Copyright © 1994, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ARCHITECTURE AND IMPLEMENTATION OF
THE INFOPAD NETWORK PROTOTYPE

by
Frederick L. Burghardt

Memorandum No. UCB/ERL M94/81

10 October 1994

ARCHITECTURE AND IMPLEMENTATION OF
THE INFOPAD NETWORK PROTOTYPE

by

Frederick L. Burghardt

Memorandum No. UCB/ERL M94/81

10 October 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

ARCHITECTURE AND IMPLEMENTATION OF
THE INFOPAD NETWORK PROTOTYPE

by

Frederick L. Burghardt

Memorandum No. UCB/ERL M94/81

10 October 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Architecture and Implementation

of the
InfoPad Network Prototype

Frederick L. Burghardt
(fib@eecs.berkeley.edu)

Abstract

The InfoPad project at the University of California at Berkeley is developing a mobile
computing environment in which the terminal device is a small and inexpensive hand-held
unit containing no user programmable hardware. The device, or pad, employs a pen-like
stylus as the primary user input tool; the pad is connected to a high-speed backbone network
via radio pico-cells. The lack of a general purpose processor in the pad distinguishes InfoPad
from similar efforts in an important and unique way: all processing is performed by compute
nodes on the backbone network. This paper describes a distributed software system that has
been designed and built specifically for InfoPad. The description is divided into two major
parts: architecture and implementation. The architecture is an abstract definition that
specifies how network compute resources are organized to meet InfoPad needs. It outlines
the basic structure necessary to deliver data from a network based application to a mobile
pad. This structure includes basic compute elements, interconnections, communication
protocols, algorithms, and programming interfaces necessary to perform tasks such as pad
location, data management, and connection handoff. The second major section of the paper
is a detailed description of an implementation of this architecture. A working prototype is
now in daily use on a general-purpose Ethernet; the prototype supports InfoPad application
development and research into issues such as radio cell power management, pad relocation,
management of bandwidth, and error rate detection and control. Multiple pads can be
running at any given time controlled by a number of network processes running on any
network compute node. Both the architecture and implementation are continually evolving,
and are expected to be a useful research platform for the life of the InfoPad project.

InfoPad Network Prototype: Architecture and Implementation 2

Contents
1 Introduction : 5
1.1 InfoPad Overview. i ittt it ittt 5
12 Goals . .. e e 7
1.3 Organization 7
2 InfoPad Data Types and Traffic Characteristics 8
3 Architecture 9
3.1 Modules e 10
L1 Gateway. e 11
3.1.2 CellServer e 11
3.13 PadServer 11
3.1.4 TypeServers. i i e e e 11
3.1.5 Emulator e e e 12
3.2 Clusters i u i e e 13
321 GateCluster ittt 14
322 PadCluster it 14
3.3 Service Groups i e e e 15
3.3.1 DeliverySupport e 16
3.3.2 TypeSupport. 17
333 Applications L e e e 17
3.4 Inter-Module Communication0 .0...... 18
341 Ports. e e e 18
342 IDsand Address Mappingo vttt it 18
343 Imterfaces 19
344 PacketFormat, 21
3.5 Algorithms e 22
3.5.1 Pad Relocation (handoff) 22
3.5.2 Control e e e 26
4 IPN: Implementation of the Delivery Support Service Group 28
4.1 Physical Environment 28
4.2 Common Functions and Features, .. 29
4.2.1 Ports, Procedures,and Statec.0.0.... 29
422 TheScheduler iinmnnnnnnn. 32
423 Control (passive) it e e e e e 35
424 Logging i e e e e e 35
425 Drop-Dead Timers v v it it i ittt et e e e e e e 36
42.6 Optimizations. 36
43 GaleWaY . . L . e e e e e e e e e e e e e e e e 37

4.4 CellSAerver .. 40

InfoPad Network Prototype: Architecture and Implementation

4.5 PadServer e 42
4.6 Library e e e e e e 46
46.1 CustomI/OPackage.0 vuuu.... 46
46.2 NameDatabase. uene... 49
4.6.3 Connect/Control (active) v v nenn... 50
Implementation of Type Support, an Application, and the Emulator 55
8.1 TypeServers o it ittt it e e e e e e 55
5.1.1 Text/Graphics e 56
5.1.2 Pen e 56

5.2 Application e e e e e e e e 57
53 Emulator e e e e e e 57
8 Conclusions 58

7 Acknowledgements 60

InfoPad Network Prototype: Architecture and Implementation

List of Figures

© 00 =~ O Ov b W=

Top level schematic view of major InfoPad components. 6
InfoPad network topology: basic view. 10
InfoPad network topology: clusters. 13
InfoPad network topology: service groups. 15
InfoPad packet format 22
Module read procedure generic finite state machine. 30
Module write procedure generic finite state machine. 31
Scheduler service list structures 33
Gateway internal data structures.o ... 38
CellServer internal data structures.o vuveun.. 41
PadServer internal data structures. 43
Delivery support library subsections. 47

InfoPad network topology: modules and data flow for pen loop-back. 55

InfoPad Network Prototype: Architecture and Implementation 5

1 Introduction

This paper describes the architecture and implementation of a prototype network-based software
system. The system was built to support research into mobile computing in a multimedia
environment. It forms a development testbed for the network portion of the InfoPad project
currently underway at the University of California at Berkeley.

