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Abstract

Inductive Learning by Selection

of Minimal Complexity Representations

by

Arlindo Manuel Limede de Oliveira

Doctor of Philosophy in Engineering in Electrical Engineering and Computer Science

University of California at Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

This dissertation addresses the problem of inferring accurate classification rules from ex

amples. A formalization of Occam's razor, the minimum description length principle, is

used to transform the problem of performing accurate induction from examples into the

problem of selecting the minimal complexity rule that fits well the available data. Four

different representation schemes are addressed: two-level threshold gate networks, multi

level Boolean networks, decision graphs and finite state machines. Heuristic algorithms

for the inference of classification rules represented using each one of the first three rep

resentations are presented and their performance evaluated, both in terms of the size of

the solution obtained and the quality of the induction performed. Exact algorithms are

also proposed for the selection of minimal complexity classification rules represented either

as decision graphs or as finite state machines. For these algorithms, proofs of optimality

and an evaluation of their limitations are also presented. The generalization accuracy of

the classifiers generated using the algorithms proposed is compared with the accuracy of

alternative approaches in a variety of problems extracted from the machine learning litera

ture. Finally, the applicability of the algorithms to real-world tasks is demonstrated with

two large problems: hand-written character recognition and noise removal from gray scale
images.

Professor Alberto Sangiovanni-Vincentelli
Dissertation Committee Chair
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Chapter 1

Introduction

The main objective of the discipline known as artificial intelligence (AI) is to

make computers behave in ways that can be defined as intelligent. One of the hallmarks

of intelligence is the ability to learn from past experience and to adapt the behavior in

accordance with this experience. Machine learning is the branch of AI that is concerned

with the ability of systems to learn and adapt. In fact, this branch became so important,

and the techniques developed have found applications in such a wide variety of fields that

machine learning is now a very important discipline on its own right.

One of the central topics of research in machine learning is inductive inference,

the study of algorithms that enable systems to learn from examples. This subject is also

the central topic of this dissertation. In particular, this thesis describes algorithms for the

inference of classification rules in discrete domains. The exposition made in the following

sections intends to introduce the basic concepts and definitions involved in inductive infer

ence but does not pretend to be exhaustive or even complete. The reader is referred to [43]

and [64] for comprehensive reviews of both the empirical and theoretical issues involved in

inductive inference.

1.1 Inductive Inference

Inductive inference problems are characterized by a domain D and a learner, or

learning algorithm. Thelearner isable to observe some objects (or instances) in the domain.
This set of objects is the training set, T. Given this information, the learner has to infer an

hypothesis, i.e., a theory that can be used to explain the data observed. The objective is to
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use thegenerated hypothesis to predict thecharacteristics ofa set ofpreviously unobserved
objects, the test set. In general, some information is missing from the objects in the test

set. The objective is to predict this information using the generated hypothesis. Although

hypotheses may be used to predict a number of different characteristics, this thesis ad

dresses only a particular family of problems, globally known as classification problems. In

classification problems, each object in the domain is labeled with one label that defines the

class it belongs to. The hypotheses generated by the learner will be used to recover these

labels for the objects in the test set. A system that uses the hypothesis generated by the

learner to classify objects is called a classifier. In single class problems, the instances are

labeled as either belonging or not belonging to a given class. In multi-class problems, the

instances can belong to one of several classes.

1.1.1 Motivation and Examples

Examples from two concrete domains will be used to motivate the reader for the

wide range of applicability of inductive inference algorithms and illustrate in a more vivid

way some of the concepts involved. The first domain is related with a particular ending

in the game of chess. Consider the chess endings depicted in figure 1.1. If both players

White to move Black to move

White to move White to move

JOOL

jOUr
Black to move

Black to move

White to move

White to move

Figure 1.1: Instances of the King+Pawn vs. King chess endings

play the best moves available, the 4 positions on the left side will terminate with a win for
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white, while the positions on the right side will terminate with a draw. This is a single-class

classification problem: a position is either a win, or is not. The objective of the learning

algorithm is to infer, from the training set data, a rule that can be used to decide whether,

under perfect play, a given position will be a win or a draw.

In this example, the domain is the set of all King+Pawn vs. King chess endings

that have all chess pieces in the same column and have the Kings in front of the pawn and

in direct opposition, i.e., separated by one single row. The objective of the learner is to

derive a classification rule that canbe used to find whetheror not a particular position has a

forced win for white. Such a classification rule will be termed an hypothesis. The hypothesis

can also be viewed as a representation of the set of all positions that are forced wins for

white. This set can be represented implicitly by its characteristic function1. This view of

the hypothesis as subsets of the input space (or the respective characteristic functions) is
very useful and will be defined formally in chapter 2.

Any classification problem can, in principle, be formalized as aninduction problem

in discrete spaces by appropriately encoding the instances using an encoding scheme that

maps the problem into a discrete domain. In this case, such an encoding of the problem is

easy to obtain. For example, instances of this problem can be encoded by simply writing

down the column where the pieces are, the row of each piece and an extra bit that describes

which side is to move. If the row coordinates are listed in the order White King, White
Pawn, Black King and both coordinates are between 0 and 7, the training set would then
consist of the following description:

4,5,4,7,1,+

2,4,4,6,0,+

7,3,1,5,0,-

2,4,3,6,1,-

1,5,4,7,1,+

1,4,2,6,1,+

0,5,1,7,0,-

6,2,1,4,1,-

Figure 1.2: An encoding of the King+Pawn vs. King chess endings

The characteristic function of a set is a function that takes the value 1 for the elements on the set and
takes the value 0 otherwise.
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The + signal describes positions where White hasa forced win. It must beobserved

that almost all domain specific information was lost in the conversion performed using this
encoding. If the original problem was solvable, at least for someone familiar with the

domain, the encoded version of the problem looks much harder. The learning algorithms
described in this thesis are usually faced with learning the problems without having the
possibility of using any contextual information that is available for humans. Choosing an

encoding scheme that preserves as much contextual information as possible is a critical step

in the solution of any problem. The process by which an appropriate encoding scheme can

be chosen is domain dependent and is not addressed in this dissertation, except in special

cases for illustrative purposes. It will be assumed that a description in a form similar to the

one described abovewasobtained in some way and will be used as the input to the learning

algorithm. Naturally, the algorithms can be used even if the chosen representation does

not preserve any contextual information, but the quality of the generalization obtained will

suffer. Given the encoding described above, figure 1.3 shows a graph that can be used to

classify this type of chess endings. It is easy to verify that a classification procedure that

uses this graph classifies correctly all the positions in figure 1.1. In fact, it will also classify

correctly all the possible positions in this domain.

This work describes algorithms that can be used to derive representations like the

one depicted in figure 1.3. In this particular case, it is unlikely that any learning algorithm

would be able to infer the exact solution with the limited amount of information provided in

the 8 positions shown. Some of the algorithms described are, however, remarkably effective

in this problem if a somewhat larger training set is provided. This problem is used as one

of the case studies in chapter 7.

The second domain used to motivate this work is in the field of handwritten char

acter recognition. Figure 1.4 shows instances of patterns that correspond to different hand

written digits extracted from the widely available NIST database [28]. The objective in

this case is to infer a classification rule that allows a classifier system to recognize which

particular digit the writer intended to write.

This problem is an example of a multi-class problem because the number of dif

ferent labels is higher than 2. This problem is also used as a case study in chapter 7, where

the strategies used to encode the instances and select the representation are also described.
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a.

-7

Black to move?

Whitekingrow =5?

White piecesin

non adjacentrows

Figure 1.3: A decision graph for the chess endings problem

o 7 f t
7 I £

Figure 1.4: Examples of handwritten digits
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1.1.2 The Effect of Noise in Classification Problems

In the chess example, it was assumed that all positions present in the training set
arecorrectly labeled. This is the noise-free case, where nocorruption ofthe attribute values
or the class labels is assumed to take place.

The character recognition example, on the other hand, is bound to have some

errors present in the data used as the training set. This complicates the task of the learner

that has to take into consideration the fact that some of the labels or attribute values may

be wrong and change its hypothesis accordingly.

Algorithms that can handle problems with classification and/or attribute noise

are, in principle, more general and can also handle the noise-free case. Their performance

may, however, be inferior to that of algorithms that use the fact that no noise is present

in the training set. In real world problems, some amount of noise is always present. Large

databases always have some fraction of the data corrupted by noise or incorrect. There

fore, algorithms that are designed to be applied to real world problems need to take into

consideration this case. Nonetheless, many formal models are only applicable to the noise

free case. In some cases, this restriction is only present to make the analysis of learning

situations simpler. In others, it may be a fundamental limitation of the model or the algo

rithms addressed. Moreover, it may happen that even algorithms designed for the simple

noise-free case turn out to work quite well in problems with noise, specially if the level of

noise is not high.

1.1.3 Mapping Multi-Valued Attributes to Boolean Variables

The majority of the algorithms described in this dissertation assume that problems

defined over discrete spaces with multi-valued attributes are first mapped into a Boolean

space of N variables, {xi,...xn}. This implies mapping attributes that can take k > 2

values into a set of flog2(A;)] binary variables. This solution is by no means unique, since

all the algorithms described can be modified to handle multi-valued attributes. There are

two major drawbacks to this solution:

• Concepts may become harder to represent in the modified Boolean space than they are

in the original multi-valued space. This increase in complexity is, however, limited by

a polynomial factor on the number of values that the original attributes can take and is

therefore not a very important consideration. The quality of the inference performed
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by the algorithms may, however, be reduced by this transformation. Comparisons

performed with alternative approaches that use the original multi-valued attributes

did not, however, show any significant degradation in the quality of the solutions

observed.

• If the final solution needs to be presented to a human (instead of simply used to classify

new instances), it may be harder to interpret because of the binary coding of multi

valued variables. Since the transformation from discrete valued attributes to Boolean

valued ones is performed internally, it is completely transparent to the user and this

problemis significant only if an easy human interpretation of the derived hypothesis is

critical. This happens only in a relatively small number of applications. Furthermore,

a simple post-processing step can be used to recoveran hypothesis formulated in terms

of the original variables if clarity of the derived rule is a critical factor.

Formanyproblems, thesedrawbacks are a relatively smallinconvenience compared

with the advantages that comefrom being able to uniformly handle all the variables. This

approach also provides additional generalization capability provided by the ability of the

algorithm to use the binary representation of integers to its advantage in the identification
of regularities.

1.1.4 Transforming Multi-Class Problems Into Single-Class Problems

General classification problems can betransformed into single class problems using
a variety of encodings. Assume that the instances in the training set belong to one of k
possible classes. The following alternatives can be used to encode the value of the label

that describes the class of an instance:

• Binary code: Encode the label value using a binary code with riog2 k] bits. This
option generates the smallest number ofsingle class problems from the original clas
sification problem. However, with this encoding, an error in one of the single class
problems usually causes a mis-classification.

• One-hot code: Encode the label value using a one-hot encoding that uses k bits.

This encoding sets to one the bit that corresponds to the particular class. An error in

one ofthe resulting single class problems will transform the code into a non-existing
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one and a class value can not be attributed to that instance, but will not result in a
mis-classification.

• Error correcting code: Encode the label value using an error correcting code [23,
73]. This approach preserves most of the compactness of a binary encoding while
being much less sensitive to errors in one ofthe single class problems. Additionally,
the Hamming distance between the observed outputs and the closest valid codeword

gives a measure of the certainty of the classification. This can be useful in problems
where a failure to classify is less serious than the output of a wrong classification.

It should be noted that the use ofthe first or third alternatives creates single class

problems that are, in general, more complex, than the ones generated by the second alter

native. Nonetheless, some classification errors made using the last encoding are recoverable,

given the properties of error correcting codes.

After both the mappings defined above are performed, the solution of any classifi

cation problem is equivalent to the synthesis ofa number ofsingle output Boolean functions

and a discussion on the power of any hypothesis representation scheme reduces to a discus

sion on the power of that representation scheme to represent Boolean functions.

1.2 Overview of the Approach

The approach described in this dissertation is based on the fact that simpler hy

pothesis usually perform better in the training set than complex ones. The theoretical

justifications for this assumption are addressed in chapter 2. In particular, this work is con

cerned with the design of algorithms that generate hypothesis of minimal complexity that

are consistent, to some degree, with the training set labeling. In all cases, the algorithms

accept as input a labeled training set and generate an hypothesis of minimal complexity

described using one of the representation schemes described later in this section.

Although the classification rules (or hypotheses) generated by the learner can be

described using any representation scheme, for problems defined over discrete spaces, some

representations are particularly natural.

This dissertation addresses 3 different representations for hypotheses in problems

defined by a fixed number of discrete attributes: two-level threshold gate networks, multi

level Boolean networks and reduced ordered decision graphs. It also describes algorithms
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for the synthesis of deterministic finite state machines, a representation appropriate for

problems defined by attribute sequences of variable length. This section provides an in

formal definition of these representations. When required, more formal definitions will be

introduced in the chapter dedicated to each one of these representations.

1.2.1 Two-Level Threshold Gate Networks

A threshold gate is a gate with k inputs, {&i,X2i •••)&*} th&t outputs the logic

value 1 if and only if
n

]T w,a:t-> w0 (1.1)
t=i

where wi,W2,..., wjt are (integer) input weights and w0 is the (integer) threshold value of

the gate.

A two level threshold gate network consists of two levels of gates, where the input

variables are connected to the inputs of the gates in the first level and the outputs of these

gates are connected to the inputs of the second level gates.

1.2.2 Multi-Level Boolean Networks

A Boolean network is a directed acyclic graph where each node implements a

simple single-output primitive Boolean function, i.e., an and, or or not operation. In this

graph, each node with no incoming edges corresponds to one of the input variables. Some

special nodes in the graph are defined as the outputs of the network. For a single output

Boolean network, there is a single output node and this node has no outgoing edges.

1.2.3 Reduced Ordered Decision Graphs

A decision graph is a rooted, directed, acyclic graph where each node is labeled

with the name of one variable. A decision graph has two terminal nodes nz and n0 that

correspond to the leaves of the graph. Every non-terminal node nt- has one else and one

then edge that point to the children nodes, nfbe and njhen, respectively.

A decision graph is called read-once if each variable occurs at most once along

any computation path. All decision graphs considered in this work are read-once decision

graphs and references to this will be omitted. A decision graph is called ordered if there is

an ordering of the variables such that, for all paths in the decision graph, the variables are
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always tested in that order (possibly skipping some variables). A decision graph is called
reduced if no two nodes are equal (same label and same descendents) and no node has the
else and then edges pointing to the same node [18]. A decision graph that is both reduced
and ordered is called a reduced ordered decision graph (RODG).

Reduced ordered decision graphs are known in the logic synthesis community as

Boolean decision diagrams (BDDs). Both notations are widespread in the different com

munities and one of them had to be chosen for the present text. I choose to use the term

RODG to denote this type of representation. Readers more familiar with the BDD notation

should read BDD every time the term RODG is used.

1.2.4 Deterministic Finite State Machines

Following the standard conventions, a finite state machine (FSM) is represented by

a directed graph whereeach edgeis labeled with the value ofoneinput and the corresponding

output. Each node in this graph corresponds to one state of the machine. One of the nodes

is distinguished as the reset state and represents the state where the machine is started. In

the presence of one input, the machine outputs the value present in the edge that leaves

the current state and is labeled with that value of the input and the current state changes

to the one pointed by that edge. A finite state machine is deterministic if, for any node in

the graph, only one outgoing edge with a given input label exists.

1.3 Expressive Power of Different Representations

The hypotheses generated by the learning algorithms are described using one of

the representations described above. The representation selected can have a critical impact

on the quality of the accuracy of the generalization obtained.

In particular, if the representation used is not well adapted to the problem at hand,

the complexity of any hypothesis that matches the training set will be too large and its

accuracy poor. The critical point is that the representation scheme used has to be powerful

enough to allow for hypothesis with small complexity to match the training set data to some

degree of accuracy. Assume, for example, that the family of problems under consideration

is the family of symmetric Boolean functions defined over n variables. A function is called

symmetric if its value doesn't change when two input variables are exchanged. This implies

that the value of a symmetric function depends only on the number of bits at 1. Assume
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now that the learning algorithm represents the hypotheses using a disjoint normal form2

(DNF) representation. Since some symmetric functions require a number of terms in the

DNF representation that is exponential3 in the number of input variables the performance

of this algorithm for some problems in this family will be very poor.

The relations between the sets of Boolean functions that can be represented by

polynomial sized descriptions for each one of these representations is represented in figure

1.5.
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Figure 1.5: The expressive power of different representations

A particular representation scheme X is more powerful than representation scheme

Y if any concept that can berepresented bya polynomial sized description using scheme Y
can also be represented using a polynomial sized description using scheme X. In this sense,

multi-level Boolean networks are more powerful than any one of the other 3 representations

and two-level threshold gate networks are strictly more powerful than two-level Boolean

gate networks. It is also important to note that the class of functions implementable by

polynomial size unbounded level threshold gate networks is equal to the class of functions

Equivalent to a sum-of-products representation.
3For example, the parity function requires 2n_1 factors in DNF form.
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implementable by unbounded level Boolean gate networks. This equality comes from the

fact that one can always replace a threshold gate bya polynomial number of Boolean gates.

Regrettably, the same flexibility that makes multi-level Boolean networks so pow

erful also makes it very hard to design algorithms that are effective in deriving a compact

multi-level network that matches the training set to some specified degree of accuracy. On

the other hand, the properties inherent to the reduced ordered decision graphs representa

tion makes it possible to design and implement algorithms that perform this task in a more

effective way.

1.4 Alternative Approaches

The representations addressed in this dissertation represent only some of the possi

ble choices. Many other representations are possible and the following two deserve a special

reference because of their popularity.

1.4.1 Neural Networks

Neural networks have emerged as one of the representations of choice not only in

the machine learning community but also in many other fields. Although there are many

different types of neural networks, the models most commonly used can be viewed as in

terconnected networks of simple processing elements. Each processing element computes

a weighted sum of its inputs and outputs a continuous function of this sum. Among all

algorithms that can be used to select the node functions, the back-propagation [41] algo

rithm is the most popular one. This approach is remarkably effective in a wide variety of

problems and the algorithms used are straightforward. However, there are some drawbacks

that make the use of neural networks trained using back-propagation harder to use than

alternative techniques, the most relevant being probably the difficulties inherent to the pro

cess of choosing the right architecture. Solutions proposed to this limitation have not met

widespread acceptance. Furthermore, in some problems, being able to realize an hardware

implementation is important. Neural networks trained using standard algorithms are hard

to implement because each node in the network implements a soft threshold function with

real weights. Since these weights have to be stored with a relatively high precision, either

analog weight storage or expensive D/A converters have to be used. In contrast, the three

last representations addressed in this dissertation are straightforward to implement using
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standard digital technology, an alternative that is more cost effective than solutions based

on analog designs. One of the representations addressed, two-level networks of threshold

gates, can be viewed as a special case of neural networks, where only two levels are al

lowed, the weights are integer valued and the output is a step function. This limitations

make it both easier to implement this type of networks in hardware (although not as easy

as the other three representations) and to design minimal size networks. A more detailed

comparison between the two approaches is presented in chapter 3.

1.4.2 Decision Trees

Decision trees [17, 76, 79], on the other hand, do not suffer from these drawbacks.

Little or no extra information is required apart from the data present in the training set

and the resulting tree can be easily implemented using standard digital technology. Em

pirical results [6] have shown that the performance of decision trees is similar to that of

trained neural networks for many problems. There are, however, some domains where the

algorithms described in this dissertation perform much better than decision trees. In fact,

one of the representations studied, RODGs, can be viewed as a generalization of decision

trees. Decision trees and RODGs are, however, less well adapted than neural networks to

perform induction in domains that are inherently continuous.

1.5 Organization of the Dissertation

The remaining of this dissertation is organized as follows:

Chapter 2 describes the theoretical results that support the selection of minimal

complexity hypotheses as the most likely to exhibit high generalization accuracy. In partic

ular, it describes how the minimum description length principle can be applied to transform

the induction problem into an optimization problem. This chapter also analyzes the com

putational complexity issues involved in the process of hypothesis selection and introduces

some basic definitions that are used in the succeeding chapters.

The following four chapters are dedicated to the description of the algorithms that

select the minimal complexity hypothesis for each one of the representations described in

section 1.2.

Chapter 3 describes an algorithm for the selection of minimal two-level networks

ofthreshold gates. Thealgorithm is based onextensions ofsome ofthe well known concepts
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and techniques developed for two-level circuit minimization and itsapplicability isrestricted
to noise-free problems.

Chapter 4 describes and analyzes the algorithms developed for the synthesis of

minimal multi-level networks of Boolean gates. Apart from the different representation

chosen, these algorithms differ from the ones described in the previous chapter in that they

can handle problems that have some level of noise.

Chapter 5 is dedicated to the study of RODG representations. It has two major

parts that address the same problem with radically different approaches. The first part

describes how an exact solution for the problem can be formulated as a set covering task.

This is the first formulation of an exact solution to this problem that does not involve an

extensive search algorithm. Since the exact approach is limited to relatively small problems,

the second part of this chapter is dedicated to the study of an heuristic algorithm that can

be used in much larger problems. The exact solution is restricted to the noise free case

while the heuristic approach can handle the more general problem of classification in the

presence of noise.

Chapter 6 describes an exact implicit algorithm for the inference of finite state

machines from examples of accepted and rejected strings. This implicit formulation is a

radically different approach to this problem and departs completely from the explicit search

based methods developed by previous authors.

The discussion of the previous work developed using each of these representations

has relatively little overlap and is relegated to the beginning of each of these chapters.

Evaluating such a wide variety of algorithms in a meaningful way is a complex task

and many interesting comparisons had to be left out due to space and time considerations.

Since the inductive inference task is formulated as an optimization problem using a variety

of representations, the solutions have to be evaluated with respect to two different criteria:

how well do the algorithms solve the optimization problem proposed and how does the

inference performed by the algorithms compare with alternative techniques.

An evaluation of the algorithms with respect to the first criterion is described

immediately after each algorithm is presented. For exact algorithms, the critical parameter

to measure its their speed, or, equivalently, how large are the problems that they can solve

in a fixed amount of time. For heuristic algorithms, both speed and solution quality (i.e.,

how close to the optimum are the solutions obtained) are important. Results listing the

data obtained in problems with known solutions are included at the end of each of these
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chapters.

Evaluating the algorithms with respect to the second criterion is more difficult

because one has to chose from among the alternative techniques the ones that should be

used as a standard of comparison. In the interest of fairness, the algorithms are compared

with the most popular techniques used for inference from examples and these comparisons

are made in a wide variety of problems. This is important because an algorithm may

perform particularly well in a particular problem and perform poorly in a different one. In

fact, the ability of an algorithm to handle problems from different domains in a robust way

will ultimately make the difference between popular and unpopular algorithms. From all

the algorithms described in this dissertation, the heuristic algorithms for the inference of

RODGs and the heuristic algorithms for the inference of combinational Boolean networks

exhibited a higher degree of robustness and were more flexible in different domains. For this

reason, the majority of the comparisons with respect to the second criterion, the quality of

the inference performed, aremade usingthese algorithms. These comparisons are performed

in chapter 7 that also contains two examples of the application of the algorithms to more

complex problems. Chapter 7 not only describes the solutions obtained and analyzes how

the algorithms performed, but also shows how a VLSI implementation of the resulting

classifiers is straightforward to obtain. This is done mainly to illustrate how the use of

these representations makes it easy to implement classifiers using digital VLSI technology.

Finally, chapter 8 summarizes and puts in perspective the results obtained. An

analysis of the major strengths and weaknesses of the algorithmsis presentedand directions

for future research are proposed.
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Chapter 2

Inductive Biases and Complexity

The problem of selecting the hypothesis that will be more accurate in the test

set is, in general, an ill-posed problem because many hypotheses that are consistent with

the training set exist. A preference, either explicit or implicit for one hypothesis over an

alternative one is called a bias.

No bias is intrisically superior to any other bias for all problems and an argument

for the superiority of a particular bias can only be made in a particular context. In fact,

a conservation law that states in a particularly simple way the inherent equivalence of all

biases in the absence of a context can be easily derived. It turns out, however, that not all

problems are equally likely to appear and that a very general rule can be used to select an

hypothesis that has good generalization accuracy. This chapter is dedicated to the study of

these arguments.

2.1 Definitions and Conventions

The problem domain D, defines the set of possible input objects, d € D. The

training set T = {{d\... dm}, t) is defined by a set of m elementsof D and the corresponding

label vector, t.

Each element of D is defined by a number of discrete attributes, {a\,...,a^i} .

This domain is mapped into a Boolean one defined over a space of N Boolean variables

{x\,...,xn} as described in section 1.1.3.

The label vector t contains m components and tj is defined to be 1 if the object

dj is labeled as belonging to the target concept, 0 otherwise.
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It will be useful, sometimes, to consider X{ not only as the ith input variable, but

also as the vector of values that 2,- takes for the instances in the training set. In this case,

x\ represents the value that variable a,- takes in the jth instance in the training set. These

binary vectors can also be manipulated using the common Boolean operators by applying

them successively to each element of the vectors.

An incompletely specified Boolean function / : {0,1}^ —• {0,1, X} is defined by

its off, on and dont-care sets (/0ff, /on> /dc)- If a- function has /ac = 0 then / is a completely

specified function and can be viewed as the characteristic function of some subset of the

input space. The training set defines an incompletely specified function, where the positively

and negatively labeled examples correspond to the on and off sets respectively.

A minterm z represents an assignment of values z\, 22,..., zjq to the input variables

and corresponds to one vertex in the input space hyper-cube. Two functions / and g are

called compatible iff /on f]goS = 0 and foS f]gon = 0.

When describing Boolean functions the conjunction sign will, in general, be omit

ted and the + or A signs will be used to represent disjunction.

2.2 Deterministic vs. Probabilistic Concept Learning

In deterministic single concept learning, concepts and hypothesesare subsets of the

domain D. Concept will be used to describe the underlying true rule and hypothesis will be

used to describe the approximations generated by the learner to the target concept. The

objects in the training set are labeled positive if they are amember of the targetconcept and

negative otherwise. The objectiveis to generate an hypothesis that is a good approximation

of the target concept, in a sense that will be defined precisely later.

