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Summary

The conception ofthe CNN Universal Machine has led quite naturally to the invention of
the analogic CNNBionic Eye (henceforth referred to simply asthe Bionic Eye). The basic idea is
to combine the elementary functions, the building blocks, ofthe retina and other 2 1/2 D sensory
organs, algorithmically, in a stored program of a CNN Universal Machine, through the use of
artificial analogic programs. The term bionic is defined in a rigorous way: it is a nonlinear,
dynamic, spatiotemporal biological model implemented in a stored program electronic
(optoelectronic) device; this device is, inour case theanalogic CNNUniversal Machine (or chip).

The aim of this paper is to report on this new invention in a tutorial way, particularly to
electronic andcomputerengineers.

We begin by summarizing: 1) the biological aspects of the range of retinal function (the
retinal universe) 2) the CNN paradigm and the CNN Universal Machine architecture, and 3) the
general principles of retinal modeling in CNN. Next, we describe new CNN circuit and template
design innovations that can be used to implement physiological functions in the retina and other
sensory organs using the CNN Universal Machine. Finally we show how to combine given retina
functional elements implemented intheCNN Universal Machine with analogic algorithms to form
the bionic retina. The resulting system be used not only for simulating biological retinal function,
but also for generating functions that go far beyond biological capabilities. Several bionic retina
functions, different topographic modalities, and analogic CNN algorithms can then be combined
to form the analogic CNN Bionic Eye.The qualitative aspects of the models, especially the range
of dynamics and accuracy considerations in the VLSI optoelectronic implementations are
outlined. Finally, application areas of the Bionic Eye and possibilities of constructing innovative
devices based on this invention (such asthe bionic eyeglass or the visual mouse)are described.
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1. INTRODUCTION

yet retaining the simple control and design of the dynamics of the 3D regular processor
array The Cellular Neural/nonlinear Network (CNN) invented by Chua and Yang in 1988 [1]
heralded a new paradigm [16] in massively parallel computing. This represented a dramatic
departure from digital technology, incorporating the concept of simple but versatile continuous
nonlinear dynamics in the processing units. Yet the dynamics are simply controlled in the design
of the 3D regular processor array by allowing mainly local interactions between these units. The
computing model has an architecture similar to the cellularautomaton of John von Neumann (or
its descendant, the systolic array). However, the processing units (called cells) and their
interactions are continuous (analog), dynamic, and nonlinear. CNN has primarily a locally
connected lattice architecture, but unlike general neural networks, the processing units have a
much simpler connection scheme and their interactions are can generate complex nonlinear
dynamics. The local interconnection schemeofeachcell is called the cloningtemplate. The simple
dynamic nonlinear systems (first, second, and third order), the processing units, can be easily and
effectively implemented in silicon VLSI chips [12] to achieve a trillion operations per second per
chip. Depending on the actual cloning templates, the CNN arrays can calculate, for example,
various image processing tasks with a million-per-second frame rate using 10,000 pixel frames
(TV sets use 30 per second frame rate).

Massively parallel analog processor arrays and logic inferencing will be required to
simulate the functional properties of the brain [5] while retaining the physical realizability of
complex information processing systems [9]. The so called dual computing paradigm [2] (we call
it analogic computing) is a general formal model combining analog array dynamics (like neural
networks and CNN) and logic. The basic motivation was the harmonic interaction of the two
faculties of the human cognition. Pascal called them the geometric and the intuitive mind, as
already recognized by Aristotle [11].

The CNN Universal Machine and Supercomputer architecture, invented by Roska and
Chua in 1992, is an analogic array computer [3], the first stored program analogic computing
array which establishes a new way of computing: Stored analog instructions, a new notion easily
implemented on silicon as CNN cloning templates, can be combined in a logical sequence. The
CNN array makes fast array computations, and all intermediate results are stored in local analog
memories. The logic of the sequence of the various cloning templates, forming a complete
analogic program, controls the whole array computer. It is possible to implement this entire
systemon a single chip. Suchanalog instructions could, for example, find contours ofa gray scale
image (performed in a microsecond) or detect moving objects of a given speed. By their simple
combination, the contours of objects moving with a given speed can be detected. The CNN
Universal Machine canbe implemented in analog VLSI (with embedded logicandwith or without
digital interface and optical on-chip sensors) [13,14] which leads to the analogic microprocessor,
an image processing supercomputer on a chip. Other implementations are also emerging (optical
and special purpose digital hardware emulation). A hardware/software toolkit for PCs is available
[15] for designing andtesting analogic algorithms, andused worldwide



This paper describes the first two aspects of the overall implemenation of the bionic eye:
(i) the computing model, (ii) the circuit architecture with its rich, yet tractable, nonlinear
dynamics, and(iii) the silicon implementation ofthe device..

The CNN architecture is remarkably consistent with the structure of many biological
systems. Its anatomy can be represented by a 2 1/2 D regular grid (a couple of 2 D layers in the
third dimension), the interactions are mainly local (the receptive field or the CNN cloning
template), and the mainly uniform processing units and interconnections have nonlinear dynamics.
A striking example is the retina [4,17]. It is not surprising that CNN models [6,7] and heuristic
local interaction type computer programs [8] were developed independently. The term bionic is
used in a rigorous way: a nonlinear, dynamic, spatiotemporal biological model implemented in a
stored program electronic (optoelectronic) device; this device is, in our case, the analogic CNN
Universal Machine (or chip).

The analogic CNN Bionic Eye [18] (henceforth referred simply as the Bionic Eye),
followed quite naturally from the conception of the CNN Universal Machine. The idea is to
combine algorithmically the building blocks of elementary retinal functions (and other 2 1/2 D
sensory organs), in the stored program of a CNN Universal Machine, with artificial analogic
programs.

The aim of this paper is to report on this new invention in a tutorial way, addressed
basically to electronic and computer engineers.

Chapter 1 describes some ofthe biological aspectsofthe retinal function.

(i) Section 2.1 summarizes the general principles ofretinal modelingin CNN.

(ii) Section 2.2 describes the new CNN circuit and template design innovations implementing
known or yet to be discovered retinal functions and those of other sensory organs in the CNN
Universal Machine;

(iii) Section 2.3 showns how to combinegiven retina models implemented in the CNN Universal
Machine with analogic algorithms to form the bionic retina for for generating super-retinal
functions.

Chapter3 shows how to combine several bionic retinal capabilities, other topographic modalities,
and analogic CNN algorithms to form the analogic CNN Bionic Eye. Specifically:

(iv) Section 3.1 describes the programmable implementation of several bionic retina capabilities
on a CNN Universal Machine.

(v) Section 3.2 outlines the combination of different sensory modalities and artificial analogic
algorithms, running on the CNN Universal Machine.

Chapter 4 describes application areas of the analogic Bionic Eye and possibilities of constructing
innovative devices based on this invention (such as the bionic eyeglass or the visual mouse).



In addition, Section 2.4 briefly summarizes the qualitative aspects of the models and their
optoelectronicimplementations introduced here.

The invention does not deal specifically with thedetails ofhowto make CNNmodelsfor
any given function of a known or yet to be discovered retina (or other sensory organ) using
techniques described either here or in otherpapers cited above. For such details the interested
reader can consult [6,7,18,19,20,21]. Similarly, we are not considering here the many
interesting non-programmable (in a storedprogramsense) VLSI implementations ofsome visual
effects orJunctions. These could easily be incorporated into instructions or subroutines of the
Bionic Eye.

1.1 A functional analysis of the retina

The retina'is a special part of the brain that has been brought to the sensory periphery.

After its photoreceptors convert the patterns of light into patterns of neuronal activity, an

elaborate neural apparatus adjacent to, and driven by the photoreceptors performs a series of

highly sophisticated preprocessing operations upon the visual message. There must be compelling

reasons to separate the retina and its complex neural structure from the rest of the brain, because

the biological complexity of the initial design is overwhelming: This complex neural tissue of the

retina hasbeen physically separated from the rest of the brain, organized into at least 5 complete

neural layers (Figure 1), each containing millions of neurons, all made perfectly transparent, yet

provided with an adequate blood supply.