The system is intended to give InfoPad application programmers a “real world” environment
unavailable through analytical modeling or simulation. It is also intended to allow experimen-
tation with mobile computing issues such as connection handoff, bandwidth management, and
quality of service. In addition, it serves as a proof-of-concept vehicle to test project assumptions
and expectations in both quantitative and qualitative ways.

1.1 InfoPad Overview

The purpose of InfoPad is to develop a mobile computing environment in which the terminal
device is a small and inexpensive hand-held unit containing no user programmable hardware.
The device, or pad, employs a pen-like stylus as the primary user input tool. The pad is
connected to a high-speed backbone network via radio pico-cells.! The lack of a general purpose
processor in the pad distinguishes InfoPad from similar efforts in an important and unique way:
All processing is performed by compute nodes on the backbone network, and data transferred
between pad and network is “raw” in the sense that only primitive operations will be applied
to data on the pad. This approach transfers many tasks normally handled by a local machine
to remote processors, significantly increasing the burden placed on the network. The aggregate
bandwidth of an InfoPad data channel will be 2Mbps.

The system can be viewed as a pair of subnets that connect two endpoints. One of these
endpoints is the pad, and the other is an application process running on a network compute
node. The pad and radio hardware form a “wireless” subnet, and the backbone network forms
a “wired” subnet. The interface between these subnets is the point at which the network-side
radio tranceivers connect to the backbone network.

From the viewpoint of a pad, this interface is temporary i.e. the communication channel
between pad and wired subnet moves from interface to interface as the pad moves from cell to
cell. This action is called relocation or handoff.

The InfoPad project is technically split into two parts. The first is concerned with the
wireless subnet and the second is concerned with the wired subnet. This paper discusses the
wired subnet in detail; the wireless subnet will be covered only indirectly. The prototype
described here exists on the backbone network and has no specific knowledge of wireless subnet
hardware elements. However, the choice of hardware will eventually have a significant impact
on the network system, so developers have attempted to anticipate hardware needs and design
accordingly. At this stage of InfoPad, the network architecture contains elements that are
considered basic and general. Figure 1 shows a top level view of the InfoPad system.

1Pico-cells are about 10 meters in diameter. As an alternative, infrared communication is under consideration.

WIRELESS

SUBNETWORK ~_.~"""

InfoPad Network Prototype: Architecture and Implementation

WIRED

SUBNETWORK

Busy Intemal Compute Nodes InfoPads
Busy Interface/Compute Nodes Video Servers
(Gateways)

O Idle Compute Nodes [Databases

Figure 1: Top level schematic view of major InfoPad components.

InfoPad Network Prototype: Architecture and Implementation 7

1.2 Goals

As an early prototype in a research environment, ultimate system requirements are difficult to
predict. However, given the role the prototype is expected to play, a set of important generic
goals can be identified:

¢ Speed: The system must be fast in order to process multiple streams of multimedia data
in real-time.

¢ Efficiency: The system must present a small overhead burden to the network compute
nodes, since processor cycles consumed by the system could otherwise be used by appli-
cations.

¢ Simplicity: The system must be relatively easy to understand, easy to modify, and
portable. It must not pay for functionality not required [16].

* Reliability: The system must not present a burden to application programmers due to
frequent (or even occasional) unavailability.

¢ Concurrency: The system must be able to handle multiple independent streams of data
and control at a relatively fine granularity.

o Fairness: The system must give equal priority to all data streams unless explicitly told
otherwise by a priority based scheduling algorithm.

o Flexibility: The system must allow easy addition and modification of function so that
it can grow with the needs of the project. Individual components must be distributed in
order to take advantage of the compute power of a large network.

1.3 Organization

The terms prototype and system represent all elements of the network portion of InfoPad that
have been implemented in some form or are expected to be implemented in the near future.
This paper examines the prototype on two levels: an abstract architectural specification and
an implementation of that architecture on a real network. There are aspects of the system that
are beyond the scope of this paper. They will be referenced where appropriate.

The architecture describes a software entity. The discussions that follow generally assume
that computation is not limited by specific technologies, and for the most part this is true.
A hardware link has been developed and extensively used for performance testing, but is not
considered to be part of the architecture [8].

The remainder of this paper is organized as follows: Section 2 introduces InfoPad data types
and traffic characteristics. Section 3 describes the system architecture. Sections 4 and 5 examine
two aspects of architecture implementation. Finally, section 6 presents some conclusions and a
review of the degree to which the system meets the goals outlined above.

