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Performance Evaluation of an Optimal Processor

Assignment

Soonhoi Ha " Edward A. Lee*

Abstract

Balancing the loads of processors and minimizing interprocessor communication (IPC) overhead are
two conflicting goals of the scheduling of a parallel processing system. A parallel scheduler partitions the
tasks into the same number of groups as the processors and assigns the task groups to the processors.
Since the IPC overhead depends on the network topology, the scheduler may take into account the
network topology either in the partitioning phase or in the assignment phase. This paper evaluates
the performance of the optimal assignment in the latter approach. In the partitioning phase, the IPC
overhead is ignored or simplified assuming that the distance between all processor pairs are the same.
After the partitioning phase, the IPC requirements between the task groups are determined. In the
assignment phase, pairs of groups with more IPC requirements are assigned to pairs of processors
with lower distance to reduce the IPC overhead or the total traffic requirements on the network.

A simpler scheduler may do without the assignment phase and assign the task groups randomly to
the processors. The expected performance improvement of an optimal assignment over a random
assignment is analytically investigated for a class of network topologies: hierarchical bus and binary
hypercube. The analysis is based on an optimistic (but infeasible in most cases) assignment assumption.
But its results are largely supported by simulation.
keywords: Multiprocessor scheduling, interprocessor communication overhead, processor assignment,
task partitioning

1 Introduction

To exploit the parallelism of a program in a parallel processing system, various ways of representing a
program as a set of tasks with partial ordering have been investigated. In a dataflow language [1], for
example, each instruction comprises a task to fully express the fine grain parallelism of the program. In a
hybrid representation of dataflow and sequential languages [2], a block of sequential instructions forms a
coarse grain task.

Balancing the loads of processors and minimizing interprocessor communication (IPC) overhead are
two conflicting goals of the scheduling of a parallel processing system. A parallel scheduler partitions and
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assigns the tasks to the processors, determines the execution ordersof the assigned tasks in each processor,
and executes them. Depending on when these scheduling actions are performed, a parallel scheduler is
classified into the following four classes: fully-dynamic, static-assignment, self-timed, and fully-static [3].
Fully-dynamic scheduling assigns a ready task to an idle (or least busy) processor to balance the loads.
Run-time assignment, however, is often prohibitive since it incurs significant communication overhead
for shipping tasks between processors or control overhead for monitoring and maintaining the execution
status of the processors. The other scheduling techniques partition and assign tasks at compile-time. The
execution order of the assigned tasks are determined at run-time in the static-assignment scheduling, and
at compile-time in the self-timed and the fully-static scheduling. Fully-static scheduling guarantees the
synchronization of tasks at compile-time to minimizethe schedulingoverhead at run-time. In this paper,
we assumethat the tasks are assigned at compile-time. Thus, the paper applies to three of the four classes
of schedulers.

An unavoidable run-time overhead in parallel processing comes from interprocessor communication
(IPC). If the IPC overhead between two tasks A and B is larger than the execution duration of either
one task, assigning these tasks to different processors is not advantageous. The IPC overhead involves not
only the communication delay required to transfer data between the source and the destination processors,
but also the arbitration delay to acquire access to the interconnection network. Synchronization delay, for
example checking semaphores, may also be involved. Sincethese delaysdepend on the run-time status of the
system, they usually cannot be predicted at compile-time. A common hardware technique to compensate
for this overhead is to use a split transaction scheme with dedicated hardware for network access. The
overhead can be hidden effectively if the processors are kept busy with other program segments or with
other tasks during this transaction.

A software technique is to assign the tasks with large IPC requirements to the same processor. Several
clustering methods have been developed without [4] and with [5, 6] consideration of precedence relations
between tasks. These methods cluster tasks subject to minimal interprocessor communication, and assign
these clusters to processors to balance the loads [4] or minimize the bottleneck load [5]. In the clustering
phase, the actual topology of the interconnection network is not taken into account. Since the unit of
assignment is cluster which is larger than task, load balancing is likely to be sacrificed. Thus, clustering
methods favor the minimization of the IPC overhead over the load balancing as the scheduling goal.

Another approach is list scheduling. In list scheduling, tasks are assigned priorities. During the schedul
ing process, the unscheduled task of the highest priority is assigned to the first available processor. By
incorporating the IPC requirements of each task in the computation of its priority, we may achieve the
effect of clustering two tasks with large IPC requirements [7].

