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An Object-Oriented

Electromagnetic PIC Code

J. P. Verboncoeur, A. B. Langdon1 and N. T. Gladd2

Electronics Research Laboratory

University of California, Berkeley, CA 94720

Abstract. The object-oriented paradigm provides an opportunity for advanced PIC

modeling, increased flexibility, and extensibility. Particle-in-cell codes for simulating

plasmas are traditionally written in structured FORTRAN or C. This has resulted in large

legacy codes3 which are difficult to maintain and extend with new models. Inthis ongoing

research, we apply the object-oriented design technique to address these issues. The

resulting code architecture, OOPIC (Object Oriented Particle-in-Cell), is a

two-dimensional relativistic electromagnetic PIC code. The object-oriented

implementation of the algorithms is described, includingan integral-form field solve, and a

piecewise current deposition and particle position update. The architecture encapsulates

key PIC algorithms and data into objects, simplifying extensions such as new boundary

conditions and field algorithms.

1 Introduction

Plasma simulation is the computational modeling of the interaction of charged particles with

electric and magnetic fields. The plasma may exhibit complex nonlinear behavior, and the fields

and particles may interact with time-dependent boundary conditions. Fluid codes model the

plasma using moments of a distribution function at discrete grid points, whileparticle-in-cell (PIC)

1 also atLawrence Livermore National Laboratory, Livermore, CA 94550.
2 Berkeley Research Associates, Berkeley, CA 94701.
3 The term legacy codes refers to codes written using traditional structured techniques, and can

often trace their ancestry to the 1960s or 1970s. Maintenance of legacy codes often consists
of patching theexisting code; such codes aredifficult to rewrite because theclosecoupling of
thestructured technique maymakemodular upgrading impossible.
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codes model the plasma using discrete particles, each representing many charged particles. Even

a low density plasma has trillions of particles per cubic centimeter, so the modeler must be very

clever to model the statistics of a physical system within the constraints of the computer.

PIC particles interact with fields defined at discrete locations in space (on a mesh, for example)

using interpolation to compute the forces on the particles. The particles generate the current and

chargedensity source terms for Maxwell's equations by interpolation from the particlelocations to

the mesh. The number of mesh cells or nodes required depends on the physics to be studied,

ranging from 102 for simple one-dimensional problems to 109 or more for a complex three

dimensional simulation.

A plasma physics code must contain a number of features to qualify for general distribution. We

identify two classes of the target audience: the user, who will use the code by adjusting the

predefined parameter set; and the developer, who will extend the functionality of the code by

adding models and algorithms of various levels of complexity which must interact with the

existing algorithms. The first class of user requiresa code which is straightforward to operateand

adjust parameters, with sufficient error trapping to prevent fatal errors due to improper input

The code must also protect the casual user from running a simulation with parameters which

generate a nonphysical result. The second class, the developer, is more typical of the

computational plasma physics research community. The developer must often add an algorithm

to extend the existing code to model a new phenomenon or adjust an existing model because the

problem at hand is sensitive to the accuracy of a particular parameter or method.

The requirements for a general plasma physics code can be summarized as follows:

• Capability to accurately model the physical phenomena of interest

• Extensibilityandreusability foradding new models ormodifying existing models.

• Encapsulation of algorithms to localize the impact of code modifications.

• Efficiency of algorithms and architecture, including optimization of speed andstorage.



• Fatal error trapping to prevent user-induced crashes, including unstable regimes of
operation.

• Error trapping orwarning forsimulation regimes characterized byinaccuracy.

Historically, computational plasma physicists have written large codes in structured languages

such as FORTRAN, and more recently, C. These structured programs can contain 104 to 106

lines of code, excluding the user interface. Initially, these codes were written to solve a specific,

specialized problem, and required an expert to run. In many cases, the only qualified expertwas

thecodedeveloper. Morerecently, general codes applicable to a family of similarproblems have

become available, including MAGIC [2], ISIS[3] and PDxl [4]. These codes provide limited

parameterized flexibility in selecting algorithms and specifying the properties of the simulation.

However, as the number of algorithms required to model complex devices increases, the

interactions between algorithms becomes unwieldy.

The structured method, while providing limited modularity, is flawed in addressing many of the

most pressing problems in the computational plasma physics area. For example, global variables

can be (and usually are) accessedfrom many modules, making it difficult to track the evolution of

data. The structured approach provides only weak encapsulation, resulting in close couplings of

unrelated functions which depend on the internal implementation of other functions. Many side

effects can occurwhen modifying codefor maintenance or extension. The costof debugging and

maintaining a structured code can become prohibitive as the complexity of the code increases.

Theobject-oriented technology provides a solution to this problem through dataencapsulation.

