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Abstract

Exterior Differential Systems

and Nonholonomic Motion Planning

by

Dawn Marie Tilbury

Doctor of Philosophy in

Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor S. Shankar Sastry, Chair

This dissertation addresses the problem of motion planning for systems with velocity

constraints which restrict the system velocities but do not reduce the reachable configuration

space. Such constraints are nonholonomic. Traditional motion planning methods assume

that a robot can move in any direction. These plans cannot be followed by nonholonomic

systems, such as car-like mobile robots which cannot move sideways.

The theory of exterior differential (particularly Pfaffian) systems is presented as an

analysis method for nonholonomic systems. The Goursat normal form for Pfaffian systems of

codimension two is shown to be equivalent to the two-input chained form for nonholonomic

control systems. Since the JV-trailer system satisfies the conditions for conversion into

Goursat form, it can be put into chained form. Several methods are presented for steering

systems in chained form, using sinusoidal, piecewise constant, or polynomial inputs. This

method is used to find feasible paths for a car towing n trailers.

For Pfaffian systems with codimension greater than two, an extended Goursat normal

form is defined, and necessary and sufficient conditions for converting systems into this

form are given. This form is equivalent to the multi-input chained form for nonholonomic

control systems, and the steering methods which were developed for the two-input chained

form are generalized to the multi-input case.



A generalization of the JV-trailer system which has more than two inputs is the multi-

steering trailer system. Some configurations of this system (including the fire truck) can be

converted into extended Goursat normal form and thus steered using one of the methods

described above. For the configurations of this system which do not satisfy the conditions

for conversion, there exists a prolongation of the Pfaffian system which can be converted into

extended Goursat normal form. Integral curves for the prolonged system can be projected

down onto the original system to give feasible paths. Necessary and sufficient conditions

for converting systems into extended Goursat normal form using a particular type of pro

longation are also presented.

Finally, some of the results for converting nonholonomic systems into Goursat normal

form are specialized to give conditions for linearizing control systems.



This dissertation is dedicated to the memory of my father

Michael Tilbury
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Chapter 1

Introduction

In the past few years there has been a great deal of interest in the generation of

motion planning algorithms for mobile robots or carts with nonholonomic or non-integrable

velocity constraints, such as those coming from the kinematics of the drive mechanisms

of the carts. A recent coUection of papers [26] brings together some of the important

results in nonholonomic motion planning. This work represents somewhat of a departure

from the more traditional robot motion planning techniques (see for example [8, 22, 52]),

which focused on understanding the complexity of the computational effort associated with

planning collision-free trajectories for robots (with no constraints on their instantaneous

velocities). Unfortunately the motion plans arising from these more traditional methods

often required sideways motion of robot carts with wheels, and thus were not appropriate

for most mobile robots [23, 24].

In this dissertation, the motion planning problem for several systems of car-like mobile

robots and trailers is considered and solved. The "canonical" example of a car pulling n

trailers [25, 35] is examined and converted into a canonical form for which the solution to

the steering problem is straightforward. These results are then extended to systems with

more than one steering wheel, such as a fire truck [7] and a multi-steering trailer system

[58].

The nonholonomic constraints for these systems arise from constraining each pair of

wheels to roll without slipping. Strictly speaking, if an axle has a differential that keeps the

pair of wheels rolling without slipping, then each wheel turns a different amount in accor

dance with a simple geometric relationship called the Alexander-Maddocks condition [2].

Because the angle of each axle can be determined from the path taken by a point at the



center of the axle and the geometry involved, in this dissertation, the differentials will be

neglected and the wheels on each axle will be assumed to be parallel.

The system of a car with n trailers has been viewed as a canonical example because

each trailer adds one dimension to the state spaceof the system (representing its angle with

respect to the inertial frame) and one nonholonomic constraint. Regardless of the number

of trailers attached, the general system always has two degrees of freedom, corresponding

to the driving and steering directions of the front car. It has been shown that every point in

the state space is reachable, i.e. that the system is completely controllable [25]. One of the

questions that this dissertation answers is the one of constructive controllability; explicit

open loop controls for steering the car with n trailers from an initial to a final position are

given.

An early paper by Murray and Sastry [36] (see also [37]) studied motion planning for

nonholonomic systems, and focused attention on a specific class of systems in "chained

form":

Xi = U\

&2 = V-2

X3 = X2U1

This class of systems was inspired by some early work of Brockett [4] on optimal control

of "canonical systems." Murray and Sastry [37] gave sufficient conditions for converting

systems into chained form as well as an algorithm (using sinusoids at integrally related

frequencies) for steering chained form systems. The theory was used to transform the front-

wheel drive car, a car with one trailer, and a hopping robot into chained form, and to find

feasible trajectories for these systems using the sinusoidal steering algorithm. However, the

car with two trailers did not fit the sufficient conditions and was left an open problem.

This dissertation represents somewhat of a departure from most of the previous work on

motion planning for mobile robots. Traditionally, a nonholonomic system has been defined

by a distribution A on the tangent space to the configuration manifold of the system,

specifying the directions in which the system is allowed to move at every point. If a basis

for this distribution A is given by the m vector fields {glt...,pm}, then the tangent vector



to any feasible path for the system must be a linear combination of these vector fields. In

this manner, the nonholonomic system defines a control system,

m

«=1

where x are local coordinates on the configuration manifold and the functions U{ are called

the inputs or controls. It should be noted that such systems are drift-free; that is, if all the

inputs are zero then the system does not move. Every point in the configuration space can

be considered an equilibrium point in that sense. Also, because of the drift-free property

and the fact that there are fewer inputs than states, the linearization of such a control

system about any (equilibrium) point is not controllable. Most of the standard control

techniques rely on linearization methods and thus cannot be applied to such systems.

Equivalently, a nonholonomic system can be defined by a codistribution on the cotan

gent space to the configuration manifold, specifying the directions that the system is not

allowed to move:

/={Q1,...,an"m}

This codistribution generates a Pfaffian system, and can thus be analyzed using the theory

of exterior differential systems. This formulation is the dual of that described above in

the sense that the codistribution I annihilates the distribution A, that is I = A1 or, in

coordinates, atl(gj) = 0 for all iyj. In the context of motion planning for systems with

nonholonomic velocity constraints, this is in some sense a very natural framework since a

basis for I can be written in coordinates by taking each a*' = 0 as the ith nonholonomic

constraint, for example, in the iV-trailer system, that the wheels on the ith axle roll without

slipping. A paper by Murray [40] was instrumental in bringing the theory of exterior

differential systems to the attention of the nonholonomic motion planning community.

Such exterior differential systems and their properties were first studied by Pfaff in the

early 1800's; see [3] for a historical overview. The path planning problem for a mobile robot

towing multiple trailers can be formulated as the problem of finding integral curves for the

corresponding Pfaffian system. Classical results on exterior differential systems by Goursat,

Engel, Cartan, and others on classification and canonical forms can be used to find such

integral curves. Most of the relevant results in exterior differential systems and canonical

forms for Pfaffian systems are presented in an abbreviated fashion in the monograph by

Bryant et al. [3]. Chapter 2 of this dissertation contains a very brief summary of some



of the necessary mathematical tools. Chapter 3, taken largely from the paper by Tilbury,

Murray, and Sastry [55], presents the Pfaff, Engel, and Goursat normal forms for Pfaffian

systems of codimension two, along with the example system of a car towing multiple trailers.

The iV-trailer system is formulated as a Pfaffian system, and it is shown how this system can

be transformed into the Goursat normal form. Since the Goursat normal form for Pfaffian

systems is the dual of the chained form for nonholonomic control systems, the steering

methods developed for chained form systems can be applied to the JV-trailer system. Several

such methods are described in Section 3.4, and sample paths for the JV-trailer system, such

as parallel-parking and backing into a loading dock, are also presented.

Trailer systems with more than two inputs, such as the fire truck, were first studied in

conjunction with Linda Bushnell [7], and it was shown how the kinematic equations could

be converted into chained form and then steered using sinusoids. The generalization of both

the fire truck and the n-trailer system is the multi-steering trailer system, first described

and analyzed by Tilbury, S0rdalen, Bushnell, and Sastry [58]. This system consists of a

mobile robot towing multiple trailers, several of which are steerable. In the original paper,

the kinematic equations of the system weredefined and it was shown how the control system

could be converted into a multi-input chained form system. The transformation required

that a number of states be added to the system in a dynamic state feedback, interpreted in

the context of this system as "virtual trailers." A chain of these virtual trailers was added in

front of each steerable axle, the virtual chains diverging from the physical chain of trailers.

The methods proposed for steering two-input chained form systems in [55] were extended

to multi-input chained form systems in [58]; these methods will also be presented in this

dissertation in Section 4.5. Once a path is found using one of these methods for the extended

system, the path can be projected down to the original system; the information about the

trajectories of the virtual trailers is not needed and can be discarded. One example of a

parallel-parking type maneuver for such a system is shown in Section 4.6.

Since the fire truck could be exactly converted into chained form, it was not known if

this dynamic state feedback was necessary for the general multi-steering trailer system to

be converted into multi-input chained form. Only sufficient conditions exist for converting

control systems into chained forms, and thus the answer could not be found using that

theory but would rather come from the theory of exterior differential systems. Gardner

and Shadwick [20] cast the problem of exactly linearizing control systems into the exterior

differential systems framework. Murray [39] generalized their result to give necessary and



sufficient conditions for conversion to what he called the "extended Goursat normal form,"

but only for the case when one of the towers is longer than the others. The complete

necessary and sufficient conditions for conversion to extended Goursat normal form can be

found in [56] and also in Section 4.2 of this dissertation.

The first piece of the answer to the question of the necessity of dynamic state feed

back for the multi-steering trailer system was given by Tilbury and Sastry [56] where it

was shown that a particular example of the multi-steering trailer system did not satisfy the

conditions for conversion into extended Goursat normal form without allowing for dynamic

state feedback, or prolongation in the language of exterior differential systems. Necessary

and sufficient conditions for converting systems into extended Goursat normal form using a

special type of prolongation, namely prolongation by differentiation, were also given. The

complete answer to the question can be found in another paper by Tilbury and Sastry

[57], and also in Chapter 4 of this dissertation, where the general multi-steering system is

analyzed using the techniques of exterior differential systems. It is shown exactly which

arrangements of trailers and steering wheels satisfy the conditions for conversion into ex

tended Goursat form (or equivalently, multi-input chained form), and for those that do not,

what is the minimal dimension of prolongation that is necessary to achieve a transformation

into extended Goursat normal form (so that paths can be found using one of the methods

of Section 4.5).

The Brunovsky normal form for a linear control system is a special case of the ex

tended Goursat normal form. Thus, the problem of exactly linearizing a control system can

be recast as the problem of converting the corresponding Pfaffian system into the particular

extended Goursat normal form that is required (the coordinate corresponding to time is not

allowed to be transformed); this investigation was begun by Gardner and Shadwick [20].

The problem of linearization after prolongation (or dynamic state feedback) was addressed

from the exterior differential systems point of view in the Ph.D. dissertation of Sluis [46].

The paper by Tilbury and Sastry [56] continues this line of work. In particular, the problem

of linearization by time-scaling is presented and solved, and necessary and sufficient condi

tions for linearizing control systems using dynamic extension are given. These results are

summarized in Chapter 5 of this dissertation. The final chapter of this dissertation contains

some conclusions and a brief discussion of open problems.



Chapter 2

Mathematical Preliminaries

This chapter contains a very brief overview of some of the definitions and theorems

on Pfaffian systems that will be used in this dissertation. Although the theory of exterior

differential systems is powerful enough to analyze systems of partial differential equations,

only a small subset of this theory, that restricted to Pfaffian systems or systems of ordinary

differential equations, will be needed in this dissertation. The interested reader is encour

aged to consult the monograph by Bryant et al. [3] for more details on Pfaffian and exterior

differential systems. Much of the material on exterior algebra can be found in the books by

Flanders [15] and Munkres [38].

2.1 Exterior algebra and the exterior derivative

Let V be a real vector space of dimension n. The exterior or wedge product of two

vectors is called a two-vector. For any a,/? € V, their wedge product is denoted a A p.

Using this product, a new vector space A2(V) is defined as the space spanned by all two-

vectors on V. The wedge product satisfies the following properties:

a A a = 0

(a A /?) A 7 = a A (/? A 7)

act A (b(3 + C7) = (ab)a A (3 + (ac)or A 7

for all a, /?, 7 6 V, and a, 6,c € R. If a1,..., an is a basis for V, then {a* A oJ : i < j) is a

basis for A2(V). The dimension of A2(V) is Q).
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Higher-order vectors are defined similarly using the wedge product. The space of k-

vectors is denoted by A*(V), has a basis given by

{a*1 Aa*2 A•••Aaik : 1 < t'i < i2 < •••< ** < n)

and has dimension (£). For completeness, let A°(V) = R and A*(V) = V.

The wedge product gives a simple method for testing linear dependence of vectors.

Proposition 1 The vectors V\,..., vp 6 V are linearly dependent if and only if

Vi A ••• A vp = 0

Thus, A*(V) is the zero vector space for k> n.

An element A of the exterior or Grassman algebra over V

A(V) = A°{V)© A\V) ©•••©An(V)

can be uniquely expressed as the sum of its components

A = A0 + A1 + ... + An A,eA'GO

Now, consider a differentiable manifold M of dimension n and its tangent bundle TM.

The bundle A(TM) is constructed by attaching the exterior algebra of TXM to every point

x G M,

A(TXM) = A°{TXM) ©A\TXM) ©A\TXM) ©... ©An{TxM)

The bundle A(TM) has Ak(TM) as sub-bundles. A section of the bundle

A\TM) = (j A\TXM)

over M is called a k-vector field on M.

The bundle A(T*M) is constructed similarly, using the cotangent bundle, and a section

of the bundle A*(T*Af) is called an exterior differential form of degree k or simply a k-form.

The notation Qk(M) will be used to mean the module (over the ring of smooth functions)

of all smooth sections of A*(T*M), in particular, SV(M) is the module of all one-forms on

M, and fi(M) = 0ft*(M) is the module of forms on M.

For local coordinates x = (si,... ,xn) on M, a local basis for the tangent space to M

at x, or TXM, is:

(A JA



Its dual basis for the cotangent space T*M is denoted by

{dxi,... ,dxn]

where the dxt are defined by the following relations:

*' (£) =
1 i = j

0 i?j

In terms of these local coordinates, a p-form u> can be written as

w=S wh...i,(x) dxh A-••Adxip it < i2 < ♦ ••< ip

where the coefficient functions wil...*(&) are smooth functions on M.

Theorem 2 (Exterior Derivative) There exists a unique linear map

d : Qk(M) - fi*+1(Af)

which satisfies the following properties:

1. For f € n°(Af),

df = ^—dxx + •••+ -5—dxny
OX\ oxn

relative to a local coordinate chart, or the usual differential.

2. For a <= ftr(M),/3 € fta(M),

d(a + /3) = da + d/3

d(a A/?) = da A0 + (-l)ra Ad/?

5. d(du>) = 0 for all w 6 H(M).

A proof of this theorem can be found in Flanders [15] and Munkres [38]. This operator d

is called the exterior derivative and it is an intrinsic operator, that is, it is independent of

the choice of coordinates.
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2.2 Velocity constraints

For the systems considered in this dissertation, the configuration space of the system

will be an n-dimensional manifold M with local coordinates q = (q\,... ,gn). The non-

slipping conditions on the wheels will give rise to linear constraints on the system velocity,

which can be written (in the most general way) as

A(q)q = 0 (2.1)

The matrix A(q) has as elements 0^(9) which are smooth functions on M. The velocity of

the system is constrained to be in the null space of the matrix A(q).

If the system follows a trajectory q(t) through the configuration space, the velocity

vector q is in the tangent space to M at g, and can be represented in local coordinates by

the expression

For the velocity of the systemto satisfythe constraintcondition (2.1)at every9, the velocity

vector v(q) must be annihilated by the one-forms a* which correspond to the rows of A(q)>

cc* = a,i(9)rfg! + •••+ ain(q)dqn

that is,

a1' •v(q) = 0

for i = 1,... ,5 (where s is the number of rows of the matrix A(q)). Throughout this

dissertation, the one-forms a* will be referred to as the velocity constraints.

Consider first the case of a single velocity constraint, call it a. If this one-form a

constrains the system velocity to be everywhere tangent to a submanifold M' C M, then

the configuration of the system will always fie on this submanifold. In this case, the velocity

constraint a is equivalent to a position constraint f(q) = c0, where M' = /-1(co) (assuming

that c0 is a regular value of /). The function / provides a foliation of the manifold M into

submanifolds; each submanifold M* = /_1(ct) is called a leaf of the foliation. If the initial

configuration of the system lies on the leaf M', and the system velocity is always tangent to

M', then the configuration of the system will He on the submanifold M' for all time. The

constraint a is then said to be holonomic. In this case, the entire configuration space M is

not reachable by the system. In general, the dimension of the reachable configuration space

is reduced by one for each holonomic constraint.
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A holonomic velocity constraint can be either the exact differential of some function,

a = dfy or a scaled version ofan exactdifferential, a - ydf, for some function 7. In the first

case da = d(df) = 0 and a is said to be exact. The second case gives, using the definition
of the exterior derivative,

da = dfAdf-\- fd(df)

daAa = d,yAdfA ydf = 0

Such an a is said to be integrable, with 1/7 being the integrating factor.

If, on the other hand,

da Aa ^0

the velocity constraint a is said to be nonholonomic. A system subjected to a single

nonholonomic velocity constraint can reach every point in its configuration space (in the

absence ofobstacles,of course). That is, although the directions which the system is allowed

to move are constrained at every point, given any two points in the configuration space,

there exists a path which connects these two points and satisfies the velocity constraint.

The definitions of holonomic and nonholonomic are often given in the language of

distributions. A single one-form a defines an n - 1 dimensional distribution A such that a

annihilates every vector field in A. Let {gu... ,#„_i} bea basis for A; necessarily a(g{) = 0.

If the distribution A is involutive, that is, if the Lie bracket of any two vector fields in A

also lies in A,

[0i>0i]€A for alii, j

then the distribution A (or equivalently the constraint a) is said to be holonomic. If there

exists some Lie bracket [&, £,] which is not in the span of A, then the distribution (or the
constraint) is said to be nonholonomic.

The relationship between the Lie bracket and the exterior derivative is given by the

following lemma, sometimes referred to as "Cartan's magic formula."

Lemma 3 Leta be a one-form on M andlet X andY be smooth vector fields on M. Then

da(X,Y) = Xa(Y) - Ya(X) - a([XyY]).

Proof. It suffices to show that the lemma is true for a basis element, and hence for a = jdf.
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On the one hand,

da(X,Y) = (d1Adf)(XiY)

= d1{X)df(Y)-d1{Y)df(X)

= X(i)Y(f)-Y{1)X(f).

Furthermore,

Xa(Y)-Ya(X)-a([X,Y])

= X(yY(f)) - YfrX(f)) - l(XY{f) - YX(f))

= X(7)K(/) - Y(y)X(f),

and the lemma is proved. •

2.3 Pfaffian systems

Now consider s linearly independent velocity constraints, each represented by a one-

form on an n-dimensional manifold M. The collection of these one-forms defines a codis

tribution I on My that is

I = {a\...,a>}

Although the one-forms a1 are not uniquely defined, and will have different expressions

depending on which coordinates are chosen, the codistribution which they span is intrinsic.

Definition 1 (Pfaffian Systems) On a manifold M of dimension n, a Pfaffian system

is a codistribution I of one-forms spanned by {a1,..., a*}.

The dimension of the Pfaffian system is defined to be s, the number of independent

one-forms which generate it. The codimension oflisn-s. A complement to the Pfaffian

system is a collection ofn —s one-forms {/*i,... ,/in-«} which are independent of I.

An integral curve of a Pfaffian system is a curve c : K -*• M, the tangent vector to

which is annihilated by I:

a* •c = 0

A Pfaffian system with independence condition is a Pfaffian system I together with a one-

form t on M which is not allowed to vanish on integral curves, that is r • c ^ 0 for any

integral curve c.
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For a codistribution J = {a1,... ,a*}, two fc-forms n and ( are said to be congruent

modulo / if
a

1=1

for someforms 0* in Uk~1(M). Congruence will be represented by the symbol =.