If the interconnection topology is fully-connected or shared-bus, the distances between all processor
pairs (or processor-memory pairs) are the same. The interprocessor distance is defined as the number
of communication links on the shortest path between a pair of processors. In most scalable topologies,
however, the interprocessor distances and so the IPC overheads depend on the position of processors.
Some scheduling techniques take into account the IPC overhead specific for the physical interconnection
network topology in the partitioning phase by scheduling the communication resources at the same time
[7]. Another technique, called two-phase scheduling, divides partitioning and assigment into two separate
phases. The primary objective of the partitioning phase is to balance the loads and minimize the IPC
requirements assuming constant interprocessor distance. In this phase, the tasks can be thought to be
assigned to the virtual processors of fully-connected network topology. At the end of partitioning, the IPC
requirements between virtual processors are determined. The optimal assignment phase maps the virtual
processors of larger IPC requirements to the physical processors as close as possible to minimize the total
IPC overhead. In this paper, we examine how much gain we may obtain from an optimal assignment
compared with random assignment in such a two-phase strategy by analysis and simulation. If distances



between processors are all the same, random assigment will be as good as any.
of interest in this paper do not have a constant distance between processors.

1.1 Problem Definition

Hence, network topologies

Oncethe partitioning phase is done, the IPC requirements foreach pair of virtual processors are determined.
The objective of the assignment phase is to minimize the total communication cost, or the total message
traffic over the communication network. A unit of message traffic on a communication link is defined as
the volumeof data exchanged through the link. The total message traffic is the sum of message traffic on
all links. Define v,j and dij as follows.

Vij is the volume of data exchanged between processors i and j.

dij is the interprocessor distance between processor i and j.

Then, the total message traffic Ct becomes

cT=2^rfo- (1)

The units and absolute scaling are not important because such costs will only be compared against similar
costs. The problem of minimizing the total message traffic by an optimal assignment is known as the
quadratic assignment problem [8] and has NP complexity. Hanan et. al. reviewed three techniques for
the placement of blocks in a layout design with the same form of the object function as equation (1):
constructive-initial-placement, iterative-improvement, and branch-and-bound. The iterative-improvement
technique chooses an initial assignment and adjusts the assignment, for example by pairwise interchange of
processors, in order to optimize the objective function. The other two techniques assign a block to the best
place once and for all and do not change the assignment later. They did not consider the effect of network
congestion. Leeand Aggarwal [9], on the other hand, formulated a set of newobjective functions quantifying
the effect of congestion based on deterministic information about when each communication occurs and
with how much volume. They used an iterative-improvement technique with pairwise interchange. The
problem of minimizing network congestion with a given assignment may be attacked separately as the
traffic scheduling problem [10], which schedules the communication route and time to minimize the link
congestion.

In the next section, we analytically investigate the expected reduction of the total message traffic from
an optimal assignment compared to a random assignment. If the number of processors is JV, the number
of processor pairs M, called virtual links, is M = N(N - l)/2. Each virtual link may be mapped to a
physical link in somenetwork topologies such as fully-connected graph and shared bus. In other networks,
however, the number of physical links is much smaller than the number of virtual links and a virtual link
may be mapped to a path of physical links. For example, the total number of physical links is NlogN/2
in a binary hypercube network and N —1 in a ring network. We define the cost of a virtual link as the
interprocessor distance on the physical network and classify the virtual links according to their costs.

The Encore Ultramax [11] multiprocessor system has a two-level hierarchical bus as the interprocessor
network topology. In this topology, the cost of a virtual link between processors on the same local bus is
1 while the cost of a virtual link between processors on the different local busses is 3. On the other hand,
many networks such as hypercube and ring have more than two virtual link costs. Our analysis will be
applied to various kinds of topology.

In section 3, we simulate processor assignment two common network topologies, and investigate the
effectiveness of an optimal assignment. We developed a heuristic suboptimal algorithm based on both
the constructive-initial-placement technique and the iterative-improvement technique. In the concluding
section, we discuss the simulation results and compare them with the analysis results.