Why has theretinabeenseparatedfrom the brain, whattransformations take place in the
retina, why are they necessary, how are they accomplished, and what forms of information
finally emerge from the retina to supply the brain with the signals that allow us to perceive the
extreme richness ofthe visual world?

A brief answer to each of these questions provides an account of the functional
organization ofthe retina as outlined below.

Why is the retina separated from the brain?

Simply stated, visual images enter the retina via its photoreceptors, and a composite of
"neural images," patterns of activity embodied in arrays of neurons, emerges from the retina via

the optic nerve. Photoreceptors are connected to a series of laterally connected neural layers
located very close to—only a few microns from-the photoreceptors as shown in Figure 1. This is
important, because by shortening the distance signals must travel for further neuronal processing,
all neuronal integration, including important lateral interactions, can be performed without the
need for action potentials or nerve spikes. (The alternative arrangement would require that the
photoreceptor signals be transmitted overmany centimeters to reach the rest of the brain. Action

potentials are required for propagation ofactivity overdistances greater than a few microns). The
absence of action potentials allows neural interactions to occur using continuous rather than the



moreconventional pulse-like action potential signals found throughout other parts of the nervous

system. Continuous signals have the advantage that the information they carry can span a broader
dynamic range, and simple spatial and temporal filtering can be used to reduce noise, a problem
inherent in all high-sensitivity sensory signals. It can be shown, for example, that the retinal

pathway, including only the small handful of neurons that funnel information from each of the

photoreceptors to ganglion cells, has a dynamic range of at least 100:1, much greater than the
normal dynamic range of spiking cells. The properties of continuous signal processing are still

being explored by physiologists, and such continuous signals are used to great advantage in the
function of the biological retina as described below. This provides one of the strong motivations
for modeling the retina using the analog VLSI technology ofCNN which, not coincidentally, also
processes continuous rather than digital signals.

What transformations take place in the retina?

Photoreceptorgain control

The retinal transformations can be divided into two main functional classes, each taking
place at a physically separate site. At the outer retina a variety ofadjustments in GAIN take place,

processes that are conventionally called visual HadaptationM[58]. At the inner retina different

spatial regions are associated with one another in TIME, resulting in movement detection,

directional selectivity and contrast gain control [55] [53]. A relatively minor but global form
adaptation is mediated by changes in the size of the pupil which changes diameter by about 4:1
leading to gain changes ofabout 16:1. All other gain changes are mediated at local regions ofthe

retina. The most dramatic form of adaptation takes place in the photoreceptors themselves,
particularly thecones, where gain changes of one million to one can be achieved. The objective of
this gain-changing operation is to center the relatively narrow instantaneous dynamic operating
range ofeach ofthe cones (about 100:1) at the local ambient intensity level, so that increases and
decreases in intensity around that ambient level can be detected with highgain as shown in Figure
2. This effect occurs in each photoreceptor, so the effects of local changes in gain, matched to
eachreceptor's historyofintensitycanbe accommodated.

Bipolar cell gain control

Following the gain changes in individual photoreceptors, a further adjustment is made in

the second layer cells. These cells, called bipolar cells have a dynamic range that spans less than
10:1, so their range must be precisely aligned with the ambient levels [56]. The process is also
accomplished locally, but now the local effect isbroader than the area spanned by a single neuron.

The effectis initiated by a class oflaterally connected cells, called horizontal cells that are coupled
to form a broad, continuous neural sheet across the retina. To a first approximation this sheet

behaves much like a resistive grid (although the physiology is much more complicated than this).

These cells are modeled by a diffusion process). The result of this operation is the formation ofa



continuous spatial intensity average, with characteristic space constant across the horizontal cell

layer. The level of activity at each point in this spatial average establishes a grid that sets the
functional centerpoint around which the narrow dynamic range of the bipolar cells can signal
increases and decreases in intensity as shown in Figure 2. Note that all of the neural activity
discussed so far is carried by continuous signals, via local interactions between neighboring
neurons, and can therefore be easily implemented in a CNN model which also utilizes continuous

signalsand local interactions.

Formation oftransient activity

All of the activity encountered so far in the retina is used by bipolar cells to signal the
-presence of visual targets: to put it simply, when the target is present the bipolar cells are active
when it is absent, the cells are silent. This forms one type of retinal output shown in Figure 3A.
But at the synaptic outputofthe bipolar cells a transformation takes place that creates signals that
identify, not the presence, but the arrival and departure ofthe targets [55]. This transformation is
implemented in avariety of ways, even in a single type of retina, all of which truncate activity in
the bipolar cells shortly after its initiation. In some cases a signal from the postsynaptic cells feeds
back to the bipolar cell to turn it off. In other cases synaptic release from the bipolar cells is
inherently transient. It is also possible that the postsynaptic cells "desensitize" to the arrival of
synaptic transmitter from the bipolar cells. Whatever the mechanism, the result is that the

postsynaptic cells respond, not to the presence, but to onlythe arrival and departure ofthe visual

target as shown by the responses in Figure 3B. This transformation sets the stage for a variety of

transient, change-sensitive operations thatoccur subsequently in the inner retina [52]
Broadcasting transient inhibition across the retina

The transient signals described above move through the retina in two orthogonal

directions. They are communicated vertically to the retinal output cells which therefore carry
information about the arrival and departure of targets (Figure 3B), and they carry information
laterally, inhibiting in a transient way, activity at sites lateral to the location of the initial

appearance of the target. These lateral signals mediate a variety of interesting physiological
functions: 1) In some cases they inhibit all activity within range oftheir processes as a function of
their activation. Since they are activated more by moving contrasting boundaries, they turn down
gain via a shunting mechanism by an amount related to contrast in the environment, a
phenomenon called %%contrast gain control." 2) In other cases lateral inhibition acts only in one

direction, not the other. In these cases movement is inhibited in the direction ofinhibition, but not

inthe other. This phenomenon is called "directionally-selective movement detection." 3) It is also
possible that this change-sensitive system responds to global dramatic changes in intensity such as
those that occur when we make a saccade or blink, and the laterally directed signals then act to



turndownthe retinal output during theseevents. This laterally directed change sensitive inhibition
actsto truncate the already brief response to light as shownin Figure 3C.

The retinaloutput is tiled witha varietyofviewsofthevisualworld

The retinal output, expressed in the activity of these several classes of output (ganglion)

cells, consists of the overlay of a variety of images [52]. Each of these forms of output activity

tiles the retinal output mosaic, so each form of retinal output is found everywhere across the

surface of the retina. From the above discussion it is almost possible to infer the ensemble of

outputs that the retina.-will.provide .for..higher, centers. First, .the output will contain a

representation of the presence of the visual image (3A), an output pattern derived from the

bipolar cells described above. This could be described as a "presence oftarget" detector. Second

the output will contain a representation of the "truncated" pattern described above (3B). Each

point in retinal space will respond to the arrival or departure ofa target from its area giving rise to

an output pattern that exists only when the input stimulus is moving. This could be thought of

therefore as amovement-detecting system. Finally theoutput will consist ofa movement detecting

system that is itself turned off by global movement. A target moves, its movement elicits a

response to movement as well as an inhibitory field resulting from the movement, and then that

movement-initiated signal is turned offby the broadcast transient inhibitiondescribed above. This

output pattern couldbe described as anacceleration detector, or more accurately an initiation-of-

movement detector. These three patterns representing the presence of the target, its movement

and the finally the initiation ofits movement, are interlaced across the retinal output and each fully

tiles the retinal output, but in many animals the different forms of activity may travel to different

and specific destinations in the brain [45]. In wayswe do not yet understand, the brain integrates

information about the presence of visual targets, their movement and the initiation of this

movement to form a coherentand extremelyvital impression ofthe visualworld.

1.2 An overview of retinal function in different species

Basic Retinal Functions: The ON and OFFcell types.

