
 

 

 

 

 

 

 

 

 

Copyright © 1994, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



PERFORMANCE ANALYSIS AND OPTIMIZATION

OF MIXED ASYNCHRONOUS SYNCHRONOUS

SYSTEMS

by

J. Teich, S. Sriram, L. Thiele, and M. Martin

Memorandum No. UCB/ERL M94/95

30 November 1994



PERFORMANCE ANALYSIS AND OPTIMIZATION

OF MIXED ASYNCHRONOUS SYNCHRONOUS

SYSTEMS

by

J. Teich, S. Sriram, L. Thiele, and M. Martin

Memorandum No. UCB/ERL M94/95

30 November 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Performance Analysis and Optimization
of Mixed

Asynchronous Synchronous Systems

J. Teich, S. Sriram L. Thiele, M. Martin
Department of EECS Institute on Microelectronics

University of California at Berkeley University of Saarland

Berkeley, CA 94720 D-66041 Saarbriicken, Germany

email: teich@hoff.eecs.berkeley.edu email: thiele@ee.uni-sb.de

November 30, 1994

Abstract

This paper deals with the system-level performance analysis and
optimization of a class of digital systems we call mixed asynchronous
- synchronous systems. In such a system, each computation module
is either synchronous (i.e., clocked) or asynchronous (i.e., selftimed).
The communication between all the modules is assumed to be self-

timed. In order to adequately describe the timing of such architec
tures, we introduce a graph model called MASS which is based on
several extensions of the model of timed marked graphs. The first ex
tension is that the node set V is partitioned into synchronous nodes
Vs and selftimed nodes VA. Another extension is to specify additional
schedule constraints on synchronous nodes: A synchronous node can
only fire at ticks of its local module clock. Based on these extensions,
we analyze the behavior of MASS, in particular period, periodicity and
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maximal throughput rate. Our results are bounds on the maximal
throughput rate of a MASS. These can be computed in polynomial
time. For several interesting cases (e.g., V = VA selftimed system,
V = VS globally asynchronous locally synchronous system), the maxi
mal throughput rate is determined exactly using these bounds.

Finally, we introduce the optimization problem of assigning appro
priate clock phases to synchronous nodes so to maximize the through
put rate of the resulting system. An exact solution as well as a
polynomial time algorithm for nearly optimal phase assignment are
presented. We claim that the MASS model is valuable for future gen
erations of system-level CAD tools due to its simplicity and due to the
provenefficiency of performance analysis and optimization algorithms.

1 Introduction

This paper is concerned with the performance analysis and optimization of
a class of digital systemswe call mixed asynchronous - synchronous systems.
In such a system, each module is either synchronous, i.e., synchronously
clocked 1 or asynchronous, i.e., selftimed. 2 The communication between all
the modules is assumed to be selftimed.

1.1 Motivation

In pure synchronous systems, a periodic clock signal is used to control its
state. The advantages of synchronous design styles can be summarized as
follows:

• Maturity of existing CAD design tools

1Synchronously clocked circuit modules compute functions byseparating stages ofcom
binational logic with latches or registers that are clocked with a globally distributed clock.

2Asynchronous systems do not employ a global clock for enforcing system activities.
In case they use handshakes to sequence operations, they are called selftimed [Sei80].



• Hazard avoidance and elimination

• No circuit overhead due to handshaking, completion signal generation,
etc.

Today, architectures that consist of a combination of dedicated circuits,
(i.e., custom VLSI circuits) and general purpose components (e.g., memory
blocks, A/D and D/A converters, DSPs, etc.) are becoming increasingly
attractive and can be built at relatively low costs. Such systems are often
referred to as embedded systems (see, e.g., [GVNG94] and references therein).
Very often, they contain asynchronous components such as selftimed circuits
for the following reasons:

• Low power
In asynchronous circuits, precharging and discharging of transistors
occurs only in those portions of the circuit that are currently involved
in an operation.

• Average-case instead of worst-case performance
In a synchronous system, the maximal clock rate is determined by the
slowest computation module.

• Reliability
The communication based on a selftimed handshake is reliable due to

paradigm of delay-insensitivity [MFR85, Mar89, BS89]. Hence, phys
ical design variations may have no influence on the correctness of the
circuit. Also, a better technology migration is possible.

• Easing of global timing issues
High speed synchronous subsystems must be designed carefully in or
der to function correctly. Typical problems are clock skew and correct
critical path estimation.

• Popularity in todays systems
Most of today's digital systems have asynchronous interfaces (e.g., in
terrupt handling).

For a more complete summary of the advantages of asynchronous sys
tems, and for an overview of the state of the art in design methodologies
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for asynchronous circuit design, we refer to the collection of excellent papers
edited in [GB93, MM94].

However, at a certain point in the design hierarchy, the communication
costs for building a selftimed circuit (e.g., for dual-rail coding [Sei80], dif
ferential logic [MBM89], handshake logic) are not justified any more by the
possible gains. As a consequence, there is an optimum ground for the struc
ture of a system where we do not have a monolithic synchronous system,
but a mixture of asynchronous and synchronous design styles. Some of these
architectures are also referred to as globally asynchronous locally synchronous
systems (GALS) ([Sha84],[WB93]). For a discussion on advantages and dis
advantages, see [GJ93]. Aspects of describing such systems can be found in
[Sei80], [Sha84], [Sub91], and [WB93]. Whereas [Sei80] and [Sha84] describe
implementation aspects when building globally asynchronous locally synchro
nous systems, the approach presentedin [WB93] proposes a language oriented
approach to the design of globally asynchronous locally synchronous systems.
There, the goal is to derive a circuit from the high level language SIGNAL.
Finally, the work described in [WTWL94] concentrates on synthesizing a
synchronous finite state machine from a mixed synchronous/asynchronous
state graph with the same behavior.

1.2 Goals

Unfortunately, none of the work described above proposes a model that en
ables the exact timing behavior of a system containing synchronous and
asynchronous modules. Here, we are concerned with an exact analysis of
performance, e.g., in determining the minimal period (or maximal through
put rate) achievable by such systems. Primarily, our goal is to generate a
timing model that satisfies the following requirements:

• Simplicity and Methodology Independence
In order to be amenable for CAD, the model should be simple and not
focus one one particular implementation style or design methodology
(e.g., circuit delay model).

• Efficiency
For the same reasons as above, we would like to investigate efficient



techniques for analysis and optimization, i.e., polynomial time algo
rithms, if possible.