2 Analysis

The communication requirements between virtual processors are determined in the partitioning phase. To
minimize the totalmessage traffic, pairs ofvirtual processors with large communication requirements should
be assigned to closely spaced processors. We model the volume ofdata on each virtual link as a random
variable and its distribution, called routing distribution, is assumed known for mathematical simplicity.
We alsoassume an optimistic, oversimplified strategythat admits infeasible assignments. The strategy is a
greedy one, in which each virtual link is assigned to a physical link in order; the next virtual link with the
highest load is assigned to the next physical link with the lowest cost. The reason that this might result in
an infeasible assignment is that the virtual links cannot, in practice, be assigned independently to physical
links. For example, if A, B, C, and D are virtual processors on a ring network, and link Aj-£B and Aj-£D
have been assigned to physical links, then link Bj-£D has been assigned as a side effect. Thus, link Bj-^C
is assigned to a physical link with lower cost than link Bj-^D regardless of its communication load. Our
simplifying assumption is that the links can be independently assigned. This results in an assignment at
least as good as the optimal assignment, and hence provides a lower bound on the optimal assignment.

At first, we consider the network topologies with bi-valued interprocessor distances such as hierarchical
bus topology. Virtual links can be classifies into high-cost links and low-cost links after assignment. Let
the number of the high-cost links H and the cost Ch • The number of the low-cost links is M —H. We define
the cost of low-cost links as c/. In a two-level hierarchical bus topology, c/,becomes 3 and cj becomes 1.
An optimistic optimal assignment assigns M —H virtual links with large communication requirements to
the low-cost links and remaining virtual links to the high-cost links. To determine whether the assignment
is realizable or not, we construct a graph with virtual processors and the M —H virtual links of low-
cost. If the graph can be embedded with unit dilation in the physical network topology, the assignment is
realizable. Otherwise, it is not. Nonetheless, our analysis gives a lower bound of the total message traffic
for the given communication requirements. In our analysis, we ignore the effect of traffic congestion.

2.1 Uniform Distribution Assumption

Let's assume that the normalized communication requirement on a virtual link is approximated as a
random variable Xi of uniformdistribution on interval [0,1]. Suppose we have a set of M random samples
{Xi} that are independent and identically distributed. We rearrange them into an ordered set {X,|a/} , in
which Xi\M is a random variable representing the t-th smallest sample among M samples in {Xi} . Clearly,
the difference between any outcome of the set {X,}and the corresponding outcome of the set {Xi\M}'is
the order. Then, the expected total message traffic E[Ct] becomes

H M

E[CT] = E[ckY,Xi\M +« Y, *t\M]
i=l i=/f+l

M H

= £[d£*<|M +(e*-C|)£*<|M]
»=i t=i

M H

= ct£?E |̂J#] +(c*-c,)^E^,a/] (2)
i=l 1=1

where E[] means the expected value of the expression in the bracket. The first term in the above equation
is the sum of all M random samples in the ordered set, which is the same as the sum of all samples in
{Xi}. That is,

M M

£[£ Xi\M] =£[£ Xi] = ME[Xi). (3)
i=l t=l



Since the expected value of Xi is 1/2, the first term of equation (2) becomes c\M/2. Now, we have to
compute the expected value of Xt\M. If the probability density function of Xi\M is /,(x),

E[Xi]M)= f xfi(x)dx. (4)
Jo

Since the probability distribution function P(x) of a uniform random variableon [0,1] is x and the proba
bility density function p(x) is 1, the probability density function /,(x) becomes, from equation (23) in the
appendix,

,,W"B(i,«-i+l)' (5)
where B(a, b) is a beta function defined in 22. Using this equation, we reduce equation (4) as follows:

prv. 1- /" *•'(!-*)"-' ._B(i + \,M-i + 1) i__
E[X«m] -1 B{i,M-i +l)dx ~ B(i,M-i +l) ~WTl- (6)

Therefore, the expected total traffic in equation (3) becomes

M ^
E[CT] = c/-- + (ch-c02l

2 fcrM+1

= ^T +^-^W+i)" (7)
Now, suppose that we assign processors randomly. Since the expected cost of a virtual link, cavg, is

jjCh + M\fHch the expected total message traffic Erandom becomes,

h/f ff
Erandom = M E[Xt] Cavg = C, — + (ch - Ct)—. (8)

From equations (7) and (8), the difference of the expected total message traffic between an optimistic
optimal assignment and a random assignment, 6E, is obtained:

1UT — ff6E =Erandom - E[CT) =H{ch - C{) + . (9)