Are all vertebrate retinas alike, or is there a wide variation in overall function? Most

modern studies involve activity in a particular retina, and very few comparative studies of retinal

function areavailable. For an overview ofretinal function the reader is referred to [17]. To a first

approximation, all retinas deliver at least 2 main forms of output images [17], and the response



waveforms of individual retinal output "pixels" are shown in Figure 3. Figure 3A shows the

activity ofa "sustained" output cell, where activity level is monotonically related to intensity over

a limited range ofintensities. The output (ganglion) cells in this category arereferred to as ON or

OFF cells. In cat, these cells are referred to as X types, whereas in monkey, they are referred to

asP types. Figure 3B showsthe "transient" form ofactivity in another class ofoutput cells where

signals are initiated at the arrival and/or departure of the visual signal. Ganglion cells in this
category are referred to as ON-OFF cells, or asY cells in cat or M cells in monkey. Figure 3C

shows yet another class of change-responding cell where the activity is truncated even more

rapidly, so the activity of these units seems quite brisk. Each of the 3 cell types is often

characterized in terms ofits "receptive fields", referring to the weighting, in space ofthe stimulus

that determines the response characteristics of these cells. Most cells have concentric receptive
fields in which a central "excitatory" region is surrounded by a region of "inhibition." For the

sustained, X, or P cell types, the interactions between center and surround appear to be linear
over a broad range of stimulus intensities, whereas the transient, Y, or M cells show a non-linear

center surround interaction. This simplified description of retinal output characterizes only two

main types of cell, but it is possible to dissect these types much further, and many different

subtypes can be described.

Specialforms ofretinalfunction. -

In addition to these general forms of activity found in all retinas, there are some special

functions that are found in specific retinas. For example, the Y type cell described above and

shown in Figure 3B and C will respond to movement since it generates a response at the arrival

anddeparture oftargets, not across its entire receptive field, but across subunits ofthat field. As a

further elaboration, the retinas of some animals, notably frog, turtle, some fish, birds and rabbit,

contain output (ganglion) cells that respond to movement in one direction and not at all to

movement in the opposite direction. This funcion, termed "directionally-selective movement

detection" is thought to be mediated by some form of asymetrical lateral inhibition involving

amacrine cells, but the exactcircuitry has not been elucidated in anyanimal. Additional properties
ofthese cells can be found in [56].

Other differences in retinal function involve issues of acuity, an essentially optical

phenomenon, issues ofrod vs cone function andthereforerelated to color vision, for which retinal

circuitry is not well understood, and issues of timing where mammalian retinal function can be

faster, by a factor ofabout 5, than that ofcold blooded animals. In the mammalian retina a special

pathway connects the rod photoreceptors to the retinal output cells that differs from that in cold
blooded animals.

1.3 Retinal Neuromodulation: The reprogramming ofthe retina.
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The differences in anatomy and function between classes of retinas are significant, but
differences in function for any one retinal type, mediated bydifferent effects of neuromodulators,
is even more fascinating. The best-studied neuromodulator is dopamine, which has now been
shown to affect the input and output for almost every retinal cell type [50]. It is thought that
dopamine is released in the light and serves to increase the speed of responses, change the size of
receptive fields, switch the emphasis of retinal integration from rods to cones, and mediate a
variety of other functions that are not yet understood. The extent of diffusion through various
retinal layers is decreased, the strength of synaptic connections between retinal layers is, for the
most part, enhanced. Specific components of different cellular responses are either up- or down-
modulated-The list ofspecific effects onretinal elements isquite large, but the overall effect ofall
these effects acting in concert has notbeen determined. One value ofmodeling the retina in CNN
is that it will be possible to include each and/or every experimentally measured alteration in
function in the components of the model, and then measure the individual or overall effects of

these changes in the retinal model output.

1.4 Other sensory organs

The retina is but one ofmanyexamples ofa sensory systemin vertebrates that performs its

analysis using stacked 2D arrays. Other examples include the somatosensory system [41] , the

olfactory system [42], as well as the sense of taste [43]. In the auditory system, pitch is initially

encoded along a single dimension at the basilar membrane. But further analyses features of the

auditory input are carried out along a 2 dimensional grid including, for example, pitch and phase,

or pitch and ipsi or contralateral input, at higher centers [44]. All sensory modalities except

olfaction are relayed via the thalamus, another 2 stacked dimensional array, and then to the

cortex, also well known for its characteristic 2D layering. In almost all cases the stacked layers

eachcontains an in-register topographic representation ofthe original 2D image. As one proceeds

from the periphery to higher centers in the nervous systemthe representation at each succeeding

layeris transformed primarily via local neuronal interactions.

In many cases, more than one sensory sub-modality is carried by a single 2D neuronal

array. For example, in the visual system, information about the identity of a visual object and

information about its location seem to be carried by separate pathways within the same array.

These so called -"what" and "where" messages are carried in parallel at the retina, lateral

geniculate nucleus (LGN), and early cortical areas before finally being segregated into completely

separate 2D regions at the higher cortical levels of V4, MT and others [45] . In most cases we

attribute these 2D arrays to cellular layers in the retina, LGN and cortex. But in some cases 2D

layering also exists within the neuropil itself, as for example in the inner plexiform layer of the

retina [46].
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The CNN architecture, consisting of 2D arrays of computational "cells," is a natural

modeling environment for the nervous system. It matches well the preponderance of 2D arrays

found throughout the sensory (and motor) nervous system, which contain overlapping,

topographic maps of visual space. These maps are repeated and transformed by mostly local

neuronal interactions, transformations that can be easily transformed into CNN templates.

Because CNN algorithms are so flexible, it is a relatively simple matter to modify these templates

according to experimental alternatives, so that "what if' experiments can be carried out. For

example, it is possible to perform specific ablation experiments in the visual system to determine

the role of specific interactions. These and other "experiments" will be provide an important role

for CNN in unraveling some ofthe experimentally inaccessible mysteries ofthe nervoussystem.

1.5 The CNN model: capturing the essence and details of the 2D sensory organs

The essence ofthe Cellular Neural Network paradigm [1,16].

Consider a 3 dimensional regular grid consisting of a pair of 2 dimensional grid layers,
and place mainly identical dynamical nonlinear systems at the grid points of each layer. These
dynamical systems are the processing elements (here we will call the elements processors or
units). Figure 4 shows such an arrangement. The different symbols at the grid points represent
different possibly identical processors 1. Introduce, possibly nonlinear and dynamic, interactions
between the units. These interactions are mainly regular and local, within a finite radius of each
unit. Figure 5 shows such an interaction graph in 2D and 3D neighborhoods of 4 and 6
respectively. In a simple example with linear interactions, in which each interaction can be
represented bya single number, this interaction pattern, called also cloning template (or template),
can be displayed as in Figure 6 (the positive and negative values of the template elements are
shownin a template matrix).

A simple unit and cloning template configuration are shown in Figures 7 and 8. Feedback
refers to the case where the output is the controlling variable, whereas feedforward refers to the
case where the input is the controlling variable. Figures 9 and 10 show the template elements as
interactions. In Figure 10 we use the words "recursive" (where VCCS's are controlled by the
cells' outputs) and "dendritic" (where VCCS's are controlled bythe cells' inputs) to describe the
templates ina more biologically consistent language.

In an image processing application, each picture element, orpixel, isassigned to asingle
CNN processing unit. The gray level ofthe given pixel could becoded as avoltage signal value at
the input orthe initial state. Normally black iscoded as +1 V, white iscoded as -1 V with grey
values in between. Hence, two images can be coded independently as input images. The output
image can be represented as the output voltage. Color images can be coded either by 3layers or
by using complex cells orby interlacing.

Depending onthe models of the units and the interaction patterns, awide variety of
CNN's can begenerated. Image processing systems, partial differential equations, physical and

12



chemical systems, population dynamics, robot control are just afew possible applications. It
should be obvious now from the preceding sections that CNN is an appropriate substrate for
modeling sensory organs, reflecting the anatomy and capable ofmodeling some important aspects
ofcellular and synaptic physiology. Without going into the details ofthe dynamic equations ofthe
various processor and template types, we summarize the most important CNN classes in Table I
[16] and emphasize that even with very simple models an infinitely rich world ofspatiotemporal
dynamics can be generated. Equilibria, oscillations, chaotic spatiotemporal dynamics, static and
dynamic spatial patterns (like the Turing patterns) are members ofthis world. The interesting
point is that all these phenomena can be generated by carefully designing the 1st, 2nd, and 3rd
order elementary unit dynamics (defined either by equations or by equivalent electronic circuits)
and the cloning templates (using memoryless or dynamic ones). Some processor circuits are
shown in Figure 11. In addition to the 3rd order chaos circuit, called generalized Chua's circuit,
2nd and first order ones are also shown, including the so called artificial neuron which represents
the simplest nonlinear amplifier.