InfoPad Network Prototype: Architecture and Implementation 8

2 InfoPad Data Types and Traffic Characteristics

InfoPad defines four types of traffic: audio, video, pen, and text/graphics. Each type can be
further subdivided, but the subtypes tend to differ in coding schemes rather than the demands
they place on the network.

Audio data are bidirectional, unstructured (to the delivery service), relatively low bandwidth
(8K bytes/second), and real-time. The real-time nature of audio implies that the data flow must
be rate and jitter controlled. Audio data are highly sensitive to jitter and loss.

Video data are unidirectional (server to pad), relatively high bandwidth, and real-time.
Although InfoPad can accept several format alternatives, the compression scheme currently
in use is VQ (compression ratio of about 30:1). Video frames under VQ are 2048 bytes in
length, resulting in a data rate of 61.44 kilobytes/second, or almost 500 kilobits/second at 30
frames/sec. This is a significant fraction of the 2Mbps aggregate pad bandwidth, but since only
one video stream will be supported per pad sufficient bandwidth remains for the other three
data types. Video tolerates a higher proportion of lost frames than audio.

Pen data requires very little bandwidth: about 500 bytes/second from the Gazelle pad
currently in use with the hardware link. Pen data are unidirectional and must be delivered
with high reliability. The most important performance metric for pen is loop-back latency
i.e. the time between pen contact and the appearance of ink on the display. Low latency is
critical when working in a draw window, where real pen-like behavior is expected. Since pen
recognition will be an important application, pen data must experience no loss.

Text/graphics data are highly bursty and most data units are small. The greatest bandwidth
demand occurs when large changes are made in the screen image such as window creation or a
screen refresh. Much of the time a text/graphics stream will be composed of cursor information.
Text/graphics is non real-time and can tolerate loss.

In summary, the four data types exhibit real-time and non real-time behavior, high and low
data rates, a continuum of loss tolerance, and varying jitter requirements. All four data types
may be present at the same time in a single pad stream, and multiple pad streams will coexist.
The communication channels used for InfoPad will therefore have to exhibit high bandwidth,
low latency, reliability, and real-time behavior. In practice, some requirements can be relaxed
for some data types if the network interface is parameterized.

InfoPad Network Prototype: Architecture and Implementation 9

3 Architecture

This section describes the InfoPad network prototype architecture. The architectureis a general,
high level description of what the system should do and how it should look to its users in terms
of a programming interface. The mechanisms by which these tasks are accomplished are left
to the implementation [7]. The system is intended to be distributed in a nearly arbitrary way
across the backbone network; although the software implementation described in this paper
imposes no restriction on physical location, integration with the wireless subnet will constrain
at least part of the system to reside on machines dedicated to the wireless interfaces. The
language of this section is purposefully abstract, since the architecture is a template that can
be applied to any compute environment.

The fundamental unit is the module. A module performs a specific set of related tasks;
the term is intended to underline the modular nature of the InfoPad architecture. Modules
communicate with each other through well-defined and tightly controlled interfaces. As an
example, microkernel operating systems are based on the premise that functional isolation
through modularization is essential for flexibility and power [1] [23]. Major system components
such as file systems and virtual memory managers can be implemented as individual modules.
An InfoPad module resides entirely on a single compute node, but there can be multiple modules
per node.

Modules are combined to form clusters and service groups. Clusters are differentiated by
their view of a pad. One cluster type is permanently associated with a single, specific pad
while the other is temporarily associated with a frequently changing set of pads. Connections
between members of a cluster tend to be created at start-up and exist for the lifetime of the
cluster. A service group is a related collection of modules that provide a specific set of services.
For example, one service group generates a “virtual pad” abstraction that hides pad relocation
mechanisms i.e. physical location of a pad is irrelevant to a module using this abstraction. The
distinction between clusters and service groups will hopefully become clear as this discussion
progresses.

Modules are interconnected via generic network services that do not depend on a specific
technology. The prototype is connection-oriented in the sense that each module maintains state
with respect to associated modules: the peer module does not have to be explicitly named on
each data transfer at the highest level. The use of the term “connection” in the remainder of
the paper means that an association exists. It does not imply that low-level communication
protocols are connection-oriented. For example, the connection-oriented nature of the prototype
is maintained if either TCP or UDP are used as the network/transport level communication
protocol. The terms connection and association are used interchangeably throughout this paper
except in the context of communication protocol implementations, where a different meaning
will be indicated.

The architecture also contains two algorithms that specify methods for carrying out critical
system tasks. Modules, clusters, service groups, interconnects, and algorithms are discussed in
more detail in the following paragraphs.

InfoPad Network Prototype: Architecture and Implementation 10

3.1 Modules

There are four primary module types: the Gateway, the CellServer, the PadServer, and the
TypeServer. There is one secondary module type called the Emulator. The TypeServer is
further divided into four subtypes, each dedicated to a particular InfoPad data type. Figure 2
shows one instance of each type and subtype with primary connections.

