
-- --

Fault Management for Realtime Networ ks

by

Anindo Banerjea

B.Tech. (Indian Institute of Technology, New Delhi) 1989

A disser tation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Domenico Ferrar i, Chair
Professor Pravin P. Varaiya
Professor Richard E. Bar low

1994

-- --

The dissertation of Anindo Banerjea is approv ed:

Chair Date

Date

Date

Univer sity of Califor nia at Berkeley

1994

-- --

Fault Management for Realtime Networ ks

Copyr ight © 1994

by

Anindo Banerjea

-- --

Abstract

Fault Management for Realtime Networ ks

by

Anindo Banerjea

Doctor of Philosophy in Computer Science

Univer sity of Califor nia at Berkeley

Professor Domenico Ferrar i, Chair

Realtime networ ks provide guaranteed perfor mance communication to applica-

tions that require such guarantees . The Tenet Group, under Professor Domenico Ferrar i,

has developed a scheme to provide such Quality of Service (QoS) guarantees in a

packet-switched internetwor k. The scheme is based on the concept of the realtime

channel, which is a networ k connection with associated traffic specifications and perfor-

mance guarantees . Other schemes to provide realtime services exist, and share some

fundamental similarities . However, none of these schemes address the problem of how to

restore (or continue to provide) realtime service in the presence of networ k faults . This dis-

ser tation addresses the problem of dealing with faults in the context of realtime networ ks ,

using two classes of mechanisms: proactive and reactive.

Reactive mechanisms can be used to reroute realtime channels to surviving links in

the networ k. This approach does not use any extra resources in the absence of faults , but

involves a disruption of the service while the recovery action is being perfor med. In addi-

tion, some channels may not be successfully rerouted if the realtime load on the networ k

is ver y high. Proactive schemes may be used to reser ve redundant resources (such as on

multiple paths in the networ k) so that there is no disr uption (or only disruption that can be

bounded a prior i), as long as the fault scenario is one that is covered. The proactive

scheme may be designed to cover fault scenarios such as single faults , double faults ,

and so on.

1

-- --

The first part of the dissertation describes the rerouting schemes for fault recovery.

We star t with a ver y general fault recovery model, and systematically refine our design till

we are left with a well-str uctured and limited problem domain, which we explore through

simulation. The simulation experiments were used to identify the best scheme within the

chosen solution space, and to show that its perfor mance is reasona ble on a number of

metr ics of perfor mance, such as speed, amount of traffic rerouted, and efficiency of

resource usage, as well as for large var iations in the external factor s such as networ k

load, fault scenario, traffic mix, and networ k topology. The dissertation also contains a

high-level design of a protocol for fault recovery of Tenet realtime channels, the Real-

Time Control Message Protocol, based on the results of the experiments .

The dissertation also describes the use of dispersity routing and forward error correc-

tion to provide fault tolerance for realtime channels. These techniques are used to design

a var iety of schemes that deliver var ious levels of service in the presence of restr icted

networ k faults . Some schemes provide transparent tolerance to multiple faults in the net-

work, at the cost of increased networ k resource requirements; some others use no extra

resources , as compared to a simple realtime channel, but the service degrades grace-

fully when a networ k failure occur s; still others suffer a total disruption in the event of a fail-

ure, but the duration of the disruption is limited to the time needed to notify the source of

the fault. These mechanisms are end-to-end in nature, permitting implementation on top

of a basic realtime service, as long as appropr iate suppor t for routing is provided by the

networ k. The services are validated and the cost to the networ k is evaluated through sim-

ulation. The techniques are also compared to existing mechanisms that provide fault tol-

erance to realtime networ ks .

Committee chair:

Professor Domenico Ferrar i

2

-- --

To my parents , Maya and Bidyut.

iii

-- --

Ta ble of Contents

Ta ble of contents ... iv

List of Tables .. vi

List of Figures ... vii

Acknowledgements .. ix

Cha pter 1: Introduction ... 1

1.1 The realtime channel paradigm .. 1

1.2 General requirements from the control mechanisms .. 4

1.3 Two classes of control mechanisms ... 5

1.4 Previous wor k .. 10

1.5 Scope of the dissertation .. 20

Cha pter 2: The Tenet Realtime Protocol Suite 1 ... 22

2.1 Introduction .. 22

2.2 Networ k model and assumptions .. 22

2.3 Service model and assumptions .. 23

2.4 The Tenet Suite 1 ... 26

2.5 Channel management ... 28

2.6 Other realtime schemes .. 35

2.7 Conclusions ... 36

Cha pter 3: A reactive scheme for fault recovery .. 38

3.1 Introduction .. 38

3.2 Objectives of the fault recovery mechanisms .. 39

3.3 Networ k model and assumptions .. 40

3.4 A fault recovery framework .. 44

3.5 Design issues for a reactive scheme for fault recovery ... 45

3.6 Issues not to be investigated .. 53

3.7 Remaining issues .. 54

3.8 Conclusion .. 64

Cha pter 4: Evaluation of Fault Recovery .. 65

4.1 Introduction .. 65

4.2 Simulation design ... 65

4.3 Results .. 88

4.4 Conclusion .. 104

Cha pter 5: High level design of a fault recovery protocol .. 111

5.1 Introduction .. 111

5.2 Summar y of design decisions ... 112

5.3 Description of the protocol ... 114

iv

-- --

5.4 Changes to the RCAP+DCM software .. 122

5.5 Conclusions ... 123

Cha pter 6: A proactive scheme for fault tolerance .. 125

6.1 Introduction .. 125

6.2 Background .. 127

6.3 Schemes for fault tolerance .. 135

6.4 Simulator design ... 151

6.5 Simulation results .. 155

6.6 Implementation issues ... 177

6.7 Conclusions ... 180

Cha pter 7: Conclusions ... 186

7.1 Introduction .. 186

7.2 Summar y of the dissertation ... 186

7.3 Requirements re-examined .. 188

7.4 Contributions .. 189

7.5 Future wor k ... 191

Bibliogra phy .. 193

v

-- --

List of Tables

Ta ble Label Page

2.1 Perfor mance parameter s of the Tenet Suite 1 interface 25
2.2 Traffic parameter s of the Tenet Suite 1 interface 25
2.3 RCAP messages 30
4.1 Load index levels 85
4.2 Proper ties of the fault recovery scheme selected 109
6.1 Proper ties of var ious disper sity systems 181
6.2 Proper ties of some more disper sity systems 181

vi

-- --

List of Figures

Figure Label Page

1.1 Link vs . Global rerouting 16
1.2 Dispersity routing - (3,2,2) system 18
2.1 Service model for realtime networ k 24
2.2 Protocols in the Tenet Suite 1 26
3.1 Avoiding collisions 51
3.2 The sector of the solution space to be considered 52
3.3 4-dimensional solution space to be explored 55
3.4 Local rerouting 56
3.5 Valid regions of the 4-dimensional solution space 63
4.1 Rate Control Static Prior ity scheduler 71
4.2 Proper ties of the load index. 76
4.3 Square mesh topology 81
4.4 Square mesh topology with trunks 82
4.5 Core topology 83
4.6 88Effect of timing on (i) reroute success (ii) time to reroute
4.7 90Effect of locus of reroute on (i) reroute success (ii) excess resources

used
4.8 92Effect of retr y policy. (i) Immediate retr ies (ii)- (iv) Delayed retr ies
4.9 94Effect of retr y inter val on the histogram of time to reroute (i) Exponen-

tial (ii) Fixed (100 ms)
4.10 95Effect of state prediction on (i) time to reroute (ii) realtime load

rerouted on first attempt
4.11 97Effect of state prediction on histogram of time to reroute (i) Local pre-

diction (ii) Global prediction
4.12 99Effect of number of faults on (i) reroute success (ii) success of predic-

tion (iii) time to reroute (iv) excess resources used
4.13 101Effect of new load mix on (i) Success ratio (ii) Time to reroute (iii) His-

togram of time to reroute
4.14 Effect of topology. (i)-(ii) Mesh with added trunks (iii)-(iv) Core topology 103
4.15 104Effect of retr y inter val on core topology (i) 100 ms interval (ii) 60 ms

inter val
5.1 Interactions for RTCMP 112
5.2 Hysteresis loop to avoid oscillations 116
6.1 151One set of isolated link failures which the IFI channel can survive
6.2 No IFI set of links exists in a square mesh topology 152
6.3 Structure of reassembly buffer for N=4 154
6.4 (3,2,1) disper sity system simulated 157
6.5 160Packet loss vs. loss rate for dispersity systems with N-K=1, no networ k

failure case
6.6 164Packet loss vs. loss rate for dispersity systems with N-K=1, networ k failure

case
6.7 164Packet loss vs. loss rate for dispersity systems with N-K=2, networ k failure

case
6.8 167Number of connections established for dispersity systems without

redundancy

vii

-- --

Figure Label Page

6.9 171Effect of allowing S = 2 on dispersity systems without redundancy
6.10 171Number of connections established for dispersity systems with N-K=1
6.11 174Effect of allowing S = 2 on dispersity systems with N-K=1
6.12 174Number of connections established for dispersity systems with a N-K=2
6.13 175Effect of allowing S = 2 on dispersity systems with N-K=2
6.14 175Equivalent dispersity systems with no shared links and N-K=1

viii

-- --

Acknowledgements

Fir st of all I would like to acknowledge gratefully the invalua ble guidance and sup-

por t that I have received from my advisor, Professor Domenico Ferrar i. He provided me

with the freedom to explore my own interests , and at the same time with the guidance

to ensure that I did not waste my energies on unproductive avenues of research. In addi-

tion, his detailed technical and stylistic criticisms of a draft of this dissertation caused me

to rewrite major parts of it, and improv ed its coherence and reada bility immensely.

I would like to thank Professor s Pravin Varaiya and Richard Bar low, for serving on my

qualifying examination and dissertation committees, and for their helpful comments on

the thesis. I also thank Professor Alan Smith for chairing my qualifying examination com-

mittee.

Part of the wor k presented in Chapter 4 of this thesis was perfor med in cooperation

with Colin Parr is . The simulator used in the experiments was developed initially by Hui

Zhang, and modified by Colin Parr is . Many invalua ble discussions with them, as well as

with other members of the Tenet Group, contributed to the ideas presented here. I would

specifically like to thank Amit Gupta, Ed Knightly, Bruce Mah, Steve Mccanne and Mark

Moran for allowing me to use them as sounding boards for many ideas , and Dr. Andres

Albanese for many fruitful discussions about networ k relia bility. I fondly remember many

debates about Life, the Univer se, and Ever ything with var ious member s of the Tenet

Group, and the Thursday night beer gather ings with the Dave, Krste and the Realization

boys . I gratefully acknowledge Keshav Srinivasan and Dinesh Ver ma for influence and

advice during my ear ly days at Berkeley, especially for advising me to join the Tenet

Group, and for continued interaction even after they left Berkeley.

