

Copyright © 1994, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A USER FRIENDLY ENVIRONMENT FOR

PROPERTY SPECIFICATION

by

Rajeev K. Ranjan and Robert K. Brayton

Memorandum No. UCB/ERL M94/99

15 October 1994

A USER FRIENDLY ENVIRONMENT FOR

PROPERTY SPECIFICATION

by

Rajeev K. Ranjan and Robert K. Brayton

Memorandum No. UCB/ERL M94/99

15 October 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A USER FRIENDLY ENVIRONMENT FOR

PROPERTY SPECIFICATION

by

Rajeev K. Ranjan and Robert K. Brayton

Memorandum No. UCB/ERL M94/99

15 October 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A User Friendly Environment for Property Specification

Rajeev K. Ranjan* Robert K. Brayton
Departmentof Electrical Engg. and Computer Sc.

University of Californiaat Berkeley
Berkeley, CA 94720

Abstract

We present a user friendly environmentfor specifying properties. This has been built upon the verification
tool Hierarchical Sequential Interactive System (HSIS) built at University of California, Berkeley. A library of
commonly used properties has been constructed. Several command level functionshave been created so that the
user can easily specify some propertiesof the systemunderdesign. For each property in the library an online help
file provides the complete description. The library of properties is user extendible so that a user can easily build
a property library pertaining to a particular design and can easily use the interface. Finally, when an incremental
change in a design is made, it is important that the new design is verified against all the properties specified for the
old design. A feature has been added which allows the user to do this in an easy manner.

'Supported by MotorolaGrant

1 Motivation

Property specification andvalidationconstituteanimportantstepinformal verification. Current verification systems
require thattheproperty specifications mustbe included inside thesystem description (except HSIS, which requires
a separate property description in a file). Unfortunately the issue of a userfriendly property specification has not
been addressed in anyof theexisting verification systems. In thiswork, a user friendly environment forproperty
specification has been builton theBerkeley verification system, HSIS. This consists ofan interface through which
a user can interactively specify and verify properties. The interface maintains a database which can be created,
modified and maintained by using prompt-level commands. The library of properties on which thedatabase is
built is user extendible. The advantage of this environment is two fold. First, novice users can make use of help
files provided in the environment to specify properties on the system without worrying about the exact syntax of
model checking or language containment (the two paradigms used by HSIS for verification). Second, it gives
an experienced user, an easy and fast way forproperty specifications ona particular system, since the library of
properties is user extendible.

The structure of this report is as follows. InSection 2 some introductory material is presented. InSection 3
existing techniques for property specification are discussed in detail. The properties which constitute the library are
described inSection 4. The user interface isdiscussed inSection 5,and finally conclusions are given inSection 6.

2 Introduction

With the increasing use ofcomputers and digital systems inevery walk of life, their correctness has become an
important concern. Traditionally, simulation has been used to verify the correctness ofsystems. This involves
simulating the system over combinations and sequences of inputs. However, the increased complexity ofdigital
hardware has made exhaustive simulation computationally infeasible. Typically only a subset ofinput patterns
is applied to the hardware system and the correctness of the system is deduced from the results. This does not
guarantee the complete correctness ofthe system, and often bugs are found late in the design cycle. Itis important
to detect the errors at an early stage of design. Bugs detected at the late stage lead to a delay in marketing the
product In some cases the bugs are detected after the product has been marketed leading to product recall. This is a
highly costly proposition, and hence the verification of the system should be complete, and preferably done during
the design stage.

Recently, formal verification has provided an alternative to simulation for determining hardware correctness. It
involves the use ofanalytical techniques to prove that the implementation ofasystem conforms to aset ofproperties.
Atypical verification problem consists of formally establishing a relationship between an implementation and a
specification [2]. Implementation refers to the hardware design to be verified and the term specification refers to the
set ofproperties with respect to which correctness is to be determined. Since the reasoning has to be formal, it is
required that all three entities - implementation, specification, and the relationship between them must be expressed
formally.

