

their nonholonomic kinematic constraints. These general algorithms are solutions to the

classical piano mover problem, which consists of moving a piano through obstacles with
out any constraints on the allowable movements. The problem of moving the piano in the

3-dimensional Euclidean space is transformed into the problem of moving a point in the

configuration space. The existence of a collision-free trajectory for the piano is character

ized by the existence of a connected component in the admissible configuration space. The

kinematic constraints of the mobile robot, however, cause the number of degrees of freedom

to be less than the dimension of the configuration space. Therefore, an arbitrary path in

the admissible configuration space does not necessarily correspond to a feasible trajectory
for the mobile robot.

In this section, a survey of the literature on path planners for mobile robots is

presented, concentrating on planners that use the visibility graph method, the potential

field method, or a method unique to robots with nonholonomic constraints.

In general geometric planning algorithms described by Latombe [34] that use a
configuration space formulation, the procedure for planning a path for a car with multiple
trailers would beto enclose thewhole mobile robot inone circle and use theresulting circular

robot to "grow" the obstacles in the robot's configuration space. Moravec [51, 50] was the
first to grow obstacles using circles. This procedure essentially represents the environment

obstacles in therobot's configuration space. The collision-free path for theresulting "point
robot" is then planned in the configuration space. This method produces very conservative
paths when the robot is large.

Reeds and Shepp [62] completely characterize theshortest paths between any two
configurations for a two-axle vehicle that is allowed to move in the reverse direction in an
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environment without obstacles. A set of paths that is sufficient (always contains a shortest

path) and contains at most 68 paths is given by an explicit formula. They show that any
path with greater than two reversals can be reduced to a path with at most two reversals

that maybeaslong orshorter than theoriginal one. Dubins [20], on the other hand, derives

shortest paths for a system similar to a car-like robot when no reversals are allowed. The

velocity of the system is held constant and the path is made up of straight line segments
and arcs of circles. A sufficient set of paths is given in which there are only at most six

candidates for each pair of initialand final configurations. The shortest path out of the six

is then selected.

In [35], Laumond presents an exact, but uncomplete approach for finding collision-

free smooth trajectories for a circular (radius r) mobile robot whose turning radius is lower

bounded by r0. Reversals are not allowed in this planner. The path planning problem is

transformed into a finding polygonal lines in a dual space of the configuration space, called

the space of centers of curvature. The admissible configuration space is obtained by an

isotropic growth of the obstacles by the radius r. The existence of smooth trajectories is

characterized by the existence of paths made up of line segments, circle arcs of radius r0, or

contact arcs ofcurvature less than l/r0 at any point. The algorithm consists of searching for

the centers of curvature. The search yields the shortest path, although the time complexity

of the algorithm cannot be precisely evaluated. The algorithm is more efficient when the

space is more constrained since the space of solutions is reduced.

A good recent review of nonholonomic motion planning is given by Li and Canny,

eds. [41]. In this collection, Jacobs and Canny [29] present a complete path planner that

calculates a smooth, approximate path for a mobile robot with a minimum turning radius

and no reversals. This paper extends Dubin's [20] results to collision-free trajectories. First,

a finite set of canonical trajectories that satisfy the nonholonomic constraints is defined.

Then, orientations and positions of the endpoints of the trajectories are quantized, giving
a finite number of possible trajectory segments. A graph search algorithm is then applied

that finds a path (if one exists) in 0(^logn +Alog(f)) time, where n is the number
of free trajectories and 6 characterizes the robustness of the path and the accuracy of

the approximation. The initial collision-free subpaths go between points on the obstacle

boundaries and are smoothly concatenated into the final path.

Laumond, Jacobs, Taix, and Murray [30, 39] present a complete and exact motion

planner for a mobile robot whose turning radius is lower bounded. Reeds and Shepp curves
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are used as the basis for their algorithm. A geometric path planning algorithm is used to
compute a collision-free, minimum length path, ignoring the kinematic and curvature con

straints of the robotand allowing for reversals. The path is then transformed into one that

obeys the nonholonomic and curvature constraints by using subgoals along the initial path.
The basic idea is to try to reach the goal configuration from the current configuration by
using the shortest path. If this shortest path intersects an obstacle, subgoals are generated
from the initial holonomic collision-free path. A finite number ofrecursive subdivisions may
be used before finding a collision-free trajectory. The subpaths are concatenated to make

the final path, which is then optimized for near-minimal length.

Mirtich and Canny [48] present a path planner for a two-axle car that is also

based on following a nonfeasible (does not consider the nonholonomic constraints) path as
in [30]. The planner usesa novel approach that buildsa one-dimensional maximal clearance

skeleton, or roadmap, through the robot's configuration space using a shortest feasible

path metric (rather than the usual Euclidean metric) that captures the nonholonomy of
the mobile robot. Once the skeleton between the start and goal configurations has been
constructed, it is covered with shortest feasible path balls that lie completely in the free

configuration space. Then aseries of"jumps" can bemade between a finite number ofpoints
on the skeleton that connect the start tothe goal. Canny's general roadmap algorithm [16] is
then applied to find a feasible path with near minimum number ofreversals. This approach
isapproximate and the complexity of the path isan increasing function ofthe arc length of
the path and the number of reversals in the path.

Laumond [38] found that planning a path for a mobile robot through highly con
strained spaces may lead to a trajectory with many back-up maneuvers. Wilfong [86] and
Tournassoud and Jehl [79] both present heuristic path planning algorithms for a mobile

robot with limited steering range when the environment consists of lanes or corridors, such
as in a flexible automated factory. Wilfong presents a correct algorithm that computes
the motion of an autonomous vehicle between two given configurations with a minimum

number of turns in 0(m2) time, where m is the number of lanes in the environment. The

algorithm requires 0(m2(n2+logm)) pre-processing time, where n is the number of corners

on the polygonal obstacles. The minimum free radius for each turn in the designated lanes
is computed, then the motion of the vehicle is obtained by constructing and searching a
directed graph for a path. This algorithm does not allow reversals and does not necessarily
find the shortest path. Heuristics are added to guarantee that the mobile robot does not
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"hug" the obstacles. Tournassoud and Jehl, on the other hand, present a heuristic path

planning algorithm that divides the robot's free configuration space into pairs of adjacent

cones, where each pair defines a possible turn for the robot. A Voronoi diagram is con

structed, which yields the free paths that maximize the clearance between the mobile robot

and the obstacles. For polygonal obstacles, the Voronoi diagram consists of straight line

segments and parabolic segments. The planning is performed using a cost function that

combines the length of a path and a penalty when reversals are necessary.

In the potential field method, the robot's configuration space is discretized into a

rectangular grid of configurations. The point robot in the configuration space acts under

a certain potential field that is constructed using the obstacles and the goal configuration.

The negated gradient of the total potential field is treated as an artificial force applied to

the robot, causing the robot to be drawn to the desired goal position and repelled from

the obstacles. The major disadvantage to this method is that since it is a fastest descent

optimization method, it may get caught in local minima of the potential field. If the total

potential field has local minima, the minima are connected by a graph that is searched

until the goal is attained. These local minima may arise, for example, when the robot gets

trapped in simple concavities formed by the obstacles, or when conflict occurs when various

control points are concurrently attracted to their respective goal position.

Barraquand and Latombe [9, 6, 7] present a potential field method for path plan

ning for mobile robots with reversals and for manipulator arms. Both the workspace and

the configuration space of the robot are discretized using a hierarchical bitmap representa

tion. The obstacles are modeled as distributed bitmap descriptions, rather than the usual

semi-algebraic descriptions. Their approach uses potential fields attached to specific points

on the boundary of the robot. A potential field is computed in 0(a + 6log 6) time, where

a is the number of points in the bitmap array and b is the number of points in an "aug

mented skeleton," which is a generalized Voronoi diagram of the robot's free workspace

that includes a link to the goal configuration. All of the potential fields are summed into

one potential field defined in the configuration space, which is then searched heuristically

for a collision-free path. For searching the graph of local minima of the potential field,

they present a brute force method, "which uses a "best-first" algorithm to search for the

local minima in the discretized configuration space and works well for robots with degrees

of freedom less than or equal to four, and a Monte-Carlo procedure, which is better for

systems with large degrees of freedom. The brute-force method is complete at the maximal



110

resolution of the bitmap, while the Monte-Carlo procedure is not complete. For mobile

robots, this algorithm is designed to minimize the number of back-up maneuvers.