Finally, I am indebted to my parents for the emotional support to per severe in my

under takings , to my brother for his ready ear and quick wit, and to Karen for her love.

ix

-- --

-- --

Cha pter 1: Introduction

1.1. The realtime channel paradigm

The realtime communication paradigm has been under the spotlight in recent year s

due to advances in networ king technology and the increasing importance of multime-

dia communication. Improv ements in availa ble bandwidth brought about by the

widespread deployment of fiber-optic communication is making it feasible to offer high-

speed wide-area communication to larger numbers of user s . One of the classes of appli-

cations that this technology makes possible is multimedia communication. Initial experi-

ments on the Internet have demonstrated a wide-spread interest in audio-visual commu-

nication over computer networ ks .

Multimedia communication has character istics and needs different from those of

other for ms of computer communication. It is important to understand these differences

in order to provide acceptable multimedia communication support at a reasona ble cost

to the client. For one thing, delay and delay var iation are perfor mance parameter s of

higher concern to multimedia traffic, since the acceptability of the service depends on

the regular arrival of the data at the computer terminal where it is being displayed. This is

especially true if the service being offered is interactive in nature, such as for a video

conference. There is a threshold of perfor mance below which the data stream is as good

as useless; hence, if the offered load of the networ k is above the critical level, the net-

work should stop accepting new data streams in order to support the existing streams

with acceptable quality of service. Further more, some for ms of multimedia traffic have a

more predicta ble traffic pattern than computer data. The regular time based nature of

video or audio streams makes it possible to efficiently multiplex these streams , while pro-

viding hard delay guarantees on the networ k’s perfor mance.

In contrast, packet switched networ k were traditionally designed to support statisti-

cal sharing of the networ k resources among a large number of computer users. The tradi-

tional model of a computer as a data source assumes that data is produced in high rate

1

-- --

bur sts , with long silent periods between bursts . Mar kov chain on-off and similar models

have been used to analyze the perfor mance of computer networ ks . The networ k is

designed to run at high average utilization levels , which implies that the sum of the peak

data rates of the sources exceeds the capacity of the networ k, sometimes by several

order s of magnitude. This kind of networ k ser vice (humorously referred to as socialistic ser-

vice) allows the networ k to be shared at higher levels of utilization, but also allows con-

gestion to start when more than the average number of sources happen to send their

bur sts at the same time. The service provided by the networ k is time var iant, in terms of

impor tant parameter s of networ k perfor mance such as observed packet delay, or

received bit-rate. This has been called the ‘‘best effort’’ ser vice paradigm, or the Avail-

able Bit Rate (ABR) service paradigm. The goals of this service contrast sharply with those

of the service described previously; here, the attempt is to share the availa ble resources

fair ly among all the active user s .

The current Internet is an amalgamation of packet switched LANs, MANs and WANs

with a connectionless internetwor king protocol (IP) running on top of the media access

protocols to provide routing over the whole internetwor k. The Internet is designed for het-

erogeneity and survivability. However, the service provided is extremely load and time

dependent. Sources of var ia bility include congestion, route changes, routing instabilities ,

and other load on routing machines , such as the processing of route update messages.

Asynchronous Transfer Mode (ATM) networ ks hold a promise to provide an inte-

grated solution for both traditional computer data and the newer multimedia traffic. At

present efforts are under way to make sure that the standards chosen by the ITU (for merly

the CCITT) and by the ATM Forum1 adequately support both kinds of traffic. This is an

attempt to isolate and standardize the infor mation about traffic character istics and per-

formance requirements that the networ k needs to know in order to efficiently support its

1 An organization of representatives of industry, networ k provider s and users, wor king towards the
definition of interfaces , ser vices and traffic management for ATM networ ks .

2

-- --

traffic. At the same time, research into the mechanisms using this infor mation to support

these two types of traffic with substantially different character istics on the same networ k

has been under way for a while.

Realtime communication has been defined [26] as communication with guarantees

on perfor mance parameter s of interest to the client, such as delay, delay var iation and

message loss. [30, 32] discusses one approach to the provision of realtime communica-

tion guarantees , based on a connection oriented paradigm, using admission control to

restr ict the realtime load on the networ k, resource reser vation to ensure the availa bility of

sufficient resources to meet the perfor mance requirements , and protective packet/cell

scheduling during data forwarding to prevent non-realtime load from disrupting the per-

formance of the realtime connections. This approach has been wor ked out by the Tenet

Group at Univer sity of Califor nia at Berkeley, under the guidance of Professor Domenico

Ferrar i.

An implementation of the above scheme is briefly described in Chapter 2. This

implementation provides guarantees on networ k perfor mance which are valid in the

absence of networ k faults . The control mechanisms used in the scheme are based on a

proactive reser vation of the resources and thus no longer hold if the resources are

affected by a networ k failure. To date, the research into realtime communication has

been mainly focussed on the fundamental mechanisms to make such a service possible

and cost-effective. Thus, not much attention has been paid to advanced facilities such

as fault management. This dissertation aims to address this requirement.

In this chapter, we will examine the basic control mechanisms availa ble to us to

solve the problem of fault management. We will first identify in Section 1.2 a set of

requirements that we would like the mechanisms to satisfy. In Section 1.3, we will classify

the mechanisms into two broad categories , proactive and reactive, and identify the

kinds of situations in which each type is useful. We will argue that a single solution is not

adequate to deal with faults in realtime networ ks , and propose a combination of the two

3

-- --

approaches to solve the problem. Section 1.4 contains a survey of previous wor k in surviv-

able networ k design, fault recovery, and fault tolerance as applied to telecommunica-

tions and computer networ ks , and identify ideas which might be useful in realtime net-

works. In the process , we will try to point out the differences between the assumptions

under lying these networ ks and those underlying realtime networ k design, which make

the existing wor k not directly applica ble to the present problem. Finally, in Section 1.5 we

will define the scope of this wor k and present an outline of the dissertation.

1.2. General requirements from the control mechanisms

We would like to provide an enhancement of the control mechanisms used for real-

time communication, in order to deal gracefully with faults in the networ k. This should be

done without increasing, as far as possible, the overheads or inefficiencies of networ k uti-

lization when operating in the absence of faults . The applications would like to see their

perfor mance requirements met; however, the cost constraint must also be kept in mind. If

perfect perfor mance in the presence of networ k faults is ver y expensive, in terms of the

resources required, then the option of providing a service, where a failure causes a tem-

porar y disr uption, should be explored, if such a service can provide more efficient use of

networ k resources .

It is important to remember that, in most modern computer networ ks , failures are a

low proba bility event. A realtime networ k should be designed to be efficient in the com-

mon case. However, in the event of a networ k fault, the mechanism should react grace-

fully to continue and provide service to as many clients as possible, and the duration of

any ser vice interr uption should be small, in order that the service be acceptable to the

client. In addition, the timing behavior of the networ k, if not correctly handled at the

lower layer s of the networ k, cannot be corrected by higher layer measures . Thus , the

realtime nature of the service, where needed, must exist from the lowest layer up.

In the context of high-speed wide-area networ ks , the problem of providing fast con-

trol mechanisms becomes especially hard. The delay-bandwidth product of fast WANs is

4

-- --

large. This means that control mechanisms which require communication with entities at

the edge of the networ k are ver y slow compared to the transmission time of an individual

packet or cell. Hence, the timing character istics of the control mechanisms become

impor tant when choosing one approach over another.

In bandwidth-poor environments , the critical issue shifts from the speed of the recov-

er y to the efficiency of resource usage in the common case. Thus, in such networ ks , a

more slowly reacting approach might be more useful, if it allows more user s to enjoy the

realtime character istics of the networ k. In addition, the requirements of the application,

and the ability of the client to afford the price of the networ k resources , will differ widely.

Thus , the networ k needs to support a range of services , so that, depending on the situa-

tion, the correct cost-perfor mance combination may be provided.

Finally, we have to keep the implementation complexity in mind. Such a wide var i-

ety of services , if supported from the lowest layer up, might render the networ k too com-

plicated to build and maintain. We should identify a few powerful mechanisms and pro-

vide the interface to allow higher layer s to use them to offer the range of services

required. Also, rather than designing a separate scheme for each individual networ k,

taking into consideration its topology, delay-bandwidth product, application mix, operat-

ing load, and so on, we would like to investigate schemes which wor k well in a var iety of

environments . Of course, there may be parts of a particular implementation that can be

tuned to optimal perfor mance in a particular environment, but the design should be

general.

1.3. Two classes of control mechanisms

Control mechanisms can be categorized into two classes: proactive mechanisms

and reactive mechanisms. These classes serve two ver y different functions. In the broad-

est possible generalizations , proactive mechanisms make wor st-case provisions to ensure

adequate perfor mance in situations that can be predicted. Because of the wor st-case

5

-- --

nature of the provisions , they may be inefficient, especially if the wor st case is unlikely.

Reactive mechanisms , however, wait for a situation to arise, before expending the effort

of rectifying it. They suffer from a latency of reaction, during which the service provided

to the user may be affected to some extent. It also may not be possible to rectify every

situation reactively.

1.3.1. Proactive control mechanisms

Proactive networ k control mechanisms use a prior i knowledge, for example, of the

traffic to be supported, to arrange for resources to be present in the networ k when they

are needed. One example of proactive networ k control is virtual circuit establishment

with bandwidth reser vation. In this case the peak rate required to serve the application is

known and reser ved in advance, guaranteeing good perfor mance during data transmis-

sion. The Tenet scheme, to be described in Chapter 2, uses more detailed knowledge

about the application traffic in order to share the networ k more efficiently. Because of its

proactive nature, this approach has the proper ty that the perfor mance of the offered

ser vice is guaranteed, regardless of the instantaneous load offered to the system by indi-

vidual applications , provided there are no faults .

Proactive mechanisms are especially well suited to the context of high speed WANs .

They minimize control during data transfer, since the rates and control policies are pre-

negotiated and each node can act independently of other nodes in the networ k dur ing

data transmission. This makes the networ k sta ble, since the fluctuations and instabilities

associated with reactive control of a high-speed networ k from the edge of the networ k

are avoided. It also makes it possible to support non-realtime data on the networ k and to

operate arbitrar ily close to the networ k ca pacity without violating guarantees for the

realtime traffic.

The basic technique for proactive control is to set up a connection in the networ k,

using a prior i knowledge of the traffic character istics of the application to ensure that the

esta blishment of the connection will not violate any existing realtime guarantees and the

6

-- --

requirements of the current application will also be met. In the Tenet Suite 1, the Realtime

Channel Administration Protocol (RCAP) [7, 43] perfor ms the task of proactive control.

The scheme and suite are outlined in Chapter 2.

Proactive mechanisms can also be used for applications which cannot tolerate the

latency of reaction to an event. For example, if a special application cannot tolerate a

temporar y disr uption of service in the event of a networ k fault, proactive methods can

be used to prevent any disr uption of service under limited fault scenarios . This approach

is explored in Chapter 6 of this thesis. However, since the proactive action must be taken

before the event, the cost is incurred even if the condition which is being protected

against never occur s .

