
 

 

 

 

 

 

 

 

 

Copyright © 1994, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



ERROR CONTROL CODING WITH

APPLICATIONS FOR INFOPAD

by

Yuming Kathy Lu

Memorandum No. UCB/ERL M94/80

10 October 1994



ERROR CONTROL CODING WITH

APPLICATIONS FOR INFOPAD

by

Yuming Kathy Lu

Memorandum No. UCB/ERL M94/80

10 October 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



ERROR CONTROL CODING WITH

APPLICATIONS FOR INFOPAD

by

Yuming Kathy Lu

Memorandum No. UCB/ERL M94/80

10 October 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



1

Table of Contents:

Introduction 2

1.1 The need of error correction for indoor wireless communications 2

1.2 Indoor Wireless Communication Environment 3

1.3 Report Organization 3

2.1 Convolutional Code 5

2.2 Block Code 8

2.3 Linear Block Code 8

2.4 Cyclic Code 12

2.4.1 The BCH (15,5,7) Code 15

Simulation Using Ptolemy 20

3.1 Theoretical Analysis of Hamming Code over a Fading Channel 20

3.2 Simulations Setup 24

3.3 Results 25

Analysis of Bit Error Rate 28

4.1 Performance ofblock codes 28

4.2 Error detection with retransmission 30

Implementation 34

5.1 TheBCH(15,5,7)encoder 34

5.2 The BCH(15,5,7) decoder 35

Future Work 39

Reference 45



1
Introduction

1.1 The need of error correction for indoor wireless

communications

With the growing demand for wireless computing, and its associated noisy

transmission environment, the need for effective error correction coding is increasing.

The goal of this project is to design an effective and robust coding scheme that provides

a means for overcoming a fading and noisy environment; while meeting the data

throughput requirements ranging from 5 kbit/sec for raw pen data to 1 Mbit/sec for

compressed video data. The result of this work will be applied to the UC Berkeley

InfoPad project, which is the motivation of this project. As different data types

including video, speech, text-graphic have different bit error rate requirements, it is

reasonable to apply a separate error correction algorithm to different applications. For

instance, acceptable pen data requires a bit error rate (BER) of 10"5, which implies error

correction with high amount of redundancy; whereas video data with a BER of 10"3 has

negligible detrimental visual effect.



1.2 Indoor Wireless Communication Environment

The common types of errors that are experienced in indoor wireless

communications are:

a) Errors caused by multiuser interference together with multipath fading

channel. The InfoPad base-station to pad radio link uses a spread spectrum CDMA

communication scheme. In this scheme, the user data is encoded in a Walsh code, which

is a perfectly orthogonal code. The high data rate at 1 MHz with 64x spread factor

implies a 64 MHz actual transmission rate over the wireless link, which can result in

severe intersymbol interference (ISI), and thus, causes bit errors. The bit error rate for a

typical indoor environment varies from 0.1 to 10"6 [sheng]. In a situation when a large

number of users are present, for instance, 30 users operating InfoPad within the same

room, the interference can be closely modeled as a Gaussian distribution or a binomial

distribution by the central limit theorem (CLT). On the other hand, it is important to

notice that the transmitted data is correlated to its reflection off barriers and the

transmitted data from other users due to the nature of the Walsh code. Therefore, the

resulting interference is hardly white.

b) Another type of errors which are commonly seen are burst errors caused by

obstacles between the transmitter and receiver which block the main transmitting path.

The obstacles can be a piece of lab equipment, furniture, or even people. The duration

of blockage of the main transmitting path can vary from hours to a fraction of a second,

and errors in this case appear in bursts.

1.3 Report Organization

This report is composed of six chapters. Chapter 2 describes the theoretical

background for error correction for both convolutional and block codes. The simulation



environment in Ptolemy and results for various error correction algorithms are

presented in chapter 3. In chapter 4, bit error rate analysis is performed for various

error correction and error detection/retransmission schemes. Moreover, the performance

and trade-offs of two approaches to error control are discussed. Chapter 5 presents a

custom low power design of BCH(15, 5, 7) triple error correction code which will be

used for the InfoPad. Finally, chapter 6 presents a system level view on how error

correction and error detection can be combined to provide a reliable transmission over

wireless channel while achieving bandwidth efficiency.



2
Background

2.1 Convolutional Code

The convolutional encoder functions as a Markov-type finite state machine. A simple

encoder is shown below:

I • bil
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DJ—r^!D_
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••*, X2

Fig 1. Rate-1/2, Constraint Length 2 Convolutional Encoder

Some salient features of the above encoder include: (1) for each input bit, two output bits

are created; therefore, it is called a rate-1/2 coder (2) each input bit is stored for two clock cycles;

therefore, the constraint length K is said to be two. It is intuitively obvious that a larger K yields

better performance because it stores more elements from the past into the registers as redundancy

for the current element.

For each possible state and each possible input bit, we need to know which output bits



result so maximum-likelihood decoding can be accomplished. Such transitions are easily repre

sented by a trellis diagram and are shown in Fig. 3 for K = 2.

Typical branch is labelled as
ajbubQ

Fig 2. Trellis representation of rate-1/2, K = 2 convolutional encoder,

For the K = 4 case, the trellis involves a rather large 16 states which is similar to Fig 2.

Output bits b. are trivially obtained via b = aG where G is a generator polynomial. The G

matrices are shown below for the two cases considered: K = 2 and K = 4, both of which are rate 1/

2 code. They were chosen because they are optimal for rate-1/2 in the sense of maximal free dis

tance. For K = 2, the free distance is 5 and for K = 4, the free distance is 7 [Lin],

i n

G =

1 0 1

1 1 1

10 0 11

1110 1

,K =2

,*=4

A very popular way to decode convolutional codes is by maximum-likelihood sequence

estimation (MLSE) using the Viterbi algorithm. The VA (dynamic programming) is the optimum

symbol-by-symbol maximum-likelihood decision method for a bandlimited multipath channel



with intersymbol interference. The overall system diagram is shown below in Fig 3.

noise

encoder
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channel
—•0- receiver Mi-J decoder -

Fig 3. Block diagramof communication system showing convolutional encoder and decoder.

For clarity and simplicity, we demonstrate in detail the rate-1/2, K = 2 case. The objective

of our VA is to recreatethe trellis of Fig 2. Note that each node has two paths entering and exiting.

Figure 4shows the two entering paths for the "00" node at some time n.

time time
ai-lai-2 n-1 n

o o o~m^o
o i o^o
i o o o

i » o o

Fig 4. Showing two input paths into node "00" at time n.