In general, a Pfaffian system can be generated by some holonomic and some non

holonomic constraints. Since the holonomic constraints reduce the reachable configuration

space, for the purposes of analysis it is useful to eliminate them and to consider the reduced

system on a lower-dimensional configuration space which is completely reachable.

Consider all the one-forms in / which are integrable modulo the entire codistribution:

{a : da = 0 mod /}

If this set is the entire codistribution J, then / is integrable; that is i" is equivalent to

{d/i,... ,rf/a} for some functions /<, and the set of constraints is said to be completely

holonomic. If the dimension of this set is less than the dimension of /, then it is itself a

Pfaffian system, and one can consider all the constraints which are integrable modulo this

new system. This process of recursively taking the set of constraints which are integrable

modulo the current system is formalized in the definition of the derived flag.

Definition 2 (Derived Flag) Consider a Pfaffian system I = {a1,... ,a*} on Rn.

The first derived system of I is the set of all constraints in I which are integrable

modulo the system:

l^ = {ael:da = 0 mod/}

The derived flag is the sequence of nested codistributions,

/ = /(0)D/0)D..O/(iV)

defined by J<0> = I and J(*+1> = (J(*))(1>. // the dimension of1^ is not well-defined for all

k, then the derived flag of the system is not defined.

Let U C Kn be an open set on which the derived flag is defined, that is, the dimension

ofeach /W is constant on U. Consider the Pfaffian system J on U. Then, there exists some

finite integer N for which l(N+1) = /W; this system is called the bottom derived system.

Since da = 0 mod 1^ for all a € I^N\ the bottom derived system is integrable. That is,
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there there exist functions flt... ,fq such that JW = {rf/i,... ,d/,}. Integral curves of J

are then constrained to he on level surfaces of /.

A basis of one-forms a* for / is said to be adapted to the derived flagif a basis for each

derived system JW can be taken to be some subset of the a^s. Given any basis for I, it

is straightforward to construct an adapted basis by computing the derived flag, choosing

a basis for the last nontrivial derived system, and moving up the derived flag, adding new

elements to the basis to complete the basis for each derived system.

Chow's theorem states that the configuration space is completely reachable if and only

if the bottom derived system is empty.

Theorem 4 (Chow [11]) Let I = {a1,..., a*} represent a set ofconstraints onRn. Then,

there exists a path q(t) between any two points satisfying a* • q = 0 for all i if and only if

there exists an N such that J(N> = {0}.

Let A0 = {#i,... ,gn-s} he the distribution which is annihilated by J. Recursively

define a filtration of distributions A0 C Ax C A2 C ••• by the relationship

A,+1 = AtU[A,-,A,]

= i9h[9j>9k] : 9i,9j,9k € A,}

that is, A,+1 is the distribution which contains all vector fields in A,- as well as all Lie

brackets of vector fields in Af. Using Lemma 3, it is straightforward to show that At- is

precisely the distribution annihilated by the ith derived system jW. Thus, an equivalent

statement of Chow's theorem is that there exists a path q(t) between any two points such

that q{t) is in the span of {gu... ,<?„_,} if and only if there exists an N such that AN = TM.

A variant of the familiar Frobenius theorem will be used in this dissertation and is

stated here for reference.

Theorem 5 (Frobenius [3]) Let {a1,... ,ap} be a set of linearly independent one-forms,

and /i,... ifq a set of functions whose differentials are linearly independent of each other

and of the a* 's. If

da* Aa1 A•••Aa9 Adfi A•••Adfq = 0

for i = 1,... ,p, then there exist coordinate functions Z\,... ,zp and coefficient functions

aij»bij such that the one-forms a* can be written as:
p q

a< = J2 o-ijdzj +J2bijdfj
3=1 i=i
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The proof follows from the standard Frobenius theorem and the fact that the codistribution

{a1,..., ap,d/i,..., dfq] is integrable.



Chapter 3

Goursat Normal Forms and the

N-trailer system

17

In this chapter, the problem of finding feasible paths for the system of a car-like mobile

robot towing n trailers will be considered and solved. Most of the results presented in this

chapter, with the exception of Section 3.3, originally appeared in [55]. The analysis and

coordinate transformations presented for the systems with kingpin hitches appear for the

first time in this dissertation.

Each axle of the car and trailer system gives a constraint on the system velocity,

representing that the wheels are only allowed to roll in the direction they are pointing and

may not slip sideways. Neither do they slip in the direction that they are rolling; however,

the angle of each wheel about its axle will not be modeled. The set of velocity constraints

generates a Pfaffian system, and thus feasible paths for the mobile robot are the same as

integral curves for the Pfaffian system.

Paths for the n-trailer system are found by converting the Pfaffian system into a normal

form, called the Goursat normal form, and doing the planning in these new coordinates. Al

though the coordinate transformation into Goursat form is only guaranteed to exist locally,

it will be shown that in many practical examples, the transformation is defined on most of

the configuration space and is thus useful for planning many types of trajectories. Three

different methods for finding trajectories for systems in Goursat form will be discussed in

final section of this chapter. A movie animation of a parallel-parking trajectory found in

this manner can be seen in the upper right-hand corner of the pages of this chapter.

0

0
0
0

8
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3.1 Normal forms for Pfaffian systems

One way to find integral curves for Pfaffian systems is to transform the system into a

normal form. If such a normal form can be found, then there is a one-to-one correspondence

between the integral curves of the normal form system and the original system.

3.1.1 Pfaff's and Engel's normal forms

The simplest type of normal form for a nonholonomic system involves finding a normal

form for a single constraint on Rn.

Theorem 6 (PfafFs theorem) Suppose a is a one-form on Rn which satisfies (da)r+1 A

a = 0, (da)r Aa^O. Then there exist local coordinates z such that

a = dz\ + z2dz$ + z4dz$ + 1- z2rdz2r+i.

Note that the case r = 0 is a special case of the Frobenius theorem. In the case r = 1, the

proof [3] shows that there exist two functions /i and f2 which satisfy the following partial

differential equations:

daAaAdfi = 0 aAdf^Q
and (3.1)

a A rf/i A df2 = 0 rf/jA df2 ± 0.

Once suitable functions fi and /2, have been found, a can be scaled such that

a = df2 + gdfi

The Pfaff theorem guarantees that there exists a solution fi,f2 to the equations (3.1) (it

need not be unique).

In the case of a single constraint in R3, Pfaff's theorem shows that if the constraint is

non-integrable then the corresponding control system can be written in chained form. This

follows because if a is not integrable then da Aa ^ 0 but (da)2 Aa = 0 by a dimension

count. Therefore, Theorem 6 can be applied to conclude that

a = dz$ —z2dz\.

A basis for the distribution annihilated by such a one-form a (on R3) is given by the two

vector fields

d 8 8

9l-aT^Z2oT, 92 = dT2>
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which is the chained form in R3.

EngePs theorem applies to the case of two non-integrable constraints in R4, and also

results in a chained form.

Theorem 7 (Engel's theorem [3]) Let I be a two-dimensional codistribution onR4 with

dim J(1) = 1 and dim/*2) = 0. Then there exist local coordinates such that

I = {dz4 - z3dz\,dz3 —z2dzi}. (3.2)

Proof. Choose a basis I = {a1,a2} which is adapted to the derived flag, that is a1 £ J(1). It

follows that da1 Aa1 ^ 0 (since 7(2) = {0}) and (da1)2 Aa1 = 0 (by dimension count). Hence

Pfaff's theorem can be used to find twofunctions fx and f2 which satisfy (3.1). Defining the

coordinates z4 = f2 and zx —fu the constraint a1 can be scaled so that a1 = dz4 - z3dz\.

To determine the final coordinate z2, the structure of a2 can be used. Since a1 6 7(1\ it

follows that its exterior derivative is equal to zero modulo the system J, or da1 Aa1 Aa2 = 0.

But da1 Aa1 = —dz3 Adzi A dz4 and hence

a2 = a dz3 + 6 dzx + c dz4

Note that the dz4 term can be eliminated since a2 is only defined mod a1,

a2 = a dzz + bdz\ mod a1

If either a or 6 is zero, the assumptionson the dimensions of J^ and 1^ are violated. Also,

a2 can be scaled by any function, yielding:

-a2 = dz3 + -dzi mod a1 (3.3)
a a

A choice of z2 = -b/a will give a basis for the codistribution which is in Engel's normal

form:

Qi = ai = dz4 —z3dzi

a2 = —a2 + Xai = dz3 —z2dz\
a

where A is chosen such that equation (3.3) becomes an equality. •

A basis for the distribution annihilated by Engel's system is given by the two vector

fields
d , d d d

9i = "S r z2- h z3-— g2 = ——
azx oz3 oz4 dz2

which represent the chained form in R4.
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3.1.2 Goursat normal form

The Goursat normal form applies to Pfaffian systems of codimension two on arbitrary

dimensional manifolds.

Definition 3 (Goursat normal form) A codimension two Pfaffian system I on Rn with

generators of the form

I = {dzn - Zn-tdzu... ,dz3- z2dzi} (3.4)

is said to be in Goursat normal form.

A basis for the annihilated by the Goursat system is given by the two vector fields

9 _•_ d _L a. d d

which is precisely the chained form in Rn.

Defining the constraints of the Goursat normal form as

a1 = dzn —zn-idzi

an~2 —dz3 —z2dz\

the derived flag of I has the structure

/(°) = {a1,Q2,-..,an-3,an-2}

J(1> = {a1,a2,-..,an-3}

J(n-4> = {a1,a2}

/(»-3> = {a1}

J<"-2> = {0}

Integral curves of the system are unconstrained in their z\, zn coordinates alone. Once

Zi(t),zn(t) are specified as functions of some parameter /, the other coordinates z,(t) are

determined. The following classical theorem gives necessary and sufficient conditions for

converting a codimension two Pfaffian system into Goursat normal form:

(3.5)
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Theorem 8 (Goursat Normal Form [3]) A Pfaffian system I of codimension two on

Rn has a set of generators which are in Goursat normal form if and only if there exists a

basis set offorms {a1,... ,an~2} for I and a one-form 7r satisfying the congruences:

dal = -al+1Air mod a1,..., a1 t=l,...,n —3
(3.6)

dan~2 0 0 mod J

The proof can be found in [3] and will not be given here. Note that any set of generating

one-forms which satisfy the congruences (3.6) are adapted to the derived flag, which will

have the structure of (3.5). An algorithm is presented here which can be used to convert

Pfaffian systems into Goursat form.

Algorithm 1 Converting Systems into Goursat form [55]. For a Pfaffian system / =

{w1,... ,w*} on a manifold M of dimension n with s = n - 2,

1. Construct a basis J = {a1,...,a*} which is adapted to the derived flag. Check the

Goursat congruences to ensure that they are satisfied for some it. The candidate one-

form 7r is easily found by noting that it must satisfy the first congruence, da1 = -a2 Air

mod or1. Such a t can always be found, and is determined uniquely mod a1, a2.

Checking whether this n will satisfy the other congruences is a matter of algebra, and

can be tedious in practice.

2. It follows from the congruences that a1 satisfies Pfaff's theorem for r = 1, and thus

two functions fi and f2 as defined in (3.1) can be found. Define the coordinates

Z\ —fi and zn = /2, and scale a1 such that

a1 = dzn —Zn-idzi .

3. The remaining coordinates are determined by simple differentiation. Given z,-, the

next coordinate zt_i is determined by algebraically solving the equation

an~i+1 = dzi - zi.ldzl mod a1,.. .,an_,+1.

The proof of Goursat's theorem essentially shows that this equation always has a

solution.
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• • •

Figure 3.1: The mobile robot Hilare with n trailers.

3.2 The N-trailer Pfaffian system

The system of a mobile robot towing n trailers can be represented as a Pfaffian system:

the velocity of the system is constrained in n directions corresponding the the n axles of

wheels. A basis for this constraint codistribution (or equivalently, the Pfaffian system) is

found by writing down the rolling without slipping conditions for all n axles.

In this section, the configuration space and the velocity constraints for the system will

be defined. After checking the conditions of Theorem 8, it will be shown how Algorithm 1

can be used to convert the kinematic constraints into Goursat and chained forms.

3.2.1 The system of rolling constraints and its derived flag

Consider a single-axle mobile robot such as Hilare1 with n trailers attached, as sketched

in Figure 3.1. Each trailer is attached to the body in front of it by a rigid bar, and the

rear set of wheels of each body is constrained to roll without slipping. The trailers are

assumed to be identical, but to have possibly different link lengths £,-. The x, y coordinates

of the midpoint between the two wheels on the ith axle are referred to as (a:*, y{) and the
hitch angles (all measured with respect to the horizontal) are given by 0*. The connections

between the bodies give rise to the following relations:

.t-i = x{ + Licos8i

y1-1 = y* + LiSine*
i ~ 1,2,... ,n. (3.7)

Obviously, the entire space parameterized by all the coordinates (a;0, y°,0°,... , xn, yn,6n) 6

R2n+2 x (51)n+1 is not reachable. Taking intoaccount the connection relations (3.7), any one

of the Cartesian positions x*, y* together with all the hitch angles 0°,..., 6n will completely

1The Hilare family of mobile robots resides at LAAS in Toulouse, see for example [10, 18].
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represent the configuration of the system. The configuration space is thus M = R2x(S1)n+1

and has dimension n+3. In any neighborhood, the configuration space can be parameterized

by Rn+3.

The velocity constraints on the system arise from constraining the wheels of the robot

and trailers to roll without slipping; the velocity of eachbody in the direction perpendicular

to its wheels must be zero. Each pair of rear wheels is modeled as a single wheel at the

midpoint of the axle. The non-slipping conditions are given, in terms of coordinates,

sinks'*-cos0^ = 0. (3.8)

Equation (3.8) models the fact that the velocity perpendicular to each pair of wheels is

zero. Following the discussion of Section 2.2, this velocity constraint can be written as a

one-form,

a* = sin 9idxi - cos 0'dy' i = 0,..., n (3.9)

The one-forms a0, a1,... , an represent the constraints that the wheels of the zeroth trailer

(i.e. the cab), the first trailer, ... , the nth trailer, respectively roll without slipping. The

Pfaffian system correspondingto this mobile robot system is generated by the codistribution

spanned by all of the rolling without slipping constraints:

7={a°,...,an} (3.10)

and has dimension n + 1 on a manifold of dimension n + 3.

Before finding the derived flag associated with 7, it is useful to investigate some prop

erties of the constraints and their exterior derivatives. Notice that equation (3.9) can be

rearranged (after a division by a cosine) to give the congruence:

dyl = tanfl'ete' mod a* (3.11)

This division by a cosine introduces a singularity; the resulting coordinate transformation

will not be valid at points where 0n — ±ir/2. See Remark 1 for a brief discussion of

singularities.

All of the (x\ yl) are related by the hitch relationships. The exterior derivatives of

these relationships can be taken,

x*-1 = a:*" + Licosdl dx*-1 = dxl - Li sin0W

2/'"1 = y{ + Li sin0{ dy^1 = dy{ + X,- cos tfd#
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and these expressions can then be substituted into the formula for a*-1 from (3.9), allowing

the constraint for the (f —l)a* axle to be rewritten as:

a'"1 = sinfl1'-1^-1 - cosP-1dy'-1

= sin9i~1dxi - cos0*~W - L{ cos(0,~1 - 0i)d0i
(3.12)

= (sin*'"1 - tan0* cos0i~1)dxi - Licos(0i~1 - 0{)d0{ mod a{

= sectf'sin^'-1 - 0)dx* - Xtcos(0'~1 - 0i)d0i mod a{

after an application of the congruence (3.11). A rearrangement of terms and a division by

cosine in equation (3.12) will give the congruence

d0{ =-i- sec 0* tan(0i"1 - 0{)dxl mod a\a1'"1
Li (3.13)

= feidx1 mod a',a*"1

The exact form of the function f9i is unimportant; what will be needed is the relationship

between d8i and dx*.

The first lemma relates the exterior derivatives of the x coordinates,

Lemma 9 The exterior derivatives of any of the x variables are congruent modulo the

Pfaffian system, that is: dx{ = fxi,idx> mod I.

Proof. For two adjacent axles, the relationship between the x coordinates is given by the

hitching,

x'-1 = a:*' + Li cos0{

dx1-1 = dxi-Lis\ii0id0i

= (1 - Lism0ife^dx1 mod a'-1,a'

= fxi-\dx% mod a1"1,a*

The congruence (3.13) was applied. •

A complement to the Pfaffian system J = {a0,... ,an} is given by

{d0°,dx{}

for any x\ since by Lemma 9 their exterior derivatives are congruent modulo the system,

and the complement is only defined modulo the system. These two one-forms, together

with the codistribution J, form a basis for the space of all one-forms on the configuration

manifold, or nJ(M).
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Now consider the exterior derivative of the constraint corresponding to the ith axle,

a* = sin0*dx{ - cos 0'dy*

dai = d8{ A(cos0idxi + sin 0{dy{)

= d0{ Adx'(cos 0{ + sin 9{ tan0{) mod a{ (3.14)

= d0{ Adx'(sec 0*) mod a'

= 0 mod a^a'-1

using (3.13). Thus, the exterior derivative of the constraint corresponding to the ith axle

is congruent to zero modulo itself and the constraint corresponding to the axle directly in

front of it. The congruences (3.11) and (3.13) were useful in deriving this result.

This is all the information that is needed to find the derived flag for the system.

Theorem 10 (Derived flag for the iV-trailer Pfaffian system) Consider the Pfaffian

system of the N-trailer system (3.10) with the one forms a* defined by equations (3.9). The

one-forms a* are adapted to the derived flag in the following sense:

/(°> = {a°,a1,...,a"}

/<1> = {a1,...,an}

: (3.15)

/(n+l) = {0}.

Proof. The proof is merely a repeated application of equation (3.14). Noting that the

exterior derivative of the ith constraint is equal to zero modulo itself and the constraint

corresponding to the axle directly in front of it, it is simple to check that the derived flag

has the form given in equation (3.15). •

Note that /(n+1) = {0} implies that the JV-trailer system is completely controllable (by

Chow's theorem).

3.2.2 Conversion to Goursat normal form

In the preceding subsection, it was shown that basis {a0,... ,an} defined in equation

(3.9) is adapted to its derived flag in the sense of (3.15). It remains to be checked whether



26

the a* satisfy the Goursat congruences and if they do, to find a transformation that puts

them into the Goursat canonical form. The following theorem guarantees the existence of

such a transformation.

Theorem 11 (Goursat congruences for the iV-trailer system) Consider thePfaffian

system I = {a0,... ,an} associated with the N-trailer system (3.10) with the one-forms a*

defined by equation (3.9). There exists a change of basis of the one forms a* to a* which

preserves the adapted structure, and a one-form n which satisfies the Goursat congruences

for this new basis:

da* = —a*'1 Air moda',...,an i = l,...,n

da0 ^ 0 mod J.

The one-form which satisfies these congruences is given by

it = dxn.

Proof. First of all, consider the original basis of constraints. The expression for o* can

be written in the configuration space coordinates from equation (3.9) together with the

connection relations (3.7) and some bookkeeping as:

n

a* = sin 0(dxn - cos0(dyn - £ Lk cos(0'* - 0k)d0k (3.16)

Before beginning the main part of the proof, it will be helpful to define a new basis

of constraints a\ which are also adapted to the derived flag, but are somewhat simpler to

work with. Each 6? will have only two terms.

Although the last constraint already has only two terms, it will be scaled by a factor,

an = sec0nan = t<m0ndxn - dyn

Note that a rearrangement of terms will give the congruence

dyn = tan0ndzn mod an

Now consider the next to last constraint, a""1, and apply the preceding congruence:

a""1 = sm0n~1dxn - COS0""1dyn - Ln cos(0n - 0n~1)d0n

= sec 0n sin(0n-1 - 0n)dxn - Ln cos(0"-1 - 0n)d0h mod an
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Dividing once again by a cosine, the new basis element a"-1 is defined as

a""1 = sec0n tan(0n"1 - 0n)dxn - Lnd0n (3.17)

Thus, an~l = fan-ian~l mod an. Also, the exterior derivative d0n is related to dxn by the
congruence

d0n =-?-sec0ntan(0n-1 - 0n)dxn mod a""1
Ln

This procedure of ehminating the terms dyn,d0n,...id0{ from ai+1 can be continued.