In general, proactive mechanisms block some set of resources , in order that these

may be used to provide guaranteed service when needed. If the event when the

resources will be needed is unpredicta ble or infrequent, then the proactive solution will

necessar ily be inefficient. It is possible to mitigate this by allowing other traffic to use these

resources on a preempta ble basis . However, the more infrequent the event being

planned for, the less cost effective the proactive solution, and the question of whether

the client is willing to pay the price must be carefully answered. If the time to react to the

event is low, or if the client is prepared to put up with the latency of reaction, the reactive

approach is preferable. Also, for completely unforeseen events , such as protocol error s ,

reactive mechanisms must be used.

1.3.2. Reactive control mechanisms

Reactive networ k control mechanisms perfor m tasks in response to observed net-

work conditions . Reactive mechanisms have been used to provide flow control (TCP win-

dow flow control), congestion control (TCP window shut down), fault recovery (in the

cross-connect layer of telecommunication networ ks), and error control (TCP retransmis-

sions).

7

-- --

Reactive mechanisms take care of conditions which are impossible or inefficient to

account for proactively. This approach handles infrequently occurring events efficiently,

since, if the condition never occur s , the cost of reacting to it is not incurred. However, this

approach involves an unavoida ble reaction latency, which becomes more critical as the

bandwidth-delay product of the networ k increases , since the reaction time of the system

ma ps onto a larger number of bits affected by the condition. If the event is infrequent

enough, this latency may be tolerable.

Some problems for which reactive solutions are appropr iate are listed here.

Fault management. Faults can be dealt with proactively as mentioned in the previ-

ous section, but that is an expensive solution, to be used only if the application needs

that level of tolerance. For most applications , moving the resource reser vations to an

unaffected path with sufficient resources would suffice. A temporar y disr uption of service

would be noticed, but after that the guaranteed service would be restored. Many appli-

cations would be satisfied with this level of fault protection if the cost were lower than

that of a proactive solution.

Route updates. The infor mation on the basis of which routing is perfor med tracks the

changes in resource reser vation state as connections are set up and torn down in the

networ k. The only way to do this is to react to networ k events such as channel establish-

ments and teardowns to update the routing infor mation database.

Garbage collection of resources. If channels are not torn down correctly due to

protocol failures or node failures in the networ k, we need some background audit pro-

cess to detect these ‘‘zombie’’ reser vations and remove them. Otherwise, after a period

of networ k operation, the resources in the networ k will be steadily depleted, allowing

fewer realtime channels to be established.

Error logging and repor ting. For maintenance purposes a log of error s and failures in

the networ k needs to be maintained. This can only be done in a reactive manner. The

feedback of this mechanism is slow, relative the the speed of automatic fault recovery,

8

-- --

since a human is involved in the feedback loop. But it is essential to ensure that the fail-

ures in the networ k are fixed, otherwise accumulated failures , each one hidden from the

user by the automatic recovery process , would decrease the capacity of the networ k.

The high level design of a reactive protocol, the Real Time Control Message Proto-

col (RTCMP), which deals with fault recovery using the reactive mechanisms developed

in Chapter s 3 and 4, is described in Chapter 5 of this thesis.

1.3.3. Interactions

The above two classes of networ k control serve to solve problems in somewhat

mutually exclusive areas of fault management. In bandwidth-poor networ ks , the proac-

tive fault tolerance ideas may not be appropr iate, if the reser vation of extra resources

prevents other users from using the networ k. Reactive mechanisms , on the other hand,

may off er too weak a service in networ ks with a high delay-bandwidth product, since the

latency of reaction is large compared to the packet transmission time. For applications

with strict disruption-free service requirements , the cost of the extra resources may be a

less important issue. On the other hand, for most applications using interactive multime-

dia as a personal communication tool, the rare disr uptions caused by networ k failure

may not be critical.

Thus , the best networ k control may be provided by appropr iate combinations and

interactions between the two classes of mechanisms. Reactive mechanisms may be

used to provide recovery for all channels in the networ k, so that, if a fault occurs, as

many of the realtime channels as possible are restored. Proactive mechanisms can be

used to provided additional levels of tolerance, when the networ k ca pacity per mits it

and the application requires it.

In addition, we need to provide some proactive suppor t in order to make the reac-

tive mechanisms applica ble to realtime networ ks . For example, the proactive reser-

vation protocol needs to be modified in order to allow the reactive mechanism to move

9

-- --

resource reser vations in response to networ k faults . RCAP supports the proactive esta b-

lishment of realtime connections, but does not support modifications to existing connec-

tions . A reactive modification to RCAP, embodied in the Dynamic Channel Management

(DCM) protocol [52], is required to support the fault recovery mechanisms . DCM is also

descr ibed br iefly in Chapter 2.

The proactive reser vation technique, mentioned in Section 1.3 and described in

Cha pter 6, protects only against limited fault scenarios , such as single faults or two faults .

If a proactive scheme is designed to protect against single failures , then after the occur-

rence of one failure the connection is vulnerable to a second one. At this time reactive

control is needed to restore a level of redundancy so that the proactive protection is

restored. This also calls for interaction between the proactive and reactive control mech-

anisms .

1.4. Previous wor k

This section describes related wor k in the areas of design of survivable networ k

topologies , fault recovery, and fault tolerance. The whole of Chapter 2 is dedicated to a

descr iption of related wor k in the area of realtime communication, since much of this

infor mation is necessary background towards our objective of enhancing the control

mechanisms for fault recovery and fault tolerance.

1.4.1. Survivable networ k topolog ies

There exists a body of graph-theoretic wor k that is useful in character izing the surviv-

ability of a networ k topology. Some graph-theoretic definitions of networ k sur vivability are

discussed in [60]. A graph is said to be k-node-connected if every source and destination

is connected by k node-disjoint paths. The edge-connectivity of a graph is the equiva-

lent measure if we consider edge-disjoint paths. A minimal cutset of a graph is the small-

est number of links, the removal of which breaks the graph into two disconnected com-

ponents . Similar ly, an ar ticulation set is a set of nodes, the removal of which breaks the

10

-- --

graph into two disconnected components. It can be shown that the cardinality of the

minimal cutset of a graph is the same as its edge-connectivity, and the cardinality of the

minimal articulation set is the same as the node-connectivity [47]. The problem of design-

ing minimal-cost networ ks with a given degree of connectivity is known to be NP-hard,

but known heuristics and algorithms with good average case behavior can solve many

real-wor ld networ k design problems [60].

The above models do not take into account the differing failure proba bilities of the

networ k components , since they only evaluate the survivability of a networ k in terms of

the number of edge/node disjoint paths. [22] defines a metric of relia bility based on the

proba bility that all the host nodes of a networ k have some path between them. It shows

the problem to be NP-complete, but finds an efficient bounding technique. However,

proba bility based models are only useful if infor mation about the failure proba bilities of

individual components is known, and assumptions such as independence of the failure

events are satisfied. They are also specific to particular networ ks , and not useful for results

that are general across many topologies .

The problem with purely topological views of a networ k is that capacity infor mation

is not taken into account. In addition, the functionalities of the var ious components , such

as multiplexor s , switches , repeater s , are also hidden. Networ k designer s also need to

consider the var ious protection systems that would reroute traffic in the event of a fault.

In this environment, measures of survivability that take into account the amount of traffic

sur viving some link or node failure have been developed. Such models are descr ibed for

instance in [14, 54]. These works use bandwidth as the only measure of the amount of

traffic. In the context of realtime networ ks , the problem is more complex because real-

time traffic has other parameter s , such as delay bounds, which also need to be consid-

ered. In Chapter 4, we will explain why bandwidth based metrics are inadequate, and

develop our own metric for the amount of traffic which is based on the resources

required to support the traffic in the networ k. We will use this to develop metrics of

11

-- --

sur vivability that are better suited to realtime networ ks .

The schemes presented in this dissertation are applica ble to networ k topologies

where multiple paths exist between every (source, destination) pair. In fact, the richer the

topology, the better the schemes will wor k. We have not explored the categorization or

evaluation of topologies from the point of view of sur vivability. The topologies on which

we run our simulations measure well on criter ia of networ k relia bility such as edge-

connectivity. We do, however, try topologies with different edge-connectivities to evalu-

ate the sensitivity of our schemes to the topology.

1.4.2. Fault recovery

Sur vivability has been an important topic of research in the context of telecommu-

nication networ ks and computer data networ ks . This interest has been fueled by the

commercial importance of providing fault-free service to the users of the telephone net-

work, and the military advantages of fault-tolerant distributed computing and data com-

munications . However, realtime networ ks are a relatively new concept, and high-level

management functionality has just started to be explored. No significant published

research in the area of fault recovery for realtime communication has come to this

author’s attention. However, much of the wor k in the field of survivability of telecommuni-

cation networ ks addresses similar issues and needs to be considered. Some existing wor k

on the survivability of computer data networ ks is also described in this section.

1.4.2.1. Telecommunica tion networ ks

Fault recovery has been studied in the context of telecommunication transpor t net-

works for decades now. An overview of the techniques used in survivability for telecom-

munication networ ks was presented in [25] in the framework of a 4-layer model of the

networ k. The layer s in the model are the switched layer, the cross-connect layer, the mul-

tiplex layer, and the physical layer. In any real networ k, one or more of the layer s may be

skipped or combined together. From a sur vivability point of view, especially for telephone

12

-- --

networ ks , the switched layer and the cross-connect layer are impor tant.

Switched layer networ k: The nodes in this layer are circuit or packet switches . The

links are the trunks (e.g. DS1, DS3) provided by the cross-connect layer. Example networ ks

are Public Switched Traffic Networ ks (PSTNs), Common Channeling Signaling (CCS) and

public packet switched networ ks (Inter net). Sur vivability in the PSTN at the switched layer

is obtained through traffic management. The routing tables are updated to ensure that

new calls are correctly routed around the failed link. However, calls in progress on the

failed elements are lost, and must be redialed by end systems [15, 41].

Cross-connect layer networ k: The nodes at this layer are the networ k elements with

Time Slot Interchange (TSI) cross-connect capa bility such as Digital Cross-connect

Switches (DCSs) or Add Drop Multiplexors (ADMs) with TSI capa bility. A TSI is a realtime

switch which connects one channel to another, but in a less dynamic for m than the

switches at the switched layer. The cross-connect layer uses DCS restoral methods,

changing cross-connects to restore ser vice by routing existing failed demands onto alter-

nate routes . This is different from what happens at the switched layer, where calls are lost.

If the cross-connect layer manages to recover from a fault before the switched layer

times out its trunk, the calls on the trunk will just notice a glitch. Most DCS restoral methods

are targeted for broadband DCS networ ks due to the smaller number of demands to

reroute.