At time n -1, the accumulated metric up to that time and the corresponding path back for

that metric is stored in each of the four nodes. We then form partial path metrics for the two

branches coming into node "00", given by

e.,o = r,, + >v

p,,i = hi® 1l +lr<2eil

where r. arc the hard decisions out of the slicer in Fig 4. Then, at time n, we consider all incoming

paths to a node. For each path, we form the sum of the accumulated metric up to time n-1 and the

partial path metric. The path with the smallest sum is retained while the others are discarded - the

essence of the VA is to keep the amount of information reasonable and still provide maximum-
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likelihood solutions. After repeating this for A/ steps, we look at all four nodes and pick the small

est accumulated metric, backtrace M steps and output resulting bits. The final consideration in

implementing the VA is how long to wait before making a final decision. We consider the best path

coming into each node and choose a truncationdepth M, meaning we will look back M time steps

to obtain the transmitted bit sent at that time. Ideally for maximum likelihood decoding, we would

only start decoding when all the bits are received, this implies M is infinite. But to avoid high

latency in practice,M can be set to a few integermultiples of the number of states.

Even for the rate-1/2,K =4 case, which functions analogousto the one described, the pro

cess starts to become unwieldy. This is one disadvantageof a full-blown MLSE on a general chan

nel - its complexity is just too large. Methods of mitigating this effect include truncating the

overall channel impulse response [Falconer] or a more recent idea of combining equalization and

the MLSEfEyuboglu].

2.2 Block Code

This project is mostly concentrated on analysis and implementation of block

codes. Unlike convolutional codes, the block of n code digits generated by an (n, k)

block code encoder in any particular time unit depends only on the block of k input

message digits within that time unit; whereas in a convolutional code, the block of n

code digits depends not only on the block of k message digits within that time unit, but

also message digits in the previous time units.

2.3 Linear Block Code

An (n, k) linear binary block code is a set of all linear combinations of k inde

pendent vectors in a vector space V with dimension n that maps k bits to n bits (Fig 5),



where redundancy has been introduced in n-k bits.

Input
kbits

Encoder
nbits
—^ • Output

Fig 5. Block Encoder

The k input bits are called information bits, whereas n-k bits are called parity-check

bits. Based on an encoding algorithm together with the number of redundancy bits, a

block code can correct various numbers of bit errors within a block. For example, the

Hamming(7, 4) code corrects a single bit error out of a block of 7 bits, within which 4

are message bits, 3 are parity check bits. The Golay(23, 12) code can correct up to 3 bit

errors in any order within a block of 12 message bits together with 11 parity check bits.

An (n, k) binary code has 2k codewords in it. Since a code is a vector subspace,

it can be given a basis. The matrix whose rows are the basis vectors is called the gener

ator matrix. Since a vector space has more than one basis, a code can have more than

one generator matrix. For example, a Hamming(7, 4) code has the generator matrix

G =

10 0 0 0 11

0 10 0 10 1

0 0 10 110

0 0 0 1111

Given a generator matrix, the encoding process of a message x is y = x • G, where y is

the encoded message with n bits that shall be transmitted over a communications chan

nel. It is worth mentioning here that there has not yet been a systematic way to find a

generator matrix with a given error correction specification.

At the receiving side for the Hamming (7, 4) code, the decoding algorithm

requires three decoding vectors [Pless]:

u = [000 1 1 1 1]

v = [0 1 1 00 1 1]
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w=[l 0 1 0 1 0 1]

The following example will demonstrate the complete decoding process of the Ham

ming (7, 4) code. Suppose the transmitted message is x=1000; the encoded message is

therefore jcG=1000011. Assume an error occurred on the third bit during the transmis

sion, so the actual received sequence is y=1010011. Then we take the inner prod-
n

uctsy •u, y•v, and y•wdefined as x•y = ^ xi' ?/ (mod 2) ; the result is y•u= 0,
yv=l,yw=l. Reading with this order, Oil is the number "3" represented in

binary, which implies the third bit is an error. To correct the error, the receiver would

then flip the third received bit. This decoding algorithm seems to work quite magically;

in order to have a thorough understanding of it, we need more definitions.

A set of equations that gives the redundancy positions in terms of the informa

tion positions are called parity check equations. If the generator matrix G has dimen

sion k for an (n, k) block code, the subspace generated by the redundancy bits would

have dimension n-k and can be generated by an (n - k) x n matrix H called the parity

check matrix. It is easy to prove that H is orthogonal to generator matrix G within a

given block code. For every (n, k) block code, after performing matrix row operations,

we can rewrite G in a standard form G=(I, A), where I is a k x k identity matrix, and A

is a k x (n-k) matrix. Notice that the generator matrix for the Hamming code given

previously is written in the standard form. It can be proved that if an (n, k) code has a

generator matrix G=(I, A), then the parity check matrix is H=(-Af, I), where A1 is the

transpose of A; as a result, H is an (n-k) x n matrix.

For an encoded message y, y = x • G for information x, then

y -h' = (x -G) -Hf = x • (G • //') = 0 .This is the same as saying if the received vector y

is oneof thevalid codewords, i.e. y - x •G for some x, then y • //' = 0 .This observation can

be applied to every received message to check if it is a valid codeword. Suppose the channel has

introduced arbitraryerrors, so the actual received signal is y = y © e, where e corresponds to the

error sequence. Applying the decoding algorithm we get y •h' = (y 0 e) h' - e • //'. By
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cleverly performing matrixrowoperations (orcolumnoperations) on H, we canhave H rearranged

in such away that the result of e •h' is a junction of error positions. This decoding algorithm is

called syndrome decoding, and thesyndrome of y isdefined asSyn (y) = y •//'.

The (7,4) Hamming code can correct 1 bit out of 7 transmitted bits. Some more elaborate

codes such as BCH(15,7) code can correctup to 2 bit errors from any position within a block of 15

bits. This is different from considering two Hamming codes sitting next to each other as one dou

ble error correction code; for two Hamming codes to correct two errors, each error has to reside

precisely within each block of 7 bits. The difficulty in correcting multiple consecutive errors is the

reason it took so long to develop a multiple-error-correction algorithm after the discovery of a sin

gle errorcorrection algorithm. The generatormatrix for BCH(15,7) code is a 7 x 15 matrix, thus

the parity check matrix has dimension 8 x 15. To decode BCH(15, 7) codes, we apply the syn

drome decoding algorithm.

