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Quick Detection of Changes in Traffic Statistics:
Application to Variable Rate Compression*

Ivy Hsu and Jean Walrand
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Abstract

In many communication applications, sources generate data at a variable rate.
This variation can be captured by a two-level model. At a larger time scale, the
source alternates between a finite number of models at the higher level, while each
model represents the local fluctuation at the smaller time scale. Typically the
data goes through a lossy compression at the encoder, and then is entered into a
buffer before being transmitted over a fixed-rate or a regulated-rate (e.g., Leaky
Bucket) channel. Since the buffer size is finite, the choiceof compression parameters
must balance the tradeoff between the distortion due to lossy compression and the
distortion caused by buffer overflow. As the optimal compression parameters may
be different for each individual model, a method is needed to detect changes from
one model to another.

We show via examples that for many common traffic models, the problem of de
tecting changes in traffic statistics can be reduced to the following general change
point detection problem: Let A\,A2,... be a series of independent observations
such that i4i,i42f*fAm-i are i.i.d. distributed according to an unknown distri
bution F, and i4m,Am+i,... are i.i.d. distributed according to another unknown
distribution G. m is the unknown change point. The objective is to determine that
a change has occurred as soon as possible, while maintaining a low rate of false
alarms. In this paper we propose a sequential nonparametric change point detection
algorithm using Kolmogorov-Smirnov statistics, and demonstrate that it is asymp
totically optimal, in that under the constraint i£[time until a false alarm] > T, our
algorithm is such that E[detection delay] = 0(log(T)), as T -> oo. This property is
known to be the best that can be achieved. Furthermore, unlike other nonparamet
ric schemes, the performance of the algorithm is independent of the distributions
FandG.

1 Introduction

Consider communication applications such as MPEG video, in which the output stream
generated by the source has a variable rate due to statistical variations in the data. The
output stream is released onto a channel at a constant rate or at a regulated rate that
allows some burstiness. Fixed bandwidth radio channels for wireless communication are
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an example of the former. The Leaky Bucket scheme proposed for the Asynchronous
Transfer Mode (ATM) networks represents the latter. In both cases, unless the trans
mission rate exceeds the peak rate of the source, it is necessary to place a buffer between
the source encoder and the channel to store data when they are generated faster than
what the channel can transmit.

First suppose that the source can be characterized by a time invariant model.
Then for any given compression scheme, the quantities of interest are its mean rate
and mean-square distortion measure for the given source model. Since the buffer size is
finite, one must consider the tradeoff between this distortion measure and the distortion
caused by lost data when the buffer overflows. A finer compression reduces distortion,
but generates more data and thus leads to higher overflow probability.

Define the distortion-rate curve as the minimum distortion achievable by any
scheme under an average rate constraint. Tse et al. [8] suggest that if the distortion-rate
curve is concave at the channel rate RCi then one can achieve a lower distortion by time
sharing between two compression schemes. Define Dt(Rc) as the minimum distortion
achievable by any time-sharing scheme under an average rate constraint Rc. Then the
objective is for the buffer overflow probability and the steady state average distortion
when the buffer is not full to approach zero and £)r(i?c), respectively, as the buffer size
becomes large. The control scheme proposed in [8] places a threshold at the half point
of the buffer, and uses a coarse compression with average rate R\ < Rc when the buffer
occupancy exceeds the threshold and a fine compression with rate R2 > Rc otherwise.
Under this scheme, both the overflow probability and the average distortion approach
their asymptotic values exponentially fast as the buffer size goes to infinity.

Under a more refined assumption, the source can be viewed to be alternating
between a finite number of models, at a time scale much larger than the time scale
of fluctuation captured by each individual model. For example, a video sequence can
contain active and quiet scenes, with a mean scene duration of several seconds. The
active scenes in general cannot be compressed as well as the quiet ones. Therefore the
optimal parameters of the compression scheme would be different in each model.