The demands for this level of the networ k are the trunks which the higher level

switched networ k uses as links. These trunks have fixed bandwidth requirements , and the

routes are static (except during reconfiguration). As such, this networ k is relatively stateful,

and the reconfiguration process attempts to preser ve this state. This makes the tech-

niques used in this layer of special interest to us, since realtime networ ks also have per-

channel state (although more complex since the number of parameter s is larger).

The DCSs detect a fault and either infor m a centralized system or instigate a dis-

tr ibuted recovery. Centralized methods [12, 65, 66] use a separate control networ k to

13

-- --

gather the networ k state at a central computer and then run flow optimization algo-

rithms to compute a quasi-optimal new configuration. The problems with centralized

methods include the need for a separate fault-tolerant control networ k connecting the

DCSs to the central computer, the relia bility of the central computer, the time to run the

flow optimization algorithm, and the communication overhead of acquiring the networ k

state and disseminate the new configurations to the DCSs. The main advantages of cen-

tralized methods are the ability to compute quasi-optimal solutions based on global

knowledge and the ability to wor k with non-intelligent DCSs. [12] also claims that DCS

recovery methods based on centralized algorithms have lower communication over-

head than distributed methods. This is because for the cross-connect layer networ ks the

infor mation about the current configuration is already at the central computer (from

which it was down-loaded during the last reconfiguration) and only the infor mation

about the fault(s) needs to be sent to the central computer. However, the dissemination

of the new configuration from the central computer to the DCSs takes time, and this may

make the communication overhead of a centralized method higher than that of a well

designed distributed method, where each DCS computes its own configuration infor-

mation.

Distr ibuted methods rely on some var iation of ’flooding’ to reach consensus on the

new configuration after the occurrence of a fault. The new configuration may be looked

up using the failure state as an index into a static table of pre-computed configurations ,

or the networ k elements may dynamically compute their configurations using a dis-

tr ibuted algor ithm. The pre-computation schemes are limited by the space needed to

store the configurations for each possible failure state, and by the time to compute

reconfigurations for each possible failure state each time the basic configuration

changes . Often only a subset of all failure states are cov ered, and other states are han-

dled sub-optimally using some fall-back heur istics [21].

The dynamic distributed schemes using greedy algorithms with limited infor mation

14

-- --

usually compute sub-optimal configurations , but they are more scala ble [34, 40, 56, 64].

They may be faster than the centralized methods if the communication overhead is kept

under control. Since the control messages are sent on the data networ k, a separate con-

trol networ k is not required. This makes the distributed method cheaper but also more sus-

ceptible to loss of control messages. Par t of the wor k may be pre-computed, for exam-

ple, by pre-computing a number of alternate routes for each (source, destination) pair,

and then choosing the cheapest when a fault occurs using some cost function based on

the current networ k state [10]. The basic tradeoff here involves the opposite goals of

reducing the latency of the computation and the goodness of the solution. The robust-

ness of the algorithm (in the face of multiple failures of the networ k on which the control

infor mation is being exchanged) is also an issue.

The rerouting techniques can also be orthogonally classified as end-to-end or link

rerouting [25]. Link rerouting (also known as backhauling or local rerouting) replaces the

failed link by a path through the networ k without changing the rest of the route. It has the

advantages of speed and ease of implementation, because there is no need to deter-

mine the end points of the trunks for link rerouting. However, it is hard to extend to cover

multiple failure and node failure cases . End-to-end (or global) rerouting finds a com-

pletely new path from the source to the destination node. It uses networ k ca pacity more

efficiently, is easier to adapt to different grades of service, and handles node and multi-

ple failures better. However, it is more complex and slower to respond.

In the example in Figure 1.1, the connection on route ABCDEF suffers a failure on link

CD. The link rerouting technique would attempt to reroute the connection to ABCGHDEF,

unless the path is unusable due to insufficient bandwidth. The global method, trying to

find the shortest path with sufficient bandwidth, might choose AIJKLMF. The exact path

chosen would, of course, depend on the existing reser vations on the links.

Retur n to normal involves rerouting demands back to the restored path without dis-

rupting service. It is important to restore spare capacity as planned and load balance

15

-- --

F

M
E

L D
H

G

C
K

J

I

B

A

Figure 1.1: Link vs. Global rerouting

the networ k, since the reroutes are over longer routes and use more resources . However,

the time scale of the retur n to normal is longer, since immediate reaction is not essential,

and slower techniques that lead to better final solutions are usually preferred.

Multiplex layer networ k: The nodes at this layer are ter minal or add-drop multiplex-

or s , while the links are high-rate fiber systems. The principle methods at this level are self-

healing rings [2, 11] and 1:1 diver sely routed Automatic Protection Switching (APS). They

use distributed detection and instigation of restoral. Route selection uses simple, pre-

computed, and static schemes, such as switching from "outer" to "inner" rings in SONET

self-healing rings , or switching to a standby fiber in APS. The spare capacity is only used in

failure cases , so the switching is local and ver y fast; retur n to normal is also simple.

Physical layer networ k: The links in this case are the fibers. At this layer it is important

to ensure the diver sity requirement, that is, that paths that should be disjoint in the higher

16

-- --

layer s should be physically separated.

1.4.2.2. Computer da ta networ ks

Conventional computer data networ ks are mostly based on a connectionless

paradigm (e.g., the Internet). Fault recovery in these networ ks consists of recomputing

routing infor mation to route new data correctly. In the Internet no perfor mance guaran-

tees are given, though the protocols attempt to reduce congestion and networ k insta bili-

ties . [46] describes early wor k on the Internet routing algorithms to correct routing insta-

bilities and improv e perfor mance. [67] uses simulation to analyze the dynamics of the

routing algorithms with the same objective. However, these algorithms are for connec-

tionless data transmission without any perfor mance guarantees in the networ k. Hence

the survivability techniques do not need to maintain networ k state for individual connec-

tions during reconfiguration. The problems they are attempting to solve are different from

those found in survivability for realtime networ ks .

AN1 [55, 57] and AN2 [58] are local area networ ks designed for high survivability.

AN1 is packet switched and connectionless, while AN2 is ATM based, connection-

or iented and supports CBR (fixed bandwidth) traffic. CBR traffic is a special case of real-

time traffic, hence, some of the problems addressed by AN2 reconfiguration are similar to

those faced in realtime networ ks . However, both networ ks stop data forwarding during

networ k state acquisition and routing table computation, in order to avoid the problems

of cell looping and traffic instabilities . This technique wor ks in local area networ ks;

however, the latencies involved in reconfigur ing a wide-area networ k are sufficient to

make the idea of stopping all data forwarding (including unaffected channels) unattrac-

tive. This is an example of the difficulties imposed by high-speed WANs on reactive control

mechanisms .

1.4.3. Fault tolerance

We define fault-tolerant realtime communication to include only schemes which

17

-- --

offer realtime guarantees that are valid in the event of restr icted classes of failures . We

need to specify the additional clause ‘‘restr icted classes of failures’’, because if every

component in the networ k fails simultaneously, there is no technique that can maintain

any realtime guarantees . The restr ictions imposed on the classes of failure depend on the

par ticular scheme; some examples are single failures , n-failures , isolated failures , and so

on.

In [73] the concept of Single Failure Immune (SFI) channel is presented. The basic

technique used is to start with a basic realtime channel as defined in Tenet scheme, and

then augment the channel with additional bypass links to maintain connectivity for each

single failure. In the context of the HARTS networ k [59], this idea has been extended to

Isolated Failure Immune (IFI) realtime channels [74]. These paper s represent the only pub-

lished approaches to fault tolerance for realtime networ ks that have come to our atten-

tion. They will be described in more detail in Chapter 6.

S DM2

M1

P1

Figure 1.2: Dispersity routing - (3, 2, 2) system

Disper sity routing is the idea of breaking a message into a number of smaller parts ,

augmenting them by one or more error correcting code or parity messages, and then

sending all the messages on disjoint paths through the networ k to the destination. Differ-

ent choices on the number of message fragments and the number of parity messages

give different dispersity systems. Disper sity routing was first proposed by Maxemchuk in

[44], where the schemes were categor ized as (N , J , K) systems according to the number

18

-- --

of paths in the networ k (N), the number of message fragments (J), and number of mes-

sages needed to be received at the destination to reconstitute the original (K). Dispersity

was used to reduce the delay and the var ia bility of message transfer s across a store-and-

forward networ k. The analysis was done under the assumptions of Poisson arrivals and

steady state. At low networ k loads , the expected delay of a dispersity system is lower

than that of the conventional one-copy scheme. The basic advantages stem from the

smaller message size (which reduces the expected transmission delays in the networ k). By

adding redundant messages, the need to wait for the last message is removed, decreas-

ing the delay and delay var iation of the system, provided the networ k is not heavily

loaded. A (3, 2, 2) system is shown in Figure 1.3, where an original message is broken into

two equal fragments and a parity message constructed for the third path.

Fur ther work by Maxemchuk explored the use of dispersity routing to enhance relia-

bility, share a small set of channels among a number of bursty users with low blocking

proba bility, and handle unexpected traffic sources in the networ k better.

[17] explored two-copy routing of datagrams in connectionless packet switched

networ ks . Under Poisson arrival and steady-state assumptions, for lightly loaded networ ks

with unrelia ble links , the expected delay is lower. An algor ithm to find the optimal routes

for the two-copy scheme is presented in [18], which finds the optimum of a non-linear

programming representation of the routing problem using a feasible-descent approach.

The algorithm has high but not exponential time complexity.

The computation of the error correcting codes used for the dispersity systems with

redundancy is simple for the case where there is only one parity message. In this case,

the (N , N − 1, N − 1) systems, the parity message can be computed as a bit-wise XOR of

the other messages. For more than one parity message the class of codes known as

Reed-Solomon codes [42] allows us to obtain (N , J , J) systems , that is, provides the ability

to decode the message when any J of the N messages have arr ived, if J or iginal mes-

sages and N − J par ity messages were transmitted. Such codes are said to be maximum-

19

-- --

distance separable codes. [5] described a maximum-distance separable code which

can be implemented in parallel hardware for high-speed communication. The coding

scheme belongs to the class of Reed-Solomon codes. [6] extends the coding scheme to

the analog domain for implementations at optoelectronic speeds. A software implemen-

tation of Reed-Solomon codes can run just fast enough for video conferencing applica-

tions on fast wor kstations [39] (1.2 Mbps on SPARC 10 using 60% of the CPU cycles for cod-

ing or decoding). Research is in progress [1] to reduce these computational requirements

fur ther, and provide multiple levels of redundancy.

In Chapter 6 we look at the application of some of these ideas to providing fault-

tolerant realtime communication.

1.5. Scope of the disserta tion

This dissertation investigates techniques and mechanisms to provide fault recovery

and fault tolerance for networ ks that offer realtime services . We investigate a reactive

scheme that provides fault recovery by rerouting realtime channels when a failure

occur s . We also examine a proactive scheme for fault tolerance, where reser vations on

multiple paths are used to prevent or limit the degradation of service in the event of a

networ k failure.