The performance improvement, or the reduction ratioof the total message traffic, by adopting an optimal
assignment over a random assignment is defined as the ratio of 6E and Erandom • Define the cost ratio
re as Ch/ci, and the link ratio ri as H/M. Then, the expected performance improvement Jfy(rc,rj) can
be represented in terms of rc and rj as follows (we approximate the term M + 1 in the denominator of
equation (9) as M)

„, r, BE _rt(l-r,)(re-l) ( .
Pu{rC) r{) = — = , 7T—. KW)

&random 1 + Tj(rc — i)

We display the expected performance improvement in figure 1, varying r/ and rc.
The expected performance improvement in equation (10) increases as the cost ratio re increases for a

fixed link ratio. On the other hand, if we fix the cost ratio, the expected performance improvement is
maximized when the link raio n is *A and the value is ^T?. When the cost ratio is greater than
1, the link ratio that gives the maximum performance improvement is smaller than 0.5. Particularly in a
two-level hierarchical bus topology where the costratio is 3, the linkratio should be 0.37 for maximum per
formance improvement, which is 27%. As the costratio increases, the maximum performance improvement
approaches 1 or 100% and the optimal link ratio, not surprisingly, approaches zero.
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Figure 1: Analytical message traffic reduction with varying the cost ratio rc and the link ratio r; from the
optimal assignment under the assumption of uniform distribution of communication loads.

For a given network topology, however, the cost ratio and the link ratio may not be changed. When
the network is a fully-connected network or a bus network, both r/ and re are equal to 1, and E[Ct]
becomes M/2 as expected. Since a random assignment results in the same expected total message traffic,
no assignment phase is necessary. Consider a hierarchical bus network, in which a local bus connects 4
processors and a global bus connects 2 local buses. The cost ratio is 3 and the link ratio is 16/28 = 0.57.
Hence, the expected performance improvement becomes 23% from equation (10).

2.2 Geometric Distribution Assumption

In the previous subsection, we assume that the communication loads between processors are uniformly
distributed. In reality, there may be situations when the communication loads between processors are not
uniform. Forexample, a program may be partitioned to a subset of the processors either because of lack of
parallelism or because ofpartitioning constraints. Moreover, a partitioning strategy may result in a skewed
communication loads between processors.

As a model of a localized distribution of the communication requirements between processors we use
a geometric distribution with parameter q. The probability that random variable Xi is greater than x,
P[Xi > x] is qx and the probability density function p(x) ofXi is q*(l - q). Therefore, the expected value
ofXi becomes j^. The expected value ofthe ordered variable Xi\M can be obtained from equation (24)
in the appendix:

E[Xi\M] = £ x{(1 - Fi(x - 1)) - (1 - Ft(x))} =]T(1 - F,(x)), (11)
ar=0 x=0

where Ff(x) is given by equation (20). Since

1-Fi(z) =1-•£ ( Mk )P'(z)(l -P(X))"-* =£ (^)/*(*)(! -P(x))M-", (12)



equation (11) can be rewritten as follows

eo »—1

E[XiW] =£ £ ( Mk )P*(«)(1 - P(x)r~K (13)

Equation (2) for the expected total message traffic is valid regardless of the distribution. Therefore, we
obtain the following formula for the expected total message traffic under the assumption ofgeometrically
distributed communication requirements.

H oo i-l

E[CT) =c, Mj*- +(ch - c.) £ £ £ ( f )(1" **)*(**)""*. (14)
9 i=l*=0*=0 v * '

After performing the summation on the x variable in the second term, the above equation is reduced to

^]—a+(—o£Se( ^) (:)<-*•!$£* as)
* i=lfc=0n=0 x ' N ' *

Unfortunately, the equation for the total message traffic can not be reduced to a closed form, unlike the
uniform distribution case.

On the other hand, the expected message traffic in case of a random assignment becomes, from equa
tion (8)

Erandom =C, M-^— + (ch - C/) H-±—. (16)
1 —q \ —q

From equations (15) and (16), the expected performance improvement from an optimal assignment over a
random assignment can be represented as follows:

(r. - Dn(i - fc? Ef=, Efci ELo (f)(1) (-D0rf^)
Pu(r"r') = i+n(r.-i) • (17)

For large M, care should be taken during computation of equation (17) because of the risk of overflow or
large rounding error. One method of overcoming this difficulty is to obtain the ensemble average E[X{\m]
from the experiments and use the experimental result as the approximation of E[X{\m] in equation (11).
It is well-known that the ensemble average obtained from the large number of experiments approaches to
the exact expected value. We repeated the experiments 1000times and used the ensemble average as the
expected value.