• Exactness

The model should mirror the exact timing of mixed asynchronous -
synchronous systems.

• Generality
It should be able to analyze and optimize GALS (all nodes are locally
synchronous) or purely selftimedarchitectures (all nodes axe asynchro
nous nodes) as special cases.

The theory of mixed asynchronous - synchronous systems as introduced
here combines aspects of asynchronous as well as synchronous performance
analysis. In the realm of synchronous architecture design, Leiserson et al.
([LRS83]) have developed a theory for analysis and optimization of signal
flow graphs (SFG).

In the domain of asynchronous systems, graphmodels such as timed Petri
net models have been investigated for analysis of performance [Ram74, RH80,
Bur90]. In case of deterministic computation times, the corresponding Petri
net is decision-free and can be represented by a marked graph [CH71], for a
classification see e.g., [Pet81]. In [Rei68] and [RH80], it is shown that under
certain conditions, systems modeled by marked graphs have an asymptoti
cally periodic behavior and that the minimal period of such a system is given
by the maximalcycle mean. A detailed analysis of this class of event systems
is contained in [BCOQ92].

Based on these results, we will introduce a graph model called MASS
(mixed asynchronous - synchronous systems) which is an extended timed
marked graph model. The first extension is that the node set of a MASS
is a partition of asynchronous and synchronous nodes. Also, in contrast to
marked graphs in which a computation module can commence its operation
if all incoming arcs contain valid data, a synchronous node in an MASS can
only start or finish its computation at a tick of its local module clock.

1.3 Overview

In section 2, we will formally define the MASS model. In particular, defi
nitions and results concerned with timed marked graphs are reviewed first



(e.g., model of computation, scheduling, throughput rate). In section 3, we
analyze MASS graphs in terms of maximal throughput rates. It turns out
that the maximal throughput rate of a MASS with node set V can be deter
mined in polynomial time for most of the interesting cases, e.g., for selftimed
systems (V = Va), and GALS (V = Vs). In section4, the problem of optimal
phase assignment is introduced. For systems, where all synchronous modules
are driven by the same clock oscillator, clock signals may have a significant
clock skew, hence different modules have different clock phases. Phase as
signment addresses the optimization problem of maximizing the throughput
of a system by adjusting the clock phases appropriately. An exact solution
as well as a nearly optimal phase assignment algorithm with polynomial run
time are presented. The resulting set of node phases may serve as input to
placement and clock routing CAD tools. Finally, in section 5, we show how
realistic implementation issues may be expressed in the MASS model, e.g.,
finite buffering, and interfacing of synchronous and selftimed hardware (e.g.,
stoppable clocks). We conclude that the MASS model is valuable for future
generations of system-level CAD tools, where mixtures of synchronous and
selftimed design styles will be typically encountered.

2 Models of computation

2.1 Marked graphs and their unfolding

The main purpose of this section is to introduce some notation and to recall
the computational model associated with marked graphs, because this is the
basis for the extensions described in this paper. For more details, see e.g.,
[Pet81, BCOQ92] and the references therein.

Definition 1 (Marked Graph) A timed marked graph G = (V, A,d,h) de
notes a directed graph with

• nodes V = {vi,v2,'" ,v\v\},

• arcs A = {ai,<Z2, •••,fl|>i|}, where any arc is an ordered pair of nodes
ap = (vi,Vj),



• a distance function d : A —» Z>0 and a weight function h : A —* R>0
3 We use a\j and hij as short hand notations for the distance d(v{, Vj)
and weight h(vi,Vj) associated with arc (v,-, Vj), respectively.

A node of G represents a computation module. Each arc ap = (v,-,Vj)
represents a queue of data directed from the computation module assigned
to Vi to the computation module assigned to Vj. Thus the computation
module Vi places the results of its calculation onto arc ap and the data on
ap are available as inputs to the computation module Vj. The distances and
weights in Definition 1 are interpreted as follows:

• dij denotes the initial numberof data (tokens) on arc ap = (vi,Vj).

• h{j denotes the holding time of a token in the queue associated with
arc (vi,Vj).

These quantities are related to the token game one can play on timed
marked graphs: If a node t>,- fires, then the first token of each queue ending
in Vi is removed and one token enters each queue originating from v,-. The
transfer is assumed to take zero time.

It remains to be addressed when suchan event can take place. To this end,
we say that a node can fire only if it is enabled. Now, a token must spend the
holding time hij in the queue from v,- to Vj before contributing to the enabling
of the downstream node Vj. The firing of a node can't take place before all
tokens already being in the queues contribute to the enabling. A node need
not fire immediately after it is enabled. Many other essentially equivalent
notions of marked graphs are possible, see e.g., [Rei68, Pet81, BCOQ92] and
the references therein.

Example 1 As an example, consider the marked graph on the left hand side
ofFig. 1. It is characterized byV = {t>i,v2}, A= {ai,a2,a3}, ax = (t>i,ui),
a2 = (vuv2), a3 = (u2,t;i), dn = 1, d12 = 0, d21 = 2, hu = 2.5, hl2 = 3.5
and h2\ = 2. One possible evolution of the marked graph is shown for three
time instances. At time t = 0, all tokens are placed onto the arcs. At time
t = 2, both tokens in arc (w2>ui) contribute to the enabling of V\. At time
t = 2.5 the node is enabled because the holding time ofthe token in arc (v\,v\)

3Lei Zstand for the set ofinteger numbers, and let Rstand for the set ofreal numbers.



is elapsed. Now, a token transfer may take place. If the firing happens at
t = 2.5, the new situation shown in the middle graph results.

Figure 1: Example of a timed marked graph and its evolution

To be more precise about the above model, e.g., with respect to the
initial conditions and the properties of the queues, the concept of (event)-
unfolding is introduced which represents the set of all evolutions of a timed
marked graph and includes information on the corresponding scheduling.
Most of the results described in this paper will be derived using the notion
of unfolding.

Definition 2 (Unfolding) The unfolding of a timed marked graph G =
(V,A,d,h) is an infinite directed graph E(<7) = (Vz,Az,hx) where

1. Ve contains nodes Vi(k) for all ut- 6 V and for all integers k > —max{d;j
Vj e V such that (u,-,Vj) € A},

2. AE = {(vi(k - dij),vj(k)): (Vi,Vj) eAAke Z>0},

3. to each arc in Az the weight of the corresponding arc in G, i.e., h% :
Ax -• R with hx(vi(k-dij),vj(k)) = hij for all (vi(k-dij),Vj(k)) e AL
is assigned.