Implementation: An implementation consists ofadescription ofthe actual hardware design and its environment
that is to be verified. Since the current work has been built on HSIS, it is assumed that the implementation is
described by a network of interacting finite state machines.
Specification: Aspecification is adescription ofthe desired behavior ofahardware design.
Since we are mainly concerned with the specification in this work, we discuss it in more detail. The formalisms
used to describe specifications can be broadly categorized in two groups:

1. Logic: This consists of first-order predicate logic, propositional logic, higher order logic, temporal logic etc.
In our framework aproperty can be specified in branching time temporal logic and model checking is used to
verify the relationship between implementation and specification.

2. Automata, language theory: In thisapproach, specificationsare represented asautomata, languages, machines,
tracestructures, etc. Correspondingly, therelationship between implementationandspecification isformalized
using machine equivalence, language containment, trace conformation etc.

Broadly speaking, properties canbedivided intothree categories [2]:

1. Functionalcorrectness properties: This pertains tothebehaviorofthe particulardesign. Typically thedesigner
knows what the system is supposed to do if implemented correctly and he/she can specify those desirable
behaviorsin termsof properties.

2. Implementation properties: Thisincludes generic properties, e.g., safety, liveness etc.

3. Timing properties: This includes properties ofthe kind -Event Amust takeplace within aspecified time after
eventB has takenplace.

Forany design, thecomplete specification of properties which thedesign should satisfy is of greatimportance. If
the property list is not complete and the design is not verified for all the properties, it mightresult in undesirable
behavior of the system.
In thisworkan attempt is made to cover as many generic properties as possible. Sincemany functional properties
are also common to mostdesigns, we have triedto cover some of those as well. Properties of the thirdkind have
not been implemented in this work.
It hasbeenobservedthatsomepropertiescanbe formally described onlybyanautomatonbutnot by a CTL formula.
Yet,thereexist instanceswhere the reverseholds. In somecases,one formalism maybe moresuitablefor specifying
properties than an other. HSIS supports property specification in terms of CTL-formulae as well as automata. In
this work wherever possible, a property is described by a CTL-formula as well as an automaton.

3 Existing Techniques for Property Specification

The verificationsystems which are available in public domain include - Mur^ and SMV. A well known industrial
verification system is COSPAN.
Mur<f> supports only invariance type property specifications. SMV uses CTL formulae to specify properties;
verificationis done using model checking. Since thespecifications are partof the system description, an incremental
change in the specification requires that the whole verification processshould be repeated. Moreoversince SMV
does not work in an interactive mode, it is not possible to interactivelyspecify and verify properties. COSPAN which
is based on the selection resolution(S/R) model of the system,supportsproperty specification in terms ofautomata.
COSPAN also supportsa libraryconsisting of a set of genericproperties. But it is not possible to interactivelyadd
or removeor modify a set of properties in COSPAN since propertyspecification is a part of the system description
and any change in the property requires that the filecontainingthe systemdescriptionbe changed and recompiled.
These verificationsystems are limited in their application in the sense that they support specification in terms of
either CTL-formulae or automata. HSIS [1], which is based on combinational-sequential(C/S) model supports
property verification both in terms of language containment as well as model checking. It supports both of these
methodsallowing in addition fairly general fairnessconstraintsto be specified for the implementation.

Next we discuss the current way of specifying and verifying properties in HSIS.

3.1 Current Property Specification in HSIS

After the system description has been read in, the user needs to specify the fairnessconstraintson the system. These
fairness constraints are needed every time a new property needs to be verified and is read in. The property can

be specified by either using an automaton or a CTL formula. In the firstcase the automaton is created by writing
a Verilog description of the automaton. This is then translated into BLBF-MV using "vl2mv". A "pif file then
describes the automatonand includes the generated "mv" filein it It alsocontainsthe acceptance conditionsof the
automaton. This "pif" file is read in using the "read_pif" command and then language containment is performed.
Sometimesa simple syntacticmistakeat the levelof property description in Verilog only getsdetectedwhile doing
language containmentand this then involves correcting the Verilog code, generating the BLIF-MV description,
possibly changing the pif file, re-reading the pif file and then doing the language containment again. In the case
whenmodel checking is used,a CTL formula is specified in a separate file whichis usedduring verification.
Inorder to makeproperty specification moreuserfriendly, anenvironment hasbeenbuilton HSIS.This environment
consists of aninterface through whichausercan interactively specify andverifyproperties. This interface maintains
a database of properties andsupports several prompt-level commands tocreate, maintain, andmodify thedatabase.
In particular thesalient features of thisenvironment are following:

1. A library containing a setof frequently usedproperties.

2. The ability to describe a property at the prompt level.

3. Theability to extend thelibrary. Therefore an experienced user can describe specific properties for his/her
design systemandcanrefer to themeasily.

4. Complete help files for all the properties inthe library. Therefore anovice user can find outabout aparticular
property indetail and can usethat information to specify properties onsystem.

4 The library of properties

Below we describe the set of properties which constitute the library and are supported by this package. The
references for some of the properties are given beside the property name. Cycle sets for aproperty automaton are
shown byenclosing the associated state(s) bydotted circle(s). The recur edges are shown byzigzag lines. In an
accepting run of the property automaton, the set of infinitary states (states which occur infinitely often) must be
contained in one of the cycle sets and the set of infinitary edges must contain the set ofrecur edges.

1. INVARIANT: invariant(_condition)
This property checks that_condit ion isalways true. This can beused tospecify acondition which should
be true inallstates, i.e., "Nothing badever happens".
For model checking, thisproperty gets mapped to the formula:

AG(-Condition)

For language containment, theautomaton is given as:
.condition True

Lcondition

This can be used for partial correctness (no wrong answers are produced), mutual exclusion (no two processors
are inacritical section simultaneously), deadlock freedom (no deadlock state isreached), global invariants
(no violation of the invariants takes place).

2. STOP-UPON [3]: stop_upon (_upon ,_test, _until)
This property specifies that in any stateofthesystem if_upon is true, then_test must be true until_until
is true. TheCTL-formula is given as:

AG(.upon =» A(Jest U .until))

Thecorresponding automaton is givenbelow:

else else

Luntil * Ltest

True

3. EV_TESTUPON [3]: ev_testupon (_upon, _test, _until)
This propertyspecifies that infinitely often whenever a state is reached where_upon is true, the_test will
remain true until_until becomes true. The CTL-formula is givenas:

AF{AG(.upon =* Attest U .until)))

The corresponding automaton is shown below:
else

_upon

jm
_until &&!_upon

else

* 'until

_upon

else

This property could be used to specify the fact that there should be only a finite number of failures in the
system, i.e., eventually must reach a state where the system behaves correctly.

4. LIVENESS: liveness (_req, _ack)
This property describes that a request is eventually followed by an acknowledgement, e.g., it asserts that
eventually something good happens. The CTL-formulais givenas:

AG{.req =• AF(.ack))

The corresponding automaton is given below:
else else

This can beused toexpress total correctness (termination eventually occurs with correct answers), accessibil
ity (eventually a requesting process will enter itscritical section), starvation freedom (eventually service will
be granted to a waitingprocess).

5. PRECEDENCE: precedence (_signal_A, _signal_B)
This describes the precedence order ofevents, i.e., _signal_A will hold until _signal_B. The CTL-
formula is given as:

A(.signal.A U ^signaLB)

Thecorresponding automaton is given as:
!_signal_B&_signal_A

This property can be used to describe safe liveness (nothing bad happens until something good happens).

6. ALWAYS-POSSIBLE: always_possible(_condition)
This property detects absence ofdeadlocks, implying that from each state in the system we can reach another
state which satisfies thecondition. The CTL-formula isgiven as:

AGEF'(.condition)

This property cannot be expressed by an automaton, since this CTL-formula distinguishes structure as op
posed to an automaton which distinguishes language. For example, following two structures have the same

language (pw +p+qw), but structure (A) satisfies the CTL-formula AGEF{q) while structure(B) does not [4].