TABLE I

Various classes ofCNN models

Grid types Processor types Template types Types of spatial
dynamics

triangular, square,
hexagonal

linear, piecewise linear, linear, nonlinear, delayed continuous-time or

constant or regularly
varying grid size

single or multiple
resolution (e.g. fine,
coarse)

planar or circular

nonlinear

passive or active

first-, second-, third-
order dynamical system

with or without local

analog memory

with or without local

logic

with or without noise

source

function ofone or two

variables

memoryless or dynamic

noiseless or noisy

centrally symmetric or
asymmetric

fixed or programmable

controlled (time varying)
or stored

discrete-time

transient, equilibria,
oscillating, chaotic

local or propagating

deterministic or

stochastic

A typical simple dynamical equationdescribing a singlelayerCNN is as follows [1,24,19]:

(1) dxy /dt =-axjj +I+Iinput + Ioutput
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=e.g. -a*ij(xij) +I+Sb*ki (ujd) +EAjj;ki(yy,xy)

=e.g. -axy +I+Zbfci uy + Saw Ykl + sa*klYklxij

where the summation in the indiceskl runs over the entireneighborhoodofradiusr.

Many , more complex yet useful dynamic equations are used extensively. Even complex
partial differential equations (PDEs) can be solved [e.g. 29], and various pattern formation
mechanisms can be explained and generated by CNN models. Indeed, the term "neural network"
refers only to a very special case of a much broader range of types of processors and
interactions.

1.6 The CNN Universal Machine and chip

The CNN Universal Machine and Supercomputer architecture [3], is the first stored
program analog processor array. CNN type analog nonlinear spatiotemporal dynamics are
combined with local and global logic, hence, it is called analogic computing. Based on this
architecture, a new world of algorithms is emerging where an elementary step or instruction
generates complex spatiotemporal dynamics. The cloning templateis such ananalog instruction.

The basicideasbehind thedesign ofthe CNN UniversalMachine [3J.

With the CNN array as a starting nucleus, each processor (unit) itself consists of a set of
distinct yet compact functional units. Figure 12 shows the augmented processor (called also
universal cell). The local analog memory (LAM) contains a few analog circuit blocks capable of
storing anyvoltage value within an interval [-a, a] and which can be quickly accessed (reloaded
into theunit) One block isused for storing the input, one for the initial state, and a few blocks for
storing the outputs.. These memory sites are essential for the execution of multistep algorithms
since they store all the intermediate results locally, unit by unit, pixel by pixel. In many
applications, a CNN template is used to detect areas of an image containing certain specific
features. In this case the detected pixels will be coded black and the remaining ones white. It is
often useful to code these as logic YES or NO values, respectively, and store them in local logic
memory (LLM) as ones and zeros. Consecutive logic values are stored in LLM. A local analog
output unit (LAOU) and a local logic unit (LLU) are provided to operate on consecutive analog
or logicvalues, respectively.

Each processor contains avariety of switches with which locally-stored values at each cell
can be moved within this processor and to/from the outside world. A wide variety of different
image processing operations can be performed, depending upon the settings of the switches. The
switches are controlled globally in the sense that at any given time the switch configuration for all
processors is the same. The global analogic program unit (GAPU) communicates with each
augmented processor via their local communication andcontrol unit (LCCU).

The global analogic program unit (GAPU) is the heart of the CNN Universal Machine
architecture. It controls the whole array of extended processing units. Figure 13 shows the main
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components. The analogprogram register (APR) stores the valuesofthe analog instructions, i.e.
their template elements. These values are communicated (wired) to all units (19 wires in the r=l
neighborhood). The instructions for the local logicunits are stored in the logicprogram register
(LPR) while the switch configurations are stored in a switch configuration register (SCR). All
these three registers are selectedby the global analogic control unit (GACU) which containsthe
physicalmachine code for the whole processor array.

The analogic algorithms can be programmed in a high level language (called analogic
CNN language or ACL). Compilers and operating systems [26] transform the high level code to
the physical digital codesof the GACU. The analogic algorithms are flow chartswith elementary
analogic CNN instructions (analog templates, local analog and logic storage, local analog and
logic operations as well as global operations (some simple global operations are useful and
available). Though this architecture was developed quite recently, many analogic CNNalgorithms
havealready beendeveloped for solving complex real-world problems [e.g. 27,28].

Differentphysical implementations ofCNNarchitectures

As it was already mentioned, the CNNUniversal Machine architecture can be physically
implemented by a variety of different technologies. Using CMOS VLSI technology, both analog
or emulated digital realizations have been designed. The single chip design with or without optical
sensorshostingthousandsofprocessorsis called the analogic microprocessor. Its digital interface
to the outside world for programming and its speed in the range of million million (trillion)
operations per secondmakes it a unique stored programmed device for image technology and for
the implementation ofthe Bionic Eye.

2 CNN IMPLEMENTATION OF RETINA MODELS AND THE BIONIC RETINA

2.1 General principles of retinal modeling in CNN

Objectives in modeling neuronal systems.

Having the CNN architecture, a modeling substrate that quite naturally conforms to the

structure and function ofthe retina, does not in itselfgive us license to model the retina. There has

to be a goal to our work that goes beyond the intellectual exercise of simply duplicating retinal

function in silicon. For example, a significant model was generated in an earlier study by another
group using analog VLSI (Mahawold, Mead, etc [33]). The objective of that work seemed to be

the demonstration that a physical metaphor could be found to correspond to a variety of

biological functions. For example, in that study, the inherent property of the phototransistor was

used to simulate the log transform thought to be implemented by photoreceptors in the

phototransduction process. In addition, a resistive grid was used effectively to simulate the

diffusion function across an electrically coupled layer of retinal horizontal cells. Finally the

diffused signal was subtracted from the photoreceptor signal to generate a difference signal that
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corresponded roughly to the pattern of activity in retinal bipolar cells. That model was not

intended to be perfectly biologically accurate, although in its general form it did simulate a variety
ofbiological functions, and it generated some emergent visual functions such as the Mach bands

associated with edge enhancement and various visual illusions. Similarly, the early CNN retina

models were mainly based on phenomenology [7].

Different types ofmodels answer different types ofquestions

Using CNN, our modeling efforts are directed towards a different set ofobjectives, based

upon the advantages ofusing CNN as the underlying substrate. Different classes ofmodel can be

generated and aimed, for example, at exploring retinal physiology or testing or creating entirely

new visual paradigms. The modeling possibilities open up an exciting new, and badly needed

experimental tool for physiologists. During the past decade a daunting number of physiological

studies have defined a vast set of details ofretinalfunction. It is the current fashion for each of

these studies to focus on a different set ofmembrane events in individual neurons. For example, a

broad rangeof studies defines the effects oftransmitter substances at a particular dendrite, and the

modulation ofthe effects ofthese transmitters by a second neuroactive substance [50]. In another

set of studies, the voltage-gated currents that shape a cellular response is characterized [51].

Although a great deal has been learned about these individual membrane events, there does not

exist, at present, any effective method for bringing these individual events together to determine

how each event, or the entire ensemble of such events, contributes to overall retinal function.

CNN design can address these questions and provide us, for the first time with a view of the

visual functions that emerge from individual membrane events as well as the emergent properties

ofthe ensemble ofmembrane events throughout the retina.

UsingCNN to study retinal physiology

CNN modeling is particularly useful for evaluating the results of retinal physiology.