A node Vi(k) of the unfolding represents the fcth firing of node wt- in the
marked graph. An arc from vt(k) to Vj(l) expresses the fact that the /th
firing of node Vj can take place only after the fcth firing of node vt. The
nodes vt-(fc) for k < 0 represent the initial conditions of the marked graph,
i.e., the placement ofdij tokens into the queue corresponding to arc (u,,Uj).
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The scheduling of a timed marked graph that has been introduced in
formally, can now be described more precisely. An admissible schedule is
defined as follows:

Definition 3 (Admissible Schedule) An admissible schedule function a :
Ve —> R>o satisfies:

1. ai(k) = 0 for all v{(k) € Vfe A k < 0,

2. <jj(k) > <Ti(k - dij) + hij for all (vi(k - dij),Vj{k)) € j4e

where a(vi(k)) is written cri(k).

Here, crj(k) denotes the time when node Vj fires for the kth. time. From
the interpretation of a marked graph it should be obvious that this can take
place only if the corresponding input tokens are in the queues (vi,Vj) for at
least time h^. As these tokens originate from the (k —rf„)th firings of nodes
Vi, an admissible schedule of node Vj satisfies 0j(k) > <7,(fc —dij) + hij. The
first condition in Definition 3 serves to consider the initial timing conditions
of the token game. All initial tokens are placed into the queues at time 0.

An example explaining this modelof computation is given next.

Example 2 Consider the marked graph shown on the left hand side of Fig.
1 again. The corresponding unfolding is shown in Fig. 2. Obviously, the
graph contains for each node of the marked graph Vi an infinite number of
nodes Vi(k) corresponding to its k firings. The weights assigned to the arcs
correspond to the holding times hij. If the nodes fire as soon as they are
enabled, the following admissible schedule (called free schedule) is obtained:

<ri = ( 0 2.5 5 8 10.5 ... )
<t2 = ( 0 0 6 8.5 11.5 14 ... )

Therefore, nodes vi and v2 fire at times t = 2.5, 5,8,10.5,... and t =
6,8.5,11.5,14,..., respectively. This result may be compared to the repre
sentation in Fig. 1.



v2

Figure 2: Unfolding of the marked graph shown in Fig. 1

2.2 Maximal-rate schedules of marked graphs

For obvious reasons, one is interested in a schedule of a given marked graph
that lead to the maximal throughput rate. This throughput rate expresses
the average time interval between two successive firings ofanynode ofmaximal-
rate schedules. This observation leads to the following definition:

Definition 4 (Maximal-Rate Schedule) The rate R of an admissible sched
ule a is defined as R(c) = p^y with the average period

P(c) = max {ss.f-^y}
The maximal rate Rmax is defined by Rmax = -^— with the minimal average
period

Pmin = min {P(o-): a is an admissible schedule }

In order to compare the timingofdifferent realizations, we are particularly
interested in periodic admissible schedules, because in real-time systems for
digital signal processing, for example, one is very often faced with periodic
signals. Also, a finite state controller can only enforce a periodic schedule.
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Definition 5 (L-Periodic Schedule) An admissible schedule of a marked
graph G = (V, A,d,h) is L-periodic with L € Z>0 and period P > 0, if for
all Vi e V

(n(k + L) = <n(k) + LP, V* € Z>0 (1)

The following theorem can be similarly found in [Rei68] for computation
graphs.

Theorem 1 (Maximal Cycle Mean) A marked graph G = (V, A, d, h)
has an admissible periodic schedule with period P iff Vv,- € V 3rt- 6 R,
such that

Tj-Ti> hij - Pdij V(ut-, Vj) € A. (2)

Using the definition of the maximal cycle mean Pen of G with

Pcm == max

where W contains all arcs in a directed cycle and C(G) contains all simple
directed cycles of G the following statements hold:

• There are admissible l-periodic schedules for all P > P^.

• A l-periodic admissible schedule with P = P^ has minimal period,
I.e., "cm = -«rntn«

Proof: Theproof isgiven in [CDQV85]. The first equation (2) can beproven
by combining the admissible schedule equation <Tj(k) > <rt(A: - a\j) + hij with
(1) and choosing e.g., rt- = <rt(l) for all vt- € V. Then the one-periodic
schedule

*i(k) = TV + (k - 1)P, V& € Z>0 (4)
is admissible. The proof of the maximal cycle mean (3) uses the dual repre
sentation of (2). H

Pcm is the maximum mean of accumulated path weights h^ and number
of tokens d^ for all directed cycles of G. Using the above theorem, the
maximal-rate schedule can be determined by solving the linear program

Pcm - min{P : r5 - rt- > h{j - Pdij V(v,-, Vj) 6 A] (5)
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Note that the maximum cycle mean ofa marked graph G = (V, A, d, h)
can be determined efficiently in time 0(|V||j4|) using an extension of an
algorithm described in [Kar78]. The algorithm in [Kar78] considers the case
dij = 1 for all (vi,Vj) 6 A only. Feasible potentials rt- for all ut- e V can be
determined using a shortest path algorithm in time 0(|V||yi|) [CLR90].

We have already shown that the evolution of a marked graph can be
obtained by calculating the longest paths in the unfolding. But the above
results do not necessarily mean that an evolution of a marked graph results
in a maximal-rate periodic schedule. It can be shown that in case of a
strongly connected marked graph (there is a directed path form any node
to any other node), the schedule becomes Zr-periodic. A detailed analysis is
given in [CDQV85, BCOQ92].

Example 3 We compute the maximal throughput rate for the marked graph
used in Examples 1 and 2. The maximal cycle mean

Pcm = max {^5^}=max{2.5,2.75}=2.75(dn d12 + d21)

could have also been determined by solving the linear program (5) (for example
by solving a shortest path problem) which yields T\ = 0 and r2 = 3.5. Using
(1), an admissible fastest periodic schedule is obtained as

ai(k) = 2.75(fc - 1), <r2{k) = 3.5 + 2.75(fc - 1) VJfc € Z>0

In the following, we will analyze the performance ofmixed asynchronous
- synchronous systems. But first, we will introduce the required extensions to
the timed marked graph model in order to adequately describe such systems.