(A) (B)

ALMOST.ALWAYS: almost_always (_condition)
This property expresses that_condit ion shouldholdeverywhere aftera finite numberof transitions in the
system. In other words, we are allowingonly a finite number of failures (!_condition) in the system.
This is a case where a property cannotbe described by a CTL-formula (FG(p) is not a CTL-formula), but
can be specified by an automaton. The following automaton describes the property:

else else

.condition

! condition

8. FINALLY: finally (_condition)
This specifies thateventually _condit ion is true. The CTL-formula is:

AF(.condition)

The automaton is given as:

else

condition

9. TRAVERSE: traverse

Forces a complete traversal of thesystemstate transition graph. The CTL-formula is:

AG(true)

and the automaton is:

True

10. INFINITELY-OFTEN: infinitely_often(_condition)
This property expresses that from any state itshould bepossible toreach astate where _condit ion istrue.
The CTL-formula is:

AGAF(.condition)

The corresponding automaton is following:
else else

_condition

This property can be used toensure that from any state in any state in the system itshould be possible toreach
the "reset" state.

11. POSSIBLE: possible (_condition)
This property specifies that starting from the initial state itispossible toreach astate where xondition istrue.
The CTL-formula is:

EF'(.condition)

This property cannot be expressed in terms of an automaton where we can perform standard language
containment.

5 User Interface

Detailed descriptions of the user interface commands are given below.*

1. Specifying aproperty ofthe system: This can be done easily ifthe user is aware ofthe library property name
to be verified andthe arguments needed. The format is as follows:

hsis> prop_create [-1/m] -i <instance-name> -n <property-name>
(<argl>, <arg2>, ...)

This creates aproperty ofthe specified type and stores itin the database. The user has the option ofusing
either language containment or model checking for property verification. This can be specified by "-1" and
"-m" respectively (by default itdoes model checking). Next the user gives the instance name ofthe property
which can be used later to refer to this particular property. For instance if the model checking option is used,

1All the commands described below have been prepended with an underscore in the implementation. For example, propjcreate has been
changedto .propjcreateetc.

then a file called "instance-namcctl" iscreated. If the "-1" option isused, then itcreates a"pif' file called
"instance-namcpif". The "property-name*' refers toone of the properties stored inthe library.
The arguments list isgiven as the proper sequence of signals of the system tobereferenced by the property.
The "help" mode described later can help the user find out the proper sequence of arguments for a particular
property. Note that the property name and the associated argument list come at the end of the "propxreate"
command. Hence anything following the property name will be treated as one of the arguments. The
arguments should be comma separated.
Itisan error tospecify two property instances with the same instance name. Anerror message will beprinted
if this is tried.

2. Once some properties are specified and stored in the property data base, the user can verify any of these
propertiesin the following way:
hsis> prop_verify <instance_name_l> [<instance_name_2>]

3. This package alsosupports a succinct way toverifysomeproperty on the system. The format is the following:
hsis> prop_lc[prop_mc] [-i <instance_name>] -n <property_name> <arg__list>

If the"-i" optionis used, "prop_lc" command is equivalent to"prop__create" followed by
"prop_verify instance_name". Similarly in case of "prop_mc*\ model checking is carried out
immediately. Note that if the "-i" option is not used the propertyinstance is not created and hence cannot be
referred to later on. In otherwordswithout"-i" option"prop_lc" or"prop__mc" performs the language
containment or model checking but leaves the propertydatabase unchanged.

4. The user can specify any number of properties. For each property the corresponding "pif or "ctl" file is
created, depending upon the option. Later, the user can verify any of these properties in any sequence by
referring to them by the instance name. The user can also get the list of the properties specified so far by
typing:
hsis> prop_list [-1]
Without the"-1"optiona shortlist ofproperty instance namesalongwith the propertynames get printed. Also
printedis the option chosen forthat particular instance (language containmentor model checking). When the
"-1" option is used, the list of the arguments attached to each property instance is also printed.