Becausethe CNN is easily programmable, the structure ofthe model is itself dynamic, so in CNN,

one constructs, not a single model, but a broad class of modeling possibilities where time, space

and synaptic functions (defined below) are easily adjusted. This allows a broadvarietyof"what if'

questions to be addressed. The kinds ofquestions that canbe addressed depend upon the level of

detail in the model. For example, if the model included the now-almost-unending array of

membrane events that shape cellular function, the role of these events in overall retinal function

can be addressed. Neuromodulators act to "reprogram" the retina, based upon intrinsic retinal

activity or extrinsic events, but these neuromodulators tend to act at many different retinal sites

simultaneously [50] It would be impossible to determine, in a physiological experiment just how

modulation ofan individual membrane event contributed to visual function, but in the CNN model

such "what if questions can be easily addressed. In many cases it is impossible to make certain

key physiological measurements. We can't measure, for example, the geometry of amacrine cell
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activity thatunderlies movement detection. This kind ofmeasurement could be made in the model
by assuming a variety of different plausible geometries, and then measuring which class of
geometries most closely approximates overall retinal function.
Transferring biological relevant dataregarding retinalfunction to CNNmodel

The first decision to be made in this kind ofmodeling is where along the pyramid ofdetail

to begin the process. If one begins at the membrane level, including all voltage-and ligand-gated
conductances, the level of detail is so overwhelming that the modeling process becomes bogged

down in a morass ofunknown unmeasured and sometimes unmeasurable quantities. On the other

hand, if one begins at the very broad, phenomenological level, the model lacks enough

physiological detail to be useful in addressing any interesting physiological questions. We chose to

begin these studies at the "network" level, defining the time and space constants for arrays of

cells. At this level, the success of modeling with CNN lies in our ability to associate the

appropriate space and time constants ofretinal networks with the CNN templates that accurately

reflect these values in CNN activity as described in Section 2.2.

Almost all layers of retinal cells can be characterized as having a specific space constant,

which to a first approximation is due to resistive coupling between the elements of the array,

although chemical synaptic coupling could sometimes be involved in extending the space

constants. The space constant for a retinal cellular network was measured usually by presenting a

light-dark edge at different locations across the array of photoreceptors while recording from a

cell in each ofthe networks of interest. The space constant could then be measured as the falloff

of activity as the light-dark edge was displaced across the retina. Using such an edge is more

useful than a spot because it reduces the normally two dimensional radial symmetry, requiring the

use ofBessel functions, to a one dimensional problem, andthese spaceconstantswere most often

approximated by a single exponential as shown in Figure 14. The modeling of these constants is

described in section 2.2.3.

Time constantsaredetermined, not by the membrane time constantsthemselves which

weretypically ofthe order of 1-2 msec, butby the processes ofvoltage-and ligand gated currents
aswell as second messenger eventswithin the cells themselves, giving time constants ofthe order

of50 to 100 msec. Experimentally, the time constants were estimated from the normal rise and

fall oftherecorded cellular responses. These values can be implemented using the controllable
capacitorsand delays described in section 2.2.1.

In addition, communication between networks across retinal layers, relating potential in
one cell with the potential inits postsynaptic counterpart, involves input-output functions, here
called synapticfunctions. These functions were measured byrecording either simultaneously or
sequentially from the pre and postsynaptic cells and correlating their levels of activity over abroad
response range. Inmost cases these functions are S-shaped reflecting the dose-response function
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atthe postsynaptic membrane. In some cases thesynaptic functions appeared to bemore
exponential. These functions were implemented either as analytic functions oras lookup tables.
Although many ofthese synaptic functions have been estimated by experiment, others have not
been measured directly. In some cases it was therefore necessary to assume values for these
functions and show, through the modeling process, that the overall performance ofthe model was
either consistent with the assumptions, or that wide variations in the assumed valueshad little
effectuponthe overall performance ofthe model. Figure 15.

The space and time constants can be defined, calculated, and measured in arigorous way.
The time constant of aretinal layer isthe elapsed time from the initiation of a step-like excitation
at a cell until the level of the response reaches a given percentage of the entire change of the
response at the cell ofthe excitation. The percentage may be chosen as 50, 71 (1/V2), or 37 (1/e)
% . This time constant can be uniquely measured as well as calculated by using any CNN
simulator.

The space constant can be defined as follows. We apply a given constant light stimulus.
This stimulus could be a light stripe with a given minimal width. The space constant is the
distance from the light-dark edge of the stripe in the dark region where the activity of the cell
response is the 37%(1/e) ofthe constant stripe stimulus (illumination).

2.2 Some circuit and template design innovations

We intoduce here four design innovations specifically aimed at facilitating the conversion
of physiological and anatomical parameters in the visual system into the apropriate cloning
templates for retinal modeling. These are:

• the controllable capacitors and delays

• programmable layercompression andexpansion

• identifying the CNN templatesby parameter measurements on the livingretina, and

• some mechanismsofadaptation andneuromodulation.

Various nonlinear synapticinput-output functions that canbe approximatedby exponential
and polynomial functions can be directly implemented in CNN by a few transistors. Standard
approximation techniques using nonlinear circuits can be used to apprximate more complex
shapes.

2.2.1 Controllable capacitors and delays

As mentioned in Section 1.1, biological retinas act primarily to abstract informationabout
the dynamics of the visual scene. Movement, direction of movement, onset and termination of
local and global events, expanding and contracting images associated with, for example,
approaching targets, are common elements of visual function. Sometimes these dynamic effects
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are directionally sensitive, there are different dynamics in the different template elements. To
facilitate the template design when modeling these effects we have introduced the controllable
capacitor and delay. Controllable capacitor circuits and a delayed circuit are shown inFigure 16.
The usually voltage controlled capacitor can be inserted either in parallel with the state capacitor
(membrane capacitor) or into a parallel or series branch of the OTA (operational
transconductance amplifier) implementing the template elements as VCCS (voltage controlled
current source). This controlled capacitor effect can also be implemented by switches controlled
by the analogic algorithm. By switching in additional capacitors with active elements, delays can
be approximated using well known allpass structures. When the delay is quite large compared to
the time constants of the CNN unit, as when a single level or a signal with a couple of
representative levels are to be delayed, the local analog memory of the unit can be used. In this
case the delay is introduced by the analogic algorithm (by sampling the value(s) at a given time
andthen switching-them in laterat the appropriate times.

Sometimes, dynamic effects modeled by delays can be equivalently modeled by capacitive
circuits [e.g.32]. In these cases, through the controlled capacitors, the key dynamic properties of
the models canbe controlled (e.g. shapes, rise times, decay times, or frequencies ofspiketrains).

Some ofthe actions implementable with these elements areas follows.

• By controlling the state capacitor Cx the basic response dynamics of each unit can be
changed . In motion related applications this can be used to match the CNN chip speed to the
speed ofthe object seen by the chip.

• The control of the capacitors or delays in the different template positions provides for
the implementation of directionally sensitive dynamics, i.e. modelling directionally sensitive
motion detection.

• By using different time constants in different layers, as when using complex CNN units
having more than one processing unit in a complex cell, the time constant differences between
different retina layers can be modeled. The same effect can be used when the spatial cascading in
the 3rd dimension is implemented by time multiplexingthe consecutive layers.

• The application of artificial CNN dynamics to the biological models, allows us to
generate controllable diffusion and wave-type effects which can be useful in various forms of
motion detection..

2.2.2 Programmable layer compression and expansion

Biological retinas consists of sheets ofneurons, arranged inverylarge arrays consisting of
between 10*> and 10^ neurons. The number ofelements decreases dramatically as one moves from
the outer to the inner layers of the retina. Therefore the grain of the retina changes. In order to
account for thechanges ingrain and to accommodate to thetwo major resolution systems insome
species (magno and parvo systems), we include intheBionic Eye a mechanism for programmable
layer compression or expansion. Two types of compression and expansion techniques are
introduced. The first changes the grain within a layer, the second changes the number of layers.
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Both changes can be implemented in a programmable way, as a part of an analogic CNN
algorithm.