The techniques and mechanisms are applica ble to a wide class of networ ks , which

can be described by a general realtime networ k model to be presented in Chapter 3.

However, the simulation evaluation and protocol design must be presented in the con-

text of a specific realtime communication environment. Chapter 2 presents a description

of the Tenet Realtime Protocol Suite 1, to provide the necessary background infor mation.

It also contains a survey of other realtime schemes, from which a set of fundamental prin-

ciples are extracted to for m the networ k assumptions presented in Chapter 3. These

assumptions are applica ble to a wide var iety of realtime networ ks , including ATM net-

works with QoS support. Thereafter, we present a general framework for the recovery pro-

cess , and then proceed to fill out the details by making a number of design decisions.

20

-- --

The first few decisions , made on the basis of the assumptions about realtime networ ks ,

identify the region of the solution space that we will explore. We fur ther narrow the solu-

tion space by choosing not to explore a number of issues.

Cha pter 4 presents a simulation study of the remaining var ia bles in the fault recov-

er y mechanisms for realtime networ ks . We measure the perfor mance of these schemes

on a number of metrics , chosen on the basis of the requirements specified in Section 1.2.

We also explore the effect of var ying exter nal factor s such as the topology, the networ k

load, the traffic mix, and the failure scenar ios on our recovery schemes . As we shall see,

the chosen solution space contains a scheme that gives ver y good perfor mance on all

our metrics , and is also tolerant to changes in the external factor s . The decisions made in

Cha pter s 3 and 4 are summar ized in Chapter 5, and then embodied in the high-level

design of a reactive protocol for fault recovery.

Cha pter 6 presents one approach to applying proactive reser vation techniques to

provide fault tolerance for realtime networ ks , a simulation evaluation of the benefits and

costs of this approach, and a comparison with existing solutions. The approach is based

on the dispersity systems described in the Section 1.4.3. The evaluation shows that this

idea can be used to provide a range of realtime fault-tolerant services , where the level

of tolerance may be increased at the expense of increased networ k ca pacity require-

ments , or allowed to degrade gracefully with the number of faults in the networ k. The

networ k suppor t required is minimal; as long as the networ k expor ts the correct set of sim-

ple and powerful primitives , and a basic realtime service, the higher layer s can combine

them appropr iately to provide arbitrar y levels of tolerance to the user.

Cha pter 7 concludes by summar izing the mechanisms presented in this dissertation,

evaluating them in the light of the original requirements , and discussing some open

issues .

21

-- --

-- --

Cha pter 2: The Tenet Realtime Protocol Suite 1

2.1. Introduction

This chapter describes the Tenet Realtime Protocol Suite 1. In this process , it presents

many of the ideas of the realtime paradigm by example. Our research into fault man-

agement is based upon this paradigm. Therefore, this background infor mation is essen-

tial, in order to place the issues involving fault management for realtime networ ks in the

correct context. The simulation evaluation presented in Chapter 4 and the high level pro-

tocol design present in Chapter 5 are also based on the Tenet suite.

We first present in Section 2.2 the assumptions about the underlying packet-

switched networ k, on which the Tenet model is based. We also present the service model

in Section 2.3, which is based on the idea of a contract between the networ k and the

client. The basic approach to providing realtime guarantees , given the assumptions

made, is described Section 2.4. Section 2.5 discusses channel management in further

detail, and describes two specific control protocols , designed for the Tenet Suite 1, which

provide different levels of networ k management support. We also describe the support

for routing needed for realtime networ ks . Finally, Section 2.6 surveys some other realtime

schemes , either paper designs or implementations, to see if the mechanisms to solve the

problems of realtime communication differ vastly. These observations will for m the basis of

our arguments , presented in the next chapter, that the basic principles of realtime com-

munications are fair ly unifor m across implementations, and fault recovery mechanisms

based on these fundamental principles should be applica ble to all such networ ks .

2.2. Networ k model and assumptions

Realtime communication can be provided on a general packet/cell switching

store-and-forward networ k if some assumptions are satisfied. The pr imar y assumption is

some for m of scheduling which supports differential grades of service on the switches or

router s (hencefor th called nodes) of the networ k. The first implementation of the Tenet

22

-- --

Suite 1 is based on EDD (Earliest Due Date) scheduling. Guarantees may also be pro-

vided based on other scheduling schemes such as RCSP (Rate Controlled Static Prior ity)

[72] and multiple prior ity versions of FCFS [29]; even networ ks with nodes running different

scheduling disciplines can be supported [29].

The nodes of the networ k must be connected by links that have bounda ble delays .

They might be physical links on which the delay is bounded by the laws of physics . They

might be sub-networ ks on which the delay is bounded by some other mechanism, such

as SONET ATM networ ks . They might also be sub-networ ks on which the delay is bounded

using a hierarchic application of the realtime networ k protocols [7].

The nodes of the networ k must also have sufficient computing power and pro-

grammability to run an establishment protocol that includes admission control tests of

moderate complexity. For switches that do not have such programmability, we assume

the presence of a controller which can perfor m these tests and run the establishment

protocol.

For the purposes of this thesis, we impose the additional assumption that the net-

work is simple, i.e., each link in the networ k is a physical link and does not represent a sub-

networ k. This simplifies the explanation of the protocols significantly. For details of how to

extend the realtime paradigm to internetwor ks , the reader is referred to [29].

2.3. Service model and assumptions

We assume a service model based on a server-client relationship between the net-

work and the application. We use the word client to refer loosely to the application or

the human user running the application. We assume that the clients of a realtime service

will require guarantees about the service provided by the networ k. The guarantees will

cover all perfor mance parameter s of interest to the client. The specific parameter s that

will be included in a contract between the networ k and the clients depend on the

nature of the application, and on what the networ k is prepared to support. For research

23

-- --

Client RCAP

Host Machine

Client Network Interface

Figure 2.1: Service model for realtime networ k

pur poses , we should try to suppor t as many parameter s as possible, and then evaluate

the usefulness of each to the client and the cost to the networ k. The Tenet service model

suppor ts guarantees on delay, jitter and packet loss due to buffer overflow (see Table

2.1).

To suppor t any realtime guarantees , the networ k has to limit the amount of load

that the client may place on the networ k. This takes the for m of traffic specifications,

which the client declares when asking for perfor mance requirements specified as

descr ibed abov e. The exact set of parameter s in the traffic description are also under

investigation. More complex descriptions allow the networ k to allocate the resources

more efficiently, leading to higher networ k utilization. However, simpler descriptions are

less of a burden to the client (to choose the correct specification) and to the networ k (to

process in order to allocate resources). The traffic specification used in Tenet Suite 1 uses

a peak-average rate specification based on four parameter s: Xmin, Xave, I , and Smax [26]

(see Table 2.2).

The service model assumed involves a transaction between the networ k and the

client. The client presents to the networ k a request for perfor mance guarantees , and its

traffic specification at the same time. The networ k processes this infor mation based on its

current load and resource state, and either accepts or rejects . If the request is accepted,

24

-- --

Parameter Semantics

Dmax Upper bound on end-to-end delay

Zmin Lower bound on proba bility of timely deliver y

Jmax Upper bound on end-to-end jitter (optional)

Wmin Lower bound on proba bility of no loss due to buffer overflow

Ta ble 2.1: Perfor mance parameter s of the Tenet Suite 1 interface

Parameter Semantics

Xmin Minimum inter-message time

Xave Minimum average intermessage time

I Av eraging interval

Smax Maximum messsage size

Ta ble 2.2: Traffic parameters of the Tenet Suite 1 interface

the networ k is committed to deliver ing within the perfor mance bounds each packet

injected into the networ k, provided the client does not violate the traffic specifications. In

the present service model, the perfor mance is guaranteed except in the case of a net-

work fault.

In the absence of sufficient experience with applications of such networ ks , we

assume that any combination of perfor mance requirements and traffic specifications is

possible. The parameter ized interface makes it possible to handle any combination, so

that applications may find their exact requirements . This is especially important for

research purposes , since we would like to find out what combinations are used by clients

if no restr iction is imposed on them.

Finally, we assume that the frequency of requests may be fair ly high. We visualize

such a realtime networ k being used to make video-phone calls, set up conference calls,

access video servers, listen to digital recordings , and so on. As such, the lifetime of a con-

nection will var y from minutes to hours. If a medium-sized networ k can support a hundred

connections and the average lifetime is five minutes , this implies an average of twenty

connections being established and torn down every minute. This frequency will increase

with networ k ca pacity and size.

25

-- --

2.4. The Tenet Suite 1

The Tenet Suite 1 is a suite of protocols which provide realtime service on a networ k

meeting the assumptions of Section 2.2. The protocols in the Suite are shown in Figure 2.2.

The networ k-layer protocol, the Real-Time Internet Protocol (RTIP), provides a connection-

or iented suppor t for realtime communication in an internetwor king environment. On top

of this protocol, the Realtime Message Transpor t Protocol (RMTP) provides a message-

based transpor t-layer interface to applications , while the Continuous Media Transpor t

Protocol (CMTP) provides a time-driven interface for periodic traffic. These protocols

coexist with the Internet protocol stack as

+
TCP UDP

IP

CMTP RMTP

RTIP

Data Link Layer (e.g.FDDI)

R
T
C
M
P

M
C
D

P
A
C
R

Figure 2.2: Protocols in the Tenet Suite 1

shown in the figure. The Realtime Channel Administration Protocol (RCAP) provides chan-

nel management services: channel establishment, teardown, and status enquiry. An

extension to RCAP, the Dynamic Channel Management protocol (DCM), adds the ability

to modify the parameter s of the channel during its lifetime [51-53]. To this suite, we plan

to add a protocol for fault handling to be named the Real-Time Control Message Proto-

col (RTCMP).

The Tenet approach is based on the concept of realtime channel, which supports

the service model described in the previous section by means of resource reser vations on

the networ k elements on the route of the channel. The resource reser vation mechanism

works in conjunction with the data forwarding protocols to ensure that sufficient

26

-- --

transmission resources and buffers are availa ble for the packets on the realtime channel

as long as the client obeys the traffic specifications associated with the channel. This is

made possible by admission control tests perfor med before each channel is accepted,

which ensure that, if the channel is accepted, sufficient resources to meet the perfor-

mance guarantees of all pre-existing realtime channels, as well as those of the new

channel, are availa ble at all nodes on the path of the channel.

The local tests (perfor med at a single node) ensure that the local perfor mance

requirements of the channel can be met without violating the perfor mance guarantees

of any pre-existing channel. The inputs to the tests are the local perfor mance require-

ments and the traffic character istics of the channel as seen at this node. The nature of

the tests depends on the scheduling mechanism used in the data forwarding protocols .

The tests for EDD scheduling are descr ibed in [27, 28]. This scheduling algorithm is imple-

mented in the first ver sion of RTIP.