Laumond, Sekhavat, and Vaisset [40] apply the potential field method of Bar-

raquand and Latombe above to mobile robots with trailers with reversals. A collision-free

path based on the discretization of the configuration space (using potential fields as in [9])

is first planned that does not consider the nonholonomic constraints of the vehicle. In the

absence of obstacles, this path is then approximated by a sequence of feasible, near-optimal

paths (using a scheme based on the method in [39]) that are computed numerically. The

last step of the algorithm smooths out the first path to yield a solution. When the degree of

nonholonomy of the systemis d, the complexity of the approximation partof the algorithm

is 0(ed), where € is the smallest distance from the initial geometric path to an obstacle.

The visibility graph is a non-directed graph whose nodes are the initial and final

configuration of the point robot and allof the vertices of the obstacles in the workspace. The

nodes that "see each other" are connected by straight line segments that do not intersect

the interiors of the obstacles. The resulting graph is searched by an optimization method

for the shortest (with respect to the Euclidean metric) semi-free (may touch boundary of

the obstacles) path between the start andgoal configurations. If thereexists a path between

the start and goal configurations, then there exists a shortest path and this path is on the

visibility graph.

Lozano-Perez and Wesley [43] present a collision avoidance algorithm that com

putesthe shortest path for a polyhedral (polygons onthe plane) robotmovingamong known

convex polyhedral obstacles (any obstacle can be modeled in this way to any desired ac

curacy). The visibility graph approach for a point robot is generalized to be used for a

non-point robot by growing the obstacles by the robot. This is done, for example, for a

circular robot by displacing the obstacle vertices away from the obstacles at least by the

radius of the robot. The circular robot then moves so that the center point goes through
the displaced vertices. For general robots, a method is presented that takes into account

the orientation when growing the obstacles.

Rohnert [63] constructs a reduced visibility graph, which contains only that part
of the visibility graph that is relevant for finding the shortest pathbetween two points. The

problem considered has n total vertices on / disjoint convex polygons in theEuclidean plane.
It is shown that the shortest path uses only the edges of the polygons and the supporting
segments ofpairs ofpolygons that do notintersect other polygons. The supporting segments
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for two polygons are the common tangent links between two polygons. The reduced visibility
graph iscomputed in0(n+/2logn) pre-processing time and theshortest path between two
points is found in 0(f2 +nlog n) time and 0(n+f2) space using Dijkstra's algorithm [19],
which is a standard single source shortest path algorithm.

Vegter [80] presents a dynamic algorithm that maintains a visibility diagram (a
generalization ofthe visibility graph) when the set ofN line segments (the obstacles) in the
plane is allowed to change when a line segment is deleted or added to the set. The main

result is that the visibility diagram can be maintained in0(log2 N+K log N) time, where
K is the total number of arcs of the visibility graph that are created or distroyed when a

line segment is added or deleted. The algorithm can be used to plan a feasible path of a
rod moving through the N line segment obstacles in 0(N2) time.

Jiang et al. [32] find the minimum time smooth path, as opposed to the usual

minimum distance paths, for a mobile robot without generating the robot's configuration
space. A reduced visibility graph is constructed, which is then mapped to a feasible reduced

visibility graph using heuristics to include the robot's kinematics. Finally, a polynomial-
time algorithm is used to search the graph for a safe, minimum time smooth path.

6.2 Operating Tractor-trailer Systems in Reverse

In a California Department of Public Works triple-trailer study [60], an actual
truck tractor pulling three trailers was used to test the backing maneuver. The vehiclewas

configured as having two axles on the truck, one axle on the first trailer, and two axles

on both the second and third trailers. The first trailer was connected to the truck tractor

with a fifth wheel typehitch, while thesecond and third trailers were connected by a pintle
hook on the trailer in front over which is placed the eye of a tow bar of the trailer in back.

This can be treated in our terms as axle-to-axle hitching between the truck and the first

trailer and off-axle (kingpin) hitching between the other trailers. The total vehicle length
was 94 feet 4 inches with each of the trailers being 26 feet 6 inches. For the first test, the
triple trailer started off in a straight line, thenbacked up until it had folded to the pointof

"impending damage" to the vehicle. It was found that the vehicle could back up 47 to 65

feet before jack-knifing. For the second test, the triple trailer was run through 180 degrees
of a 60-foot radius curve, then backed up. It was found that it could only back up 30 feet

before approaching damage. The report concluded that one should never back up one of
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these vehicles unless to clear a stalled vehicle in a lane of traffic.

An instructor's manual for training tractor-trailer drivers [2] statesthat the process

of backing up tractor-trailers is a combination of "jacking" and "chasing." The tractor is

first turned until a jack-knife angle occurs between the tractor and trailer. Once the trailer

is heading in the correct direction, the tractor is then turned so as to follow the trailer. The

idea is to use the rear tractor axle as the trailer's steering axle, so that one steers in the

opposite direction of the desired trailer path. This procedure is used to train drivers to back

up tractor-trailers along a straight line, into an alley dock, and during parallel parking.

For the system with axle-to-axle hitching and any number of trailers, there is no

difficulty operating in reverse, since the system can be transformed into chained form as

shown in [68, 76]. Once in chained form, any one of the steering methods presented in

Chapter 4 can be used to steer the vehicle in the reverse direction. For kingpin hitching,

as was shown in Section 5.6, the system with one trailer is transformable to chained form,

and hence steerable in the reverse direction. For two or more trailers, however, the system

is not transformable into chained form. The system is still controllable in reverse, but the

steering methods for chained form systems cannot help us steer these systems.

As an experiment, the system of a single-axle car pulling two trailers connected

with equal length kingpin hitches was steered in the reverse direction using the interactive

steering program that will be described in Section 6.4. Using jacking andchasing maneuvers,

it was possible to keep the first trailer moving in front of the car, but the second trailer

reached the jack-knife configuration rather quickly.

6.3 Off-tracking Bounds

In this section, fundamental calculations needed for the proposed obstacleavoid

ance algorithm for a car pulling trailers connected with off-axle hitches are computed. The

calculations include computing an upper bound on the off-tracking of the trailers and king
pin hitches and proving that the trailers exponentially converge to their steady state path
with respect to the distance traveled by the lead car.

In [46, 60], off-tracking is defined asthe deviation to the right orleft of the trailers'

axles from the path of the front steering axle during a turn at slow speed. In [47], a truck
pulling one or more trailers is said to be stable if the path of each trailer does not swing
or deviate more than three inches to either side of the truck when the vehicle moves in a
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Figure 6.1: The car is traveling along a circle of radius r. For axle-to-axle hitching, the

trailer is shown to exponentially converge, with respect to the arc length traveled by the

lead car, to a circle with the same center.

straight line on a level smooth paved surface.

Below the idea of off-tracking is quantified for the case of a car pullingone trailer

(a two-axle system). The results can be easily extended for a car with more than one trailer

by makingallof the subsequent calculations for the last trailer in the convoy. In this section,

the trailer is shown to exponentially converge to a circular path when the car is traveling

on a circular path (for straight line, the radius is infinity). In addition, under the condition

of equal length kingpin hitches, an upper bound is computed1 on the amount the trailer

and kingpin hitch deviate from the car's path for the two special cases: (1) the transition

from a straight line to an arc of a circle of radius r, and (2) the transition from an arc of a

circle of radius r to a straight line. The goal is to find a single upper bound that bounds

both the off-tracking of the trailer and the off-tracking of the kingpin hitch for the entire

trajectory when the car is moving in the forward direction. The reverse direction is left as

an open problem (see Chapter 7). An upper bound for the first case is computedusing the

off-tracking of the kingpin hitch, while an upper bound for the second case is computed

using the off-tracking of the trailer. The bounds are computed with respect to the distance

traveled by the lead car. In the following, "path of the car" and "path of the trailer" refer

to the trajectory of the center of the respective axle.