GRAPHICS VIDEO AUDIO PEN
TYPESERVER | TYPESERVER | TYPESERVER | TYPESERVER

R

PADSERVER
CELLSERVER
GATEWAY
\ CELLSERVER
1
PAD (hardware)
or

EMULATOR (software)

Figure 2: InfoPad network topology: basic view.

Communication with a module takes place through a port. A module is connection-oriented
between ports; if two ports are associated internally, the module maintains state describing
that association.

The architecture specifies the basic function of each module i.e. that necessary to construct
a working InfoPad system. Developers are free to add capability provided the basic function of
the system is not impaired.

InfoPad Network Prototype: Architecture and Implementation 11

3.1.1 Gateway

The Gateway is responsible for switching multiple streams of pad data between the wired subnet
and the wireless subnet. The architecture imposes no restriction on the number of pad streams
or the nature of connections, although it does maintain a distinction between wired and wireless
peers. The Gateway does not operate on data in a stream except to determine and manipulate
source, destination, and control information. The Gateway must be capable of switching many
pad streams in a fair and efficient manner. The term Gateway arises from the modules role as
an interface between two dissimilar networks.

3.1.2 CellServer

Each radio cell associated with a Gateway is assigned to a specific CellServer. The CellServer is
responsible for traffic management in that cell, including quality of service, error rate detection
and control, power management, and participation in connection remapping when a pad relo-
cates. Collectively, CellServers provide a control mechanism for the Gateway; all CellServers
associated with a specific Gateway must be fully interconnected, and must be capable of dia-
log with CellServers associated with neighboring Gateways. Although figure 2 shows only two
CellServers, the architecture places no limit on the number of cells under a Gateway. The
CellServer has a “session-oriented” view of pad activity, that is, it maintains parameters for a
current PadServer-CellServer-Gateway association but does not understand the composition of
the data stream.

3.1.3 PadServer

The PadServer is responsible for traffic management for a specific pad. Its duties include
multiplexing type-specific data into a single type-interleaved stream, scheduling of service on
each data type, buffering, and demultiplexing of the pad stream into several typed streams.
The PadServer maintains an association with a unique Gateway/CellServer pair as long as its
pad resides in the cell under control of the CellServer. When the pad moves into an adjacent
cell under the Gateway, the CellServer connection is remapped. If the pad moves to a cell under
a different Gateway, both the CellServer and Gateway connections are remapped.

3.1.4 TypeServers

The TypeServer is the management agent for a particular data type for a specific pad. For
instance, the video TypeServer is responsible for assembling video traffic from all sources into a
single stream that is then passed to the PadServer. Generally, the video TypeServer will choose
a single video source to play at any given time.

There are four TypeServer subtypes, corresponding to the four InfoPad data types: audio,
video, pen, and text/graphics. The PadServer allows only one of each subtype to be attached
at any given time.2 It is anticipated that TypeServers will define the application programming

This restriction may be relaxed in the future to accommodate new video transmission techniques.

InfoPad Network Prototype: Architecture and Implementation 12

interface to the InfoPad network, although TypeServers can themselves be viewed as an ap-
plication if the programmer is willing to provide necessary PadServer interface code. In other
words, the TypeServer is intended to present an abstraction of the pad that is defined by the
TypeServer author. In reality, TypeServers and applications will probably be developed in
tandem until a better understanding of InfoPad traffic characteristics is developed.

The main reason for the division of responsibility between PadServer and TypeServers is
to relieve the PadServer of application-specific tasks in order to limit PadServer function to a
manageable subset and allow PadServerimplementations to stabilize quickly. Since a number of
developers will be working independently on type-specific aspects of the project, a well defined
and consistent programming environment is essential (see section 3.4.3).

One criticism of this organization is that TypeServers add an additional level of latency-
inducing overhead. Measurements show that this is not a problem for the current implementa-
tion [8).

3.1.5 Emulator

Eventually, the InfoPad world will be equipped with a mature infrastructure including network
systems, wireless links, and hardware pads. Unfortunately, it will be some time before the
project can offer these facilities to software designers. To bridge the gap and allow development
to proceed, a software entity called the Emulator (or Emu for short) has been defined that
emulates the actions of a hardware pad. As much as possible, Emu has been designed to look
like a pad when connected to a Gateway. Emu also provides a platform for simulation of pad
capabilities. The Emulator is not a part of the architecture per se, but for the sake of clarity it
is referred to as a secondary module.

In a canonical InfoPad system, the Gateway must reside on a compute node connected
to wireless hardware while the CellServers can be anywhere on the network. In the software
prototype implementation, the Emulator removes this constraint. Emu also allows the system
to reside entirely in a relatively small, self-contained release directory. It is easy, therefore, to
bundle the system and move it to a different network. Completely independent systems can be
created to support independent research.