Within a layer, the change in grain allows the number of elements and the distance
between them to be modified bythe program. Figure 17 shows the solution. The processing units
in the coarse grid , larger boxes, have switches in their template element connections. The
switches are shownin their ON positions to implement the fine resolution. If these switches were
set to the OFF position then the sparse wires denoted by dotted lines will connect the processing
units in the coarse grid directly and all the other units will be idle, disconnected from the coarse
grid CNN system. Hence, using only one extra bit in the switch configuration register and one
extra switch in the templates of the coarse grid units, thewhole system can be switched ON and
OFF between the two grid resolution. Using the local memories, the features detected bythe fine
grid can be further-processed in the coarse grid with different templates, all in an algorithmically
programmed way.

Multilayer CNN structures are implemented in two ways. 1) A single complex unit can be
formed by packing a series ofunits above agiven basis layer. For example, in representing color
images byRGB values, the 3 layers (R,G, and B) are lumped into a single one having complex
units composed ofR, G, and B layer units [16]. 2) The anatomically separate units can be time-
multiplexed. For example, the result of a layer is stored locally and used as input for the next
iteration when the templates of the next layer are programmed. The two methods can be
combined efiBciently. We can use complex units for as many layers as the minimum number of
layers covering inter-layer feedback .cascading them into a time multiplexing scheme. Figure 18
shows thebasic modeling scheme of multilayer systems The layer interaction graph ofthesystem
of consecutive layers (a) is shown in (b). This graph has a loop. The layers in a loop are lumped
into a complex layer (1,2,3) and the interaction graph of the condensed layers (c) has no loops.
The loopfree layer interaction graph is implemented in a time multiplexed way described above.
The spatial sequence of layers is transformed into a time sequence on a single layer of the CNN
Universal Machine by exploiting the local analog storage at each unit. The output of a layer,
which will be the input of the next one can be represented as a series of values in time.. Signals
with given waveforms can also be stored by sampling them at a few time instants. These values
are stored in analog memory places (LAM[i]) and from these samples a simple circuit generates
the signalwith the appropriatewaveform.

The retina canbe modeledby 5 or 6 different layers, the LGN (lateral geniculate nucleus)
by one complex layer, and the relevant part of the visual cortex by several additional layers. In
each layer, different functional components each of which tiles the entire visual surface can be
switched or combined. This applies to functions such as the magno and parvo grid (sustained and
transient activity) as well as the ON and the OFF pathway. Additional layers can be introduced to
make more elaborate models. Similarly, this scheme can be conveniently applied to account for
the interactions between the many maps in the visual cortex, coding, for example, the "what" and
the "where"aspects ofthe visual signal [45]. This complex compression and expansion scheme in
time and space provides for an algorithmically controlled dynamic transformation between space
and time in the 3rd dimension, as well as a dynamic control of different resolutions within the 2-
dimensional layers.
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2.2.3 Identifying the CNN templatesby measurements on the livingretina

In Section 2.1 we have defined the time and space constants of retinal networks. In
reverse engineering the CNN model of a given layer of a retina we must establish the
relationships between measured physiological parameters andthe cloningtemplates. In Figure 19
we show, in 1 dimension, the measurementofa spaceconstant and its graphical representation as
a diffusion (A) template. Though the shapes are similar, the values are different. The grid
constants for the spaceconstant andthe template values may differ (d and D, respectively). Even
the grid constant of the activity field (where we measure) and the grid constant of the actual
neurons, which are not exactly constant, may be different.

Here, we propose two ways to reverse engineer the template values from activity field
measurements. The input light illumination is an edge (strip) or other form of stimulus and the
output is a single point or a multiple pointmeasurement.

A single measuring point is chosen and an edge is moved to different places across the
retina. Assuming a laterally invariant structure, the change in the positionofthe light edge input is
the same as the change in the position of the measuring point using a fixed position of the light
edge (the same is true in case of other forms of light illumination shape). A simple adjustment of
template values will equate the measured value at a given spatial location with the calculated
value using CNN simulations. To have more precision, the learning algorithmdescribed below can
also be used.

In some cases it may be possible to perform a single input - multiple-point measurement
where the signals representing the space constant couldbe measured using a multi electrode probe
as shown in Figure 20. The measurement gridconstant andthe template grid constant may or may
not be the same. Using more points in the probe as the number of template elements or using a
more sophisticated or more convenient input light stimulus than an edge (lines of different
orientation, moving objects, etc.) will not change the method described below.

The template values are determined by a process using genetic learning algorithms. It has
been used in identifying templates from given input-output pairs [30]. In ourcase the input image
is given. The output activity field is measured bythemultielectrode probe.. The learning algorithm
can be started from the template values identified by single input - single point measurements.

In more sophisticated cases we can measure waveforms and tune the template values to
approximate these waveformsby the CNN model.

2.2.4 Mechanisms ofadaptation

Biological retinal function is not fixed, but can be modified by internal neuromodulators
as the visual scene or the goals of the host are changed. In section 1.1 and 1.2 we have
summarized some of these mechanisms. For example, the "gain" in the retina is decreased by
different mechanisms when global and local brightness of the visual scene increases. Gain is also
decreased in local regions when the texture or contrast in those regions increases. These gain
changes keep the all retinal signals within an acceptable narrow range of response magnitudes for
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the individual retinal neurons, regardless of input conditions.. These forms of adaptation and
neuromodulation can be implemented in the CNN Universal Machine model of the retina to
simulate either local or global adaptation, and can be controlled by either intrinsic or extrinsic
conditions.

In local adaptation mechanisms,

• the template values,

• the switch configurations, and

• the local logic rule

can be changed locally. These parameters can vary according to spatial location. The changes are
controlled by an adaptation mechanismwhich senses some characteristic of the visual scene and
adjusts some parameters locally. This local parameter calculation can depend either on intrinsic
conditions, calculated by some local analogic subroutines, or on some extrinsic conditions
calculated and/or sensed globally and fed through some global wires (channels). Typical simple
examples of these possibilities are as follows. 1) A local average illumination level within a
neighborhood of all CNN units can be calculated by a single template, the result is locally stored,
and this value, as a bias term (I) in the next templates, will control the local sensitivity of the
succeeding templates [16]. 2) Texture detection analogic algorithms can be used to identify
specific features such as textures or levels of contrast. The presence of such features will effect
the three local parameter classes mentioned above. As a global extrinsic parameter, the average
light intensity can be sensed and conveyed to each cell and this value will then be compared to
eachlocal illumination level calculated by anaveraging template.

Global adaptation mechanisms can be implemented either by modifying the 3 parameter
classes mentioned above, now considered spatially invariant, or by modifying the analogic
algorithm itself, according to intrinsic or extrinsic conditions. Some exampleswill be shown later.

. The design techniques described in Sections 2.2.1 and 2.2.2 can be used to implement
additional forms of adaptation or neuromodulation.. The interaction between the low and high
resolution grid (parvo and magno system) can be used, for example, to detect global motion
effects andthe high resolution system canbe modulated according to these global signals.

2.3 Bionic retinas: an analogic CNN implementation of a given retina model combined
with artificial analogic algorithms interpreting the visual world.

The bionic retina is an algorithmically programmable implementationofa retinamodel (or
a part of it) on a CNN Universal Machine augmented with a possible combination of artificial
analogic CNN algorithms. By constructing this combination, features of the visual world canbe
detected and interpreted. A fairly accurate model of a given retina can be implemented on the
CNN Universal Machine, for example on a single chip analogic microprocessor with on-chip
optical sensors. In what follows, we will consider the silicon VLSI analogic microprocessor
implementation ofa bionic retina.
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One important feature of a bionic retina is that all modifications and combinations
mentioned above are made algorithmically, through a stored program. As a simple example,
suppose we are implementing the preprocessing stages of early vision with a retina model and
adding some artificial CNN detection algorithms. For example, we first implement noise filtering
and motion detection via a given retina model. Then we add an artificial layout fault detection
CNN algorithm to detect a prescribed discrepancy in moving objects. Since both the natural and
the artificial parts of the algorithm are implemented on the same analogic CNN microprocessor,
any additional capability can be easily added just by modifying the program. In a simple
experimental project called "bionic eyeglass", the elements ofthis concept were tested [33]. Since
many CNN templates and analogic algorithms are already available (see for example the recent
edition of the CNN library [34]), this way of combining a given natural image processing
capability with artificial ones is easilyimplemented..
Example 1

Watermarks are generally not clearly visible under normal lighting conditions. In this
example we have combined a noise removal retinal model by some artificial analogic CNN
algorithms to detect the almost-invisible water mark with the same clearness as the printed text
next to it.