In some domains, the characteristics of the problem may be such that the cor

respondence between the label of an object and the value of its attributes is not defined

in a deterministic way. This means that an object d € D with a certain combination of

attributes will have a certain probability 7(d) of being labeled as a positive instance of the

target concept. The function 7(d) : D -> [0,1] gives the probability that a given element

of D is assigned a positive label. This corresponds to the problem of classification in the

presence of noise, as defined in section 1.1.2. To formulate this problem as a single concept

learning problem, the target concept can be defined as the set of all objects d such that

7(d) > 0.5. The hypothesis that coincides with C is the one that minimizes the error in
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the test set. In this case, it is important to define the quantity Pp(T|7), that represents
the probabitity of the observed training set under the condition that the labeling function
is 7(d). For a training set T = ({di.. .dm},t) this quantity is given by

^l(r|7) =II(1-l««--7«)l) (2.1)

In practice, access to the true concept C is not available and therefore the only way by which

a generated hypothesis can be evaluated is by testing it in unseen instances. Therefore,

whether or not the hypothesis is a good approximation to the somewhat artificial definition

of the true concept above is irrelevant. What matters is the performance of that hypothesis

for the instances in the test set. This work does not address the more general problem of

actually estimating the value of7(d) for the points in the domain. In fact, and purely for the

effect of performing classification, the above approach is sufficient if the target concept can

be well approximated by a generated hypothesis. In many problems, all instances that are

likely to appear have 7(d) very close to 0 or very closeto 1. Forinstance, in the chess endings

example discussed before, it may be the case that there exists a small probability that a

given chess ending is mis-labeled. If this probability is small, this should not preclude the

learner from inferring the exact rule, something that would be impossible if a deterministic

labeling is assumed. This type of situation is very common in classification problems and

can be handled in an effective way by assuming that a probabilistic labeling takes place,

although, in fact, a deterministic labeling was made but was corrupted by some level of

noise. In this case, for a given level of noise, there is a bidirectional correspondence between

each choice of 7 and each concept C, and the conditional probability in expression (2.1)

can be written P™(T\C), representing the probability of the labeling observed conditioned

on the fact that the target concept is C.

The deterministic case is simply the special case where the function 7(d) is 1 for

all instances in C and 0 for the remaining ones. In fact, even though a unified approach

can be defined for the more general case it is sometimes useful to use the knowledge that a

given problem is deterministic.
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2.3 Formal Learning Models

2.3.1 Identification in the Limit

One of the first formal treatments of the problem addressed here is due to Gold

[30]. He studies the problem of identifying a given language given a sample of strings in that

language. The learner is presented with an infinite sequence of strings in some language C

that is known to belong to a given class of languages.

In Gold's model, after each string is presented, the learner makes a guess of which

language the strings belong to. The learner is said to identify in the limit a given language

if, after a finite time, the guesses are all the same,equal to C and this behavior happens for

all possible orders in which the strings can be presented.

Identification by enumeration is the proposed method to perform identification in

the limit. The method lists all languages in the class in some order. At any given time,

the learner outputs as a guess the first language that is consistent with the data observed

so far. This method can always be used if is it possible to enumerate the languages and if

an effective test for membership in a language exists. In practice, it is limited to relatively

simple problems because, in general, it requires exponential time.

The main results of Gold's work on the classes of languages that are identifiable

in the limit are essentially negative. In particular, he proved that no family of languages

that contains all languages of finite cardinality and at least one of infinite cardinality is
identifiable in the limit.

2.3.2 PAC-Learning

Gold's approach can be too pessimistic because it requires the learning algorithm

to output an hypothesis that is exactly equal to the target concept for all possible ways

of presenting the data. Valiant's proposed a more useful definition of learnability, the

Probably Approximately Correct (PAC) model. This model not only allows the learner to

output an hypothesis that is only a close approximation to the target concept, but also

opens the possibility that the learner will output, in some cases, an hypothesis that is

completely wrong. This is necessary because, in the probabilistic setting used by Valiant,

there is a finite chance that the learner will have access to a training set that is totally
non-representative of the target concept. In these conditions, the learner has no way of
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generating an hypothesis that is a good approximation to the target concept.

In the PAC-learning framework, it is assumed that the labeling is deterministic

and the training and testing instances that are presented tothe learner are chosen according
to a given probability distribution defined over the input space, Po(d). This eliminates the

hopeless case where the learner is forced to learn under one probability distribution and is

tested under a totally different distribution. The probability distribution Pn(d) is extended

to apply to subsets of the input space, S € D, in the standard way:

PD(S) = £ PD(d) (2.2)
des

PAC-learnability can now be defined formally:

Definition 1 A family of concepts C, is said to be PAC-learnable with sample complexity

m if for all probability distributions Po(d) and all concepts C € C there exists a learner that

for most training sets of size m, outputs an hypothesis H that is a close approximation to

C.

H is called a close approximation to C if

PD(HAC) < e (2.3)

where HAC is the symmetric difference of H and C, defined as

HAC = (HnC)u(EnC) (2.4)

The phrase H is a good approximation to C for most training sets of size m means that

P{T\PD(HAC) >e}<6 (2.5)

Expression (2.5) states that the probability of observing a training set ({di,.. .dm},t) that

causes the algorithm to generate an hypothesis that is not a close approximation to C is

smaller than a given constant, 6. In general, the size of the training set, m, is a function of

the parameters c and 6. Learning is of little interest if very large training sets are required.

Particularly interesting are families of concepts that are polynomial sample PAC-learnable,

that is, families of concepts for which the size of the training set required to satisfy definition

1 is polynomial in 1/c and 1/6.

It will be assumed in the rest of this work that the training sets are generated with

a procedure similar to the one defined in the PAC framework. More precisely, instances
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in T are generated according to an underlying probability distribution Po(d). However,

the labeling of the examples in the training set will, in general, be obtained using the

probabilistic labeling defined by the function 7(d) described in section 2.2.

2.4 Equivalence of all Biases

The equivalence of all biases (and consequently, of all learning algorithms) in the

absence of a context is well known [35, 60]. Schaffer [88] presented a very general argument

for this equivalence in the form of a conservation principle.

He restricts the analysis to single concept learning problems in discrete domains.

Since the domain is discrete, there willbe a finite number of possible attribute combinations,

orobjects in D. A learning situation in a particular domain is defined by a triple (Pd, 7, m),

where Pd is the probability distribution according to which the training sets are generated

(as in section (2.3.2)), 7 defines the probability distribution that defines the way the labels

are assigned to instances in the domain (as in section (2.2)) and m is, as before, the size of

the training sets.

The generalization performance of a learner L in learning situation S, GPl(5)

is defined as the average accuracy of the generated hypothesis when applied to examples

not present in the training sets minus the constant 0.5. The subtraction of this constant

takes into account the fact that a classification scheme that randomly guesses the class

obtains an average generalization accuracy of 0.5. A generalization performance of 0.1

signifies, therefore, that the generated hypothesis will correctly classify, in the average, 60%

of the unseen instances, sampled according to the probability distribution P{d). Given this
definitions, Schaffer shows that

1G?L(PDil,m) = 0 (2.6)

for any learning algorithm L where the integral is computed over all possible choices for 7.
Since 7 defines the target concept, this result states that the sum over all concepts of the
generalization performance is 0 for any learner L. If the labeling is deterministic then there

are only 2'DI possible choices for 7 (each defining a different concept) and the integral in
expression (2.6) becomes a summation over all possible concepts

£GPL(PD,7,m)=0 (2.7)
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The fact that this sum equals 0 means that it is impossible for a learning algorithm to
improve its performance in a particular set of concepts without showing decreased perfor
mance in another set. Some interesting examples of possible and impossible learners are
given in [88].

However, not all possible concepts are equally likely to appear in the real world.

In fact, if there were no regularities, learning would be fundamentally impossible because,

no matter how large the training sets, there would be no basis to infer any particular rule.

The statement that not all concepts are equally likely is equivalent to the assumption that

there exists a probability distribution Pc(C) that selects the target concepts from the total

universe of possible ones. In this case, expressions (2.6) and (2.7) do not apply because the

learner can perform well in concepts that are very likely to appear and badly in concepts

that are unlikely to be the target. If Pc(C) exists the learner can use Bayes rule to select

the hypothesis that is more likely to perform well in unseen instances.

2.5 The Application of Bayes Law to Hypothesis Selection

Assume that the target concept is chosen according to some probability distribu

tion Pc{C)> defined over some family of concepts, C. Bayes law states that the probability

that a given hypothesis H is equal to C, the target concept, is given by

rifirm mT\H)Pc(H)
PpWT)-Z„I?(T\H)Pc(H) (2-8)

where P™(T\H) is, as before, the probability of the observed training set conditioned on

the fact that the target concept is equal to H. The maximum a posteriori (MAP) rule

says that the learner should select the hypothesis that maximizes the posteriori probability

Pp(H\T). The MAP rule maximizes the probability that the learner will pick the correct

hypothesis and is the best that can be done if the learner has to output a single hypothesis

in H.1 If the labeling is deterministic, then Pj?(T\H) is either 1 for hypotheses that are

consistent with the training set or 0 for hypotheses that are inconsistent. In this case, the

selection of the best hypothesis is made based only on the value of Pc(H).

Expression (2.8) can only can be used if the a priori probability distribution for

the concepts in C, Pc{C) exists and is known. This is usually riot the case. A variety

1The Bayes optimal algorithm usesthe probabilities computed for each hypothesis in H using expression
(2.8) to perform a weighted vote. However, the classification obtained may not correspond to any hypothesis
in H and, therefore, the Bayes optimal algorithm does not fit in the current framework.
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of different but closely related approaches justifies the attribution of probabilities to the

concepts in C (and therefore to the hypotheses in H) in different ways. The selection of

these prior probabilities is the main subject of section 2.6.

2.6 Searching for Simple Representations

The problem with the application of expression (2.8) is that the probability distri

bution that generates the target concepts is usually not known or not accessible and has to

be approximated using general rules that are as universal as possible. How Occam's razor

can be used to perform this function is the subject of this section.

2.6.1 Occam's Razor

William of Occam's2 famous principle non sunt multiplicanda entia praeter neces-

sitatem literally means entities should not be multiplied unnecessarily. However, it is usually

interpreted as stating that the simplest theory that fits the available data is the one more

likely to predict correctly the future. This statement can be viewed as a general rule for the

selection of a probability distribution that approximates Pc(C).

Occam's razor is eminently reasonable and, at first sight, hardly needs a justi

fication. Both statements "the Sun rises every morning" and "the Sun has risen every

morning until today but will not rise tomorrow" fit all the available data. In the absence

of further information, they would predict equally well the future. However, even in the

absence of other knowledge, one is more tempted to accept the former than the later, if

nothing else because the later is unnecessary complex. Physicists have long aimed for the

most simple and elegant theories and have, to a remarkable degree, succeeded in making

good predictions using these theories.

The problem lies in the fact that, in general, the complexity measures used are

not unique and depend on the particular approach that is used to describe the hypotheses.

What is simple under one representation scheme may be very complex under another and

the complexity of an hypothesis depends heavily on the primitives used to express it. It is

a remarkable fact that there exists a complexity measure that is, in a sense, universal.

2William of Ockham (1285-1349), usually spelled Occam.
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2.6.2 A Universal Complexity Measure

Kolmogorov, Solomonoff and Chaitin arrived, in an independent way, at the defini

tion ofwhat is usually known as Kolmogorov complexity.3 Afull discussion of the concepts

involved in the definition of this complexity measure is outside the scope of this introduc

tion. The reader is referred to one of the existing reviews of the subject [56] for a more

complete treatment. The Kolmogorov complexity theory defines a universal complexity

measure forfinite binary strings. Since any hypothesis in a given domain can be encoded as

a finite binary string, the existence ofa universal complexity measure together with the ap

plication of Occam's razor seems to solve the problem ofdefining the prior probabilities for

the concepts in C. This is not the case because a direct use of the Kolmogorov complexity

as the guiding principle is not possible since it is a non-computable function. Nonethe

less, the theory opens the way to approaches that approximate this universal probability
distribution.

Let M be a Turing machine with a oneway output tape, a one way input tape and

a two-way work-tape and let the input alphabet for this machine contain only zeros and

ones (no blanks). These are the self-delimiting Turing machines, because the set of inputs

for which each machine stops if prefix-free, no string being a prefix of any other string. A
string p is called a program for M if M stops exactly after scanning the last bit of p. The

self-delimiting Kolmogorov complexity, (hereby abbreviated to Kolmogorov complexity4) of

a binary string s with respect to machine M, Km{s) is given by the length of the smallest
input string that will cause M to write string s in the output tape. Now, if M is chosen

to be a universal Turing machine the Kolmogorov complexity with respect to M is called

simply the Kolmogorov complexity and is defined as K(s). Kolmogorov [51], Solomonoff
[95] and Chaitin [20] proved that, for any Turing machine M

K(s) < Km{s) + A; for all finite strings s (2.9)

where k is a constant that depends only on M. This result is important because it shows

that each finite string has a complexity that does not depend (except for theconstant factor)
on the particular approach used to describe it. Using the above definitions, it is possible

Some authors have proposed the use of the somewhat awkward but precise Kolmogorov-SolomonojJ-
Chaitin complexity, but this is the most commonly accepted terminology.

There are two Kolmogorov complexity measures that differ by a logarithmic factor. The one used here
has some properties that are required in the sequence.
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to define a probability distribution that attributes a certain probability to any string s, the

(non-computable) Solomonoff-Levin distribution:

PslW= £ 2-W (2.10)

where the sum is over all programs p that are an encoding for the string s and \p\ is the

length of program p. It can be shown that this expression properly defines a probability

distribution5 over the set of all finite strings. Furthermore, this probability distribution is

universal in the sense that, for any computable probability distribution /i(s), there exists

a positive constant c such that Psl(«) > cp(s). This means that, given enough data, the

application of Bayes law using the Solomonoff-Levin distribution as the prior distribution is

guaranteed to converge to the right solution. Naturally, a larger training set may be needed

than in the case where the exact distribution is available. However, the fact that PslM

is off by, at most, a constant factor, guarantees that the extra amount of data required is

not large. In fact, not only is this approach guaranteed to converge to the true solution,

but it will converge faster than any other method up to a constant multiplicative factor.

Levin has shown that the Solomonoff-Levin distribution and the Kolmogorov complexity

are related by

PslW = e-KW+°M (2.11)

Therefore, using the Solomonoff-Levin distribution as the prior probability is equivalent to

the assumption that more complex hypothesis (as measuredby the Kolmogorov complexity

of the corresponding encodings) are less likely to be the right answer. This is a very

general and elegant justification of the Occam's razor approach. Regrettably, using directly

this probability distribution as the prior distribution is not a feasible approach because of

several problems. First and foremost, the Solomonoff-Levin distribution is non-computable,

becauseits computation implies the solution of the halting problem which is undecidable. It

can be approximated from below, but there is no way to know how close the approximation

is. Furthermore,even though the convergence results areextremely important in the limit of

long strings, for simpler problems the constant factors involved may make it a sub-optimal

solution if there is any other way to better approximate the true probability distribution,

Pc(S)-

More precisely, Psh(s) defines a semi-measure over the space of strings and can be used to define a
probability distribution after appropriate normalization. However, it can used directly in (2.8) because all
hypotheses are discounted by the same factor.
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The underlying ideas can, however, be applied in more restricted contexts, with

very good results. The Minimum Description Length Principle can be viewed as a way

to choose between alternative hypotheses using an approximation to the Solomonoff-Levin
distribution.

2.7 The Minimum Description Length Principle

Rissanen's Minimum Description Length (MDL) Principle [80, 81] can be viewed

as a way to select hypotheses in a way that approximates the results obtained using Bayes

law and the Solomonoff-Levin distribution. If we takethe negative logarithms of expression
(2.8) we get

-log2PP(jy|r)= -log2Pf(T\H)-log2Pc(H) + \og2y£P?(T\H)Pc(H) (2.12)
H

Since T, the training set, is fixed, and the last term does not depend on H, the maximum of

Pp(H\T) isobtained by minimizing log2 P£(T\H)+\og2 Pc(H). Now, if the hypotheses are

encoded using an efficient self-delimiting code, the Kolmogorov complexity can be approx

imated by the length, in bits, of the string that describes the encoded hypothesis, Ahyp(s).
The Solomonoff-Levin distribution is now approximated (up to an irrelevant constant fac

tor) by choosing PC(H) = 2"AW//) and the term - log2 Pc(H) is simply the length of the
description of H using this encoding scheme.

In general, a given hypothesis will not match exactly the training set data. Let

E(T, H)be a string that describes the exceptions to this hypothesis present in the training
set. E(T,H)can also beencoded using some efficient self-delimiting encoding scheme. If this

is the case, the same reasoning can be applied and P™(T\H) will be given by 2~A'«C(E(7W).

The maximum value of Pp(H\T) is therefore obtained by selecting the hypothesis H that

minimizes

KhyP(H) + Kexc(E(T, H)) (2.13)

This is the minimum description length (MDL) principle of Rissanen. The MDL princi

ple can be viewed as a way to replace the need to estimate the a priori probability of an

hypothesis by the somewhat more tractable problem of selecting the hypothesis that min

imizes the total code length of expression (2.13). Naturally, one has to provide algorithms

to encode both hypotheses and strings that describe exceptions. To keep expression (2.13)
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computable, the encoding schemes cannot be based on Turing machines but on techniques

that are well adapted to the particular representations used. In any case, for the approach

to be justifiable by the arguments described above, the algorithms have to generate codes

that are compact, and, in some sense, close to the optimal.

If the labeling is deterministic, Pjf(T\H) is either 1 or 0 and the maximization of

(2.8) is equivalent to the selection of the consistent hypothesis with higher a-priori proba

bility, i.e., the hypothesis H that minimizes

Khyp(H) (2.14)

In practice, it turns out that in many problems the labeling is almost deterministic but not

exactly. Furthermore, even in deterministic problems, the representation scheme used may

not be powerful enough to represent the exact hypothesis that maximizes (2.8). In these

cases, it may happen that an expression that is somewhere between expressions (2.13) and

(2.14) will actually give the best results. The most flexible algorithms will therefore select

the hypothesis that minimizes

aKhyp(H) + Kexc{E(H)) (2.15)

where a is a parameter between 0 and 1 that can be adjusted to maximize the performance.

Believers in the MDL principle mayfind that the introduction of this extra parameter goes

against the philosophy underlying the MDL principle but, in practice, this can be viewed

as a way to compensate for inefficiencies of the coding scheme. It can also be viewed as a

way to customize the algorithm for a particular application where considerations other than

overall performance may be at play. For instance, if accurate performance in the training

set is highly desirable, even at the expense of some deterioration in the overall accuracy,

then a should be chosen smaller than 1. In the limit, when 1 >> a the hypotheses chosen

will perform perfectly in the training set (because of the high relative weight of the second

term) but may be overly complex to perform well in the test set.

2.7.1 A Prefix Free Encoding Scheme for Graphs

The computation of Khyp(H) depends on the representation selected and the en

coding scheme used. However, even though different representations will use different en

coding schemes, most of them share the need to describe a graph. The encoding proposed
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here for graphs is inspired on the encoding techniques proposed by Quinlan and Rivest [79]
to encode decision trees.

The simple version presented here assumes that each node has a known number

of outgoing edges. A variation that can handle the more general case will be presented in
the chapters that require it.

Let Gbea directed graph with one distinguished node. Assume that theoutgoing
edges of each node are ordered in some arbitrary, but fixed, way. For example, if each

node has two outgoing edges, one labeled with a 0 and theother labeled with a 1, the edge
labeled with 0 will always be considered before the edge labeled with 1. The structure of

the connected part ofthis graph (i.e., the set ofnodes that can bereached from this special
node) can be encoded using the following encoding scheme:

• Anode that was never visited before isencoded startingwith 1followed by anencoding
of the nodes reached by following each of the outgoing edges.

• A node that was visited before is encoded starting with 0 followed by a reference to

the (already described, at least partially) node.

Following Quinlan and Rivest, the issues related with the use of non-integral num

bers of bits are ignored in the computation of encoding length because only a measure of

complexity is desired and an actual transmission of the code does not have to be accom

plished. As an example, the graph of figure 2.1 is encoded using the following encoding:

(1 (1 (1 (1 0 00 0 11) 0 00) 0 01) 0 10)

The total length of this encoding is 19 bits. Parentheses and spaces were used only to

increase readability and do not belong to the actual encoding. A simple binary code was

used to make references to nodes described previously. The number of bits required for

each reference is known in advance because the number of nodes already visited is known

at each point in time.

2.7.2 A Prefix IVee Encoding Scheme for Exceptions

The computation of Kexc(E) where E is a string that describes the exceptions is,

on the other hand, essentially independent of the representation used.

The exceptions will be encoded using strings of O's and l's. The encoding of this

type of strings follows closely the encoding used by Quinlan and Rivest [79] where the l's
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oo

Figure 2.1: A 4 node graph with two outgoing edges for each node

will indicate the location of the exceptions. In general, these strings will have many more

0's than l's. Assume that the strings are of length m, known and that there are k < m l's

in the strings.

The string can be encoded by first describing the value of fc, which requires log2(m)

bits and then describing which of the strings with A: l's describes the exceptions. Since there

are | I such strings, the description length of the description will be given by
k )

Kexc(E) =log2(m) +log2 I mJ (2.16)

Using Stirling's formula to approximate the second term in (2.16)

Km(E) =«lf(i)+^-^-J2Sl^fi_!S^l+l06(TO)+0(I) (247)
m z z z z m

where H{p) is the usual entropy function

H(p) = -p\og2(p) - (1 - p)log2(l - p) (2.18)

2.8 Computational Complexity of Hypothesis Selection

The previous section described the theoretical results that support the selection

of the hypothesis of minimal complexity as the most promising one. However, these results
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do not address the problem of how the learner actual selects such an hypothesis. So, even

if the learner is using the MDL principle as the guiding criterion for selecting one of the
possible hypotheses, the task of designing analgorithm that actually performs the selection

of the hypothesis that has minimal total encoding length is still open.

For many problems ofinterest, this procedure isofhigh computational complexity.

In fact, for almost all the representation schemes addressed in this work, the problem
of selecting an hypothesis of minimum complexity belongs to a class of problems that

are believed to be very difficult to solve efficiently, the NP-complete class. A complete

explanation of the concepts involved in the definition of this complexity class is outside the

scope of this work and the reader is referred to [27] for an excellent review of the subject.

The following lemmas show that the computational complexity of the problems

addressed in this dissertation is high. Since these results are not critical for the exposition
that follows, only briefreferences are made to the respective proofs.

Lemma 1 It is NP-complete to determine if a two-level threshold gate network consistent
with a given training set and with less than k gates exists.

Proof: this problem is one of the versions of the loading problem proved NP-complete in
[45] and [11].

Lemma 2 For a fixed ordering of the variables, it is NP-complete to determine if a reduced

ordered decision graph that is consistent with a given training set and has less than k nodes
exists.

Proof: obtained by a reduction from graph K-colorability in [97].

Lemma 3 It is NP-complete to determine if a finite state machine that has less than k

states and is consistent with a given training seft exists.

Proof: made by a reduction from the satisfiability problem with 3 variable clauses (3-SAT)
in [32].

The problem of selecting the minimum multi-level Boolean network that is consis

tent with a given training set is also of high complexity. It is known to be in NP, because

a solution can easily be checked for correctness in polynomial time. However, no pub

lished proof that it is NP-hard is known to the author, although it looks unlikely that a

deterministic polynomial time algorithm exists for this problem unless P=NP.

In this case, the training set consists of input/output sequences
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3.1 Related Work

Threshold gate networks have been the focus of an increasing interest in the re

search community in the last few years. In part, this interest is due to theoretical work

that shows that threshold gates are more powerful than simple Boolean gates, in the sense

that polynomial size, bounded level, networks of threshold gates can implement functions

(and therefore represent concepts) that require unbounded level networks of purely logic

gates. For example, it has been shown that functions like multiple-addition, multiplication,

division and sorting can be implemented by polynomial-size threshold circuits of small con

stant depth [93, 94]. In particular, compact two-level threshold gate networks can represent

many interesting concepts that require exponentially large two-level Boolean networks.

Extensive research in the field of neural networks has also created interest in al

gorithms for the synthesis and optimization of threshold gate networks. The more popular

neural network architectures use threshold gate models that differ substantially from the

ones studied here. In the first place, they assume the weights and the threshold value for

each gate are defined by real numbers of arbitrary precision. In the second place, the most

commonly used neural network learning algorithms assume that the function implemented

by a threshold gate is continuous and differentiable. In the most commonly used models,
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the output of each gate is given by

f*ct[Y^(wiXi) -too) (3.1)

where /act, the activation function, is continuous and differentiable. A commonly used
activation function is given by

/act(s) =
l + e-a

(3.2)

plotted in figure 3.1 The most popular leaning algorithms derive the input (or connection)

T

Figure 3.1: A typical activation function

weights for each of the gates in the network by minimizing, with respect to the connection

weights, an error function defined over the weight space. For a single output network a
typical error function is given by

«= £(*; " ojf (3.3)

where tj is the desired value for the output when instance j is presented (given by the
j label in the training set) and oj is the value computed by the network. The partial

derivatives of expression (3.3) with respect to each one of the weights in the network can

be easily obtained and gradient descent techniques can be used to obtain a local minimum

of the error in weight space. Many algorithms based on this technique have been proposed

[8, 41, 52, 84] and used with varying degrees of success in a variety of problems. These

algorithms, however, do not derive the architecture of the network, but only the connection

weights. Constructive algorithms like the cascade-correlation [24] and others [25, 5] derive

the architecture by modifying the error minimization strategy [39] and allowing for new

units to be created if the current solution is not satisfactory. Another possibility is to prune

the network obtained .in an effort to minimize the overall complexity of the classifier [55].
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In all these approaches, the selection of a minimal complexity network remains secondary

to the minimization of (3.3).

All these algorithms use standard optimization techniques to select a connection

weights combination that is a local minimum of (3.3). In many cases, these techniques

are unable to find a solution that performs adequately in the training set, specially if the

number of gates in the network is close to the minimum. This is a serious limitation of

neural network training algorithms and limits the accuracy of the generalization performed

by neural network classifiers in some problems.