Thus the encoder must be able to respond quickly when a change in the source
model occurs and identify the new model. One approach is to start with a fixed set
of source models and parameters for which the control parameters are known, and con
duct a parametric detection, i.e., compare the incoming traffic with all existing models,
and determine the model that is closest. Then apply the corresponding control scheme.
This approach, although simple in nature, has a limited accuracy and requires extensive
analyses of all possible traffic statistics. A more general approach is to make no prior
assumption about source models, and adaptively determine the control parameters to
use for each model. Thus the algorithm for change point detection must be nonparamet-
ric. The system maintains a library of past source statistics and corresponding control
parameters. Once a change is detected, the new statistics are compared with entries in
the library in order to determine if it belongs to one of the existing models. If so, the
control parameters associated with the identified model are used. Otherwise, a new entry
is created in the library, and the control parameters for the closest model are selected as
its starting point. In both cases, these parameters are then adjusted over time, as the
measured distortion is compared with the target.

As an example, Fig. 1 illustrates the block diagram of a possible control scheme
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Figure 1: Transporting a variable rate MPEG sequence over an ATM network with rate
constraint.

for variable rate video applications. The packetization block segments data generated
by the video source into ATM cells of two priorities, in a way that incorporates the
multiresolution principle: decoding with the high priority cells alone results in a coarser
quality of video, while decoding the combined priorities results in a finer quality. The
proportion of the two priorities is controlled based on the source statistics as mentioned
above. The buffer operates under a partial buffer sharing mechanism [5], in which only
high priority cells can enter the buffer when the occupancy is above a threshold. The
data is emptied from the buffer through a leaky bucket before entering an ATM network.

In this paper we address the issue of detecting changes in traffic statistics. The
general change point (or disorder) detection problem has undergone much investigation
since 1950s. For the application at hand we are interested in a sequential nonparametric
detection method. The main criterion of an effective sequential scheme is that it should
respond to changes as soon as possible, while maintaining a low frequency of false alarms.
In addition, it is desirable for the decision rule to be distribution-free, i.e., its effectiveness
should not vary for different pairs of statistics before and after the change point. Finally,
from the implementation point of view, the scheme should require only a bounded number
of operations and memory at each decision point.

Several sequential nonparametric detection methods have been proposed previ
ously. For a comprehensive review, see [2]. Most of these results are concentrated on the
case in which the observed sequence is a concatenation of two i.i.d. random sequences,
with some limited extension to n-dependent random sequences. Their common drawback,
however, is the lack of the distribution-free property. For example, the detection scheme
in [1] compares the empirical means before and after each decision point. Consequently
the false alarm frequency depends on the variance of the distribution before the change.

In §2, we present a general detection algorithm based on comparisons of empirical
distributions. We show via examples how this algorithm can be applied in the context
of detecting changes in incoming traffic for many common models. The statistic used in
this case is the Kolmogorov-Smirnov distance, which has the desirable property of being
distribution-free [4]. This statistic has been used in [3] for the a posteriorichange point
problem, in which the emphasis is on accurate identification of the most likely point of
change within a given set of observations. §3 presents the main theorem of the paper.
We show that the ratio of the expected delay of a correct detection to the logarithm of
the expected time until a false alarm is upper bounded by a constant, as the memory size
of the algorithm increases. This logarithmic relation implies that the proposed scheme
belongs to the class of asymptotically optimal algorithms, as indicated in [1, 6]. We
present some preliminary numerical results in §4 and conclude in §5.



2 Change Point Detection Algorithm

2.1 Assumptions

Let {An} be the observed sequence and m the unknown change point. Denote 1(.) as
the indicator function. Assume that An = 7?nl(n<m) + fnl(n>m)>rc > 1» where ?/n's (resp.
fn's) are i.i.d. random variables with a continuous distribution F (resp. G). Furthermore,
assume that there exists a constant e > 0 such that the set A = {x € R : \F(x) —G(x)\ >
e} satisfies either fA dF(x) > 0 or fA dG(x) > 0.

At the first glance the i.i.d. assumption may appear restrictive. But as the fol
lowing examples demonstrate, An can be derived in many complex traffic models:

Example 1 Markov Modulated Sources One common modelfor bursty sources is
the Markov modulated fluid, in which the instantaneous arrival rate from a source depends
on the state of an underlying Markov chain. Consider, for example, an ON-OFFprocess,
in which the Markov chain alternates between two states, and the source generates data
at a constant rate when the chain is ON and no data otherwise. The source statistics

can differ when there is a change in the transition rates of the Markov chain, or in the
output rate, or both. Choose the regenerative points tn as the successive times at which the
process returns to the OFFstate. Then define An = (total output in [tn, tn+i))/(tn+i—tn).