We start with a parity check matrix of 8 rows with the following form:

H =
1 2

1/(1) /(2)

15

/(15)

where the numbers 1,2, • •, 15 are4-tuples in binary, and f is a function which has yet to be

determined. If y is the receivedvector with 2 errors occurring in the i th and j th columns, the syn

drome of y is Syn (y) = i + j

fd) +f(j)
, which corresponds to two equations with two

unknowns. Before being able to solve these equations, we have to determine the function f. We

know that f can notbethe identity function, since yj = y3 = i + j willnotgive aunique solution

for i andj. Next we try / (/) = / . Since the space of possible codes is defined on a binary field,

2 2 2i +j = (i + j) , again, we have the same problem as we had with the identity function. Let us
3

try /(/) = (/) , The syndrome of y gives

Syn(y) = ?1
=

i + j
.3 .3

1 +J.
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3 3 2 2 2 2 2
and y3 = i +j = {i + j) (i +ij + j ) so that y$/y\ = i +ij + j = y\ + ij- Noticing

2 2thati + j = ypand/y = -yj +ys/yj = y\ + y$/y\-> wesee that iandj are roots of the equa

tion (x +i) (x +j) = x2 + (i +j) x+ij =x2+yxx+ (y^/y^ +yx). We know the coeffi
cients of this quadraticequation, so we can solve for its roots. Once again, the solution for i and j

will correspond to the bit error positions.

It is worthwhile to state that if a codeword C has minimum Hamming distance d, where

Hamming distance is defined as the number of bits by which two distinct code vectors differ, then

C can correct t - [ (d- \) /2] or fewer errors. Therefore, when constructing a code, we

should always aim for the greatest minimum distance to achieve best performance.

2.4 Cyclic Code

One very useful subclass of linearblock codes is cyclic code. Cyclic code not only inherits

the algebraic structure of the linear block code, its encoding process can also be achieved easily

with a shift register implementation.

A cyclic code is defined as follows: if v = (vq, vy, ..., vn) is code vector of C, then the

shifted v, v^ = (vn.j, v0,..., vn.2) is also acode vector. Consequently, v^ =(vn.it vn_i+1,...,

V0,..., Vn-i-i)is a code vector.To explore the algebraic structure of cyclic code, we shall write the

components of a code vector as coefficientsof a polynomial as follows:

v(X) = v0 + VjX + ... + Vn.jX"-1

therefore,

v(i)(X) = vn_i + vn.i+1X + ... +v^jX"-1

With this polynomial representation, the generator polynomial ofan(n, k) cycliccodeis defined

as:
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g(X) =7 +gjX + g2X2 + ... +gn.k.jx^1 + x»-k

such that every code polynomial is a multiple of g(X), and moreover, everypolynomial of degree

n-1 or less which is a multiple of g(X) must be a code polynomial. Using this definition, every

code polynomial v(X) in an (n, k) cyclic code canbe expressed as

v(X) = m(X) g(X) = (m0 + m2X + ... +mk.jXk-J) g(X)

where (hiq, mj,..., mk.j) are the k information digits andv(X) = m(X) g(X) is the corresponding

code polynomial. Thus, the encoding of message m(X) is equivalent to multiplying the message

m(X) by g(X), and an (n, k) code is completely specifiedby the generatorpolynomial g(X).

It can be proved that the generator polynomial g(X) of an (n, k) cyclic is a factorof xn+ 1,

which means

xn+ 1= g(X) h(X) for some h(X).

h(X) is call the parity polynomial of cyclic code generated by g(X). With the above relation, we

can answer the question: for any n and k, does there exist an (n, k) cyclic code? The answer is, if an

irreducible polynomial g(X) (irreducible means g(X) can not be factored as a product of two poly

nomials) of degree n-k is a factor of xn+l, then g(X) generates (n, k) cyclic code. For example,

x7+l =(1 +X+X3) (1 +X+X2 +X4), so the generator polynomial g(X) =1+X+X3 generates

a (7,4) code of dmjn = 3. This (7,4) code is the Hamming(7,4) code used in the earlier example.

Using g(X) to encode message 1100, we would have

(1+X)(1 +X +X3)=1 +X +X3 +X+X2 +X4=1+X2 +X3 +X4,

where 1+X corresponds to the message polynomial, the resulting code word is therefore 1011100.

Given that xn + 1 = g(X) h(X) for some h(X), we see an (n, k) cyclic code is also com

pletely determined by parity polynomial h(X). Let v(X) =v0 +VjX +v2X2 +... +v^X""1 be a

code polynomial, where vn.k, vn.k+1,..., vn.j are the k information digits and vq, vj, ..., vn_fc.i are

the n-k parity check digits. Then v(X) can be written as v(X) = p(X) q(X). Multiplying v(X) by
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h(X), we have

v(X) = q(X)g(X)h(X)

=q(X)[Xn+l]

= Xnq(X) + q(X)

Since the degree ofq(X) is k-1 or less, the powers ofXk, Xk+1,..., X""1 do not appear inXn q(X) +

q(X). That is to say, in the expansion ofv(X) h(X), the coefficients of Xk, Xk+1,..., Xn_1 must be

zero. Writing this in equation form, we have:

Xh.v . . = 0
i n-t-j

; = 0

for i<=j<=n-k

then the first term of v is given by

k-l

v„ . . = Ya.v . .,forhi,= l
i = 0

Given the k information digits vn.j, vn_2,..., vn_k, the aboveequation is a ruleto determine

the n-k parity check digits vn_k_j, vn_k_2,..., vq. Thus the (n, k) cyclic code generated by g(X) is

also completely specified by h(X) = (Xn + 1)/ g(X). The encoding circuitbased on this relation is

shown below:

I— u <«— u «-

hk-2
input ^e

D

*1

-• output

where all the registerDs areinitializedto zero.The (7,4) Hamming code will then have the encod

ing structure:

input •»•*—•$—•&•

D

•• output
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At receiver side, the received polynomial canbe expressed as

r(X)=v(X) + e(X)

= m(X)g(X) + e(X),

where v(X) is the codepolynomial and e(X) is the error polynomial representing the errors during

the transmission. r(X) can alsobe expressed as

r(X) = p(X)g(X) + s(X),

where s(X) is the remainder of r(X) divided by the code generator polynomial g(X). Combine

these two equations, we would get the result:

e(X) = [p(X) + m(X)] g(X) + s(X),

Clearly, s(X) equals to the remainder of e(X) divided by g(X).