Extending a structured code to include a new type of model is especially difficult, as many

coupled functions must be rewritten to work with the algorithm. Languages such as C and

FORTRAN provide no mechanism for software extension via reuse. For example, X-Lab is

studying a new device which is using a new cesium-impregnated cathode. This cathode has

properties very similar to a cathode presently modeled by the existing code in use at X-Lab,

except the new cathode emits electrons with a distribution function dependent upon the local

electric field strength. If the X-Lab code is written in a traditional structured language, the new

model must bewritten as a new function, newCathode(). The newCathode() function will likely



consist of some code cut and pasted from oldCathodeO, modified to model the new properties.

The argument lists for the functions are now different, since newCathode() requires the local

electric field vector. Furthermore, the caller must be changed to branch to the appropriate

function based on a flag, and must pass the arguments required. Now errors introduced by the

new function call and all its associatedchanges may propagate throughout the code, resulting in a

large amount of time testing and debugging before X-Lab can have confidence in the updated

software. Object-oriented technology can reduce this problem using polymorphism4, as described

below.

In this paper, we describe an object-oriented PIC architecture designed to address the issues of

encapsulation5, flexibility, extensibility and efficiency. In Section 2, we discuss several previous

attempts to address these issues. In Section 3, an object-oriented technique for modeling device

physics is described. In Section 4, we discuss the algorithms employed in the OOPIC (Object

Oriented Particle-in-Cell) code, followed by the architecture and implementation of OOPIC. In

Section 6, we summarize the advantages and disadvantages of the object-oriented approach, and

discuss future directions of the ongoing research. Beyond the scope of this paper, parallel

research is ongoing to develop embedded graphical analysis andconfiguration tools and an expert

system tools for assistance in parametric input

2 Background

Many computational physicists have realized the utility of the object-oriented concept and used

structured programming languages to achieve a limited degree of object behavior in PIC codes.

More recently, developers have adopted mainstream object oriented languages such as C++ and

Object Pascal.

Several codes are implemented in structured languages with some elements of object-oriented

technology. Eastwood [7] implemented MILO, a two-dimensional electromagnetic PIC code, in

4 Polymorphism is the ability of an object to respond to a standard message with a specialized
behavior. For example, the system may send a Paint() message to both circle and a square,
without knowing the specific shape it is drawing.

Encapsulation in this context refers to the isolation of data within objects; the object provides
a defined interface to access and manipulate the data.



FORTRAN90. MILO decomposes the simulation region into localized blocks, connected by

boundary conditions Eastwood terms gluepatches. The primary purpose of this approach is to

facilitate running the code on massively parallel platforms.

The Plasma Device family of codes [4], PDPl, PDCl and PDSl are written in C with elements of

object-oriented design on both the UNDC-X11 and DOS platforms. These codes implement

polymorphic function calls using pointers to functions, and encapsulate behavior by storing

function pointers within data structures. Since these codes are implemented in C, argument type

checking can not be performed on the 'polymorphic' constructs. This deficiency can be remedied

using an object-oriented language such asC++.

Early attempts at applying object-oriented technology to particle-in-cell simulation have resulted

in codes with poor performance compared to traditional codes. Forslund [5] found C++ a

powerful language to translate WAVE, but found disappointing performance compared to a

similar FORTRAN code. One of Forslund's key objectives was to employ the object-oriented

technique to simplify the parallelization of WAVE. Forslund compared timings for both

optimized and unoptimized code, and found the FORTRAN version ran about twice as fast as the

comparable C++ version. He attributes part of the difference to the finer granularity of the C++

representation and the difficulty of optimizing such code, and the balance of the difference to the

greater maturity of FORTRAN compilers and libraries. Forslund also noted severaldeficiencies in

theC++ specification for his application, particularly with regard to parallelization and linkage to

C libraries when using templates.

Gisler [8] implemented a particle trajectory code using Object Pascal. This code demonstrated

flexibility of the object method, choosing to represent particles with individual objects. The

low-level representation did not prove a performance issue due to the nature of the code; only a

small number of particle trajectories are needed in contrast to particle-in-cell codes which require

a good statistical representation of particles as thesource term for computing theelectromagnetic

fields.



Furnish [9] implemented a one-dimensional electrostatic PIC code with periodic boundaries in

C++ on a distributed network of workstations. Although a relatively simple implementation, this

code illustrates a number of object-oriented benefits, including operator overloading6 and

polymorphism. Furnish used multi-threaded function return futures, which postpone a stall until

the return value of a function must be used in another expression, to improve the distributed

performancecompared to that of a vector processor.
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Figure 1. The disk loaded microwave tube is a simple example of a physical device.