5. In theearlydesign stage,often one or moreproperties fail when verified. In thatcasethe usertries to modify
the design so as to make the system compatible with the properties. In orderto make sure that the modified
designsatisfies each property (including theonessatisfied by theearlier design) the userneedsto re-check the
new designagainst all the properties again. This package provides an easy way to performthis task. While
performing verification on the first design if theproperties wereinstantiated usingeitherof"prop_veri f y"
or"prop_lc" or"prop_mc" (with"-i" option) command then these instances are available for further use.
The userjust needsto read in the new design andtype"prop_all". This will try to verify the new design
againstall the propertiesinstantiated for the old design.

6. Sometimes the userneeds to remove an instantiated property from the database. This can arisebecauseof a
change in design, a change in signal names, wrong property specification etc. This cansimply be doneby us
ingthecommand"prop_delete" followed byalistof property instance names toberemoved, as following:
hsis> prop_delete [-f] prop_instance_l prop__instance_2 prop_instance_n
To remove the files associatedwith these propertyinstances -£ option should be used.
Incasethe userwantsto get ridofall the property instances then"prop_end" (described later) canbe used.

7. An important feature of the library is thatit is user extendible. The usercancreate new property templates
which pertain to a particular design and can use those templates to describe properties on different signals.

This saves the user from writingdifferent files for the sameproperty pertaining to different signals. To make
a new property "new.property" the user has to do the following:

(a) If the propertycan be describedby an automaton then the following steps need to be carriedout:

i. Write the Verilogdescription of the automaton. This needs to be translated into "BLIF-MV" and
the file should be named "new_property.prop.mv".

ii. Createa template filecalled"new.property.pifaemplate". This template file is used to generate the
"pif file corresponding to the instantiation of the property. The template file for the "invariant"
property is shown below for illustration.

.properties

.automaton $0

Instance Name = $0

Property Name = $1

include blif-mv file obtained from verilog description
.blifmv $l.prop.mv
make connections to the process
.connections (_condition = $2)
fairness constraints on automaton

.state stl = state:GOOD

.posfair

.subsets {stl}

.endfair

.endautomaton

.endproperties

The tokens inthe template which need tobereplaced by the real names of signals, are represented
bycharacter $ followed byanumber. Hence there should not beany unnecessary presence of the
character $. Note that there are three tokens present in the above template file. "$0" and "$1"
are exclusively used for the instance name and property name respectively. Token of type '$2"
onwardsare used for specifying signals. Also the BLIF-MV file which is the translation of the
Verilog description ofthe property automaton isincluded inthe template file. Both the template file
as well as the blif-mv file corresponding tothe property should bepresent inthe current directory
orinoneof thedirectories specified by"open_path" in".hsisrc".

(b) If the property can bespecified byaCTL formula then create atemplate file,
"new_property.ctl.template" which will be used to generate the file "instance-namcctl". The template
file for the"invariant" property is shown below:

#This is the instance $0 of $1 property
AG($2)

8. To help the user make full use of this easy way of property specification, a complete set of help files are
provided. To find out the type ofproperties available in the library, the user can type"prop_help". Itgives
the names of the properties available in the library as well as the type of the property (model checking or
language containment). To find out indetail about aparticular property, the user needs totype
hsis> prop_help -n <property__name>.

10

9. The user can destroy the property database by using the command "prop_end". In order to remove the files
associated withtheproperty instances "-f" option should beused.

Command Description
propjcreate Instantiates a property of the specified type
prop.verify Verifies an array of properties already created
propJc[mc] Specifies andverifies someproperty, using

language containment [model checking]
propJist Lists all the propertiesinstantiated in the database.
prop-all Verifies designagainst all the properties in the database.
propjdelete Deletes an array of properties from the database.
prop-help Provides help for properties.
prop-read Reads in the property instances fromthe current directory.
propjend Destroys the property data base.

Table 1: List of commandsandtheirbriefdescriptions

These prompt level commands are summarized in Table [1].