Example 2 Periodic Sources Periodic sources arise when input data is encoded at
fixed time intervals (e.g., PCM of voice, frame-by-frame encoding of video). Thus An
can be taken as the data generated over any constant multiple of a period. §4 gives a
more complex example in the case of MPEG video, where the source can be treated as a
superposition of several periodic streams.

2.2 Algorithm

The algorithm is characterized by three parameters: the memory size N, the windowing
parameter a, and the threshold c. At each time rc, only the last N observations need to
be stored in memory. The parameter a is a constant in (0, |]. For simplicity in notation,
let a be chosen such that aN 6 M. Given the memory of TV points, a defines a window
such that each k in {aN, aN + 1,..., (1 —a)N] is a candidate change point. Define, for
rc > N and k € [aN, (1 - a)N],

DN(k,n)= max
n—N+Kt<n

1 n—N+k -i n

7 Y, l(Aj<Ai)-Jj T ]C 1(Aj<Ai)
K j=n-N+l iV K j=n-N+k+l

(1)

Eff(n) = max DN(k,n). (2)
V ' aN<k<(l-a)N V ' V '

Let the decision rule be ofor(rc) = l(EN(n)>c)i where 0 < c < 1. The detection time is then
t(N) = min{rc > TV : ^(rc) = 1}.

The algorithm can be interpreted as follows: Dn(k, rc) is the Kolmogorov-Smirnov
distance, namely the maximum absolute difference, between the empirical distributions



of two sequences, (An-N+1, ...,An-N+k) and (An-N+k-i,..., An). For each aN < k <
(1 —a)N, we calculate the Kolmogorov-Smirnov distance and declare that a change has
occurred if at any point k the distance exceeds the threshold c.

3 Theorem

Let Poo(-) (resp. £«,(•)) represent the conditional probability (resp. expectation) given
that no change point ever occurs. Similarly, let jPm(-) (resp. Em(-)) be the conditional
probability (resp. expectation) given that change occurs at time m. Asmentioned earlier,
we are interested in two quantities:

(1) Eqo[t(N) —N] = expected time until a false alarm

(2) Em[(T(N) - m)\T(N) > m] = expected detection delay

The objective is to detect the change as fast as possible, while maintaining a large
expected time between false alarms. The following theorem relates the two quantities
under the above algorithm.

Theorem 1 Given that

_1 \J/2
^c+Imt^)1os(1-c/2)J , o)

N-oo m>N logEool^N)- N] V'

It is pointed out in [1, 6] that for the problem of minimizing supmEm[(r(N) -
m)|r(7V) > m] under the constraint Eoo[t(N) -N] > T, the optimalsequential detection
rule admits an asymptotic behavior supm £m[(r(TV) - m)|r(TV) > m] = 0(log(T)), as
T —> oo. Thus by virtue of theorem 1, the proposed algorithm is asymptotically optimal.

Theorem 1 follows from Lemmas 2 and 3 below. We first derive an upper bound
on the probability of false alarm at time N + k, for all k > 0.

Lemma 1

Poo{t(N) -N = k)< L1(TV)TVe-L2^N, VJfc > 0, (5)

where Li(N) and L2(N) are defined below.

Proof Define /3N{n) = Poo(dN(n) = 1) for all rc > TV, then i>00(r(iV) - TV = k) <
Pn{N -f- k). Given that no change takes place, the samples are i.i.d. ~ F. Thus
j3N{n) = Av(TV), for all rc > TV. Then

ftv(TV) =Poo ( wmax DN(k,N) >c) < £ Pco(^(fc,TV) >c). (6)



(a)
<

POQ(DN(k,N)>c)
k

1
_i •* oo t^lig^i^-^WI +llvri

N

£ i(iii^)-^(A-)l>c
i=*+i >

<_i •* oo

i J—1 j=«+l

(c)
<_i iOO

+ Po SxP 'JV^I .J. 1('4'Sl) ~F(;C)I >C/2J ' (7)

where (a) is due to the triangular inequality, and (b) follows from the fact that the
maximum of the sum is less than or equal to the sum of the maxima, (c) results from
P(X + Y > c) < P{X > c/2 or Y > c/2) < P(X > c/2) + P(Y > c/2), and that the
maximum distance between an empirical distribution and the actual distribution at the
sample points is upper bounded by the supremum distance.