InfoPad Network Prototype: Architecture and Implementation 13

3.2 Clusters

As described above, a cluster is a functional grouping of modules that differ primarily in their
relationship to a specific pad. Associations between modules in a cluster tend to be stable i.e.
once established, they are not likely to change. There are two types of clusters: the pad cluster
and the gate cluster. Figure 3 is a copy of figure 2 with clusters identified. The InfoPad naming
scheme, described in section 3.4.2, is based on the cluster. Each cluster is assigned a global
number and each module within a cluster is assigned an identifier unique to that cluster. The
module identifier is composed of a type specifier (e.g. Gateway or Padserver) and a module
number. This scheme forms a two-level hierarchy.

PAD/EMU 2

Figure 3: InfoPad network topology: clusters.

InfoPad Network Prototype: Architecture and Implementation 14

3.2.1 Gate Cluster

A gate cluster contains one Gateway and all CellServers associated with that Gateway. Gate
clusters ideally live “forever” i.e. since the Gateway models a piece of hardware that will
eventually be part of the physical infrastructure and CellServers manage radio cells defined
by hardware, gate clusters are expected to be long lived in the absence of hardware failure.
Network connections between gate cluster members are permanent. Once established, they are
never dynamically remapped. The external view of a gate cluster is a set of pad links on the
wireless side and a set of pad cluster connections on the wired side.

3.2.2 Pad Cluster

A pad cluster is a collection of modules dedicated to a specific pad. It contains one PadServer
and (potentially) one TypeServer for each data type. For minimal operation, a pad cluster
must contain the PadServer, a text/graphics TypeServer, and a pen TypeServer. A pad user
may specify a startup environment, in which case there may be an audio TypeServer, a video
TypeServer, and/or applications in the basic environment. The modules in a pad cluster can
reside individually on any compute node, and associations between them are generally perma-
nent in the sense that once a TypeServer is attached to a PadServer the association remains
in place until all modules are terminated. This is not an absolute requirement, however. A
user may choose to replace a TypeServer with another offering a different set of capabilities,
but this is expected to be rare. The lifetime of a pad cluster is determined by the pad user; it
can be started when the pad is powered up and terminated when the pad is powered down, or
it can remain in place for an undetermined period of time (over many power cycles). At any
given moment, a pad cluster is typically associated with a gate cluster on one side and a set of
applications on the other, although a gate cluster association will not exist if the pad is off or
out of range. The affect of pad relocation is a simple remapping of the pad cluster/gate cluster
association.

InfoPad Network Prototype: Architecture and Implementation 15

3.3 Service Groups

A service group, like a cluster, is a grouping of modules for a specific purpose. While clusters
are responsible for management of a single pad or a localized set of pads, service groups are
concerned with providing system-wide services that apply equally to all pads. Also, clusters
are static in terms of inter-module connections while service groups are dynamic or have no
direct association between members at all. By analogy (in ISO terminology), the network layer
of a communication protocol offers a set of services to the transport layer above and makes
use of services offered by the data link layer below. The service groups in InfoPad tend to be
hierarchically related but are not necessarily so. There are three service groups defined in the

InfoPad architecture: delivery support, type support, and applications. Figure 4 is a version of
figure 2 with the service groups identified.

334

PEN
TYPESERVER

SRR R0

Figure 4: InfoPad network topology: service groups.

One of the essential distinctions between service groups is the level of abstraction they
give to a pad. The delivery support service group maintains detailed information about a pad,
including physical location, model, radio power level, and current bandwidth consumption. The

InfoPad Network Prototype: Architecture and Implementation 16

type support service group understands the concept of a pad but none of the specifics. It views
the pad as an entity at the other end of a network connection that obeys a set of rules imposed
by a well understood interface specification. The application service group can be completely
abstracted from the pad. For instance, an application can be a window system client conducting
a dialog with a text/graphics TypeServer acting as a window system server. Figure 4 shows
the loose hierarchical relationship between service groups.

While the cluster is an important concept, the prototype implementation is organized around
service groups because of natural programming interfaces created by pad abstractions. A pro-
grammer working on one service group has little need for the implementation details of another
service group - the requirements for interconnecting service groups can be made very simple.

3.3.1 Delivery Support

The delivery support service group includes the Gateway, CellServer, and PadServer modules
and a distributed library. The most important service offered by this group is the “virtual
pad” i.e. to a TypeServer, the PadServer is equivalent to the pad itself. TypeServers need
not concern themselves with the physical location of the pad or any other entity, including
the members of the delivery support service group itself. The delivery support library includes
a name database that maps a module ID into a network location. This database is hidden
beneath a standard uniform interface used by all “clients” to the delivery service. For example,
a video TypeServer wishing to contact pad 25 specifies the triple (PadServer, 25, video) to
the interface, and the delivery support library locates and makes connection to the PadServer
on behalf of the TypeServer. The TypeServer then sends video data along the connection to
the PadServer, and delivery support guarantees that the data will reach the pad regardless
of its current or future location (provided, of course, that the pad is available). If the pad is
not available, the PadServer may choose to discard the data or refuse connection. Although
TypeServers are the most common client, any entity using the services of delivery support is a
client of delivery support; the Emulator is another example. The delivery service is designed to
be flexible and general i.e. unforeseen developments may require new, as yet undefined, clients
to make use of the delivery service.