3 Object Oriented Device Modeling

This section describes the methodology employed in modeling the physics of devices using

object-oriented technology. Physical devices have a complicated relationship to the world outside

the system underconsideration, andexhibit complicated behavior internally as well. Modeling is

6" Overloading refers to the replacement ofa function with another of the same name. Operator
overloading is polymorphism of an operator, such as '+', so that its behavior is
operand-dependent. For example, the '*' operator may perform multiplication of real
numbers,complex numbers, or compute the inner product of vectors.



an attempt to describe a physical device in mathematical terms. Simulation is the study of the

behavior of amodel to stimuli; note that this isdifferent from studying the behavior of the physical

device.

The object-oriented methodology is employed in going from the physical device to the

mathematical model, and finally to the discrete model for simulation. The physical device, shown

in Figure 1,includes thecomplete physical description of the a device in the physical world. This

is the tool of the experimentalist, who must extract information from the device using a

measurement and observation technique. Although the complete set of data is contained in the

physical device, the act of observing the device can influence its behavior. Furthermore, any

measurement involves compromises and limitations inherent in the diagnostic apparatus.

Experimentation is often prohibitively expensive, and in many cases is not conducive to rapid

variationof parameters or complete control of the external influences on the device.

Forexample, attempting to study the behavior of the disk-loaded microwave beam device shown

in Figure 1 may involve constructing the device, applying a signal to the input waveguide, and

measuring the signal at the outputwaveguide. Care must be takenin designing the device itself as

well as thewave inputgenerator, wave transmission system and outputdiagnostic. Each of these

items can have a strong effect on the results of the experiment. If the experimentalist

hypothesizes that the pitch or size of the slow wave structures controls the performance of the

device, he must build a new device to test his theory. Thus, there exist many cases when

experiment cannot provide sufficient detail on the behavior of a physical device, or characterize

variations to theexisting device without substantial time and expense.

The mathematical model describes the physical device in terms of the robust language of

mathematics. An example of a mathematical model of a microwave beam device is shown in

Figure 2. The model also includes a set of equations which are simplified from the full set of

behaviors describing the physical device. This model can include such assumptions as azimuthal

symmetry in cylindrical coordinates, for example. Even if virtually every aspect of a device is

known and understood, it is seldom fruitful to describe thedevice fully. The mathematical model

may also incorporate some effects with simplified descriptions, such as incorporating the quantum



mechanical affects of the electrons bound to surface aluminum atoms via a secondary emission

model which provides an electron return current and velocity distribution for a given incident

current and distribution.

MATHEMATICAL MODEL
A simplified mathematical modelof a physicaldevice

Port

Antisymmetric

Equation of Motion

Maxwell Equations

Figure 2 An example of a mathematical model of a microwave beam device.

The mathematical model may divide the device into various regimes with different physical

properties which are bestdescribed with heterogeneous sets of equations. In Figure 2, the device

is divided into three regions: theemitter (region 1), the beam circuit (region 2), and thecollector

(region 3). This division is useful since the emitter and collector regions are primarily governed

byelectrostatic processes, while the beam circuit region is governed by electromagnetic processes

which vary on timescales several orders of magnitude faster than the electrostatic regions. The

dashed lines in Figure 2 indicate theedges of each region, where boundary conditions are used to

interface to other regions and the external world. Thus, each region inamathematical model may

bemodeled with different sets of equations, each with its own simplifying assumptions, interacting

throughboundaryconditions.



DISCRETE MODEL
A discretization of a general region of space of a

mathematical model
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boundary 1 ^
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Figure 3. An example of the discretization of a mathematical model of a microwave beam device.

The mathematical model may be used to obtain an analytic solution, or may require a

computational solution due to its complexity. With many physical devices, the smallest set of

equations which sufficiently describe the device and can be solved analytically provide only a

gross description of the device due to the simplifying assumptions made. A more complete

descriptionoften requires a computational solution.

The discrete model, such as the discrete model of the beam-circuit region of the disk-loaded

microwave beam device shown in Figure 3, provides an approximate description of the

mathematicalmodel The discretization is necessary for simulation using a finite state, or digital,

computer to solve the governing equations. The discrete model is independent of the

implementation; both the structured and object-oriented approaches may share the same discrete

model, anddiffer in the implementation. This model level describes the code representation of the



physical device, and in the case of an object-oriented paradigm the discrete model provides a

natural guide for the choice of objects.

In the exampleshown in Figure3, the space is gridded so that the electric and magnetic fields and

current can be defined at discrete points. Values of gridded quantities can be approximated at

intermediate points by interpolation. Particles are discrete representations of some statistical

group of physical particles. Boundaries provide the boundary conditions necessary to complete

the equations describing the particles and fields.