Lemma 12 A new basis of constraints a* of theform

an = ta,n0ndxn -dyn

6? = sec0nsec(0"-1 - 0n)...sec(0,+1 - 0,+2) tan(0' - 0i+1)dxn - Li+1d0i+1 (3.18)

i = 0, ...,n- 1

is related to the original basis of constraints a1 through the following congruences:

d' = f^a* mod a,+1,..., an

and thus the basis a% is also adapted to the derived flag.

Note that by the definition of 6?', the exterior derivative d0*+1 is related to dxn by the

congruence

d0l+1 = -— sec 0" sec(0n"1 - 0n)...sec(0,+1 - 0,+2) tan(0f - 0i+1 )dxn mod d1*
Li+i

The lemma is proved by induction. It has already been shown that an = /a»an and

dn_1 = /an-ian_1 mod an. Assume that a* = foot mod ai+1,...,an for i = j +1,...,n.
Consider a3' as defined by equation (3.18),

6V = sec0n sec(0n-1 - 0n).. .sec(0J+1 - 0i+2) tan(0> - 0i+1)dxtl - Zi+1rf0'+1

Recall from equation (3.16) that a* has the form
n

o/' =sm0idxn-cos0idyn- ^ Lkcos(0i - 0k)d0k
k=j+l

Now, applying the congruences

dyn =tan0nrfa;n mod an

d0{ = — sec0" sec(0n-1 - 0n).. .sec(0,' - 0,+1) tan(0*'-1 - 0{)dxn mod a*'1
*->i
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to the expression for a*, and expanding the summation, yields

a? = sin 0idxn - cos 0j tan0ndxn - Lj+1 cos(0> - 0>+1)d0>+1 -

- cos(^ - 0>+2)sec0n sec(0n"1 - 0n).. .sec(0>+2 - 0>+3) tan(0>+1 - 0>+2)dxn

- cos^' - 0"-1)sec0n sec(0n"1 - 0n)tan(0n"2 - 0n~1)dxn

- cos(0>' - 0n) sec0n tan(0n"1 - 0n)dxn

modaJ+1,...,an-2,Qn-1,dn

To simplify the above expression, the trigonometric identity

sin a —cosa tan b = secbsm(a —6)

is repeatedly applied and terms are collected. Start first with the first two terms in the first

line,

a? = sec0n sin(0J* - 0n)dxn - Lj+1 cos(0> - 0i+1)d0j+1 -

- cos(0J' - 0>'+2) sec0n sec(0n"1 - 0n).. .sec(0>+2 - 0>+3)ta.n(0>+1 - 0i+2)dxn

- cos(0> - 0""1)sec0n sec(0n-1 - 0") tan(0n"2 - 0n~l)dxn

- cos(0i - 0n) sec0n tan(0n"1 - 0n)dxn

moddy'+1,...,dn-2,dn-1,dn

and now the first term and last term can be combined to yield

0> = -Lj+1 COS^" - 0i+1)d0j+1 -

- cos(0>' - 0i+2)sec0n sec(0n~1 - 0n).. .sec(0>'+2 - 0>'+3) tan(0>'+1 - 0j+2)dxn

- cos(0>" - 0n"1) sec0n sec(0n"1 - 0n) tan(0n"2 - 0n~l)dxn

+ sin(0> - 0"-1) sec0n sec(0n"1 - 0n)dxn

moddi+1,...,dn-2,dn-1,dn
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Collect the last two terms using the identity,

a> = -Lj+1 cos(0>" - 0i+1)d0i+1 -

- cos(0> - 0>+2) sec0n sec(0n-1 - 0n).. .sec(0>+2 - 0>'+3) tan(0i+1 - 0>+2)da;"

+ sin(0>* - 0n"2) sec0n sec(0n"1 - 0n) sec(0n~2 - 0n~l)dxn

moddi+1,...,dn-2,dn-1,dn

and so forth. After all the terms are collected, it can be seen that the equation will read:

a* = sin(0>' -0J+1)sec0nsec(0ra-1-0n)...sec(0i+1 - 0j+2)dxn - LHlcos(0i - ffl*1^*1

mod di+1,...,dn~2,dn-1,dn

= cos(0> - 0i+1)ai mod fi>+1,.. .,an-2,aB-1>aB

and the lemma is proved.

The basis a* will now be scaled to find the basis d* which will satisfy the congruences

(3.6). Once again, the procedure will start with the last congruence, dn. The exterior

derivative of dn is given by

dan = sec2 0nd0n A dxn (3.19)

Looking at the expression for dn_1 given in equation (3.17), it can be seen that ?r should

be chosen to be some multiple of dxn or d0n. In fact, either n = dxn or it = d0n will

work, although the computations are different for each case. The calculations here are for

choosing 7r = dxn. Choosing the new basis element dn_1 as

dn~1 = -^-sec20ndn-1
Ln

will result in the desired congruence,

dan = -dn_1 A 7r mod an

Now consider the exterior derivative of a"-1,

1
da"-1 = d(— sec30" tan(0n~1 - 0n)dxn - Ln sec2 0nrf0n)

Ln

=J- sec3 0n sec2(0n-1 - 0n)d0n~1 Adxn mod d""1
Ln
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since any terms d0n Adxn are congruent to 0 mod dn_1. Thus, in order to achieve the next

Goursat congruence dan~l = dn~2 A7r, the new basis element dn"2 should be chosen as

an~2 =—4 sec30n sec2(0n"1 - 0n)dn"2
LnLn-i

In general, the new basis is defined by

d' = —-—-—-— secn-+10n secn-,'(0n-1 - 0n).. .sec3(0,+2 - 0,+3) sec2(0,+1 - 0,+1)d'
LnLn-i • • -Li+i

It has already been shown that the congruences hold for i —n and i —n —1. Assume that

the congruences

dax ——ax~l Ait mod a*,...,Q!n.

hold for i = j + 1,..., n. Consider the exterior derivative of a*,

da> = d[(-— -— secn-J+10n sec"-^"1 - 0n).. .sec3(0i+2 - 0>+3)sec2(0j+1 - 0J+2))
LnLn-\ • • 'Lj+i

(sec0n sec(0n"1 - 0n).. .sec(0i+1 - 0i+2)t&n(0j - 0j+1)dxtl - Lj+1d0i+1)]

Before calculating all of the terms, recall that the following congruences hold:

d0iAdxn = Q modd*'-1

d0(Ad0k = O mod d'-Sd*-1

and thus the only term in rfd; mod dV,...,an will be a multiple of d0J A dxny

d& = •— ^— secn-J"+2 0n secn~i+l(0n-1 -0n)...
LnLn-\.. >Lj+i

Sec4(0J'+2 - 0'+3)sec3(0''+1 - 0j+2)sec2(0j - 0j+1)

mod d7,..., dn

= a*~1Air modoV,...,dn

This completes the proof that the Goursat congruences are satisfied. •

Since the one-forms a1 do satisfy the Goursat congruences, Algorithm 1 can be used

to find the coordinate transformation that will result in Goursat normal form. According

to the Algorithm 1, there exist possibly non-unique functions f\>f2 which satisfy the Pfaff

equations (3.1):

dan A an A dfx = 0 an A dfx ^ 0
and (Pfaff)

an A dfi A df2 = 0 dfx A df2 ^ 0.
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The constraint corresponding to the last axle is once again given by2

an = sm0ndxn-cos0ndyn

and its exterior derivative has the form

dan = - cos0ndxn A d0n - sin0ndyn A d0n,

It follows that the exterior product of these two quantities is given by

dan A an = -dxn A dyn A d0n.

By the first equation of (3.1), /i may be chosen to be anyfunction of sn,yn,0n exclusively.

Two different solutions of the equations (3.1) are explained here.

Transformation 1. Coordinates of the Nth trailer. Motivated by Sordalen [47], /i
can be chosen to be xn. The second equation of (3.1) then becomes

sm0ndxn Adyn Adf2 = 0

with the proviso that df\ A df2 ^ 0. A non-unique choice of f2 is

h = yn-

The change of coordinates is defined by:

z\ = fi(x) = xn

Zn+3 = h(x)= yn.

The one form an may be written by dividing through by sin 0n as

an = dyn -t&n0ndxn

= dzn+3 —zn+2dzi,

giving zn+i = tan0n. The remaining coordinates are found by solving the equations

a% = dZi+3 —zi+2dzi mod at+ , a'

(3.20)

(3.21)

2The basis that satisfies the Goursat congruences was a scaled version of the original basis, on = /a»Qrr
However, it can be checked that

dotn A an = (dfan A a" + fQndan) A /a»an

= (/a»)2rfonAan

and thus a function /i will satisfy dan A an A dfi = 0 if and only if dan A an A df\ —0.
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for i = n —1,..., 1. In fact, because dz\ = ir as chosen in the proof of Theorem 11, the

one-forms d' already satisfy these equations,

a1 = -z—z—-—=— secn-,+10n secn-,'(0n-1 - 0n).. .sec3(0i+2 - 0,+3) sec2(0i+1 - 0<+1)

(sec0n sec(0n"1 - 0n).. .sec(0,+1 - 0,+2)tan(0i - 0i+1)dxn - Li+1d0i+1)

and so the coordinates zt are given by the coefficients of dxn in the expression for the d\

Transformation 2. Coordinates of the origin seen from the last trailer. Yet

another choice for /i corresponds to writing the coordinates of the origin as seen from the

last trailer. This is reminiscent of a transformation used by Samson [44] in a different

context, and is given by

*i := /i(s) = xncos0n + ynsin0\

This has the physical interpretation of being the origin of the reference frame when viewed

from a coordinate frame attached to the nth trailer. It satisfies the first of the equations of

(3.1) simply by virtue of the fact that it is only a function of xniyn10n. It may be verified

that a choice of f2 given by

zn+3 := h = xn sin 0n - yn cos 0n - 0nzl

satisfies the Pfaff equation,

a1 Adfx Adf2 = 0.

The remaining coordinates z2,... ,zn+2 corresponding to this transformation may be

obtained by solving the equations

a* = dzi+3 - Zi+2dzx mod a,+1,... , a"

for i = n —1,..., 1. The details are tedious and are omitted.

Remark 1 (Singularities) There are two types of singularities associated with the trans

formation into chained form. At 0n = 7r/2, for example, the transformation will be singular,

but this singularity can be avoided by choosing another coordinate chart at the singular

point (such as by interchanging x and y, using the SE(2) symmetry of the system). A

singularity also occurs when the angle between two adjacent axles is equal to 7r/2; at this

point, some of the codistributions in the derived flag will lose rank. The derived flag is
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not defined at these points; nor is the transformation. The methods described herein will

not work for controlling the n-trailer system when the trailers must go through such a
jack-knifed configuration.

There are no singularities of the second type in the unicycle (n = 0) or in the front-
wheel drive car (n = 1).

3.2.3 The control system associated with the TV-trailer system

Consider an exterior differential system on Rn of codimension 2, given by

/ = {«>,...,a""2},

and choose a basis gi,g2 for the 2-dimensional distribution A which is annihilated by the

one-forms a*, that is:

for i = 1,..., n - 2 and ,; = 1,2. Any integral curve ^(t) of I has its tangent vector j(t) in

the span of these two vector fields at every point, that is

7(0 = 5i(7(0)«i(0 + P2(7(0)«a(0

for some functions «x and u2. All integral curves to J are defined by an initial condi

tion and these two functions u^ and «2, which are called the inputs to the corresponding

nonholonomic control system,

E: •k = glul + g2u2, (3.22)

Note that this type of control system is drift-free, that is, if the inputs are set to zero, the

system does not evolve. All configurations x are thus equilibria.

The nonholonomic control system associated with the iV-trailer system is defined in

the following proposition.

Proposition 13 Consider an N-trailer system with n + 1 rolling constraints a* on Rn+3,

a1 = sin 0ldxx - cos 0*dyx i = 0,..., n
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with the x\y%' related by (3.7). A basis for the distribution A which is annihilated by these

one-forms {a0,... ,an} is given by

9i =

cos0n

sin0n

^•tan(0n-1-0n)

rr n?=2 sec(0**-1 - 0l) tan(0° - 01)
0

92 =

Proof. From the connection equations (3.7), it can be shown by induction that the ith
constraint has an expression in coordinates given by

a1 = sin0'*da:n - sin0ldyn - £ Lk cos(0* - 0k)d0k.
Jb=»+1

(3.23)

(the induction proofof this is omitted here).

A basis for the distribution A = I1 is given by two linearly independent vector fields

9i>92 which satisfy:

a%' 9j = 0 for all i = 0,..., n, .; = 1,2.

Since none of the a* have a term rf0°, one of the vector fields in A can be chosen to be

92 Q/JQ
60*

Choosing the other vector field

* Jk=l i=Jfc+l

will result in a* •gx = 0 Vi. In a more familiar notation, these two vector fields are written

as

9i =

COS0" 0

sin0n 0

f:tan(0n-1-0n)
92 =

0

^nL2sec(0'-1-0')tan(0°--01) 0

0 1
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where the coordinates are written in the order x = (xn, yn, 0n,... ,0°). •

Although there are many different choices of gx,g2 which will span the distribution

A = J1-, these two are natural in the sense that when the nonholonomic control system is
written as:

x = giUi + g2u2

the input functions ux and u2 have the physical interpretation of the linear velocity of the

nih trailer (u\ = vn), and the rotational velocity ofthe lead car (u2 = u>). From a practical
point of view, the velocity v0 of the lead car (not that of the last trailer) is the control

input. This velocity is a function of vn and the state of the system, given by the input

transformation

v0 = sec(0° - 01) sec(01 - 02) •. •sec(0n-1 - 0n)vn.

3.2.4 Converting the TV-trailer system into chained form

For two-input nonholonomic systems, a normal form called "chained form" for which

point-to-point trajectories could easily be found was defined in [37]. It was called chained

form because of the way the derivative of each state depended upon the one above it in a

chained fashion,

z2 = u2

Z3 — Z2U\

i4 = z3Ui

zn+3 — Zn+2U1

This can also be written in a more compact form as:

i = 9iUi+ g2u2

where the two input vector fields are:

d _i_ d x x 99\ = o r 22"S 1 r *n+2oOZi dz3 T OZn+3

92 =
d_

dz2

(3.24)

(3.25)

I
8
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These two vector fields </i and g2 are annihilated by the one-forms in the Goursat normal

form (3.4), and thus the chained form is the dual of the Goursat normal form.

The procedure for transforming a nonholonomic control system such as (3.22) into

chained form requires both a coordinate transformation and state feedback. Although for

the most general case, a state feedback is given by

u = a(x) + 6(x)w,

for drift-free nonholonomic systems it is desirable to have a(x) = 0. (If this were not the

case, the state feedback would add a drift term to a drift-free system and could not result in

a chained form, which is drift-free.) The purpose of the state feedback u —6(x)w is therefore

to transform the basis of the distribution A into chained form in the new coordinate system.

Because chained form is the dual of Goursat form, the two transformations discussed in

the previous section for converting the TV-trailer system into Goursat form will also convert

the associated nonholonomic control system into chained form. These transformations,

along with the input transformations which they define, will be discussed in this section. It

will also be verified that the resulting transformations are diffeomorphisms.

From looking at the chained form equations (3.24), it can be seen that the functions

zi(t) and zn+3(t) completely define all the state variables and the inputs through the equa

tions:

ux = i2

Zi = it+1lux i = n + 2,..., 2 (3.26)

u2 = z2.

Consequently, a coordinate transformation into chained form is completely defined by the

first and last coordinates of the chain, zx and zn+3i as functions of the original coordinates x

along with equation (3.26). (The fact that such a transform exists follows from the fact that

the Goursat congruences have been verified.) One possible choice for these two coordinates

Zi and 2n+3 is functions fi and f2 from the solution to Pfaff's problem. If the Goursat

congruences have not been verified, then it should be checked that the transformation

which results from equation (3.26) is a diffeomorphism.

Remark 2 (Differential Flatness) Fliess and his coworkers [16, 41] define a control sys

tem to be differentially flat if there exists a set of functions (hi,..., hm) such that
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1. The hi's are differentially independent (not related by any differential equations).

2. The hiys are functions of the system variables (states, inputs) and finitely many of

their derivatives.

3. Any system variable is a differential function of the ht\ that is, a function of the /i,'s

and a finite number of their derivatives.

For any differentially flat system, there exist many different choices of flat outputs. There

is no constructive method for finding such outputs.

It has been pointed out by Martin [34] and Murray [40] that a two-input drift-free

system is differentially flat if and only if it can be converted into Goursat or chained form.

Onepossible set of flat outputs for such a system is hi = zx and h2 = zn+3. The possibilities

for systems with more than two inputs are more compUcated, and will be explored in the

following chapters.

For a system which satisfies the Goursat conditions, there are many transformations

into chained form; two are presented here for the TV-trailer system. These are the same as

those discussed in the previous subsection in the context of the Goursat normal form, the

main different between the two treatments being the deflnition of the input transformation

when converting into chained form.

Transformation 1. Coordinates of the Nth trailer. This transformation is defined

as follows:

Zi = xn

The corresponding input transformation is given by:

ui = zi = cos0n vn = cos(0° - 01)cos(01 - 02) •••cos(0n"1 - 0n)vo.

The other input u2 = i2 is a quite complicated function of x, u0,u> for the general case with

n trailers. However, it is easily verified that

^^0

implying that the input transformation u = b(x)uis nonsingular. The remaining coordinates

z = f(x) are defined using equation (3.26).

0

D
0
D

8

D
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The Jacobian of this coordinate transformation has the following form,

[-] =

1 0 o . • 0

0 1 0 •• • 0

0 0 * 0

0 0 * *

where the coordinates are written in the order:

x = (*n,2/n,0n,0n-\...,00)

z = (zi,zn+3,zn+2,... ,z2)

and * represents any nonzero function. The ordering of the z coordinates was chosen to

put the Jacobian matrix in a lower-triangular form, thereby highlighting its nonsingularity.

That the Jacobian is nonsingular implies that the map / : x —• z is a local diffeomorphism

and thus a valid coordinate transformation.

It should be noted that this coordinate transformation is only defined locally. Since its

definition requires a division by ui, if any of the factors in ux are zero, the transformation is

undefined for that particular configuration. For example, if 0n = tt/2, corresponding to the

last trailer being at right-angles with the coordinate frame, this coordinate transformation

is no longer valid. In addition, if the ith trailer is jack-knifed, that is to say, for some

1 < i < n, 0' = 0*"1 ±fl"/2, the coordinate transformation is alsosingular. The nonsingular

set of the coordinate transformation is large enough so that many practical path-planning

problems can be solved using this transformation, as will be shown in Section 3.5

Transformation 2. Coordinates of the origin as seen from the last trailer. The

other coordinate transformation discussed in this dissertation also has some singularities

but will allow the trailer to be at any orientation with respect to the coordinate frame.

zi = sncos0n + ynsin0n

*n+3 = xn sin0n - yn cos0n -0nzx.

The input transformation and the rest of the coordinates follow from Equation (3.26). It

can be verified that the input transformation has the form:

b2,i(x) b2t2(x)

(3.27)
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with &M and b2>2 nonzero functions of x. This implies that the input transformation is
nonsingular.

This transformation has a Jacobian given by the following matrix:

[-] =

COS0n sin0n * 0 0 "

sin0n -COS0" *
•

'.

0 0 -1 0 0

0 0 * * 0

0 0 * * *

where the coordinates are written in the order (3.27) and * represents anynonzero function.

Again, since the Jacobian is nonsingular, the map / : x -»• z is a local diffeomorphism.

Singularities in this transformation also occur when division by ux is undefined. This
happens when the expression

Ln + (yn cos0n - xn sin 0n) tan(0n - 0""1) = 0,

and also when any of the trailers is jack-knifed.

3.2.5 Other iV-trailer configurations

Thus far, only the example of the Hilare mobile robot pulling a chain of trailers has

been considered. In this section it is shown that this model can also be used not only for

the more familiar system ofa front-wheel drive car pulling trailers, but also for the luggage
trains commonly found in airports.

The model of the front-wheel drive car is shown in Figure 3.2.5. In comparison with

the Hilare model, another axle has been added to the front body of the chain, and a new

variable <f> represents the angle of the front wheels with respect to the car. The length of
the wheelbase of the lead car is defined to be L0.

The equivalence between the two models is most easily seen by looking at the form

constraints. Each constraint corresponds to one axle rolling without slipping. Hilare with

n trailers has n + 1 axles; the car with n trailers has n + 2 axles, and its Pfaffian system is

therefore equivalent to that of Hilare pulling n + 1 trailers.