Dk = supx IJSjLj l(Aj<x) —E(x)\ is the Kolmogorov-Smirnov one-sample statistic
based on k sample points. It can be expressed as the maximum of two non-negative one
sided Kolmogorov-Smirnov statistics Dk and Dk, defined as

and

Dt = sup
1 k

= max
Ki<k 1-^(4))].

Dk = sup
1 *

Ki=i
= max

Ki<k *"(4)) -
i-l

(8)

(9)

where Ak^ < Ak2^ < ••• < Akk^ are the order statistics of A\,..., Ak. The superscript
represents the total number oi sample points.

Since F is continuous, by the probability-integral transformation theorem, given
a random variable A ~ F, the random variable U generated by the transformation
U = F(A) has a Uniform(0, 1) distribution. Therefore, Ufa = F{Afa) is the ith order
statistic of k i.i.d. Uniform(0, 1) random variables. Thus for any fixed e > 0,

Pfe l~F^)) >«> ='(gg{- «/& >«) <gPWh <{-e). (10)

Note that for i/k < t, P(Ufa < j - e) = 0. For i/k > e, P(Ufo < j - e) is the
probability that out of k i.i.d. Uniform(0, 1) random variables, at least i of them are less
than i/k - e. Let Wj = l(U5 < i/k - e). Then P(Ufa < j - e) = P(E;=i Wj > i), which
is the probability that the sample average is greater than i/k, while jE?[Wi] = i/k —e.

Define <p(0) = \ogEe0W>. Then by Markov inequality, P(E*=i W} > j • ifc) <
exp(-k'iO)exp(k.<p(0)). In particular, P(E*=i W} > £•*) <exp(-Asup,[J0-v>(0)]) =
exp(—A;/+(2, A;,e)), where

r+(^,e) =|t1°g(^)+0-i)los(l^T), for £ > £
for J < e. (11)



Similarly, we can show that P(Ufa —̂ > e) < exp(—kl-(i, k, e)), and

V 7 1 oo, for i=l > 1- e. V ;

Define IN(e) = m\iiaN<k<(i-a)N mini<t<jk min{/+(i, k,e),I_(i, k,e)}. Then Poo(Dk >
c/2) < P(Dt > c/2) + P(Dk > c/2) < 2k •exp(-fc/,v(c/2)). Substituting into Eqn. 6,

MX) < £ Pco(Dk>c/2) + P00(DN-k>c/2)
aN<k<(l-a)N

< J2 2[kexp(-kIN(c/2)) + (TV - &)exp(-(TV - k)IN(c/2))}
aN<k<{l-a)N

^ i 4(! ~ra\ ,^Ne-aI»WN =^(TVjTVe-^W^. (13)
1 - exp(-/iv(c/2)) v '

Note that ifPco(T(TV)-TV = <;) </? for alii >0, then ^oo^TVJ-TV] is minimized
if

f A i<i*=U/£l>Poo(r(TV)-TV =i) =j 1-i*/?, i=i* +l,
0, otherwise.

Thus Ejp^N) - TV] > ^(1 - o(l)), where o(l) -• 0 as /? -• 0. Since /?N(TV) -• 0
as TV —• oo, applying lemma 1, we obtain a lower bound on the expected time until a
false alarm:

Lemma 2

E~W<) -N]> 1~$II$,2))*lKlcm"Q"«0)). (14)
where o(l) —> 0 as TV —> oo.

Before giving the upper bound on the expected detection delay, we first state the
Hoeffding's inequality:

Theorem 2 (Hoeffding's Inequality) [7] Let Yi,Y2,... ,YN be independent random
variables with zero means and bounded ranges: a{ < Y{ < &,-. For each n > 0,

P(\Y1 + -- + YN\>n)<2exp

Lemma 3 Given condition 3,

-2n:

£2.i(fc-«02J"

£m[r(TV) -m|r(TV) >m] <TV (l +x_̂ J •

(15)

(16)



Proof Define pN = Pm(dN(m + (1 - a)TV - 1) = 0), and qN = Pm(dN(m + TV) = 1).
Then the following inequality is given in [1]:

Em[T(N) -m\r(N) >m] <N(l +̂ !f£)• (17)
Denote Fi(-) (resp. <£,(•)) as the empirical distribution function generated by i

i.i.d. samples with distribution F (resp. G). Then

n M h nfJ
DN(k,m + (1 - a)TV - 1) =sup l^-FaA^) + —£—<?*-.*(*) - GN.k(x)\. (18)

Therefore, for any fixed x0 € A,

PN < P(sup \FaN(x) - G{1.a)N{x)\ <c)< P(\FaN(x0) - G{1.a)N{x0)\ < c). (19)
X

By the triangular inequality,

\FaN(xo)-G{1-a)N{xo)-F{x0) +G{xo)\ + \FaN(x0)-G{1-a)N(xo)\ > \F(xQ)-G(x0)\ > e.