Ifthe errors ofe(X) are confined to n-k parity check positions, 1, X,..., X""^1, then e(X) is

a polynomialof degree n-k-1 or less, thus e(X) = s(X). Therefore, the errorcorrection can achieved

simply by adding (modulo 2) the syndrome to the n-k received parity check bits. In practice, the

messagedigits are the portion of a block thatneed protection. Supposethat the errors areconfined

to X1, Xi+1,..., x(n"k)+M; after n-i cyclic shifts of r(X), the errors will be shifted to the n-kparity

check positions of the cyclically shifted received vector ^""^(X) and errors can be corrected the

same way as in the earliercase.

2.4.1 The BCH (15,5, 7) Code

BCH(15, 5, 7) is a triple error correction code that is capable of correcting 3

errors in any combination within a block of 15 bits. In this section, readers are assumed

to have a certain familiarity with basic finite field theory. A couple of theorems on finite

fields will be restated in this section for the purpose of understanding of the BCH(15, 5,

7) code.
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In a finite field of q elements, GF(q), there is a primitive element a, which is an

element of order q-1 such that every nonzero element of GF(q) can be expressed as a

power of a. That is to say, the multiplicative group of GF(q) is cyclic. Let a be a root of

an irreducible polynomial g(X) = X4 + X+ 1, and therefore, a is a primitive element of

GF(24). GF(24) is a finite field of 16 elements, and the presentation of the 15 nonzero

field elements is given in Table1; notice that every element is expressed as a power of

a.

a0 1 1000
a1 a 0100
a2 a2 0010

a3 a3 0001
a4 1 + a + 1100
a5 a + a2 01 10

a6 a2+ a3 001 1
a7 1 + a + a3 1 101
a8 1 + a2 1010
a9 a + a3 0101
a10 1 + a+ a2 1 1 10

a" a + a2+ a3 01 1 1

a12 1 + a+ a2 + a3 1111

a13 1 + a2 + a3 101 1
a14 1 + a3 1001
a15 1 = a°

Table 1: Ftepreseintation of finike field elements

The BCH(15, 5, 7) code is defined by its parity check matrix,

M =

a a a

a a
10

a

14 , 3 " 5 "
a (a ) (a )

Eqnl

Since GF(24) is acyclic code, we have a15 =a0 = 1, terms such as (a3)14 can be
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simplified as (a3)14 =a42 =a12. Referring to Table 1and Eqn 1, the binary representa

tion of the parity check matrix is:

M =

100010001000

010000010110

001000111110 Eqn 2

1 0' 0 1 1 1 1 1 1 1 1 0

For a receiving vector r = (rQ, rj,..., r^, the polynomial representation is r(X) =

r0 + rjX + r2X2 + ... + r14X14. Multiplying r with the matrix M in Eqn 1, rM = [r(a),

r(a3), r(a5)], where the first component r(a) is:

r(a) = tq + rja +r2a2 +... +rj4a14

Suppose errors occur, which is the same as saying r = y + e, where y is a code vector.

Written in terms of a polynomial, we would have r(X) = y(X) + e(X). Therefore, the

result of parity check calculation rM is

rM =[y(ct)+e(a), y(a3) +e(a3), y(a5) +e(a5)] =[e(a), e(a3), e(a5)] E<ln 3

because a is a root of the generator polynomial and y is a code polynomial, so that y(ot)

= 0. The result of rM is called the syndrome of a received code; from Eqn 3, we see it is

a nonlinear function of error location. The standard way of expressing this is rM = [Sj,

S3, S5] =[e(a), e(a3), e(a5)]. Existing theorems in error correction showed that:

Sj-o^O

52 - SjO! + 2o2 = 0

53 - S2Oj + SjG2 - 303 = 0

54 - S3a! + S2o2 - Sja3 + 4o4 = 0

55 - S4Oj + S3^2 - S203 + SiG4 - 505 = 0

where Cfi are called the elementary symmetric functions.

Eqn 4 [Peterson]
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Assuming there are three or less errors in a block of 15 bits, it has been shown

that if errors occur in the received vector, the error position numbers X,

Xe {a0, a, a, • , • , ,a } must satisfy the equation:

f(X) = X3 - OxX2 +o2X - o3 =0 Eqn 5

For example, if the 2nd bithas an error in it, substitute a2 into Eqn 5, then f(a2)

=(a2)3 - o^a2)2 +a2(a2) - o3 =0. In BCH(15, 5, 7) code, all operations are performed

in the binary field, so addition and subtraction are functionally equivalent. Moreover,

because of the binary field, it can be shown that S2 = Sj2. As this point, we conclude

that if we can compute the elementary symmetric functions, the error locations can be

found by substituting each bit position into Eqn 5 and testing if f(ct!)=0, for i=0, 1, ..,

14. To correct errors, we would only need to flip the appropriate bit which satisfies

f(X)=0. Thus, the problem of error correction is completely focused on how to compute

the elementary symmetric functions O/'s.

From Eqn 4 in this section, the syndrome (computed from the received vector) is

related to Oj by

S^o^O,

S2- S1o1 + 2o2=0,

etc.

Notice this is a system of linear equations with variables O/'s which it can be solved as:

°i = Si

a2 =(S!2S3 +S5)/(S!2 +S3) Eqn 6
03 =(S1S5 +S32 +S!3S3 +S!V(Si3+S3)

provided that Si2 +S3 does not equal to zero.

As a numerical example, suppose the vector of all zeros is transmitted, and that

errors occur in the 3rd, 4th, and 9th positions. Then
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r= (0 0011000010000 0)

rM = (Slt S3, S5) = (1 0 0 0, 0 1 0 1, 0 1 1 0)

where Sj = (1 0 0 0), S3 = (0 1 0 1), and S5 = (0 1 1 0)

Referring toTable 1, Sj = 1, S3 =a9, S5 =a5. Substitute syndromes into Eqn 3, then

o1=l

°2= (Si2S3 +S5)/(S!2+ S3) =(a9 +a5)/a9= 1+a^= 1+au= a12= 1111
03 =(S^ +S32 +S!3S3 +S!6)/(Si3 +S3) =a14 = 1001.

Putting these coefficients into f(X), it is then easy to verify that f(X) = X3 + X2 + a12X

+ a14 =0 is satisfied for a3, a4, and a9.