Ofcourse, the states and inputs for the car system are slightly different. By convention,

the angle of the front axle is defined relative to the car instead of relative to the coordinate
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Figure 3.2: The front-wheel drive car with n trailers. This model is similar to that of Hilare
with trailers (see Figure 3.1) with an extra axle added to the first body in the chain.

frame. This angle <f> is merely 0° - 01 on the Hilare system. The velocity input is the

same, assumed to be the linear velocity of the first body (it can be defined at either the

front or rear axle depending on whether the car is front-wheel drive or rear-wheel drive),

but the rotational input is usually taken as u/ = j> the steering wheel velocity. Since in

the Hilare case, the velocity of the first body u = 0° is controlled, state feedback can be

used to reconcile these differences. As mentioned in the proof of Proposition 13, there are

many choices of vector fields orthogonal to a given Pfaffian system with each choice having

a different (possibly physical) meaning.

The luggage carts used at most airports are also equivalent to the Hilare model. Each

trailer on the luggage cart train has two sets of wheels; the front axle can spin freely about

its center but the back axle is constrained to be aligned with the trailer (see Figure 3.2.5).

Here the angles of the front wheels are defined with respect to each trailer, but looking

at the form constraints it is easily seen that the cab with n luggage trailers is equivalent

to a front-wheel drive car with 2n one-axle trailers. Again, a coordinate transformation is

needed, since in the model of the luggage carts the angle of the front wheels of the trailers

is defined relative to the trailer instead of relative to the coordinate frame.

3.3 Kingpin hitches

In all of the previous discussion, it was assumed that the hitch between adjacent axles

was at the axle, as is commonly the case for tractor semi-trailer combinations. Most pas

senger cars, however, have a trailer hitch which is some distance behind the rear axle. Also,

there is a mining vehicle in use in Quebec which has an offset or "kingpin" hitch [19, 21];

this vehicle is sketched in Figure 3.4.
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Figure 3.3: A car pulling n luggage carts. Each trailer has two axles; the front axle is free
to spin about its midpoint but the rear axle is constrained to be aligned with the body of
the trailer.

Figure 3.4: A two-axle system with kingpin hitch.

0

II
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3.3.1 The 2-axle mining vehicle

There are two velocity constraints on the system, representing that the two axles must

roll without slipping. These constraints can be written in coordinates as

w1' = sin0W - cos 9ldy%' i = 1,2 (3.28)

where (xx\y\0l) represents the Cartesian position and angle ofthe ith axle for i = 1,2. The
variables (x, y) will be used to represent the position of the kingpin hitch. The relationship

between the Cartesian positions of the two axles and the position of the hitch is given by

the connection relations,

a;1 = x + Li cos01 x2 = x —L2 cos02

y1 —y + Li sin01 y2 = y - L2 sin02

Neither ul nor u2 satisfies the condition that dux = 0 mod wl,u>2. However, there does

exist a linear combination of the two constraints,

u = Liu1 + L2u)2

which has the property that

doj = 0 modu;1,^2

Also, u is not integrable, that is du ^ 0 mod w, and thus the system is controllable by

Chow's theorem. The derived flag has the form

I<°> = {u\u>2}

IM = {a;}

/(2) = {0}

Note that the original basis of constraints which describes the system is not adapted to the

derived flag.

Without finding a one-form it for this problem which will satisfy the conditions of

Theorem 8, it can be noted that this system satisfies the conditions of EngePs problem

(Theorem 7), and thus can be converted into Goursat form. The proof of Engel's theorem

can be used to find the coordinates for conversion. The one-form u> which is in 1^ satisfies

the conditions of Pfaff's problem by dimension count. That is, there exists a function /i

which satisfies:

aw A u> A dfi =0
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In coordinates, w has the form

w = (Li sin 01 + L2 sin 02)dx - (Lx COS01 + L2 cos 02)dy - Lx2d0l + X22rf02

The calculations for the case when the lengths of the two hitches are equal will be done

first. By choosing units appropriately, assume that Li = L2 = 1. Then, w has the form

w = (sin 01 + sin 02)dx - (cos 01 + cos 02)dy - d0x + d02
Q\ \(P fll _ 02 /)1 i Q2 a\ _ D2 (3.29)

=2sin(^p-) cos(^-—-)<fe - 2cos(^4^-) cos(^-^-)dy - d0x +d02
After a change of coordinates given by:

01 + 02

w has the expression

a = /* =

2 ' ~"v 2

0J-02

w = 2cos/?(sin a rfx —cosa dy —sec/? d/3)

It can be checked that aw Aw Ada = 0, or equivalently fi = a will satisfy the Pfaff equation

(3.1).

The other coordinates can be found from solving the second of the two Pfaff equations,

or from the expression for w in the new coordinates. It is helpful to perform another

coordinate change given by

X = x cos a + y sin a

Y = x sin a —y cos a

so that the one-form w can be written as:

w = 2 cos0(dY - Xda - secfidfi)

Since w is only defined up to a scale factor, the function 2cos/? can be ignored (that is,

£ = u>/(2cos/?) is also a basis for /M). From the expression

u> = dY-sec/?<£/?-Xdc*

= dzA - ^d*1

the Goursat coordinates can be read off simply as

z1 = a

z

z3 = X

=Y - / sec/?d/? =y - log |sec/3 +tan/?|
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The final coordinate z2 is most easily found by differentiating and dividing according to

equation (3.26),

z2 = zzl'zx = X/a

and the entire coordinate transformation is now defined.

Consider next the case where Li ^ L2. The expression for w does not simplify as was

shown in (3.29); it is given by the complete expression

w = (Li sin 01 + L2 sin 02)dx - (Li cos01 + L2 cos02)dy - L2d0l + L2d02

Pfaff's problem still applies, and it can be checked that the function 7 defined by

la sin 01+ Z2 sin 02
tan7 = —

' Xicos01 + X2cos02

will satisfy the first Pfaff equation of (3.1), that is,

dw Aw A dj = 0

Note that if Li = L2, then 7 = a as defined above. Another function <p can be defined as:

<p = 01 - 02

It can be checked that tp is independent of 7 (in fact, <£y A dip = d0l Ad02). Following the

procedure detailed above, a coordinate transformation

X = x cos7 + y sin 7

Y = x sin 7 —y cos7

is performed, and in these coordinates w has the expression

w = IdY - tXd-y - (Lx2 - L22)d-y - —(2LX2L22 + LX*L2 cos <p + LXL2Z cos <p)d<p

with the function £ defined by

I2 = (Lx sin01 + L2 sin 02)2 + (Lx cos 01 + L2 cos 02)2

= L2 + i22 + 2L\L2cos(p

After scaling by £, the one-form w has the expression

1 , /.v r r 2Z1X2 +(X12 +Z22)cosy , \ /y , Xi2-X22NJ

= d-?4 — Z3dZ\
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Figure 3.5: A car pulling a trailer.

The expression within the large parentheses is integrable, and so the Goursat coordinates

can be read off as:

z- = 7

z4 = Y -
2LiL2sm<p . r r f C0S(P J, + LXL2 \ . d<p ( .

yjL12 + L22 +2L1L2cos<p J y/Li*+ L22 +2L1L2 cos (p V'6li>
r 2 r 2

Note the elliptic integral that has appeared. The final coordinate z2 is most easily found

using the definition z2 = z3/zx.

3.3.2 A car pulling one offset trailer

Now consider the car and trailer example of Figure 3.5. Although this system has

three axles, it bears many similarities to the two-axle mining system. The third constraint

(corresponding to the front axle) can be expressed in coordinates as

u>° = sin0°da:o-cos0o<ty

where the (x, y) position of the front axle is given by

.o _ _i= s1+£ocos01 y° = y1 + L0 sin 01
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It can be checked that the derived flag has the form:

I={w°,w\w2}

IM = {w\w2}

/(3) = {0}

for the same w = Lxwl +L2w2 as before. Thus, the Pfaff equations that need to be solved for

this system are the same as those for the two-axle mining system. The Goursat coordinates

are given as (for the case L\ = L2 = 1):

, 01 + 02

z* =xsin(——) - ycos( g )- log |sec(—-—) +tan(—-—)|

z« = x cos(—-—) + y sin(—-—)

and similarly to (3.30) for the general case. The other two coordinate are most easily found

by differentiating and dividing according to equation (3.26),

z3 = zAl'zl

z2 = z3lzl

after which the entire coordinate transformation is defined.

Remark 3 It has been pointed out by Rouchon et al. [42] that the system of Figure 3.5 is

differentially flat. They give as a set of flat outputs the two functions:3

Xisin01 + £2sin02ouU =x + Lx cos 01 - L2 cos 02 + /(01 - 02)

out2 = y + L1 sin 01 - L2 sin 02 + /(01 - 02)

y/Lf +L22 +2LXL2 cos(0i - 02)
X1COS01 + X2cos02

yJL? +L22 +2LXL2 cos(0* - 02)

with the function / defined as

/(01 - 02) =LXL2 / -, =22£ =da
Jr . It 2 , t 2 , or r „~„ _y/Lx2 +L22 +2LiL2cos<r

3It is perhaps worth noting here that in the angle 0 which they define as the angle of the trailer with
respect to the horizontal axis is equal to 92 -f t according to the notation used in this dissertation.
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Figure 3.6: A three-axle system with two kingpin hitches.

The calculations require a good deal of organization, but it can be checked analytically

that both outi and out2 satisfy the Pfaff equations 3.1, that is

dw Aw Ad(ouU) = 0

and thus will give another possible set of Goursat coordinates for the kingpin hitched system,

zx = outi

z5 = out2

zi = zi+1/z1 i = 4,3,2

3.3.3 Three axles with two offset hitches

If there are three axles connected by two kingpin hitches as shown in Figure 3.6, the

situation is substantially different. The constraints that the three axles roll without slipping

can be written in coordinates as

wx = sin 0'dxx —cos 0xdyx

for i = 1,2,3. The relationship between the (x,y) coordinates is

x1 = x2 —L2\ cos02 - L\ cos01 y1 = y2 —L2\ sin 02 —L\ sin 01

x3 = x2 + L23 cos02 + L3 cos03 y3 = y2 + L23 sin 02 + L3 sin 03
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The derived flag can be shown to have the form

I^ = {w\w2,w

lW = {a\a3}

J(2> = {0}

<*}

where the constraints:in /M have the expression:

1 1 i L2\ 2 3
a = w + -=—w a =

L\
w3 +

Lr

and not only is the basis of constraints not adapted to the derived flag, but the dimension

count for converting into Goursat normal form is no longer satisfied. In fact, this is an

example of Cartan's famous five-variable problem, the problem of three constraints in five

variables [9]. The path planning problem for such a system is unsolved.

3.4 Steering two-input chained form systems

The problem that is addressed in this section is: given a 2-input, n-state system in

chained form, with aninitial state z° anda goal state z*', find some control inputs U\(t),u2(t)

whichwill steer the system from z° to zf aftersometime T. Three methods willbe presented

for steering chained form systems, using sinusoidal, piecewise constant, and polynomial

inputs.

3.4.1 Sinusoidal inputs

The first steering method considered in this dissertation uses sinusoidal inputs. Steering

chained form systems with sinusoids was originally proposed in [37]. The method described

here is different from the original algorithm in that it steers all the states in one step, instead

of one state at a time.

Given an n-state chained form system, it is easily seen that the first two states, Z\ and

z2, can be steered from their initial to their final positions using constant inputs over any

time period T. Of course, the states z3,... , zn will drift as a consequence of this.

By direct integration, it may be verified that a combination of out of phase sinusoids

applied to the inputs,

u\(t) = asmwt u2(i) —ficoswt
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over one period T = 2n/w, will cause a motion in the z3 variable as follows:

*i(T) = *i(0)

**(T) = ^(0)

H(T) = 23(0) +g.
The states z4,... ,zn will drift in some fashion. Further, using inputs with u2 having k

times the frequency of U\, namely:

Wi (t) —a sinwt u2(t) = /? coskwt

applied over one period T = 2n/u, will result (as may be verified directly by integration)

in the following expressions for z(T):

zx(T) = *!(0)

zk+1(T) = *4+1(0)

zfc+a(r) = zk+2(0)+ a(*
kl(2w)k'

The intuition behind this steering scheme lies in the different levels of Lie brackets.

The Lie bracket between the two input vector fields gi ,g2 of a chained form system has

the expression [g\,g2] — [0 0 1 0"-0]T, and corresponds to the z3 direction. Motion

in this first level Lie bracket is generated by cycling between the two input vector fields

in a continuous manner described by the out of phase sinusoids. To get motion in the

second level Lie bracket, \glt[gi,g2]] = [0 0 0 1 0-•-0]T or equivalently the z4 direction,

the input u2 completes two cycles for one cycle on U\. More generally, motion in the

adjj g2 = [0 •••1•••0]T or the zk+2 direction is achieved by using A: times the frequency of
«i on u2.

The steering algorithm of [37] is step-by-step: It first steers Z\, z2 to their final position

using constant inputs, disregarding the other states. Then it steers z3 to its desired final

position using sinusoids, Z\,z2 will return to their final values. Now z4 can be steered, and

similarly on down the chain, until all states are at their final positions. This is a simple

algorithm that is easy to implement, but can be time-consuming when there are many states

to be steered.
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To alleviate the tedium of steering the states one at a time, an "all-at-once" sinusoids

method has been proposed in [55], combiningall the frequencies on u2 together in one step,

U\ = a0 + a\ sin wt
(3.31)

u2 = b0 + &i coswt + 62 cos2wt + \- bn-2 cos(n - 2)wt.

It is no longer as simple to choose appropriate values for the parameters (o0,au 60,..., bn-2)

because of the drift that could be ignored when each state was considered individually.

However, it is still possible to integrate the chained form equations sequentially, finding

zi(t)>z2(t)>z3(t),... ,zn(t) which result from the inputs (3.31) above. The state z(t) is a

function of the initial condition z° as well as the input parameters a0,ax,b0,..., &n_2. If the

state z(t) is evaluated at a time T corresponding to one period on the first input, T = 27r/w,

all the sinusoidal functions will be either 0 or 1. A set of n polynomial equations in the

(n + 1) input parameters (a0,aub0,... ,&„_2) are obtained from setting z(T) = z*. The

following proposition guarantees the existence of solutions to these equations at least locally

around z°.

Proposition 14 Consider an n-state chained form system with initial and final states

z°,z*. If \z° —zJ\ < 6 small, then there exist input parameters (aQ, oj, 60, ..., bn-2)
such that the inputs

Ui = a0 + ai sin wt

u2 = 60 + &i coswt + b2 cos2wt H h 6„_2 cos(n - 2)wt

will steer the system from z° to z* in time T = 2ir/w.

Proof. Consider the map

<j>zo : Rn -»• Rn

which takes values in the parameter space (a0,b0,... ,bn-2) and maps them to values in

the state space (z{,... ,zsn). Define ^o(a0,60, ••• yK-2) to be the value of z(T) when the
chained form system (3.24) is integrated starting at the initial condition z° and applying

the inputs (3.31) over the time period [0,T]. Choose ax £ 0. It can be shown that <f>zo

is a local diffeomorphism (about the origin) by demonstrating that the Jacobian of <f>2o is

nonsingular.
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Let {eJJLj be the standard basis for Rn and let e be small. Set ax ^ 0. Now consider

the input parameterized by ee\,

«i = e + a\ sin wt u2 —0.

Integrating the chained form equations and evaluating it at time T will give

(f>A^i) = z° + [eT 0 0(e)..-0(e)]T

where 0(e) represents terms that are of linear and higher order in e.

Now consider the input parameterized by ee2

Ui = a\ sin wt u2 = e.

Integrate and evaluate at T as before,

<M€e2) = z°+ [0 eT 0(e) ••-0(e))T.

In this case it may be verified that 0(e) terms are linear in e. In general, for an input

parameterized by eek,

Ui = ai sinwt u2 = ecos(k —2)wt,

the directional derivative of <f> in the ek direction is given by the Hmit of its flow divided by

€ as € goes to zero. The flow is of the form:

<f>2o(eek) = z° + [0 ••-0 p(e) 0(e) •. >0(e)]T,

where the term p(e) in the kth position is given by

Jb-2

( \= fl* €
PKe) (k-2)\(2w)k-*'

The n directional derivatives are linearly independent; implying that the Jacobian of <f>zo is

nonsingular (indeed triangular) at the origin, and thus <f>zo is a local diffeomorphism about

this point. •

Remark 4 The overparameterization of the input (n + 1 parameters: a0,a!,6o,... ,bn-2

and n states) has been dealt with in this case by initially choosing a value for ai and then

solving the n equations for the remaining n input parameters.

By choosing a fixed value for oi, the input u\ must go through one period. Since «i

roughly corresponds to the driving input in a mobile robot system, paths planned using the
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Figure 3.7: The inputs and state trajectories for a six-state, chained form system, steering
from (—10,-7,-2,2,4,8) to the origin. The input wx is sinusoidal of one period; u2 is a
sum of sinusoids, of which the highest frequency is Aw.

sinusoidal method generally have one back-up or speed reversal, corresponding to the zero-

crossing of «x. Parallel-parking type maneuvers seem particularly well-suited to sinusoidal

trajectories.

A sample of the input functions and state trajectories for a sinusoidal steering problem

is shown in Figure 3.7. There are six states, in chained form, steering from an initial position

of (zi,z2, z3, z4, z5, z6) = (-10, -7, -2,2,4,8) to the origin. The parameters were chosen to

be T = 10 seconds and a: = &r.

3.4.2 Piecewise constant inputs

The second method described in this dissertation for steering chained form systems uses

piecewise constant inputs. This method was originally proposed by Monaco and Normand-

Cyrot [32], and was inspired by multirate digital control. It is most easily understood in

the context of nonholonomic motion planning simply as piecewise constant inputs.

Consider holding the inputs u\ and u2 constant over some small time period [0,6),

«i(r) = u1A

u2(r) = 1*2,1.
re[0,~6)
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The chained form state equations can then be integrated, and evaluated at time 6 to yield

z1(6) = z1(0) + u1J

z2(6) = z2(0) + u2A6

Pzs(6) = 23(0) +z2(0)ultl6 +wi,iw2,iy (3#32)

zn(6) = zn(0) + zn-l(0)ultl6 + •••+ U^U^2

zl zi

Now consider another pair of constant inputs on the time interval [6,26),

ux(t) = «1)2 _ _
t e [6,26)

u2(t) = w2>2.

Integration of the stateequations gives z(26) as a function of w1|2, u2%2, z(6). Using z(6) from

equation (3.32), an expression for z(26) in terms of «lfl, u1>2, w2,i, «2,2> ^(0) is obtained.

This procedure of piecewise integration and substitution can be repeated as many times as

necessary.

For path planning, ux is kept at a constant value over the entire trajectory. The

equations (3.32) must then be integrated n - 1 times so as to have exactly n parameters

for which to solve: uuu2,i, •••, u2t„-i. The total time needed for steering is 6 = (n - 1)£.

Although 6 can be chosen arbitrarily, a smaller time 6 will result in larger inputs u to

achieve the same path.

The n equations which result from setting z(0) = z° and z(6) = zJ are polynomial (of

order n - 2) in wx but are linear in u2>1,..., w2,„_i. Since «i is easily determined from

tt! =
6

the remaining n - 1 linear equations can be solved for u2 quite easily. This is one of the

reasons that Ui is kept constant overthe entiretrajectory; if U\ varied, high-order polynomial

equations in the u1>k parameters would need to be solved to find the path.

It should be noted that if z{ = z\, i.e. the initial and final states agree in the first
coordinate, this method as stated so far will fail to yield a solution. From looking at the

chained form equations, it is obvious that if ux = 0, only the second state z2 can move; all

other states must remain stationary. In practice, this case is dealt with by planning two
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Figure 3.8: Sample inputs and state trajectories for steering a six-state chained form system
with piecewise constant inputs. The initial position is (-10,-7,-2,2,4,8) and the goal
point is the origin.

paths, the first of which takes the initial condition to an intermediate state, the second of

which joins the intermediate state with the goal position. The concatenation of these two

paths is a valid trajectory between the start and goal. The intermediate point zm is chosen

to be halfway between the initial and final points in all coordinates except the first, which

is chosen to be offset from the starting position by a constant amount,

z? = (zf - z°k)/2, k = 2,...,n

z? = *° + const.