This chapter describes a new formulation for the problem of selecting a minimal

two-level network of threshold gates that matches exactly the data in the training set. The

threshold gate model used is more restrictive than the one used in neural networks, in that

both the weights and the threshold value in expression (3.1) are forced to be integer valued

and the activation function is given by:

/actW = { (3.4)
0

{0 if x<

1 if i>

Expression (3.4) is equivalent to (1.1) and defines the function implement by a threshold

gate in this model. The algorithm described here assumes that the labeling of the examples

is deterministic, i.e., that no classification noise is present. The class of networks generated

by the algorithms is much more restricted than what can be obtained by using neural

network training algorithms. However, by using this restricted representation and a different

approach, the solution is guaranteed to match the training set data, a problem that is, in

itself, NP-complete to solve using neural network type algorithms [11, 45].

The selection of the minimal complexity solution is still an NP-complete problem,

but any solution generated by the algorithm classifies correctly, by construction, all the

instances in the training set. The networks generated are, in many cases, much smaller

than the ones that can be obtained using any of the neural network algorithms described

above. This approachis therefore an interesting alternative in problems that do not require

real valued weights and map, in a natural way, into a two-level threshold gate network

representation.

Previous work closely related to the approach described here is limited. Muroga

[61] makes a good exposition of the properties of functions implemented by threshold gate

networks and proposes algorithms for their synthesis but his approach is limited to functions
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ofa very small number ofvariables and is heavily based on the use ofpre-computed tables
for this type of functions.

3.2 Problem Formulation

Theformulation developed for the problem ofselecting a minimal complexity two-

level threshold gatenetwork is inspired onconcepts and techniques developed for the synthe

sis ofminimal two-level Boolean networks. Concepts like cubes andcovers aregeneralized to

reflect the function implemented by threshold gates. Forthe benefit of the readerunfamiliar

with these concepts, these definitions and concepts are introduced before the corresponding

generalizations. For clarity, the concepts and algorithms involved are first defined for the

case where the threshold gates are restricted to have weights in the set {-1,+1}. Section

3.3.3 describes how the formulation can also be applied to the general case by applying a
simple problem transformation.

3.2.1 Cubes and Pyramids

A literal is defined to be either a variable or its negation. A cube is a conjunction

of k literals (1 < k < N), where no two literals corresponding to the same variable appear.

A cube with N literals corresponds to a minterm, a point in the input space. A cube c\

is said to contain another cube c2 if c2 =» c\, i.e., if the truth values defined in c2 make c\

true. This is equivalent to stating that all points in the input space contained in c2 are also

contained in c\. If c\ ^ c2 such a containment is proper. The dimension of a cube c is the

number of variables not present in c. The distance between two cubes, ci and c2, 6{c\,c2)
is the number of variables that appear negated in one cube and non-negated in the other.

For example, xix^x^ is at distance 2 from x~\x2xl.

A cube is identified with the boolean function implemented by an and gate. Con

sider now a threshold gate with a function defined by (3.1) and (3.4), with weights in the

set {-1,+1}. Assume, without loss of generality, that the gate implements a function of

the first k variables in an JV-dimensional input space. Let Vmax be the maximum value

that the sum £» W{X{ can take for a fixed value of the weights and cube c be defined by

the literals ci.. .c* where ct- = X{ if W{ = +1 and c, = x\ if wt- = -1. Consider now a

minterm z = z\... Zk ... zjv. This minterm will turn the gate oniffno more that Vmax - u>o

literals in z are different from the corresponding literals in c, i.e., if 6(c, m) < Vmax - v>o.
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Let h = Vmax —wq. A pyramid is defined as a pair (c : h), where c is a the apex cube and

h is a non-negative integer value, the height. The minterms contained by a pyramid are at

distance h or less from the apex cube. Figure 3.2 shows a graphical representation of the

minterms covered by a cube and a pyramid.

A 7\
X3

L^l
Xl

\Z_ V

Figure 3.2: Cube x\x2 and pyramid (x\x2x$ : 1)

3.2.2 Properties of Pyramids

The distance between a cube c and a pyramid p = (cp : h) is given bymax(£(c, cp)-

A, 0). This distance measure corresponds to the intuitive notion of distance in Boolean

spaces and is equivalent to the minimum distance between a minterm in p and cube c. For

example, cube x\x2 and pyramid (xix^x^ : 1) in figure 3.2 are at distance 1.

A pyramid p is a prime pyramid, relatively to some boolean function /, iff there is

no other pyramid contained in the /on(J /dc set that properly contains pyramid p. Formally,

p = (c : h) C (/on U/ac) is prime with respect to / iff

V(c': ft'). (<:': h') D(c : A) => (c': ft') %(/„ U/dc) (3.5)

Any pyramid p —(c : h) has a complement pyramid, p = (c : &- h —1), where A:

is the number of literals in c and c is the cube obtained by complementing all such literals.

For any pyramid p, pp = 0 and pUp = {0,1}N.

3.2.3 Covers and M-covers

A set of cubes 5 is a cover for a Boolean function / if all points in /on axe covered

by at least one cube in S and no point in /0ff is covered by a cube in S. A two-level Boolean

network that implements a function compatible with / can be obtained directly from a

cube cover. Each cube corresponds to an andgate and the outputs of the andgate feed the

second level or gate. The concept of cube coverof a boolean function can be generalized in
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a way that preserves the relation between a cover and a two-level implementation of / but
allows for the use of general threshold gates in both the first and second levels.

A set of pyramids is a pyramid cover for a function / if every minterm in /on
is contained in at least one pyramid and no minterm in the /0ff set is contained in any
pyramid. This concept ofcover can befurther extended to a more general one that leads to

implementations where the second level gate is also a general threshold gate instead of an

orgate. A bag of pyramids, B, is an M-cover (M > 1) for a function / iffall minterms in

the /on set are covered by at least M pyramids and all minterms in the /0ff set are covered

by at most M - 1 pyramids in B.

Figure 3.3 shows how pyramids p\ = {xlx^xz : 2) and p2 = (xix2x3 : 1) are a

2-cover for the function / defined by /on = {xix2x~i, xix^xz, x~[x2x3}, /on- = {0, l}3\/on and

/dc = 0-

A=A A 71 A

V VZV IZZF
Pi P2

Figure 3.3: 2-cover for function /.

A two-level network of threshold gates that implements / can be obtained directly

from an M-cover by simply allocating one threshold gate for every pyramid in B and con

necting them to a gate in the second level with all weights equal to 1 and a threshold value

ofM.

3.2.4 Expanding and Reducing Pyramids

Algorithms for the synthesis of two-level Boolean networks make extensive use of

the ability to incrementally change a cube c into a cube c' in such a way that c' properly

contains c. This operation, the expandoperation, is performed by simply dropping oneof the

literals present in cube c. The opposite operation, the reduce operation, is also important

and is performed by adding one new literal to the set of literals in the original cube.

The definition of operations with similar properties but that manipulate pyramids
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instead of cubes is important because it facilitates the use of approaches based on Boolean

networks minimization techniques. The expand operation, applied to pyramids, can be

performed by applying one of the two following changes to the pyramid p = (c : h):

1. Expand the apex cube, by dropping one literal from c. For example, the pyramid

(x\x2xz : 1) can be expanded to pyramid (0:1X3 :1):

(xix2x3 : 1)
Operation 1

(xix3 :1)

Figure 3.4: Expansion of a pyramid by expansion of the apex cube

2. Reduce the apex cube, by adding one literal to c and increase the pyramid height, h.

For example, pyramid (xix3 :1) can be expanded to pyramid (xix2x3 :2):

(xix3 :1)
Operation 2

(xix2x3:2)

Figure 3.5: Expansion of a pyramid by increasing the pyramid height

The reduction operation can be performed by either applying the reverse operations or by

expanding its complement pyramid and complementing the result. The reader may easily
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verify that the expand (reduce) operation does indeed generate a pyramid that properly
contains (is contained) in the original one.

The expand operation can be used to obtain a prime pyramid (with respect to
some function /) by expanding a pyramid until no further expansion operations can be
applied without causing some minterm in f0g to be covered by the pyramid.

3.3 The Search Algorithm

3.3.1 The Encoding Scheme

Given the correspondence between M-covers and the two-level networks with unit

weights discussed above, it is natural to chose an encoding scheme that simply lists the

pyramids contained in a given M-cover. An M-cover is therefore encoded in the following

way:

• List each pyramid in the M-cover by encoding the value of h followed by a bit string

with N \log23] bits that describes the apex cube.

• Terminate the list with the encoding of an integer that is an impossible value for h

(e.g., N) followed by an encoding of the value of M.

A description of an M-cover with k pyramids using this encoding scheme takes fc(log2 N +

N |7o<723l) + log2 N + log2 k bits. Furthermore, this encoding has the characteristic that its

length increases linearly with the number of pyramids in the cover. The minimization of

expression (2.14) using this encoding scheme is equivalent to the selection of an M-cover of

minimal cardinality for the incompletely specified function / defined by the training set.

3.3.2 A Local Search Algorithm

Algorithms for the minimization of two-level Boolean gate networks like, for in

stance, espresso [14], perform the search for a cover of minimal cardinality by expanding

the cubes in a solution and then solving a set covering problem using standard techniques.

A similar approach could be used here if the objective was to select a pyramid cover (i.e.,

a 1-cover) for a given function. In fact, the expand operations described above can be used

to first expand maximally all pyramids in a given cover. Such an approach was actually

implemented [65] but is restricted to the selection of 1-covers. When the objective is to
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select an M-cover, M > 1, these techniques are no longer useful, because the solution does

not, in general, consist of prime pyramids.

The algorithm proposed here to perform this selection is, instead, based on a tree

search algorithm that searches for a better solution by performing incremental changes in

an existing one. The algorithm is started with a 1-cover that is obtained by simply listing

all the minterms that correspond to the positive instances in the training set, the /on set.

The algorithm described in figure 3.6 then searches for an M-cover of minimal description

length. The ChangeCover procedure in figure 3.7 changes the pyramids in 5 in such

FindCover()

M = l

••"saved = 1

RemovePyramidFromCover()

repeat

if ChangeCover(M) = False Didn't find solution

if Msaved / M

return No solution found for this value of M

M:=M + 1

else

SaveSolution() Best solution found so far

RemovePyramidFromCoverQ

Mgaved := M

until False

Figure 3.6: Searching for a small M-cover.

a way that the reduced bag of pyramids represents a new M-cover. This is accomplished

using a search tree. To each node n» in this tree corresponds one bag of pyramids, &,-. Each

node in the search tree is obtained by changingone pyramid from the bag that corresponds

to the parent node. Nodes that have a smaller number of /on points covered less than M

times are explored first by the ChangeCover procedure until the maximum tree size is

reached or a bag of pyramids that is an M-cover for / is obtained.

The expansion of a node in the search tree is performed by the algorithm described
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ChangeCover(M)

no := BuildTreeRootQ Create root with existing bag

EXPANDTREENODE(M,no)

for j := 1 to MaxTreeSize

n; := PickBestNode() Select node with smaller number of non-covered minterms

if UNCOVEREDMlNTERMS(nt) = 0 An M-cover was found
return TRUE

ExpandTreeNode(M, »,-)

return FALSE

Figure 3.7: Transforming a bag of pyramids into an M-cover

in figure 3.8. After selecting one of the /on minterms covered less than M times, the

algorithm selects the kmax pyramids closer to it as the candidates, where &max is a parameter

that controls the branching factor of the search tree. Function BuildSets creates the son

set by adding minterm z to the list of /on minterms covered by p and not covered more than

M times. The s0ff set consists of all the minterms in the /on" set that are already covered

by M —1 pyramids but not by p.

Function FindCoveringPyr derives a pyramid covering all minterms in the son

set and none in the s0ff set. This function uses the expand and reduce operations described

in section 3.2.4 to select the pyramid that satisfies this definition. The algorithm starts by

identifying $red, the set of minterms in s0n already covered by the pyramid. The pyramid

is first reduced with respect to this set, i.e., it is reduced as much as possible while still

covering all the minterms in srea. It is then expanded until either all minterms in the son

set are covered or a prime is obtained. If the second condition holds and the first doesn't,

it reports failure. Otherwise, it returns the expanded pyramid.

Figure 3.9 illustrates, in an hypothetical two-dimensional projection of the space,

how a search for a 1-cover takes place. The ChangeCover procedure receives a bag of

pyramids that does not coversome of the minterms in fon. At eachnode in the search tree,

one of these minterms is selected and the nearest pyramids are expanded in such a way that

the selected minterm is now covered.
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ExpandTreeNode(M,7i;)

z := PickOneUncoveredMinterm(71j)

while k < fcmax

Poid := ChooseNextPyr(z) Select closest pyramid

(son,S0a) := BUILDSETS(M,7l;,Pold) Build on and off sets

p :=FindCoveringPyr(s0„, s0ff,p0id)

if P#0 Pyramid exists

nj := CREATECHILDOFNODE(n,-,6t- U{p}\{pbld}) Create child with modified bag

Figure 3.8: Expanding a node in the search tree.

3.3.3 Threshold Gates With Larger Weights

All the concepts, encodings and algorithms described in the previous sections as

sume that the input weights for the threshold gates in the solution are either +1 or -1. This

section describes how the search for a solution with larger integer weights is equivalent to

a search for a pyramid in a space of higher dimensionality. Consider a function / of N

variables, {x\,x2...,xn} defined by its /on and /Qff sets. Let v be an integer and f9 be

a function of vN variables defined by its f£n and f%s sets. Every minterm in /on (/Jff)

is obtained by replicating v times every literal in the corresponding minterm of /on (/off)«

For example, if v = 2 and N = 3 the minterm x\x2x~i is converted to x\lx\2x2lx2^xz[xz^.

Now, let / be a boolean function of N variables such that / is implementable by a single

threshold gate with integer input weights {wi,w2...Wk}. Let v be the maximum value of

| w\ |, | w2 | ... | wn \. Then there exists a pyramid in the space of vN dimensions that covers

all the minterms in the f£n set and none in the /^ff. This fact implies that a restriction

of the input weights of the first level threshold gates to the range [-v, +v] in a space of

N variables, can be obtained by applying the algorithms described above to the problem

defined in a new space obtained by replicating v times each input variable.

The encoding scheme described in section 3.3.1 can be changed to encode this type

of solutions. The description of the literals in each cube will now require JVflog2(2v + 1)1

bits. Clearly, this approach is not economicalfor large values of the weights. However, large

values of the weights also make for expensive implementations of the solutions obtained and
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Figure 3.9: A schematic view of the ChangeCover procedure

for hypotheses with higher complexity.

3.4 Experimental results

3.4.1 Problems Requiring a Known Minimum Number ofThreshold Gates

The results obtained by the algorithm were compared with the theoretical mini

mum cost realizations. All the problems require the use ofnon-degenerate threshold gates

(i.e., threshold gates different from either and and or gates) to achieve the minimum real
ization. The asymmetry problems also require weights larger than 1, and this is reflected in

the number of variables (N) for each problem. A detailed description of the functions used

for these tests can be found in appendix B. The results are shown in table 3.1. As before,

m is the size of the training set. These results show that the minimum size realization was

obtained for all but the two largerparity problems. The sharp increase in CPU time for the

larger asymmetry problems is due, in part, to the large weights needed. This represents a

serious limitation if networks with large weights represent the optimum solutions. All the

results presented were obtained in a DEC-station 3100 and all CPU times are in seconds.
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Problem m N Theoretical Experimental -Zcpu
6-parity 64 6 6 6 4.3

7-parity 128 7 7 7 10.7

8-parity 256 8 8 8 61.9

9-parity 512 9 9 11 878.1

10-parity 1024 10 10 24 1759.8

6-asymmetry 64 24 2 2 1.5

8-asymmetry 256 64 2 2 23.2

10-asymmetry 1024 160 2 2 408.6

12-asymmetry 4096 384 2 2 11752.9

43

Table 3.1: Experiments using threshold gates.

3.4.2 Comparison With Standard Two-Level Minimizers

In the second set of problems, the performance of the algorithm was compared

with the performance of a popular two-level minimizer, espresso [14]. This comparison

was performed by constraining lsat to use only and gates in the first level and or gates

in the second level. This can be easily done by not allowing the second type of expand

operations to be performed. For each function, two randomly generated training sets of

sizes 200 and 600 were generated. According to the generation procedure, all instances of

the problems should accept a solution with no more cubes than the upper bound shown in

table 3.2. This upper bound is given by the size of the two-level realization of the original

concept. This table shows that although no specific code optimization was performed for

the special case when a cube cover is to be found, the performance of the algorithm still

compares well with a classic two-level optimizer. In particular, it obtains results that are

either similar or better than espresso and much faster. Moreover, the speed gain increases

with the size of the problem. This is due, in part, to the fact that lsat does not require an

explicit cover for the /ac set while espresso does. It is also clear from these results that

both programs obtain results very far from the minimum in a large number of cases.
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Problem espresso lsat

Name m N Upper bound Experimental lepu Experimental J-cpu
dnfl 200 80 6 6 144 6 87

600 80 6 14 840 15 173

dnf2 200 40 8 8 84 9 21

600 40 8 10 236 8 161

dnf3 200 32 6 7 19 6 15

600 32 6 6 110 6 54

dnf4 200 64 10 13 183 9 80

600 64 10 25 1997 10 506

muxll 200 32 8 14 39 8 33

600 32 8 20 208 8 99

par5.32 200 32 16 15 49 15 21

600 32 16 40 363 41 111

Table 3.2: Experiments using logic gates.
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Chapter 4

Multi-Level Boolean Networks

4.1 Related Work

Although the use of threshold gates instead of basic Boolean gates extends the

number of concepts that can be efficiently represented by compact two-level networks, many

concepts of interest remain unrepresentable in compact form. Many of these concepts can

be represented by polynomial size multi-level Boolean networks.

The choice of multi-level Boolean networks instead of threshold gate networks

as the hypothesis representation scheme has other advantages. Although threshold gate

networks can be implemented using standard digital technologies, for many applications

this approach is expensive and inefficient. Pulse stream modulation [63] is one possible

alternative, but is limited to a relatively small number of neurons and becomes slow if

high precision is required. Dedicated boards based on DSP processors can achieve very

high performance and are very flexible but may be too expensive for some applications.

Applications that require high speed and/or compact hardware implementations can benefit

from an approach based on Boolean networks because the speed and compactness of digital

implementations is still unmatched by its analog counterparts [12, 86]. Additionally, many

alternatives are available to designers that want to implement Boolean networks, from full-

custom design to field programmable gate arrays. This makes the digital alternative more

cost effective than solutions based on analog designs.

The number of practical algorithms that can be used to perform synthesis of multi

level Boolean networks from examples is limited. Conceptually, gradient-descent neural

network algorithms like the ones described in the previous chapter could be adapted for
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this task by including penalty terms that would force the functions implemented by each

gate to be simple Boolean functions. In practice, such an approach is of limited interest

because the additional penalty terms make the optimization problem more difficult and the

utility of these algorithms would still be restricted to the selection of node functions in a

fixed architecture.

On the other hand, extensive work has been done on logic synthesis algorithms

for multi-level Boolean networks [16]. This algorithms can be used, in principle, to select a
multi-level Boolean network that is ofminimal size and is consistent with the incompletely
specified function defined by the training set. However, many of the techniques developed

for multi-level logic synthesis make little use of the extra degrees of freedom allowed by

the presence of very large don't care sets and are therefore not applicable to this problem.

In fact, in inductive inference, the value assigned by the minimum realization to points

in the don't care set of the target function is the most important result of the algorithm.
Techniques that allow multi-level logic synthesis systems to make a better use of the don't

care set were studied and implemented in systems like SIS [7, 87] but they require too

much computation time for this application and are not always effective. The results and

computation times obtained using these algorithms are shown in section 4.5 and compared

with the ones obtained using the greedy approach described in this chapter.

The algorithms for the adaption of decision trees by Armstrong and Gecsei [4] are

also very limited in the type of transformations they can perform in the structure of the

network and will work only if the structure is well tuned to the problem at hand.

The algorithms described in this chapter derive both the architecture of the net

work and the functions implemented by each node. Furthermore, they can be applied to

the minimization of (2.15) and can therefore handle problems where the labeling of the
instances is made in a non-deterministic way.

4.2 Encoding Multi-Level Boolean Networks

Recall that a single output Boolean network can be represented by a directed

acyclic graph where each node implements a simple Boolean function. The node with zero

out-degree is the output node and the nodes with zero in-degree are the input nodes.

Given these constraints, it is possible to use the general graph encoding scheme

described in section 2.7.1 to encode a general Boolean network. However, this encoding has
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to be modified to take into account the three following particular characteristics of these

graphs.

1. The graph has to be traversed in the reverse direction of that used in the encoding

scheme of section 2.7.1 because otherwise not all nodes will be reached.

2. The description of each node needs to include the number of input variables to that

node.

3. The description of each node needs to include the function implemented by that node.

The encoding scheme used assumes that a maximum value of the support of the

functions is known. This is known in advance because it is an input parameter for the

algorithm and can therefore be considered common knowledge. The encoding scheme for

Boolean networks is, therefore, the following:

• A node that was nevervisited before is encodedstarting with 1 followed by an encoding

of k, the number of inputs to the node, followed by 2* bits that describe the function

implemented by the node, followed by the encodings of the k input nodes.

• A node that was visited before is encoded starting with 0 followed by a reference to

the already described node. The N input nodes are assigned the first N binary codes

and are considered visited from the start.

4.3 Global Optimization Using Local Modifications

The algorithm used belongs to a class of algorithms that use local transformations

to change the Boolean network in such a way that a minimum of the cost function is

reached. Algorithms like the metropolis algorithm [58] or simulated annealing [49] use such

an approach. In this case, evaluating moves by computing directly the net change that a

move causes on expression (2.15) does not work well and a related variable, the mutual

information between network output and the label vector is used as a proxy for the total

description length. Before a discussion of why this approach is required, a definition of the

local changes that can be applied is needed. Such local changes are usually called moves,

as they move the solution to a neighbor point in solution space.
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4.3.1 Applying Incremental Changes to a Boolean Network

A b'st of nodes in the Boolean network is identified as the active list, L^t =

(n0,,...n0|). The / nodes in L^t can (potentially) assume any one of the 2l possible
input combinations and each one of these combinations corresponds to one possible value

of a multi-valued variable. The objective is to obtain a network with a single output that
minimizes (2.15).

Given an active list Lacu and a maximum value for the number of variables in the

support of newly created functions, M8up, the following three types of local modifications

(or moves) can be applied to the Boolean network. In the following illustrations, nodes in
the active list are marked with an arrow:

1. Replace k nodes in the active list, nai,...,nak by k - 1 new nodes that correspond

to k- 1 new functions ofk variables, n'a. = //(nBl,..., n0fc). This move decreases the
number of nodes in the active list by one.

m,

<, =/iKi»'»o3)

*flt2

Figure 4.1: Merging two nodes in the active list

2. Replace one node in the activelist, n0|., by a new node that corresponds to a function

of s variables n'a. = /(n0j,nii> ••-ni.-i)- This move does not change the number of
nodes in the active list.

3. Add one node to the active list increasing the number of nodes in the active list.

Before an algorithm that uses these local changes to obtain a Boolean network

that minimizes (2.15) is described, a detour is needed to introduce the concept of mutual
information between two variables.
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nU

n'ai = /(na,»ni,)

'Oi

»aa
n a3

Figure 4.2: Replacing an existing node by a new function

'<Ji

_ \ n Ol

»aj

*aa

Figure 4.3: Adding a new node to the active list
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4.3.2 Entropy and Mutual Information

Let variable V takethevalues {vi,v2,..., vn} with probabilities p(vi),p(v2), ...,p(vn).
The entropy of V is given by

^w=-Ep(»i)logp("i) (4-i)
i

and is a measure of the uncertainty about the value of V. The uncertainty about the value

of V when the value of another variable Y is known is given by

B{V\Y) =-J>*)El<«ilw),0S*»;l») (4-2)
«' 3

The amount by which the uncertainty of V is reduced when the value of variable Y is

known,

1(Y,V) = H(V)-H(V\Y) (4.3)

is called the mutual information between Y and V.

In this case, the objective is to compute I(L&ct, t), the mutual information between

the nodes in L^u viewed as a multi-valued variable, and the value of the labels in the

training set t. Each combination of the values of the nodes in Lact defines a subset of the

instances in the training set. For each of these subsets, the rightmost sumin (4.2) is given
by:

n log(^) +r^log(-^-) (4.4)
n + p n+p n + p n + p

where n and p are the numbers of negative and positive instances observed in each of these

sets. The weighted sum of these quantities is then easily computed to obtain the conditional

entropy and the corresponding mutual information.

4.3.3 Hill Climbing on Mutual Information

It is now possible to analyze why direct hill climbing1 on the value of (2.15) cannot

be performed using the set of moves defined in section 4.3.1. Suppose the target concept is

defined by the function / = xix2x3x4, the training set is generated in accordance with the

uniform probability distribution in {0,l}4 and assume that the active list consists of only

This designation is somewhat misleading since a minimum of the function is desired. However, the
term hill climbing is commonly used independently of whether a maximum or a minimum of the function is
desired.
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one node, L^t = {xi}. Replacing the active node xi by n$ = x\x2 (using operation 2) is a

move in the right direction. Clearly, one of the effects of this move is to increase the first

term in (2.15), the hypothesis complexity. However, even though n$ implements a function

that is more similar to the target function, it does not reduce the number of exceptions,

and therefore the second term in (2.15) does not decrease. This happens because even if an

instance causes the value of n5 to be 1, it is still more likely to be a negative instance than

a positive one and the additional information cannot be used to reduce the complexity of

the description of the exceptions.

For this reason, the algorithm performs hill-climbing on the value of the function

2(£act» t). The algorithm incrementally changes the network in a greedy way, trying, at each

iteration, to decrease the number of nodes in Lad and to increase the value of J(Xact? *)•

Every time a network with a single output is obtained, it is checked to see if it corresponds

to a smaller value of (2.15) than the previous solution. The function J(.Fact>*) is therefore

used only as a proxy for the actual function that is to be minimized because it represents

a finer estimate in the space of solutions defined by the moves used.