Figure 21 shows the original image, Figure 22 shows the image processed by a simple
retinamodel, Figure 23 is the result of the bionic retina formed by adding a parallel artificial path
of image transformation to be combined by the retina model. The watermark can be clearly
recognized.

Another interesting aspectofthe bionicretina is to exploit deficiencies in biological vision.
For example, in the case of color image processing, when modeling color blindness [25], this
biological deficiency can be exploited when combined with artificial algorithms to hide
information for people with normal color vision. Some recent results on color CNN processing
shows similarly interesting features, in which invisible parts of a color picture can be detected by
using simple additional CNN templates [37].

2.4 Qualitative aspects of the models and their optoelectronic implementations

The reliable operation of bionic retinas (and other sensory organs) requires that the
biological models and their artificially enhanced versions are qualitatively correct. In our case,
qualitative correctness means stability and the ability to remain within the prescribed range of
dynamics. This property is essential in any algorithmically programmed implementation.
Moreover, it is necessary to be able to check these properties instruction by instruction, to
provide the freedom in algorithmic design (a programming style we are taking for granted when
writing digital algorithms). Fortunately, we can ensure these two properties by carefully analyzing
the CNN templates using available theoretical results. Hence, before inserting a new template or
template sequence into the library of retinal models the stability tests and range of dynamics tests
will be performed.

When placing the optical sensors on the chip in a close interaction with the processing
elements, similar stability tests should be carried out. When the optical sensor is directly engaged
in a template-like interaction then the detailed model ofthe sensor must be considered in the test
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for stability and dynamic range. Modeling the local photoreceptor gain control, a high range of
dynamics can be implemented. This adaptive dynamic range is an important method used to
overcome the limitations ofdynamic range in analog circuits.

The accuracy of thebiological retina isprobably no bettter than a about 1 percent. Under
ideal conditions we can perceive differences in adjacent contrasting regions down to about this
level. In both biological retina and bionic systems accuracy is enhanced by the gain controls
associated withthe forms of adaptation described here[17,56].

3 Combining several bionic retinas and other topographic modalities - the analogic
CNN bionic eye

Now, having the algorithmic analogic CNN implementation ofany given bionic retina (or
other sensory organ), we are in a position to introduce the analogic CNN Bionic Eye. We can
combine the broad range of capabilities of generalized in a programmable way via artificial
analogic algorithms. This is the Bionic Eye, in which the sensory processing capabilities of many
species and or many neuromodulation effects, and possibly of different sensory modalities, are
combined with artificial spatiotemporal analogic CNN algorithms in the unified computing
platform ofthe CNN Universal machine.

The range of possible retinal functions (the retina universe) may include different retina
models of different species and or different effects within a given retina model with all inherent
neuromodulation possibilities. These neuromodulation effects are capable of changing
continuously a given receptive field organization, rod vs cone function, synaptic gains and other
features via the template values and/or the template structures. Hence we can use several fixed
and programmable retinal building blocks, eachrepresenting one or more well-defined functions in
a givenretina, or a well-defined modelofa retinaofa givenspecies.

Presently, the computationally most efficient physical implementation of the CNN
Universal Machine is the analogic microprocessor. Hence, in what follows, we will interpret the
applications ofthe Bionic Eye in this form.

3.1 Programmable implementation of several bionic retinas on a CNN Universal
Machine

Consider the retina universe, defined in the above sense. Suppose we have several given
known, or to be discovered, retina models or retinal building blocks which are implemented as
bionic retinas. Since these bionic retinas are programmed implementations on the same electronic
platform, we can combine them according to prescribed programs with or without adaptation
mechanisms. For each bionic retina, we can write a single analogic CNN subroutine. These
subroutines are then subsequently called according to a given or an adaptive sequence. In this
way, for example, we can instruct the Bionic Eyeto perform as any one of a variety of different
retinas. Moreover, we can combine retinal building blocks so that, for example, a motion
detection building block derived from a rabbit retina could be combined with the rich color
processing building blockderived from a bird retina.
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Since different species often have similar neural mchanisms for performing similar tasks,
consisting of quite similar retinal building blocks, theCNNtemplates which are common in more
than one bionic retina need to be stored in the analog program register (APR) only once. In this
way we can build up and store a bionic retina template (or subroutine) library and the various
retinas are built up using already known template building blocks plus some specific instructions.
Hence, a single chip analogic microprocessor, can be used to mimick a retina universe with on
chip retina-specific templates and analogic instructions in the global analogic programming unit
(GAPU).

Example 2

Consider the images in Figure 24. The original image is shown in the upperleft . All other
images are the results of transformations corresponding to various retinal and artificial analogic
CNN algorithms. This is an example of the multiple output signals tiling the retial output.
Combining these results by artificial or natural algorithms (like the ones taking place in the visual
cortex) additional features on the original image canbe detected.

3.2 Combining different sensory modalities and artificial analogic algorithms

The somatosensory model of the electric fish has inspired the development of CNN
models with additional sparse global interconnections [22]. Moreover, the hyperacuity effect was
successfully modelled in this extended CNN model [23]. An auditory sceneanalysis following the
two-dimensional outputs of the basilomembrane hasbeen initiated for detection ofvarious alarm
signals [35]. These initial results illustrate the wide applicability of the CNN models in modeling
other sensoryorgans. Indeed, in the abovetwo examples additional artificial CNN templates were
used to modify the biologicalmodel for solving some complex tasks.

An appealing possible capability of the Bionic Eye is the combination of CNN models of
different sensory modalities with artificial analogic CNN algorithms, including adaptation. All of
these models are based on the same computing platform, the CNN Universal Machine. This type
of Bionic Eye, capable of seeing and detecting complex "analog events," [2] containing maps of
different sensory modalities, and canbe implemented on the same physical device, for example, on
the analogic microprocessor. Some of the non-visual sensors can also be implemented on a
microchip (the so-called microsensors for sound, presssure, some chemical properties,
temperature, infrared, and Xray, etc.) or can directly be interfaced to the analogic
microprocessor.

Example 3

In this algorithmic example we show howto combine visual and thermographic images.
The task is to detect emergency situations on a thermally exposed metal plate. This situation is
defined by the presence of prescribed textures at thermally sensitive areas. Thermally sensitive
areas are defined by having local thermal maximums orareas witha thermal gradient greater than
a given value.

25



Suppose, the analogic microprocessor has two types of sensory arrays: a thermographic
and a visual one. These could be either on-chip (at each processing unit) or off-chip (separate
sensor array chips). The two types of input arrays are stored in two places of the local analog
memory , LAM(1) and LAM(2), respectively. The thermographic template sequences (ALG1)
detect the thermally sensitive areas which have either the local temperature maximums or
temperature gradients higher than a given value. The visual analogic CNN algorithms (ALG2)
detect the areas with prescribed texture.

The complete algorithm for solving our task would work as follows. ALG1 is applied to
the thermographic input map stored in LAM(1) and the resulting map is stored inthe local logic
memory, LLM(l) (coding the termally sensitive areas). ALG2 is applied to the visual input map
(image) stored in LAM(2) and the resulting map is stored in the next place of the local logic
memory, LLM(2) (coding the areas with the prescribed suspicius textures). Now, applying alogic
AND operation using the local logic unit (LLU) on LLM(1) and LLM(2), the result will codethe
areas where an emergency state exists.

4 APPLICATION AREAS, INNOVATIVE DEVICES

The application possibilities ofthe Bionic Eye are numerous. Here, we will mention but a
few areas.