In the next section, we will investigate the performance improvement through simulation for two-level
hierarchical bus networks with 8 processors and with 16 processors assuming that the local bus connects
4 processors. In the network of 8 processors, the values of M and H are 28 and 16 respectively. In the
network of 16 processors, they are 120 and 96 respectively. Using these values of M and H, we compute
the expected performance improvementof equation (17) by varying the geometric parameter q from 0.1 to
0.9 as shown in table 1.

2.3 Hypercube Networks

Up to now, weconsider the networksthat have twodifferent interprocessor distances. In this subsection, we
extend out analysisto the networks with morethan twointerprocessor distances. In a static interconnection
network, the interprocessor distance ranges from 1 to the diameter of the network. The diameter of a binary
hypercube network of N processors is log N.



Table 1: Analysis of the expected performance improvement from the optimal assignment under the as
sumption of geometrically distributed communication requirements in the two-level hierarchical bus net
works

parameter q 0.1 0.3 0.5 0.7 0.9

8 processors 0.53 0.52 0.45 0.39 0.35

16 processors 0.62 0.43 0.34 0.29 0.26

We represent the set of interprocessor distances as {c,}, where ct- = i. Define the number of virtual
links whose cost is not greater than a as Ni. Then, the expected total message traffic can be written as
follows (we define No as 0).

d Nj d Nj

E[CT) = E[Ycj Y XM+i-i\M] =Yici £ E[XM+i-i\M}-
j=l isNj-x+l ;=1 i=Nj-i+l

(18)

In the previous subsections, we obtain the equations of i?[X,|jif] in case of uniformly distributed and
geometrically distributed communication requirements. We can substitute them in the above equation to
compute the expected total message traffic. On the other hand, the total traffic expected from a random
assignment is the product of the expected cost of a virtual link and the total number of the virtual links,
which becomes

d

Erandom =£[*<] £>,(#,• - Nj^). (19)

For any static network topology, we can compute the expected performance improvement by comparing
equations (18) and (19). For example, we first consider two binary hypercube networks with 8 and 16
processors each. Values of Ci and Ni —7V,_i are displayed in table 2.

Table 2: The number of virtual links Nj - Nj-i of costs ct- in the binary hypercube networks
Ci 1 2 3 4

Ni - Ni-i (8 proc) 12 12 4

Ni-Ni.i (16 proc) 32 48 32 8

The analysis on the expected performance improvement for binary hypercube networks is summarized
in table 3.

Table 3: Analysis of the expected performance improvement from the optimal assignment under the as
sumption ofgeometrically and uniformly distributed communication requirements in the binary hypercube
networks

parameter q 0.1 0.3 0.5 0.7 0.9 uniform

8 processors 0.40 0.40 0.36 0.32 0.29 0.21

16 processors 0.53 0.48 0.42 0.37 0.34 0.22

3 Simulation

In thissection, we evaluate bysimulation theexpected performance improvement from an optimal processor
assignment over a random assignment with two network topologies: two-level hierarchical bus networks



and binary hypercube networks. The problem of optimally assigning the processors to the nodes of these
network topologies to minimize the total message traffic is NP hard. Hence, we develop a heuristic with a
polynomial time bound for each network topology.

The heuristic consists of two stages: select an initial assignment and anneal the assignment by pairwise
exchange of processors. This is an example of an iterative-improvement technique even though the first
stage alone may work as the constructive-initial-place technique. In the first stage, the virtual links are
ranked in the order ofincreasing communication requirements and the unassigned link ofthe highest rankis
first assigned to an available physical link until allvirtual processors are mapped to the physical processors.
Once an initial assignment isselected, the algorithm converges to a local minimum bypairwise exchange of
processors and stops when no more improvement can be made. To increase the performance, we repeated
the pairwise exchange stages with different orders and chose the best amongseveral local minima. The
quality of the algorithm is determined by the proximity of the local minimum to the global minimum. By
developing a heuristic to select a good initial assignment, we aim at both speeding up the computation
and pullingthe localminimumtoward the global minimum. In fact, our test shows that the heuristic gives
only 1%performance difference compared with the optimal algorithmwhen the number of processors used
is 8 and the number of virtual links is 28. When the number of processors is 16, the number of virtual
links becomes 120 that is too large for a naive optimal algorithm. Therefore, we approximate the optimal
performance with our heuristic within a few percent of errors.