4.4 An Algorithm for Hill-Climbing on Mutual Information

4.4.1 Selecting the Best Move

The objective is to obtain a network with a single output that minimizes (2.15) by

performing hill-climbing on the mutual information. These two objectives are conflicting

because changes of type 3 increase J(Z>act,t) but also increase the number of nodes in L^t

while changes of type 1 decrease the number of nodes in Lact but also decrease I(Xactj *)•

The solution adopted is to apply changes of type 1 only if the decrease in 2(£act> t)

is not statistically significant, to apply changes of type 2 if any increase in l(Lact,t) takes

place and, finally, to apply changes of type 3 if these two options fail.

These operations are all performed for a fixed value of Af8up, the number of vari

ables in the support of newly created functions. At some point, however, the number of

variables in Xact may be to large to obtain statistically significant tests. In these case, the

only solution is to increase the value of Msup, the maximum number of variables in newly

created functions and restart the process. The pseudo-code in figure 4.4 describes the algo

rithm. The algorithm takes as input two constants, Ml and Mmax that define respectively
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the maximum number of nodes allowed in the active list and an upper limit on the max

imum number of nodes allowed in the support of a newly created function. The choice of

these constants is based only on runtime considerations. Typically, no more than 4 nodes

are required in the active list and the search for functions with more than 3 variables is too

expensive to perform.

MinNetwork(Ml, Mmax)

Msup := 2

repeat

24* := APPLYCHANGETYPEl(Iact, Af8up)
if LossIsNOTSlGNlFlCANT(Xact,Xact) Information loss is not statistically significant

Lact •= L&ct Accept move
M8Up := 2

continue

24t := APPLYCHANGETYPE2(Xact, Afsup)

rf 2"(-£act» *) > Z(L*cut) There is an increase in mutual information
Lact := Laci Accept move

•'"sup *~ ^

continue

if \Lact\ < Mi, The number of variables in Lad does not exceed maximum

24t := APPLYCHANGETYPE3(Xactl M8Up)

•^act s= Laci Accept move

•^sup •"""" ^*

continue

Afsup := M8Up + 1

Until M8up = Mmax V |Xact| = 1

Figure 4.4: Minimal network search algorithm.
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4.4.2 Selecting a Discriminating Function

Moves of type 3 require only the addition of a new variable to the active list and

this search can be performed in a relatively efficient way. On the other hand, the application

of a type 1 or type 2 move require the search for a new function. This procedure can be time

consuming. In fact, not only all combinations of existing variables need to be examined but

the best function of a given combination of variables needs to be selected as the candidate

one.

More specifically, the application of moves of type 1 and type 2 requires the so

lution of the following problem: given two sets of nodes, Si = {«tu"">»i,} and 52 =

{wj,, •••,njr}, select a set of functions {fi... /«-i} that takes as inputs the variables in Si

and maximizes

I({/i.../i-i}U52,t) (4.5)

Any Boolean function / can be viewed as a partition of the input space. In this case, the

function should depend only on the variables {n,j ,-••,«,,}. Furthermore, the value of this

function is important only for the points in the input space present in the training set.

To obtain this function, the points in the training set that share the same values of the

variables in Si are joined into the same cluster. There will be 29 such clusters, although

some of them may be empty. Any partition of these clusters into 2s-1 sets corresponds to a

given value of (4.5) and to a specific choice of (/i, •••, f3-i). The computation of the value

of expression (4.5) is fast because there are only 2" such clusters and s is limited to be no

larger than a user imposed constant, Msup. A partition of these clusters that maximizes

locally (4.5) is then obtained using the Kerninghan-Lin partitioning algorithm [48]. This

algorithm selects a good partition with respect to some cost function by swapping objects

(in this case by swapping clusters) between the two sides of the partition and evaluating

the net effect of such swaps in the target cost function. This procedure will be illustrated

with a concrete example.

Assume that the training set defined over a set of variables {x\, x2,x$...} has

the distribution of positive and negative examples shown in table 4.1 when the training

set is projected on the subspace {xi,x2}. This projection is obtained by simply ignoring

the values of the remaining variables. The original entropy of t, the variable that defines

the label in the training set is obtained applying expression (4.1) and is equal, for this

example, to 0.983. Now, assume that the active variables are Lact = {^1,^2}* The mutual
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Table 4.1: Distribution of positive and negative examples

Xi x2 Pos Neg
0 0 1 4

0 1 0 5

1 0 2 5

1 1 8 1

information between Lact = {xi,x2} and t, l(Lacui) = 0.438. Now a move of type 1 is to

be performed and the possibility under consideration is to replace xi and x2 for the best

function f(xi,x2). This corresponds to the selection of sets Si and 52 as Si = {xi,x2} and

S2 = 0. This is equivalent to the selection of a partition of the 4 clusters in figure 4.5 into

2 classes. Figure 4.5 shows two possible partitions and the corresponding values of mutual

^information. Clearly, the selection of the function f2 = £132 provides the solution that

/1 = xi e x2

l(fut) = 0.177

f-l = Xi A x2

Z(/2,<) = 0.369

Figure 4.5: Partitions and corresponding values of mutual information

maximizes (4.5). The selection of such a partition when the set S2 is non void is similar,

although the computation of the value of (4.5) for each possible partition is slightly more

elaborate. When Si «has k > 2 variables the computation of k - 1 functions needed to
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perform local changes of type 1 is equivalent to the selection of a 2*_1-way partition of the

clusters.

4.4.3 Evaluating the Statistical Significance of Information Loss

The algorithm in figure 4.4 only applies moves of type 1 like the one used in the

previous example if the loss in mutual information is not statistically significant. This is

necessary because every time k variables in the active list are merged into k —1 variables,

it is likely that there will be an information loss. This will only be false if the proportions

of positive to negative instances in each of the merged bins are exactly the same.

This information loss may not be statistically significant because it may be caused

by fluctuations introduced by the sampling process that generated the training set. In

the example in table 4.1 the characteristic function of the target concept may be equal to

f = xix2 but the presenceof noisemay have corrupted somelabels. Alternatively, the target

function may havea weak dependence on other variables (e.g., / = (xix2)@g(x7X8X9Xio)).

In both cases, a practical approach is to perform the merging by applying the

moveof type 1 only if the proportions of positive and negative instances in the merged bins

are not significantly different. This condition is tested using a chi-squared test.

The application of the chi-squared test is also illustrated using the example pre

sented in the previous section. Assumethat the mergingselected by the function f2 in figure

4.5 is to be tested for statistical significance. If the real function is given by / = Xix2, (pos

sibly with other dependences on other variables) then the different proportions of negative

and positive examples observed in the bins labeled 00, 01 and 10 are only due to random

fluctuations. If this is the case, the expected proportion of positive and negative instances

in each of these bins is the same and is possible to compute the deviations of —ef on the

number of positive instances observed for each bin, where of is the observed number of

positive instances and ef is theexpected value. The same is truefor the negative instances.
The statistic

x2 =E(£^)!+(£r^oi m
i ei ei

has, under reasonable assumptions,a chi-squared distribution with k = 2 degrees offreedom.

(The number of degrees of freedom is given by the number of clusters merged minus 1).

The probability of the deviations observed observed under the assumption that

they are due only to random fluctuations can then be extracted from the tables of the chi-
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squared distribution or computed directly by evaluating T(fc/2,x2/2) where T(x,y) is the
gamma function.

Table 4.2: Computation of the chi-squared statistic

Bins 1 2 3 Total

Observed

of 1.00

4.00

0.00

5.00

2.00

5.00

3.00

14.00

Total 5.00 5.00 7.00 17.00

Expected

ef
€i

0.88

4.12

0.88

4.12

1.24

5.76

The computationof the values required for the evaluation of the chi-squared statis

tic given byexpression (4.6)is exemplified in table 4.2. The computed value, x = 1.67means

that the merging should be accepted at a significance level (3 of 0.05 because it is smaller

than the tabulated value for X2.1-o.05, 5.991.

4.4.4 The Hill-Climbing Algorithm Illustrated

Figures 4.6 and 4.7 exemplify how the algorithm works when learning the simple

Boolean function / = xix2+ x3x4xs assuming that a complete training set is given. In this

Apply type 3 move Apply type 2 move

Xi «i

Xi

x-i
«6

Z({m},<) = 0.16 Z({n6},<) = 0.52

Fails to apply moves of type 1 or 2

xi

x2

«3
"3

n6

—*•

Z({n6,n3},0 = 0.63

Figure 4.6: Example of a run of the algorithm, part 1
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example, the value of Afsup is always at 2 and, therefore, only 2 input Boolean functions are

generated. In figure 4.6, the algorithm generates the partial function gi = xix2 and reaches

a point where it cannot improve the mutual information by applying changes of type 2.

It then adds a new node to the active list and builds an auxiliary function, g2 = £3X4X5.

It is implicit that many moves of other type (like, for instance, merging nodes 717 and n$)

were considered but did not pass the chi-squared test described above. An operation of

type 1 can only be performed with success when the function #3 = X3X4X5 is obtained.

The mergings implied by a move of type 1 now pass the statistical significance test and

are applied to yield the final result. It is important to note that, in general, the algorithm

Apply move of type 2 Apply move of type 2

*2

*3

*4

n6

"7

*2

*3

*4

I({n6,n7},«) = 0.74 X({n6,n8},t) = 0.93

«6

n7

Apply move of type 1

3)
«8

*3

"7

*4

n8 *5

Z({n9), t) = 0.93

Figure 4.7: Example of a run of the algorithm, part 2

7$>*

n8

will not aim straight for the right solution. Instead, it will build functions that are closer

and closer to the target function and are increasingly more complex. In particular, the

statistical significance test is bound to fail in both directions, once in a while. This means

that good mergings will be sometimes rejected and bad ones accepted. This, however, does

not block the algorithm from selecting a solution that is a local minimum, under the set of

moves selected, to expression 2.15.
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4.5 Experimental Evaluation

An objective evaluation of the merits of this algorithm is hard to accomplish

because no other algorithms developed specifically for this purpose have been proposed to
date.

However, if the algorithm is run with the restriction that it should minimize ex

pression (2.15) with a very small value of a, then it will obtain a network with an output

that will always coincide with the labels present in the training set. The implementation

made of these algorithms in the form of a C++ program, muesli, can be used in this exact

mode and was used in the comparisons described in this section.

In these conditions, it is possible to compare the performance of the algorithm with

standardlogic synthesis techniques, and, in particular, multi-level logic synthesis algorithms.

The two algorithms selected are both based on the SIS system [15] developed at Berkeley

but use two different scripts that give very different results. The rugged script uses the

computation of local don't care sets for each node to achieve a simpler final network. This

script takes usually longer than the other script used, the algebraic script because the

computation of the local don't care sets is computationally intensive. The algebraic script,

on the other hand, uses mostly faster algebraic manipulations to minimize the resulting

network and sacrifices, in general, solution quality for speed.

4.5.1 Experimental Setup

To evaluate the relative performance of the algorithms, a set of 12 functions was

selected, all of them known to accept compactmulti-level implementations. Thesefunctions

are described in appendix B.

The first 4 functions were designed to be specially simple and are defined over

Boolean spaces with a small number of variables. The last 8 functions have been pro

posed in the machine learning literature [69] and are relatively more complex. For each of

these functions, training sets of increasing sizes were randomly generated and labeled in

accordance with the function being learned.

The three algorithms were run on each problem for a maximum of one hour of

CPU time in a DEC/Alpha machine and a memory usage limited to 140 Megabytes.
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4.5.2 Results Analysis

Tables 4.3,4.4 and 4.5 describe the results obtained for each of the functions and

training set sizes.

There are somepoints worth noting in these results. First, the muesli algorithm ob

tained results that were always competitive with the best alternatives but using an amount

of CPU time much smaller. In fact, for the larger problems, the algorithms based on the use

of logic synthesis techniques were unable to complete in the time and memory allocated for

the task while the algorithms described in this chapter faced no serious problems deriving

relatively compact representations. The rugged script always gave better results than the

algebraic script, both in terms of the number of literals in the final result and the total

amount of CPU time. However, even this script is unable to solve the larger problems listed

in tables 4.4 and 4.5. The superior speed of the rugged script in these problems came as a

surprise and deserves further study.

These results show that logic synthesis algorithms that are highly effective in the

type of problems commonly encountered in the logic synthesis field are not well adapted to

the case where the target functions are specified by a sample of the on and offsets. This is

probably due to the fact that the computation of the don't care sets for each node becomes

too expensive to perform and this don't care set is hard to use effectively.

The amount of CPU time used by the logic synthesis algorithms makes them

unusable for all but the simplest learning problems. On the other hand, the algorithms

described in this chapter were applied with success to problems much larger than the ones

studied here. For example, in chapter 7 they were used to learn several functions of 256

variables with training set sizes with more than 50000 instances. Even if the logic synthesis

approach could be modified by careful tuning of the scripts to handle the problems studied

in this chapter, it is unlikely that they can be applied with any success to problems of that

order of magnitude.
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Concept Training Set # literals Cpu time
# inputs Size muesli rugged algebraic muesli rugged algebraic

heel9 9 50 26 43 64 0.8 0.7 0.5

100 23 14 80 0.5 1.2 0.8

150 18 13 110 0.6 1.9 1.3

200 18 14 106 0.5 2.0 1.2

250 13 13 116 0.4 1.7 1.5

300 13 13 121 0.3 2.2 1.4

350 13 13 122 0.3 2.4 1.3

400 13 14 131 0.3 2.2 1.2

450 13 13 120 0.4 2.4 1.2

500 13 14 117 0.3 2.3 1.2

sml2 12 100 75 86 175 3.1 6.2 4.2

200 114 139 301 6.3 24.5 23.8

300 90 79 401 5.5 59.6 75.2

400 41 76 458 1.5 66.4 199.9

500 57 38 505 2.1 71.2 269.0

600 41 37 537 1.6 66.9 435.6

700 43 36 600 2.3 88.8 696.3

800 40 35 655 1.6 167.3 1006.2

900 51 43 653 3.0 185.1 1174.6

1000 70 38 681 2.5 193.5 1128.4

heell8 18 100 50 91 - 3.3 53.6 -

200 92 134 - 6.4 185.4 -

300 25 164 - 1.3 494.0 -

400 25 80 - 1.3 1429.2 -

500 25 47 - 1.5 1092.7 -

600 25 119 - 1.8 2725.7 -

700 25 62 - 1.5 3343.8 -

800 25 - - 1.5 - -

900 25 - - 1.8 - -

1000 25 - - 1.8 - -

strl8 18 100 23 34 86 1.1 9.3 0.9

200 65 84 165 6.6 42.7 4.5

300 130 104 245 12.4 1082.4 14.6

400 119 - 314 11.6 - 34.0

500 157 117 - 12.9 2602.9 -

600 137 187 - 14.8 544.4

700 29 150 - 2.6 779.7 -

800 58 234 - 4.5 1003.8 -

900 90 115 - 8.0 1263.4 -

1000 126 236 - 11.5 1898.1 -

Table 4.3: Minimal Boolean networks obtained by different techniques, part 1
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Concept Training Set # literals Cpu time

# inputs Size muesli rugged algebraic muesli rugged algebraic

mux6 16 100 43 42 350 2.5 14.9 31.4

200 28 19 1.4 90.4 -

300 61 31 2.3 181.7 -

400 38 44 1.6 370.4 -

500 35 23 1.4 964.3 -

600 32 30 1.7 813.4 -

700 42 77 2.5 2765.6 -

800 34 15 1.8 2185.6 -

900 50 21 2.4 2931.3 -

1000 51 - 3.4 - -

mux11 32 100 65 91 4.8 135.2 -

200 149 243 15.5 1070.2 -

300 303 420 50.6 2407.5 -

400 227 - 43.2 - -

500 482 - 109.8 - -

600 522 - 203.5 - -

700 162 - 24.1 - -

800 111 - 16.8 - -

900 114 - 12.6 - -

1000 194 - 34.7 - -

par4_16 16 100 107 106 371 13.5 366.3 44.5

200 242 171 45.3 89.9 -

300 431 39 96.4 219.4 -

400 662 463 263.4 531.5 -

500 12 316 17.2 1153.3 -

600 121 71 31.9 1137.1 -

700 12 24 14.0 1782.6 -

800 12 29 1.2 2761.6 -

900 - 36 - 3342.4 -

1000 12 - 5.9 - -

par5^32 32 100 85 121 11.1 119.5 -

200 168 248 34.6 1260.2 -

300 313 439 68.9 3168.7 -

400 - - - - -

500 610 - 197.8 - -

600 712 - 269.4 - -

700 847 - 453.1 - -

800 - - - - -

900 - - - - -

1000 - - - - -

Table 4.4: Minimal Boolean networks obtained by different techniques, part 2
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Concept Training Set # literals Cpu time
# inputs Size muesli rugged algebraic muesli rugged algebraic

dnfl 80 100

200

300

400

500

600

700

800

900

1000

27

64

94

156

235

198

342

389

413

415

3.4

6.8

13.8

24.4

42.5

41.1

87.1

98.6

145.0

138.1

dnf2 40 100

200

300

400

500

600

700

800

900

1000

34

120 154

109

140

101

73

125

107

111

79

2.7

9.0 1410.8

7.0

12.4

9.4

6.3

10.3

7.6

8.7

7.6

dnf3 32 100

200

300

400

500

600

700

800

900

1000

67 52 320

81 124

44 111

100

142

57

53

73

85

76

2.8 139.9 40.3

5.9 399.2

2.9 1352.6

7.6

15.8

3.4

2.8

6.0

6.6

4.8

dnf4 64 100

200

300

400

500

600

700

800

900

1000

55 122

120

156

165

429

129

148

87

87

52

5.4 1307.4

19.1

28.1

28.9

91.5

18.3

23.5

16.5

12.6

7.1

Table 4.5: Minimal Boolean networks obtained by different techniques, part 3
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5.1 Introduction

This chapter describes both exact and heuristic algorithms for the induction of

minimal complexity reducedordered decision graphs from training set data. Decision graphs

can be viewed as a generalization of decision trees, a very successful approach for the

inference of classification rules [17, 76, 79]. The selection of decision graphs instead of

decision trees as the hypothesis representation scheme is important because, even though

decision trees can represent any concept, they are not concise representations for some

concepts of interest. In particular, the quality of the generalization performed by a decision

tree induced from data suffers because of two well known problems: the replication of

subtrees required to represent some concepts and the rapid fragmentation of the training

set data when attributes that can take a high number of values are tested at a node. Oliver

[67] describes in some detail these limitations.

Decision graphs have been proposed as one way to alleviate these problems, but

the algorithms proposed to date for the construction of these graphs suffer from serious

limitations. Mahoney and Mooney [57] proposed to identify related subtrees in a decision

tree obtained using standard methods but reported limited success in the sense that they

observed no improvement in the quality of the generalization performed. They used a non-

canonical representation of Boolean functions (DNF expressions) to represent the functions
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implemented by these subtrees. The non-canonicity of this representation makes is a non-

trivial process to identify identical subtrees and that renders this approach impracticable

for large decision trees. Oliver [67] proposed a greedy algorithm that performs either a

join or a split operation, depending on which one reduces more the description length. He

reported improvements over the use of decision trees in relatively simple problems but our

experiments using a similar approach failed in more complex test cases because of the greedy

nature of the algorithm.

This chapter describes two different approaches for the problem of selecting the

RODG of minimal description length. Since the problem is NP-complete [97] both an exact

and an heuristic approach are described for this problem.

The exact approach described in section 5.3 works only in the noise free case and

selects the RODG that minimizes (2.14) under a fixed ordering of the variables. Although

the domain of applicability of the exact solver is limited, this approach is interesting because

it is the first formulation of this optimization problem that does not require an explicit search

of the solution space as previous approaches do [91].

Section 5.4 describes an heuristic approach that obtains an RODG that minimizes

(2.15) and is much faster than the exact one for large examples. Furthermore, it derives

a good ordering of the variables together with the RODG structure. The approach differs

from the one proposed by Kohavi [50] that also uses RODGs. Although his approach

performs well for small problems, it requires far too much computation to be applicable

to any problems of reasonable size. Other heuristic algorithms that can be used for the

selection of compact RODGs compatible with the training set have been proposed before

in the logic synthesis literature [92] but the quality of the results obtained makes them

ineffective for the type of problems found in machine learning. They are, however, useful

as a generator of the initial RODG, as described in section 5.4.1.

This work draws heavily on techniques developed by other authors in the machine

learning and logic synthesis fields. From machine learning, I use many of the techniques

developed for the induction of decision trees described in [76] and [79]. Also used are the

constructive induction algorithms proposed by Pagallo and Haussler [69] and further devel

oped in [70] and [101]. From the logic synthesis field, the use of the vast array of techniques

developed for the manipulation of RODGs as canonical representations for Boolean func

tions [18, 13] and the variable reordering algorithms studied in [26] and [83] are critically

important. For the benefit of readers not familiar with the use of RODGs as a tool for
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the manipulation of Boolean functions, appendix A gives an overview of the techniques

available and their relation to this work.

5.2 Definitions

5.2.1 Decision Graph Nodes and Functions

Recall that an decision graph is a rooted, directed, acyclic graph where each node

is labeled with the name of one variable, and every non-terminal node ?ij has one else and

one then edge that point to the children nodes, n*ke and n*hen, respectively.

Any minterm z in the input space induces a unique path in an RODG defined

in the following way: start at the root and take, at each node, the else or the then edge

according to the value assigned by minterm z to the variable that is the label of the current

node until a terminal node is reached. An RODG corresponds to the completely specified

Boolean function / that has all the minterms in /on (and only these) inducing paths in the

RODG that terminate in n0. For a fixed ordering of the variables, the RODG for a given

Boolean function is unique. This implies that RODGs are a canonical representation of

Boolean functions and the notation nt- will be used to denote both the node in the RODG

and the Boolean function it corresponds to.

The level of a node n,-, C(ni) is the index of the variable tested at that node under

the specific ordering used. The level of the terminal nodes is defined as N + 1, where JV is,

as before, the number ofinput variables. The maximum level ofa set 5 ofnodes, £max(s)
is the maximum level ofall the nodes in s. A decision graph is called complete if all edges
starting at level i terminate in a node at level i + 1 or in a terminal node.1 The level of a

function h, C(h), is defined as the level ofa RODG node that implements h. If n,- is a node

in the RODG and z a minterm, nt(*) will be used to denote both the value offunction n;
for minterm z and the terminal node that z reaches when starting at n,-. This notation is
consistent because the two terminal nodes stand for the constant functions 0 and 1.

A 3 Terminal RODG (3TR0DG) is defined in the same way as an RODG in all
respects except that it hasthree terminal nodes : nz,n0 and nx. A 3TR0DG F corresponds

to theincompletely specified function / that has all minterms in /Qff,/dc and /on terminate
in nz, nx and n0, respectively.

A complete decision graph will not, in general, be reduced.
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5.2.2 Decision Trees

A decision tree is a special case of an unordered decision graph where the under
lying graph structure is restricted to be a tree, i.e., has no re-converging paths, and there
are more than two terminal nodes. The terminal nodes in a decision tree belong two one
of two sets: Sz or S0. A decision tree corresponds to the completely specified Boolean
function / that has all the minterms in /on (and only these) inducing paths in the RODG
that terminate in terminal nodes that belong to 50.2

Consider now a decision tree or a decision graphs defined over the domain D. Let

no,ni,...,na be the nodes in the graph or tree, vt- denote the variable tested in node n,- of

the graph (or tree) , n\hen (the then node) denote the node pointed to by the arc leaving
node 7it- when attribute vt- is 1 and nf3** (the else node) denote the node pointed to by the
arc leaving node nt- when attribute »,- is 0. Finally, let node no be the root of the graph.

5.2.3 Encoding Decision Graphs

The encoding scheme used is again a variation of the generic graph encoding

scheme described in section 2.7.1. That scheme has to be modified only slightly to take into

account the fact that, for each node, the index of the variable tested at that node also has

to be described. The encoding scheme is, therefore, the following:

• A node that was never visited before is encoded starting with 1 followed by an encoding

of the variable tested at that node, followed by the encoding of the node pointed to

by the else edge, followed by an encoding of the node pointed to by the then edge.

• A node that was visited before is encoded starting with 0 followed by a reference to

the already described node.

The first node to be described is the root of the graph, and the two terminal nodes are

considered visited from the beginning and assigned reference numbers 0 and 1.

For the exact algorithm, it is assumed that each reference uses a fixed number of

bits, no matter how many nodes were described at the point that reference is used. This

makes the encoding length monotonic in the number of nodes in the graph and makes the

2Equivalently, adecision treecanbedefined has having only twoterminal nodes and have nore-converging
paths except at these two terminal nodes.
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minimization ofexpression (2.14) equivalent to the minimization of the number of nodes in

the graph.

For the heuristic algorithm, the slightly more efficient encoding that only uses

log2(r) bits for each reference where r is the number of nodes described up to that point is

used. This is important because the heuristic algorithm minimizes expression (2.15) and it

is more critical to use encodings that are close to the optimum.

5.3 An Exact Minimization Algorithm

Given a fixed ordering, the objective is to derive an RODG that is consistent

with the incompletely specified function / defined by the training set and minimizes (2.14)

using the encoding scheme described in above. Assume, without loss of generality, that the

ordering selected is (xi,x2,...,xn). Any other ordering can easily be handled by performing

a simple variable transformation.

From the 3TR0DG that is obtained from the incompletely specified function de

fined by the (noiseless) training set, a compatibility graph is extracted that describes which

nodes in this 3TR0DG can be merged. The desired result is obtained by selecting a mini

mum cardinality closedclique coverfor the compatibility graph. This approach is inspired in

the standard algorithms used for the minimization of incompletely specified state machines

and uses some of the concepts developed for that purpose.

5.3.1 The Compatibility Graph

Previous algorithms [91] for this problem used directly the RODG representation

of /on and /off. The exact approach described in this paper works with the 3TR0DG F

that corresponds to /. F is assumed to be complete. If necessary, F is made complete

by adding extra nodes that have the then and else edges pointing to the same node. The

resulting 3TR0DG is no longer reduced, but this transformation is required to warrant that

the minimum solution is found. Obtaining F from the training set is a simple procedure [18]

that can be performed using a standard RODG package like, for instance, the one described

in [13].