A second service offered by the delivery support service group is a generalized out-of-band
control channel.® This channel is logically separate from the buffered data channel, and is
designed to be customized for end-to-end control of clients or communication between clients
and delivery service modules. For instance, a TypeServer or application is likely to engage
in type or module specific dialog with a pad or a pad Emulator, possibly to set or retrieve
parameter values or module state. The delivery service allows a client to carry on an arbitrary
dialog on the control channel by sending and receiving messages containing formatted data [1).
Delivery support does not interpret the contents of the payload unless instructed otherwise e.g.
when a delivery service module is the destination. The CellServer is expected to be the most
common endpoint for a delivery support module/client (internal) dialog.

®In-band implies that data sent first will arrive first i.e. an ordering is enforced. An out-of-band channel can
circumvent this ordering; a data unit sent out-of-band can arrive at its destination before data units that were
sent earlier. Out-of-band channels are typically used for priority data.

InfoPad Network Prototype: Architecture and Implementation 17

Any services offered by the member modules themselves such as bandwidth control, mul-
tiplexing/demultiplexing, and error detection/correction are also part of the delivery support
service set.

The delivery support service group is a user of its own services. That is, each delivery
support module uses a variant of the general interface for inter-module connection, and a
control channel exists between each connected pair of delivery service modules. The set of

control events available to delivery service modules is somewhat richer than the set available
to clients.

3.3.2 Type Support

The type support service group encompasses TypeServers and any additional modules required
to provide a type based interface to an application. Type support modules may consult
each other for cross-type information exchange. For instance, a pen TypeServer will notify
a text/graphics TypeServer when the pen changes position so that a cursor can be moved or
a window exposed. An audio TypeServer may perform data conversion for a voice recognition
application. In the first case, the text/graphics TypeServer is making use of the service offered
by the pen TypeServer. In the second case, the voice recognition application is making use of
services offered by the audio TypeServer. In turn, the type support service group makes use of
the services offered by the delivery support service group. Sometimes the distinction between
applications and type support modules is fuzzy: voice recognition may ultimately be the role
of the audio TypeServer.

Although division of type support module function is well defined in terms of data type rep-
resented, the services offered are not. These will depend on demands made by applications not
yet written, and in some cases not yet visualized. Even though delivery support is internally
subject to change, its service set is stable in comparison to type support. This underscores the
need for a strong functional division between the type support service group and the delivery
support service group. Additionally, the roles of the two service groups are very different. A
“firewall” interface is essential.

3.3.3 Applications

This service group propagates InfoPad services to users. It is the least defined of the three
groups. The architecture does not specify the structure of the application service group; it is
identified here to complete the pad-to-user picture. There is currently only one application
built specifically for InfoPad: a window program that presents a view of a note pad. The main
use of the Notebook application has been as a sink of pen data and source of text/graphics
data as part of an effort to measure pen latency [8].

InfoPad Network Prototype: Architecture and Implementation 18

3.4 Inter-Module Communication

InfoPad Inter-Module Communication (IMC) is based on a connection-oriented packet based
model. Connections are maintained at a high level; underlying communication protocols can be
reliable or unreliable,* connection-oriented or connectionless, stream or datagram, lightweight
or heavyweight. Physical media can be point-to-point, bus, ring, or other. Elements central to
IMC are ports, IDs, interfaces, and packets. Each of these elements will be discussed below.
IMC exists as a part of each module and in the delivery support service group library. The
library contains algorithms for address mapping, packet manipulation, and connection estab-
lishment using a specific protocol. Several versions of the library exist, each using a different
low-level communication protocol. To support the goal of flexibility, most implementation de-
pendent function is part of the library so that, if a different protocol implementation is needed,
much of the work needed for the change is performed by simply using a different library. How-
ever, each module must include some non-general i.e. protocol specific IMC support. Ports, in
particular, are created and manipulated by the modules themselves. They are included in the
discussion of IMC because they are the IMC end points. All modules that communicate with

other modules must incorporate the library (it’s hard to conceive of a module that won’t need
communication).

3.4.1 Ports

Within a module, the point of interaction with other modules is the port. There are several
varieties of ports e.g. the link port is used by a Gateway for connection to a pad while the
PadServer port is used for connection to a PadServer. Each PadServer has up to four TypeServer
ports. Every module has a monitor port, which is dedicated to listening for a new connection
and accepting the connection if satisfied with the results of a brief handshake.® In general,
a separate connect point will be spawned for each connection accepted by the monitor port.
For portability (flexibility) reasons, there are no hard coded addresses. All ports are created
and initialized through contact with the monitor port; this action is transparent to the calling
module. Ports differ mainly in semantics and their view of module data buffers.