6 Conclusion

Property specification plays animportant role in formal verification. A user friendly interface forproperty specifi
cation hasbeenbuilt.This interface allows theuser to interactively specifyandverify properties on a system. Toaid
the user in specifying properties, help files are provided. The property library is user extendible. Hence specifying
properties specific to a particular design becomes less tedious.

7 Possible Extensions:

Therearea few extensions to the current work whichcanenhance thecapability of property interface.

1. Currently invocation of "read-pif" replaces the properties read by previous "read-pif'. This leads to some
repetitionof work in case a propertyis verifiedmore than once in language containment paradigm while a
"read-pif' takesplacein the middle. A feature allowing theuserto read in several "pif files one afteranother
without overwriting the existing propertiescan be quite useful.

2. Often we need to changethe fairness constraints on thesystem beforeverifying some properties. It shouldbe
possibletooverride theold system fairness constraints witha newonewithouttouchingthe property automata
already specified.

3. Right now a task automaton is treatedsame as a system automaton. Hence ifa task needs to evaluate the state
of a system, it (the state) must be made an output of the system. The first extension relates to allowing the
task automaton to look inside the system automaton.

4. Many a times the task automaton needs to evaluate a boolean expression involving some variables of the
system automaton. In orderthat the propertyautomatonis independentofthe type of the system variables,the

11

boolean expressionmust be evaluated andthenbe passed on to theautomaton. The secondextensionrelates to
this aspectof propertyverification. Note thatthisextensionwouldallowanarbitrary booleanexpressionto be
passedas an argument to the propertyautomaton. Foruniformity sake, the semantics of boolean expression
would be same as that in a CTL-formula.

5. Currendy, the boolean operators allowed in the CTL-formula are restrictedto "equality", "and", "or", "not"
and "ex-or". Often we need to express boolean expressions involving operators like "geq", "leq" etc. The
currentmodel checking environment can be extended to include these operators.

6. In model checking if more than one formulas are to be verified, then, verifying them separately takes more
time than it takes to verify them together. This is becausein the lattercase the reachability analysis needs to
be done just once. A similarapproach could possiblybe adoptedin the propertyverificationusing language
containment. The ideais to make use of the informationavailable while computing the reachable set of states
fora particular property automaton. This information canbe helpful in computing the reachable set of states
for other property automaton.

7. Sometimes designers insertdummy signalsin thesystemdescription whichexpressabooleanrelation amongst
some variables in the system. The purposeof insertingthese variables is to be able to watch the value of the
boolean expression by observingthe dummy variable. Since thesedummy variables aretemporary variables,
they aresmoothedout while forming the transition relation of the system. And hencetheycannotbe observed
at the time of verification. One way to solve this problem is to make a dummy sub-circuit call using the
dummy variable as output This makes sure thatdummy variable is not smoothed out

8. The library of properties needsto be extended to cover a widerrange of properties.

8 Acknowledgement

I would like to thankTom Shiple, Vigyan Singhal andProf. R.K. Brayton for their helpful suggestions and for
reviewing thedraft I also gratefully acknowledge thesupport provided by Motorola under UPR agreement.

References

[1] A. Aziz, F. Balarin, S.-T. Cheng, R. Hojati, T. Kam, S. C. Krishnan, R. K. Ranjan, T. R. Shiple, V. Singhal,
S. Tasiran, H.-Y.Wang, R. K. Brayton, andA. L. Sangiovanni-Vincentelli. HSIS: A BDD-Based Environment
forFormal Verification. In Proc. of theDesign Automation Confi, pages 454-459, June1994.

[2] A. Gupta. Formal Hardware Verification Methods: A Survey. In Formal Methods in System Design, pages
151-238. Kluwer Academic Publishers, New York, 1992.

[3] Z. Har'El and R. P. Kurshan. COSPAN User's Guide. 1987.

[4] S. Tasiran. Private communication, 1993.

12

	Copyright notice 1994
	ERL-94-99