These local perfor mance bounds correspond to some resources reser ved at the

node on which the bound is given, since they cannot be used to establish any other real-

time channel until the resources are released by the teardown of the channel. Since

there is a limit on the number of realtime channels that can be supported, accepting a

realtime channel implies that the number of subsequent channels that can be supported

is reduced. For resources like buffers or bandwidth this reser vation is easy to quantify, but

the delay bound offered to the channel also constitutes a resource, which is harder to

quantify. A lower delay bound corresponds to more resources being ‘‘blocked’’, since

fewer low-delay channels can be supported, but the proper ties of this blocking effect

depend on the scheduling algorithm implemented on the node. The control mechanisms

must keep track of this resource state at each node, and quantify this ‘‘blocking’’ algo-

rithmically, to ensure that, when resources are unavaila ble, new channels are not

allowed to be set up.

To allow local guarantees to be extended to end-to-end perfor mance guarantees ,

27

-- --

the traffic character istics seen at each node must be computable. RTIP makes this easy

by ensur ing that the traffic specifications given by the client are obeyed at all intermedi-

ate nodes. We also need a mechanism to translate an end-to-end requirement to a set

of local requirements , as well as a protocol to run all the local tests and make the

resource reser vations . The connection-oriented paradigm provides an efficient solution to

this problem. The tests are run as part of the connection establishment procedure. This

procedure is perfor med by the channel management protocol as described below.

2.5. Channel management

Channel management consists of the tasks of establishment, teardown, and status

enquir y. In the Tenet Suite 1, the process of channel establishment is initiated at the

source node, which computes a route for the channel based on its knowledge of the

networ k topology and the resource state on each node in the networ k. In the first imple-

mentation, route selection relies on the underlying routing protocol availa ble in the net-

work.

Next, the source sends an establishment request message on this route. This mes-

sage contains the perfor mance requirements and traffic description specified by the

client. Each node runs an algorithm to test the availa ble resources against the require-

ments of the channel, and to choose the best perfor mance bounds it can support. For

example, the lowest delay bounds and the smallest jitter bounds are picked. The

resources corresponding to these are tentatively reser ved, infor mation about the local

reser vations are added to the message, and the message is forwarded. When the mes-

sage reaches the destination, the end-to-end perfor mance achieved can be calculated

(for example by adding the local delay bounds or multiplying the loss proba bility

bounds). If the end-to-end perfor mance is unacceptable, or if the destination chooses

not to accept the connection, a denial message is retur ned. Otherwise, the excess per-

formance values can be distributed among the nodes, so that they can relax the

resource reser vations accordingly. This is done on the reverse pass , when the destination

28

-- --

sends an accept message on the path in the reverse direction. When this acceptance

message reaches the source, the source can proceed to transmit data, and the networ k

guarantees deliver y within the perfor mance bounds specified in the establishment

request.

To see why we need to reser ve the best amounts of resources on the forward pass

and relax these amounts on the reverse pass , imagine a connection that needs to be

esta blished across a three-hop path through a networ k where the last hop is close to sat-

uration. Let us say that the required end-to-end delay is 100 ms, and the links have trans-

mission and propagation delays of 10 ms per link. This gives us a budget of 70 ms to dis-

tr ibute among the hops for queueing delay bounds. If the scheme naively allocates 20

ms per hop and reser ves the appropr iate resources at the first two hops to match that,

the last node might be unable to meet the delay requirement if it is already highly

loaded. On the other hand, if we allocate the lowest possible delays on the forward pass ,

we might end up with allocations of 10 ms, 10 ms, and 40 ms at the three nodes at the

end of the forward pass , leaving us with a relaxation budget of 10 ms to distribute among

the nodes.

2.5.1. Realtime Channel Administration Protocol

The Realtime Channel Administration Protocol (RCAP) implements channel estab-

lishment based on the approach described above. RCAP also perfor ms the tasks of

channel teardown and status repor ting. Dur ing teardown the resources are released so

that the blocking proba bility of future requests is reduced. Status repor ting is used to find

the resource reser vation state of the channel at the intermediate nodes in the networ k

and is useful for management and debugging.

RCAP is implemented as a daemon process that runs on each node in the realtime

networ k. Each daemon is responsible for maintaining the resource state for the links out-

going from the node on which it runs , as well as for local CPU resources and buffers on

the node. It maintains TCP/IP connections to neighboring daemons to exchange the

29

-- --

Message Name Direction Description

establish_request Downstream Message sent by source on

forward pass to establish a

channel; causes admission

control tests to be run; best

perfor mance resources are

reser ved.

establish_accept Upstream Sent from destination to

source on reverse path; in-

dicates channel can be

accepted with given re-

quirements; causes relax-

ation of resources and con-

fir med reser vations .

establish_denied Upstream Indicates that channel was

rejected; causes resources

to be removed;

status_request Downstream Requests infor mation about

resource reser vation and

channel state for given

channel; proceeds along

path of channel to destina-

tion.

status_report Upstream Carr ies collected infor-

mation about status back

to source.

close_request_forward Downstream Sent from source to desti-

nation to tear down chan-

nel; causes resources to be

removed.

close_request_reverse Upstream Sent from destination to

source to tear down chan-

nel; causes resources to be

removed.

Ta ble 2.3: RCAP messages

control messages described in Table 2.3.

The RCAP daemon also accepts messages from local processes on the same

machine. The application programs on the source or destination machines communi-

cate with RCAP by making procedure calls to an RCAP librar y, which constitutes the net-

work control API. Procedures exported by the librar y ena ble the source application to

request a connection or close it. The destination application is provided with registration,

request reception, and request acceptance procedures . The procedure calls are con-

verted by the librar y to control messages that the RCAP daemon recognizes .

30

-- --

The Tenet Suite 1, using the control protocol described above, has been imple-

mented and deployed in several networ king testbeds . Several studies of the perfor-

mance of the suite as well as experiments of the use of the suite for video conferencing

applications have been conducted [8, 9, 69].

2.5.2. Dynamic Channel Management

An extension to the basic services provided by RCAP is to allow the client or the net-

work to change the parameter s of the channel, such as the traffic specifications, the per-

formance constraints , or the route, during the lifetime of the channel, if possible without

affecting the flow of data. In [52] the Dynamic Channel Management (DCM) protocol is

presented as such an extention. DCM is based on a round-tr ip approach similar to that

used in RCAP; however, it needs to keep track of two sets of parameter s , the old channel

parameter s and the new channel parameter s . The forward pass consists of reser ving the

higher amounts of the resources required to support the two sets of requirements on

nodes that are common to the old and new path. This ensures that, during the transition

per iod, no packet misses its deadlines. On nodes that lie only on the new path, the new

channel’s requirements are used for the reser vations . The reverse pass then perfor ms the

relaxation and infor ms the data transmission protocols of the new deadlines . On the

common nodes, the higher amounts of the relaxed resources and the old resources are

retained. A third pass is perfor med in the forward direction, along the path of the old

channel. During this pass the resources for the old channel are removed from the nodes

not on the new path. On the common nodes, the resources corresponding to the new

requirements (after relaxation) are retained. The effect of such an alternate establish-

ment is to change the parameter s of the channel from the old set of parameter s to the

new (including possibly changing the route) without affecting the stream of data in tran-

sit.

31

-- --

2.5.3. Route upda te protocol

The route computation perfor med by the realtime scheme determines the path on

which the channel establishment is attempted. For Suite 1, the implementors chose not

to explore the routing function, by assuming that the routing protocol of the underlying

networ k would be used. However, for DCM, a more complex routing function was

worked out, where the route selection process is based on routing tables that summar ize

the resource state at all links in the networ k.

As a new channel is established or torn down in the networ k, the networ k state at

the nodes in the path of the channel changes. The routing tables on all nodes must be

updated to reflect the changed networ k state. Since the success of a following establish-

ment attempt depends on the accuracy of the routing tables on which the route com-

putation is based, the mechanism to maintain the routing infor mation is important. For

this study we assume a simple route update algorithm based on a relia ble broadcast of

any change to the resource state of each node to all nodes in the networ k, when a

reser vation is made permanent during the reverse pass , or when a channel traver sing the

node is torn down. Thus, each node has a picture of the resource state at all other nodes

in the networ k, except that this picture may be slightly out of date. The further one node

is from another, the more out of date its picture of the state of the other node is, since the

route update message has further to travel.

Dur ing channel establishment, the admission control tests are perfor med on the

actual resource state at each node on the path of the channel. Dur ing route computa-

tion, the same calculations are perfor med on the infor mation about the resource state

present in the local routing table. If the infor mation were always completely up-to-date,

the actual establishment would never fail. The only reasons why an esta blishment request

might fail during the forward pass of the round trip are that either the infor mation in the

routing table at the node perfor ming the route selection was out of date or another

esta blishment proceeding concurrently caused the resource state at an intermediate

32

-- --

node to change before the request reached the node.

2.5.4. Route selection

The selection of the route is based on the goal of reducing the resource usage in

the networ k, subject to the primar y constraint of meeting the delay bounds of the client if

at all possible. In the Tenet Suite 1, this process is perfor med for each channel in isolation,

without attempting to optimize the resource usage across the entire networ k, for reasons

of scalability of the solution, and to prevent the requirement that other channels be

moved when a new channel is set up. Since our networ k assumptions include a ver y

dynamic channel state, where the establishment and teardown requests are frequent,

the service provider cannot afford to optimize resource usage across the entire networ k

for each channel request, especially since moving existing channels would involve addi-

tional channel management activity and may even aff ect the perfor mance of the chan-

nel being moved.

In this context, the goal of minimizing the resource requirements of a channel is

approximately equivalent to minimizing the number of links traver sed by it, subject, of

cour se, to the delay bound constraint.

A number of graph-theoretic procedures for selecting a route in a graph with var i-

ous goals and constraints exist. The best known are the Dijkstra algor ithm [24], which mini-

mizes the cost of the route, and the Bellman-Ford algor ithm [16], which minimizes the

number of links in the path, subject to a cost constraint. If we set the cost of a link to the

minimum delay bound which can be offered on that link to the channel under consider-

ation, according to the resource state infor mation availa ble in the routing tables , the

Bellman-Ford algor ithm satisfies the requirement mentioned in the previous paragraph.

This algorithm was also used to find the paths for realtime channels in [53], and is summa-

rized below.

This smallest delay bound that can be offered to a channel on a given link can be

33

-- --

computed knowing the traffic character istics of the channel and the resource state of

the link, using the same calculations that are perfor med dur ing the forward pass of chan-

nel establishment. The cost of each edge on the graph representing the topology of the

networ k is set to this value. Each node has a label, which is initialized to zero for the

source and to infinity for all other nodes. This label represents the cumulative cost of

reaching the node from the source given certain constraints . The algorithm wor ks in

phases . At the end of phase i , each node is labeled with the smallest cost of all i -hop or

shor ter paths from the source to the node. The algorithm stops when the destination is

reached by a path with a cost less then the desired delay bound, or when i exceeds a

given constant value. In the latter case, the algorithm fails to find a path.