The communication requirements on the virtual links are generated based on the same distributions
as we considered in the previous section. The first model Ml uses a uniform distribution on interval
[0,1]. The second model M2 uses a geometric distribution with parameter q to approximate the localized
communication requirements. The smaller q, the more the communication is localized. The simulations on
the hierarchical bus networks and the binary hypercube networks are based on these two models.

With each model of communication requirements, we obtain simulation results on the performance
improvement from an optimal assignment by the heuristic. For comparison purpose, we developed another
heuristic for a sub-worst assignment, where pairs of processors with larger communication requirements are
placed far apart in the physical network. Since a random assignment may result in the worst assignment,
the performance comparison between an optimal assignment and a sub-worst assignment tells the most
performance improvement we may expect from the optimal assignment. We repeat the simulation five
times for each model and average the simulation results to reduce the standard deviation.

3.1 Hierachical Bus Network

In a hierarchical bus network, we assume that each local bus connects 4 processors, and the global bus
connects either 2 or 4 local buses depending on the total number of processors in the system. The commu
nication cost between processors on the same local bus is 1 while between processors on two different local
buses, the communication cost is 3. We summarize the analysis result performed in the previous section
in table 4.

Table 4: The analysison the performance improvement froman optimal assignmentin the hierarchical bus
networks

No. processors link ratio cost ratio uniform geometric^ = 0.5)

8 0.57 3 22% 45%

16 0.8 3 12% 34%

The simulation results on the performance improvement is displayed in figure 2.
In figure 2, we omit the simulation results for the uniform communication model (model Ml), which
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Figure 2: Simulation results on the performance improvements from an optimal assignment over a random
assignment (circle line) and the sub-worst assignment (square line) in case of geometric distribution in
hierarchical bus networks with (a) 8 and (b) 16 processors. For comparison, analytical results are also
displayed for geometric distribution (diamond dotted line) and for uniform distribution (triangle dotted
line).

proved to be about 10% improvementfrom an optimal assignment over a random assignment and about
20% improvement over a sub-worst assignment for 8 processor system. For 16 processor system, the
results were about 10% and 15% respectively. The performance difference between the analysis results
and the simulation results was 5-10%. The performance difference is also noticeable for the geometric
communication model (model M2) as shown in figure 2. It is because the analysis assumes the optimistic
but non-realistic assignment while the simulation is based on a sub-optimal assignment. However, it is
worth noting that the 16 processor system has smaller performance improvement than the 8 processor
system as expected from the analysis. The 16processor system has a large link ratio and the performance
improvement is a decreasing function on the link ratio over a certain limit as discussed in section 2.

As we expected, figure 2 shows that the more communication is localized, the more the total message
traffic is reduced by an optimal assignment. In particular, the performance improvement varies rapidly
in the region where the communication is highly localized within 3 processors (geometric parameter is
smaller than 0.5). This is an intuitive result because a processor connects to only three processors on the
samelocal bus. The performance difference between the analysis results and the simulation results is more
distinguishable in this network than in the other network to be discussed in the following subsection. Our
conjecture is that the performance difference may increase as the effect ofthe high cost links on the total
message traffic increases.

3.2 Binary Hypercube Network

We summarize the analysis result on the 8 and 16 processor binary hypercube system performed in the
previous section in table 5, and the simulation results in figure 3.