Consider Figure 6.1, where the lead car in a two-axle system is traveling counter

clockwise around a circular path of radius r. We will show that the trailer exponentially

1Thanks to Brian Mirtich for helping to formulate the proofs presented in this section.
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converges to a steady-state circular path with the same center (when the vehicle travels

clockwise, the derivation is similar). Before attempting this, coordinates must be assigned
to the system. The center of the car's axle, A, is assigned to be the origin of an x-y moving

frame. A fixed reference frame is attached to the center, C, of the circle. The car has

traveled an angle a with respect to the fixed x-axis. The trailer, which is connected to the

car with an axle-to-axle hitch of length L, is at an angle <j> from the tangent line to the

circle at point A and at an angle /? from the moving x-axis. Let [xu yx) be the coordinates

of the car (point A) and (x2, y2) be the coordinates of the trailer (point B).

Lemma 27 The velocity of the lead car, vlf is related to the velocity of the trailer, v2, as

v2 = vxCOS<j> . (6.1)

Proof. Using the fixed frame, differentiating (x2 - xx)2 + (y2 - Vi)2 = L2 with respect to

time gives

2(x2 - Xx)(x2 - xx) + 2(y2 - 2/i)(y2 - Vi) = 0 . (6.2)

Defining the angle

p:=7c+ a + K/2 + <f> = a + (f>-ir/2 (6.3)

gives x2 - xx = Lcosd and y2 - yx = Xsin/3. By calculation,

x2 - xx = v2 cos(/3 + tt) - vx cos(a+ 7r/2) = -u2 cos/3 + vx sina

2/2 - Vi = v2 sin(/3 + 7r) - vx sin(o + tt/2) = -v2 sin (3 - vx cosa .

Substituting this into equation (6.2) gives

0 = Lcos 0(-v2 cos P+ Vx sina) + Lsin 0(-v2 sin /3 - vx cos a)

= —v2 + Vx sm(a —(3) = —v2 + Vx sin(7r/2 —<j>) = —v2 + vx cos<f> .
U

Lemma 28 The angle /3 changes with respect to time as



Proof. The angle the trailer makes with the moving frame x-axis can be defined as

fi =arctan (&^l) .
\X2 —Xx)

Using the ^ arctan u = ti/(l + u2), the derivative of/? with respect to time is

(2/2 - Vi)(x2 - Xx) - (x2 - ix)(y2 - yx)\dP _ 1 ((Jl2-yi)(x2-Xx)-(x2-
dt 1+ /ia^a.N2 V (x2 - xx)2

\X2-XiJ

= jf((y2 - yi)(x2 - xx) - (x2 - fa)(y2 - yx))
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= — ((—v2 sin Q—Vx cosa)L cos/? —(—v2 cos/3 + Vx sin a)L sin /?)

= —p cos(q - /?) = —j-cos(7r/2 - $) = —p sin0 .
L L L D

Lemma 29 TTie anp/e <p changes with respect to a as

£--(l+ !**). (6.5)
Proo/. From equation (6.3) and Lemma 28,

dq>

dot

dfi da dd> Vx . , ,„ „x

The angle traveled by the car around the circle is defined as

1 r*a(t) = a0 + - / vx(r)dr , (6.7)
r Jo

where the initial angle, a0, is assumed to be zero without loss of generality. Substituting

the derivative of a into equation (6.6),

dxp Vx Vx . , __ d<f> da _ d<j> Vx
dt r L da dt da r

gives equation (6.5). P

From this lemma, when <f> = 0, ^ = -1, i.e., when the trailer is aligned with the
car, it is still moving in towards the center of the circle.

Theorem 30 The angle q> locally exponentially converges to the steady state value

03 = lim <j>(a) —arcsin f j±2itn n>0. (6.8)
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Figure 6.2: The phase portrait of <f>. The two equilibrium points are fax (stable) and fa2
(unstable). The arrows indicate the direction <j> moves when near an equilibrium point.

Proof. The equilibrium points of the periodic, nonlinear equation

are

fax = arcsin f J± 2nn n>0

<f>c2 = T—arcsin f J±27rn n>0 =- arcsin (— )±

(6.9)

irrn m > 1 odd .

To determine the stability of the system (6.9), the Liapunov linearization method [81]
is used. Consider the linearization of equation (6.9) about the equilibrium point fa 6

{fal>.fa2}'

d±= A/0)
da d<p

This gives the autonomous linear equation

<t>
<f>=<j>e

dz r- = -Tcosfaz, (6.10)

where z := <p - fa is the linearized variable. The linearized system has the solution

z(a) =z(0)exp (- j cos<^e a) .
When fa = fax, cos0el > 0 and ^ < 0. Thus, z converges exponentially to zero, or <j>
converges to fax exponentially. Therefore, the equilibrium point fax is locally exponentially
stable. When fa = fa2, cos<pe2 <0 and ^ >0. Thus, z diverges exponentially away from
zero, or <j> diverges away from fa2 exponentially. Therefore, the equilibrium point fa2 is
locally unstable. This is illustrated in the phase portrait in Figure 6.2.
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Figure 6.3: The trailer exponentially converges to a circle of radius Ra passing through
point D. The unstable equilibrium occurs when the trailer is at point E.

Since the linearized system (6.10) is locally exponentially stable in a neighbor
hood of the stable equilibrium point fa = fax, the nonlinear system (6.9) is also locally
exponentially stable in a neighborhood of fax. _

Figure 6.3 shows the stable and unstable equilibrium positions for this vehicle.

The stable position has the trailer at point D with ADC a right triangle. If ^ isrestricted
as \o\ < 7r/2, i.e., where the trailer avoids the jack-knife positions, then <j> never reaches the
unstable equilibrium. Under this assumption, r > L. The case with r = L is unrealistic

since this corresponds to R = 0 and <j> = -tt/2, i.e., the trailer is sitting at thecenter of the
circle (see Section 6.4, case (c)).

Lemma 31 The distance of the trailer (point B) from the center of the circle (point C)
changes with respect to a as

dR rL , ( r \—--.-cos^l+ z«in#J . (6.11)

Proof. Referring to Figure 6.1, the law ofcosines on the triangle ABC gives

R2 = r2-rL2-2rLcos{n/2 + <f>)

R = (r2 +L2 +2rLsin0)1/2. (6.12)

Taking the derivative with respect to a gives

dR dRdcf> 1 d<j>
dcT - ljfa = 2R{2rLcOS®da''

The result follows from substituting in equation (6.5) for |J.



118

Theorem 32 For r > L, R locally exponentially converges to the steady state value

R9 = Jim R(a) = y/r2 - L2 . (6.13)

Proof. FVom equation (6.12),

. (R2-r2-L2\ , n<p = arcsm I — J±2im n> 0 ,

which can be used to write the left hand side of equation (6.11) as a function of R:

dR rL I (R2-r2-L2\2 / R2-r2-L2\

=-^ ~4W ^J(2rL)2 "(*2 "r2 "X^2 - (6'14)
The equilibrium points of the nonlinear equation (6.14) are

Ra= Vr2 - L2 Re2= r±L.

Rel corresponds to the angle <j> = <j>3 of equation (6.8) and Re2 corresponds to the angle
0 = ±m?r/2for m odd, i.e, the trailer is in the jack-knife position.