2.5.5. Summary of Suite 1

This concludes our brief description of the Tenet Suite 1. We have, of course,

focussed on the aspects of the suite that are impor tant to an understanding of the rest of

this thesis, and omitted many impor tant and interesting details of the data forwarding

protocols . Reader s interested in the details of Suite 1 are referred to [9], which also

includes a fair ly comprehensive bibliography of the Tenet wor k. In this section, we have

focussed on the channel management services , provided in the first implementation of

Suite 1 by RCAP. We have also described RCAP extensions, such as DCM, the routing

algor ithm and the route update protocol, which were not part of the first implementation

of Suite 1. Together, they for m a networ king environment that provides realtime communi-

cation with networ k management functionalities that allow the client or the networ k

operator to make changes to the perfor mance parameter s , traffic specifications, and

routes of existing channels. This environment is rich enough to support fault recovery and

tolerance mechanisms. However, since we would like to design our mechanisms to be

applica ble to a wide var iety of realtime networ ks , we will now provide a brief survey of

other approaches to realtime communication in packet/cell switching networ ks .

34

-- --

2.6. Other realtime schemes

Variations on the realtime scheme described in this chapter have been suggested.

For example, the establishment process may be speeded up by forwarding the establish-

ment request before running the tests at each node; this method wor ks well under the

optimistic assumption that the tests will succeed. Data may also be transmitted before

the acceptance message retur ns, with the understanding that, if the connection fails ,

the data will be lost. In this case, the first packet of data may also carry the establishment

request [19].

Alter native approaches to the provision of realtime services on packet/cell

switched networ ks have been proposed. In the predictive ser vice proposed in [20], the

networ k attempts to keep the perfor mance given to the client from changing rapidly, but

no guarantees are made. This approach does not meet the definition of realtime as used

in this thesis. However, the guaranteed service proposed in the same paper does meet

the definition, and the basic model, based on resource reser vation during connection

esta blishment, is similar to the model underlying the Tenet scheme. The Session Reser-

vation Protocol [3] also fits the model described above closely. The differences lie in the

under lying scheduling mechanisms and the details of the admission control tests.

The Heidelberg Resource Administration Technique (HeiRAT) [63] uses the ST-II net-

work-layer protocol to provide unicast and multicast realtime connections. The ST-II imple-

mentation used in this investigation is enhanced with resource reser vation algorithms ver y

similar to the Tenet scheme [37]. The Magnet-II Realtime Scheduling approach [38] sup-

por ts a fixed menu of QoS classes. This simplifies the implementation of the admission

control tests and the process of mapping end-to-end guarantees to local bounds.

However, it limits the flexibility of resource allocation and the services provided.

Restr ictive for ms of realtime communication are proposed in [35, 68], where the

throughput is the main perfor mance objective under consideration, and other parame-

ter s such as delay and loss rates can be computed secondarily. Resource reser vation in

35

-- --

the PlaNET networ k [19] uses the reser vation model of [35]. All of the above schemes are

based on resource reser vation during connection establishment.

Finally, there exist approaches to realtime communication which are fundamentally

dissimilar from the Tenet model. The predictive ser vice of [20] mentioned before falls into

this category, since the perfor mance provided is not guaranteed. The networ k merely

tr ies to prevent the networ k perfor mance from fluctuating rapidly, but perfor mance is

expected to deteriorate as load in the networ k increases . [70] uses the concept of soft

reser vations to avoid a completely-connection oriented model. It has certain advan-

tages in the extremely heterogeneous environment of the Internet, but it does not offer

tr ue guarantees , since the reser vations can be dropped without notice, or the path of

data transmission may change during the lifetime of the conversation. [33] also proposes

a connectionless approach in which the bandwidth partitioning model can be

extended to approach realtime service, but the main goal of the system is not realtime

ser vice, but bandwidth partitioning.

2.7. Conclusions

While our experience with the Tenet Suite [8, 9] demonstrated the benefits of real-

time control in the networ k, it also highlighted some issues for further research. One key

obser vation from our experiments with the realtime protocols is the need for fault han-

dling mechanisms. This was especially keenly felt because the hardware and software

that we were wor king with were exper imental and crashed often in the earlier days of

our experimentation. Providing fault recovery in those networ ks was not feasible,

because the topologies did not offer alter nate paths between end points. However, such

redundancy would be needed in a commercial service networ k, in order to handle

occasional failures without loss of service to clients. This aspect has been ver y carefully

treated to date by networ k provider s , and will have to be so treated as the new ATM

based B-ISDN networ ks develop.

36

-- --

If realtime services are provided in an ATM or packet-switched networ k, they must

follow some of the same principles of resource reser vation and admission control that

have been dealt with in this chapter. The next chapter isolates the common principles on

which realtime service must be based, in order that we may study how to provide fault

management services on networ ks that offer such services . Based on these fundamental

pr inciples , we designed fault management techniques that should be applica ble to all

networ ks that follow them. These techniques, and their evaluation through simulation, are

descr ibed in the for thcoming cha pter s .

37

-- --

-- --

Cha pter 3: A reactive scheme for fault recovery

3.1. Introduction

A realtime scheme as described in the previous chapter gives the application guar-

antees about the networ k perfor mance that are only valid in the absence of networ k

faults . Such a scheme is susceptible to link faults because of the connection-oriented

nature of the networ k protocols , which dictates that the route followed by the packets

dur ing data transfer be pre-deter mined, so that resources on the links and nodes along

the path can be reser ved. This implies that, if any link on the route is affected by a fault,

the flow of data is interrupted until and unless an alternate route can be found and the

reser vations transfered to it. Thus, we need to provide fault handling mechanisms to the

realtime networ k. This chapter describes fault recovery mechanisms , which use reactive

techniques to restore traffic in the event of a fault. Chapter 6 describes pro-active tech-

niques that provide transparent tolerance to faults .

In the next section, we descr ibe the goals of the fault recovery mechanisms , which

dr ive the design and evaluation process . In Section 3.3, we discuss the assumptions

about the networ k, der ived from the basic underlying principles of realtime networ ks , on

which we base the design of our fault recovery mechanisms .

We star t the design process in Section 3.4 by providing a framework that consists of

the basic tasks which any fault recovery scheme would have to perfor m. In Section 3.5,

we consider some of the fundamental design issues, such as whether the scheme should

be centralized or distributed, and whether we should attempt to find an optimal solution

or use fast greedy algorithms . We make some fundamental design choices at this stage,

and justify them on the basis of the principles of realtime networ ks . We also leave some of

the fundamental issues open for investigation through simulation. In Section 3.6, we fur-

ther narrow the solution space to be explored by choosing not to explore a number of

issues . Finally, Section 3.7 identifies the design choices that remain to be explored. This

leaves us with a well-str uctured problem domain, which we can systematically explore

38

-- --

using simulations tools to be described in the next chapter.

3.2. Objectives of the fault recovery mechanisms

The fault recovery mechanisms are intended to provide fault handling that is effi-

cient in the common fault-free situation. Accordingly, we will attempt to devise tech-

niques that use no extra resources and cause no additional channel management activ-

ity in the absence of faults . When a fault does occur, some latency before ser vice is

restored to the affected realtime channels is acceptable. Of course, low latency is one

of the objectives , and thus the basis of a metric, by which different schemes may be

compared.

The recovery mechanisms are intended to restore realtime connectivity with the

or iginal perfor mance guarantees to the affected channels. However, when a fault

occur s , depending on the load in the networ k, all the affected channels may not be suc-

cessfully rerouted. Rerouting as much traffic as possible is an important objective, and this

defines another metric for comparison of recovery schemes . The effect of the rerouting

process on the ability of the networ k to accept more channels immediately after the

recovery process terminates is also a consideration. We would like the recovery process

to use resources as efficiently as possible. Finally, we would like the recovery schemes to

be as flexible as possible, to deal with different networ k topologies , load conditions, and

traffic mixes. To summar ize, the objectives of fault recovery are to:

• Use no extra resources during normal operation

• Restore original perfor mance guarantees to channels

• Recover as much traffic as possible

• Minimize reaction time to the extent possible

• Use resources efficiently during rerouting

• Ada pt flexibly to different topologies, load conditions, and traffic mixes

39

-- --

3.3. Networ k model and assumptions

The Tenet approach is one of the many approaches that can guarantee perfor-

mance in a packet-switching networ k. Other solutions have been proposed by other

investigator s , some of which are mentioned in Chapter 2 of this thesis. All these schemes

share some common features , which appear to be necessary to the provision of realtime

guarantees on packet/cell switched networ ks . It has been argued [30, 32] that some fun-

damental assumptions must be satisfied in order to provide realtime services as defined

here on packet/cell switched networ ks . If we can design our fault recovery schemes

based on these fundamental assumptions about the networ k and the realtime scheme,

then there is reason to believe that the fault recovery schemes will apply to any of the

realtime schemes. These fundamental assumptions are listed below.

Resource reser vation and admission control: Ever y networ k has some limit on such

resources as bandwidth and buffers, and, as the offered load to the networ k increases , a

point of congestion is eventually reached when the perfor mance of the networ k deter io-

rates . In order to provide good perfor mance to realtime applications even dur ing per iods

of networ k congestion, it is necessary to set aside some fraction of the resources so that

these resources are availa ble to the realtime packets in preference to others. All the

guaranteed perfor mance schemes mentioned in Chapter 1 implement some for m of

resource reser vation. If realtime traffic is added to the networ k, a point must eventually

be reached when the addition of another stream could possibly lead to overload on the

networ k, leading to violation of guarantees . While the algorithms or heuristics to detect

this condition differ from scheme to scheme, all realtime schemes must employ some

form of admission control.

Client traffic specification: Since the networ k cannot support an arbitrar y amount of

traffic, it is necessary for each realtime client to give the networ k a descr iption of the traf-

fic it will inject into the networ k. This traffic description is used to perfor m admission con-

trol, to make sure that the addition of a new client’s traffic will not violate the networ k’s

40

-- --

ability to provide guaranteed service to all other clients, as well as to satisfy the new

client’s requirements . The client must adhere to these traffic descriptions , otherwise the

traffic on the networ k will be higher than calculated, and realtime perfor mance will suffer.

Connection-or ientedness: The resources reser ved for a realtime client, such as trans-

mission bandwidth, buffers, and so on, are local in nature, that is, they exist in a given

switch or router. Thus , the reser vations must be made over a specific set of switches or

router s on the networ k. This set of switches or router s would define one or more paths in

the networ k, ov er which resources are reser ved. During transmission, the packets of real-

time data would follow these paths. These route(s) have to be computed before the

transmission of data, in order that the resources be availa ble when they are needed.

Note that the route computation need not occur strictly before the establishment, since

it may be done in a distributed manner as the establishment request makes its way

through the networ k. However, before the data transfer starts , both processes have to be

complete. Thus, the nature of the communication is connection-oriented.

Protective ser vice discipline: The guarantees offered to a realtime client should be

protected from disruption by misbehavior of other realtime or non-realtime traffic sources .