2.3 Modeling of mixed asynchronous - synchronous
systems

We assume that in a mixed asynchronous - synchronous system, a synchro
nous node can only send or receive data at its local clock ticks. The formal
model of MASS to be defined next is an extended marked graph model.
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Definition 6 (Mixed Asynchronous - Synchronous System) A mixed
asynchronous - synchronous system (MASSj denotes an extended marked
graph G = (V,A,d,h,r,p). The set of nodes V is partitioned into disjoint
subsets Va and Vs, corresponding to asynchronous and synchronous nodes,
respectively. In addition, the function r : V —• N assigns a clock period, the
function p : V —» R assigns a clock phase 0 < pi < r,- to each synchronous
node vt € V5. For v; € V4, r, = l,pt = 0 holds.

In the unfolding E(G), the clock period rt- and the clock phase pi are
assigned to each node Vi(k) € Vfc.

In this paper, we restrict ourselves to analyzing single clock rate MASS
(rj = 1 for all Vj € V). Hence, we will often simply denote a MASS graph as
G = (V, A,d,h,p). The following exampleclarifies the chosen representation
of mixed asynchronous - synchronous systems.

Example 4 Again, the system described in Example 1 is considered. Now,
we suppose that node v2 is a synchronous node with the local clock phase
p2 = 0.1. By definition, we have p\ = 0 as V\ is an asynchronous node. Fig.
3 shows the corresponding extended graph.

,, © : synchronous node

P2=0.1 Q : asynchronous node

Figure 3: Example of a mixed asynchronous - synchronous system

The majordifference over the purely asynchronous case is the token game
played on the MASS. In case ofa single clock rate for all synchronous nodes,
we normalize its value to 1. To each synchronous node Vj, a local clock phase
Pj is assigned, i.e., the local clock is delayed with respect to the global one
by pj. As a consequence, the time instances 0j(k) when a synchronous node
can complete an operation is constrained as follows:

<Tj(k)-PjeZ
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This restriction is motivated by the fact that a synchronous module can
deliver a value at its local clock ticks only. Therefore, the firing of the node
is delayed until the next clock event. In order to simplify the notation, to
each asynchronous node the clock phase p< = 0 is assigned.

As a result, the definitions of admissible schedules must be extended as
follows:

Definition 7 (Admissible Schedule) An admissible schedule function of
a mixed asynchronous - synchronous system is a function a : Vs —> R>0 that
satisfies

1. <Ti(k)* = 0 for all Vi(k) € VS A k < 0,

2. <Tj(k)* > Fj(<n(k - d^)* + fc£) for all (Vi(k - dij),Vj(k)) € AL

where the function Fj is

{ \a\ : Vj
eVA
evs

and <Ti(k)* = <ji(k) - pi, hij = hij + pi - pj.

In case of an asynchronous node, the same definition as in Definition 3 is
obtained because aj(k)m > Fj{<n(k - d^)* +h^) is equivalent to <Tj(k)-pj >
<Ti(k - d^) - pi + hij + pi - pj which yields aj(k) > G{(k - dtj) + hij.

For synchronous nodes, 0j{k)* is integral as desired. Moreover, in com
parison to the asynchronous case the firing time of a synchronous node must
satisfy

<Tj(k) > 0i(k - dij) + hij

On the other hand, the node should be able to fire as soon as possible, i.e.,
at the next available clock tick. Consequently, we have

°j(k) > Pj + Wi(k - dij) + ha - pj]

which is identical to Definition 7. Note that the term on the right hand side
of this inequality is always greater than or equal to at-(ifc - dij) + AtJ but
smaller than (7,-(fc - dij) + h{j + 1, as desired.
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Example 5 The same system as in Example 4 *s used. Its unfolding is
shown in Fig. 4' The earliest possible firing times c*j(k) are assigned to
the nodes. It can be seen that the second firing of the synchronous node v2
happens at time c?2(2) = 9.1 because 0i(2) + 3.5 = 8.5 has been rounded up
to the next integer plus p2 = 0.1.

*2

0 2.5 5 8.1 11.1

^2.5
"£

!*fte
*2

f2JS
*i

Sf^2S
"2 T

'\3*Sy—,,3.5^ *3'^s^^ZJ*
®r @r @r @r ®r ®
0.1 0.1 6.1 9.1 12.1 15.1

k = -1 k = 0 k = 1 k::2 k = 3 k = 4

Figure 4' Unfolding of the system shown in Fig. 3

3 Maximal - rate schedules of mixed asyn
chronous —synchronous systems

Now, we will analyze the periodic behavior of MASS graphs and their max
imal throughput rates. We will derive bounds on the maximal throughput
rates; thesecan be computed in polynomial time. For several interesting sub
classes of MASS, these bounds are tight, i.e., the exactmaximal throughput
rate can be determined in polynomial time.

Obviously, one possible maximal-rate schedule is obtained if a node fires
as soon as it is enabled. This fact is elaborated in the following theorem.

Theorem 2 (Free Schedule) The following conditions for the free sched
ule of a MASS are equivalent:
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1. There is no admissible schedule with smaller firing times Ci(k).

2. <jj(ky = max{0,Fj(ai(k - drf + A?.): (»,-(* - dij),Vj{k)) e A*}

The free schedule is a maximal-rate schedule according to Definition 4-

Proof: Let us suppose that there is a schedule with a smaller fcth firing
time o~i(k) for node vt*. Comparing the second condition with condition 2. in
Definition 7 yields that one of the predecessors of v,-(A?) must have a smaller
firing time, too. Using induction and condition 1. in Definition 7, this
leads to a contradiction. Now, suppose that for some node u,(Jfc), we have
<Tj{kY > m*yL{<S,Fj(<Ti(k - dij)* + h*j) : {Vi{k - dij),Vj(k)) € Ax}. Then
the firing time <rt(fc) can be reduced without violating condition 1. or 2.
in Definition 7. The free schedule is a maximal-rate schedule because of
Definition 4. •

Note that the above theorem is closely related to Bellman's shortest path
equations. Consequently, the free schedule can be computed by solving a
variation of a longest path problem on the unfolding:

1. The nodes of the unfolding are ordered topologically, i.e., if there is
an arc from node v,(&) to node Vj(l), then v,-(fc) precedes Vj(l) in the
ordering.

2. Then, the node potentials 0j(k) are successively determined according
to

<jj{k)* = max{0,Fj(cn(k - <*,,)* + />-,): (t*(* - dij),Vj(k)) € AE}

Now, bounds on the average period of the maximal-rate schedule deter
mined above will be given. These bounds can be computed efficiently (in
polynomial time). In particular, they can be related to the maximal cycle
mean of marked graphs with appropriately chosen weights.