To determine the stability of the system (6.14) around these equilibrium points,
the Liapunov linearization method [81] is again used. Consider the linearization of equa
tion (6.14) about the equilibrium point Re € {Rel,R€2},

dR_ df(R)
da dR

which gives the autonomous linear equation

R,
R=RC

± = -J-/>-r)a fp» -» r,y (Rl-r2 +L2)(Rl-r2-L2)
da 2L2\y^lj) {Ite L) Jt*rT\*-tm-*-r*\2y/[2rL)2 - {R2 - r* - L2)2

(R\-r2 + L2)
2R2

where z := R - Re is the linearized variable. When Re = Rel,

dz 1 i

which has the solution

yJ(2rL)2-(R2-r2-L2)2^ = -Az

(y/r2 - L2 \1 <*) r>L. (6.15)
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Figure 6.4: For kingpin hitching, the lead car travels along a circle of radius r and the

kingpin travels along a circle of radius r^ The trailer is shown to converge to a circle of
radius R with R2 = r2 + L\ - L\.

Therefore, z converges exponentially to zero, or -R converges to Rel exponentially. Therefore,

the equilibrium point Ra = Rel is locally exponentially stable.

When Re = Rc2, the function A is not well defined, since the square root term in

|| is zero at Re2. For our purposes, this case can be ignored. Refer back to Theorem 30,
which shows the stable and unstable modes of the physical system. r-j

By the above results, the following lemmas that consider the case of a two-axle

system with kingpin hitching can be stated.

Lemma 33 If the lead car of a two-axle system with kingpin hitching of lengths Lx and L2

travels along a path of radius r, then the trailer will converge to a circle of radius

R=yjr2 +L2-L2, (6.16)

provided r2+ L\ >L\.

Proof. The proof refers to Figure 6.4. The system of the kingpin hitch and the trailer

is equivalent to the car and trailer system treated above. Therefore, setting r = rt and

L = L2 in equation (6.13) gives R = y/rj - L\. Since triangle CAD is a right triangle,
rx = v^+Tf. Q
Lemma 34 If the lead car of a two-axle system with a kingpin hitch travels a distance s on

a circle of radius r, the kingpin travels a distance Sx = s and the trailer travels a distance

*2 = / vx (r) cos <j>(T)dr , (6.17)
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where <p is the relative angle between the trailer and the car.

Proof. The proof refers to Figure 6.4. Let C be the origin of the x-y fixed frame. The lead

car (point A) travels an arc length s counterclockwise around a circle of radius r through
an angle a = s/r at a velocity vx. The kingpin hitch (point D) travels a distance sx on

a circle of radius rx through an angle ax = Sx/rx with velocity vD. The trailer (point B)
travels a distance s2 on a circle of radius R through an angle a2 = s2/R at a velocity v2.

Without loss of generality, assume a is initially zero. Then, by equation (6.7),

s = ar= / Vx(r)dT .
Jo

By Lamina 27, vD = vx. Therefore, the kingpin hitch travels a distance

Sx = axrx = / vD{r)dr = / Vx(r)dr = s
Jo Jo

from its initial point. By Lemma 27, v2 = vx cos^. Therefore, the trailer travels a distance

s2 = a2R= / v2(r)dr= / vt(r) cos<f>(r)dT

from its initial point. r-.

Lemma 35 If the lead car of a two-axle system with equal length kingpin hitches travels

along a path of radius r, then the trailer will exponentially converge to the same circle.

Proof. The result follows directly from setting Lx = L2 in equation (6.16). n

The next two theorems assume equal length kingpin hitches, i.e., L := Lx = L2.

The goal is to find a single upper bound that bounds both the off-tracking of the trailer and

the off-tracking of the kingpin hitch for the entire trajectory. The first theorem computes

an upper bound using the off-tracking of the kingpin hitch when the car changes from a

straight line to an arc of a circle of radius r. The second theorem computes an upper bound

using the off-tracking of the trailer when the car changes from an arc of a circle of radius r

to a straight line. The bounds are computed with respect to the distance traveled by the
lead car.

Theorem 36 If the lead car ofa two-axle system with equal length kingpin hitching changes
from a straight line to an arc ofa circle ofradius r, then an upper bound on the off-tracking
of the trailer, z, and the off-tracking of the kingpin hitch, z, is

i(a) <x(a) <zl:=r fc£?±I -l) (6.18)



121

Figure 6.5: An upperbound on the off-tracking of the trailer and kingpinhitch is computed

when the lead car changes its path from a straight line DO to an arc of a circle of radius r.

where a is the arc length traveled by the lead car from the instant the car switches to the

circle and A := r/L.

Proof. The proof refers to Figure 6.5. The car travels from the right to the origin O along a

straight line of length 2L, then at O switches to the arc of a circle of radius r. The kingpin

hitch is at a distance L from the origin (point D) initially, and at point E when the car

switches to the circle. The trailer is at a distance 2L from the origininitially, and at point

B at the switching time.

From Lemma 33, R<rx and rx > r, therefore z < z, i.e., an upper bound needs

to be computed on the off-tracking of the kingpin hitch.

Let 7 be that angle where z is maximum. This occurs when the kingpin hitch is

at the y-axis (as drawn in the figure). Thus, when 0 = 7, the length of CE is y/r2+ L2 =

jVX2 +1 and 7 = arctan(l/A). For 0 < a < 7, z increases from zero to its maximum

value, giving a bound Z\ as in equation (6.18).

For a > 7, equation (6.15) gives the bound

z(a) = z(0)exp (-0VA2 - l) <z2 := z(0)exp (--/X2^!tan"1 jj (6.19)
with the initial off-tracking of the kingpin hitch

2(0) =yfr^TU- r=r(^^ -l) .
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Figure 6.6: Comparing the three off-tracking bounds as a function of A= r/L when the car
switches from a straight line to an arc of a circle. The solid line is Zx/r, the dashed line is
z2/r, and the dotted line is z3/r.

Figure 6.6 shows that the bound zx from equation (6.18) is always greater than the bound

z2 from (6.19). Therefore, the first bound is used as the maximum distance the kingpin
hitch and the trailer will swing off the car's path for this trajectory. n

Theorem 37 Ifthe lead car ofa two-axle system with equal length kingpin hitching changes
from an arc ofa circle ofradius r to a straight line, then an upper bound on the off-tracking
of the trailer, z, is

*W <z3 := r(l -^^) (6.20)

where a is the arc length traveled by the lead car from the instant the car switches to the
circle and A := r/L.

Proof. The proof refers to Figure 6.7. The car travels counterclockwise around the circle,
then switches to the straight line at the origin O. The trailer is at point D at the switching
time, and at point B when the car has moved a distance L. The kingpin hitch is at point
E initially and follows the straight fine path of the car.

FVom Lemma 33, R < rt. Therefore, the trailer will swing into the circle during
this maneuver. In contrast to the previous theorem, the maximum bound is calculated on

the off-tracking of the trailer (the kingpin off-tracking is actually zero for this case).
Let d be that distance traveled by the car from the origin where z is maximum.

This occurs when the kingpin hitch is at the origin (as drawn in the figure). Thus, when
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Figure 6.7: An upper bound on the off-tracking of the trailer is computed when the lead
car changes its path from an arc of a circle of radius r to a straight line.

d = L, R= y/r2 —L2 and an upper bound on z is given by

—R = r — y/r2 —L2 — r —
v/V^T,

which is the bound in equation (6.20).

Figure 6.6 shows thatbound z3 from equation (6.20) is greater than bound zx from
equation (6.18). Therefore, in a comer trajectory, the trailer and kingpin hitch initially
swing out of the circle, the trailer converges to the circle, then the trailer will swing into
the circle. The results show that the swing-out is less than the swing-in.

6.4 Simulation of Off-tracking

Using the interactive steering software package that we2 developed, we were able

to acquire experimental data supporting the theorems for theoff-tracking bounds calculated

in the previous section. In this section, the off-tracking bounds and the convergence rates
are simulated for a car pulling one trailer and a car pulling three trailers.