4 Algorithms

In this section, we describe the algorithms used in OOPIC to provide a basis for the following

architecture discussion. The adaptation of these algorithms to the object-oriented model is

described in the subsequent section, Architecture and Implementation. This discussion is not

intended to provide a full analysis of the algorithms, stability and convergence properties, and

extension to more general meshes and geometries; these topics will be the subject of a future

paper.

For purposes of this discussion, we consider a device described in cylindrical z-r-<f> coordinates,

with azimuthal symmetry. Furthermore, the device is gridded by orthogonal quadrilaterals to

maintain the simplicity of the implementation. The discussion will extend to Cartesian coordinates

in a straightforward way.

4.1 Electromagnetic Fields

We consider the full set of electromagnetic fields with azimuthal symmetry. Many of the ideas for

the electromagnetic field representation and solution can trace roots to Langdon [10] and

Eastwood [7]. Maxwell's equations in integral form are written:

J5EdS =Jp^V,

J BdS =0, (1)
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JE-dl =-Jd,B-dS,

JH dl =jd,D dS+Jj dS.

We define a new set of field variables whichencapsulate the mesh metrics:

£ = /E dl,
fi =/H dl,
D= /D dS, (2)
5=/BdS,
7=/jdS.

In Eq. (2), the line integrals are along cell sides, and the surface integrals are over surfaces formed

by cell faces, where fields are as defined on the Yee mesh [11]. The constituency equations for

the integral-form variables become

E = C_1D

H-I/^B ' (3)

where C'1 and L'1 are coupling matrices with the dimensionality of capacitance and inductance,

respectively. On a general mesh, the couplings can involve fields from one or more neighboring

cells; the general mesh is beyond the scope of the present paper. On a non-uniform orthogonal

Yee mesh in cylindricalz-r coordinates, the capacitances in OOPIC are written:

*M "Zj
C7l

r_1 rM-rk (A.
^rjJk+l/2 _ . / x* W

ezjcr*+i/2(z/fi/2 -Z/-1/2)

£-1 2w*
e(r*+i/2 -rk-m)(Z}¥\ii -Zj-m)

Similarly, the inductance elements for a non-uniform orthogonal Yee mesh in cylindrical z-r

coordinates in OOPIC are:
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d«»u> ,l(rw_rt)(z>fI_z.)

The Maxwell curl equations can be written in terms of these variables and discretized. The

transverse magnetic (TM) set becomes:

dtB$j+\/2jc+m - Ezji.mjc+i -Ezj+mt -Erj+\*+\n+Erjjc+m
dtDzj+mjc =#fcrfi/2,*+i/2 —H$j*mjt-m —hj+inji ,~

Qjjc = Dzj+\f2jc -Dzj-mM+Drjt+m-Drjt-m

where 2 =Jp</V over the cell volume. The indices refer to locations on the Yee mesh, and are
ordered in z, r for a right-handed cylindrical coordinate system. The corresponding transverse

electric (TE) set can be written:

oxtD*jjt=Hrj¥\n* -HrjMi -Hzjjc+w. +Hzjjc-m —I+J*
dtBrj+i/ik^Etj+u-Ejjjc .~

dtBzjjc+m =-E$jjc+i +E^jjc
0 = Brj+injc -Brj-mjc+Bzjjc+m - BZjjc-ia

The TM and TE field equations are advanced in time using a leap frog advance [1]. The source

terms in Eqs. (6) and (7), /, are the currents resulting from charged particle motion. The field

algorithms arecompleted by initial conditions and boundaryconditions.

4.2 Particles

The particles follow the relativistic equationsof motion in electric and magnetic fields, generating

a source current for the field equations. The discretization of the relativistic equations of motion

has been described extensively; OOPIC employs the relativistic time-centered Boris advance [lj.

The position update occurs in a rotated Cartesian frame, which eliminates the problem of large

angular displacements nearthe origin. Birdsall andLangdon discuss this issuein some detail [1].

/-1^zjMin
_ Z/fl/2 - Zj-in

**rJ+\f2Jc -
rk+m - r*-i/2

H2icrjk(z/fi-z/)'

2Kr*+i/2
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We presently use a chargeconserving currentweighting algorithm, which ensures that Gauss' Law

remains satisfied if it was initially satisfied. The currentweighting is summarized in Figure 4 for a

particle traversing multiple cells. The netparticle motion is decomposed in segments, 8x, and 8x3,

separated by a cell crossing. The currents for each segment are deposited independently, so we

describe only the first segment

Letthe initial particle location bex", and let the final location be Xs* for this segment, so 5xj =x"* -

x". Let the particle be located in the mesh shown in Figure 4, where./ and £ are the cell indices

such that Xyj •(zor f) <(x,- or x/) •(zor f) <X^-u+i •(zor f). Here, X.^ is the location of the
j,k\h node of the mesh.

k+1 Q
'lj+l/2,k+l ll,j+3/2,k+l

MlJ+l/2.k l.j+3/2,k

Figure 4. Current deposition for a multi-cell particle motion.