Theorem 3 (Rate Bounds) The minimal average period Pmin of a MASS
G = (V,A,d, h,p) can be bounded by

Pcm(G) < Pmin < Pcm(G)

where Pcm(G) and Pcm(G) denote the maximal cycle means of the marked
graphs G and G, respectively, which are defined as follows:
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• G=(V,A,d,h) with

h=<

• G=(V,A,d,h) with

h =

r*&i
hi

*3

vj e vA
Vi,vj evs
Vi € VA , vj € Vs

*« : VjtVA

r*&i : Vi,Vj€Vs
A*i +1 : vi € VA , Vj€Vs

Proof: The firing times of G, G and G in the case of free schedules
are denoted c;(fc), &i(k) and £<(&), respectively. Moreover, remember that
<r«(fc)* = &i(k) - pf and h*j = ^ + pt - p5.

If we show that for free schedules in G, G and G the relations &i(k) <
<Ti{k)m < a{(k) hold for all nodes v{ € V, k € Z>0, then Pcm(Gr) < Pm,„ <
Pcm(G) holds as Pmtn(6) = Pcm(G) and Pmtn(<§) = Pcm(G).

For all nodes without predecessor we have <7,(fc) = (Ti(k) = <rt(ifc)* =
0. Consequently, the initial conditions for all unfoldings are identical with
*,•(*) = *i(k)m = Ci(k).

Let us consider an arc (vt(k - dij),Vj(k)) in the unfoldings of G, G and
G. We will show now that the inequalities implied by such an arc in G:

o-j(k)* - a{k - dij)* > r{j

for some rtJ- is less strict in the case of G:

<Tj(k)m-<Ti(k-dij)m>rij-6 , 6>0

and stricter in the case of G:

<Tj(ky-<Ti(k-dij)m>nj + i , 7>0

As this holds for all arcs, &i(k) < <Ti(k)m < crt(Jfc) follows because of the
monotonicity of the Bellman-type equations for free schedules, see Theorem
2. Let us consider three cases
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Vj e VA: In the unfolding of G we have crj(k)* > (7,(ife - d^)* + h*j which
leads to <?j(k)* - <n(k - a\j)m > h*j. As hij = hij = h*j in this case, we
have £ = 7 = 0.

v^ Vj € Vsi In the unfolding ofGwe have o~j(k)* > \o~i(k - d^)* + h*j]. As
o-i(k—dij)* is integral in a free schedule, we have Cj(k)* > Gi(k—dij)* +
|7£1 ajid ^(A:)* - <n{k - d^)* > [7>J/|. As kj = Ay = fa,l in this
case, we have £ = 7 = 0.

«« € VA>> Vj e Vs: In the unfolding ofGwe have (Tj(k)* > \ai(k-d^)*+&£]
which leads to <Tj(k)* -a{{k-d{j)* > \<n(k-d^)* + h*j\ -<n(k-d^)*.
Consequently, we have r{j = \<n{k - d^)* +h*j] - <n{k - d^)*. Now,
t%j —1 < h*j < rij and h^ = /i£ which leads to h^ = rtJ- —£ with
1> 6 > 0. On the other hand, hy = h*j +1 leads to hy = r„ +7 with
1 > 7 > 0.

Example 6 Consider the MASS on the left side ofFig. 5 with an asynchro
nous node vi and a synchronous node v2. In the middle, resp. on the right
hand side of Fig. 5, the associated marked graphs G and G are shown. The
maximal cycle means of the associated marked graphs which determine the
bounds for Pmin are Pcm(G) = 3.25 and Pcm(G) = 3.1, respectively. With
out considering the unfolding of G, we can say according to Theorem 3 that
3.1 < Pmin(G) < 3.25. By the determination of a maximal-rate schedule for
G using Theorem 2, we get Pmin(G) - 28/9.

G Q Q

®P=o

£1 lis*"-^ v2 3.1 -lSI"*""^ 3.1 1*5"^^

Figure 5: Example of a MASS and associated marked graphs G and G
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As a result of the above theorem, we have Pcm(G) = Pmtn = Pcm(G)
for the subclass of MASS that do not have arcs from asynchronous to syn
chronous nodes because G = G. Note that this subclass of MASS includes
selftimed systems (V = VA) and GALS (globally asynchronous locally syn
chronous systems) (V = Vs) as special cases.

It turns out that one can analyze the behavior of this subclass in much
more detail. In particular, we are interested in the determination of a
maximal-rate periodic schedule in this case. We already know that the
corresponding period is Pcm(G) where G = (V, A,d, \h*]). As a simple con
sequence of the proof given for Theorem 3 , one can even compare the free
schedules of both graphs directly.

Corollary 1 The free schedule of a MASS G = (V,A,d,h,p) containing
no arcs from asynchronous to synchronous nodes is identical to that of the
corresponding marked graph G defined in Theorem 3. In particular we have
cri(k) = cri(k) + Pi for all Vi(k) € Vfc where <Ti(k) and at(k) denote the firing
times of node i in G and G in a free schedule, respectively.

Proof: The proof is based on the fact that according to the case ut-, Vj € Vs
and Vj € VA, the inequalities which determine the firing times in G and G
are identical, i.e., £ = 7 = 0. Therefore, we have ffi(k)* = c?i(k) -p, = £,-(Jk).

•

Finally, the following theorem and the corresponding constructive proof
lead to periodic maximal-rate admissible schedules for a subclass of mixed
asynchronous - synchronous systems.

Theorem 4 Given is a MASS G containing no arcs from asynchronous to
synchronous nodes. Then any admissible schedule ofG as defined in Theorem
3 leads to an admissible schedule for G with

,m.| fa(*)l+J* : Vi
,W"t *«(*)+* +! : Vi

evs
eVA

with the same computation rate. IfG contains synchronous nodes only, then
there is an L-periodic maximal-rate schedule of G where L denotes the num
ber of tokens in the simple cycle which determines the maximal cycle mean
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ofG. 4

Proof: An admissible schedule for Gsatisfies &j(k) > &i(k - dtj) + hij. Note
that we have defined ai(k)* = (n(k) - pt- in Definition 7.

For Vi, Vj e VA we have hij = h*j which leads toGj(k) > a{(k - di5) +h*j.
With *,-(*) = <Tj(k)* - 1 and &i(k - dij) = (Ti(k - d^)* - 1 we get <jj(k)* >
Gi{k —dij)* -f h*j which is admissible for G.