Medical imaging and diagnosis is definitely one of the most challanging fields. Detecting
slight defects whichare invisible or hardly visible for the naked human eye, even in a fraction ofa
second, provide for new diagnosis methodologies. Screening and enhancing images to lessen the
harm (decrease the dosis) ofnoninvasive tests and henceusing the less destructive ones aremade
also possible. Developing complex analogic algorithms, even adapted to the personal experience
ofthe doctors may revolutionarize medical practice.

Remote sensing systems normally can not select the useful information in real time, the
huge amount ofdetected or stored useless information limits the efficiency of these systems. The
Bionic Eye, trained and programmed to detect the situation when, and only when the useful
information is sensed, would be a possible solution, due to the very high speed in performing
sophisticated algorithms in space.

Combiningvisual, tactile, thermographic, etc. information in robots, includingnight vision,
all done in a fraction of a second, would enhance not only the efficiency of the robot but the
reaction speedin emergency situations aswell (the recent failure ofNASA's Danterobot suggests
a lot ofimprovement are needed).

Proliferating the global information and communication systems (e.g. "information
superhighway") the human perception of images and other sensed information become a crucial
question. The representation and the perception of these information may be divided to enhance
channel capacity, yet to improve perception. The complex mechanisms ofcolor perception is one
ofthe many important areas to be considered as specially apt for using theBionic Eye.
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Making visual prosthetics ofmany different kindsis anobvious longterm goal and a major
challange for the development of the Bionic Eye. The possibility of mimicking retinal and other
visual functions, including image sensing, on a single chip needs no justification about its
usefulness. The bionic eye can reproduce and deliver to either the optic nerve, LGN or visual
cortex, the many different patterns of activity that would be normally received by those sensory
areas. However, the methods for connecting the .signals containing these patterns to the
appropriate sensory areas, chronically, at the proper depths, and in proper register, remains an
unsolved problem.

The Bionic Eye concept and implementation provides for developing new visual devices.
We mention only two of them briefly. New discoveries in perception mechanisms in animals and
or humans provide anopenended resource ofnew analogic algorithms.

The visual mouse [38] is a handheld visual supercomputer capable of detecting complex
features in a fraction of a second when moved across an image. The device contains functional
buttons, a smallcolor screen, a zoom lens, and the analogic CNN microprocessor, all containedin
this handheld device that can detect andinterpret specified patterns in the visual scene.

The Bionic Eyeglass [39] is an eyeglass-like device with analogic visual microprocessors
in it. The programmable analogic algorithms provide the user with the ability to detect a broad
array ofvisual sceneswith predetermined characteristics that otherwisewould remain invisible.

Conclusions andfuture directions:

The analogic CNN Bionic eye described here opens many new possibilities for artificial
sensory processing. It implements programmable neuromorphic models, combines a given
neuromorphic model with artificial analogic agorithms, and combines several neuromorphic
models, possibly from different sensory modalities, in an algorithmic way. These could be used,
for example, as the "front end" ofa video camera, a prosthetic device designed to simulateretinal
output at eitherthe optic nerve or visual cortex, or a hand-held "visual mouse" capable of sensing,
detecting and interpreting a variety of visual objects. By using artificial analogic algorithms in
combination, we can not onlydetect, butbegin to interpret the world through theseneuromorphic
artificial senses. In doing so we beginapproach but havenot yet rigorously studied, issuesrelated
to congnition, recognition, and interpretation ofvisual scenes.
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Figure captions

Figure 1 Schematic diagram of cross section of a typical vertebrate retina with array of
photoreceptors at the topand retinal ganglion cells ( output cells) atthe bottom. Inbetween these
two layers there are additional layers of cells, each of which performs a specific function. The
horizontal cells form a broad continuous sheet of interconnected neurons that average activity in
space and time. This average is subtracted from the activity ofthe photoreceptors thereby setting
a normallized level at each point in space around which the photoreceptors operate. Bipolar cells
convey the result ofthese computations to the lower retina where interactions in space and time,
such as movement detection are mediated. Most of the interactions between retinal neurons are
quite local, and occur within orbetween layers, sothey are easily modeled by CNN architecture.

Figure 2 Schematic ofadaptation orgain changes inthe retina. The upper curves represent
a family of cone responses as a fiinction of flash intensities. Adaptation mechanisms withing the
transduction machinery of the cones control gain such that each of these instantaneous response
curves is centered upon the average past history of intensity at that cone. The curves canshift by
more than 6 orders of magnitude. The gain is further adjusted by the interactions between
horizontal cells and conesto shiftthe position ofthe bipolar cell operating curves as a function of
surround illumination. The lower curves show these shifts, for different surround levels, for the
cones operating at the center curve overa range ofintensities indicated by the stippled area.

Figure 3. Three different forms of retinal output mediated by increasingly more complex retinal
circuitry. Response waveforms in response to a step of illumination (shown below). A. Sustained
activity in response to the presence of a visual target implemented by relatively simply circuitry,
B. Transient activity in response to the arrival or movement of a visual target mediated by more
complex retinal circuitry, C. Transient truncated activity in response to arrival or movement, but
mediated by even more complex retinal circuitry. A full descriptionofthese circuits is in [56].

Figure 4 A processor array on a 3 layer grid. The identical processors are marked by
identical symbols in the grid points.

Figure 5 An interaction graph with radius r=l in case of 1 layers with 8 neighbors (a) and
3 layers with 4neighbors in 2D and 6 neighbors in 3D (b)

Figure 6 A templatematrixand its graphical representation

Figure 7 A simple circuit representation ofa unit

Figure 8 The interactions, the A- and B-templates

Figure 9 The interactions to a single unit

Figure 10 The two types ofthe interactions related to a cell
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Figure 11 Simple processor circuits: a 3rd order Chua's circuit for chaos (a), a 2nd order
(b) and a first order (c) circuit, and a first order one with state is identical to output (d) [3]

Figure 12 The augmented processing unit of the CNN Universal Machine. The extension
consists of alocal analog memory (LAM), alocal logic memory (LLM), alocal analog output unit
(LAOU), a local logic unit (LLU), a local communication and control unit (LCCU)

Figure 13 The global analogic program unit (GAPU) and its parts: analog program
register (APR), logic program register (LPR), switch configuration register (SCR) , and the
global analogic controlunit (GACU)

Figure 14. Experimentally derived space constants for different networks ofneurons in the retina.
A. The horizontal cells are broadly coupled, both electrically and chemically. The profile, spanning
about 250 um, shown in the upper left represents activity, as a function of distance, elicited by a
narrow bar of light scanning theretina. B. Bipolar cells have dendrites that span anarrower region
of space, so their spatial sensitivity profile is quite narrow, spanning about 60 um. C. Amacrine
cell fields measured by puffing transmitter across the expanse oftheir dendrites, span between 50
and 150 um. D. Similarly ganglion cells have dendritic fields spanning about 150-200 um. Each of
these space constants canbe represented by a diffusion or recursive template in CNN as shown in
Figure 10.

Figure 15. The synaptic functions define the relation between pre- and postsynaptic activity. A.
The horizotnal cell to either cone or bipolar synaptic function tends to be rather broad. B. The
cone to either horizontal or bipolar cell synaptic function is somewhat narrower, and C. The
bipolar to amacrine or gangion cell synaptic fiinction is quite step and starts at a considerably
more depolarized level. This approximates a "threshold" function, causing the postsynaptic cells
to be brought into full activity at a given presynaptic potential.

Figure 16 The controllable capacitors can be inserted either in parallel or series into the
processing unit or into the VCCS (OTA) implementing a templateelement. A delay line (D) or an
approximation ofit can also be inserted, possibly with a switch.

Figure 17 A course and a fine grid. The switches change the grain on the layer.

Figure 18 Framework for modeling the visual pathway: consecutive layers following the
anatomical structure with interactions(a), the layer interaction graph (b), and the loopfree layer
interaction graph (c)withthe complex layer containing the original layers 1,2, and 3

Figure 19 Activity field and template values inone dimension

Figure 20A multiple-point measurement probe with single input stimuli

Figure 21 Input image, thewatermark can behardly seen
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Figure 22 The output ofa retina like filter

Figure 23 The output when the retina like filter and another analogig algorithm are
combined

Figure 24 Several different maps from the original imageshown in the upper left corner
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