Defining w" =(x"-Xj*)z and W2 =(x"-X^)-r, we can write the relations for linearly

interpolating the particle charge onto the mesh nodes:

(8)
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where q is the particle charge. Defining Aw =w"* - w" and w = (wn* +wn)/2, we can write the

change in charge ateach mesh node dueto themotion from xD to xn\

&Qj* =Gj; -% =rf-Awi(l -w2)-(l - wiJAw*]
AGm^ =Q$\ jt - G£u =«[Aw, (1 - w2) - wiAwi]

AGM+i =Gj;+i -Qjmi =^[-AwiW2 +(l-w,)Aw2] '
&Qmmi=Qmm\-QUmi =?[AwiW2+wiAw2]

One set of currents which satisfies conservation of charge for the changes given in Eq. (9) is:

Iij*in* = tfAwi(l - w2)/Ar
Iijnnjc+i =?Awi w2/Ar ~

/2,/>*+i/2 =^Aw2(l-vPi)/Ar '
hw+in =qAwiWi/At

where Ar is the time for the motion. Note that these currents are not unique; adding a constant

current around the loop formed by the cell edges also satisfies the continuity equation. One sees

immediately that this currentdeposition is equivalent to the method of Morse and Nielson [11] for

a single cell particle motion. For multiple cells, the method described here deposits current in

each cell traversed, in a manner similar to Eastwood [13] and Villasenor and Buneman [14].

4.3 Boundary Conditions

The boundary conditions for fields and particles in an electromagnetic PIC code can be diverse

and complex. Currently, OOPIC includes boundary conditions for the electric fields at the surface

of ideal conductors, the cylindrical axis, and incoming and outgoing wave ports. We make no

attempt here at a generaldiscussion of electromagnetic boundary conditions.

For the ideal conductor, the component of the electric field tangential to the surface is zero. This

can be achieved by setting the appropriate capacitance matrix element, C, to zero. This allows the

field solve to proceed without testing for electric fields or explicidy setting the tangential fields to

zero along conductors.
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The field boundary conditions at the axis in cylindrical coordinates follow directly from Maxwell's

equations. If d,Bz(z* r=0) is finite, then E*(z, r=0) =0. If d,Dz(z, r=0) +Jz(z,r =0) is finite,
then //$(z, r =0) =0. Finally, Br(z,r=0) is aconstant on axis and dtDr{z,r =0) =-7r(z, r =0).

The present incoming and outgoing wave boundary conditions in OOPIC are incomplete. The

incoming wave boundary condition simply sets the fields to the desired electromagnetic mode at

the boundaryof interest, which does not address the outgoing wave at that surface properly. The

outgoing wave boundary condition is a surface impedance method. It sets the ratio of the

tangential components of the electric and magnetic fields to the local surface impedance of

boundary medium. This method is amenable to attenuation of the high frequency components by

co-space reduction of historical field values.

Particle boundary conditions include absorption and transmission. Particles are transmitted by

symmetry boundaries such as the axis of symmetry in cylindrical coordinates. All other

boundaries absorb particles, and can optionally emit secondary electrons.

5 Architecture and Implementation

The code architectureis summarized in Figures 5 and 6. Figure 5 is a schematic representation of

the flow control for a timestep. A similar flow control diagram can be drawn for the traditional

structured PIC code. After initializing the simulation, the parameters are used to construct the

simulation. Once constructed, the simulation is advanced in discrete units of time.

The fields are advanced using the field and source values from previous times, including the

appropriate boundary conditions. The field advance consists of a half timestep advance for B,

followed by an a full timestep advance for E, followed by application of the boundary conditions

for E, and a final half timestep advance for B. The half timestep splitting of the magnetic field

advance results in electric and magnetic fields at integral timesteps at the end of the field solve,

while taking advantage of the accuracy of the time-centered difference equations. The updated

fields are then interpolated to the node points of the mesh from the locations shown in Figure 3.