For Vj € VA, Vi € Vs we have hij = h*j which again leads to &j(k) >
*.'(* - dij) + h*i5. With &j{k) = <Tj(k)* - 1 and <n(k - dij)* = \&i(k - d^)]
we get <Tj(k)* > &i(k - dij)* + fc?. + 1 > h*j + <Ti(k - d^)*. Therefore,
<7j(fc)* > <?i(k - dij)* + h*j which is admissible for G.

For Vi,Vj e Vs vrehzvehij = \hmj] which leads to aj(k) > cri(k-dij)+\hmj]
and also r^(*)l > r^(^-^)+r^ll = \&i(k-dij)] + \h*j]. With*j(k)* =
l*j(k)] and <Ti{k-dij)* = \*i{k-dij)] we get ^(A:)* >(t,(A:-(£0)*+ \h*j] =
|"at(fc —rftJ)* + h*j] which is admissible for G.

Now we will prove the periodicity part. First, a l-periodic maximal-rate
admissible schedule for G is constructed, see section 2.2. This leads to

&i(k + l) = &i(k)-rPcm(G)

According to Theorem 1, Pcm(G) = § where I is the number of tokens
and H is the sum of weights in the critical cycle. Note that H,L e Z as
hijidij € Z. Therefore, we can write

<7<(fc +1) = *;(*:) + #

With <n(k)* = \&i(k)] we have

(Ti(k + L)* = <Ti(ky + H

which clearly is an ^-periodic schedule. A remark: The above result can be
extended to the casewhereG contains asynchronous nodes. The construction
of a maximal-rate periodic schedule is again possible. In this case one may
use the fact that thereare no pathsfrom asynchronous nodes to synchronous
nodes. Therefore, both parts of G can be dealt with independently. •

4We assume for simplicity, that this cycle is unique. However, it can be easily shown
that the result can be extended to the case where the critical cycle is not unique. Let the
numbers of tokens in different critical cycles have different values L{. Then, the solution
has a periodicity at most lcm(Li) over all critical cycles.
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Example 7 Given the MASS of Fig. 6 with two synchronous nodes vi and
v2, clock phases pi =0.1 and p2 = 0.6 and holding times hi2 = 1.9 and
h2\ = 1.7, respectively. If we determine the transformed arc weights, we get
h\2 = 1.4 and h21 = 2.2. Then we have h\2 = 2 and h2i = 3, which can be
seen in the associated marked graph G shown on the right hand side of Fig.
6. We obtain Pmin(G) = 2.5. Considering the unfolding with corresponding
firing times, we can see that there is a 2-periodic schedule for G according to
Theorem 4- For example, we obtain the following schedule:

<7!(2fc) = 0.1 + bk, <n(2Jfc +1) = 3.1 + bk,

a2(2k) = 0.6+ 5k, a2{2k + 1) = 2.6+ 5A: VAr € Z>0

^7 ^2p1=o!t*'-i~0^ P2=0.6

0.1 3.1 5.1

unfolding off Q

A

Q

Figure 6: MASS G, associated marked graph G and unfolding of G
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4 Optimal phase assignment

Thus far, weknow from Theorem 3 that the average period Pmin of a MASS
Gcan bebounded by Pcm(G) < Pmin < Pcm(G): The bounds on the minimal
average period strongly depend on the values h and h of G and G, respec
tively. By definition, h*j = hij + Pi —pj. Hence, the minimal average period
depends on the given node phase assignment.

Let us supposewehavethe freedom to adjust the clock phasesof synchro
nous nodes of a given MASS. Then wemight be able to find a combination of
phases leading to another MASS having a smaller average period. Hence, the
objectiveof this chapter is to investigate the effect of the phases of synchro
nous nodes on the minimalaverage period of topologically equivalent MASS
graphs.

Example 8 Given the MASS of Fig. 6 with two synchronous nodes Vi and
v2, and holding times h\2 = 1.9, and A2i = 1-7, respectively. The average
periods for different combinations of clock phases can be computed asfollows:

1- £i = 0.5, p2 = 0.5 =* h*12 = 1.9, h12 = [1.91 = 2, h*21 = 1.7,
h21 = fl.71 = 2 =* Pcm(G) = Pmin = 2.

2. Pl = 0.1,p2 = 0.6 =* Pcm(G) = Pmin = 2.5.

3. Pl = 0.2,1*2 = 0.0 =* Pcm(G) = Pmin = 2.5.

Fig. 7 is a density plot of the period PTOtn in dependence ofpi (x-axis) and
p2 (y-axis). For all combinations of clock phases p\,p2 € [0,1), it turns out
that only two different periods exist.

This simpleexample shows that the average period may vary due to different
assigned clock phases. In this chapter, we therefore would like to consider
the optimal phase assignment problem. Before we introduce the optimization
problem, we define when a MASS G is called phase optimal.

Definition 8 Given the set of MASS M = {G = (V,A,d,h,p) : 0 < p, <
1}. We define

Popt:= mm Pmin{G)
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Pmin(G)

0 0.2 0.4 0.6 0.8 1

Figure 7: Density plot Pm%n in dependence of pi (x-axis) and pi (y-axis).
Pmin(G) = 2 is shown in black, Pmin(G) = 2.5 is shown in white.

and call Popt the optimal average period of the set of MASS M. A MASS
G € M is said to be phase optimal, if Pm%n(G) = Popt.

In other words, a MASS G is called phase optimal if there exists no MASS
G' with same topology and same weight and distance functions, but different
phase assignment p and smalleraverage period. In this section, we are going
to address the following questions:

• How can we find the minimal period Popt in case the clock phases of all
synchronous nodes axe freely adjustable?

• Sometimes, some clock phases are fixed, others are not. What is the
best adjustment of the remaining clock phases then?
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We will answer these questions by proposing a simple optimization pro
cedure. First, we introduce an exact procedure for finding an optimal phase
if the MASS contains no asynchronous nodes. In the subsequent section, we
willconsider the general case. Wewill introducea polynomial time procedure
for finding a MASS G € M such that Pmin(G) satisfies Pmin(G) < Popt + 1.

4.1 Exact phase optimization

FromTheorem1, weknow that when given a MASS containing no arcs from
asynchronous to synchronous nodes, then the free schedule is identical to
that of the corresponding marked graph given in Theorem 3. Furthermore,
Theorem 4 states how an admissible schedule for G can be related to an
admissible schedule for G with the same computation rate. Therefore, we
are going to analyze the influence of the clock phases on the period of G.