The magnitude of the constant offset can be adjusted to fit the situation.

The procedure detailed in the previous paragraph is used when a parallel-parking tra

jectory is desired for the mobile robot with trailers, since the z1 direction in chained form

corresponds to "sideways" in the original coordinates. It is practical to choose the constant

offset at approximately twice the length of the entire robot and trailer system. A smaller

offset will result in tighter turns and more lateral motion. If there are obstacles in the field,

this constant offset gives a parameter that can be adjusted in an effort to avoid collisions.

Another reason for choosing Ui to be constant over the entire trajectory is that in the

mobile robot and trailer system, this input is roughly equivalent to the driving velocity.

Because of the coordinate transformation that maps ux to the actual velocity v0, the actual

velocity of the robot will not be constant, but in most cases it will not cross zero and change

sign. This means that the robot will not have to execute backing-up maneuvers to achieve

its final goal position.

The main drawback of the piecewise constant inputs is the discontinuity of u2. The
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models usedin this dissertation arepurely kinematic usingasinputs the drivingand steering

velocities. In a real robot system, the inputs arenot velocities but accelerations, or torques.

When a path satisfying the velocity constraints is found, the input velocities need to be

differentiated to And the corresponding accelerations. Of their very nature, the piecewise

constant trajectories are not differentiable at the switching points.

From looking at the chained form equations, it can be noted that if the input U\ is

constant and the input u2 is discontinuous, then the state z2 will be C°, the state z3 will

be C1, and each successive state in the chain will have one more degree of continuity. A

modified version of this algorithm could be considered which plans a path using piecewise

constant inputs for a chained form system of a higher dimension than what is required; the

number of extra states would be determined by the degree of continuity on the input that is

desired. Once a suitable path was found, the states which are not continuous enough could

be discarded, and the new input taken as the derivative of the highest state which remains

in the chain.

3.4.3 Polynomial inputs

Yet another possibility for steering systems in chained form is to use inputs which are

polynomial functions of time:

«! = 1

«2 = Co + erf + •••+ cn-2tn~2.

This approach has the advantage of a constant input on u\ with the added advantage of

the differentiability of u2.

The time needed to steer the system from z° to zs is determined by the change desired

in the first coordinate,

T = z{-z\.

Once T has been found, the state equations (3.24) can be integrated using the initial
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condition z(0) = z°,

z2(t)

= *i(0)-M

2 n—1

*> = *(°HE(7fbr}!+E(^(o)

Evaluating the foregoing at time T and setting z(T) = z' yields a total of n —1 equations

affine in the n—1 parameters Co,..., cn_2,

M(T)

Co '4'
Cl

+ /(*(<)), T) =
4

n-2 . .^.

The matrix entries Miti(T) have the form:

It may be shown that this matrix is nonsingular for T ^ 0.

Note that if z{ —zf < 0, the solution specifies a negative time period. This situation

is easily remedied by choosing u\ = —1.

As in the case of steering with piecewise constant inputs, this method will yield no

solution when z{ —zf = 0. The same procedure outlined in Section 3.4.2 can be applied to

deal with this scenario.

3.4.4 Other choices

Because of the simple form of the chained form system, many different classes of input

functions other than the three described above could be used to steer systems in this form.

The chief requirement is that there should be at least as many parameters in the input

functions as there are states. For multi-trailer systems, a desirable characteristic of the

input functions is that ux have few or no zero-crossings since these will correspond to fewer
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Figure 3.9: Sample trajectories and input traces for steering with polynomial inputs. The
initial position is (—10, —7, —2,2,4,8) and the goal point is the origin.

backups. In fact, the number of backups needed to complete a maneuver may be taken as

a measure of complexity of an input class.

3.5 Sample paths for a two-trailer system

An extensive toolbox now exists for steering an JV*-trailer system. With two different

coordinate transformations which bring the system into chained form, and at least three

different methods for steering the system once it is in chained form, an effort can be made to

choose the best combination of coordinate transformation and input type for each start and

goal point. There is as yet no formal way to define when one path is "better" than another,

but as was mentioned earlier, desirable paths can be generally described as those that have

few backups and do not stray too far from the vicinity of the start and goal points.

One of the things that must be considered is coordinate singularities. Although all

three methods proposed here will find a path between any start and goal points in the

chained form coordinates, there is no guarantee that this path, when transformed back into

the actual coordinates, will avoid the transformation singularities. This must be checked

for each desired path. If a singularity does result, another steering method might yield a

valid path, or perhaps an intermediate point will need to be chosen, and the path planned

in two or more steps.

In Figures 3.10 and 3.11, two different paths are shown for a front-wheel drive car with

two trailers. The wheelbase of the car has been chosen to be Li = 0.5 units, and each

trailer was given a length of L2 = L3 = 2 units. Each path was generated using techniques
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described in this dissertation: first, transforming the start and goal points into the chained

form coordinates; second, steering the chained form system using one of the methods from

Section 3.4; and finally, transforming the trajectory back into the original coordinates.

The trajectory shown in Figure 3.10 represents the truck backing into a loading dock.

The initial condition is (a?8,!*8,*3,*2,*1,*0) = (10,10,0,0,0,0) and the final position is

(0,0, j, J, *, §)• Coordinate transformation 2 is used, since the first coordinate transforma

tion is singular at the goal position. In the figure, the trajectory of the front of the car

(a;0, y°) is presented instead of the back of the second trailer (x3, y3) to amplify the differ

ence between the two steering methods; the trajectories of the second trailer are virtually

identical.

In Figure 3.11, the path taken by the front car is once again shown. Here two different

coordinate transformations are used with the same steering method. The trajectories in

the chained form coordinates are identical; however, a difference can be seen in the physical

coordinates. Once again, the trajectory traced by the rear of the second trailer is very

similar in both cases. Some scenes from a movie animation of this trajectory are shown in

Figure 3.12 and also in the right-hand margins of this chapter; in the movie the coordinates

derived from transformation 1 were used.

With the sinusoidal steering method, there is one parameter that can be adjusted

independently of the start and goal positions; this is the magnitude of the sinusoid on the

first input, or ax in the terminology of Section 3.4.1. When constructing this movie, several

different values of ax were considered; a larger value of ax will correspond to the car driving

out farther before it starts backing into the space. For this particular conflguration, it was

possible to choose a value for this parameter so that the car and trailer system did not hit

any of the obstacles along its path.
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Figure 3.10: Backing a car with two trailers into a loading dock. The trajectories shown
here were found by two different steering methods for the same initial and final conditions.
The solid line corresponds to the piecewise constant inputs and the dashed line to the
polynomial inputs. The x, y trace of the front of the car is shown, since the trajectory
of the rear trailer is virtually identical in the two cases. Both trajectories use the second
coordinate transformation. The input v0 is the dotted fine in both graphs. Clips from a
movie simulation of this trajectory can be seen in Figure 3.13.
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Figure 3.11: Parallel-parking a car with two trailers using sinusoids, the trace of the front
car is shown for two different choices of coordinates: Transformations 1 (solid line) and 2
(dashed line). The steering input differs on with the two transformations, although for this
path, the driving input v0 (dotted fine) is similar in both cases.
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Figure 3.12: Scenes from a movie animation, showing the front-wheel drive car with two
trailers (a six-state system) parallel-parking in the presence of obstacles. Sinusoidal inputs
were used for steering, and the magnitude of the periodic part of the driving input (a\ in
the terminology of Section 3.4) was adjusted so that the obstacles were avoided. The first
coordinate transformation was used.
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Figure 3.13: These are scenes from a movie animation, showing the front-wheel drive car
with two trailers backing into a loading dock. Piecewise constant inputs were used to steer
the chained form system.



Chapter 4

Extended Goursat Normal Forms

and the Multi-steering Trailer

System
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The previous chapter analyzed the system of a car-like mobile robot towing n trailers.

A similar system consisting of a chain of wheeled trailers, several of which are steerable,

will be examined in this chapter. This system was originally proposed in [58], where it was

shown how the kinematic equations could be converted into a multi-input chained form

using dynamic feedback (interpreted as adding virtual trailers to the system). In [57], the

same system was analyzed using the framework of exterior differential systems, and it was

shown in exactly which cases such a dynamic feedback was necessary. The steering methods

described in the last section, which are generalizations of those discussed in the previous

chapter, were first presented in [58].

The appropriatenormal form for the Pfaffian system associated with the multi-steering

trailer system system is the extended Goursat normal form, which is a generalization of the

Goursat normal form for systems of codimension greater than two. Two theorems will

be stated which give necessary and sufficient conditions for converting Pfaffian systems

into extended Goursat normal form, and in addition, sufficient conditions will be given for

converting systems into extended Goursat normal form after a prolongation of the Pfaffian

system. If the prolongedsystem can be converted into extended Goursat normal form, paths

can be found for this higher-dimensional system using the methods described in Section 4.5,
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and the projection of these paths onto the original system will give integral curves of the

original Pfaffian system.

It will be shown that, allowing for prolongations, the multi-steering trailer system can

always be transformed into extended Goursat normal form, and thus the path-planning

problem for this system can be solved. There are many arrangements possible for the order

of the steerable and passive axles in a multi-steering trailer system. Those arrangements

which can be converted into extended Goursat normal form without using prolongations

will be identified

More specifically, the organization of this chapter is as follows. First, the configura

tion space for the system is introduced, and the notation is explained. The nonholonomic

constraints (that each axle of wheels must roll without slipping) are then defined. Much of

the treatment will parallel that of the n-trailer system of Chapter 3. After the extended

Goursat normal form theorems and the definition of prolongations, a general theorem is

given, stating that the system as defined can be converted into Goursat normal form after

prolongation. Conditions are also given for an exact transformation (without prolongation)

to exist. Finally, some examples of systems which do not satisfy these conditions are inves

tigated, and it is shown explicitly how prolongations can be used to convert these systems

into extended Goursat form. A parallel-parking maneuver for one of these example systems

is illustrated through the movie animation in the upper right-hand corner of the pages in

this chapter.

4.1 A multi-steering trailer system

First, consider a system of n (passive) trailers and m (steerable) cars linked together

by rigid bars, as sketched in Figure 4.1. It is assumed that each body (trailer or car) has

only one axle, since, as was described in Section 3.2.5, a two-axle car is equivalent (under

coordinate transformation and state feedback) to a one-axle car towing one trailer.

4.1.1 Configuration space

The active or steering axles are numbered from front to back, starting with 1 and going

up to m, and the passive axles are numbered similarly from 1 to n. There are a total of

n + m axles in the system. The angle of each passive axle with respect to the horizontal will
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second steering train

mth steering train

Figure 4.1: A multi-trailer system with n (passive) trailers and m (active) steering wheels.

be represented by 0X where i € {1,... ,n} is the axle number. Each steerable axle together

with the passive axles directly behind it will be called a steering train.

The steerable axles may be interspersed among the passive axles in any fashion. The

indices of the passive axles which are directly in front of the steerable axles will be denoted

by ni,... ,nm-i» The first axle is always assumed to be steerable, and thus n0 = 0. The

angle of the first axlewith respect to the horizontal is denoted by ft. If there are n\ passive

trailers in the first steering train, their angles are denoted 01,... ,0ni. The axle directly

behind the first steering train is steerable, and its angle with respect to the horizontal will

be <f>2. The (passive) axles behind the second steering wheel are thus 0ni+1,... ,0na; the

angle of the third steering wheel will be <f>3, and so forth. For convenience of notation, let

nm = n, although in general the last axle will not be steerable. If the last axle is steerable,

then nm_i = nm.

Remark 5 (Control Inputs) It is perhaps natural to think of the linear velocity of the

lead car as well as the steering velocities ft,..., <f>m as the kinematic control inputs to
this type of system. However, for the analysis that is performed in this dissertation on

finding feasible paths for such a system, the exact controller structure is unimportant. It is

possible to imagine such a system which has a Hilare-type robot at the front of the chain,

controlling the driving and steering velocities of the first axle, and motors on each of the
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"steerable" axles to command the linear velocities of those axles. If both the linear and

angular velocities of these axles were to be controlled, slipping would necessarily occur,

unless some extra variable (the link length?) were allowed to vary.

This system as defined is a very general system, and includes the following as special

cases:

1. the standard n trailer system, examined in Chapter 3 and [25, 37, 41, 47, 55] corre

sponds to m = 1.

2. the fire truck of [7, 53] corresponds to m = 2, n2 —nx = 1.

Let #>' denote the absolute angle (with respect to the horizontal) of the bar connecting

the jih steered axle to the last axle of the (j - l)at steering train (which may be either
steered or passive). This can be considered to be the angle of the bar connecting the jth

steering train to the (j —1)'* steering train. The Cartesian position (x, y) of any one of the

axles, along with all of the angles described above, will determine the state of the system.

The choice of which (x, y) will be deferred for the time being, but it is noted that only one

pair is needed.

The configuration of a trailer system consisting of n trailers and m steerable cars is

thus completely given by

( = [0\...,0\ft,...,<T^.^^mix,y]Te(S1)n+2m-1xlSL2.

4.1.2 Pfaffian system

The nonholonomic constraints on the velocities, representing the fact that each axle of

wheels rolls without slipping, form a codistribution of one-forms in the cotangent bundle to

the configuration manifold and thus generate a Pfaffian system.

If the variables (xx,yx) are used to represent the Cartesian position of the ith passive

axle, then the constraint that the ith passive axle roll without slipping can be written in

these coordinates as:

wx' = sin 0xdxx' - cos 0xdyx' (4.1)

Similarly, let (x{,y{) represent the Cartesian position of the jth steerable axle (where the

subscript s stands for steerable). The constraint that the jth steerable axle roll without
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slipping may be written as:

a* = sin ftdx{ —cos ftdy{ (4.2)

Of course, as noted before, only one pair of (a:, y), along with all of the angles, is needed to

specify the state of the system.

The Pfaffian system generated by this mobile robot system is the collection of all the

nonholonomic (rolling without slipping) constraints:

I={w\...,wn,a\...,am}

Thus i" has dimension n + m in a space of dimension n + 2m + 1; the codimension of J is

m + 1, or one more than the number of steering angles.

Notice that from equations (4.1) and (4.2) it can be seen that:

dyx = tan 0'da:* mod wx

dy{ = t2Lnftdx{ mod c^

(4.3)

(4.4)

All of the (x*, y')'s and (xxt, yj)'s are related by the hitch relationships. The exterior deriva

tives of these relationships can be taken, yielding

x*-1 = xx + Licos0X dx1-1 = dxx' - Z, sin0id0i

2,*"-1 = y* + Li sin0X dyx~l = dyx' + Li cos0xd0x'

and substituting these quantities into the expression for w*"1 from (4.1), the constraint for

the (i - l)st passive axle can be rewritten as:

w1-1 = sin0x-ldxx-1 - cos0x-ldyx-1

= sin 0x-ldx1' - cos0x-ldyx - L{ cos( '̂ - 0x~x)d0x'

= (sinfl*'-1 - tan^cos^-1)^ - X,cos(^ - 0x-l)d0x' mod wx'

= sec0X' sin( '̂-1 - 0x)dxx' - L{ cos( '̂ - 01'1 )d0x' mod wx'

where the congruence (4.3) has been used. Once again, a rearrangement of terms and a

division by cosine in (4.5) will give the congruence

d0x' =J- sectf1' tan(^_1 - 0x)dxx' mod «', w'"1
Li

d0x = fgidx1 i . .»-lmod wx,w

(4.5)

(4.6)
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The exact form of the function fo is unimportant; what will be needed is the relationship

between d0l and dxx.

The first lemma can now be proved,

Lemma 15 The exterior derivatives of any of the x variables are congruent modulo the

Pfaffian system, that is: dxx = fx%,jdxJ = fxi,kdxk mod J

Proof. For two passive axles, the relationship between the x coordinates is given by the

hitching relationship,

x'-1 = xx +Li cos0x'

dx1-1 = dxx-Li sin0xd0x'

= (1 - Lisin 0X f0i)dxx mod wx" ,w

= fxi-idxx mod w1""1,^1

where the congruence (4.6) was used.

The computations are similar when there is a steerable axle involved instead of two

passive axles. If the ith passive axle is located in front of the jth steerable axle, then the

hitch relationship and its exterior derivative are given by:

xx = x{ + Is cosft
. . (4-8)

dxx = dx3, —lj sin ftdft

In this case, the constraint corresponding to the ith passive axle has the form

wx' = sin0xdxx' - cos 0xdyx'

= sin 0xdx{ - cos 0xdyi - lj cos(0f - ft)dft

= (sin 0X' - cos 0X' tanft)dxjt - lj cos(0' - ft)dft mod a?

= sec ft sin(^ - ft)dx{ - lj cos(0** - ft)dft mod a3'

Again, the standard trick of dividing through by a cosine and rearranging terms will result

in the congruence

dft = -sec<^" sin(01' - ft)szz(0x' - ft)dx{ mod a*,wx'
lJ (4.10)

dft = f<i>jdx{ mod 0^,0;*

Now, combining (4.10) with (4.8), it can be seen that

dxx = fxidx{ mod 0^,0;'
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The case where there are two adjacent steerable axles is done exactly the same way, with

different notation, and will not be written out in detail here. •

A complement to the Pfaffian system / = {w1,... ,wn,al,... ,am} is given by

{dft,... ,d(f>m,dx}

for any x € {x1,... ,xn,x\,... ,x™}, since by Lemma 15 their exterior derivatives are

congruent modulo the system, and the complement is only defined modulo the system. Since

the derivatives dft do not appear in any of the constraints, they are in the complement to

/.

From the exterior derivative of the constraint corresponding to the ith passive axle, it

can be seen that

wx = sm0xdxx —cos 0xdyx

dwx' = d0x' A(cos0xdxx' + sin 0xdyx)

= d0x' A(cos01' + sin 0X' tan0i)dxi mod wx' (4.11)

= sec 0xd0x A dxx mod wx

= 0 mod a/,a/"1

where the congruences (4.3) and (4.6) have been used. That is, the exterior derivative

of the constraint corresponding to the iih passive axle is equal to zero modulo itself and

the constraint which corresponds to the axle most directly in front. Without redoing the

calculations, which are identical except for the notation, it can be seen that if the ith passive

axle is behind a steerable axle with angle ft instead of a passive axle with angle 0*-1, that

is, t = 7ijk_i + 1, then the following congruence will result:

dwx = 0 module** (4.12)

Proceeding similarly, the exterior derivatives of the constraints associated with the

steerable axles can be found,

a3 = sinftdx{ - cos ft dy3,

da3 = dft A(cosftdx38 + sin ftdy})

= dft A(cos ft + sin ft tan ft)dx{ mod a3' (4.13)

= sec ft dft Adx{ mod a3

0 0 mod J
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and it can be seen that their exterior derivatives are nonzero modulo the Pfaffian system I.

Recalling the definition of the derived flag from Chapter 2, it is now easy to see that

all of the constraints corresponding to the passive axles are in the first derived system, and

none of those corresponding to the steerable axles are. That is, the first derived system is

given by:

I^ = {wl,...,wn}

In fact, the entire derived flag can be found just from the three congruences, (4.11), (4.12),

and (4.13),

Lemma 16 (Derived Flag) The derivedflag associated with them-steering, n-trailersys

tem has the form:

J(fc> = {wx': nj-i + k< i < nj,j = 1,... ,m}

for k = 1,..., n. In addition,

/(n+i) = {0}#

Proof. The proof is just a one-time applicationof (4.13), to showthat none of the constraints

a3 corresponding to the steering axles are in I^\ and then a repeated application of (4.11)

to show at which level each constraint falls out of the derived flag. •

If ni is the greatest of the indices ra,-, the derived flag has the structure:

I ={ a1,wl,w2,... ,wn\ a2,u;n,+1,u;ni+2,... , am,wn—1+1,... ,wn}

J(1> ={ w\w2,...,wn*, wn*+1,wni+2,... , wnm-1+1,...,u>n}

J<2> ={ w2,...,wn\ wn>+2,..., ...,wn}

Jn> = { wn>]
/n1+l ={0}

In the general case, the Pfaffian system J consists of the constraints corresponding to all

the axles, the first derived system lacks the steerable axles, the second derived system lacks

those passive axles that are directly behind steerable axles, and at every subsequent level,

the constraint which is most toward the front of each steering train will drop off. Since the

longest possible chain of contiguous passive axles is equal to n, the total number of passive

axles that are in the chain, the (n + 1)'* derived system must be equal to {0}.
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4.2 Extended Goursat normal form

Consider the following definition of the extended Goursat normal form,

Definition 4 (Extended Goursat Normal Form) A Pfaffian system I on Rn+m+1 of

codimension m + 1 is in extended Goursat normal form if it is generated by n constraints

of the form:

I = {dzj - 4+idz° : i = 1, •..,ss;j = 1,... ,m}, (4.14)

This is a direct extension of the Goursat normal form, and all integral curves of (4.14) are

determined by the m + 1 functions z°(t),z\(t),...,z™(t) and their derivatives with respect

to the parameter t. The notation has been changed slightly; the canonical constraints

are now dzi ~ ^i+i^0 whereas before they were dzt —z^^dzi. For the Goursat form, the

constraint in the last nontrivial derived system was dzn—zn~1dz1; in the extended Goursat

normal form, it will be dz\ - z^dz0 (if indeed there is one tower which is longest).
The distribution annihilated by the constraints which define the extended Goursat

normal form is spanned by the m + 1 vector fields:

On = — + Z1— + -.. + Z1 J-4....Jr2mJ_ + ...,zm #
dz° ' 2dz\ ' ' Sl+1dzl r T 2 dzf T T Sm+1dzT

which is the same as the multi-input, single-generator chained form defined in [7, 37].