Since the condition implies that e > c,

Pn < P(\FaN(x0) - F(x0) + G(x0) - G^a)N(x0)\ >e-c)
i aW I N

= ^(l-Etl^xoJ-^Wl + r— £ [G(*o)-l(^o)]|>TV(£-c)). (21)
°J=l l aj=aN+l

Applying the Hoeffding's Inequality to Eqn. 21, we get

,, _/ il1 - ^o)], forl<i<aTV,
[G(x0)], for aTV + 1 < i < TV,

ll-F(x0)], forl<i<aTV,
[G(x0) - 1], for aTV + 1 < i < TV.

Thus EJLi(^-aj)2 = aTV/a2 +(l-a)TV/(l-a)2 = N/a{l-a), <indpN < 2exp[-2TVa(l-
a)(e-cn

On the other hand, we obtain the following lower bound for qiy:

qN > P(sup\GaN(x)-G(x) + G(x)-G{1..a)N(x)\>c)
x

> P(sup(GaN(x) - G(x)) - sup(G(1_a)N(a;) - G(x)) > c)
X X

> P(sup{GaN{x) - G(x)) > c/2) •P(sup(G(1_a)N(x) - G(x)) < -c/2)

= P(DtN > c/2). P(D^_a)N > c/2)

= P( max 4? " tfw >c/2) *P( max ^m""^ ~ // " \ ,r >c/2)
> PQjfa <1- c/2) •P(Ufoa)N >c/2) = (1 - c/2)". (22)

PN < 2gN for all N if e-M1"0)^)2 < 1- c/2, or equivalently, if condition 3 holds.

Note that IN(c/2) > infx>c/2[a: log ^ + (1 - x) log 1_^/a],VTV, and thus The
orem 1 follows.

I l-c



4 Numerical Example

In the variable-rate video coding schemes such as MPEG, the number of bits generated by
each frame depends on both its information content and the encoding technique used. In
MPEG, the choices ofencoding modes are intraframe (I), predictive (P), and interpolative
(B), in the order of increasing coding efficiency. A typical sequence consists of periodic
interleaving of frames from each mode. For example, the sequence in our example has a
period of p =15 frames in the following pattern: {I, B, B, P, B, B, P, B, B, P, B, B, P,
B,B}.

One approach is to define An as the total amount of data generated over a 15-
frame period. However, using the knowledge of the framing pattern, one can expect to
achieve a faster detection by modifying the algorithm as follows. First fix the windowing
parametera = 0.5 and the memory size TV = even multiple of p. We can treat frames from
the three modes as three separate streams. Define D{N(aN,n) as the signed Kolmogorov-
Smirnov distance of the 2th stream, i G{/, P, B}. Let EN(n) be the absolute value of the
weighted average of the three distances. That is, EN(n) = \hDIN(aN,n)-\-^D^(aN,n)+

Fig. 2 illustrates the output ofabroadcast-quality MPEG sequence, in Kb/frame.
Note that the data rates of I, P, and B frames form three distinct groups. We apply the
algorithm with memory size TV = 120 and threshold c = 0.75. The circles at the top
of the figure indicate the resulting detection points. They correspond well with visual
partitions of the sequence. Our preliminary experiment using the scheme in Fig. 1 shows
that changing the proportion of the two priorities at these points result in a smaller
distortion than a fixed-priority policy.

5 Conclusion

In this paper we proposed a sequential change point detection algorithm that requires
no assumption of the distributions before and after the change. We proved that it is
asymptotically optimal as the memory size becomes large. The algorithm is general
enough to be applicable in many contexts. It is presented here for the application of
detecting changes in traffic models for variable-rate compression. By catering the com
pression parameters to each traffic model, the system can achieve better utilization of
the resources.

Acknowledgements The authors are grateful to Profs. Peter Glynn andVivek Borkar
for their suggestions and Dr. Daniel Reininger for supplying the MPEG sequence.
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