Consider first the case of a car with one trailer that is attached by means of a

kingpin hitch with lengths Lx and L2 with total length of 3 units. To investigate what

2Thanks toAnant Sahai and Matthew Secor for writing the software code on aSiliconGraphics worksta
tion and for performing the simulations presented in this section.



rr

• : ; ; - - -

JJ• • - -

...: ; ::J""r:.. i .,

•M •» *» •* -IJ -I «* 0

x-y plot of trajectory. Off-tracking for trailer.

Figure 6.8: Case (a): Lx = 1.5, L2 = 0.5. The car (solid line) pulling one trailer (dashed
line) with unequal hitch lengths makinga right hand turn.

x-y plot of trajectory. Off-tracking for trailer.

Figure 6.9: Case (b): Lx = L2 = 1.0. The car (solid line) pulling one trailer (dashed line)
with equal hitch lengths making a right hand turn.

happens under different hitching configurations, these lengths are varied for the three test

cases: (a) Lx > L2, (b) Lx = L2, and (c) Lx = 0. The vehicle is driven through a sharp
right turn of radius r = 2.0 and the resulting trajectories of the centers of the axles of the

car and trailer are plotted. In addition, the trailer's off-tracking is plotted as a function of

the distance traveled by the trailer for each case.

For case (a) with Lx = 1.5 > L2 = 0.5 as shown in Figure 6.8, the trailer's path
swings out and rapidly settles to a constant distance away from the circular path of the car.

From equation (6.16), this off-tracking distance is Ra - r = y/6 - 2.0 « 0.449, which is the
maximum off-tracking for the entire path.

For case (b) with Lx = L2 as shown in Figure 6.9, the trailer closely follows the
path of the front car. The initial off-tracking to the left of the car's track is called the

swing-out [72]. For the first half of the path, the maximum off-tracking for the kingpin
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x-y plot of trajectory. Off-tracking for trailer.

Figure 6.10: Case (c): Lx = 0, L2 = 2.0. The car (solid line) pulling one trailer (dashed

line) with axle-to-axle hitching making a right hand turn.
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Figure 6.11: Configuration of a car pulling three trailers with kingpin hitching.

hitch and the trailer is computed from equation (6.18) with A = 2 to be 0.236. For the

second halfof the path, the maximum off-tracking is computed from equation (6.20) with
A = 2 to be 0.267.

The third case(c) with Lx = 0 and L2 = 2 = r as shown in Figure 6.10 is the axle-

to-axle hitching configuration that has been used widely in the literature. The figure shows

that the trailer has a large off-tracking to the right of the car's track. In an intersection,

this would cause an intrusion beyond the pavement's edge.

In comparing the three cases, the casewith equal kingpin hitching yields the best

results; the trailer follows more closely to the lead car's path than with the other two

hitching configurations.

The interactive software package was used to drive a car pulling three trailers as

shown in Figure 6.11. Figure 6.12 shows the trajectories of the centers of the four axles as the

vehicle is driven through an obstacle field. The lengths of all of the hitches were equal and

set to 1.0. giving a total vehicle length of 7 units. As the figure indicates, the path swept out

by the car and its trailers is not muchlarger than that of a single car. This allows the system
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Figure 6.12: Experimental data showing path of a car pulling three trailers through an

obstacle field. The lengths of the hitches are all set to 1.0, giving a total vehicle length of
7 units. The front car's trajectory is the solid line.

15 20 25
distance traveled by trailer

30 35 40

Figure 6.13: The actual off-tracking in the obstacle field for the third (solid line) trailer is
less than three times the off-tracking of the first (dotted line) trailer.
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to travel quite easily through narrow passageways. The obstacle avoidance methodology
presented in the next section will take advantage of this fact, treating a multiple-trailer
vehicle as an object whose extent is very close to that ofa single car.

In Figure 6.13, the actual off-tracking is shown for the first and third trailers for

the trajectory shown in Figure 6.12. A conservative bound for the first trailer is 0.16. The

off-tracking for the third trailer is less than three times this bound.

6.5 Obstacle Avoidance Algorithm

The path planning algorithm described in this section was inspired from the sim
ulation results of the previous section.

In this section, the two bounds given by (6.18) and (6.20) are used to define a
"trailer correction factor," r, which will be used to design a path planning algorithm that
finds a collision-free path for a mobile robot configured as a car pulling trailers connected

by kingpin hitches. The path planning algorithm is then stated for two cases. If the

turning radius of the lead car is upper bounded by r plus the radius, p, of a circular robot

superimposed on its body, then avisibility graph method can beused to plan a path for the
entire vehicle. If the turning radius isnot constrained, an alternate algorithm is given that
uses aconfiguration space approach, growing the environment obstacles inthe configuration
space by an "enlarged" circular robot of radius p+ r that is superimposed on the lead car.

In the second case, path planners from the literature that plan a path for a single car are
enhanced to the case of a multiple-trailer vehicle.

The environment considered for the obstacle avoidance algorithm is one of a fac

tory or manufacturing plant, where the mobile robot navigates through corridors or lanes

backing up only when necessary to clear an obstruction in the lane. As mentioned in Sec

tion 6.2, a car with more than one trailer with kingpin hitching cannot be easily steered
in reverse for long distances. The following discussion is concerned with path planning
algorithms that minimize the number ofreversals. In addition, paths that are only made
of straight line segments and arcs of circles are considered, as in [20].

For a single-axle car pulling one trailer with minimum turning radius r and equal
length off-axle hitching, define Z := max^, z3), where zx is the upper bound calculated in

equation (6.18) and z3 is the upper bound calculated in equation (6.20). Thus, Z represents
the worst possible off-tracking for a trailer and kingpin hitch over all permissible paths of
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the lead car.

In the previous section, Figure 6.13 shows that the deviation of the third trailer

from the lead cars path is less than three times the deviation of the first trailer. Using this,
a conservative trailer correction factor, r, can be defined for a car pulling N trailers. We
propose to add the upper bounds for each trailer to define t:=N-Z. The linear scaling is
justified since the convergence is exponential in the distance traveled and the bounds can

be propagated backwards in the trailer system.

Remark. It is of interest to explore the concept of making the trailer correction factor
time varying, such as having it also depend on the radius of curvature of the circle the lead

car is currently traveling on, which would enable the path planner to produce more agile
trajectories. In addition, for the visibility graph method, the trailer correction factor must

take into account the possibility that the trailers may have a turning radius different from
the lead car. This is left as an open problem (see Chapter 7).

The proposed path planning algorithm can now be stated. In both versions, the
key idea is to use a circular robot of radius p+r, where p is the radius ofa circlearound the

lead car and r is the trailer correctionfactor, to compute the distances to the environment

obstacles.

If the turning radius, r, of the lead car is upper bounded by p + r, then the

following reduced visibility graph method can be used to plan a path for the entirevehicle.

The car and trailers are hitched together by equal length off-axle hitches.

Algorithm A

Step 1 Check that the turning radius, r, of the lead car is upper bounded by p+ r, the
radius of the circular robot constructed from the dimension of the lead car increased

by the trailer correction factor.

Step 2 Approximate the generalized polygonal environment obstacle by a set of n line
segments to a desired accuracy. To do this, choose e to be the error parameter for the

distance between a point in the given obstacle and the approximated obstacle. The

number ofsegments used to approximate an obstacle isproportional to 1/y/i.

Step 3 Grow the approximated obstacles in the configuration space using the enlarged
circular robot of radius p + r.
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Figure 6.14: The obstacles are grown by a circular robot of radius p + r, which is su

perimposed on the lead car of a three-trailer system, and the reduced visibility graph is

constructed (links in figure). The shortest path between the start, 5, and goal, G, configu

rations is shown in bold.

Step 4 Construct the visibility graph by connecting the nodes (start and goal configura

tions and all the vertices of the approximated polygonal obstacles) that "see each

other' with a link. This link will not intersect the obstacles.

Step 5 As in Rohnert [03], consider only the useful supporting segments, or common tan

gents, to a pair of obstacles.