Remark 6 (Differential Flatness) It is clear that any system which admits a transfor

mation into extended Goursat normal form is differentially flat. The flat outputs (defined

in Remark 2) can be chosen as z°, z\,..., zj".

There are conditions due to Murray [39] for converting a Pfaffian system to extended

Goursat normal form. This theorem is restated and proved here with the additional condi

tion (correction) that w needs to be integrable:

Theorem 17 (Extended Goursat Normal Form) Let I be a Pfaffian system of codi

mension m + 1. If (and only if) there exists a set of generators {aj : i = 1,... ,Sj',j =
1,..., rn) for I and an integrable one-form n such that for all j,

dcA = -ajL, A-re mod 1^'*-*) i = 1,... ,st- - 1
+ J (4.15)

da3,. £ 0 mod /
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then there exists a set of coordinates z such that I is in extended Goursat normal form,

I = {d4 - 4+1^° : i = 1,• •• ,Sj; j = 1,• •• ,rn}.

Proof. If the Pfaffian system is already in extended Goursat normal form, the congruences

are satisfied with n = dz° (which is integrable) and the basis of constraints a\ —dz\ —

zi+1dz°.
Now assume that a basis of constraints for / has been found which satisfies the con

gruences (4.15). It is easily checked that this basis is adapted to the derived flag, that

is:

J(fc) = {o^ : i = l,...,Sji-k;j = l,...,m}

The coordinates z which comprise the Goursat normal form can now be constructed.

Since n is integrable, any first integral of t can be used for the coordinate z°. If

necessary, the constraints a\ can be scaled so that the congruences (4.15) are satisfied with

dz°:

da* = -o4+1 Adz° mod /<•'-'> i = 1,...,Sj - 1

and the constraints can be renumbered so that Si > s2 > • • • > sm.

Now consider the last nontrivial derived system, fl'l~l\ The one-forms {a\,... ,0^}

form a basis for this codistribution, where $x = s2 = ••• = sri. From the fact that

daj =-c4 Adz° mod^'1"1),

it follows that the one-forms a\,... ,a[l satisfy the Frobenius condition:

da{ Aa\ A•••Aaj1 Adz° = 0

and thus, by the Frobenius theorem, coordinates z},... ,z[l can be found such that

•«! • ' dzi '
• = A •

.«? . . dzil .

+ Bdz°

The matrix A must be nonsingular, since the orj's are a basis for /(ai_1) and they are

independent of dz°. Therefore, a new basis a{ can be defined as:

...
pi

:=A~l

'«:'
_

"dzi
'

.
«?.
.«;•..
dz?.

+ (A~1B)dz°
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and the coordinates z\ := —(A~*B)j are defined so that the one-forms a{ have the form

a{ = dz\ —z^dz0

for j = 1,... , i*i. In these coordinates, the exterior derivative of d{ is equal to

da{ = -dz\\ Adz°

If there were some coordinate z\ which could be expressed as a function of the other zj's

and z\ 's, then there would be some hnear combination of the dj 's whose exterior derivative

would be zero modulo /(4,_1), which is a contradiction. Thus, this is a valid choice of

coordinates.

By the proofof the standard Goursat theorem, all of the coordinates in the jth tower

can be found from z\ and z°. By the above procedure, all the coordinates in the first ri

towers can be found.

To find the coordinates for the other towers, the lowest derived systems in which they

appear must be considered . The coordinates for the longest towers were found first, next

those for the next-longest tower(s) will be found.

Consider the smallest integer k such that dim J(tf1"*) > fcn; more towers will appear

at this level. A basis for J^1-*) is

{«.
x.i,ori,...,fiJ»,...,fi?,a;'+1,...fa;»+r»}

where dj = dz3- - zj^dz0 for j = 1,... trlt as found in the first step, and orj for j =

ri +1,... , r2 are the one-forms which satisfy the congruences (4.15) and are adapted to the

derived flag. The lengths of these towers are sri+1 = •••$rj+ra = sx —k + 1. For notational

convenience, define z3,^ := (z\,..., z{) for j =1,..., rx.
By the Goursat congruences, da{ = -o^ A dz° mod /('»-*) for j = rx + 1,..., rx + r2,

thus the Frobenius condition

doj Aa[l+1 A•••Aa\l+r3 Adz} A•••Adarj A•••Adz[l A•••Adzrkl Adz° = 0

is satisfied for j = rx + 1,... ,rx + r2. Using the Frobenius theorem, new coordinates

zl1+1,..., z[1+r3 can be found such that

"a;i+1"
= A

'dz?+l'
+ Bdz° + C

dz\k)

«l1+ra. dz[l+r\ fir1"1.az(k)
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Since the congruences are only defined up to mod l('l~k\ the last group of terms (those

multipHed by the matrix C) can be eHminated by adding in the appropriate multiples of

dj = dz\ —zi+idz0 for j = 1,... ,rx and i = 1,... ,k. This will change the B matrix,
leaving the equation

n^l+1
a dz?+l

= A + Bdz°

d?+r> Ti+r3dz[

Again, note that A must be nonsingular because the a{'s are Hnearly independent mod
/(»i-*) an(j jjgQ independent of dz°. Define

"d?+1"

:=A'1

"d;>+1"
_

'dzl1+1'

S*i+r\ Ai+r\ dzl1+r\

+ (A~1B)dz°

and then define the coordinates z^ := -(A~lB)j for j = rx + 1,... ,rx + r2 so that a\ =
dz{ - z{dz0. Again, by the standard Goursat theorem, aU of the coordinates in the towers

f*i + 1,..., ri + r2 are now defined.

The coordinates for the rest of the towers are defined in a manner exactly analogous

to that of the second-longest tower. •

If the one-form tt which satisfies the congruences (4.15) is not integrable, then the

Frobenius theorem cannot be used to find the coordinates. In the special case where sx > s2,

that is, there is one tower which is strictly longer than the others, it can be shown that

if there exists any it which satisfies the congruences, then there also exists an integrable

t' which also satisfies the congruences (with a reseating of the basis forms), see [6, 39].

However, if sx = s2, or there are at least two towers which are longest, this is no longer

true. Thus, the assumption that tt is integrable is necessary for the general case.
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If J can be converted to extended Goursat normal form, then the derived flag of J has

the structure:

/= {a\, <-i. «i,. •••> «r> •••. <*?m.i, <j
a

»1-15
a

1 » . <L-i>

r(«m-l) _ Sa\ Ql ... am\

J(»-2>= {a}, aj}

/<"> = {0}

where the forms in each level have been arranged to show the different "towers" which result.

The superscripts j indicate the tower to which each form belongs, and the subscripts i index

the position ofthe form within the jth tower. There are Sj forms in the jth tower.
Another version of the extended Goursat normal form theorem is given here, which is

easier to check, since it does not require finding a basis which satisfies the congruences but

only one which is adapted to the derived flag. One special case of this theorem is proven in

[49].

Theorem 18 (Extended Goursat Normal Form) A Pfaffian system I of codimension

to+1 onRn+m+1 can be converted to extended Goursat normal form if andonlyi/jW = {0}

for some N andthere exists a one-form 7r such that {I^k\ir} is integrable for k = 0,..., N —

1.

Proof. The only if part is easily shown by taking ir = dz° and noting that

/<*> = {d4 - zi+ldz° :i = 1,... ,Sj - k;j = 1,... ,m}

{/<*>,tt} =e {dz\,dz° : i = k+ 1,...,Sj;j = 1,...,m}

which is integrable for every k.

Now assume that such a ir exists. After the derived flag of the system, J =: 1^ D

/C1) 3 ... 3 /(") = {0}, has been found, a basis which is adapted to the derived flag and

which satisfies the Goursat congruences (4.15) can be iteratively constructed.

The lengths of each tower are determined from the dimensions of the derived flag.

Indeed, the longest tower of forms has length S\. If the dimension of /(*1_1) is rlt then
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there are rx towers which each have length si; and we have «i = s2 = ••• = sri. Now,

if the dimension of j(a,_2) is 2ri + r2, then there are r2 towers with length Si - 1, and

sri+i = ••• = sri+r2 = Si —1. Each Sj is found similarly.

A w which satisfies the conditions must be in the complement of J, for if ir were in J,

then {J, tt} integrable means that / is integrable, and this contradicts the assumption that

/<") = {0} for some N.

Consider the last nontrivial derived system, J^1-1). Let {a},... ,a[1} be a basis for

/(»i-i). The definition of the derived flag, specifically J(ai> = {0}, impHes that

da\ -£ 0 mod fl9*'1) j=l,...,r1 (4.16)

Also, the assumption that {/<*>, 7r} is integrable gives the congruence

da{ = 0 mod-f/^-^,*-} j = l,...,r1 (4.17)

combining equations (4.16) and (4.17), the congruence

da{ = 7rAj33 mod J^1"1* j = l,...,r1 (4.18)

must be satisfied for some fr' =£ 0 mod J(*1_1).

Now, from the definition of the derived flag,

da{=0 mod/(ai-2) j = l,...,n

which combined with (4.18) impHes that (33 is in J"(*>-2).

Claim. P1,... ,0ri are Hnearly independent mod J**1"1).

Proof of Claim. The proof is by contradiction. Suppose there exists some combination of

the fi 's, say

^ = 61^1 + ... + 6ri/?r»=0 mod/*4'"1)

with not all of the 6/s equal to zero. Considera —b\o\ H ybrxarf. This one-form a ^ 0

because the a\ are a basis for I^*1"1). The exterior derivative of a can be found by the

product rule,
ri ri

da =^2bjda{ +]^ dbj Aa{
i=i i=i

=^6i(7rA/?i) mod/*'1"1)

sir A(£6^) mod/^1-^

= 0 mod/*'1-1*
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which impHes that a is in 7(5l>. However, this contradicts the assumption that J(ai) = {0}.
Thus the ft's must be Hnearly independent mod /(5l_1).

Define o^ := ft for j = 1,... ,rx. Note that these basis elements satisfy the first level
of Goursat congruences, that is:

da{ = -aj A7r mod /(,1_1) j = 1,..., n

If the dimension ofJ(**-2) isgreater than 2rl5 then choose one-forms a{l+19... ,a?+r3 such
that that

•fo1 n,ri rv1 rvri /vri+1 /vri+ra"l\aU'">"l »a2J'">a2 )"1 >'"»«1 J

is a basis for I^Sl~2\

For the induction step, assume that a basis for /W has been found,

{a\,... ,<,«?,... ,a\7, ...,a\,... ,acke]

which satisfies the Goursat congruences up to this level:

da{ = -ai+1A7r mod/<^-fc> k= 1,... ,kj - 1; j = l,...,c

Note c towers of forms have appeared in I&. Consider only the last form in each tower

that appears in /W, that is a{.,j = 1,..., c. By the construction of this basis (or from the
Goursat congruences), a{. is in JW but is not in J('+1), thus

dai^O mod/(,'> j = l,...,c

The assumption that {J^, w} is integrable assures

da{.=0 mod {/<'>, x} j = l,...,c

thus daj[.. must be a multiple of ir mod /W,

d^.^-KAft modI(,'> j = l,...,c

for some ft ^0 mod jW. From the fact that a\. is in J^ and the definition of the derived
flag,

da3^ = 0 mod I^-1^ j = 1,... ,c

which impHes that ft 6 7^_1^. By a similar argument to the claim above, it can be shown
that the ft's are independent mod JW. Define o{.+1 := ft, and thus

{Ql'--- ^Jbi+lJ0!)-" »afca+i»--* »ai»--« »aL+i}
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forms part of a basis of i*»-i). If the dimension of J '̂-1) is greater than ki + k2 -j [- fcc + c,

then complete the basis of J^*""1) with any Unearly independent one-forms a{+1,... ,af+rc

such that

{ax,... ,akl+1,a1,... ,ak7+1,... ,a\,... ,ackc+1,al j...,^ re}

is a basis for J^"1^.

Repeated appHcation of this procedure wiU construct a basis for J which is not only

adapted to the derived flag, but also satisfies the Goursat congruences.

By assumption, tt is integrable mod the last nontrivial derived system, I^'l~l\ Looking

at the congruences (4.15), any integrable one-form tt' which is congruent to ir up to a scaHng

factor /,

ir' = dz° = f* mod/^1-1'

wfll satisfy the same set of congruences up to a rescaHng of the constraint basis by multiples

of this factor /. •

4.3 Prolongations

Consider a Pfaffian system J in extended Goursat normal form:

I = {dz} - zj+idz0 : i = l,...,sj;j= l,...,m],

with independence condition dz°. Let the Pfaffian system J be defined by:

J = {dz\ —zf+idz° :t = 1,...,Si + 1and i = 1,...,Sj',j = 2,..., m},

The coordinate z]l+2 has been added, but thenew system isalso in extended Goursat normal

form. It is clear that there is a one-to-one correspondence of integral curves between J and J

although they are defined on manifolds of different dimensions. J is said to be &prolongation

by differentiation (of order one) of J with respect to the independence condition dz°.

Prolongations by differentiation can also be defined for systems which are not a priori

in extended Goursat normal form. Let J be a Pfaffian system on a manifold M with

independence condition dt, and let dn be a one-form in the complement of J. Define the

system J on M x R given by

J = {/, dn - ydt]
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to be a prolongation by differentiation of /, where the new coordinate y is the fiber co

ordinate on R. In effect, this adds the derivative of n (with respect to the independence

condition) as a state variable.

In general, many of these partial prolongations by differentiation may be taken.

Definition 5 (Prolongation by differentiation) Let I be a Pfaffian system of codimen

sion m + 1 on Rn+TO+1 with coordinates (z, v,t) for which dt is an independence condition

and {dvi,...,dvm,dt} forms a complement. Let 6j,...,bm be nonnegative integers and let

b denote their sum. The system I augmented by the b one-forms

dvi-vldt, ..., dv\l~l - vl'dt,

dv2-v\dt, ..., dv\*-l-v\*dt

dvm-vlmdt, ..., ..., dvfc-t-vfcdt,

is a prolongation by differentiation of I. The augmented system is defined on r»+»»+»+i#

If a Pfaffian system J does not satisfy the necessary and sufficient conditions of The

orems 17 and 18, then I cannot be converted into extended Goursat normal form. It is

possible, however, that there exists a prolongation by differentiation J of J which does sat

isfy the extended Goursat conditions. In this case, the prolonged system J can be put into

Goursat normal form, paths can be found for the transformed system using the methods

described in Section 4.5, and these paths can be projected down onto the original Pfaffian

system / to give integral curves.

Although the general problem of determining which Pfaffian systems can be converted

into extended Goursat normal form after prolongation is stiU an open one, the foUowing

theorem gives some sufficient conditions under which such a transformation exists.

Theorem 19 (Conversion to Goursat form with prolongation by differentiation)

Consider a Pfaffian system I = {a1,... ,an] on Rn+m+1 with independence condition dz°

and complement {dvu... , dvm, dz0}. If there exists a list of integers bu..., bm such that

the prolonged system

J ={ a\...,an,

dvx - vldz0,... ,di>J1-1 - v\ldzQ,

dvm-v1mdz°,...,dvbn?-1-vbr?dz0}
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satisfies the condition that {J(k\dz0} is integrable for all k, then I can be transformed to

extended Goursat normal form using a prolongation by differentiation.

Proof. The proof is by appHcation of Theorem 18 to the prolonged system J. •

4.4 Converting the multi-steering trailer system to extended

Goursat normal form

In this section, it wiU be shown how the general multi-steering trailer system can be

converted into extended Goursat normal form after prolongation. The configurations of

this system which satisfy the conditions for conversion without prolongation wiU also be

detailed. The first lemma gives a candidate choice for it, since for a system in extended

Goursat normal form it must always be true that {/, w} is integrable.

Lemma 20 {I, dx} is integrable for anyx G{x1,... ,xn,x\,..., X1?}.

Proof. Each constraint in J satisfies the congruence

dwx = d0x A dxx mod wx

= 0 mod {I, dx1}

da3 = dft Adx{ mod a3

= 0 mod {I,dx{}

(by equations (4.11) and (4.13)). Also, all of the dxx,dx{ are congruent by Lemma 15.

Thus, the exterior derivative of any constraint in {I,dx} is congruent to zero mod {I,dx{},

which is the condition for integrabiHty. •

It can be shown that for the general case, there does not exist a dx (or any other

one-form) which wiU satisfy the condition that {I^x\dx} is integrable for every t. How

ever, the general multi-steering system can be transformed into Goursat normal form after

prolongation.

The concept of "virtual trailers" was first introduced in [58] as a type of dynamic

state feedback for the multi-steering trailer system. A chain of these virtual trailers, each

analogous to a physical trailer, was added in front of each actual steering wheel, and a

virtual steering wheel was added at the front of each virtual chain. The sketch of this

augmented system in Figure 4.2 helps make the concept more clear.



81

Each virtual trailer adds one state to the system, as weU as one constraint. Thus the

codimension of the extended system is the same as that of the original system, m + 1.

Consider the foUowing theorem.

Theorem 21 (Converting the multi-steering system to Goursat form) The multi-

steering system with n trailers and m steering wheels can be put into extended Goursat

normal form, for any n, m and for any configuration of steerable cars and passive trailers,

using a prolongation of degree less than or equal to nx-\ h 7im_j.

Proof. Consider the n-trailer, m-steering system with virtual extension as shown in Fig

ure 4.2. That is, in front of each steerable axle, imagine that there are ti^.j virtual axles,

and that only the front axle in each virtual chain is steerable. Note that with this virtual

axle formulation, the actual steerable axles within the multi-trailer chain are no longer as

sumed to be directly steerable, but rather are controUed through the virtual steering axles

and the the chains of virtual trailers.

Let ftv represent the angle ofthe jth virtual steering axle, where the subscript v stands

for virtual. The angles of the passive axles that are added are denoted by 0j, where the

subscript j stands for the index of the virtual chain that they are in, and the superscript i

indexes their position from the front of the virtual train.

A total of ni H 1- nm_i states have been added to the system, corresponding to the

angles of the virtual axles. The same number of constraints have also been added. The first

axle is always assumed to be steerable, and no virtual axles are added in front of the front

steering wheel.

Because the constraints that were added have the same form as those in the system

already, it is easy to see that they can be written in coordinates as

v) = sin 0)dx) - cos0\dy\

for the passive virtual axles and

aj = smftvdx3v - cos0j<fyj

for the steerable virtual axles at the front of each chain. Although these constraints do not

immediately appear to be of the same form as a prolongation by differentiation, it can be

shown that

u) = d0j+1 - tan 0)dxn mod J(i)
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for i < 7ij_i —2 and

if'-1'1 =dft - tan0jfi-,"1(fan mod J<»i-«-l>

where xn is the x-position of the last passive axle. This particular form of a prolongation

by differentiation was chosen so that the constraints which were added to the system would

have the same expression (in coordinates) as the physical constraints; the computations are

somewhat simpHfied by this choice. Because of the equivalence, a standard prolongation by

differentiation could have been used; it would be difficult to interpret the meaning of the

added states.