15



Fields::advanceO

S(n-1)->B(n-1/2)

fi(n-1)->fi(n)

BoundaryttapplyFieWsO
£(n-1/2)->JB(n)

Boundary::emitO

FiekJs::translateAccumulate
add emitted Particles to
ParHdesGroups

construct initial
parameter set

SJ£
SimulationManager

Construct Grid, Boundaries,
ParticleGroups, and
SpatialRegion

SpatlalRegion::advanceO

Flelds::toNodes0

JB(n)-> B(n)

fl(n)->E(n)

on mesh nodes

Partic(eGroup::advanceO

x(n),u(n-1/2),E(n),B(n) -> u(n+1/2)
Relds:.1ranslateAccumulateO
Boundary::coilect(Particie)

Grid:^ransIateO

x*(n-1)->x*(n)
up to ceil side

8x*(n)-> 5l(n)
up to cell side

Figure 5. OOPIC flowcontroldiagram fora single SpatialRegion.

Next, the forces on particles arecomputed by interpolating the fields to the particle position, and

used to update the particle velocity, and subsequenUy the particle position. The position update

16



occurs in conjunction with the deposition of current. The relative displacement of the particle is

computed in physical units (meters for example). The particle is advanced to successive cell side

intersections, updating the position to the intersection point and depositing the current

corresponding to that segment of the particle displacement to the mesh. At each cell edge, the

appropriate boundaryconditions areappliedif the edge is a boundary.

r Scalar

i Vector2

r Vector3

L List Fields

Grid

—— one to one association

•— many to one association

O— aggregate

/\ inheritance

I SpatialRegion j | SpatialRegionList |

| BoundatyList | | ParticleGroupList | ^ ParticleGroup |

ParticleUst \ Q| Boundary |

Particle J
A.

Port I | Dielectric | | Symmetry

-| ExtemaJCirciit |

-^ -| IncomingWave |

-j OutgoingWave |

| Maxwellian | Qf
r

Emitter

X

j£±.

| CylindricalAxis

| MirrorPlane |- ^—

L Periodic

J | Conductor |

' » .
| ZeroFieldEmitter | | BeamEmitter |

Figure 6. Class hierarchy forthe OOPICcode using Rumbaugh [6] notation.

Finally, the boundary conditions for particle emission are applied. The emission includes

transmission of particles through symmetry boundaries as well asemission due to particle current

17



injected into the system. The emission phase uses the same mechanisms as the particle push phase

to advance particle position and deposit current The sequence is repeated for each incremental

advance of time.

Given the sequence of events comprising a timestep and the discrete model, we can now define

the objects and their relationships. The class hierarchy, in Rumbaugh notation [6], is shown in

Figure 6. An aggregate relationship indicates a class is comprised of one or more other classes, in

the same way a chair is comprised of legs, a seat and a back. An association indicates an

interaction or relation between classes, such as the relation between a chair and the floor.

A number of utility classes are defined. These include Scalar, Vector2, Vector3, List, and

Maxwellian. Scalar provides a representation of a scalar quantity such as the mass or charge of

a particle. Vector2 and Vector3 represent two and three component vector objects, respectively.

The List is a simple yet versatile container class, which is used for storing singly linked lists as

well as stacks of objects. The Maxwellian class represents a maxwellian distribution function,

useful for describing the particle emission properties of a cathode, for example.

The vector classes provide component storage as well as overloaded operators and common

vector operations such as dot and cross products. Although other authors, including Furnish [9],

concluded there was little benefit in a vector class, we find the notation compact and powerful,

resulting in a more readable and maintainable code. Care must be exercised in the design of

fundamental classes such as Vector2 and Vector3 for performance critical situations, particularly

with regard to creation of temporary intermediate objects for function return values [15].

The SpatialRegion class represents a defined region of the discrete model. A device can be

divided into SpatialRegions based on time and space scales as well as for parallel processing or

for reduction of the number of empty cells for non-rectangular devices. For example, a klystron

cavity may force a rectangular mesh to waste many cells inside metal. The SpatialRegion

provides a single interface to the objects it 'contains*. Each SpatialRegion has its own Fields and

Grid objects. In addition, each has its own list of boundaries which border the region,

boundaryList, and its own list of particles stored in particleGroupList. It stores the local
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simulation time, and provides a single public interface for advancing all its constituents in time,

advance(). The advance() message initiates the sequence ofevents shown inFigure 5.

The Fields class represents the electromagnetic fields on the mesh for a given SpatialRegion. The

fields include electric, magnetic, and current It can also store the charge density and the scalar

potential in space. Fields provides a public interface to the fields at arbitrary locations using the

interpolation capability of Grid. The advance() message, sent by SpatialRegion, updates the

field equations in time. The transIateAccumulateO method advances theparticle position using

Grid::differentialMove() andsimultaneously deposits theparticle current while checking particle

boundary conditions as it crosses cell edges. Some may argue that this is a less object-oriented

way of updating particle position and current, but the performance gain which results from the

simultaneous operations is substantial since the accumulation of sourcecurrent is a performance

bottleneck.