Step 6 Search the resulting reduced visibility graph for the shortest path using Dijkstra's

algorithm [19].

Figure 6.14 illustrates how the environment obstacles (shown as convex polygons) are grown

for a car pulling three trailers connected by off-axle hitches. A circular robot of radius p+ r

is used to grow the obstacles, which consist of straight line segments and arcs of a circle

of radius equal to the turning radius of the car, r. In the figure, the grown obstacles are

drawn with r approximately equal to p+ r.

The construction of the visibility graph is alsoshown in Figure 6.14. The visibility

graph consists of straight line segments and arcs of a circle of radius equal to the turning

radius of the car, r. If the turning radius is upper bounded by p + r, this algorithm is

complete (it will always find a path if one exists) and correct (if a path between the start
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and goal configurations exists, then there exists an admissible path). In addition, with
r < p+T, the visibility graph method will produce a path without reversals that is, in fact,
the shortest path. The overall complexity ofAlgorithm A is 0(n2/e), where n is the total
number of segments used to approximate the polygonal obstacles and e is the error term
for the approximation.

Algorithm A is similar to the path planners of Lozano-Perez and Wesley [43]
and Rohnert [63] as presented in Section 6.1, which plan a collision-free shortest path for
a circular robot moving among convex polygonal obstacles in the plane. In our case of

a multiple-trailer mobile robot moving among generalized polygons, the key difference is
approximating the generalized polygons and using an enlarged circular robot to grow the
obstacles in the configuration space.

Ifthere isno constraint on the turning radius ofthe car, r, then theabove algorithm
cannot be used. In this case, thefollowing algorithm, which modifies existing path planners
from the literature that plan a path for a single car to be a path planner for a multiple-
trailer vehicle can beused. The class ofpath planners considered use a configuration space
approach, where theenvironment obstacles aremapped into the robot's configuration space
and a path is plannedfor a point robot in the configuration space. The car and trailers are

hitched together by equal length off-axle hitches.

Algorithm B

Step 1 Construct the smallest circle of radius p that encloses the lead car only (the car is
assumed tohave the widest body; ifit does not, use the widest trailer's body), making
it a circular robot.

Step 2 Increase the radius of the circular robot by the trailer correction factor, r, to
account for the multiple trailers.

Step 3 Grow theenvironment obstacles in the configuration space using theenlarged cir
cular robot of radius p + r.

Step 4 Plan the trajectory for the point robot in the configuration spacewithin the result

ing highway through the obstacles using a potential field method ora method specific
to car-like robots.

As an example of how to apply this method to plan a path for a multiple-trailer
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vehicle moving in an obstacle field, consider the path planner of Laumond [35] presented
in Section 6.1. In this planner, a collision-free smooth trajectory is found for a circular
robot of radius p whose turning radius is lower bounded. To modify this planner for a
multiple-trailer vehicle, a circular robot is used that is constructed from a circle enclosing
the lead car ofradius p increased by the trailer correction factor, r. The first step grows the
obstacles by the radius of the circular robot, p+ r. Then the space of centers of curvature

(dual space to configuration space) is searched for the shortest path, which is the solution.

A similar planner by Laumond et al. [30, 39] could be modified in the same way.
The first step consists of usinga general geometric path planner, which is modifiedto use a

circular robot ofradius p+r, to compute a collision-free path that ignores the nonholonomic

constraints ofthevehicle. Thesecond step transforms this geometric path to one that obeys

the nonholonomic and curvature constraints by exactly characterizing, without considering
the obstacles, theminimal length constrained path connecting any two configurations of the

robot. To acknowledge the obstacles, a set ofsubgoals ischosen along the initial geometric
path by requiring that the minimum length constrained path connecting successive pairs
of configurations is still collision-free under the kinematic constraints of the robot. The

subpaths are then concatenated to make the final trajectory, which is optimized for near-
minimal length.

Asan example ofhow toapply Algorithm Btoapotential field method for planning
a path for a multiple-trailer vehicle moving in an obstacle field, consider the path planner of

Laumond et al. [40] presented in Section 6.1. A collision-free path is first planned without
taking into account the nonholonomic constraints of the mobile robot. To do this, the
numerical potential field method of Barraquand and Latombe [9, 6, 7] is used. In this

method, the environment workspace of the robot is modeled as a multi-scale pyramid of
two-dimensional bitmap arrays. Each element of the array maybe thought of asa cell with

value 1if the cell intersects an obstacle and value 0otherwise. For every cell ofvalue 0, theL1
distances to the obstacles are computed, normalizing the distance between two neighboring
cells to be one. This construction yields a Voronoi diagram of the workspace, showing
the connectivity of the obstacle-free environment. The robot's configuration space is also
modeledasa multi-resolution grid pyramid whose resolution is consistentwith the resolution

of the workspace grid and the dimension of the robot. It isat this step that the planner is
modified to use a circular robot of radius p+r to compute the distance to the obstacles.

Potential fields (navigation functions) are attached to the boundary of this circular robot
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at certain "control points," which are then summed into one potential field defined in the

configuration space of the mobile robot. The negative gradient of this field is used to pull
the robot to the desired position. To search the graph ofthe local minima of the potential
field, a probabilistic method is used that generates random motions when the gradient
method ends up in a local minimum. The resulting path is then smoothed out to remove

unnecessary motions. Next, in the absence of obstacles, the resulting path is numerically
approximated by a sequence of feasible, near-optimal paths using the procedure described

in Laumond et al. [39]. A cost function is defined, and anumerical solution to the optimal
control problem gives the near-optimal path. Finally, this near-optimal geometric path is
approximated by a sequence of optimal paths that are collision-free. If the geometric path
is obstacle-free, the algorithm terminates; else, the path is subdivided. These subdivisions

are then checked for collisions. This recursive subdividing continues until a collision-free

path is found. The resulting path is smoothed out by iteratively repeating the subdividing
procedure on randomly chosen configuration pairs to yield a solution.

In summary, a methodology for path planning in the presence of obstacles for a car

pulling trailers with kingpin hitching has been presented. The main idea was to consider

the lead car alone as a circular robot whose radius is increased by the "trailer correction

factor" defined in this chapter. This factor depended on the number of trailers and the

calculation of upper bounds on the off-tracking of the trailers and kingpin hitches. The

obstacles were then mapped into the configuration space using this enlarged circular robot.

The methodology guarantees that the trailers will avoid the same obstacles that the lead

car avoids.
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Chapter 7

Open Problems

In this chapter, open problems in the area of nonholonomic systems are presented.

The first open problem considers the issue of regions of validity. The second problem con

siders using vector field methods to find necessary and sufficient conditions for transforming

to single-generator chained form. The third generalizes the notion of chained form systems

with one generator, as considered in this dissertation, to chained form systems with more

than one generator. The fourth open problem considers issues of obstacle avoidance for

mobile robot systems. The last problem considers controlling the system of a car pulling
trailers connected by kingpin hitches in the reverse direction.

7.1 Regions of Validity

In Section 2.1.5 a theorem was presented that givesnecessaryand sufficient condi

tions for transforming a nonlinear system with drift into a linear form. The transformation

only holds within aneighborhood oftheinitial state ofthesystem. In addition, in Chapter 3

two methods for transforming a nonholonomic system into multiple-input chained form or

extended Goursat normal form were presented, where thetransformations are also only valid
within a neighborhood of the initial state. The size of neighborhood, however, is unknown.

In all three of these methods, the question that arises is: how useful are these theorems for
systems that have large motions? As with the use of normal forms in bifurcation theory,
it is an important open problem to study the regions of validity of these methods for the

nonholonomic systems considered in this dissertation.

As a way to approach this problem, I suggest applying the conversion methods to
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many examples ofnonholonomic systems and observing any patterns inthe local and global
results. The goal is to understand why certain systems produce local or global results.