68 CHAPTERS. REDUCED ORDERED DECISION GRAPHS

Definition 2 Two nodes n{ and nj in F are compatible3 (ni ~ nj) iff no minterm z exists
that satisfies nf(*) = nz Anj(z) = n0 or m(z) = n0 Anj(z) = nz.

Definition 3 Two nodes nt- and nj in F are common support compatible (ni « nj) iff there
exists afunction h such that h~ nt and h~ nj and C(h) > max(£(nt),£(7ij)).

By definition nz >/> n0 and nx « n,-, for any node nt-.

The compatibility graph, G, is an undirected graph that contains the information

about which nodes in F can be merged. Except for the terminal node nx, each node in F

will correspond to one node in G with the same index. The level of a node in G is the same

as the level of the corresponding node in F. Similarly, gfae and g\hcn are the nodes that
correspond to nfae and n\hen.

Graph G is built in such a way that if nodes n,- and nj are common support

compatible then there exists an edge between </,- and gj. An edge may have labels. A label

is a set of nodes that expresses the following requirement: if nodes </,- and gj are to be

merged, then the nodes in the label also need to be merged. There are three types of labels:

e, t and /labels. The following two lemmas justify the algorithm by which graph G is built:

Lemma 4 If £(n{) = C(nj) then ni « nj => nfae « nfse An\hen « nfen.

Proof : Since F is complete, either the successors are at the same level or at least one

of them is a terminal. Therefore, nfae 56 nf8e =• nfat / nfae and a minterm z can
be selected in such a way that nfae(z) 96 nfae(z) and zC(ni) = 0. The existence of this
minterm shows that m 96 nj. A similar argument is true for the then branch. Therefore,
nelse ^ ne)Se y ^hen ^ n^en ^ n. j, n.

Lemma 5 7/£(n,) < £(n;) then ni « nj =*> nfae « nj An\hen « nj Anfae « n\hen

Proof : If nfae 96 nj then, for any functions h at level C(nj) or higher a minterm z can
be selected in such a way that nfae(z) j> h(z) and zC(ni) = 0. This minterm shows that
ni </> h, thereby showing that nt- 96 nj. Identically for the then branch. If nfae 96 n\hen

then there are minterms wand z such that nfae(w) </> n\hen(w)Awc(ni) - 0and nfae(z) */>
ntihen(z)Azc^ = 1. This minterms can be chosen to differ only in the value ofthe variable
xC{m) and lead to incompatible terminal nodes. Therefore, nt- cannot be equivalent to any

function h suchthat C(h) >= £(nj). These twolemmas justify the creation of G as follows:

3This is simply a restatement of the compatibility between functions as defined in section 5.2.
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1. Initialize G with a complete graph except for edge (gz,g0) that is removed.

2. If C(gi) = C(gj) then the edge between gi and gj has two labels: an e label with

{9ilse,9e/se} and a <label with {g^.gfen}. (By lemma 4.)

3. If £(#) ± C(gj) edge (#,#) has an / label with {^/ae,flfen,Sm} where £(gk) =

min(£(flf,-)»^(Pi)) and £(gm) = max(£(#)» A«j))- (By lemma 5.)

4. For all pairs of nodes (gt-,£j) check if the edge between nodes </,- and gj has a label

that contains {ga,gb} and there is no edge between ga and <jr&. If so, remove the edge

between gi and gj. Repeat this step until no more changes take place.

Figure 5.1 shows an example of the 3TR0DG F obtained from / defined by the

following sets: /on = {Oil, 111}, /off = {010,110,101} and the corresponding compatibility

graph.

*1

*2

*3

Figure 5.1: The 3TRODG F and the compatibility graph G.

Lemma 6 If ni and nj are common support compatible then G has an edge between nodes

gi and gj.

Proof: Follows directly from lemmas 4 and 5 and the algorithm definition.

5.3.2 Closed Clique Covers

To any set s of nodes that is a clique of G there are associated class sets. If the

nodes in s are to be merged into one, the nodes in its class sets are also required to be in the

same set. Let st- = {ftiiffia—tfit*} be a set of nodes that form a clique in G. The following

are the definitions of the e, t and / classes of Sj.
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Definition 4 The e class ofsi} Ce(si) is the set ofnodes that are in some e label ofan
edge between a node gj and gk in st with C(nk) = C(nj) = £max(st).

Definition 5 The t class ofSi, Ct(si) is the set ofnodes that are in some t label ofan edge
between a node gj and gk in st- with C(nk) = C{nj) = £,»«(*,•).

Definition 6 The I class ofsi, Ci(si) is the set ofnodes that are in some I label ofan edge
between a node gj and gk in s,- with C(gj) ^ C(gk)

The algorithm that selects the minimum RODG compatible with the original func

tion works by selecting nodes of G that can be merged into one node in the final RODG. If

a set s of nodes in G is to be merged into one, they have to be pairwise common support

compatible. Therefore, they have to be a clique ofG. The objectiveis to find a set of cliques

such that every node in G is covered by at least one clique. However, given the properties

of a valid solution, some extra conditions need to be imposed.

Definition 7 A set S = {si,s2...sn} of sets of nodes in G is called a closed clique cover

for G if the following conditions are satisfied:

1. S covers G : Vflf; €G3sj e S : gi € Sj

2. All sk are cliques ofG : V^,^- € sk : (gi,gj) € edges(G)

3. S is closed wrt the e and t labels :

V* GS3sj e S : Ce(si) C Sj A Vst- € S3Sj 6 S :Ct(si) C Sj

4> All sets in S are closed wrt the I labels : Vs,- 6 S :Ci(si) C s,-

5.3.3 Generating the Minimum RODG

From a closed clique cover for G, a reduced RODG R is obtained by the following

algorithm:

1. For each s; in S, create an RODG node in R, r,, at level £max(s;).

2. Let the nodes in R that correspond to sets 5,- containing nodes that correspond to

terminal nodes in F be the new corresponding terminal nodes of R.
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3. Let the else edge of the node ri go to the node rj that corresponds to a set Sj such

that Ce(si) C sj.

4. Let the then edge of the node rt- go to the node rj that corresponds to a set Sj such

that Ct(si) C sj.

Lemma 7 R is an Ordered RODG compatible with F.

Proof : Since the cover is closed, steps 3 and 4 four are always feasible. Any path in F

that leads to a 1 or a 0 will lead to the corresponding terminal node in R. Finally, there

will never be edges going upward in R because the node that results from a set sf- is at the

lowest level of all the nodes in s,-.

Now, the main result follows. Let B be the set of all RODGs that represent

functions compatible with the incompletely specified function /. Then, the following result

applies:

Theorem 1 The RODG induced by a minimum closed coverfor G is the RODG in B with

minimum number of nodes.

Proof : Given the result in lemma 7 it is sufficient to prove that there exists at least one

closed cover of cardinality equal to the size of the minimum RODG in B.

Let U be an RODG in B with minimum number of nodes k. For each node in U,

Ui, create a set st- such that gj is in ut- iff nj ~ ut- and C(nj) < £(«,). Let S = {si,s2...sk}.

We will show that S satisfies all the conditions in definition 7:

1. (5 covers G) We show that the assumption that some gi at level / is not in some set

of S leads to a contradiction: let z be one minterm that defines a path in F that

goes through rat- and terminates in n0 or nz. Let Z be the set of all minterms that

have the same values as z for x\...xi-\. Either one of these minterms will define a

path in U that goes through some node Uj in U at a level equal or higher than / or

all minterms in Z terminate in some terminal node before reaching any node at level

/. In the first case, since n,- / Uj (by the hypothesis) there exists a minterm in M

that will lead to incompatible terminal nodes in U and F, thereby contradicting the

assumption that U is consistent with F. In the second case, all such minterms lead

to the same terminal node in U. Since gi is not equivalent to neither terminal node

(by the hypothesis), this also implies that U and F are not compatible.
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2. (All Si € S are cliques) Since each node in st- is compatible with a completely specified

function (rt) they are all pairwise common support compatible between them and

therefore the nodes in st- are a clique of G.

3. (5 is closed wrt the e and t labels) Let w; be a node in U, ua = ufae and u\, = u\hen.
Let bi —{gj € s; :£(#) =Anax(st)}« For each node gj € &,• n,- ~ wt- implies ua ~ «j'ae
and ub ~ nfen. Therefore, Ce(si) Csa and Ct(s;) C sb.

4. (5 is closed wrt the / labels) Suppose C/(st) </L 5t-. Then, there must be a node nw
such that ^ 6 Si at level / < £(rt) such that rajjse 96 u, or njjen 56 «,-. Assume the

first is true and let n^ae = na. na is not compatible with wt- (or else it would be in
Si) and depends only in {xi+i...xn}. Therefore, there exists a minterm m such that

Ui{m) ?fc na(m) and mi = 0. This minterm shows that nw 76 Ui which contradicts the

hypothesis that gw is in s,-.

Therefore, 5 is a closed clique cover for G and it has cardinality k •.

As an example, S = {{no,ni,n2},{gA},{gz,gz},{g0}} is a closed cover for the

example depicted in figure 5.1 and induces the RODG R shown on the right side of figure
5.2.

Xl

X2

X3

nx nz

Figure 5.2: The 3TRODG F, the compatibility graph G and a solution R.

Given the result in theorem 1, a minimum RODG can be found by selecting a

minimum closed clique cover. This problem is very similar to other problems that have

been extensively studied in the logic synthesis community. For example, minimization of

incompletely specified finite state machines leads to a similar optimization problem where

the selection of a minimum closed cover yields the desired solution.
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5.3.4 Direct Solution of the Covering Problem Using Compatibles

Definition 8 A set s of nodes in G is a compatible set iffs is a clique ofG and Ci(s) € s.

Only compatible sets may be present in a solution to the covering problem. How

ever, one does not need to consider all the compatible sets since a solution consisting only

of prime compatible sets is bound to exist.

Definition 9 A set Si of nodes in G is a prime compatible set iff Si is a compatible set of

G and there is no other Sj that is a compatible set of G and satisfies: Si C Sj A Ce(sj) C

Ce(Si) A Ct(Sj) C Ct(Si)

Sincethere exists one minimum solution that consists entirely of prime compatible

sets (see [36]) an exact algorithm for solving the minimum closed cover is the following:

1. Generate all prime compatible sets of G.

2. Formulate the closed covering problem as the satisfiabUity of a Boolean expression

and solve it.

The satisfiability problem is NP-complete and can be solved, for some problems,

using one the methods presented in the literature. A detailed analysis of these algorithms

is outside the scope of this work. The implementation of this algorithm uses the routines

described in [38] to solve the minimum covering problem.

5.4 An Heuristic Minimization Algorithm

The heuristic minimization algorithm described in this section derives an RODG

that corresponds to a local minimum of (2.15) under the encoding scheme described in

section 5.2.3.

The algorithm initializes the RODG using the techniques described in section 5.4.1

and then applies local changes to obtain an RODG of smaller description length.

5.4.1 Generating the Initial RODG

There are several possible ways to generate an RODG that can be used as the

starting point for the local optimization algorithm. Experiments have shown that three of
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them are particularly effective. The RODG selected as the initial solution is the smaller

one of the following three:

• The RODG that realizes the function implemented by a decision tree derived from

the training set data using standard decision tree algorithms.

• The RODG that realizes the function implemented by a decision tree defined over a

new set of variables obtained using constructive induction techniques.

• The RODG obtained by applying the restrict heuristic to the function obtained by

listing all positive instances in the training set.

Each of these three approaches can and do generate sometimes RODGs that are

several orders of magnitude larger than the minimum possible. However, by selecting the

smaller of the three, it is possible, in many of the problems tried, to obtain a final solution

that is reasonably close to the minimum possible. How these three techniques can be used

to generate the original RODG is the subject of the next three subsections.

5.4.1.1 Initialization Using Decision Trees

One possible way to initialize the RODG is to obtain a decision tree from the data

and to convert the function obtained by the decision tree to RODG form. Several efficient

algorithms for the inductionof decision trees from datahavebeen proposed in the literature.

Since all the attributes are Boolean and we are not concerned with algorithms for pruning4

the tree, a relatively straightforward algorithm can be used to generate the decision tree.

The algorithm usedis the sameas the oneproposed in [76] and uses the concepts of entropy

and mutual information as defined in section 4.3.2.

At each point, the decision tree algorithm has to select one variable to be tested

at a given node. The variable selected is the one that provides the maximum amount of

information about the target class for the examples that reached that node.

After a decision tree is derived, the transformation to a decision graph represen

tation is trivially performed using the facilities provided by the RODG package. Consider

a particular node nt- of a decision tree and the subtree rooted at that node (see figure 5.3).

4The graph minimization algorithm takes care of the trade-off between training set fit and model
complexity.
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Figure 5.3: A subtree rooted at node nt-

The function implemented by non-terminal node ni is given by

f njhen if Vi = 1ni = { \ (5.1)
[ nfe if v{ =0

Expression (5.1) is a recursive definition of the function implemented by any node

in the decision tree. The recursion stops when nf*e (ornjhen) isa terminal node. In thiscase

nf*e (or nfhen) corresponds to the constant 0function orthe constant 1function, depending
on the type of the terminal node.

It must be pointed out that the decision graph that corresponds to a particular

decision tree is not isomorphic to the tree that served as the starting point. Figure 5.4

shows a decision tree for the function / = Xix2 + X3X4 and the graph that results from

applying the above definition, assuming the ordering used is (xi,x2,X3,x4).

5.4.1.2 Initialization Using a Constructive Induction Algorithm

Constructive induction algorithms create new complex attributes by combining

existing attributes in ways that make the description of the concept easier. The algorithm

used in fulfringe [66], identifies patterns near the fringes of the decision tree and uses them

to build new attributes. The idea was first proposed in [69] and further developed in [70].

Another algorithm of this family, dcfringe [101] identifies the patterns shown in the first two

rows of figure 5.5. These patterns correspond to 8 Boolean functions of 2 variables. Since

there are only 10 distinct Boolean functions that depend on two variables5, it is natural to

The remaining 6 functions of 2 variables depend on only one or none of the variables.
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Figure 5.4: A decision tree and the corresponding decision graph

Xl

X2 t X2

Xi Ax2 xl Ax2 Xj Ax2 XjA x2

xi VXa Xj yx2 x, yx2 Xj yx2

X2 t«2 f ^ t*2 #X2 *X;

Xj © X2 Xj O X2 Xj 9 X2 Xj © X2

Figure 5.5: Fringe patterns identified by fulfringe
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add the patterns in the third row and identify all possible functions of 2 variables. As in

dcfringe and fringe, these new composite attributes are added (if they have not yet been

generated) to the list of existing attributes and a new decision tree is built. The process

is iterated until no further reduction in the decision tree size takes place or a decision tree

with only one decision node is built.6

The composite attributes are Boolean combinations of existing attributes and,

therefore, the RODGs for them are created in a straightforward way using the Boolean

operators between existing functions provided by the RODG package. Expression (5.1)

can still be used to derive the RODG implemented by a decision tree defined over this

extended set of variables. However, the control variable v,- in expression (5.1) is no longer a

primitive variable but a composite function. This is not a problem for the Boolean function

manipulation routines that treat a primitive and a composite variable in an uniform way.

It is important to note here that even though the successive decision trees are

defined using composite attributes, the RODG that corresponds to any one of these trees is

still definedover the original set of variables. The constructive induction algorithm is simply

used to derive a simpler Boolean function to initialize the RODG reduction algorithm.

>x_

K

Figure 5.6: Decision trees created by fulfringe, after creating the composite attributes
0:5 = xi A x2, xe = a?3 A a?4 and x-j = xs V x&. The rightmost figure represents the resulting
decision graph.

Figure 5.6 shows the successive decision trees obtained using this algorithm for the

function used in figure 5.4. The first decision tree created is the same as before. Using the

patterns listed in figure 5.5 the algorithm creates the two following attributes: x$ = XiAx2

and a?6 = #3 AX4. A smaller decision tree is then built using these attributes (together with

6The first condition is only necessary to ensure the algorithm will terminate in a reasonable time. In
normal usage, a decision tree with a single node will always be obtained.
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the primitive ones, in general) and the new attribute x7 = a?5 Vx6 is then created. The

final decision tree has a single node that tests attribute x7. The RODG is then created by
computing / = Ite(ar7,1,0). In this case, the final RODG is the same as the one obtained

using the initial decision tree although this is not always the case.

5.4.1.3 Initialization Using the Restrict Operator

The third way to initialize the algorithm is to use the restrict operator [21]. This

RODG operator can be used to obtain a more compact RODG representation for a function

defined by its on and off sets.

The restrict operator belongs to a family of heuristics [92] that generate a small

RODG by merging, in a bottom up fashion, nodes in an RODG. The merging of nodes

is performed in a way that keeps the function that corresponds to the generated RODG

contained in the union of /ac and /on. The restrict heuristic is remarkably fast and obtains,

in some cases, RODGs that are much better solutions that the ones obtained by the much

slower decision tree algorithms. However, in many other cases, the solutions are much

worst and totally useless for inductive inference applications. For this reason, this heuristic

is valuable as a way to initialize the local optimization procedure but cannot be used to

generate the final RODG.

The restrict operator also has the problem that it tends to generate RODGs that

depend only on the variables that come first in the ordering selected, even if this is not the

best choice. For problems with a large number ofvariables, the RODG initialized using this
approach may not be a good starting point.

5.4.2 Reducing an RODG by Applying Local Transformations

Further reductions in the size of the RODG obtained using oneof the initialization

procedures described above are performed in steps. At each step, one or more nodes are

removed from the RODG. To each node n, in the RODG is associated a vector «;, that

contains a 1 for the positions that correspond to instances in the training set that define

paths in the RODG that go through node n,- and 0 otherwise. The j position of vector Wi is

denoted by w\ and these vectors Wi can be computed recursively by applying the following
expressions:

< = 1 (5.2)



5.4. AN HEURISTIC MINIMIZATION ALGORITHM 79

w« =( V vi Awi) v( V vi Awi) (5.3)
nj:n«l»c=n< *t,irt5»cn=r

The RemoveNode procedure, described below, reduces the description length by making

one of the nodesin the RODG redundant. This is doneby redirecting all its incoming edges.

When node nt- is under consideration, the algorithm goes through all incoming edges and

tries to select, for each one of them, a different node nk that implements a function as close

to the target as possible (see figure 5.7).

Q © (y

Figure 5.7: Removing one node from the RODG

The value of this function is onlyimportant for the examples that reach nt- through

the edge that is being redirected. The pseudo-code in figure 5.4.2 describes how this modi

fication is accomplished. This algorithm takes as input one copy of the current RODG and

tries to redirect the incoming edges for each of this nodes. If the RODG that results from

redirecting each one of these edges has a cost function smaller than the original one, the

procedure returns the modified RODG.

If the above procedure fails to make one node redundant, procedure ReplacePair

is called. ReplacePair removes a pair of nodes by creating another node that implements

a function as close as possible to the functions implemented by the pair of nodes under

consideration (see figure 5.9). The value ofthe new function is only relevant for the examples

that reach these nodes.

5.4.3 Selecting the Best Ordering

The selection of a good ordering for the variables is of critical importance if the

target is to obtain a compact RODG. Regrettably, selecting the optimal orderingfor a given
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RemoveNode(R)

foreach nt-

foreach nj s.t. njke = n,- For all nodes that have the else edge pointing to ni
Select nk such that |(7i* ®t) AWj Avj| is minimal

Modify RODG such that nf* = nk
foreach nj s.t. njhen = m For all nodes that have the then edge pointing to ni

Select nk such that \(nk ©t) Au>j AVj| is minimal

Modify RODG such that n}hen = nk
if Modified RODG has smaller description length

return (Modified RODG)

else

Undo changes

return (Failure)

Figure 5.8: The RemoveNode procedure.

function is NP-complete [85] and cannot be solved exactly in many cases. However, many

heuristic algorithms have been proposed for this problem [26, 83].

In this setting, the problemis evenmore complex because the objective is to select

an ordering that minimizes the final RODG and this ordering may not be the same as the

one that minimizes the RODG obtained after the initialization step. The solution found is

O

Now node

0

Figure 5.9: Replacing a pair of nodes by a new node.
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ReplacePair(R)

foreach n,-

foreach nj For each pair of nodes

w := WiW Wj w is 1 for all objects that reach nodes ni or nj

Create nk = ITE(vjfc, na, »t) such that \(nk © t) Aw\ is minimal

Modify RODG such that incoming edges into nt- and n3 point to nk

if Modified RODG has smaller cost function

return (Modified RODG)

else

Undo changes

return (Failure)

Figure 5.10: The ReplacePair procedure

to use the sift algorithm for dynamic RODG ordering [83] after each local modification is

performed.

The sift algorithm is based on the fact that swapping the order of two variables

in the RODG ordering can be done very efficiently [13, 44] because only the nodes in these

two levels are affected. The algorithm selects the best position in the ordering for a given

variable by moving that variable up and down (using the inexpensive swap operation) and

recording the smaller size observed. This procedure is applied once to all variables and can

be, optionally, iterated to convergence. This algorithm is extremely efficient since it was

designed to be applied to very large RODGs. Therefore, its repeated application to the

relatively small RODG encountered in this problems is not a major limitation in the overall

speed of the approach.

5.4.4 Efficiency Issues

The complexity of these algorithms depends strongly on the approach used to

evaluate the complexity reduction achieved by each operation. Because the effect of each

change can be.estimated locally the overall description length of the RODG or the number
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ofexceptions created by a local modification doesn't need to be recomputed after each step.

With careful coding, the RemoveNode procedure requires 0(s2m) operations,
where, as before, s is the number of nodes in the current RODG and m is the size of

the training set. The ReplacePair procedure is more expensive and requires 0(s3m)
operations. By using bit packing techniques [82], the algorithm can be applied to reduce
large RODGs in reasonable times.

For large problems, the decision graph obtained from the initialization phase may

be too large. In this case, the local optimization algorithm may take a large amount of
time to reduce this graph. For these problems, the algorithm can be run on a fast mode

that initializes the graph with a decision tree that is not fully consistent with the training
set data. This is obtained by stopping the growth ofthe decision tree when the entropy of

the samples that reach a particular node is inferior to a given value. The larger this value,
the smaller the decision tree obtained and the simpler the initial graph. However, if this

threshold is set to high, the local optimization algorithm will not be able to improve the

solution and the generalization accuracy obtained by the decision graph will not be any
better than the one obtained by the decision tree that was used in the initialization.

5.4.5 The Smog Algorithm

The algorithms described in sections 5.4.1 through 5.4.3 can now be combined in

a straightforward way as shown in figure 5.4.5.. The main loop simply calls the above pro

cedures until both return failure, while calling, at each iteration, the reordering procedure
described in section 5.4.3.

Thealgorithms described in this section were implemented in a system called smog
( Selection of Minimal Ordered Graphs) that uses the RODG package described in [13] to
perform the standard RODG manipulations. After an extensive empirical evaluation "of

the algorithm performance with various values of the parameters, the default value for the

parameter a in equation (2.15) was set equal to 0.5. However, for some problems, other

values of this parameter lead to better results and the user should select the appropriate
value of a for a particular application.
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MainLoop()

S :=InitRodg()

repeat

R:=S Store the current RODG

R :=Reorder(#) Select best ordering for current RODG

5 :=RemoveNode(/2)

if 5=Failure RemoveNode operation failed

S :=ReplacePair(#)

until S = Failure

return (R)

Figure 5.11: The smog algorithm

5.5 Experimental Results

5.5.1 Experiments Using the Exact Algorithm

The applicability of the exact algorithm is known to be limited to small examples.

It is, however, interesting to evaluate the limits of such an approach and to study the

dependency of the number of compatibles and the number of primes on the problem size.

A number of simple functions was selected for this purpose. These functions are

also described in appendix B. Table 5.1 summarizes some statistics about these functions.

For each function, the RODG size required to represent the target concept represents an

upper bound on the minimum size of a RODG consistent with the training set data. It is

not a sharp bound because the training set is chosen randomly and there may exist other

functions consistent with the target concept but with smaller RODGs. The value of this

upper bound is listed in the last column of table 5.1. Training sets for each of these concepts

were generated by randomly selecting half of the points in the domain and labeling them

according to the target concept.

Table 5.1 also lists the sizes of the RODGs required to represent the on, off and

don't care sets that were obtained from these training sets and the size of the 3TR0DG

that represents the training set, F.

The exact algorithm was run in these examples using a timeout of 1 hour (in a
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Concept

(g)
# inputs RODG size

/on /dc folf F Upper bound
xor5 5 14 17 15 22 11

xor6 6 23 27 24 38 13

xor7 7 36 46 38 59 15

xor8 8 56 78 62 97 17

xor9 9 97 129 92 158 19

xorlO 10 160 227 160 273 21

dnfa 6 14 24 23 32 8

dnfb 7 24 43 42 53 14

dnfc 8 44 75 61 90 23

dnfd 9 45 127 124 150 23

carry4 8 51 75 61 97 32

monks1 10 79 124 81 142 10

monks2 10 89 134 124 171 25

heel6 6 14 24 22 33 8

heel9 9 74 127 101 151 11

Table 5.1: Test function statistics for the exact approach

DEC/alpha machine) and a memory usage limit of140 Megabytes. This algorithm managed

to compute the maximum compatible sets for each of the problems, but failed to compute

the full set of primes in some of them. The results obtained, and the resulting RODG sizes

are shown in table 5.2. These results seem to imply that the applicability of the exact

minimization algorithm is limited to problems of no more than 8 variables. It is an open

question whetheror not this represents a clearadvantage overthe exact approach proposed

in [91], although the algorithms presented here seem to be less limited by the number of

points in the don't care set. There exists, however, the possibility of applying implicit

enumeration techniques to the problem of generatingand solving the covering problem that

results from this formulation.