The Grid class represents the discretization mesh for a SpatialRegion. This class stores the

positions of the mesh nodes in physical units for both non-uniform and non-orthogonal general

quadrilaterals. The field algorithms for general non-orthogonal quadrilaterals are not yet

implemented in OOPIC. It also stores an array of cell edges with boundary conditions. Grid

provides the coordinate transformations between logical, or code, coordinates and physical

coordinates using the methods getMKSO and getGridCoords(). The interpolateBilinear()

method interpolates a discrete vector field onto a specified location in the mesh. One could add

additional interpolation methods to change the order of the splines used for particle-grid

interactions without affecting code outside Grid. A number of methods provide integrals along

grid lines and surface integrals used for normalized variables in the code, enabling the developer

to effect a coordinatesystem change from within the Grid objectwith minimal impacton external

code. The translateO method computes logical coordinates for a relative displacement in

physical units using a step-wise cell-intersection method, eliminating the need for a cell search

algorithm [16 and 17] when the grid is non-uniform or non-orthogonal. The differentialMove()

methodcomputes a relative physicaldisplacementfor a given velocity, and performs a coordinate

rotation on the velocity vector in cylindrical coordinates [1].
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The PartideGroup class represents a group of similar particles. This class stores the particles in

an array format, and stores the common mass, charge, and numerical particle weighting. This

class provides a number of overloaded add() methods for adding new particles to a group, a

gammaO method to compute the relativistic mass, and an advanceO method to advance the

equations of motion for this PartideGroup.

The Partide class describes an individual particle, including its position, momentum, mass,

charge, and numerical weight Partide objects provide a flexible mechanism for passing particles

between Boundary and PartideGroup objects. This construct is only used when flexibility

outweighs performance considerations for a small number of particles.

The choice of grouping particles based on a common charge to mass ratio is critical to

performance; this ratio must be computed for each particle to advance the equations of motion

each timestep. Both the expense of the division and the cost of accessing the data scale linearly

with the numberof particles if grouping is not used. If stored independently, additional redundant

storage for the mass, charge, and numerical weight is required, and the non-contiguous memory

locations will neither cache nor vectorizewell. Furthermore, if particlesare taken as true objects,

each must have its own polymorphic advanceO method, with the consequence of a virtual

function call per particle per timestep. Note that there are two apparent grouping mechanisms

which provide the best performance: arrays for the position, x, and velocity, v; or arrays of a

particle object which includes only particle data, without functions. For the latter, it is critical that

the particle data is incorporated directly into the object, rather than pointers to the data. A good

compilercan optimize references to the data includeddirectly to an offset from the base address

of the object, increasing cache hits and eliminating further dereferencing. Both grouping

techniques can provide performance equivalent to that of a structured representation such as

multi-dimensionalarrays.

The Boundary class represents both physical and logical boundary conditions for fields and

particles. Physical boundary conditions include conductive walls, waveguide ports, and emitting

surfaces. Logical boundaries refer to boundaries placed between SpatialRegions for purposes of
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separating the regions and localizing the algorithms in each region. Boundary objects store the

location of the boundary condition on the grid, the location of the associated Fields object, and a

linked list of the Partide objects associated with the Boundary. A Partide is attached to a

Boundary when it is collected, or when it is queued for emission. Presently, Boundary objects

can apply three boundary conditions. The applyFiddsO method operates on the electromagnetic

fields, applying all field-related boundary conditions except passive boundary conditions. Passive

boundary conditions are only applied at initialization, and include setting C1 to zero for

conductors. The collect() method collects particles which pass through the boundary surface,

placing them in a list The collected particles may be used for diagnostics, transmission to another

SpatialRegion, etc. The emit() method emits particles from the boundary, including emitting,

transmitting and symmetry boundaries. This method uses the same mechanism to update the

particle position as PartideGroup::advance(), ensuring consistent treatment of particle

equations of motion and current deposition.

The Boundary class is an abstract class which provides a polymorphic base for its derivatives.

The Boundary subclasses are shown in Figure 6. The use of inheritance7 and polymorphism

provides a significant benefit when implementing new boundary conditions. We have often

modeleda new boundary conditionin this schemeby adding only a few lines of code, while taking

advantage of the existing well-tested functionality. To add a new boundarycondition in OOPIC,

one may overload one or more of the existing methods described above and place the boundary

object in the boundary list for the appropriate SpatialRegion; the applyFields(), collectO, and

emitO messagesare automaticallypassed to the new boundary object at the proper time.