7.2 Single-generator Systems

In this dissertation, necessary and sufficient conditions were given for transforming
amultiple-input nonholonomic system into extended Goursat normal form using techniques
from exterior differential systems. Using vector field methods, however, only sufficient con
ditions were given to convert to multiple-chain, single-generator chained form. I encountered

difficulty in trying to derive necessary conditions for this transformation using vector field
methods. It isan open problem to use vector field methods to derive necessary and sufficient
conditions for transforming a wheeled nonholonomic system into chained form.

In Chapter 2, a theorem was presented that gives necessary and sufficient condi

tions for transformation to chained form or Goursat normal form in terms of the dimensions

of certain filtrations associated with the system. This theorem was onlystated for the case

of two inputs. It is an open problem to generalize Murray's dimension count theorem (see
Theorem 14) to the case with more than two inputs.

7.3 Multiple-generator Systems

The most general form of a chained form system in Rn is the (m + l)-input,
m(m + l)-chain, (m + l)-generator chained form, which is written as

z°j=vj i = 0,...,m

zij= *ij~lvJ irkJ\ k = 2,3,...nti ,

where the v0,... ,vm are referred to as the generators and £,0-;i-^ ny +3= n.
For example, m = 2 gives a three-generator chained form system with six chains:

io= v0 i?= Vi z\- v2

*io= *N (^:= z\zl-z\Q) (*0°2:= z\z\ - z°20)
Ho= 4vo Hx= z*2vx (z°12:= zlz\-z\x) (7.1)
^xo = z\oXVo £& = zof1^ ij2 = z%2xv2

4)= 4o_1^0 221= 4llVl Zi*2= *12lV2
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with k = 2,... , nij.

It is an open problem to classify the set ofnonholonomic systems, perhaps under
a prolongation, that can be converted to this form, and ifvector field (differential systems)
methods can be used for the transformation. This dissertation uses vector field methods to

derive sufficient conditions for converting the kinematic model of a wheeled nonholonomic

system into chained form with a single generator. For our most general mobile robot

example, the multiple-steering, multiple-trailer system, the number of chains corresponds
to the number of steering trains in the system and the lengths of the chains correspond to
the lengths of the steering trains (including virtual axles added via dynamic state feedback

or partial prolongation). The single generator, v0 in our case, is the velocity of the front car.

It is unknown what happens when there is more than one generator of if this corresponds
to having more than one driving input.

It is also an open problem whether nonholonomic systems can be converted to the

dual ofequation (7.1) using an exterior differential systems method. For example, for m = 2

as above, I havethe following conjecture that generalizes the extended Goursatnormal form

theorem (see Theorem 16in Section 2.2).

Conjecture 38 For nonholonomic systems with three inputs, converting to the dual ofthe
chained form system (7.1),

I = {dzl0 - *£. idz°0, * = 1,..., n10; dzf - z^dzl * = 1,.--, n20;

dzV ~ zllidz*, k= 1,... ,n01; dzf - z^dz0, k= 1,... ,n21;

dzl2 - zllidz°2, k=1,... ,n02; dzl2 ~ zllxdzl k=1,... ,n12} ,

requires finding three integrable one-forms ir0, iTx, *2 such that the following extended Gour
sat congruences are satisfied:

dwj° = ttoAu;^ mod /<"""*> k= 1,... ,n10 - 1

duff = ttqA^o, mod/<*"-*> &=l,...,n20-l

dul1 = ttjAu^ mod/<*"-*> * = l,...,n01-l

dw21 = friAwg* modI(n»-fc> * = l,...,n21-l

du»f =. JaAwg* modI<n"-fc> k = 1,... ,n02 - 1

dul2 = jt2A^, mod/(n"-fc> k= 1,... ,n12 - 1

du>%0*0 mod/

du>l°ie?0 mod/

da^O mod/

du)2^ ^ 0 mod/

du%3¥>0 mod/

du>12it ^ 0 mod I.
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mthsteeringtrain

Figure 7.1: The configuration of a multiple-steering, multiple-trailermobile robot.

7.4 Obstacle Avoidance for Mobile Robots

A path planning algorithm was presented in Chapter 6 for the two-input nonholo

nomic systemof a car pulling trailers that are connected by kingpin hitches. This planner

relied on defining off-tracking bounds for the trailers and kingpin hitches. These bounds

were then used to define a "trailer correction factor," which is used to enlarge a circular

robot superimposed on the lead car in order to grow the environment obstacles in the con

figuration space. The trailer correction factor used in Chapter 6 was defined to be an upper
boundon the off-tracking timesthe number of trailers. Linearly adding in a fixed bound for

each trailer was shown to be conservative in the simulation results. It is an open problem
to define a less conservative trailer correction factor, possibly time varying, to be used in

the obstacle avoidance planner presented in this dissertation. In addition, for the visibility
graph method, if the trailers have a turning radius different from that of the lead car, then

it is questionable whether the off-tracking bounds can be added for the trailer correction

factor. It is an open problem to define a trailer correction factor that takes into account the

possibility of the trailers having a turning radius different from the lead car.

It isknown, both from practical experience and from the theory in thisdissertation,

that for the fire truck (a three-axle nonholonomic system), having the extra steering wheel
for the back axle greatly improves maneuverability along narrow city streets. Numerical

simulation results were presented that support thisclaim in Section 5.3. The general mobile
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Figure 7.2: The multiple-steering, multiple-trailer mobile robot with added virtual axles,
which are used to convert the system to chained form or Goursat normal form.

robot with multiple trailers and multiple steering wheels is configured as in Figure 7.1. This
system was shown to beconvertible tochained form in [78] byusing dynamic state feedback.
This conversion method required adding virtual axles in front ofthe steerable axles, as was
explained inSection 3.2 (see Figures 7.2 and 5.13 from Section 5.3). It isan open problem to
develop an obstacle avoidance path planner for the fire truck and for more general systems of
cars pulling trailers with steering on some of the trailers. It is hoped that the path planner
presented in this dissertation will be extendible to this case.

7.5 Steering Mobile Robots with Trailers in Reverse

In calculating the off-tracking bounds for the trailers and kingpin hitches for a car
pulling trailers in Section 6.3 and simulating the mobile robot system in Section 6.4, only
the forward direction was considered. In principle, it should be possible to drive this system
in the reverse direction, too, by tracking the coordinates of the last trailer and working back
up to determine the coordinates of the lead car. It is an open problem to investigate whether
or not driving the vehicle in reverse is the same as driving the back wheels for the case with
equal length kingpin hitches and to calculate the off-tracking bounds for the trailers and
kingpin hitches when the vehicle is moving in reverse.
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Chapter 8

Summary

This dissertation developed methods for converting the controlled kinematics of

wheeled nonholonomic vehicles to chained form using vector field methods and to extended

Goursat normal form using exterior differential systems methods. The two methods are

duals of each other. Conversion to chained form only gives sufficient conditions, but is

easy to apply. Conversion to Goursat normal form, however, gives necessary and sufficient

conditions, but requires using subtleties of exterior differential systems.

Different steering algorithms were presented that steer the mobile robots open-

loop between any two given configurations. Steering with sinusoids is the natural method

for controlling systems in chained form, due to its structure, and was developed originally

for optimal control problems. In practice, we have found that steering with sinusoidsnot to

be optimalin the sense that it produces trajectories with morereversals than are minimally

needed. The step-by-step sinusoidal method presented in this dissertation emphasizes the

chained form structure, but is not recommended in practice. The all-at-once sinusoidal

method works well for trajectories that have a reversal, such as parallel parking. Other

methods that were presented use polynomial control inputs and piecewise constant control

inputs; both work well for trajectories without reversals.