5.5.2 Experiments Using the Heuristic Algorithm

An objective evaluation of the performance of the heuristic algorithm in terms of

how small are the RODGs obtained is hard to obtain because, in general, it is impossible

to obtain the value for the exact solution. An upper bound can be computed by computing

the sizeof the RODG needed to represent the target concept, but, in some cases, this bound
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Concept # maximals # primes RODG size

xor5 15 27 10

xor6 38 107 13

xor7 90 550 15

xor8 132 35601 17

xor9 521 - -

xorlO 1437 - -

dnfa 13 42 6

dnfb 27 55 14

dnfc 156 - -

dnfd 227 - -

carry4 233 - -

monks1 894 - -

monks2 568 - -

heel6 18 74 8

heel9 234 - -

Table 5.2: Resulting RODG sizes
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may be too lose. This is likely to happen if there are paths in this RODG that are exercised

by a only a smallnumber of minterms and noneof these minterms is present in the training

set.

Instead, the RODG sizes generated by the two most effective initialization proce

dures were useda standard of comparison for the qualityof the final RODG generated. Since

the heuristic approach can be initialized using either the fulfringe constructive induction

approach or the restrict heuristic for RODG reduction, it is easy to obtain the sizes after the

initialization step. This will also illustrate the need for the use of a variety of approaches

to initialize the local optimization algorithm. In fact, each of the initialization strategies

used can generate RODGs that are several orders of magnitude above the minimum result

possible.

For anumber of functions labeled training set sizes of increasing size were generated

and used as the input for the smog algorithm. A fixed ordering of the variables was used in

these comparisons.

Tables 5.3 and 5.4 shows the sizesof the RODGs obtained by the two initialization

procedures referred above and the final size obtained by the smog algorithm. It is important

to note that even relatively small improvements in the size of the RODG can have a large
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impact on the quality of the generalization performed. For this reason, the differences

observed in all these examples are very important and do, sometimes, render the RODGs

obtained after the initialization algorithms uninteresting for inductive inference purposes.

It is interesting to note that, by fixing the ordering of the variables, some of the

problems are made much more difficult. For example, the mux11 problem that is easily

solved by smog7 if a reordering of the variables is allowed becomes very difficult under

a fixed ordering because the RODG size, in this problem, is very sensitive to the order

selected.

7As shown in the learning curves for this problem described in chapter 7
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Concept Training Set Size smog restrict fulfringe

heel9 100 14 30 24

200 18 45 18

300 18 48 18

400 18 44 18

500 18 47 18

sml2 200 38 79 66

400 54 133 66

600 60 162 66

800 64 183 66

1000 65 191 66

strl8 200 31 49 90

400 51 92 192

600 69 129 137

800 65 172 118

1000 104 210 212

heell8 200 52 91 103

400 57 169 103

600 65 231 103

800 74 309 103

1000 73 359 103

mux6 200 21 101 22

400 22 183 22

600 22 241 22

800 22 303 22

1000 22 357 22

muxll 200 64 104 2120

400 99 188 765

600 147 279 300

800 116 363 282

1000 130 444 282

par4_16 200 9 113 9

400 9 206 9

600 9 302 9

800 9 385 9

1000 9 450 9

Table 5.3: Initial and final sizes of reduced graphs, part 1

87
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Concept Training Set Size smog restrict fulfringe
par5.32 200 67 105 5831

400 116 200 46336

600 153 294 281376

800 242 416 537079

1000 305 463 438587

dnfl 200 42 82 329

400 81 146 5082

600 102 213 25700

800 140 256 134036

1000 173 300 459327

dnf2 200 55 102 1083

400 106 189 642

600 79 261 217

800 90 314 312

1000 224 368 605

dnf3 200 50 90 337

400 72 153 1722

600 112 213 453

800 143 280 648

1000 170 328 665

dnf4 200 55 105 1160

400 105 202 25362

600 142 283 22236

800 201 362 9597

1000 227 430 9925

Table 5.4: Initial and final sizes of reduced graphs, part 2
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Chapter 6

Finite State Machines

6.1 Introduction and Related Work

This chapter addresses a representation that is fundamentally different from the

ones addressed previously in that the objects in the domain are defined by attribute se

quences of variable length.

Finite state machines are a natural representation for hypotheses in this domain.

Unlike the case in the previous chapters the selected representation cannot represent all

possible concepts defined in the domain because only sets that correspond to regular lan

guages can be represented by finite state machines [42]. This set is, however, rich enough to

contain many concepts of interest and many researchers have addressed inductive inference

problems using this representation.

With the particular encoding described in 6.2.1, the selection of a finite state

machine that minimizes (2.15) is equivalent to the selection of a finite state machine that has

minimal number of states and generates outputs consistent with the labels in the training

set. There exists a trivial transformation between the finite state machine that satisfies

these conditions and the minimal deterministic finite automaton (DFA) that accepts all

positive instances in the training set and rejects all negative instances. Therefore, all the

previous work done using the DFA formalism is relevant and closely related to the work

discussed here.

The problem of selecting the minimum DFAconsistent with a set of labeled strings

is known to be NP-complete. Specifically, Gold [32] proved that given a finite alphabet S,

two finite subsets S,T C E* and an integer k, determining if there is a k-state DFA that
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recognizes L such that S CL and T C S* - L is NP-complete.

If all strings of length n or less are given (a uniform-complete sample), then the

problem can be solved in a time polynomial on the input size [100, 75, 37]. Note, however,

that the size of the input is in itself exponential on the number of states in the resulting

DFA. Angluin has shown that even if an arbitrarily small fixed fraction (|E<n)|)c, e > 0 is
missing, the problem remains NP-complete [2].

The problem becomes easier if the algorithm is allowed to make queries or experi

ment with the unknown machine. Angluin [3] proposes an algorithm basedon the approach

described by Gold [31] that solves the problem in polynomial timeby allowing the algorithm

to ask membership queries. Schapire [89] proposes an interesting approach that does not

require the availability of a reset signal to take the machine to a known state.

All these algorithms address simpler versions of the problem discussed here. In

our case, the learner is given a set of labeled strings and is not allowed to make queries or

experiment with the machine. The best algorithms known for the specific problemaddressed

here, where the learner has not control overthe training set, remain the ones proposed by

Bierman et AI. [9, 10]. These algorithms are based on an explicit search algorithm and

are guaranteed to obtain the exact solution, although they require, in general, exponential

time. These algorithms are described in some detail in section 6.4. Recently, connectionist

approaches have been proposed that address the problem of learning from a given set of

strings, but hadlimited success. Das andMozer [22], Giles et al. [29] and Polack [74] propose

different approaches based on gradient descent algorithms for neural network training, but

their results show that this strategy does not have any important advantages over search-

based methods like the ones proposed by Bierman. Not only they are not guaranteed to find

the exact solution but they arealso very limited in the sizeof problems they can handle. For

example, they are not even able to solve some of the Tomita grammars [99], none of which

requires more than 5-state DFAs. It must be pointed out, however, that the main purpose

of the connectionist work was not to beat discrete search algorithms, but to evaluate the

applicability of such an approach to problems of this type.

Lang [53] describes a promising heuristic approach that is also based on a discrete

search strategy and is very efficient. Hehas shown that it canbe applied to find approximate

solutions for machines with several hundred states. Regrettably, in many cases the solutions

obtained are very far from the minimum and there is no way to estimate how close a given

solution is from the optimal one.
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A different approach is to view the problem of selecting the minimum automaton

consistent with a set of strings as equivalent to the problem of reducing an incompletely

specified finite state machine.1 This problem is more general than the one addressed here

and was also proved to be NP-complete by Pfleeger [72]. However, since this problem is of

great practical importance, many different algorithms have been proposed for its solution.

Paull and Unger [71] were the first to propose a method based on the selection of compat

ibility classes, or compatibles. A compatible is a set of states that are equivalent in the

sense that they can be merged without affecting the behavior of the machine. The minimal

machine can be found by selecting a minimal set of compatibles that satisfies two simple

requirements. This method was improved by Grasselli and Luccio [36] who showed that

only a subset of the compatibles, the prime compatibles, need be considered. An efficient

implementation of these algorithms was made available in the stamina program by Hachtel

et al. [38]. This algorithm is still the state of the art in finite state machine reduction for

the majority of the cases. Some problems, however, exhibit exponentially large numbers of

compatibles, rendering an explicit enumeration approach such as stamina's ineffective. In

particular, incompletely-specified finite state machines obtained from training sets by the

procedure described in the next section tend to have an extremely large number of com

patibles. In this case, a version of Grasseli and Luccio's algorithm based on the implicit

enumeration of the compatibles proposed by Kam et al. [47] is more efficient.

The approach described in this chapter represents joint work with Stephen Ed

wards and is also based on the use of implicit techniques to perform the search for the

minimum consistent finite state machine. Like Bierman's algorithms, it can be viewed as

an implementation of Gold's identification in the limit paradigm. Unlike Bierman's ap-

proach,however, the algorithms described in these chapter do not explicitly try all possible

solutions. The selection of the minimal consistent finite state machine is done by keeping

an implicit list of all consistent machines.

*The exact way in which this reduction is performed is section 6.2.
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6.2 Definitions

6.2.1 Finite State Machines

The algorithms described in this chapter can be used with minor modifications

to induce either Mealy or Moore machines and the differences required will be pointed out

when needed.

Definition 10 (Mealy Machines) A Mealy Machine is a 6-tuple M = (E, A,Q,q0,6,X)
where

E ^ 0 is a finite set of input symbols (The symbol a denotes a particular input symbol)

A ^ 0 is a finite set of output symbols (The symbol b denotes a particular output symbol)

Q ±% is a finite set of states (The symbol q denotes a particular state)

qo € Q is the initial "reset" state

6(q, o):QxS-+QU {<f>} is the transition function

X(q, a): Q x E -• A U{e} is the output function

(j> denotes an unspecified transition, c denotes an unspecified output.

Definition 11 (Moore Machines) A Moore Machine is a Mealy Machine where X(q,ai) =

Mtf>02) for «W ai,a2 € E thereby implying that the output of a Moore Machine does not

depend on the input, only the state.

The domain of the second variable of functions Aand 6 is extended to strings of

any length in the usual way:

Definition 12 (Output of a Sequence) If s = (ai,...,ak) the notation X(q,s) denotes

the output of a Moore or Mealy machine after a sequence of inputs (oi,.. .,ajb), is applied

in state q. The output of such a sequence is defined to be

X{q,s) = X(6(S(- •-6{q,ai) ••-),ak-i),ak) (6.1)

By definition, if M is a Moore Machine, then X(q,(ai,...,ak)) is independent of ak.
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accept reject
1 0

11 10

111 01

1111 00

11111 Oil

111111 110

1111111 11111110

11111111 10111111

Figure 6.1: A training set with variable number of attributes.

Definition 13 (Destination State of a Sequence) Ifs = (ai,.. .,ak) the notation S(q,s)

denotes the final state reached by a Moore or Mealy machine after a sequence of inputs

(oi,..., ak), is applied in state q. This state is defined to be

S(q,s) = 6(6(...6(6(q, oi), a2)...), ak) (6.2)

Sincethe definitions above may require the computation of A(^,a), and to avoid unnecessary

notational complexities, X(<f>, a) is defined to be equal to e. This means that the output for

sequences not present in the training set is defined to be e.

The function 6(q,a) defines the structure of the state transition graph of the finite

state machine while the function X(q, a) defines the labels present in each of the edges of

that graph.

The exact algorithm described in this chapter minimizes expression (2.14) using

an encoding scheme that is exactly the one described in section 2.7.1 except for the fact that

the value of the output for each edge in the underlying graph is appended to the description

of the state pointed to by that edge.

6.2.2 From Training Sets to Tree Finite State Machines

An example of a possible training set for this representation is given in figure 6.1.2

Alternatively, the training set can be specified by one or more sequences where, at each time,

the value of the input/output pair is known. Figure 6.2 shows an example of this alternative

way to specify a training set. Both forms of training sets description are equivalent and

2This particular training set for this concept was proposed by Tomita [99].
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Input: AABBABABBBBABAAABABB
Output: 01000101111101010010

—• time

Figure 6.2: Observed input/output sequences for some FSM.

k1/1^7\1/1^7\l/l^l/l^7Nl/l^Nl/l-Nl/l-Nl/l

Figure 6.3: The TFSM that corresponds to the training set in figure 6.1

can be viewed as defining a particular type of incompletely specified finite state machine,

a Tree Finite State Machine (TFSM). Figure 6.3 shows the TFSM that corresponds to the
training set in figure 6.1.

Definition 14 A Tree Finite State Machine is a finite state machine satisfying definition
10 and thefollowing additional requirements:

Vg € Q\ q0, a^ft.fl) € Q XE s.t. %t,a) = q

Vg6Q,Va6E%,a)^9o

These requirements specify that the graph that describes the TFSM is a tree rooted at state

Definition 15 (Contained strings) An input strings = (oi,.. .,ak), m € E is contained
in a TFSM T = (E,A,Q, q0,6, A) iffthere exists a sequence ofstates (qro, qri,..., qrk) in Q
such that fori=l,...,k S(qri_,,a,) = qr., qro = q0 and X(q0,s) ^ €.
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6.2.3 The Satisfying Criteria

A notion of "inequality" between outputs that takes into account the fact that

some outputs can be unspecified is the following:

Definition 16 (Output incompatibility) The output in a given transition, 6t- = A(g,-,a,-)

is said to be compatible with bj = X(qj,aj) and denoted 6t- = bj in accordance with the

following definition:

bi = bj <

true if bi = bj

true if bi = eVbj = e (6.3)

false otherwise

The aim is to construct a machine M that exhibits a behavior equal to T for all

strings contained in T. Assume that M = (E,A,Q,qQ,6,X), Q = {go,--.git} and T =

(E, A,Q',g0,6', A'), Q' = {g0,.. .q'k,} unless otherwise stated.

Definition 17 (Satisfying machine) A machine M is consistent with a TFSMT if, for

any input string s = (ai,..., ak) contained in T

X(q0,s) = X'(q^,s) (6.4)

A function F : Q' -> Q is called a mapping function between TFSM T with set of

states Q' and FSM M with set of states Q if F(g0) = go- A mapping function F satisfies

the output requirement if

Definition 18 (Output requirement)

Vg = JP(g/),A/(g/,fl) = A(g,a) (6.5)

A mapping function F satisfies the transition requirement if

Definition 19 (Transition requirement)

Vg = F(q'), F(6'(q', a)) = 6(q, a) (6.6)

Theorem 2 For any machine M = (E, A,Q,q0,6,X) consistent with the tree finite state

machine T = (E, A^^go^^A') there exists a mapping function F : Q' -> Q, F(g0) = go?

that satisfies the output and transition requirements.
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nee FSM: ( 4 - °W'a)

*W! *W.«))

Mapped FSM:[ g
a/X(q,a) \^/

Figure 6.4: Output and transition requirements depicted graphically

Proof: let s*k = (a\,a2 ...axk) be an arbitrary substring of some string s* contained in T and

let the mapping function F be defined by F(6'(g0,4)) = £(go,4)-

Consider now all strings 4+i = fai, 4 ••-4+i)inT- Bvthe hypothesis, A(g0, sk+1)
'̂(go»4+i) a-00* therefore the output requirement has to besatisfied (simply make q' in ex

pression (6.5) equal to £'(g0, sk)).

Furthermore, since the strings 4+1 are themselves substrings of some string con
tained in T (orelse no sk+l contained in T exists, in which case the requirement is automat

ically satisfied), F(6'(qQ,sk+1)) equals S(q0,sk+1) ^d therefore F also meets the transition
requirement. D

The result in this theorem is important because it is not valid, in general, if the

incompletely specified machine T is not a TFSM.

6.3 Compatible and Incompatible States

Theorem 2 shows that the selection of a machine that satisfies the training set is

equivalent to the selection of an appropriate mapping function. The first step in selecting

such a mapping function is the computation of the incompatibility graph.

6.3.1 The Incompatibility Graph

Two statesgj and gj in a finite state machine T areincompatible if, for some input

string s, X(q'{,s) ^ A(gj,s). The incompatibility graph represents this information. The
nodes in this graph are the states in Q', and there is an edge between state gj and g'- if
these states are incompatible.

The incompatibility graph is represented by a function J : Q' x Q' -> {1,0}.
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< h£b2 * J h£b2
Incompatible ] ^-v a/b2 ^-^ Incompatible | ^~v aj/bj ^-^

7s a/h
Mealy Output

a aIKn

-^ aj/bj f?

©
a/b7 /(gi,gf) = i

•n«i

97

Figure 6.5: Conditions for output and transitive incompatibility.

J(gi»gj) is 1 if and only if states q\ and qj are incompatible. Since the incompatibility
relation is symmetrical, J(gt',gJ) = /(gj,gj) for all gt',gj € Q'. Astate is never incompatible
with itself, i.e., J(gJ,gJ) = 0. The computation of J(g,-,gj) uses the following two definitions:

• Output incompatibility: two states are output incompatible if, on some input, the

two states produce a different output.

• Transitive incompatibility: two states are incompatible if, on some input, the respec

tive next states are incompatible.

Definition 20 (Incompatibility Graph) The incompatibility graph is

1 if 3ai, aj : A(gJ,at) ^ A(gJ, aj) Aat = a]
M, <?>) =j1 if 3o :«i =6(q\, a) Aq\ =6{q'j, a) AJ(g£, g,') =1

>0 otherwise

For Moore machines, the condition marked with a dagger (*), a,- = aj, is omitted.

(6.7)

6.3.2 A Clique in the Incompatibility Graph

A clique in the incompatibility graph gives a lower bound on the size of the min

imum machine. By definition, pairs of incompatible states cannot be mapped to the same

state and therefore, a clique in this graph corresponds to a group of states that must map

to different states in the resulting machine.

A large clique in the incompatibility graph is identified using a slightly modified

version of an exact algorithm proposed by Carraghan and Pardalos [19]. Pseudo-code for
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MaxClique(C = {cj,.. .,cn} C Q', depth)

for i := 1,..., n —depth states being examined

0 := {c:c€ {c,+i,...,cn},J(c,-,c) = 1} state to consider next
if O#0

MaxClique(0, depth +1)

else if depth > maxclique

maxclique := depth + 1 found a clique larger than any known

Figure 6.6: The clique-finding algorithm.

this algorithm is shown in Figure 6.6. The algorithm takes a set of states, forms subsets

which are incompatible with another state from the set, and calls itself on these subsets.

Each state from each subset is considered in turn, although only states which are "later"

in the set (according to an ordering imposed at the beginning) are considered to be part of

the new subset.

This algorithm was modified as to stop after a given amount of time has elapsed.

Every time a clique is located, the algorithm allocates an amount of time that is a fixed

multiple of the time is took to find that clique. This timeout scheme was developed after

observing that in most cases, a clique of maximum cardinality was found fairly quickly but

the algorithm spent a large amount of time ruling out larger cliques. Such a scheme can

be used because the selection of the maximum clique is not critical for the success of the

algorithm.

The size of the clique provides a lower bound on the number of states needed

in the resulting machine. This lower bound is used as the starting point for the implicit

enumeration algorithm.

6.4 The Explicit Search Algorithm

The explicit search algorithm implemented for the purpose of comparison is based

on the algorithm proposed by Bierman et Al. [9, 10]. It builds a finite-state machine and

a mapping function F by fitting transitions from the TFSM T into the machine M, one

by one, forcing the transition (6.6) and output requirements (6.5) to be satisfied for all the
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Figure 6.7: The two main cases of the explicit algorithm

transitions considered.

The algorithm is started with a machine containing only the reset state. At any

time, the algorithm selects a transition in T and has to verify that transitions in M generate

outputs consistent with the transitions in T. Let q's be the state where the transition under

consideration origins and qs be the state of M such that F(qt3) = q8 and let the transition

under input a be the one under consideration. Two main cases should be considered, shown

in figure 6.7:

• The choice of the mapping of the destination state is forced by an existing transition,

labeled with a. If this is the case, two things may happen:

— The output of the corresponding transition in M is consistent with the output

of the transition in T. This means that the machine M is, so far, consistent with

T.

— The output of the corresponding transition is not consistent with the output of

the transition in T. In this case, some transition in M (not necessarily this one)

is wrong and the algorithm backtracks to the last point where it had a choice

and tries another assignment of the destination state.

• There is no existing transition labeled with a, so any of the existing states or a new

state is a possibility.
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6.5 Solution Using an Implicit Enumeration Algorithm

The implicit approach described in this section avoids the need to explicitly search

for the right mapping function. It does so by keeping an implicit description of all the
mapping functions that satisfy the output and transition requirements.

The discrete function manipulation needed to keep this implicit list of possible
mappings is performed by a multi-valued RODG package Discrete function manipulation

using this type of representation is briefly described described in appendix A.

This approach makes the implicit algorithm very simple to describe, but incurs

the overhead imposed by the useof discrete function manipulation routines. This overhead

can be recovered if the regularities of the problem make the use of an implicit enumeration
technique more efficient than an explicit one.

6.5.1 Implicit Enumeration of Solutions

An implicit list of the valid mapping functions F : Q' -* Q can be directly ma

nipulated using simple Boolean operations. This list is kept by considering a function
T : Qm -* {0,1} defined as follows:

Definition 21 T(x0,xi,...,x\q,\_i) = 1 for the point v0,vi,. ..,V|q/|_i if the mapping
function F defined by ^(gj) =v0,F(gi) =Vi,...,F(q'^_1) = vm_i produces a machine
\Q'\ that satisfies the transition and output requirements (6.6) and (6.5).

There is a one-to-one correspondence between each variable art- in the support of T

andeach node gj 6 Q'. Therefore, restrictions onvalid mapping functions can bewritten as

restrictions on the variables a;,. If two states in T, gj and gj, have to be mapped to different
states, this isequivalent to thestatement that T can only be true for points where xt- ^ Xj.

The transition and output requirements impose restrictions on the function T. Let

gj and gj be two states in Q'. For any two transitions outofthese states that take place on
the sameinput and have different outputs, the output requirement forces the source states

of the transition to be mapped to todifferent states. Let A;(gJ,ot) = 6, and A^g^o,) = bj.
Then, for Mealy machines this requirement is:

(a; = aj) A(6,- ^ bj) => x{ ^ Xj. (6.8)
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For Moore machines, different outputs imply different states even if the inputs are not equal:

bi 0 bj =*• Xi ^ Xj. (6.9)

Next-state determinism implies that, for any two transitions in the original ma

chine that take place on the same input, the same assignment for the initial states implies

the same assignment for the final states. Let q'k = £'(gt',a,) and gj = j'(g£,aj). Then, this

requirement translates into the following restriction:

(a{ = aj A Xi = Xj)=> (xk = xi). (6.10)

This can be rewritten as

(at- = aj) =$• (xi ^ Xj Vxk = xt). (6.11)

For Mealy machines, (6.8) and (6.11)can be used to form T using the algorithm in figure6.8.

For Moore machines, the lines that impose the output restriction are changed to use (6.9)

instead of (6.8).

MainLoopQ

F:=l

J*:=0 Stores the processed states

foreach gj € Q'

R:=R\J q\ Add this state to the list

foreach gj € R
foreach a € £ s •t. S(q<,ii)^<f>A6(q,j, a)?<f>

if A'(g<,a)=£ A'(g» Output requirement

Fi=Ff\{ Xi ^ Xj)

9i '=W,a)

gf:=«(gj,a)
T:=Th((xi ±Xj)V (Xk = */)) Transition requirement

return T

Figure 6.8: The implicit algorithm basic loop
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6.5.2 Using the Incompatibility Graph to Improve Performance

The above description of the implicit algorithm is very simple because all the

complex manipulation of Boolean functions is performed by the decision graph package.

However, for complex problems, the storage requirements of the RODG package limit the

usability of the algorithm.

Although (6.8) and (6.10) contain all the information required to fully specify T,

the algorithm can be made more efficient by making use of the information contained in

the incompatibility graph. In particular, if J(g-,gj) = 1, then F(gJ) ^ F(q'j). This implies
that (6.8) and (6.9) can be replaced by:

/(gj,g;) = i =**,#*,. (6.12)

As described in section 6.5.1, the resulting function !F is 1 for all points in Q'^'l

that represent a valid mapping. In general, many mappings exist that satisfy the output

and transition requirements. In particular, if a mapping F : Q' -> Q exists, at least \Q\\

mappings exist and can be obtained by renumbering the states in the resulting machine.

Since T implicitly keeps track of all these redundant mappings, it makes sense to

preassign the mapping of some of the states. This can be done by observing that the states

in a large clique in the incompatibility graph have to be mapped to different states and

therefore pre-assigning the mapping of these states to arbitrary (but different) states in M

does not discard any simpler solution and makes the computation of T much simpler.

Once the mapping of these states has been performed, some mappings for other

states can be removed from consideration. In particular, let C = {g^g^,...^^} De a
clique in the incompatibility graph. Then, the mapping of the states in this clique can be

chosen arbitrarily to be F(q'Co) = qo,F(q'Cl) = qi,...,F(q'Cl) = g/. Furthermore, if gj is a
node such thatJ(gJ,g£ ) = 1, then F(gJ) ^ qj.

This information can be used by defining a family of functions Ai : Q^ -•

{0,1} that describe the values allowed for each of the variables «,-. These functions can be

computed by the procedure shown in figure 6.9.

6.5.3 Ordering and Other Efficiency Issues

There are two important ordering problems to be addressed in the algorithm. The

first oneis the order in which states are included in the set R in the pseudo-code in figure 6.8.
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ComputeAllowed(C)

foreach gj 6 Q'

Ai := 1

foreach q^. GC

ACi := (aJCi = gi) States in the clique are assigned a unique state

foreach q'j eQ'\C
foreach q'Ci € C

«/«,?;•) = i If a node is incompatible with a node in the clique

Aj := Aj A(a-j / g«) it should be assigned a different value

Figure 6.9: Computation of the allowed mappings functions

The experiments have shown that no other ordering improved significantly the performance

when compared with the ordering obtained by performing a breadth first search in the graph

that represents T. This is the ordering used, by default.

The second ordering that deserves consideration is the ordering in which variables

are stored internally in the RODG package. The best results were obtained by sorting the

states according to the degree of the respective nodes in the incompatibility graph. More

specifically, the states that correspond to nodes with higher degree in the incompatibility

graph come first in the ordering. The intuitive justification for this ordering is that states

that are incompatible with a larger number of other states have less degrees of freedom and

restrict the branching of the RODG used to represent T.

Dynamic reordering algorithms were also tried but, although this technique re

duced somewhat the memory requirements of the algorithm, it also impacted the run-time

in a very unfavorable way. It is, therefore, not used in any of the experiments described in

section 6.6.