This architecture is implemented in OOPIC using Borland C++ on the 80x86 PC platform, with a

GUI operating under Windows 3.1 [18]. In addition, XOOPIC is the Xll-based Unix version

written in GNU G++, using the XGrafix user interface [19]. The physics source code is identical

Inheritance enables a derived class (also called subclass or child class) to inherit properties
(data) and behaviors (methods or functions) from a base class (also called superclass or parent
class). The derived class may then specialize by adding or modifying properties and
behaviors. Inheritance can occur over many levels forming a hierarchy analogous to the
classification hierarchy of biology, with kingdom, phylum, subphylum, ..., and species.
Inherits from more than one base class is called multiple inheritance.
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in both cases, making use of inline8 and virtual9 functions, inheritance, and templates10. There is

presently neither exception handling nor run-time type support in G++, so these features have not

yet been implemented in OOPIC.

6 Conclusions and Future Work

We have found one of the principal advantages of the object-oriented method is the potential for

rapid extension and enhancement of the code. After a design period of about six months,

followed by six months of initial developmentand design revision,we have found that adding new

code requires far less effort than testing and verifying the new algorithms. It is important to note

that OOPIC is also serving as a platform for testing novel electromagnetic PIC algorithms and

techniques, so the effort in testing the algorithms is usually unrelated to the object-oriented

paradigm.

We are now seeing the payoff of the object oriented technology in the ease of extending the

present set of models. For example, the ZeroFiddEmitter class, shown in the OOPIC class

hierarchy (Figure 6), describes a surface which emits electrons due to physics quite different from

the BeamEmitter class, which simply injects a given current The difference is analogous to a

voltage source versus a current source in an electrical circuit Both ZeroFiddEmitter and

BeamEmitter are subclasses of the Emitter class, and inherit the basic emitter behavior, as well

as sharing a common model for collection of particles and a common boundary condition for the

electromagnetic fields. Thus, only the emit() function must be overloaded, and appropriate

constructor and destructorcode provided. The balance of the code does not need to distinguish

8

10

Inline functions are functions whose code is placed at the origin of the call. This eliminates
the overhead of a function call, improvingspeed. Note that inline functions often increase the
executable image size, although short inline functions can reduce the size when the function
code is smaller than the overhead to set up the stack and call a non-inlinefunction.

Virtual functions are a C++ mechanism for providing polymorphism. Virtual functions are
resolved dynamically at run timebysearching a hashtable, potentially impacting performance.
Templates are a C++ mechanism for providing type safety for generic classes. Forexample,
OOPIC uses templates to implement linked lists and stacks of such objects as Particles and
Boundaries. Although all lists have the same base code, templates enforce type checking on
listelements to ensure onlythe proper data type is used.
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between specific Boundary subclasses, using the polymorphic nature of the design to hide the

implementation details so all boundaries are treated alike.

The notation andoperator overloading of C++ enables the developer to writea code in a notation

very similar to the mathematical model. OOPIC was written using vector operations where

possible to reduce thelines of code, withtheconsequence of reducing the probability of error and

increasing code readability. The convenient encapsulation of objects makes OOPIC resemble the

physical device much more closely, leading to more intuitive extension and use of the code.

We have not yet formally optimized OOPIC, so performance is only addressed in a qualitative

manner here. However, we believe the code can achieve the same level of performance as a

structured code. Some object-oriented constructs reduce performance, most notably virtual

functions and the construction of temporaries. Conversely, standard C++ provides several

performance-enhancing features, such as inline functions, templates and reference types for

parameter passing. We have avoided using virtual functions in loops, and we make liberal use of

inline functions, particularly within looping constructs. For example, the vector classes are

comprisedentirely of inline functions, since they have a strong impact on performance.

It is clear to us that object-oriented design is superior for this type of computational code. We

have developed many PIC codes using the structured programming paradigm, and have found the

object oriented approach results in increased productivity and code quality. Another important

facet of a PIC code is the extensibility. We have found OOPIC to be far easier to extend thanany

of our previous codesdue to the reduction of interactions andelegance of notation. For example,

adding a slow wave structure consisting of three azimuthally symmetric vanes to a cylindrical

beam-cavity simulation required only three lines of code to describe the location of each vane,

and the vanes automaticallycollected particles and shorted tangential fields.

The primary purpose of this architecture is to provide a testbed for new plasma simulation

algorithms, making modeling extensions effortless. Ongoing research includes building the

capability to simulate multiple SpatialRegions, consideration of parallel processing issues, and

addition of models for boundary conditions, field solution, fluid representations and collisions.
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Extension of the present model to Cartesian and r-<|> cylindrical coordinates on non-uniform,

non-orthogonal body fitted meshes continues; the next logical step is extension to three

dimensions. A graphical expert system is underdevelopment to aid the user in configuring and

running a simulation, and both real time and postprocess graphics development continue. In

addition, we continue to refine and optimize the architecture.
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