The prolonged Pfaffian system is given by the coUection of actual and virtual con

straints,

J = {al,...,am,a2v,...,a™,w\...,wn,v):j = 2,...,m;i=l,...,ni_l-l}

The derived flag corresponding to the extended Pfaffian system can now be found.

First, performing a similar calculation to that in equation (4.11), it can be seen that

duj = 0 mod*/],!/]"1

Then, similar to equation (4.13),

da{ ^ 0 mod J

It is also not difficult to show that

doy' =0 moda,*,i/;i-1"1

From these three congruences, the structure of the derived flag is seen to be

JW = {a2,...,am,w1,...,wn,u}:j = 2,...,m;i=l,...,nj.1-l}

JW = {a2,...,am,w2,...,wn,v}:j = 2,...,m;i = 2,...,nj_1-l}

j(*+;*-D = {a*>+\...,am,wk,...,wn,vx:j = 2,...,m;i=k,...,nj-1-l}

j(»+m-i) = {w»}or{am}

J<n+m> = {0}
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where jk is defined to bethenumber ofsteerable axles that are in front ofthe kth passive axle
in the actual chain of trailers, and jO»+»»-i) = {wn} if the last axle in the chain is passive,

and J(n+m"1) = {am} if the last axle in the chain is steerable. In words, the (extended)
Pfaffian system J consists of all the constraints corresponding to both the actual and the

virtual axles. The first derived system consists of all constraints except the ones at the

front of each (virtual) chain. At the second level, the constraints corresponding to the axles
directly behind each virtual steering wheel fall off, and at the kth level, the constraints

corresponding to the axles which are k behind each virtual steering wheel fall off, until at

the last level, there is only the constraint corresponding to the last axle in the chain (wn if
it is passive, am if it is steerable). The (n + m)th derived system is trivial, which impHes

that the augmented system is controHable.

At each level of the derived flag, exactly one of the constraints which falls out of the

flag corresponds to a real axle, and all the rest which fall out correspond to virtual axles.

The one-form ir which satisfies the Goursat conditions of Theorem 18 is equal to the

exterior derivative of the x coordinate of the last body in the actual multi-steering chain;

dxn (if the last axle in the chain is passive) or dx™ (if thelast axle in the chain is steerable).
The rest of the details are straightforward, although the notation is cumbersome. •

Now that it has been shown that the system with virtual trailers can always be con

verted into extended Goursat normal form, some special cases of the multi-steering trailer

system which can be converted into extended Goursat normal form without any prolonga

tion wiU be examined.

Theorem 22 7/ there is only one steering train which has passive axles in it, that is, all

the passive axles are contiguous, then the system can be converted into extended Goursat

normal form without prolongation.

Proof. The Pfaffian system has the form,

/={a1,...,Q*,u;1,...,a;",a*+1,...,a-}

where the constraints have been arranged in the order in which the axles appear in the

chain. Choose w = dxn, and note that by Lemma 20, {I,dxn} is integrable.
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mth virtual extension

^5
e1

mth steering train

ej
; first virtual extension

e1

Figure 4.2: A multi-trailer system with n (passive) trailers and m (active) steering wheels,
with a virtual extension of nj_i virtual trailers in front of each steering wheel.
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The derived flag associated to this case is simply found using either Lemma 16 or

equation (4.11). It has the form:

IW = {w\w2,...,wn}

J<2> = {w2,...,wn}

/(*) = {wn}

/(n+i) = {0}

which is reminiscent of the iV-trailers case from Chapter 3.

Equation (4.11),

dwx' = d0x' A sec 0xdxx' mod w1'

combined with equation (4.7),

«-i ..»dxx = fxi-\dxx mod wx~ ,w

gives the congruence

dwx = fwid0x Adx" mod wx,wx+1, ...,wn

which impHes that {I^\dxn} is integrable for i = 1,... ,n + 1, and thus by Theorem 18,

the system can be converted into extended Goursat normal form. •

The Goursat coordinates are defined by (xn,yn), the Cartesian position of the last passive

axle, along with ft,..., ft71'1, the angles of the hitches.

Corollary 22.1 (Special cases) As specialcases of the general case described in Theorem

22, the following systems can be converted into Goursat form without prolongation:

• There is only one steering wheel, m = 1, which by convention is located at the front

of the chain. This is the n-trailer problem of Chapter 3.

• There is one steering wheel at the front of the chain and another at the end of the

chain, as in thefiretruck example [7, 53].

• All the steering wheels are at the front, that is n\ = n2 = • • • = nm_! = 0.
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en-l

k ^^^ (k-l)st steering train

kth steering train

Figure 4.3: A multi-trailer system with n (passive) trailers and m (active) steering wheels,
with n —1 of the passive trailers in one steering train.

• All the steering wheels are either at thefront or the back of the chain, in a generalized

firetruck situation.

• All the axles are steerable, n = 0.

• There is only one passive trailer, n = 1.

The other special case which does not require prolongation to achieve Goursat normal form

is sHghtly more compUcated.

Proposition 23 If there are two sets of passive axles, separated by only one steerable axle,

and the set towards the back has only one axle, then the system can be converted to extended

Goursat normal form without prolongation.

Proof. A sketch of this case is given in Figure 4.3. The Pfaffian system associated with this

particular multi-steering system is:

I = {a1,a2,... ,ak~1,w1,w2,... ,wn~1,ak,wn,ak+l,... ,am}
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Note that since the last passive axle is separated from the passive axle in front of it by only

one steerable axle, the coordinates xn and yn can be written in terms of x""1 and yn~x as

xn = xn_1 - lk cos 1>k - Ln cos 0n

yn = yti-1 _ ^ gin ^h _ ^ gin 0n

Taking the exterior derivative, it can be seen that

dxn = dx"-1 + lk sin ftdtj)k + Ln sin0nd0n

dyn = dyn~l - lk cos^dft - Ln cos0nd0n

Now, rewrite wn in terms of dxn~l and dyn~l:

wn = sin0ndxn - cos 0ndyn

= sin 0ndxn~1 - cos 0ndyrx-1 + lk cos(^fc - 0n)dipk + Znd0n

which impHes that

-1
d^* = ~r secW - 0n)(sin 0ndxn~1 - cos 0ndyn~1 + Lnd0n) mod wn

and thus, the exterior derivative of wn can be written as:

dwn = d0n A(cos0ndxn~1 + sin^dy""1 + /fcsin(V>* - 0n)dft)

= d0n A((cos0n - sin 0n tan(^fe - 0n))dxn~l + (sin0n + cosfl" tan(^* - 0n))dyn~l

-Lnta,n(ft-0n)d0n)

mod wn

= fund0n A dxn~

modw"^"-1

for some function fw«. Thus, for n = dx"'1, {I^*\v} is integrable for every i, and the

system can be converted into extended Goursat normal form. D

For the configuration of Proposition 23, the Goursat coordinates can be found as foUows.

Since n = dxn_1, one of the coordinates wiU be xn_1. The last nontrivial derived system

is /(n_1) = {a;"-1}. From the results on the n-trailer system of Chapter 3, it can be shown

that yn~l wiU be another of the coordinates. If there are more than two steering wheels,

the steering wheel angles V1,... , ft~1,il)k+1,..., if)"1'1 wiU also be coordinates. However,
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the final coordinate which defines the Goursat form wiH not be ft. This can be seen from

looking at the one-form wn,

wn = sm0ndxn - cos0ndyn

= sin 0ndxn"1 - cos 0ndyn~1 + /* cos(^fc - 0n)dft + Lnd0n

= sin(0n - 0n~l) sec0n~ldxn-1 + [lk cos(if>k - 0n)dft + Lnd0n] modwn_1

The expression inside the square brackets is integrable, but is obviously not a multiple of

dij)k. After an integral for this expression has been found, that is, some functions / and g

such that the expression is equal to fdg, the one-form wn can be rewritten as:

wn = sin(0n - 0n-1)sec0n~1dxn-1 - fdg

The final coordinate which defines the Goursat form will be the function g.

To find such an integral, the method of separation of variables is used. Consider for

the moment only the expression under consideration,

fdg = lk cos(^* - 0n)dft + Lnd0n

Perform a change of variables given by

ft -0n ft + 0n
Q = ^ fi = ^

2^2

and note that in these coordinates, the expression takes the form

fdg = lk cos2a (da + d/?) + Ln (d(3 - da)

= lk(cos2a - Ln/lk) da + /it(cos2a -f Ln/lk) dp

=/t(cos2a +£„//*) (^ ~Lrn/!.k da +dp)
\cos2a + Ln/lk J

Consider first the simplest case, where the lengths of the two hitches are equal, or Ln/lk = 1.

Using the identity,
cos 2a - 1 2

= — tan a,
cos2a + l

the expression above can be rewritten as

fdg = /i(cos 2a + Ln/lk)[- tan2 ada + d/?]

Now the quantity inside the square brackets is exact, and can be integrated to give the

function g

g = —tana + a + (3
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or, in the original coordinates,

— .A*g = ft —tan
(ft - 0n)

and

f = lk(cos(ft-0n) + l)

Now consider the case when Ln ^ /*, and let £ = Ln/lk. The expression fdg has the

cos 2a — £
form

f dg = Ik(cos 2a + £)

Consider only the dg part of the expression,

cos 2a + £

, cos2a-£ , ..
**0 = _..^_ , „ da + dp

cos 2a + £
-2£

da + d/3

cos 2a + £

which can be integrated by consulting a table of integrals. Note that the result depends on

whether the ratio of the two hitches involved Ln/h is greater than or less than one,

da + da + d/?

g = ft + <

As before, / has the form:

2 arctan ^Sian« \i£>l

/ = /t(cos(^-^) + ^)

All configurations which do not satisfy either Theorem 22 or Proposition 23 require

prolongation to be converted into extended Goursat normal form. The minimum dimension

of the prolongation can be computed as foUows. Recall that there are a total of n passive

trailers and m steerable axles, and let k equal the index of the first steerable axle which has

no passive trailers behind it. That is, nk = nk+1 = ••• = nm = n and nk_x < n. There are

two possible cases:

1. If njb_i = n - 1, then the minimum dimension of prolongation is nx H h nk_2.

2. Otherwise, a prolongation of dimension ni-\ hn*-! is needed to convert the system

into extended Goursat normal form.

Now some specific multi-steering mobile robot systems wiU be considered and it wiU

be shown how their associated Pfaffian systems satisfy the extended Goursat conditions.



90

Example 1 (Two, Three, or Four Axles) It is a simple exercise in combinatorics to

check that all of the possible configurations with two or three axles and one, two or three

steering wheels satisfy the conditions of Theorem 22. Note particularly that the firetruck

example [7], sketched in Figure 4.4, satisfies these conditions with n —1.

Figure 4.4: A sketch of the firetruck, with steering wheels on the front and back axles.

In addition, it can be shown that aU except one configuration of a system with four

axles wiU satisfy the conditions of Theorem 22. The exception is m = 2, two steerable

axles, two passive axles, alternating. That is, the first and third axles are steerable, and

the second and fourth axles are passive. This situation would arise if a car were towing

another car and both of the cars had drivers at the steering wheels. This example satisfies

Proposition 23, and thus can be converted into Goursat form without prolongation.

The 5-axle system with two steering wheels is the lowest-dimensional case where inter

esting things begin to happen.

Example 2 (5-axle, 1-4 steering) First consider the 5-axle system with the first and

fourth axles steerable, as sketched in Figure 4.5.

The constraints are that each axle roUs without sHpping:

w1' = sin 0xdxx' - cos 0xdyx i = 1,2,3 a3' = sin ft dx{ - cos ft dy3, j = 1,2
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Figure 4.5: A 5-axle trailer system with the first and fourth axles steerable.

The Pfaffian system is thus / = {al,wl,w2,a2,w3} and a complement to this system is

{dft,dft,dx2}. This basis is adapted to the the derived flag,

I = {a1, w1, w2, a2, w3}

IM = {a;1, w2, w3}

J<2> = {w2}

J<3> = {0}

and it can be checked that each {I^\dx2} is integrable. The coordinates which put the

system into Goursat form are the foUowing:

z° = x2

*i = y2

= <

j* _ tan !£=&

ft + 2Li,h arctan
V(^)a-:

^/(^^ItanC^i)'
l+Wa

?+-pa-i* I^/^ '̂"^(^)+1+t'/"

Note the dependence on the relative lengths of the hitches in the system. The remaining

coordinates are defined by the relationships

4 = **-i/*° k = 2,...,4

Ls —l2

L3 >l2

L3 < U

,2 __— Zfg _ j /Z K — Z, o

Of course, by Theorem 19, this system can also be converted into an extended Goursat

normal form using a prolongation of dimension two, and the coordinates in this case are
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given by:

c=*s c = »3 $ = r

together with the relations

CJ = Ci.,/<° fc = a,...,s

<2 = 42-i/C° fc =2,...,4

The two sets of coordinates (z°,zl,z2) and (C°»Ci»Ci) defined above are vaHd flat outputs

for this system, in the sense that all the states and inputs to the system can be found

by taking derivatives of these quantities. More differentiations wiU be required for the (

coordinates.

Both coordinate transformations have two types of singularities. Because of the division

by the derivative of z° (or C°), whenever this coordinate is constant (corresponding to

cos02 or cos03 respectively being zero), the transformations wiU be undefined. This type

of singularity can be avoided by choosing a different coordinate chart at the singular point

(interchanging x and y for example). A singularity also occurs when the angle between two

adjacent axles is equal to 7r/2; at this point, some of the codistributions in the derived flag

will lose rank. The derived flag is not defined at these points; nor is the transformation.

The methods described herein wiU not work for controlling the multi-steering trailer system

when the trailers must go through such a jack-knifed configuration.

Example 3 (5-axle, 1-3 steering) The only instance of the 5-axle trailer system with

two steering wheels which satisfies neither Theorem 22 or Proposition 23 has the first and

third axles steerable, as shown in Figure 4.6.

Figure 4.6: A 5-axle trailer system with the first and third axles steerable. This is the
only configuration of the 5-axle system with two steering wheels which does not satisfy the
conditions for converting to extended Goursat normal form without prolongation.
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The constraints are that each axle roll without sHpping:

wx = sin0xdxx —cos 0xdyx i = 1,2,3 a3 = sin ftdx{ —cos ftdy{ j = 1,2

The Pfaffian system is J = {a^u^a2,^2,^3}, and a complement to the system is given by

{dft,dft,dx3}.

By Lemma 16, the derived flag has the form

1 = {a1, w1, a2, w2, w3}

JW = {w1, w2, w3}

J(2) = {a;3}

J<3> = {0}

In order to have {fl2\ 7r} integrable, 7r must be dx3 (mod w3). This wfll also give {7°,dx3}

integrable by Lemma 20, but a simple check wiU show that {I^\ dx3} is not integrable.

Thus, as predicted by the theorems, this system does not satisfy the conditions for conversion

to extended Goursat normal form without prolongation.

The system I can be prolonged by differentiation, adding the additional form v —

dft —v dx3. The new coordinate v can be thought of as the tangent of the angle of the

virtual axle that is added to the system in Theorem 19. The derived flag of the augmented

system is:

J = {a1, w1, v, a2, w2, w3}

JM = {w1, a2, w2, w3}

J<2> = {w2, w3}

J<3>= {a;3}

J<4> = {0}

and the systems {J(k\dx3} are integrable for all k. Thus, the prolonged system J can be

converted into extended Goursat normal form.

For the case of a 5-axle system with three steering wheels (two passive trailers), if

the two passive trailers are connected we know from Theorem 22 that the system can be

converted into extended Goursat normal form without prolongation. If the two passive

trailers are separated by only one steerable axle, then we apply Proposition 23. The only

configuration which does not satisfy one of these two conditions has the passive axles in the

second and fifth positions, and this configuration wiU again require prolongation to convert

it to extended Goursat normal form.
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4.5 Steering multi-input chained form systems

As was stated before, extended Goursat normal form is the dual of multi-input single-

generator chained form. This section is devoted to discussing several different methods for

finding paths for multi-input chained form systems. These methods are the direct extension

of the methods considered in the previous chapter for two-input chained form systems.

In this section no particular system of trailers or nonlinear equations wiU be considered,

only the multi-chained form equation:

z° = u° i1zo = u1 z2z0 = u2 z0 = um

i1 = 4u° z2zl
= Z2U° zl = z™u°

z1Znt+1 = z\ u°ni **

i2
3+1 = zl u° '-.

*nm+l

•

z™ u°

(4.19)

The indices are sHghtly changed (actuaUy inverted) from the definition of extended Goursat

normal form (4.14), but it is clear that the equations are the same.

The problem that is considered in this section is: given a system of equations in the

above form, and a desired initial and final state, find inputs {u%(t) : t € [0,T), i =

0,..., m} which wfll steer the system from the initial state to the final state.

4.5.1 Steering with polynomial inputs

One approach to the point-to-point steering problem is to hold the first input u° con

stant and identically equal to one over the entire trajectory. The time needed to steer is

then determined from the change in the Zq coordinate,

T = (*o°)' - (4Y- (4-20)

The parameters for the remaining inputs axe coefficients of a Taylor polynomial,

u1 = a0 + a1t+ ... + ani+1tn*+1

u2 = &o + M + ... + &n3+1f»+1
. (4-21)

um = Uo + Ult + ... + vnm+1tnm+i
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with the number of parameters on each input chosen to be equal to the number of states

in its chain. The chained form equations can be integrated symboHcally and the input

parameters aj,bj,... ,i/j can be found in terms of the initial and final states. This is a

fairly simple procedure since all of the equations that need to be solved are Hnear. A

symboHc manipulation program can be used quite readily to do this.

Of course, if T —0 from equation (4.20), then this method wfll not work. This case

corresponds in the physical system to the "paraUel-parking" direction, or no change in the

x coordinate. The easiest way to remedy this situation is to first choose an intermediate

point and then plan the path in two pieces, as was described earHer in Section 3.4.2

4.5.2 Steering with piecewise constant inputs

This steering method was originaUy inspired by multirate digital control [32], but is

most easily understood in terms of motion planning simply as piecewise constant inputs.

The first input u° is chosen to be constant over the entire trajectory. This choice wfll

ensure the Hnearity of the equations that need to be solved for the other input parameters,

as weU as generate "nice" trajectories (since this input is related to the driving input of the

multi-trailer system, a constant u° wiU usually transform to a uni-directional velocity, or

equivalently no backups).

The other inputs are chosen to be piecewise constant, and to ensure that the resulting

equations have a solution, each input should have at least as many switches as there are

states in its chain. There wfll need to be the largest number of switches on the mth input

since it wiU always have the longest chain.

The time for the trajectory can be chosen arbitrarily as T. As stated before, the first

input is chosen to be constant over the entire trajectory,

u°(t) = < fort<E[0,T)

where the magnitude of the first input is chosen such that the first chained form state wiU

go from its initial to its final position over the time period,

< = K4Y - (*?)'] IT . (4.22)

The other inputs are chosen to be piecewise constant. Let the switching times be chosen as

0 = tj0<t31<...<t>n.+2 = T,
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where nj + 2 switching times are needed for each input since there are nj + 2 states in the

jth chain. There are many different methods available for choosing these times. They are

most commonly chosen so that for the mth input, which has the most switching times, the

holding times wfll be equal. The switching times for the other inputs are then chosen to be

some subset of the switching times for the mth input. The jth input wfll be of the form:

«*(*) = ufc* foite[tk,tk+1).

When the chained form equations are integrated using these input values, the final state

can be expressed in terms of the inputs and the initial state as

4
(T) = A3(ul,z3(0))

u3!0

L ^ij+l J l <in'+1

where the matrices A3 are assured to be nonsingular whenever the first input u£ is nonzero

[32].

Similarly to the previous section, if the first input does come out to be zero from

equation (4.22), then a sHght modification of this method is necessary. A multirate input

can also be added on u°, using at least two time periods, or an intermediate point can be

chosen and the path can be planned in two steps. This case corresponds in the physical

system to the parallel-parking direction.

The inputs which are chosen to be piecewise constant are not the velocities of the

steering wheels, but the chained form inputs, which are nonHnear functions of the states

and the virtual steering inputs.

4.5.3 Steering with sinusoidal inputs

A method for steering multi-chained systems with sinusoids was proposed in [7]. This

method is step-by-step and uses one step to steer each levelof the chain (although the states

of aU chains at the same level can be steered simultaneously). Since the longest chain has

length nm + 2, this is the number of steps that wiU be needed.