The BCH(15, 5, 7) triple error correction code provides very good protection

over data especially in an indoor wireless communication environment where errors

occur frequently. A custom VLSI implementation of the BCH(15, 5, 7) code will be

shown in chapter 5, and this design will be used in the Berkeley InfoPad project.
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Simulation Using Ptolemy

3.1 Theoretical Analysis of Hamming Code over a Fading

Channel

The applications we consider in this project are generally in the areaof indoor communi

cations,where we can assumethe amplitude ofthe spectrum is constantover ablock duration of7

bits, which is the block size of Hamming code. In an indoor environment, the receiver such as the

InfoPad will not move a significant amountduring one block time, so Dopplershifts which usually

occur in wireless communication is not a significant issue throughout our analysis. For the (7,4)

Hamming code over a fading channel using OOK modulation that we are investigating, an error

occursif there is more than one error in eachblock of seven bits. Therefore the probability of cor

rect detection is given by

/

1
Pc = 2J(1-Q(7S^))7+^J(1-Q(7SNR))6(Q(7SNR)) Eqn 1

thus, the probability of error is

Pe " 1_"Pc Eqn2

where SNR is given by

20
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SNR = instantaneous power / (noise power+ ISI power) Eqn 3

and the ISI is assumed to be Gaussian. This development can also be derived by from the Rician

channel model [Linnartz] by letting Rician K factorequal to zero. The Rician equation is therefore

reduced to:

00 T 1

0 p0 m=0
Pe= I^X \LI\i-Q

Eqn 4

where Pq isthe instantaneous power, pQ isthe local mean power, and pt isthe variance ofthe ISI,

which we assume is Gaussian. Note the term

P0Tb c <Eqn 5
N0 +P,Tb

equals the SNRterm of equation 2; therefore, this expression of Pe agrees exactly with Eqn 1. For

the simulations, we consider the impulse response of Fig. 7; for simulation efficiency, the discrete

equivalent (shown in Fig. 8) of the combination of transmitter, the channel, and receiver is used.

We included a gain factor to make the discrete equivalent channel unit-energy which is similar as

thenormalization term J_ in Eqn 4

Po
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Discrete Eqnivalent Channel Spectrum

Fig 1. Impulse and spectrum of the discrete equivalent channel

In the next section, we varied the noise assuming some fixed instantaneous power. Noting equation

3, we see that the SNR varies as the carrier frequency changes, which will occur in mobile commu

nications applications since different terminals will communicate with differing carrier frequen

cies. The spectrum ofFig. 8 shows that the SNR variesby about ±3dB over the various choices of

carrier frequency one may choose for this channel.

The noise variance is chosen to be 0.005, which is at the higher end ofnoise power used in

the simulation, with respect to a signal power of 0.5. We found the ISI power via the following

relation:

^isi= X*2(n)
n*0

Then, from (Eq 3), we derive

SNR =
0.5|H(co)|"

a?.+Nn
isi 0

Eqn 6

Eqn 7

For each sample taken uniformly across the spectrum of Fig 9 (each of which could be considered
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a different carrier frequency), the probability of erroris computed according to Eq 1. The result of

this computation is displayed in Fig. 9.

H(w) »

frequency"

iTequency'
Fig 2. Theoretical probability of errorover spectrum of multipath channel

As expected, at the frequencies that correspond to local maxima (peaks) of the spectrum

which imply high SNR, a low BER is observed. And likewise, at the "nulls" of the spectrum, we

observe a very high BER. Furthermore, we see that probability of errorvaries in the range of 10-2

to 10-6which matches our simulation resultsshown in the latersections. The low-end noise power

(i.e. Nq = 0.0005) is alsoused to test the model. The possible inaccuracies introducedby this ana

lytical model is the assumption that ISI terms from our multipath channel follow a Gaussian distri

bution. Since our result agrees with the simulation, we believe that our model is accurate.

Moreover, as probability of error varies from 10"2 to 10"6 at different frequencies, therefore it isa

good strategy to use spread spectrum in a multipath environment for an overall low bit error rate,

and this indeed has been done in real implementations.
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3.2 Simulations Setup

To simulate the entire system in Ptolemy, the basic building blocks include a random bit

generator, an encoder, a noise source, a multipath fading channel, and a decoder. The communica

tion system we simulated also consists of a transmitter filter and a receiver filter, both of which are

raised cosine filters with 100% excess bandwidth. The multipath fading channel is generated from

a Ptolemy simulation of an indoor channel as might be found in an applicationsuch as the InfoPad.

Throughout the entire simulation, the samplingrate is set to 3 GHz andthe carrier frequency is set

to 1 GHz. The impulse response of the fading channel and its resulting spectrum are shown in Fig.

10 - notice it has Rayleigh characteristics of deep fades.
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Fig 3. Impulse response of a fading channel with its spectrum

We wish to simulate the system as close to continuous time as possible. However, Ptolemy

only simulates discrete systems. Therefore, the tactic of using several samples per baud is

employed to make the system look like it is continuous time. Due to its large overhead, Ptolemy is

not able to execute enough iterations in a reasonable time when these conditions are used. Fortu

nately, since the result of the receiver filter is sampled once per baud, the computation of the con-
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volution of transmitter filter, multipath channel, and receiver filter can be condensed into a

discrete-time equivalent channel. By making this discrete-equivalent response, simulation time is

shortened dramatically and we can make meaningful BER tests on the order of 10 hours. Two

other relevant issues that must be considered before running large simulations are timing and

delay. When making the discrete-equivalent channel, we carefully located the maximum point of

the outputof the receiver filter and used thatas the sampling point In otherwords, we are doing

perfect timing recovery for the system.Also, whenchecking to see if a particular transmitted bit is

received properly, care must be taken to align transmitted bits and received bits properly. For

example, ourconvolutional coderequires 2 clockcyclesbefore aninputbit is correctly received.

Several "custom" stars are programmed in C++ for use in the Ptolemy environment. The

code for these stars is included in the Appendix.These includeencoders anddecoders for eachof

the following:

Hamming (7,4) block code
rate 1/2 K = 2 convolutional code

rate 1/4 K = 4 convolutional code

3.3 Results

As an initial baseline, we tested a system with an ideal (no multipath) channel. In this sim

ple case, analytical results are simply known andwe easily checked that all was working properly.

Table 1 shows the BER vs. signal-to-noise ratio (SNR) for the Rayleigh fading channel we

describedin Section 3.1. Figure4 graphically displays the results.We used on-off keying modula-
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tion.