In figure 3, we omit the simulation results for the uniform communication model (model Ml), which
proved tobe about 10% improvement from anoptimal assignment over a random assignment, independently
of the number of processors. As we expected from the analysis, the performance improvement on the 16
processor system is greater than than on the 8 processor system, which is contrary to the hierarchical bus

10



Table 5: The analysis on the performance improvement from an optimal assignment in the binary hypercub(
networks

No. processors uniform geometric(? = 0.5)
8 21% 36%

16 22% 42%
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Figure 3: Simulationresults on the performance improvements from an optimal assignmentovera random
assignment (circle line) and the sub-worst assignmen (square line) in case of geometric distribution in
binary hypercube networks with (a) 8 and (b) 16 processors. For comparison, analytical results are also
displayed for geometric distribution (diamond dotted line) and for uniform distribution (triangle dotted
line).

networks discussed in the previous subsection.
In the localized communication model, the performance improvement from an optimal assignment is

inversely proportional to the geometric parameter, ranging from 20-45% over a random assignment and
from 30-60% over a sub-worst assignment. Since the performance improvement is large, we expect that
the optimal assignment should be an important scheduling task in the binary hypercube networks. It is
observed that simulations results based on the localized communication model lie above the analysis result
based on the uniform communication model, Thus, the effect of localizing the communication requirements
on the reduction of the total message traffic is greater than that of an optimal assignment. The analysis
results on the localized communication model largely coincide with the simulation results of the performance
improvement over a sub-worst assignment. Therefore, we roughly expect that the analysis results give the
upper bound of the expected performance improvement from an optimal assignment.

4 Summary

We investigated the effectiveness of the optimal processor assignment to reduce the total message traffic
in a two phase scheduling strategy. Assuming that the communication requirements between processors
are uniformly distributed or geometrically distributed, we obtained analytical formulas for the optimistic
performance improvement expected from an optimal assignment over a random assignment. The analysis
is applicable to networks of general topology while we performed simulations with two common networks:

11



hierarchical bus networks and binary hypercube networks. Since the analysis allows a non-feasible as
signment, it expects 10-20% more improvement than the simulation reveals. When the communication
requirements are uniformly distributed, thesimulation shows that the expected performance improvement
from anoptimal assignment over a random assignment proves tobe about 10%, which islargely insensitive
tothe network topology. But, under the localized communication assumption, theoptimal assignment gives
more than 20% reduction on the total message traffic. The more communication is localized, the greater
the performance improvement an optimal assignment results in. Therefore, localizing the communication
requirements is an important task of the scheduling when an optimal assignment is performed.

We developed a heuristic for an optimal assignment since this problem is NP hard. Since the number
of virtual links is proportional to the square of the number of processors, the algorithm should have small
time complexity to be applicable to a large system. Thus, developing a fast algorithm for an optimal
assignment is still an open research area. Our heuristic carefully determines an initial assignment and
interchanges processors pairwise to reduce the total message traffic iteratively. When the bandwidth of
the network affords the total message traffic from a random assignment, we may do without the expensive
optimal assignment to save a few ten percentages of performance improvement. Therefore, to determine
the validity of an optimal assignment, we should consider the expected performance improvement based
on the analytical formula derived in this paper, the algorithm complexity, and the bandwidth availability.

In this paper, we did not consider the effect of link conflict, in which one message requests a communi
cation link already taken by another message. Resolving the link conflicts is related to another scheduling
problem, called the traffic scheduling problem, which is to determine the routing path of each message
transfer. We rougly assume that reducing the total message traffic reduces the possibility of link conges
tion.
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APPENDIX

In this appendix, we summarize some statistical properties on the ordered random variables that are
statisticallyindependent and uniformly distributed with distribution function P(x) and probability density
function p(x). The detailed discussion can be found in any reference book on order statistics [14]. Let's
denote Xr\n asther-th smallest value among n random variables. The distribution function ofXr\n> Er(x)
(for 1 < r < n), is a function of P{x) as follows.

Fn{x) = Pr[Xnln<x] = Pr[allXi<x] = Pn(x)
Fi(x) = Pr[XlW<x] = l-Pr[allXi>x] = l-(l-P{x))n

Fr(x) = Pr[XrW <*] =E(" )P,'(x)(1" P(x))n"< =Wr'» -r+1) (20)
where Ip(a,b) is an incomplete beta function defined as

Here, B(a, b) is a beta function defined as follows:

*('•»>=V»V=Iv'(i-<)t'1<" (22)
If the variableXr\n is continuous, the probabilitydensity function fr(x) is the derivative of the distribution
function.

/r(l) =B(r,n-r+l)Pr"1(ar)(1 "^^"P^ <23)
On the other hand, if Xr\n is a discrete random variable, the probability density function /r(x) is given as
follows.

fr(x) = Fr(x) - Fr(x - 1) = (1 - Fr(x - 1)) - (1 - Fr(x)) (24)
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