Theorem 5 Given a set of MASS M containing synchronous nodes only, an
optimal phase MASS G € M may be found by solving the following MILP:

minimize P

subject to
tj - t{ +Pdij >kj >h^ +pi - pj, hij e z v(t>t-, vj) e A *6'
o < p, < i Wvi e v

Let P = -£, H,L 6 Z and H,L coprime, be an optimal solution of (6) and
p an optimal phase. Then the minimal average period of the corresponding
MASS is Pmin = P = Popt- Furthermore, the schedule a(k +L) = a-(k) +H
is an L-periodic maximal-rate admissible schedule for G where

<*(*)=#+[t< +(*-1)j| Vl<fc<L (7)
Proof: Let the phases of a given MASS be fixed. Then we are able to
determine Pmin by determining the minimal average period of the marked
graph G by solving the linear program (see (5))

Pmin = min{P : Tj - rt- > \h*j] - Pdij W{Vi,Vj) <= A}
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Using h*j = hij -f-pt- —pj and replacing h^ = ffcj-] by fey GZ and fey > fe^-,
the final MILP in (6) is obtained.

The MILP has 2|V| + 1 rational variables (vectors t, p and P) and \A\
integer variables hij. The proof that (7) is a periodic admissible schedule is
almost trivial. From (4) in the proof of Theorem 1, we know that &i(k) =
Ti -r {k —1)^, k € Z>o is amaximal-rate periodic schedule for G. We apply
the transformation described in Theorem 4 which transforms this admissible

A

schedule for G to obtain the following admissible schedule for G with the
same computation rate

<n(k) =fc(*)l +Pi =[t,- +(* - 1) j]+WVA: €Z>0

Example 9 Given the MASS G in Example 8. Solving the corresponding
MILP in (6) provides the solution P = 2, the vector r = (ti,t2) = (0.0,1.0)
and an optimal phase vector p = (pi,p2) = (0.9,0.2). With hi2 = 3 and
h2\ —1, we have H = 2, L = 1. From the periodic admissible schedule a of
G with

<7i(Jk) = n + (k - 1)2 = 2(k - 1)

*2(*) = 7i + (*-l)2 = 1.0+ 2(*-l)

an admissible schedule a for G becomes

ox(k) = r2(ifc-l)l+0.9 = 2Jfc-l.l
a2(k) = \2(k - 1) + 1.01 + 0.2 = 2k - 0.8

Note that the MILP in Theorem 5 can be changed in a simple manner to
account for other constraints concerning p,-.

4.2 A polynomial time procedure for nearly optimal
phase assignment

In this section we give an efficient procedure to find a phase assignment p for
a set of MASS M such that the corresponding MASS G G M has a period
Pmin(G) at most one unit greater than Popt.
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Definition 9 Given the MASS G = (V,A,d,h,p), define GA = (V,A,d,h)
to be a marked graph in which all nodes are assumed to be asynchronous, i.e.,
Fj(a) = a for all w,- € V in Definition 7.

Since the nodes in GA may start computation at arbitrary time instances,
Pcm(GA) < Popt- In other words, a lower bound on Popt is Pcm(GA), the
maximal cycle mean of GA.

Lemma 1 Let aa be an admissible l-periodic schedule for GA with period
\Pcm(GA)\ and <rf(k) = r< + (k - l)\Pcm(GA)]. Then <rA is a l-periodic
admissible schedule for the MASS G with the phase assignment pt- = rt- —
Kl Vvt- € Vs (and pi = 0 Vvt- € VA).

Proof: A schedule as required by Lemma 1 can be determined using (4)
and (5) in time 0(|,4||V|). Using

<rA(k)=Pi+lTi\+(k-l)\Pcm(GA)] VveVs

one obtains c?A(k) —pieZ for all ut- £ Vs. Additionally,

of{h) > <rA(k - dij) + hij V(vu vj) € A

because crf(k) is an admissible schedule for GA. As a result, we have

*f{k) - pj > <r?(k - dij) - pi + (feti + pi - Pj) Vvj e V

Moreover, for Vj G Vs one obtains

of(h) ~ Pi > \<rf(k - dij) - Pi + fa + Pi - Pj)]

because crf(k) - pj € Z for all Vj € Vs. Thus, by Definition 7, aA is a
one-periodic admissibleschedule for G with the phase assignments p,- = r,- —

Theorem 6 The phase assignment p as described in Lemma 1 leads to a
MASS G whose minimal average period satisfies Pmin(G) < Popt + 1.

26



Proof: From Lemma 1 we know, that the phase assignment p leads to a
MASS G with Pmin(G) < \Pcm(GA)]. Moreover, we have Pcm(GA) < Popt
which leads to Pcm(GA) - Popt < 0 and \Pcm{GAy\ - Popt < 1. As a result,
we have Pmin(G) —Popt < 1. The entire procedure to determine p takes
0(|V||A|) time according to (4) and (5). •

The whole procedure is explained in the following example.

Example 10 Consider the MASS shown inFig. 6 again. We obtain Pcm{GA)
= 1.8 and [Pcm(Gfj4)] = 2. Thus, we can use Lemma 1 to determine a phase
assignment p\, p2 such that the resulting MASS G satisfies Pmin(G) < 2.
The following steps lead to a phase assignment according to Lemma 1 and
Theorem 6:

• We obtain the following l-periodic schedule for GA:

aA(k) = ri + (fc-l)2
aA(k) = r2 + (*-l)2

where T\ = 0 and r2 = 0.

• Then we have

p1 = n - |rij = 0

p2 = t2 - |r2J = 0

• For the phase assignment defined above,

<ri(k) = 2k, a2(k) = 2k

is an admissible schedule for G. Therefore, we have found a MASS G
(p\ —P2 = 0) that is provably nearly optimal, in this case even optimal.