3.4.2 IDs and Address Mapping

InfoPad network modules are uniquely identified by the triple (module type, cluster number,
module number). This triple is referred to as the module identifier, or ID. For Gateways and
PadServers, module number is synonymous with cluster number; for a CellServer, module
number is an identifier specifying a cell; for TypeServers, the module number is an identifier
specifying data type. In the prototype implementation described in section 4 there is only one

*If the protocol is unreliable, IMC must implement error-free transmission algorithms for control information
and data types that require low or zero error transmission, such as pen. Otherwise, IMC uses the services of
standard reliable communication protocols such as TCP.

*Similarity with Unix SOCK_ STREAM terminology is not coincidental; the most common port implementa-
tion uses TCP. However, even when other protocols have been used (e.g. UDP) the method of “listen/accept”
is still employed, although with significantly different semantics.

InfoPad Network Prototype: Architecture and Implementation 19

CellServer per Gateway, so module number is omitted for the CellServer in that case. The
system architecture envisions a globally unique ID for each pad similar to an Internet address.®
This global ID is the cluster number for pad cluster modules. Example ID triples for each
primary module are shown below. The triples with duplicated arguments can be reduced to
pairs in certain contexts.

o Gateway: (“gw”, Gateway #, Gateway #)
o CellServer: (“cs”, Gateway #, cell #)

e PadServer: (“ps”, pad ID, pad ID)

o TypeServer: (“ts”, pad ID, data type)

The IMC portion of the delivery support service group library implements mapping of
these triples to physical network locations, including all technology-specific tasks. The library
initiates a connection with the help of delivery support modules involved in the connection,
terminates a connection, and defines the semantics of all control messages.

The sequence of events for address mapping goes something like this:

1. A module requests connection with another module by making a call on the library,
specifying a triple.

2. A library procedure consults a name database in which all currently active members of
the delivery service have registered themselves using another library procedure. From
the database, an entry is retrieved that specifies a technology specific mapping for the
monitor port. For instance, if the communication protocol is TCP, the mapping will be
(module type, cluster number, module number) to (Internet address, TCP port number).

3. Connection is attempted to that network address.

4. If connection is successful, the requesting module is notified that data transfer can begin.
If the connection is unsuccessful, the requesting module receives an error message and the
connection is denied.

3.4.3 Interfaces

An interface is a set of procedures and specifications that define a clean and consistent pro-
gramming environment to module designers. The interface hides implementation specific details
from the programmer, so that code using the interface is portable. This is a central aspect of
the firewall interface between delivery support and type support service groups.

IMC interfaces come in two flavors: external and internal [18]. External interfaces define
the boundaries of the delivery support service group (the firewall), and are used by TypeServers

®In fact, pad ID’s can be actual Internet addresses in future implementations. The current prototype is limited
to 256 pads by restrictions in the packet header address space.

InfoPad Network Prototype: Architecture and Implementation 20

and Emulators. Internal interfaces are structurally similar to external interfaces, but they are
subject to modification. Internal interfaces are used by delivery support modules to conduct
internal business. Interfaces between delivery service clients (e.g. TypeServer to TypeServer)
and between clients and applications are not part of IMC.

Each interface offers two channels: data and control. In basic form, both interfaces support
four procedures on the data channel that employ familiar open/read /write/close semantics:

connect (port, destination, arglist)
Connect port to destination with parameters arglist.

read (buffer, length, port)
Read length bytes into buffer from port.

write (buffer, length, port)
Write length bytes from buffer to port.

close (port)
Close port and free resources.

These procedures can be configured to operate on a byte stream (packet headers removed)
or on packets. That is, the data returned from read() is either payload only or full packets
while data sent with write() can be payload only (the interface adds the header) or complete
packets. Because the architecture is designed to work with byte stream communication protocols
like TCP, there are no explicit message boundaries defined by a read() invocation: message
boundaries (which are only meaningful when reading packets) are indicated by the value in the
length field of the packet header.” ’

Both interfaces define two basic procedures on the control channel:

get (buffer, length, port, moduleID)
Get length bytes from moduleID over the control channel for port and put in buffer. The
module specified by module ID must be accessible (or equivalent) to the module associated
with port.

set (buffer, length, port, module ID)
Send length bytes from buffer on the control channel for port to modulelD.

Get() and set() are similar to read() and write(), except that get() and set() operate on
the out-of-band control channel and can (in theory) send a packet to an arbitrary module.
In practice, source/destination pairs will probably be limited to a subset of modules (e.g.
TypeServer to Emulator but not Emulator to Emulator). The extent of connectivity depends
on the sophistication of module implementations.

An internal interface also defines procedures in the following classes:

"In message passing systems, read and write operations transfer structured data units larger than a byte.
Message boundaries are implied by the operation i.e. one message is passed per call. In this architecture, packets
are the analog of messages.