Using the techniques described in section 6.5.2, the main loop of the algorithm is

shown in figure 6.10. A large clique of the incompatibility graph is selected and the family

of functions Ai is computed. This algorithm was implement in the program iasmin.
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MainLoopQ

•F:=l

#:=0 Stores the processed states

C := LargeCliqueQ

ComputeAllowed(C)

foreach g{ € <?'

R:=RU ql Add this state to the list

T:=FAAi

foreach gj € R
foreach a 6 £ s.t. *«.<j)#^ A«(<$, a)#^

if /«,# Output requirement

7':=^A(a:t- #«i)
g£:=£(gj,a)

gf:=%j-,fl)
T:=TA{(xi £ *i)V (** = ««)) Transition requirement

return (T)

Figure 6.10: Optimized version of the implicit algorithm
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6.6 Experimental Results

6.6.1 Comparison With Algorithms for IFSM Reduction

As described in section 6.2.2, the problem can be viewed as the minimization

of the incompletely-specified finite state machine T. Algorithms for the minimization of

incompletely specified finite state machines have been the subject of extensive research and

several implementations of these algorithms are available. In this section, the performance

of iasmin, the algorithm described in section 6.5 is compared with the performance of two

algorithms that solve the problem using the FSM reduction paradigm: stamina [38] and

ism [47].

To perform this comparison, three target machines, shown in Figure 6.11 were

selected. For each machine, a number of training sets was generated, each training set

consisting of a single random string of length between 10 and 65. For each time point, the

value of the output was available, and, therefore, each training set was effectively equivalent

to a set of labeled strings with a size comprised between these two limits. For each length

Figure 6.11: Machines used to generate training sets

considered, five training sets were generated. The various programs were then used to find

the minimum machine consistent with each of the training sets.

Figures 6.12, 6.13, and 6.14 show the times required to find a solution. Each point

represents the average over the five different training sets generated for each given length.

These figures show that, in all cases, the state minimization algorithms require a time that

increases exponentially in the length of the string while iasmin shows a less drastic increase.

The different behavior observed illustrates well the distinct exponential dependences off the

different approaches: traditional state minimization algorithms require time exponential in
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the size of the original training set, while the algorithm described in this chapter requires

time exponential in the size of the final machine.

10000

30 40 50
String length

1

Iasmin •$-
Stamina

Ism

60 70

Figure 6.12: Run-time comparison for training sets generated with the first machine
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10 20 30 40 50
String length

60 70

Figure 6.13: Run-time comparison for training sets generated with the second machine
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Figure 6.14: Run-time comparison for training sets generated with the third machine

6.6.2 Comparison With the Explicit Search Algorithm

6.6.2.1 Inference of Randomly Generated Machines

The previous section has shown that the algorithms for the minimization of in

completely specified finite state machines cannot be used effectively for the task at hand.

The algorithms based on explicit search presented on section 6.4 perform, however,

much better and deserve a more careful comparison. This comparison was performed on

a large set of randomly generated finite state machines. The random generation of finite

state machines with a known number of minimum reachable states was performed using

the following procedure. First, a random state transition graph with a number of states

varying between 4 and 25 was generated. By random graph, is it meant that for each state

and each possible input, a random output is chosen uniformly from all possible values and

a random next state is chosen uniformly from all possible states.

This does not guarantee that all states are reachable or that the machine is irre

ducible. The numberof states in the minimum consistent FSM is clearly bounded above by

the number of states in the machine generated in this way. However, the number of states

in the minimum consistent solution can be smaller when, for example, not every state in

the generated machine is visited or not every transition is taken by the inputs present in
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the training set. It is still possible that the generating machine is itself non-minimal.

To obtain a tighter bound on the number of states in the minimal consistent ma

chine for a given training set, all states and transitions which were not visited are discarded.

The resulting completely specified machine is sent through a traditional state minimizer,

stamina, [38] and the number of states in this minimized machine is used as an estimate.

To examine the performance of the implicit and explicit search approaches with

differently-sized minimum consistent machines, 575 training sets3 were generated from 115

finite state machines generated in this fashion. Each program was given an hour and

150 Megabytes of memory to find the minimum consistent machine in a DEC/alpha work

station.

Figure 6.15 shows what fraction of the problems each algorithm was able to com

plete in the allotted time/space plotted as a function of the number of states in the minimum

consistent machine.

These results show that the overall performance of the two algorithms is compa

rable and no clear advantage exists in favor of each one of the approaches.

alio-

80% -

60% -

40% -

20% -

none -

t 1 r —I 1 1—

Explicit, 20 strings -^-
Implicit, 20 strings -}—

Figure 6.15: Fraction of runs completed

3Each training set contained twenty strings of thirty steps each. Each state machine had two inputs (0
and 1), and two outputs (0 and 1).
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6.6.2.2 Inference of Machines from Structured Domains

Although the experiments with random machines performed in the previous sec

tion give a clear idea of the potential and limitations of the algorithms studied, it is also

interesting to evaluate their performance on more structured problems. In fact, problems

from structured domains tend to be more regular and exhibit a higher level of symmetry,

thereby making them potentially more difficult to learn because it is harder to distinguish

between different states.

In this section, the target machines are the finite state machines that correspond

to the following robot-worlds:

1. N-Rooms: The robot is in a circular house with N rooms. At each point in time,

the robot has 3 possible actions (inputs to the finite state machine): toggle the light

switch, move to the room on the right or move to the room on the left. The output

is 1 if the light in the current room is on, 0 otherwise.

2. NxN Checkerboard: The robot is in a NxN checkerboard field that wraps around in

torus-like fashion. There are 4 possible actions: move left, move right, move up or

move down. The output is related to the square the robot is on: the white squares

have the same output and each black square has a distinct output.

3. N-Counters: The robot is in a circular house with N rooms. There are two possible

actions: move to the next room on the right or stay in the current room. The output

is one only in the room immediately to the left of the starting room.

Figure 6.16 shows an example of one machine from each of the families listed

above. For each problem in these three families, five experiments were performed. Each

training set consisted of twenty strings, each of length thirty. Table 6.1 lists the number

of successful runs using the same time and memory limits that were used in the previous

section. Runs that failed to complete within the allotted time and memory requirements

were considered failures. These results seem to imply that inferring machines that exhibit

a high level of symmetry in the state transition graph may indeed be more difficult than

inferring randomly generated machines. The data is, however, somewhat sparse and more

experiments are required to establish a firm conclusion. In fact, some of these problems

have multi-valued inputs or outputs, thereby making a direct comparison impossible. This
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2-room 3x3 checkerboard 7-counter

Figure 6.16: Examples of the structured finite state machines used

Problem Iasmin Explicit
2-room 5 5

3-room 1 3

4-room 0 0

2x2 board 5 5

3x3 board 5 5

4x4 board 0 0

4-counter 5 5

5-counter 5 5

6-counter 5 5

7-counter 5 5

8-counter 0 0

Table 6.1: Number of successful runs.

is not true, however, for the 8-counter problem, a finite state machine with only 8 states

with binary valued inputs and outputs. This example seems to show that these machines

generate harder problems than the randomly-generated machines studied in the previous

section. However, the increased difficulty may be related with other characteristics of the

machine, such as the imbalance between the numberof times the machineoutputs a 1 versus

the number of times the machine outputs a 0.



Chapter 7

Experimental Evaluation and

Applications

Ill

7.1 Experimental Comparison of Generalization Accuracy

A full comparison of the relative merits of all algorithms described in the previous

chapters with all other approaches available for the task of performing induction from

examples is a very difficult task. Ultimately, each algorithm has its own strengths and

weaknesses and will outperform other algorithms in a particular set of problems and be

outperformed by them in another set. In fact, the conservation law presented in section 2.4

proves that this has to be the case, and that any learning algorithm will always outperform

any other learning algorithm in some set of problems.

There is, however, a case to be made for algorithms that perform well in the

majority of problems that are commonly encountered. The tests performed using problems

extracted from the literature and from commonly available databases have shown that, of

all the algorithms presented in this dissertation, the heuristic algorithms for the inference

of reduced ordered decision graphs (smog) proved to be the most robust. The algorithms

for the inference of Boolean networks (muesli) also perform well in many cases but are

less robust in problems where the value of the label is poorly correlated with the value

of input variables. This situation reduces the effectiveness of the heuristic based on the

maximization of mutual information and renders the muesli algorithm relatively ineffective

in these problems. In the next section, the quality of the inference performed by smog and
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muesli is compared in a detailed way with the quality of the inference performed by C4.5

[78], the most widely used algorithm for the inference of decision trees.

7.1.1 Experimental Setup

The preferred approach to perform the performance comparison between different

algorithms is to use multiple runs with fixed training set sizes. This approach raises the

problem of selecting the training set size smallenough to make the problem non-trivial but

largeenough to permit meaningful induction. Forinstance, the size of the training set may

be selected as a function of the complexity of the target concept when expressed using a

given representation scheme. This was the approach used by Pagallo and Haussler [69] to

derive appropriate training set sizes for the problems they consider.

Regrettably, this approach gives, in many cases,estimates of the required size that

are too pessimistic because they are based on theoretical worst-case bounds [40]. Further

more, the complexity of the representation ofthe target concept depends on the underlying

representation used by the learning algorithms. This makes it difficult to use this approach

when two very different representation schemes are used.

Instead of evaluating the performance of the algorithms using only training sets

ofone fixed size, the average accuracy for training sets of increasing size was computed and

used as a measure of performance. For each problem, a test set was selected, containing

either all the available data (for the problems for which a limited amount of data is avail

able), or (for problems where larger amounts ofdata are available) a set of 5000 instances
randomly generated and labeled in accordance with the target concept.

Ten different sizes for the training sets were then chosen. For problems with test

sets larger than 1000, the training sets have sizes that are a multiple of 100. For problems

with test sets of size z < 1000, the training set sizes are of sizes t *z/10, t = 1... 10.

Each experiment consists in evaluating the performance of the programs using 10

different training sets of increasing size, randomly generated in such a way that the larger

training sets always include the smaller ones. The experiment error for eachof the programs

is obtained by averaging the generalization error in the test set over the 10different training

set sizes. The experiment difference is obtained by subtracting the experiment errors of the

two algorithms under comparison.

All algorithms were run on exactly the same data by transforming the problems
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that contain non-Boolean attributes into problems with only binary attributes using binary

coding.

For each problem 10 experiments1 wereperformed and the average error was com

puted by averaging the 10 experiment errors. The values of the 10 experiment differences

were used to compute the average differenceand the difference variance. This values were

used to perform an analysis of the statistical significance of the observed differences in

accuracy.

7.1.2 Evaluation of the Statistical Significance of Observed Differences

Let Si and rt- denote the experiment error in experiment i for algorithm S and

algorithm R, respectively. Under reasonable assumptions, the differences in performance

observed for each run, zt- = r,- - Si can be viewed as samples of a random variable z with

approximate Gaussian distribution of parameters (fiz,a2). This assumption is justified if

the number of actual runs performed is large enough to satisfy the requirements of the

central limit theorem.

The parameters fiz and az are unknown and have to be estimated from the exper

imental data. The objective is to use the experimental results to test the hypothesis that

the average generalization accuracy of algorithm S is superior to that of algorithm R.2

• HO : /iz > 0

against the opposite hypothesis

• HI : /i, < 0

This hypothesis testing is to be performed with a pre-specified significance level, /?, that

is defined as the probability that HO is accepted as true when in fact it is false. A low

significance level decreases the probability of accepting a false HO as true, but increases the

probability of rejecting a true HO as false. Values commonly used for the significance level

in the absence of other restrictions are 0 = 0.1 or fl = 0.05.

'This corresponds to a total of 100 runs by each program.
3Note that the term hypothesis used in this section is unrelated with the hypotheses derived by the

learning algorithms. Regrettably, hypothesis testing is the commonly accepted terminology in the statistical
literature and this overloading of the word is unavoidable.
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In order to obtain a test for the validity of HO, observe that the non-biased esti

mators for the unknown parameters are

*=jjSjfo) (7.1)
and

** =^£i(*i-*)2 (7-2)
Under this conditions, it is known [59] that

i=£zhh£ (7.3)
has a Student's t distribution with n —1 degrees of freedom. Therefore, hypothesis HO

should be accepted and the performance of algorithm 5 judged superior in a statistically

significant way if

1>̂ "-1-1-" (7-4)
where tn-i,i-& is taken from the tables of the Student's t distribution. This is the criterion

that will be used in the next sections to evaluate the significance of observed differences in

performance in the algorithms.

Expressions (7.1) and (7.2) are used to compute the average difference and the

difference variance for the set of 10 experiments that are performed for each problem. In

the sequence, all tests will be performed at a significance level of 0.05, meaning, for this

particular test, that, in the average, an algorithm will be erroneously judged superior to

another one no more than 5% of the cases.

7.1.3 Results in Problems From the Machine Learning Literature

Table 7.1 lists the average error for the C4.5, smog and muesli algorithms. For

the smog and muesli algorithms, the average difference and the difference variance between

the generalization accuracy obtained by them and the generalization accuracy obtained by

C4.5 is also shown. A positive difference means that C4.5 showed a larger error than the

algorithm in that column in a particular problem. These values were used to evaluate the

statistical significance of the differences observed. C4.5, smog and muesli were run using

the default parameters.

A circle in a given row marks the algorithm that obtained the lowest averageerror

in the given problem. A filled circle means that the difference observed is statistically

significant (when compared with C4.5).
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Problem C4.5 smog muesli

Error Error Aver. diff. ±o Error Aver. diff. ±a

dnfl 21.13 20.10 1.04 ± 1.15 • 18.04 3.09 ± 0.97

dnf2 18.52 10.84 7.69 ± 1.28 • 10.50 8.03 ± 1.25

dnf3 12.70 • 8.14 4.56 ± 1.05 8.49 4.21 ± 1.32

dnf4 32.93 20.26 12.67 ± 2.10 • 18.55 14.38 ± 0.77

mux6 1.38 • 0.19 1.19 ± 0.89 1.95 -0.57 ± 1.19

muxll 18.52 • 4.99 13.53 ± 1.67 16.27 2.25 ± 2.15

par4_16 34.86 • 0.77 34.09 ± 5.79 24.50 10.36 ± 5.88

par5_32 45.10 • 20.60 24.50 ± 4.49 44.47 0.63 ± 0.46

monkl 6.03 • 0.56 5.48 ± 1.34 3.66 2.38 ± 1.96

monk2 29.37 • 12.82 16.55 ± 1.49 18.49 10.88 ± 1.43

monk3 0.96 • 0.44 0.53 ± 0.58 0.70 0.26 ± 0.85

vote 3.76 • 2.85 0.91 ± 0.33 3.08 0.68 ± 0.48

mushroom 1.68 1.41 0.27 ± 0.68 • 1.16 0.51 ± 0.41

splice 10.45 10.09 0.36 ± 0.83 • 6.93 3.52 ± 0.57

tictactoe 7.90 • 4.33 3.57 ± 0.60 7.22 0.68 ± 0.60

breast 3.76 3.62 0.14 ± 0.50 • 3.32 0.44 ± 0.50

kkp 9.81 • 1.44 8.37 ± 1.77 5.96 3.85 ± 2.14

krkp 2.88 o 2.74 0.13 ± 0.30 2.96 -0.09 ± 0.46

heel9 7.78 • 1.60 6.17 ± 0.84 2.12 5.66 ± 1.39

heel 24.03 • 2.52 21.51 ± 1.30 4.31 19.73 ± 2.04

sml2 9.96 • 2.01 7.94 ± 0.67 3.72 6.23 ± 0.88

strl8 10.95 • 5.95 5.01 ± 1.14 6.83 4.12 ± 1.33

Table 7.1: Average errors for C4.5, smog and muesli
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Figures 7.1,7.2 and 7.3 show the averagelearning curves observed for the problems

par5-32, muxll and kkp, this last one being the problem used as an example in section 1.1.1.

Each curve represents the average error observed for the 10 experiments performed. Some

of these results are much better than any ones previously published. For example, the

problem par5S2 was solved exactly for all experiments when the training set size reached

800 while Pagallo and Haussler reported that they were unable to solve this problem using

the constructive induction algorithm fringe even using training sets of size 4000 [69].

The superior performance of smog in problems like muxll is partly due to its ability

to select the right ordering. For this problem, the value of the output is controlled by two

sets of bits in the input: 3 control bits and 8 data bits. The 3 control bits select which one

of the data bits defines the output value. Other authors have noted [77] that this problem
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is very hard for decision tree algorithms because the mutual information heuristic tends to

select the data bits first, while the minimal decision tree (or graph) should test the control

bits first. The reordering heuristics used in smog correctly identify the right ordering even

with very small training sets and account for the largedifferences in performance observed.

1

0.95

400 500 600 700
Training set size

800 900 1000

Figure 7.1: Learning curves for the par5_32 problem

7.1.4 Results in the Wright Laboratory Benchmark Set

The results obtained in this set of problems were obtained by Timothy Ross and

the Pattern Theory Group at the Air Force Wright Laboratory. They kindly agreed to
run smog in a benchmark his group assembled for the purpose ofevaluating the efficacy of
diverse learning algorithms.

Each one of the problems is defined over a space of 8 Boolean attributes. The

setup is similar to the one used in section 7.1.3. One experiment consists of 10independent

runs with increasing training set sizes. The training set sizes selected are the multiples of

25 between 25 and 250. As before, 10experiments were performed for each problem.

Tables 7.2 and 7.3 on pages 120 and 121 show the results obtained for the problems

in this set. The meaning of the column labels is the same as before. The results listed for

the program C4.5 were obtained with the best combination found for the several options

allowed by this program [34]. Since these problems are known to be noise free smog was
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Figure 7.2: Learning curves for the muxll problem
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Figure 7.3: Learning curves for the king+pawn vs. king problem
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run with the parameter a set to a value close to 0. Tables 7.2 and 7.3 show that the

generalization error obtained with smog was smaller in a statistical significant way for a

large number of problems. C4.5 was significantly superior only for a set of 3 functions that

are randomly generated but have a very different number of positive and negative examples

(see appendix B). Apparently, with the parameters used, C4.5 is better at detecting an

unpredictable function and simply predicting the class of unclassified samples as the more

commonly observed one.

This behaviorcan alsobe obtained with smog if the default value for a is used. The

last column in tables 7.2 and 7.3 shows the results obtained with smog when the parameter

a in equation (2.15) is set the default value. Settinga higher value for this parameter makes

it easier for smog to generalize better in this type of random functions.

Other approaches were also tested in this benchmark. In particular, an inference

algorithm based on the popular two-level minimizer espresso and the nearest-neighbor

classification algorithm. This algorithm classifies unseen samples in the same class as the

closest available sample in the training set and is commonly used asa standard of compari

son. The graph in figure 7.4 shows a plotof the generalization error for each of the problems

in tables 7.2 and 7.3. The problems were sorted in increasing order of generalization error

for the smog algorithm to make the plot more readable. Algorithms with smaller errors

exhibit a curve closer to the y axis in this graph. The plot shows that the smog algorithm

shows a smaller generalization error for the majority of the problems in this benchmark.
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Problem C4.5 smog (a = 0.01) smog (a = 0.5)
ErrorError Error Aver. diff. ±o

addO 6.09 • 4.73 1.35 ± 0.80 4.95
add2 10.49 • 8.02 2.46 ± 2.12 8.03
add4 1.68 • 0.25 1.43 ± 1.67 0.25

and_or_chain8 1.50 0 1.40 0.10 ± 0.35 1.59

chl5f0 11.34 • 7.96 3.38 ± IAS 8.18

chl76f0 1.50 0 0.94 0.56 ± 1.78 0.97
chl77f0 0.94 • 0.00 0.94 ± 1.33 0.00

ch22f0 5.15 0 4.71 0.44 ± 1.00 4.34
ch30f0 4.70 0 4.68 0.02 ± 0.89 4.57

ch47f0 7.43 • 6.48 0.94 ± 1.34 6.38
ch52f4 8.52 • 7.86 0.65 ± 0.87 8.04

ch70f3 3.94 • 3.48 0.46 ± 0.50 3.46
ch74fl o 5.52 5.53 -0.01 ± 0.78 5.57

ch83f2 9.79 0 9.76 0.03 ± 0.73 9.07

ch8f0 5.41 • 4.83 0.58 ± 0.84 8.16
contains_4_ones 21.95 • 13.99 7.96 ± 0.79 13.19

greater.than 7.09 • 5.79 1.31 ± 0.83 5.99
intervall 13.46 • 11.18 2.29 ± 0.82 11.46

interval2 17.55 • 14.04 3.51 ± 0.81 14.45
kddl 0.38 0 0.13 0.25 ± 0.79 0.13
kdd2 1.61 0 1.38 0.23 ± 0.42 1.69
kdd3 0.81 0.81 0.00 ± 0.00 0.88
kdd4 0.00 0.00 0.00 ± 0.00 0.00

kdd5 4.05 • 3.31 0.74 ± 0.47 3.51
kdd6 o 0.97 1.13 -0.16 ± 0.47 5.34

kdd7 7.84 • 2.43 5.41 ± 0.78 2.43
kdd8 1.92 0 1.75 0.17 ± 0.92 1.91

kdd9 4.64 • 3.59 1.05 ± 1.07 3.34

kddlO 7.52 • 4.77 2.75 ± 1.06 4.90

Table 7.2: Average errors for the Wright Labs benchmark, part 1
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7.1.5 Analysis

The results presented in the previous sections have shown that the algorithms de

scribed in chapter 5 and implemented in the program smog exhibit, for many problems of

interest, a higher performance accuracy than standard decision tree algorithms like C4.5.

The algorithms for the inference of Boolean networks also show good generalization accu

racy, but are less robust when the value of the class label is poorly correlated with the
attribute values.

It must be pointed out that, for problems that contain non Boolean attributes,

the performance of C4.5 is not the same when it uses the original representation and the

binarized version that contains only Boolean valued attributes. However, most problems did
not require this transformation, and, in particular, none in the second benchmark set did.

The setup used did not make use ofthesuperior flexibility ofC4.5 in thehandling ofmulti
valued attributes. Ifthis turns out to be important, it may be interesting togeneralize smog
to handle multi-valued attributes directly, or, at least, have the option to do so in specific
circumstances.

7.2 Application to Handwritten Character Recognition

7.2.1 Problem Description

This section describes the application of themuesli and smog algorithms to a real

world problem that ismuch more complex than any oftheexamples used in the comparisons
performed in the previous section. Theproblem addressed is the recognition ofhandwritten

digits introduced in section 1.1.1. The input data used was obtained from the National In

stitute of Standards and Technology (NIST) database of segmented handwritten characters
[28] available in CDROM.

The handwritten characters in this database were obtained by scanning a large
number of forms filled by volunteers and were assembled under the auspices of NIST. This

database contains a total of 223,125 images ofhandwritten digits. This images have been
segmented and labeled and each file contains the image of a single digit digitized in a 256

by 256 binary grid. Figure 1.4 in page 5, used to introduce this problem as a particular

example ofa inductive inference problem, shows an example ofsome characters as they are

present in the database. The segmentation and the classification was manually checked and



7.2. APPLICATION TO HANDWRITTEN CHARACTER RECOGNITION 123

corrected and the error rate of the segmented character files is less that 0.1%. However, the

segmented images sometimes contain noise, like, for instance, the digit 1 in figure 1.4.

From this database, a training set of 53339 digits was selected together with an

independent set of 52467 digits that was used to evaluate the accuracy obtained by the

algorithms.

7.2.2 Pre-processing and Encoding

The images in the database were subject to a standard pre-processing procedure

that is commonly used by the majority of the algorithms used for this problem [54]. First,

they were de-skewed. This procedure identifies the angle of the principal component of the

image and performs a transformation of the image using a linear operator that has the net

effect of normalizing the characters with respect to the angle they were written initially.

The de-skewed characters were then normalized to a 16 by 16 grid. This normal

ization was performed by finding the bounding box of each image and performing a new

linear transformation that reduced all characters to the same size.

Finally, the resulting images were discretized to binary values using a fixed thresh

old value. This last step is not commonly used because other algorithms like, for instance,

neural networks, can handle continuous valued attributes directly. Examples of the data

that result from this transformations are presented in figure 7.5.

6 b

ffl
Figure 7.5: Discretized version of the digit recognition problem

The above discretization procedure has already mapped the original problem into
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a 256 variable Boolean problem. However, since the problem is a multi-class classification,

an appropriate encoding of the outputs has to be performed. The outputs were encoded

using a 15 bit Hadamard error correcting code, the third option described in section 1.1.4.

Table 7.4 shows the correspondence between the class defined by each digit and the desired

values of the 15 outputs for this particular code. The reader may verify that this code

Digit Code

0 000000000000000

1 101010101010101

2 011001100110011

3 110011001100110

4 000111100001111

5 101101001011010

6 011110000111100

7 110100101101001

8 000000011111111

9 101010110101010

Table 7.4: Digit encoding using a 15 bit error-correcting code

ensures a minimum Hamming distance of 8 between any two codewords.

7.2.3 Results

A 4 processor DEC/alpha machine was used to run these examples. The muesli

program was run for a period of 24 hours and the best solution found at that time was

used. The algorithm was still increasing the size of the network and better results might
have been obtained with a longer execution time, but, for a problem of this size, the rate

ofthe improvement becomes very slow. The smog algorithm was also run on this problem,
using the fast mode described in section 5.4.4.

For this problem, there is an extra degree of freedom when generating the classi

fication of a given input because the classifier may decide not to classify a character if it

doesn't have enough confidence in the classification obtained. Such an action is termed a

rejection. The ability to perform rejections is very important because, in real applications,

the consequence ofa rejection is usually less severe than the consequence ofa wrong classi
fication. For example, if used in automatic mail sorting, a classifier that cannot classify the
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ZIP code of a given letter will cause such a letter to be sent to a human for classification.

On the other hand, a classifier that mis-classifies the ZIP code will cause the letter to be

sent to the wrong post office, at a much higher cost.

For this problem, the objective is to achieve the lowest possible rate of rejection

with an error rate smaller than a given constant. Usually, the minimum rate of rejection

for an error rate of 1% is the desired objective.