How to convert to chained and extended Goursat normal forms and how to use

the proposed steering algorithms were illustrated with the examples of a fire truck and an

extended fire truck. Generalization to. multiple-steering, multiple-trailer systems is straight

forward, but computationally tedious. Additionally, the fire truck with and without tiller

steering was steered using polynomial inputs to show the advantage of having tiller steer

ing: the fire truck had greater maneuverability and could execute the same maneuvers in
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a narrower space and with less steering effort, which agrees with the experience of real fire

trucks. The procedure for transforming to chained form also applied with no modification
when the attachment point between the cab and the trailer is not located at the center of

the rear axle of the cab, but at some distance off of the axle, as is commonly the case for
cars pulling trailers.

Another goal ofthis research was to develop anew path planner for a car pulling
trailers connected by off-axle hitches in the presence of obstacles. This dissertation pre
sented such an algorithm using a visibility graph method if the lead car's turning radius is
upper bounded by the radius of an "enlarged" circular robot superimposed on the car. If

the turning radius of the lead car is not constrained, an alternate algorithm was proposed
that modifies existing path planners that use a configuration space approach for planning
paths for a single car to be path planners for the multiple-trailer vehicle. The key differ
ence between designing path planners for single cars and multiple-trailer vehicles relied on

defining an off-tracking bound, which is the maximal distance that the trailers and kingpin
hitches deviate from lead car's track when the car moves from one path to another in the

forward direction. In addition, it was shown that the trailers exponentially converge, with
respect to the distance traveled by the lead car, to their steady-state circular path when
the lead car is traveling on a circular path.

The applications of this research are various. In [47], a common error of the

drivers of trucks with multiple trailers that have off-axle hitching was that of excessive

steering inputs. The report suggested training the drivers to minimize the steering inputs
to avoid weaving and swaying instabilities. One method suggested by this dissertation is

to attach flexible "whiskers" to the lead car to notify the driver how close she can come

near the obstacles. The length ofthe whiskers would be directly proportional to how many
trailers the vehicle has and the off-tracking bounds. Then, if the driver avoids hitting
obstacles with the whiskers, the trailers will also avoid these obstacles. Another application
is to use the motion planning methods developed here to automatically control vehicles
with multiple trailers in manufacturing plants, nuclear power plants, or any areas that
have narrow passageways. For vehicles with more than one steerable axle, the methods

presented here maybe used to automatically control the whole vehicle, or just the steerable
axles behind the human driver.
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Appendix A

Appendix

Derivation of the Wheel-angle Condition

In this appendix, a novel derivation of the wheel-angle condition that was studied

by [3,4,5, 73] for a two-axle carwith front wheel steeringis presented. This condition is used

to simplify the derivation of the kinematic model of the autonomous wheeled nonholonomic

systems presented in this dissertation. The net result is that one only needs to keep track

of one of the wheel angles on each axle, and the other wheel angle can be derived from the

wheel-angle condition. For the examples in this dissertation, each axle is modeled instead

as one wheel at the center of the axle.

When driving a two-axle car on a curve in practice, the two front wheels are at

different angles (see Figure A.l): the inner wheel to the curvatureis at a sharper angle than

the outer wheel. The wheel-angle condition states that the normals to the two steerable

front wheels and the normal to the rear wheels all intersect at point P, which is the center

of rotation of the circular path that the car is travelingon. This is derived geometrically as

L L

tan fa tan fa

or

-2a

Lcos 02 sin<j>x = Lcos fa sinfa + 2asin fa sin fa . (A.l)

To derive the wheel-angle condition (A.l) using the vector field method presented

in this dissertation, first let the states of the model be (x,y,9,Xxiyx,fa,x2,y2,fa), where

(x, y) is the Cartesian location of the center of the rear axle of the car, 6 is the orientation
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Figure A.l: Configuration of a two-axle car showing the intersecting normals. The three

normals to the wheels must all intersect at point P, which is the center of rotation of the

car.

of the car's body with respect to the horizontal axis of the inertial frame, (xuyi) and
(x2, y2) are the Cartesian coordinates of the center pivot points of the left and right front
wheels, respectively, and fa and fa are the steering angles ofthe left and right front wheels,
respectively, with respect to the car's body. Let the distance between the front and rear

axles of the car be L and the width ofthe axles each be 2a. The two pivot points (&i,yi)
and (x2, y2) can be written in terms of the center of the rear axle of the car as

+
Lcosd — as'mO

Ls'mO + acos0

Lcosd-\-asm6 .
+ r • „ ' (A.2)

1 Xsin0-acos0 f '

These constraints are holonomic in the sense that they reduce by four the number of vari

ables needed to specify the state ofthe system. The five coordinates q= (x, y, 6, fa, fa) are
sufficient to represent the positions and orientations of the car and wheels.

For mechanical systems with wheels rolling and turning on a surface, the non-
slipping constraint states that the velocity of the body in the direction perpendicular to
each wheel must be zero. This can be stated in terms of coordinates as follows: for a wheel

centered at location (x, y) and at an angle (p with respect to the horizontal axis of the fixed
frame, 0 = vxsin <p —vy cos (p.
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For a two-axle car, the three non-slipping constraints

0 = xsin0 —ycosO

0 = xxsm(0 + fa)-yxcos(0 + fa)

0 = x2sin(0+ fa) - y2 cos(0 + fa)

can be expressedin the equivalent form by using (A.2) as

0 = xsinfl — ycosd

0 = x sin(0+ fa) - y cos(0+ fa) - 0Lcos fa - 0a sin fa

0 = x sin(0 + fa) - y cos(0+ fa) - 0L cos fa + 0a sin fa .

These constraints are non-integrable, or nonholonomic, and will not further reduce the

reachable configuration space. They can be expressed more compactly as w*(g) •q = 0,

where the entire state is represented as q = (x,y,0, fa, fa) and the covectors w*(g) are
expressed in coordinates in R5 as

ul(q) = [ sinfl -cos0 0 0 0]

(j2(q) = [ sin(0 + fo) -cos(0 + 0i) -L cos fa - asin fa 0 0 ] (A.3)
u*(q) = [ sin(0 + <£2) -cos(0+ 02) -L cos fa + asmfa 0 0].

Since u%(q) •q = 0 for i = 1,2,3,

0 = sin02 J1 •9 —sin fa w3 •<j.

Substituting in the urs, gives

0 = sin fa (sin(0 +fa)x - cos(0 +0i)y - (L cos 0! +asin0i)#)
- sin fa (sin(0 +02)x - cos(0 +fa)y - (L cos fa —a sin 02)fl)

= x (sin ©<> sin(0 4- 6*) — sin 0i sin(0 4- 6*))= x (sin fa sin(0 + 0i) - sin fa sin(0+ 02))x ^sm <p2 sin^a -r Q>i) — sin ?>ism{0 -f <p2))

—y (sin 02cos(0 4- fa) - sin fa cos(0 -I- 02))

—0 (sin fa(L cos0i + asin02) —sinfa (Lcos 02 —asin02)) .
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Expanding and rearranging terms

gives the equation

0 = xsin0sin(02 - fa) - ycos0sin(02 - ^i) -0(Lsin(fa - fa) + 2osin01sin02) .

But a?1 •q = 0, where q = (x,y,0, fa, fa), i.e, i?sin0 - ycos0 = 0. Therefore

0 = x sin0 sin(<p2 - fa) - ycos0sin(02 - fa) ,

which means

0 = 0(Lsm(fa-fa) + 2asmfasmfa) . (A.4)

For a car to roll without slipping, two cases arise in equation (A.4). The first case is when

0 = 0,which corresponds to pure translation of thecar. The two front wheels are parallel to

each other, causing the center ofrotation to beat infinity. The second case is when 0^0.
This yields a pure rotation about some point:

0 = L sin(02 —fa) + 2asin fa sin fa ,

which is the wheel-angle condition. In this case, the two front wheels cannot be parallel to

each other; it must be that fa ^ fa. In a pure rotation, the inner wheel to the curvature is

at a sharper angle than the outer wheel.

In this dissertation, the wheel-angle condition is used to keep trackof only one of

the front wheel angles of the mobile robot, say fa. Then the wheel angle fa can always be
found from equation (A.l).
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