The algorithm is sketched as foUows:

Step 0 Steer the top-level coordinates, {z^, j = 0,... ,m} by choosing constant values

for u°,u1,..., um on the time interval [0, T).
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Step 1 Steer the coordinates at the first level down by choosing a sinusoid on u° and

out-of-phase sinusoids on u3,

u° = a sin wt

u1 = Pcoswt

u2 — 7 cos wt

um — v cos wt

over a time period [T,2T), with appropriate choice of a, ft,..., v so that at time 2T,

the states {z\, j = 1,... ,m}, have achieved their desired final values.

Step k (k = 2,... ,nm + 1). Steer the coordinates at the kth level from the top. If

ni < k < nl+1, then only chains i + 1,..., m wfll be affected. Again, choose a single

frequency sinusoid on the first input, but now choose multiple frequency sinusoids on

the other inputs:

u° — a sin wt

ul = 0

ux = 0

t,+1 = (coskwt

um = v cos kwt

over a time period [kT,(k + 1)T), with appropriate choice of (,...,v so that at time

kT, the states {z3^, j = t + 1,...,m}, are at their desired final values.

After each step k, the states closer to the top of the chain than level k will have

returned to their values after the previous step (k - 1). The states lower in the chain

than level k wiU move as a result of the inputs at step k by some amount; these are

disregarded because those states are steered to their desired final values in subsequent

iterations.

Although this method works weU, and the magnitudes of the sinusoids are simple to

solve for, the algorithm can be tedious in practice because of the many steps that are needed.
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The trajectories that are generated consist of many segments and do not always follow a

direct path between the start and goal.

Therefore, an "all-at-once" sinusoids method, which is an extension of that detailed in

Section 3.4.1 for the two input single chain case, was proposed in [58]. Only one step is

needed, all of the necessary frequencies are put into the inputs.

u° = a0 + a sinwt

w1 = Po + Pi cos wt+ hP„1+i cos(n! + l)wt

um = vQ + Ui coswt H 1- unm+i cos(nm + l)wt .

The input parameters are found in the same manner as in the other methods; that it, the

chained form equations are integrated symboHcafly, evaluated at time T, and the parameters

are solved for as a function of the initial and final states.

The main drawback to this approach is that there will be some interference between

the levels (although not between chains) and solving for the input parameters wfll require

solving nonHnear algebraic equations. In low-dimensional cases, this does not appear to be

a problem for a symboHc manipulator. It can be shown (in a manner similar to the proof

of Proposition 14) that solutions are guaranteed to exist at least locally.

When this method is implemented on a multi-steering trailer system, the first input,

which always goes through one period, wfll transform back to the driving input, which wfll

usuaUy change direction (at least one backup). This seems to work weU when parallel-

parking type maneuvers are desired. The free parameter a can be adjusted to change the

distance that the trailer system drives forward before it backs up.

4.6 Path planning for the multi-steering trailer system

Once the kinematic equations are in multi-input chained form, the system can be

steered by one of the algorithms discussed in Section 4.5. As an illustration, consider

the parallel parking maneuver shown in Figure 4.7 for the five-axle, two-steering system

described in Example 3. The system parameters were chosen to be n = 3 (three passive

axles), m = 2 (two steering wheels), and the lengths of the hitches as L\ = L\ —L\ —5,

and L\ —3.
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Polynomial inputs in the chained form equations are used to plan a trajectory from

an initial point of (x,y) = (0,20) to a final point of (x,y) = (0,0), where (x,y) are the

coordinates of the midpoint of the last axle, and aU of the body angles aHgned with the

horizontal axis in both the initial and final configurations.

As noted in Section 4.5.1, polynomial inputs are not immediately suited to this type of

trajectory since the time needed to steer the system, computed from equation (4.20), would

come out to be zero and the algorithm would fail. Therefore the trajectory was planned in

two steps, choosing an intermediate point (x,y) —(30,10). The virtual angles were chosen

equal to zero in both the initial and final states, and the virtual hitch length were chosen as

L\ = 1. The procedure is first to transform the initial and final states into the chained form

coordinates. Using the polynomial inputs methods discussed in Section 4.5.1, the chained

form inputs needed to steer the system are found. These inputs can then be transformed

back to the original coordinates to find the virtual inputs, and the real inputs can finally

be calculated from this.

The simulation was performed on the system in the chained form coordinates, then the

inverse coordinate transformation was used on the simulation data to obtain the trajectory

in the original coordinates. A movie animation was made of this trajectory; scenes from

this movie are shown in Figure 4.7 and the complete movie can be viewed in the margins

of this chapter. The path taken by the virtual axle is not shown.
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Figure 4.7: A parallel-parking trajectory for the five-axle, two-steering system. The plan
ning algorithm as described in this paper does not account for obstacle avoidance; however,
it does plan "nice" paths which may can be used in conjunction with an obstacle-avoidance
algorithm to achieve a complete solution to the path-planning problem.
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This chapter gives some preHminary results on the use ofexterior differential systems to

analyze control systems. Some of the first efforts in this area can be found in the dissertation

of Sluis [46] and a paper by Gardner and Shadwick [20]. Although this area of research

is rather recent, the tools available in exterior differential systems are very appropriate to

the study of control systems, particularly the problems of trajectory generation (or path

planning) and Hnearization. Most of the results which appear in this chapter are taken from

[56].

A control system is a system of underdetermined differential equations:

x = f(x,u,t)

where the state x € R" and the derivative of the state is taken with respect to time t G R.

The control inputs u € Rm are assumed to be freely specifiable (the problems associated

with bounded controls wfll not be considered here). The state trajectories x(t) as functions

of time are of interest. They can be studied as integral curves of an associated Pfaffian

system, formulated as foUows:

Definition 6 (Control System.) A control system x = f(x,u,t) generates a Pfaffian

system I on Rn+m+1

J = {dxi —fx(x, u,t) dt: i = 1,..., n} (5.1)

with independence condition dt and complement {du\,... ,dum,dt}.
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Any Pfaffian system J of codimension m + 1 on Rn+m+1 with coordinates (x, u,t) can

be called a control system if it has a set of generators of the form (5.1).

5.1 Exact linearization

Brunovsky [5] showed that any controUable Hnear system x = Ax + Bu with x € Rn,

u € Rm can be converted to a canonical form given by

x\ —U\ x\ = u2 •• a?j — wm

a?2 == x± •£-2 — *i *2 — *1

: :

• **3 — xk3- 1

i _ ~i
•i

(5.2)

with 7i = fci H h A:m. Thus, any control system x = f(x,u,t) which can be converted to

a Hnear form f = A£+ Bv by a coordinate transformation £ = <f>(x) and state feedback v =

v(u,x) can be converted into Brunovsky's normal form (5.2). Since Brunovsky Hnear form

for a control systemis a special caseofextended Goursatnormalform (4.14) with dz° = dt,

the theorems for transforming to Goursat form can be speciaHzed to give conditions for

exact Hnearization of control systems.

Theorem 24 (Exact Linearization [20]) // a control system I defined on Rn+m+1 has

a set of generators {aj : i = 1,..., Sj\j = 1,..., m} such that for all j,

dai = -aj+1 Adt mod /<•'""') i = 1,..., s,- - 1
(5.3)

da3,. £ o mod J

then there exists a set of coordinates z such that I is in Brunovsky normal form,

1= {dz{ - zj+1dt: i = l,...,sj;j= l,...,m}.

An algorithm for converting systems to Brunovsky normal form is also given in [20],

and it is shown that if the control system is time-invariant and affine in the inputs, then

the resulting feedback transformation is also autonomous and input-affine.

The control systems version of Theorem 18 is given by
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Theorem 25 (Exact Linearization [46]) A control system I can be converted to linear

form if and only if {J**\dt} is integrable for every k.

Another version of this theorem is given in [1] with sHghtly different notation.

5.2 Linearization by time-scaling

By way of example, consider a control system which is not Hnearizable but can be

converted to Goursat normal form. The transformation scales time by a function of one of

the states.

Example 4 (Goursat normal form for a control system) Consider the single-input

control system [12],

xi = x2 + #3

X2 = X3

X3 = u

This control system generates a Pfaffian system,

/ = {dxi - (x2 + x3)dt, dx2 - x3dt, dx3 - udt} (5.4)

/ is of codimension two on R5 with coordinates (a:, u,t). The derived flag of J is

I={a\a2,a3}

lW = {a\a2}

/<» = {a1}

J(3) = {0}

where the one-forms adapted to the derived flag are given by

a = dx\ —2x3dx2 + (x3 —x2)dt

a = da;2 —2:3d/

a3 = dx3 —udt

Note that this is not the basis of (5.4) which generated /. Since {I^2\ dt} is not integrable,

Theorem 25 impHes that the system is not feedback Hnearizable.
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The Goursat congruences (3.6), however, are satisfied, for ir = dr = dt —2dx3:

da1 = a2 A dr

da2 = c(u) a3 Adr

da3 = c(u) du Adr mod a3

Thus, there does exist a transformation $(s, u, t) = (z, v, t) to Goursat normal form, which

is given by

T = t - 2x3

u
V =

l-2w

Z\ = x3

2
Z2 — X2 — X3

o

and it is easily checked that
dz1

dz2

d7 = 2'
dz3

The difference between this form and the Brunovsky normal form of (5.2) is that time

has been scaled by a function of one of the states. Not all trajectories of the scaled system

correspond to feasible trajectories of the original control system; it must be carefully checked

that the time coordinate evolves in an appropriate manner.

The problem of feedback Hnearization by time-scaling was also studied in [45]. The

authors considered an autonomous, input-affine control system and gave a modified set of

conditions for feedback Hnearization allowing for the fact that time could be scaled by a

function of the states. The Goursat formulation gives a simple set of conditions to check if

a time-scaled version of a system can be Hnearized.

Proposition 26 A control system I of the form (5.1) can be feedback linearized by time-

scaling if and only if

1. The system is controllable, that is 1^ = {0} for some N,

2. there exists a function r such that {I^k\ dr} is integrable for k = 0,..., N —1,
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3. The new coordinate t which is the scaled version of time must not be independent of

time, & ± 0.

Just as in the case of conversion to Goursat form, the candidate one-form dr will be deter

mined by the last nontrivial derived system, and it is a matter of algebra to check whether

the other derived systems, together with dr, are also integrable.

5.3 Dynamic extension

Linearizing control system using dynamic extensions is a problem that has been studied

extensively. The exterior differential systems framework allows the problem to be viewed

from a sHghtly different angle. A dynamic extension of a control system is an augmented

system with integrators added to the inputs; for example, a simple first-order dynamic

extension is given by:

x = f(x,u)

uk = v

where an integrator is added to the kih input channel. .

The prolongation by differentiation which was defined in Section 4.3 is exactly the

dual of dynamic extension in the language of forms. Thus, the control systems version of

Theorem 19 can be stated as:

Theorem 27 (Linearization by dynamic extension) Consider a control system I on

Rn+m+1 with coordinates (x,u,t), independence condition dt, and complement

{du\,... ,dum,dt}

The system I is Hnearizable by dynamic extension if (and only if) there exists a prolongation

by differentiation of dimension b = bi -\ \-bm such that the augmented system

J = {ax = dx{ - fx(x, u)dt: i —1,..., n;

P) = du)-1 - u)dt: j = 1,..., m; k= 0,..., 6J

on j&n+m+H-i satisfies the condition {j(k\dt} is integrable for every k.

Proof. Apply Theorem 25 to the extended system J. D

This theorem is similar to the one stated by Charlet, Levine, and Marino [12] which

gave sufficient conditions for Hnearizing systems by dynamic extension. Their conditions also



106

reHed on the existence of some integers bs- which are the number of integrators added to the

ith input channel. However, the existence ofa dynamic extension of order b= (&i,..., bm)
which is Hnearizable does not imply that the conditions of their theorem are satisfied for

that 6; whereas if there exists a dynamic extension of order 6 = (61,... ,6m) which can be

Hnearized, the conditions of Theorem 27 will always be satisfied for that b. Unfortunately,

no bounds are yet known on the number of extensions that must be checked to find out if

the system is Hnearizable by this technique.

The problem of Hnearization by dynamic extension has also been studied by Aranda-

Bricaire, Moog, and Pomet [1] using differential forms and differential algebra. They also

give necessary and sufficient conditions, which can be fairly tedious (if not actuaUy impos

sible) to check in practice.

A simple example wfll be presented to show how Theorem 27 can be appHed to Hnearize

control systems using dynamic extension.

Example 5 ([12]) Consider a 4-state, 2-input control system:

X\ = x2

X2 = U\

x3 = u2

x4 = X3 — X3Ui

The corresponding Pfaffian system on R7 is

J = {dx\ —x2dt,dx2 - u\dt,dx3 - u2dt, dx4 —(x3 —x3Ui)dt} (5.5)

with independence condition dt and complement {dui,du2,dt}. The derived flag has the

form:

I — {a1, a2, a3, a4}

i<l>= {a1, a4}
J<2>= {0}

the one-forms a* which are adapted to the derived flag are not the same as those of (5.5)

which generated I,

a = dx\ —x2dt

a2 = dx2 —U\dt

a3 = dx3 —u2dt

a = dx4 + x3dx2 —x3dt
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The structure equations are fairly simple to find,

da1 = -a2 A dt

da2 = —dui Adt

da3 = —du2 Adt

da4 = -a2 Aa3+ (ux -l)a3 Adt- u2 a2 Adt

note that {I^\dt} is not integrable, thus the system is not Hnearizable by static state

feedback.1

Consider a prolongation by differentiation of I defined by

J = {I,w = dui —vidt}

corresponding to adding an integrator to the first input channel. The derived flag is now

J = {a1, a2, w, a3, a4}

JM = {a1, a3, a4}

J<2> ={a'}

JW ={0}

where the basis adapted to the derived flag has changed sHghtly, with a4 = dx4 + (utx3 -

x3)dt. It is now easy to see just from the expressions of the forms adapted to the derived flag

that {l(x\dt} is integrable for i = 0,1,2, and thus the extended system can be converted

to Brunovsky form.

lrThe system is, however, Hnearizable by time-scaling. Letr = t—12, and note that {i^'^dr} is integrable
for t = 1,2.
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Chapter 6

Conclusions and Future Work

This dissertation focused on the problem of path planning for robotic systems with

nonholonomic velocity constraints. Several systems were considered, including a car towing

n trailers, a two-axle mining vehicle, and a multi-steering trailer system. The systems were

studied from the point of view of their velocity constraints. The constraints were written as

one-forms on the configuration manifold, and generated a special type of exterior differential

system called a Pfaffian system. Integral curves to the Pfaffian system correspond to feasible

paths for the robotic system.

Integral curves were found for the Pfaffian system by converting it into a normal form,

finding a path for the system in normal form, and then converting this trajectory back into

the original coordinates. The most important normal forms in this dissertation was the

Goursat normal form for systems of codimension two, and the extended Goursat normal

form for systems with codimension greater than two. The JV-trailer system and the mining

vehicle were converted to Goursat normal form, and the multi-steering and firetruck systems

were converted into extended Goursat normal form.

The Goursat forms are equivalent to the chained forms studied in previous work, and

many algorithms are known for finding paths for chained form systems. Several of these

methods were described in this dissertation, and then appHed to the mobile robot systems

to demonstrate the types of paths which result.

Several avenues are stiU open for future work.

1. The problem of path planning for mobile robot systems with nonholonomic velocity

constraints in the presence of obstacles remains unsolved. Some work has been done for
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the system consisting of a single Hilare-Hke robot in [27,30]. The approach given in the

first reference can be extended to a system of a car towing trailers; some preHminary

work in this direction is presented in [29]. Tilbury et al. [54] appHed high-frequency

inputs to a two-trailer system, generating feasible paths which were arbitrarily close

to a given path through configuration space which avoided the obstacles but did not

satisfy the velocity constraints. The resulting trajectories were highly oscillatory and

would be difficult to implement in practice. Sahai, Secor, and Bushnell considered

the obstacle avoidance problem for a multi-trailer system with kingpin hitching [50].

Other methods for obstacle avoidance which use optimization based approaches may

be found in [13, 14].

2. Although the paths generated by the methods proposed in this dissertation are "nice"

in some aesthetic sense, nothing can be said about their optimality. Reeds and Shepp

[43] expHcitly characterized the shortest-length paths for a car with bounded turning

radius. Their proof reHes heavily on the geometry of the problem and the generaHza-

tion even to the case of a car towing one trailer is unknown. In particular, the path

length taken by each axle is different, and it is not clear what would be the best way

to define "shortest." The optimal path planning problem with minimum input effort

is also unsolved; although it is thought that the driving and steering inputs should

somehow be weighted differently.

3. The paths generated by the methods proposed in this dissertation are purely open-

loop. For a practical implementation of these methods, a feedback loop can be closed

around the path, and the system stabflized to the path, perhaps using a method such

as that outlined in [59].

4. Not much activity has focused on the problem of planning paths for systems which

must necessarily go through singular points. Although the transformations into Gour

sat normal form are only guaranteed to exist locally, the transformations considered in

this dissertation are defined on almost the entire configuration space. Singular points

do exist; both the derived flag and the chained form transformations are undefined

whenever the angle between two adjacent axles is 90 degrees. The methods described

herein cannot be appHed to a path which must go through such a point. PracticaUy,

this may not be too much of a Hmitation, but theoretically, it has been shown [28, 48]
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that the TV-trailer system is controllable even at these points. The number of Lie

brackets of the input vector fields which much be taken to span the tangent space at

such singular points is exponential in the number of trailers (in fact, it is a Fibonacci

number). The problem of constructing control inputs which steer the system through

such singular points has not yet been considered.

5. Any completely nonholonomic Pfaffian system with two constraints in R4 can be con

verted into Goursat (EngePs) normal form. However, in R5, the generic codimension

two Pfaffian system does not satisfy the conditions for conversion into Goursat form,

and thus the path-planning techniques described in this dissertation cannot be used

to find paths for such systems.

There are some interesting path-planning problems to consider even in this relatively

low-dimensional realm. As noted in Section 3.3.3, the three-axle trailer system with

two kingpin hitches is a codimension two Pfaffian system in five dimensions. The

system of two surfaces rolHng against each other without sHpping has similar dimen

sions; the configuration of the system can be represented locally by the position of

the contact point in the coordinate chart on each of the two objects in addition to

the relative angle between the two charts. The nonholonomic constraints arise from

specifying that the two objects roll in contact without sHpping or rotating about the

point of contact; Montana's equations [33] can be used to write down these constraints

in local coordinates; see also [31].

A third type of system which has the same dimension count is the two-chained form

of Murray and Sastry [37]:

ii = «i yx = u2

*2 = ViUi (y2 := x2)

x3 = x2U\ y3 — y2u2

In general, the x and y chains can be arbitrarily long; only the five-state version is

shown here. This system is of interest because a simple algorithm (similar to that of

Section 3.4.1) can be used to steer this system using sinusoids [37].
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The derived flag for all three of these systems has the form

I={a\a2,a3}

I^ = {a\a2}

/(2) = {0}

Cartan [9] characterized the possibiHties for systems which have this derived flag.

Although general conditions are not known for converting nonholonomic systems into

two-chained form, the method of equivalence described by Gardner [17] can be used

to check whether there exists a transformation between any two particular exterior

differential systems. This equivalence calculation was performed by Shadwick, Sluis

and Grossman [51] for the very simple system of a sphere rolling on a plane and the

two-chained form, and they concluded that these two systems were not equivalent.

It would be interesting to know of other normal forms for nonholonomic systems for

which integral curves could easily be found.

6. All of the analysis of nonholonomic systems in this dissertation has been completely

kinematic. For the wheeled mobile robots considered in this dissertation, a kinematic

analysis may be sufficient. In practice, the controls are not the velocities but the

accelerations; however, if the trailer system is moving "slowly enough" the dynamics

will play only a small part and a kinematic path can be followed closely. Nonholo

nomic constraints also arise when mechanical systems conserve angular momentum;

satellites and space robots are two interesting examples. These systems have nontriv

ial dynamics which should be taken into account when the path planning problem is

considered.

7. As mentioned earHer, the results on applying the theory of exterior differential systems

to the particular problems found in control systems are still preHminary. In particular,

easy to check, necessary and sufficient conditions for Hnearizing control systems using

dynamic state feedback remain unknown.
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