The use of an error correcting code allows for a tradeoff between the number of

digits rejected and the number of errors committed. Specifically, the classifier may decide

to reject a given digit if the output code obtained for that digit is too far away from the

nearest valid codeword.

Table 7.5 and the graph in figure 7.6 show the error rates and the correspond

ing rejection rates in the training and test sets for the classifiers derived by muesli and

smog. These rates are plotted against the maximum distance from a valid codeword al

lowed for non-rejection. If outputs that are at a larger distance from a valid codeword are

accepted, less digits will be rejected but the classifier will have an higher error rate because

classifications performed with a lower degree of certainty will be accepted as valid.

Distance from

codeword

muesli smog

Error (%) Rejected (%) Error (%) Rejected (%)
0 0.1128 40.30 0.0381 38.95

1 0.4457 22.76 0.1334 20.74

2 1.2905 13.16 0.5127 11.58

3 3.2005 5.94 1.7840 5.42

Table 7.5: Error and rejection rates for the NIST database

The accuracy obtained by these approaches is very good although is doesn't match

the best approaches proposed to date. These solutions [68] make heavy use of the charac

teristics of the domain and use the full set of 223,125 digits as the training set. Depending

on the test set used, raw error values between 0.3% and 3.2% have been reported. Given

this variations and the different sizes of the training sets used, a direct comparison is im

possible. The classifier derived by the muesli algorithm has approximately a 13% rejection

rate for a 1.3% error rate, obtained by rejecting any instances that cause an output at

distance larger than 2 from a valid codeword. The classifier obtained using smog will reject
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100 F
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Muesli Error -0—
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Smog Error -B—
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Distance from existing codeword

Figure 7.6: Error and rejection rates in test set vs. maximum distance from valid codeword

11.5% at an error rate of 0.51% and 5.42% at an error rate of 1.78%. These results can be

further improved by using a variety of techniques that were proposed by other researchers

in this problem. In fact, the performance of smog and muesli is severely hampered by the

fact that no domain specific information or topological information of any sort was used.

In contrast, all the approaches that obtain higher accuracy use large amounts of domain

specific knowledge and, in some cases, hand-engineered features to improve generalization

accuracy. Noneof these techniques were used because the main objective was not to obtain

a competitive solution but merely to illustrate the applicability of the techniques developed
to real world problems.

7.2.4 VLSI Implementation

One of the key characteristics of the majority of the approaches presented in this

dissertation is that the classifiers obtained can be easily implemented using standard dig
ital technologies. To illustrate this procedure, a VLSI implementation of the handwritten

character recognizer was performed. The classifier obtained bymuesli was selected because

ofits smaller size. In fact, the network obtained by mapping the classifier obtained using
the smog algorithm into primitive Boolean functions is considerably larger than the one ob

tained directly by applying the muesli algorithm. While the combinational block obtained



7.2. APPLICATION TO HANDWRITTEN CHARACTER RECOGNITION 127

using smog contained 36600 literals and used an area of 337 sq. mm3 the combinational

block obtained using muesli had only 11000 literals and used an area of 89 sq. mm.

The Boolean network obtained by muesli was optimized using standard logic syn

thesis optimization techniques and mapped intoa standard cell structure using the octtools

system [96], a package for the logic and physical design of VLSI circuits developed at Berke

ley. The logic optimizations performed didn't change the logic functions implemented by

the network because, in this step, the flexibility given by the use of don't care information

was not used.

The complete system consistsof the combinationalblock generated by muesli and

some additional shift-registers that are required to store the data as it is scanned in and

out. Figure 7.7 shows the final result obtained, a chip with 120 sq. mm. The large cell on

the top is the combinational logic generated automatically by the learning algorithm. The

small blocks in the bottom are the shift-registers used to store the data as it is shifted in.

The chip has 15 data outputs, 16 data inputs, 2 control signals used to scan the data in

and power supply pads. It is interesting to note that the routing and empty area of this

chip represents 95% of the total chip area. This value is unusually high and accounts for

the large size of the resulting circuit. This is due to the absence of locality in the network

generated by the learning algorithm. The introduction of constraints that can restrict the

type of connectivity allowed in the generated networks is an interesting direction for future

research and has the potential to greatly reduce the overall size of the resulting system.

Assuming 0.8 fi technology is used.
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Figure 7.7: Chip layout for the handwritten recognition system
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7.3 Application to Image Processing

The second large application used to exemplify the application of the algorithms

was an image processing task. For this task, only the muesli algorithm was used as a

compact final implementation of the final classifier is important for the interest of this

approach.

7.3.1 Problem Description and Encoding

Although this problem was artificially created, it represents an application that

may be interesting for this type of approach because of the need to process rapidly large

amounts of instances, which, in this case, correspond to pixels.

The objective is to reconstruct an original image from a corrupted version of that

image. In this experiment, 16 level gray scale images obtained by scanning sections of bank

notes were corrupted by switching each bit with 5% probability. Samples of this image

were used to train a network in the reconstruction of the original image. The training set

consisted of 5x5 pixel regions of corrupted images (100 binary variables per sample) labeled

with the correct value of the center pixel. Figure 7.8 shows a detail of the reconstruction

performed in an independent test image by the network obtained.

7.3.2 VLSI Implementation

The combinational networkderived by the learning algorithm was again optimized

usingstandard logic minimization procedures and mapped to a standard cell structure using

the tools in the octtools suite. The resulting cell is shown in figure 7.9. It occupies an

area of 60 sq. mm using 0.8/t technology and the routing area occupies 86.7% of the total

area. Again, this fraction represents an unusually high fraction of the total area and the

comments made in section 7.2 apply. In a real application, this cell would be used as a

building block for a chip. Additional circuitry could include memory cells together with

decoding logic or a bank of shift registers to hold sections of the image if holding the full

imageis not feasible. It would also need to include decoding logic that would generate the

right pixel value from the values of the 15 outputs generated by the combinational logic.
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Figure 7.8: Image reconstruction experiment

Figure 7.9: Standard cell layout for the image reconstruction network
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Chapter 8

Conclusions

8.1 Conclusions

The main purpose of the research work described in this dissertation was to study

the applicability of discrete optimization algorithms to the problem of inductive inference

in discrete domains. Under fairly general assumptions, the inductive inference problem

can be transformed into an optimization problem and solved using algorithms designed for

this purpose. The general principle known as Occam's razor and the minimum description

length principle provide the justification for this transformation.

Several different representations were studied and several algorithms were pre

sented for the optimization of each of these representations. As is to be expected, not all

representations and algorithms were equally effective and useful for the inference task they

were designed for.

The heuristic algorithms for the optimization of reduced ordered decision graphs,

implemented in the smog program, generated representations that were particularly robust

in the type of problems they can handle and have shown the overall highest accuracy over

the range of problems tested. These problems are representative of the type of problems

addressed in the machine learning community. The comparisons performed between this

algorithm and the algorithms most commonly used to perform induction from examples

have shown that smog consistently outperformed them in terms of generalization accuracy.

The performance of this algorithm can be influenced by a number of different parameters.

The value of a, the parameter that controls the trade-off between accuracy in the training

set and size of the solution did not have a strong influence in the average performance of
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the algorithm but can change significantly the performance for particular problems. The

particular strategy used to initialize the local optimization algorithm that is the center-piece

of smog can also influence strongly the quality of the solutions obtained.

The greedy heuristic algorithms for the reduction of combinational Boolean net

works presented in chapter 4 and implemented in the muesli program were, on the other

hand, somewhat less effective in some of the hard problems that smog solves effectively.

They are, however, much faster in some situations because they construct the solution by

considering larger and larger networks while smog starts with a large decision graph and

reduces it. This makes muesli interesting for problems that are very large and where an

exact identification of the minimum consistent hypothesis is not critical to the success of

the learner.

The algorithms for the synthesis of two-level threshold gate networksimplemented

in the program lsat were judged the least effective overall, both in terms of the general

ization accuracy and in terms of computation requirements. It is an open question whether

much better algorithms can be obtained for this problem or whether this results are closely

related with the choice of that particular architecture. The success enjoyed by approaches

based on neural network algorithms seems to show that there is nothing fundamentally

wrong with the architecture in itself. However, networks obtained using standard neu

ral network training algorithms are also unable to solve the harder problems where lsat

performed less well, and, in fact, they fail even in some cases where lsat succeeds.

The exact algorithms for the synthesis of finite machines using implicit enumera

tion techniques also failed to meet the expectations in the sense they their performance is

very similar to the one obtained using explicit algorithms published in the machine learn

ing literature. In fact, a detailed comparison has shown almost no differences between the

performance of the two approaches. The performance of the implicit algorithms does de

pend, however, on a variety of parameters like the variable ordering chosen and the type of

representation used to manipulate Boolean functions. It remains an open question whether

or not changes on some of these parameters can alter the scene significantly and change

the relative performance of the two approaches. The exact approach described in chapter

6 is, however, important, because it explored the use of implicit techniques as one possi

ble solution for the problem and made clear both the advantages and limitations of this

alternative.

The results obtainedin the twolarge problems addressed in the last part of chapter
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7 have shown that the approaches described here can be competitive with alternative ones,

specially if digital implementations of the resulting classifiers are important. For example,

the application ofmuesli and smog to the character recognition problem generated classifiers

that have a performance not very different from the one obtained with the best alternatives

available. Furthermore, this gap in generalization accuracy can probably be bridged, at

least partially, by the use of some domain specific knowledge.

8.2 Future Work

Many questions remain open and are appropriate topics for future research as the

wide variety of representations and algorithms addressedin this researchlimited the amount

of effort that was put in each individual algorithm and in possible avenues for improvement.

The limitation of the algorithms to discretely valued attributes is a serious one and

limits the applicability of these algorithms to a wider variety of problems. Removing this

restriction by finding a way to select appropriate splits in continuously valued variables is

an important task that is left as future work. The current version can handle continuously

valued attributes by selecting splits in a way similar to the one used in decision tree algo

rithms, but such a greedy approach is not likely to give the best results. In fact, in decision

trees these splits are essentially independent but in decision graphs the idea is to select a

split that can be reused. At present, it is not dear how this problem can be formulated and

even less clear how it can be solved, but further research in this particular direction will

produce interesting results.

Another open question that deserves further investigation is whether or not the

performance of the implicit algorithms for the inference of finite state machines can be

significantly improved by the use of alternative representations or different orderings. One

possible alternative is the use of zero-suppressed RODGs as the support for the Boolean

function manipulation routines. Zero-suppressed RODGs are interesting for this application

because they are considered more efficient at representing the sparse sets that are likely to

be the solutions of the problem. The use of zero-suppressed RODGs does not involve

any major changes in the algorithm, but only a change in the package used for Boolean

manipulation. Further research in this area may therefore yield very interesting results with

a comparatively small investment.

Another interesting direction for future research is the application of implicit solu-
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tion techniques to solve the exact RODG minimization problem using the exact algorithms

described in chapter 5. Experiments have shown that these techniques can be veryeffective

in the solution of similar problems that involve very high numbers of compatible sets. The

application of implicit techniques to this problem should be immediate, given the similar

ity of the exact formulation presented in section 5.3 to the formulation obtained when the

problem is the reduction of incompletely specified finite state machines. It remains to be

seen, however, whether or not the implicit algorithms applied to this problem suffer from

the same limitations they exhibit when applied to the reduction of tree finite state machines

obtained from training sets using the approach described in chapter 6

Finally, heuristic approaches for the induction of small finite state machines con

sistent with the training set data are also important because, even if the exact approach

can be improved, it will still be unable to find solutions for very large problems. Ultimately,

this is the most important direction to follow if the minimum description length paradigm

is to be applied to hypotheses represented as finite state machines. Large problems will

require not only the selection of an approximate solution but also the ability to trade-off

accuracy in the training set data for compactness of the generated hypotheses and these

two objectives are not compatible with the choice of an exact algorithm for this task.

Finally, for problems where hardware implementations are sought, it would be

interesting to change the cost function to take into account other costs involved like the

communication complexity betweenmodules in the solution. These considerations may lead

to significant reductions in the final size of VLSI implementations by reducing the amount

of space dedicated to routing.
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A.l Algorithms for RODG Manipulation

This section gives a briefoverviewof the algorithmsthat were developed for RODG

manipulation and follows closely in form and content the work presented in [13]. For a much

more complete description of the algorithms used, the interested reader should consult this

reference. This first section is concerned with RODGs defined over Boolean spaces.

Each non-terminal node n in the RODG represents a Boolean function that is

denoted by f(m) = (v,-, /(njhen), /(nf*)), where v; is the variable tested at m and n\hen
and 7ifke are thenodes pointed to by the then and else edges, respectively.

The fundamental operation implemented by the RODG package is the he operator,

defined as:

Mf,g,h) = fg\/7h (A.l)

It is a simple exercise to verify that allthe basicBooleanoperations of two variables

can be defined using the Ite operator with appropriate arguments. For example, / = ab is

equivalent to / = Ite(a, b, 0) and / = a ©6 is equivalent to / = Ite(a,6, b).

Shannon's decomposition theorem states that

f = vfvV vh (A.2)

where v is a variable and /„ and fa represent / evaluated at v = 1 and v = 0, respectively.
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Now, let /(n,-) = (wi, /(njhen), /(nf8*5)) and assume that v comes before Wi in the

ordering or that v = w,-. Finding the cofactors of / with respect to v is trivial:

if iWu, if *v*uh
( /Khen) if v = Wi [ f(nfe) iiv = u>i

The following recursive definition gives a simple algorithm for the computation a

the function z = Ite(f,g, h). Let v be the top variable of f,g, h. Then,

Z = VZV V U2t7

= »(/* V Jh)v V U(/5f V 7ft)-

= *(/v0v v 7vftv) V V(/v^ V7^) (A.4)

= Ite(u, Ite(/V,gv,hv),Ite(/7, a*, h„))

= (», lte(fv, gv, hv),Ite(fv, <fr, hy))

The terminal cases for this recursion are: Ite(l,/,^) = lte(0,£,/) = Ite(/, 1,0) = /.

A systematic exponential complexity of the procedure is avoided by keeping a table

of existing functions. Each element in the table is a triple (v,g, h) and each node in the

RODG corresponds to an entry in this table. Before applying the recursive definition (A.4)

the algorithm checks to see if the desired function already exists.

Figure A.l shows an example of the application of the recursive definition in the

computation of the function z = Ite(f,g, h). For clarity, several copies of the terminal nodes

are shown. The reader should keep in mind that only one copy of each function is kept at

any time. This is true for the terminal nodes and also for the nodes that implement the

functions c and d, but depicting only one copy of these nodes would make the diagram too

complex to be useful. In this example, the nodes that correspond to the functions c and d

do not need to be created from scratch. Since they already exist they are shared by different

functions.

A.2 Manipulating Boolean Functions Using RODGs

For a given ordering of the variables, reduced ordered decision graphs are a canon

ical representation for functions in that domain [18]. This means that given a function

/ :{0,1}N -* {0,1} and an ordering of the variables, there is one and only one representa
tion for the function /.
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= Ite(f,g,h)

= (xi, Ite(/Xl, gXl, hXl), Ite(/xj-,gzj, hxj))

= (xi,Ite(l,c,A),Ite(6,0,A))

= (si> c, (x2,Ite(6X2,0X2, hX2),lte{bxz,$xz, k^)))

= (x1,c,(x2,lte(l,0,l),lte(0,0,d)))

= (xi,c,(x2i0,d))

Figure A.l: Computation of Ite(/, g, h)

137

(A.5)
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Packages that manipulate reduced ordered decision graphs are widely available

and have become the most commonly used tool for discrete function manipulation in the

logic synthesis community [16]. Some of these packages are restricted to Boolean functions

[13] (each non-terminal node has exactly two outgoing edges) while others [46] can accept
multi-valued attributes.

All these packages provide at least the same basic functionality: the ability to

combine functions using basic Boolean and arithmetic operations and the ability to test for

containment or equivalence of two functions. They also provide an array of more complex

primitives for function manipulation that are not relevant for the work presented here.

Several functions can be represented using a single RODG and each function is

usually represented by a pointer to the RODG node that represents the function. Due to

the canonicity property described above, theequivalence test (and, therefore, the tautology
test) can be performed in constant time. This means that the task of checking two func

tions represented by their RODGs for equivalence is a trivial one because it reduces to the

comparison of two pointers1.

The algorithms described in this paper make use of only a small fraction of the fa

cilities provided by RODG packages. In particular, we will only use the following primitives
for Boolean function manipulation:

• Boolean combination of two existing functions. For example, / := g A h returns a

function / that is the Boolean andof two existing functions, g and h.

• Complement of an existing function. Example: / := g.

• Creation of a function from an existing variable. For example, / := Fvar(i) returns a

function / that is 1 when variable vt- is 1 and is 0 otherwise.

• The if-the'n-else operator. For example, / := Ite(v,g, h)returns the function g for the

points where function v is 1 and the function h for the points where v is 0. Although

the Ite operator is simply a shorthand for the combination / := (v Ag)V (v Ah), it is
used so often that is deserves separate treatment.

The previous section described how RODG packages manipulate internally Boolean

function representations. However, for the purposes of understanding many the algorithms

The leader should not be surprised that a complex problem such as function equivalence check can be
solved in constant time once the RODGs for the functions are known. The process of building the RODGs
involved may require, in itself, exponential time.
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that use them as a tool to represent and manipulate Boolean functions, it is sufficient to

understand how the facilities provided by these packages can be used to manipulate Boolean

functions.

The pseudo-code in figure A.2 exemplifies how the function / : {0, l}4 —• {0,1}

defined below can be obtained using the primitives provided by the package. Figure A.3

shows the successive RODGs created by the package to represent the functions g, h and /

defined in (A.6).

J x2 Ax4 if xi = 1
j{Xi,X2iX3,X4) = <

[ a?3 VX4 if xi = 0
(A.6)

MainQ

RODG f,g, h Declares f,g and h as functions

InitializePackage()

g := Fvar(2) A Fvar(4) Computes x2 A £4

h :=!Fvar(3)V Fvar(4) Computes ^V^

/:=Ite(Fvaj(l),flf,/i)

Figure A.2: Computing the function /

Figure A.3: Successive RODGs created to represent /
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A.3 RODGs Defined Over Multi-valued Spaces

Any binary valued function of k discrete variables, xi, x2,...,Xk

F : Pi x P2 x ••• x Pk -> {0,1} (A.7)

canbe represented by a slightly different type of RODG defined over multi-valued spaces. In

the logic synthesis community, these RODGs are known as Multi-valued Decision Diagrams

(MDDs). To avoid an awkward notation, this term will be used from now on. An MDD

is also a rooted, directed, acyclic graph where each non-terminal node is labeled with the

name of one variable. An MDD for F has two terminal nodes nz and n0 that correspond

to the leaves of the graph. Every non-terminal node n,-, labeled with variable Vj, has \Pj\

outgoing edges labeled with the possible values of Xj. Each of these edges points to one

child node. The value of T for any point in the input space can be computed by starting

at the root and following, at each node, the edge labeled with the value assigned to the

variable tested at that node. The value of the function is 0 if this path ends in node nz and

1 if it ends in node n0.

The definitions of reduced and ordered are the same as for standard RODGs defined

over Boolean spaces. For a given variable ordering, reduced, ordered MDDs are canonical

representations for functions defined over that domain, thus implying that two functions

can easily be checked for equivalence.

The implicit approach described in chapter 6 used the MDD package described in

[46]. This MDD package provides an array of primitives for function manipulation. The

reader is referred to that reference for a more detailed description of these primitives.

Apart from the operations supported by Boolean RODG packages, MDD packages

also support the creation of functions that express arithmetic relations between variables

like. For instance, / := (xi = Xj) returns the function that is 1 for all points of the input

space where Xi = Xj.

Figure A.4 depicts the MDDs for the function / := (x / 3), g := (x = y) and

h := / Ag, all defined over P x P, P = {1,2,3}.
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X

X*3 X = Y X*3 A X = Y

Figure A.4: Graphic representation of the MDDs for functions X ^ 3, X = Y and X ^
3AX = y.
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Appendix B

Description of the Problems Used

B.l Problems from the Machine Learning Literature

The majority of the problems used have been studied before by other researchers.

The problems dnfl, dnf2, dnfS, dnf4, par4-16, par5S2, mux6 and muxll were proposed in

[69]. These concepts are identified by the functions implemented by the following Boolean
formulas:

dnfl : /(xi...X80) = X5X28«38«72«74^76+«2«16«40^52«74+^10«21«23*28^30^63+^40^56«S8X60«63^72+

£6324336337339*48 + 33X17X45X55X72X75 + XiiX48X5oX64X69374 + 32Xi5X27336350353 +

36312322345360

dnf2 : /(3i...X32) = 31X3X14X19X26X35336 + 33X15X31X37+ X5XioXi4X27X29 + 3i832o330336 +

X2X3X9X19X24 + 324*25327336337 + 3637Xi4X25X2633l334 + 31X5X22X30

dnf3 : /(Xi...X32) = 3iX23638325328 X2IH-X2X9X14 X^i £22325+31 X4 X19 322327328+ X2X10X14 X2l X24+

X11X17X19X21 X^i + x7X4*Xi3X25

dnf4 : /(X1...X64) = XiX4X13X57 Xig-fXi8 X22 X24+X30 X^^s 35I+ X9X12 X38X55+ X5X29 xkl+

323333340352 + 34 X26 X3S X52 + X6X11X36 X57+ Xe X9 XI0X39X^ + X3X4X21 X37 X^g

mux6 :/(xi...xi6) = xi X2X3 + X1X2X4 + xi X2X5 + X1X2X6

mUXll : /(X1...X32) = X7X2"X3X4 + X7X2X3X5 + XiX2XlXQ + X7X2X3X7 + XiX2X3X8 +

Xi X2X3X9 + X1X2X3X10 + X1X2X3X11

xor4_16 : /(xi...Xi6) = xi © x2 © X3 © x4
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xor5J52 : /(X1...X32) = xi © X2 © X3 © x4 © X5

Other concepts defined by simple Boolean expressions are the following:

dnfa : f(xi...xo) = X1X2 X6 + a?i3233X6 + X3X6

dnfb : /(X1...X7) = X2X3X4X5 + X1X4X5X7 + xi X2X4

dnfc : /(X1...X9) = X2X3X5 X8X9+X1X2X3X5X6X8X9+X2 X3X7X8+X1 X2X4X5 X6+X2 X3X5X6X7 xs X9

dnfd : /(xi...xn) = X2 X3X4X5 X7xsxg + X4X5X6X11 + X4X5 X6 xn + X1X4X5 xex^xgxio +

X2X3X4X5X7X8 + X4X5X6X10311 + X2X3X4X5X839 Xio + X2X3X4X6 Xg + X2X3X4

xor6 :/(xi...X6) = xi © X2... © X6

xor7 :/(X1...X7) = xi © X2... © X7

xor8 : f(xi...xs) = xi © x2... © xs

xor9 :/(Xi...Xg) = Xi © X2—© Xg

xorlO :/(xi...xio) = xi © x2... © xio

Sml2 : /(X1...X12) = (XiX2 + X3X4 + X5X6)(X7X8 + XgXio + 3nXi2)

Strl8 : /(Xi...Xi8) = (X1X2X3 + X4X5X6 + X7X8Xg)(XioXnXi2 + X13X14X15 + Xi6Xi7Xi8)

heel9 :/(xi...xg) = X1X2X3 + X4X5X6 + X7XsXg

heel : f(Xi...Xis) = X1X2X3 + X4X5X6 + X7XsXg + X10X11X12 + X13X14X15 + 3i63i7Xi8

Problems monkl, monk2 and monks were proposed in [98] and are the encoding

of concepts in a hypothetic robot world.

The problems tictactoe, vote, mushroom, breast and spliceare from the UCI database

[62] and are described in detail in the online documentation publicly available.

The problems krkp and kkp result from the encoding of chess positions. The first

one is described in [90] and is the encoding of a King+Rook vs. King+Pawn chess ending

using high level attributes. The kkp problem is obtained from the encoding of the chess

endings described in section 1.1.1.
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B.2 Problems from the Wright Laboratory Set

This set of problems has been assembled by a research group at the Pattern Theory

Program of the Air Force Wright Laboratory. A morecomplete description of these problems

can be found in [34].

All functions are of the form /(xi...x8) -»• {0,1}. The functions are intended to

be representative of a wide variety of problems for testing machine learning systems.

• Randomly generated functions: rndl, rnd2, and rndS.

• Randomly generated functions with a fixed number of minority elements: rnd.ml,

rna\.m5, rnd.ml0, rnd.m25 and rnd.m50.

• Random functions with irrelevant variables: rmdvv36.

• Booleanexpressions [33] : kddl, kdd2, kddS, kdd4, kdd5, kdd6, kddl, kdd8, kdd9, kddlO

• Multiplexer functions : mux6.

• Deep functions : and.or.chain8 = ((((xix2 + x3)x4 + x5)x6 + x7)x8)

• Monkish Problems: 8 binary variable "approximations" to the Monk's problems [98]

• String functions. Palindrome acceptor and variants : pal, paLoutput and doubley.

• Interval acceptors. Accept strings with a given number of sequences with only 0's or

only l's : intervall (3 or fewer sequences), interval (4 or fewer sequences).

• Sub-string detectors : substrl (accepts inputs that contain 101) and substr2 (accepts

inputs that contain 1100.

• Pixel images : recognize center pixel given surrounding pixels of characters from the

Borland font set. Problem chXfY means character X from font Y. The problems

are: ch8f0, chlSfO, ch22f0, chSOfO, ch47fO, chl76f0, chl77f0, ch74fl, ch83f2, ch70f3,

ch52f4.

• Symmetric functions : parity, contains-4-ones, majority-gate.

• Prime number recognition: primes8
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• Numerical functions of two 4 bit numbers (the last number means what bit of the

results is the output bit) : addO, add2, add4, greaterJhen, subtractionl, subtraction 3,

modulus 2^ remainder2.

• Geometric functions : output determined by selecting closest template using Ham

ming distance : nnrl (four templates : {00000000 -, 00001111 +, 11110000 +,

11111111 -}), nnr2 (two templates : {00111010 -, 11011110 +}), nnrS (eight tem

plates : {00010011 +, 00111010 +, 01000101 -, 01011001 -, 01110010 +, 10001101 -,

11000111 +, 11011110 -})
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