SNR Uncoded Hamming(7,4) Conv(l/2,2) Conv(l/2,4)

13.7 3.50 xlO'2 1.63x lO'2 9.87xl0'3

14.1 3.30xlO'2 1.42xl0"2 7.66xl0"3

14.6 3.02xl0'2 1.17xl0'2 5.66xlO'3

14.9 2.79 xlO'2 1.04xlO'2 5.42xl0"3

15.4 2.51 x 10-2 9.11xl0'3 4.32xl0"3

16.4 1.99 x 10'2 5.77xl0"3 2.64xl0"3

17.0 1.73x 10"2 4.33xl0'3 2.21X10'3

18.5 1.11 x 10'2 1.78xlO'3 9.8X10"4

20.0 7.29 x 10"3 6.91X10"4 2.29xl0"3 5.18X10-4

22.2 3.14 xlO"3 1.14xlO"4 1.92xl0"3 1.65X10"4

25.2 4.70 xlO"4 3.75xl0'6 3.8X10"4 2.85xl0-5

27.0 1.82X10"4 8.3xlO"7 5.8xlO-5 6.5xl0"6

30.0 1.23xlO"5 4.25xl0"6 1.5xlO-6

Table 1: Simulation result for bit error rate vs. SNR

At high SNR, we can see the noticeable improvement of data after applying the Ham

ming^, 4) code; however, at low SNR, the Hamming code actually made the data look worse!

This makes sense afrer careful thinking about the capability of Hamming codes. The Hamming

code is a single errorcorrectioncode. If multiple bit errors occurred,the decoder would then flip a

bit randomly, which in some cases, causes more errors. This is exactly the effect we observed at

low SNR.

As expected, the performance improved as the constraint length of the convolutional code

increased from 2 to 4. If the constraint length were made longer,we would be able to see some fur

ther improvement, this is what Qualcomm had actually implemented in their system where they

used constraint length 7. On the decoding side, the truncation depth (how far to look back) of the

Viterbi search algorithm may also be extended to obtain the theoretically predicted coding gain.
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j Uncoded

eo-nV(f#;-45"
: Hamming (7,4)

Fig 4. Bit Error Rate vs. SNR for Various CodingSchemesOver the MultipathChannel

Following closely to this idea, we carried over the accumulatedpath metrics after each iteration to

the subsequent iteration. The data showed that the (1/2, 2) convolutional code gave a 1 dB

improvement over an uncoded system; however, Hamming (7,4) code and the (1/2, 4) convolu

tional code yielded an improvement of 4 dB over the uncoded system. It appears that the overall

penalties due to multipath for this channel are severe.

The overall result showed that error correctionalgorithmsare more powerful as the com

plexity increases, and this may impose a serious constraint during the real implementation. Fortu

nately, there are possibilities that we can build an efficient error correction scheme without

introducing infinite complexity.
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Analysis of Bit Error Rate

4.1 Performance of block codes

The error correction capability of a particular code is directly related to its block

size and amount of redundancy. Assume independently identically distributed (i.i.d.) bit

errors with probability Pe, which also equals the bit error rate (BER). An (n, k, d) block

code is able to correct up to t = errors. Therefore, by applying error

correction, transmission of a block of n bits is correct if there are t or fewer errors

within the block. We can calculate the probability of correct transmission, (using our

independence assumption) with the result:

Pc(with error correction) = P(0 error) + P(l error) + .... + P(t errors)=

(l-Pe)n+(?J(l-Pe)n-1Pe+(5)(l-Pe)n-2p2+ • • •+n,(1_Pe)n-tp,
Vt

* = 0

Thus, the probability of error after error correction is:

Pe(after correction) =1-Pc(after correction) =1- £ I?J(1 -Pe)n Pe.
* = 0

28
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Because Pe(t+2 errors) = Pe Pe(t+1 errors), we can conclude that Pe(t+1 errors) »

Pe(t+2 errors) for Pe<10"2, which is to say that the probability of making t+2 errors is

negligible relative to the probability of making t+1 errors. Therefore, the bit error rate

after error correction of an (n, k, d) block code can be approximated as the probability

of making (t+1) errors multiplied by number of bit errors, (t+1):

BER(after error correction) = (t+1) Pe(after correction).

Having this formulation, we are able to demonstrate the effectiveness of error

correction in terms of BER for any particular channel. Fig 1 shows the bit error rate as

result of error correction vs. the bit error rate without error correction for any channel

with random errors for several coding schemes.
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BER Before Error Correction

Fig 1 BER After Error Correction vs. BER before Error Correction

We see that if the channel has a high bit error rate, for example, BER = 0.05, there is

very little improvement any error correction algorithm can do since the data is so

corrupted. But at BER = IO"3 (which is a typical error rate for an indoor environment
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[Sheng]), a code with high amount of redundancy such as (15, 5, 7) can improve BER

from 10"3 to 5xl0"9! From this figure, we see that error correction indeed improves the

quality of transmission, and should be seriously considered when designing reliable

communication systems.

Finally, it is important to mention that block codes work best when errors do not

come in bursts because a single block code can not correct more than t errors. In an

indoor wireless communication environment in which multipath dominates, burst errors

are either caused by transmitting at a fading null, or they are caused by a blockage such

as a person in the main transmitting path. Therefore, to achieve the optimum

performance of block code, an interleaver is needed to re-distribute errors among the

"good" data, and therefore, the burst errors would look like random errors. Fig 2 shows

how an interleaver can fit in a communication system:

encoder interleaver —•() channelf)—• de-interleave! decoder

Fig 2. Use of an interleaver in a communication system

First, the interleaver shuffles the data before transmitting. At the receiving end, the de-

interleaver re-shuffles the receiving data (which may include errors) back into the

original order. This de-interleaving process rearranges the errors and makes them

appear random, and our goal of having random bit errors is achieved.

4.2 Error detection with retransmission

Another common method for error control is to use error detection along with

retransmission. Error detection is considerably less sophisticated in terms of

implementation compared to error correction. Recalling syndrome decoding from the

chapter 2, a block of data is received correctly if the syndrome of the received code
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vector equals to zero. Syndrome computation of block codes can be implemented easily

using either AND and XOR gates, or with shift registers. Unlike error correction, error

detection does not have to do any post syndrome computation for error locations;

instead, it requires a closed loop system to send an acknowledgment to the transmitter

which indicates the quality of the packet so retransmission is possible. The Fig 3 shows

an outline of such a system:

input

acknowledgment
Fig 3. Error Detection for a Communication System

The error detector computes the syndrome for each received vector; if the syndrome

equals to zero, i.e. no error occurred, the acknowledgment of correct transmission will

be issued and sent to the transmitter. Otherwise, an acknowledgment of incorrect

transmission is sent to transmitter for retransmission.