5 Modeling Issues of Implementation

Finally, we would like to show how the MASS model may be used for repre
senting relevant aspects of the design of mixed asynchronous - synchronous
systems. It should be obvious that MASS includes the class of systems that
can be described by marked graphs, hence selftimed systems with determin
istic computation times of nodes can be analyzed.
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5.1 Modeling of finite queue sizes

It is possible to model an asynchronous communication involving a queue of
limited size. Fig. 8a may model the following situation: There is a selftimed
communication from module vi to module v2 with a buffer size of 3. A node
cannot fire until its output queues contain at least one empty buffer. Two of
the buffers contain one initial token each. This situation can be modeled by
using a forward arc (vi,v2) to model the tokens and a backward arc (v2, vi)
to model the empty buffers (spaces, bubbles [GS90, Wil94]). Module v2 is
not pipelined, i.e., a new token can not be processed before the previous one
has been transferred. The evaluation time of module v2 is 2, a token needs
time 0.2 to propagate from vi to v2, a space needs time 0.1 to propagate from
v2 to vi. This situation is modeled by introducing the appropriate holding
times for the tokens.

2.2 ^^clock node

©*1
0.1

®^Q-

©

2 register

Figure 8: Modeling mixed asynchronous - synchronous systems
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5.2 Simulation of synchronous systems

The MASS model can be used for modeling synchronous systems. Starting
point is a given synchronous signal flow graph consisting of combinational
modules and their interconnections which may contain synchronous registers.
For the sake of simplicity, we assume only one clock phase to clock all of the
registers (i.e., single clock, monophase, edge-triggered). There are many ways
of modeling such a system in the MASS model.

For example, if only the sequence of operations is of concern, one may
simply replace the registers by initial tokens and the combinational modules
by asynchronous nodes of a marked graph.

Another possibility is the modeling shown in Figs. 8b,c : The synchro
nous registers are replaced by synchronous nodes as shown in Fig. 8b. The
combinational modules are modeled using asynchronous nodes whose holding
times are the delays of the corresponding combinational modules, seeFig. 8c.
The timing corresponds to that of the synchronous system if input tokens are
continuously available and if all accumulated delay times between registers
are smaller than the clock period.

The next possibility takes into account the global clock generation of a
synchronous system. An extra clock node is responsible for the simultaneous
transfer of tokens to all synchronous nodes each of which models oneregister.
The connection between the clock node and the synchronous nodes is bidi
rectional and corresponds to an interconnection with a queue length of one.
This prevents the accumulation of clock tokens and guarantees that if the
longest delay path between two registers (synchronous nodes) is larger than
the clock period, the period of the whole system is slowed down correspond
ingly. The modelingof the registers is shown in Fig. 8d wherecombinational
modules are modeled as in Fig. 8c.

5.3 Interfacing

Finally, some remarks concerning interfacing asynchronous and synchronous
subsystems are presented. The MASS shown in Fig. 8e models the situa
tion where node v\ belongs to an asynchronous subsystem whereas node v2
models the 'first* register of a synchronous subsystem. This input register
accepts tokens only at integral time instances. The holding time h models
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the communication time andthe processing time of the synchronous node v2,
e.g., for executing the communication protocol. If the asynchronous part is
faster than the synchronous one, tokens will accumulate in the queue (vi,v2).
This can be avoided by using finite length queues, as in Fig. 8a. If the syn
chronous part is slower, the synchronous node v2 does not process a token
every clock tick, but all other nodes in the synchronous subsystem do. This
behavior can be implemented in hardware by sending a token - bit in addi
tion to the data which signals that a register contains valid data. The clock
operates continuously. In essence, the operation of an asynchronous system
is simulated by the synchronous one.

Another possibility is shown in Fig. 8f. Here, the concept of a global
clock node is used, which is bidirectionally connected to all synchronous
nodes of the synchronous subsystem. The incoming token is split into one
that represents the data and another one that serves to enable the clock
signal. In a circuit implementation, this corresponds to stopping the clock
of the synchronous subsystem if no input data is present.

If the output of the synchronous subsystem is connected to an asynchro
nous subsystem, similar situations occur.

6 Summary

We have introduced a graph model called MASS for expressing thetiming of
mixed asynchronous - synchronous systems. A MASS is an extended timed
marked graph where the node set V is partitioned into asynchronous nodes
Va and synchronous nodes Vs. The synchronous nodes have the property that
they can fire onlyat instances of their local clock tick. Based on this model,
we analyzed timingin terms of minimal average period (or equivalently, the
maximal throughput rate) and periodicity. It has been shown that bounds
on the maximal throughput rate can be determined based on maximal cycle
mean computations on related marked graphs. For interesting subclasses of
MASS (e.g., GALS (V = Vs)), the lower and upper bounds are identical,
hence the maximal throughput rate is determined exactly. Hence, efficient
performance analysis is possible.

Next, we investigated the problem of optimal phase assignment. In con
trast to existing approaches for phase optimization in level-sensitive circuits
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[DR89, SM092], we assumed different clock phases due to clock skew in
edge-triggered synchronous circuits. The assumption of deterministic clock
phases is justified in systems wheredifferent subsystems receive clock signals
from the same clock oscillator. Based on these assumptions, we formulated
the problem of optimal phase assignment. An exact solution (based on the
solution of a MILP) as well as a polynomial time algorithm that returns a
close-to-optimal solution have been proposed. The phase assignment may be
used as input for placement and clock routing tools.

Finally, we have shown how finite buffering and interfacing of selftimed
and synchronous subsystems can be modeled using the MASS model.

7 Conclusions and Future Research

In this paper, we assumed deterministic node holding (communication +
computation) times. For synchronous nodes, this assumption is justified by
the fact that we assume that the corresponding synchronous subsystems have
been individually optimized and synthesized using high level synthesis tools.
Such tools typically return a fixed clock period and fixed latency. This as
sumption, however, may not be accurate for asynchronous nodes for which
node holding times depend on the implementation style of the selftimed cir
cuit. Whereas fixed holding times may be justified by design styles like
micropipelines [Sut89], some implementation styles create data-dependent
completion signals, and, as a result, achieve better average throughput rates
[GS90]. In the latter case, a stochastic modeling of holding times for asyn
chronous nodes is required. This is one subject for future research. We would
alsolike to extend our analysis to multiple clock rate synchronous nodes. An
other issue of interest is to be able to concatenate high-level synthesis tools
for synchronous circuits (see [WC91] for an overview), and asynchronous cir
cuits (see papers edited in [GB93, MM94]), and investigate the influence of
local node optimizations on the system-level performance, given e.g., by a
MASS graph. Finally, the MASS model may be useful also in the domain
of interface synthesis, which synergistically combines asynchronous and syn
chronous design styles. Dueto the proven efficiency of the presented analysis
algorithms, we believe that the MASS model is an interesting model for
system-level CAD tools.
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