InfoPad Network Prototype: Architecture and Implementation 21

disconnect (port)
Disconnect port. Used only with connectionless low-level protocols.

fwdreq (source ID, destination ID, arglist)
Forward a request for connection from module source ID to module destination ID with
parameters arglist.

terminate (cluster #)
Kill all modules in cluster #. Cluster # is a Gateway or PadServer number.

probe (port)
Test a module to see if it’s alive. Intended for use in situations where a module is out of
resources and wants to make sure all associated modules really need what they’re using.
Similar to Unix ping.

source quench (port)
Stop a data stream originating from peer module at port.

source resume (port)
Start a data stream originating from peer module at port that has been stopped.

Each of these has a corresponding acknowledgement procedure and a corresponding response
processing procedure. Fwdreq() is used exclusively to forward a pad connection request from a
Gateway to a CellServer. A function can be provided that will allow users to initiate a terminate
request.

3.4.4 Packet Format

InfoPad packets create a level of abstraction over low-level technology, allowing the prototype
to be used as a testbed for InfoPad research; it can be run over any network, and packet size
and format can be manipulated at will. Packets also enable multiplexing of virtual InfoPad
connections over a single network address association. Furthermore, packets allow relatively
fine-grain resolution of a data stream to aid in priority scheduling and to enhance the appearance
of concurrency. The packet format is shown in figure 5.

The sync field is an artifact of an early version of pad hardware and is no longer necessary.
However, it has proven to be such a valuable debugging tool that it has been retained in
the current prototype despite the added overhead. It allows the system to self-recover in the
presence of all too common coding bugs. The core field contains InfoPad link-level information.

The triples (module type, cluster #, module #) are source and destination module IDs, as
~ described previously. The info field holds context specific information. Code refers to the
packet type i.e. data or one of several control types. Seq indicates the position of the packet
in a control sequence (see section 3.5.2). The remaining 24 bits of the info field are formatted
in various ways. For example, a data packet carries payload type and length, while the info
field of a connection acknowledgement control packet carries a result code. Some common fields
such as CRC are omitted, since these "user-level” packets are expected to be encapsulated in
low-level protocol data units over which CRCs are computed.

InfoPad Network Prototype: Architecture and Implementation 22

SYNC
8 7 6 5 4 3 2 1
I 32bns]
CORE
sr‘cyzreod sremod | source clustor # dest;pe destmod| dest cluster #
L_4bits | 4bis 8 bits |_4bls_, 4bis | 8 bits |
]] 1 1 T 1 1
INFO
entl seq context specific information
Sl 3bis - 24bits !
PAYLOAD
| 0 - 1024 bytes |

Figure 5: InfoPad packet format

3.5 Algorithms

The definition of algorithms is generally left up to an implementation. However, this architec-
ture defines two critically important algorithms. One is related to pad mobility, and the other
is concerned with maintaining parallelism in data streams when servicing a control request and
ensuring reliability of control messages regardless of the low-level communication protocol in
use.

3.5.1 Pad Relocation (handoff)

One of the most critical operations in an InfoPad system is the transfer of a pad to a different
cell, called relocation or handoff. This is a global action; several modules must cooperate, so the
algorithm cannot be defined for a specific module. The pseudocode below is an approximation
of the relocation algorithm that does not take into account multiple CellServers per Gateway.
It is presented as an example.

The specifications described here are skeletons that provide simple and easily implemented
relocation functions for the prototype. It is anticipated that these algorithms will be enhanced
as the sophistication of the system grows.

There are two basic cases and two basic conditions that must be considered:

o Case I: Pad enters cell. It could be a pad that has just been switched on, a pad moving
into a new cell, or a pad re-entering a cell before its state has been removed from the cell.

o Case II: Pad exits cell. It could be a pad turning off, or a pad moving to another cell.

InfoPad Network Prototype: Architecture and Implementation 23

¢ Condition 1: Pad cluster for the pad exists.

¢ Condition 2: Connection from the pad cluster for the pad to any gate cluster exists.

There are three possibilities for the two conditions (pad cluster doesn't exist/connection
exists is impossible). Each of the three must be handled for each Case. In order for the
algorithms to be simple, four assumptions must be made:

1) Gateways and CellServers always exist and are in fixed locations once started.

2) PadServers and TypeServers may or may not exist, and if they do exist can be anywhere
on the local net.

3) Each pad has a heartbeat and can send a control packet containing its global pad ID to a
Gateway.

4) Modules are trusted i.e. no authentication is needed.

These assumptions are reasonable within the context of the architecture. Pad hardware
under development will be capable of realizing assumption 3. If assumption 4 becomes a
problem, enhancements to the algorithms may be necessary. At present, authentication is not
implemented.

Part of this algorithm is implemented in the PadServer and part in the CellServer. In each
module, the algorithm is divided into <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>