With this scheme, we can compute the effective bandwidth by:

effective bandwidth = E[number of transmissions] x Actual Bandwidth per transmission

where the first term stands for expected number of transmissions due to errors. The

expected number of transmissions can be calculated as:

E[N] = 1PC +2P<Pe +3PcPe2 +4P<Pe3 +

=Pc(l +2Pe+3Pe2 +4Pe3+....)

One key point for error detection is that for an (n, k, d) code, one code vector is

different from another code vector by the hamming distance d; because of this, error
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detection algorithm will fail to detect errors when there are exactly d, 2d, 3d,... errors.

Thus,

Pc = P("correct" transmission) =

2d(i-py-2d+(l-^)n+(s)/>^1-^),,"</+(2^

The error detection with retransmission algorithm described here assumes the

transmitter keeps retransmitting until a "correct" code vector is received. The

probability of error after the "correct" reception is therefore,

P(error after retransmission) =

5)^(1-^""'+tw/^ci-^"-"* • • •

Thus the BER after retransmission can be approximated as

BER = d Pe(error after retransmission)

As we have fully described both error correction and error detection schemes, it

is time to use some quantitative examples to compare their performance.

We will constrain ourselves to the codes that have block size of 15 bits. And we

want to compare two schemes by letting them have the same effective bandwidth, one

due to the redundancy, and another due to the redundancy together with retransmission.

Consider both (15, 11, 3) and (15, 7, 5) block codes for error detection/retransmission

vs. (15, 5, 7) for error correction. The BER in the table is the bit error rate after
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retransmission until "correct" receiving and the bit error rate after applying error

correction.

same effective

bandwidth

as (15,5,7) codi

detection/retransmission correction

(15,11,3) (15,7,5) (15,5,7)

£e'=t>.058 •..,
p[N] =2.215 )
1am.=; 0.0244....-''

Pe = 0.058

E[N] = 2.444
BER = 5.4x10-3

Pe = 0.058

BER = 0.0368

J>*s=0.04
einj^i^
BER =6.7xT<^

Pe = 0.04

E[N] = 1.844
BER =1.0x10-3

Pe = 0.04

BER = 9.8x10-3

Pe =0.022 \
E[N] =1.389 ^
BER = 7.52x10-4

Vp*t53tfS ...
*fe[N] =1.396 )

feF^ =6.19xlQ '̂

Pe = 0.022

BER =1.1x10-3

Pe= 5xl0-3
E[N] = 1.078
BER = 2.42x10-6

Pe = 5x10-3

E[N] = 1.078
BER = 4.46x10-8

Pe = 5x10-3

BER = 3.27x10-6

Pe=lxl0"3
E[N]= 1.015
BER=4.05xlO-9

Pe= 1x10-3

E[N]= 1.015
BER =1.487x10-11

Pe= 1x10-3

BER = 5.41x10-9

Table 1: error detection/retransmission vs. error correction

As indicated from the table, with the same effective bandwidth, error detection

clearly has a gain over error correction by having the lower final BER after

retransmission. But on the other hand, retransmission over the channel can introduce

latency that may not meet the real time requirement, and this latency will also require

the system to have a bigger buffer. As a result, the best compromise is probably to

combine the error detection/retransmission with error correction. A proposal for such a

system will be introduced in the section of future work.
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Implementation

5.1 The BCH(15,5,7) encoder

As we have discussed in chapter 3, an encoder for a cyclic code can be

implemented by shift registers according to its parity check polynomial. The parity

check polynomial is h(X) = 1+ X + X3 + X5 for the BCH(15, 5, 7) code described in

chapter 2. The shift-register implementation of the encoder is therefore:

output

After the five data bits are loaded as initial state, then the block (data bits and

parity check bits) is generated from this circuit. This set of shift registers is easy to

build in hardware, and will be done as a part of this project.

34
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5.2 The BCH(15,5,7) decoder

Decoding of BCH codes requires computations which use Galois field

arithmetic. Galois field arithmetic can be implemented similarly as ordinary arithmetic

with the exception that it has no carries. For the BCH(15, 5, 7) code, the decoding

process can be characterized by three major steps for a block of 15 received bits:

Step 1) Compute the syndrome Sj, S3, S5.

Step 2)Use the syndrome to calculate the elementary symmetric functions O/'s. The

resulting error location polynomial is then f(X) =X3 +ayX2 +o^X +G3

Step 3) Sequentially substitute each of 5 message bits into the error location

polynomial, and flip the bit if an error is detected, i.e. when f(X) I =0. The

reason why only 5 bits are tested is because we do not need to correct parity check

bits.

Step 1 can be accomplished either by the use of feedback shift registers, or by a

straightforward implementation such as using AND for binary field multiplication and

exclusive-OR for binary field addition. The calculations of elementary symmetric

functions in Step 2 are computationaly intensive with arithmetic such as polynomial

addition, multiplication, and division. Instead of having separate lookup tables for all

of these operations, a 25k bit ROM is used as an overall lookup table. The decision of

using a large ROM allows great simplifications on timing and scheduling between

different processing modules. In addition, this ROM is also used as an error counter to

count the number of bit errors up to 3 errors in a block of 15 receving bits. Lastly, the
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final step is done by shift registers with feedback. As a result, the top level system view

is:

step 1 step 2 step 3

output

Fig 1. top level system view of implementation of the BCH(15,5,7) code

Implementing the BCH(15, 5, 7) decoder using the high level synthesis tool

Lager, the schematic looks like:

-rl5 condition-

i—\» 15bTSPCR

;=D,"^T 15bTSPCRw/fb
[

Fig 2. BCH(15, 5, 7) decoder structure viewed in Lager

The last block in Fig 1 is probably the most interesting and illustrative unit in

terms of showing the key implementation ideas involving finite field algebra. Recall

from chapter 2, to determine whether a specific bit has an error, we need to evaluate the

error location polynomial f(X) = X3 +CjX2 + a2X +a3 for that particular bit to see if

f(X) I , = 0. For example, assuming there are three or less errors in a block, if the 0th
•a
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bit has an error, then f(a°) = f(l) =1 + Oj + o2 + 03 = 0. The result of f(X) is feed into

an inverter, and the inverter output is XOR with the received bit, so the received bit is

flipped if and only if an error is detected in that position, i.e. f(X) = 0. To correct errors

in all of the information bits, this last step is repeated five times for each information

bit. Putting all these pieces together, the decoding structure looks like:

Output

Input Buffer

The final question is how we can implement the finite field polynomial

multiplication such as C20: with hardware. We know that for any field element p in

GF(24), pcan also be written as p=(p0, Pi, P2, P3) =Po +Pi<* +p2a2 +p3a3» given tnis

relationship, pa3 can be expressed as:

pa3= p0a3 +pja4 +p2a5 + p3a6

= p0a3 + p!(l +a) + p2(a +a2) +p3(a2+ a3)

=Pi +(Pi +P2)a +(P2 +P3)a2 +(Po +P3)«3

As the result of expansion and recombination, we can make a one to one comparison of

pa3 with p and see that the multiplications again can be achieved by feedback shift
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registers! The graphical expression for an actual circuit of pa3 is shown in the figure

below:

flo Pi *-GH* P2 Ps

4 A

w w

Similarly, the multiplication units for pa2 and pa can also be done by the same method.

Putting all these pieces together, we have:

I M.... I I . . . l|

The output of this decoder has 5 bits data plus 2 extra error count bits which counts up

to 3 errors within a block of 15 bits.
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Future Work

In this chapter, we would like to present a system view on how error control

coding can help improve performance for an indoor wireless communication system,

e.g. the Berkeley InfoPad. An implementation of such a system will be investigated as a

part of the future research. Fig 1 is a system overview for the radio link between a base-

station and a receiver.

base-station
& database

InfoPaa*r

variable ecc for

...Q.tQ.3.rAit errors...
(cg.block size 15)

requirement

RFchannel

RF channel

Fig 1 A systematic approach to reliable transmission (by using ECC)

We know that the indoor multipath channel is time variant, so it can be band-

39
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width inefficient if we use a fixed error correction algorithm with high amount of redun

dancy such as the BCH(15, 5, 7) code for all the data, especially when the channel does

not suffer from significant multipath or multiuser interference. But on the other hand, if

we constrain ourselves to a simple Hamming code for the sake of saving bandwidth,

reliable transmission can not be achieved for all cases. Therefore, we are proposing a

variable error correction module which is adaptive to the quality of the channel in terms

of the error rate, and this variable error correction module will be capable to correct 0,

1, 2,.... errors. From the point of view of implementation, the design of such a module

can be simplified significantly if we have a fixed block size, e.g. a block size of 15 bits

for error correction of 0 to 3 bits. The reason for supporting zero error correction capa

bility as a part of the design is that for data such as video, there is no strict low error

rate requirement because human eyes are not very sensitive to video images. Also

notice from the figure that some feedback to the transmitter on channel quality is

needed to select the appropriate encoding algorithm.

As we have mentioned earlier in chapter 3, the most efficient design in terms of

lowering BER is to combine error correction with error detection/retransmission. Fig 2

shows how this can be done for each frame of packet. Ecc level (none, low, medium, high)



together with channelquality will determinethe actual ecc used by the encoder

basic block size, e.g. 15 bits

ecc type used for this packet
packet length
start of packet flag
end of packet flag

example: video packet:

A ecc level: high

sop

(start of packet)

ecc level: none

41

H
ecc level: Ajgh

eop
(end of packet)

Fig 2. Format of an ecc packet fragment with an example on video data

The contents of a packet are divided into: (1) sync: which is used for overall frame syn

chronization; (2) header: which contains information on the ecc type used for this packet, packet

length, start of packet, and end of packet, etc.; (3) the actual data which is encoded with the ecc

level indicated by the header. As we can see, the sync and header are extremely important to us in

terms of finding the correct packet position and decoding the packet using the appropriate decod

ing algorithm; therefore, they should be "heavily" protected by "powerful" error correction algo

rithm. A fixed CRC (cyclic redundant code) for error detection purpose will be applied to the

entire packet to provide additional error checking in case any individual error correction block

fails. The result of CRC which contains information such as the number of bit errors during the

transmission can be combined with packet acknowledgment for feedback. With the feedback, we

can turn up or down the ecc complexity to achieve bandwidth efficiency. Moreover, by having
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CRC errordetection, retransmissionwill be possible for a packet with high error-free requirement.

In order for retransmission to be possible, a seq # is needed to maintain the overall order for differ

ent packets.

Fig 3 shows a variable ecc encoder structure combined with an interleaver.

ML

Data •

Write "

Control

(ecc type eop flag)

Fig 3. Encoder structure

RF channel

Figure 4 shows a possible implementation of a decoder at the receiver.

X
de-interleave"Ydejn

bits.

bit elk >

Fig 4. Decoder structure

ecc

decoder

need Async
.sync Tdone

J need As
sync L

sync

decoder

corrected data

In order to decode the received vector correctly, precise detection of the beginning of a block is

required, or else all the data will be mismatched (unless they are shifted exactly by a block of n

bits). As a result, frame sync is a very critical issue in decoding process. In orderto have a reliable

frame synchronizationin an environment with error rate, ecc has to be used for frame synchroniza-
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tion. Fig 5 is a design for a synchronizationdecoder. First,the decoder has to de-interleave the data

to make errors look random. Then the data bits will go through the synchronization decoder for

detecting the beginning the packet. After synchronization pattern is detected, a "sync done" signal

is sent to the ecc decoder to start decoding the actual data. After transmitting each packet, or mul

tiple packets, the ecc decoder will issue a "need sync" to the synchronization decoder asking for

re-synchronization. Thus, an overall system synchronization can be obtained.

Fig 5 is a detailed design for a synchronization decoder.
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Fig 5. Sync decoder structure

Frame synchronization can be done by looking for a known pattern of N bits which is sent

repeatedly for m times. The decoder startsdecoding at the beginning of the received data. For each

block of N bits, the Hamming distance d of the received bits vs. synchronization pattern is calcu

lated and stored in the registers of an IIR filter with N registers. After each bit, the ecc decoder will

shift by one bit andcalculatethe distanceagain, iterate this step until m x N bits areprocessed. The

threshold filter will then choose the registerwith the minimum distance, and call the position of

that register the beginning of the data. This frame synchronization detection algorithm is actually
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the maximum likelihood algorithm, thus it is optimal in the senseofminimizing the probability of

making a wrong decision with the given observations.

This proposal on system design of reliable transmission for indoor wireless communica

tion will be looked more carefully as a partof the future research. We will consider implementing

this for Berkeley InfoPad project
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