This could be achieved by a var iety of techniques, but a minimum seems to be providing

pr ior ity of realtime traffic over non-realtime traffic, and some for m of rate control or polic-

ing on each realtime source. The rate control ensures that the traffic introduced by a

client into the networ k does not exceed its traffic specifications, thereby protecting other

realtime clients. Var ious combinations of policing mechanisms and prior ity schemes have

been proposed [26, 50, 71].

3.3.1. A general realtime networ king model

For the purposes of designing our fault recovery schemes , we assume that the net-

work meets the above set of requirements . We proceed to make this networ k model

more concrete by descr ibing the outlines of a scheme, which fills in some more details

about the realtime networ k, but is still general enough to fit a number of the schemes

41

-- --

descr ibed in Chapter 2 [3, 19, 20, 35, 38, 63, 68]. This leads us to believe that this model will

fit the schemes used to provide realtime switched virtual circuits (SVCs with QoS guaran-

tees) on future ATM networ ks .

• The networ k handles a request for a realtime channel in a distributed fashion. We do

not consider centralized approaches for reasons of scalability of the scheme.

• Channel establishment is based on a round-tr ip message exchange, during which

admission control tests are perfor med at all the nodes on the route of the channel,

based on local resource state infor mation availa ble at each node. The single

round-tr ip paradigm is assumed because of its efficiency and compatibility with the

vir tual circuit model of ATM networ ks .

• The best perfor mance possible is reser ved on the forward pass . The resources are

relaxed to the appropr iate perfor mance level on the reverse pass of the round trip;

the necessary computations may be perfor med at the destination, or in a dis-

tr ibuted fashion during the reverse pass . The two-pass scheme allows us to maximize

the chances of acceptance within one round-tr ip time, yet does not waste

resources within the networ k because of over-reser vation.

Note that the above outline does not place any restr ictions on the route selection

process . It may be perfor med on the originator of the establishment request, at a route

ser ver, or in a distr ibuted fashion as the establishment request moves through the networ k

on its forward pass . The specifics of the admission control tests perfor med and the

resources reser ved are also unspecified, and depend on the particular scheme being

used.

To allow route modification of realtime channels, we may either assume support

from the realtime scheme, or incorporate the appropr iate channel management func-

tionality in the fault recovery protocol. We chose the for mer approach, since route modi-

fication is already supported in a ver sion of the Tenet Suite 1 by the DCM protocol. Thus,

we need to make another assumption about the realtime scheme.

42

-- --

• The realtime scheme supports modification of the route of the channel during its life-

time. Using a three-pass mechanism, the resources of the channel can be modified

without violating any guarantees during the transition process . The first pass makes

tentative reser vations for the new route or perfor mance parameter s , the reverse

pass relaxes the reser vations and also makes them permanent. At this point data

star ts to follow the new path. The third pass removes the resources along the old

route.

The above model of the realtime scheme leads to the following observation, which

must also be kept in mind while designing routing and recovery algor ithms .

• The realtime networ k has a fair ly complex resource state, distributed across the

nodes of the networ k, which must be considered while seeking a new route for a

channel. The exact parameter s of the resource state depend on the particular real-

time scheme under consideration. But the infor mation required to perfor m the

admission control tests is also required by the routing algorithm, in order for it to find

routes on which the channel establishment request will be likely not to fail.

In addition to the above assumptions , we also need to keep in mind the assump-

tions about the underlying networ k and the service model described in the previous

cha pter. Two of these are repeated below, because they are significant to the choices

made in this chapter.

• The nodes of the networ k are programmable computers with sufficient computation

power to run the channel management protocols with admission control tests.

These same computers can also be used to run the routing algorithm, as long as the

algor ithm is of reasona ble time complexity.

• The channel establishment and teardown requests are frequent. Thus, the set of

channels , and hence the set of routes , existing in the networ k at any given time is

very dynamic.

43

-- --

3.4. A fault recovery framework

In this section, we impose a framework on the fault recovery scheme by enumerat-

ing five tasks which must be perfor med in order to restore traffic in the event of a fault.

These tasks are detection, instigation of recovery, route selection, connection manage-

ment, and retur n to normal.

Detection is perfor med by the nodes adjacent to the failed component. The

latency requirement dictates that the time from the occurrence of the fault to the detec-

tion must be small. On the other hand, the requirement that channel management activ-

ity during normal fault-free operation be kept to a minimum implies that faults should not

be declared without some level of validation. We will not explore this task in any fur ther

detail in this chapter. Cha pter 5 contains some considerations on the details of the

detection mechanisms.

Instig ation of the restoral process is perfor med by the node that detects the fault.

This consists of infor ming the rest of the networ k of the fault so that recovery can be per-

formed. The infor mation that needs to be communicated includes the identity of the

failed component(s), the affected channels, and, depending on the recovery scheme,

possibly the new routes . We will look at this process in more detail in this chapter and in

Cha pter 5.

Route selection is one of the most important stages of recovery. In this stage, the

networ k chooses the new set of routes , to which the channel management process will

transfer the channels affected by the fault. This process may be completely centralized,

so that the entire set of routes are computed on one computer. It may be partially dis-

tr ibuted, so that each route is computed on a single computer, but different routes are

computed by different computers. Each single route may also be computed in a dis-

tr ibuted fashion, on a hop-by-hop basis as the establishment message wor ks its way

through the networ k. Finally, the order and timing of the route computations can also be

varied.

44

-- --

Channel management is the process of actually moving the networ k resources from

the old path to the new. Channel management attempts to reser ve sufficient resources

on the new path to meet the end-to-end perfor mance requirements . If the attempt fails ,

we may retur n to the route selection process again, perhaps with additional constraints

defined by the specific retr y policy. If the attempt succeeds, we remove the remaining

resources from the old path.

Retur n to normal is the action taken to balance the networ k load more evenly when

the link is declared good by the detection and validation mechanisms. Since the longer

routes used after rerouting consume more resources , the capacity of the networ k can be

increased by retur ning the channels to shorter paths using the newly restored links. The

impor tant consideration here is not to affect the traffic during this process . The scheme

should also wor k well with the admission control protocol. One possible retur n to normal

scheme is described in Chapter 5.

3.5. Design issues for a reactive scheme for fault recovery

In the framework descr ibed abov e, the tasks that are of par ticular interest to us in

this chapter are the processes of instigation, route selection, and channel management.

We assume, for the moment, that detection and retur n to normal can be perfor med.

These are discussed in more detail in Chapter 5.

In this section, we look at some of the general design choices that exist in designing

a reactive scheme for fault recovery, in the context of the assumptions that we have

made about the realtime networ k. We looked at some of these issues in Section 1.4.2, in

the context of survivability for the cross-connect layer of telecommunication networ ks .

However, the assumptions regarding realtime channels, which were descr ibed in Section

3.3, are different from the ones on the basis of telecommunication networ ks are

designed.

For example, in the cross-connect layer of the telecommunication networ k, the

45

-- --

possible lack of intelligence or computing power of the DCS was an important issue in

favor of centralized schemes. Here, we can assume that the switches (or the controller s

attached to the switches) will have sufficient computing power to run distributed algo-

rithms of reasona ble complexity, since we already need such processing ability to run the

admission control protocols . The state infor mation associated with a realtime channel is

also larger than for a cross-connect trunk, since, instead of just bandwidth, each channel

has several traffic and perfor mance parameter s associated with it. The networ k state at

inter mediate nodes , which summar izes the local perfor mance bounds allocated to exist-

ing channels, also needs to be considered during rerouting, in order that the algorithm

be able to compute routes on which sufficient resources exist to support the new chan-

nel. This networ k state is also much more dynamic than that of the cross-connect net-

work, since realtime channels have shor ter life-times than cross-connect trunks . We need

to look at these fundamental design issues again, with these different assumptions in

mind.

The questions that we will consider in this section are the following. Should the algo-

rithms attempt to find optimal solutions or should they aim at fast approximate solutions

using a greedy strategy? Should they be distr ibuted or centralized? Should we use pre-

computation of routes to speed up the recovery or should the reroutes be computed

dynamically when the fault occurs? How much time should we spend on infor mation

exchange during the recovery process? Some of these questions will be answered in this

section, while others will be kept open for investigation through simulation.

3.5.1. Optimal vs . greedy

The problem of finding the optimal flow in a networ k given bandwidth constraints on

the links can be mapped onto a linear programming problem, for which reasona bly effi-

cient algorithms [23, 61] exist. The routing problem at the cross-connect layer of telecom-

munication networ ks can be approximated by the above model, and quasi-optimal solu-

tions can be found efficiently. However, when the admission control test becomes more

46

-- --

complex than checking a simple bandwidth constraint, especially with non-linear con-

straints used in the traffic specifications, as is the case for the Xmin, Xave, I model, the prob-

lem can no longer be simplified to a linear program. and no known efficient algorithm for

computing an optimal solution exists. The brute force algorithm, which enumerates all

possible solutions, evaluates them in terms of some criter ia of success, and picks the best,

is exponential in time complexity. This makes such schemes infeasible for large graphs or if

the state infor mation per node, on the basis of which the optimal solution is chosen, is

complex, as is the case for realtime networ ks .

Greedy algorithms are a class of algorithms that deal with problems involving many

similar steps one at a time, finding the best incremental solution for each. In the context

of establishing realtime channels, this implies dealing with channels one at a time and

picking a route placement and resource allocation that minimizes the increase in

resource usage. Greedy algorithms may produce non-optimal solutions. However, since

each application of the algorithm attempts to minimize the increase in resource con-

sumption caused by the single step, the overall solution tends to stay close to the opti-

mal. Greedy algorithms provide reasona bly good, fast solutions to otherwise computa-

tionally intracta ble problems . The greedy approach is also used in our networ k model for

channel establishment (see Ch. 2), i.e., the routing and resource allocation of one chan-

nel does not involve making adjustments to the route or resource allocation of any other

channel. This approach is much faster, since the time complexity of the resource alloca-

tion is now linear in the number of channels and nodes, and no channel management

activity to move existing channels is required. This is especially important considering the

dynamicity of the realtime load on the networ k, since we either have to optimize every

time a new realtime channel is added or removed, or settle for a non-optimal solution.

We will explore a greedy approach to fault recovery, because it fits well with our realtime

networ k model, operates in linear time, and produces reasona bly good solutions.

47

-- --

3.5.2. Centralized vs . distr ibuted

A centralized scheme gather s all the important networ k state at one computer,

where a new configuration for the networ k is computed. Since all the infor mation is avail-

able, it is possible to compute a configuration that is optimal according to some target

function. This optimal scheme might be able to reroute more channels successfully

under heavy-load conditions. However, this gain comes at the expense of a possibly

higher latency, since the time to gather the networ k state to one location and then dis-

tr ibute the networ k configuration to the switches must be added to the time to run the

algor ithm. The time to gather the networ k state has to be considered here, since, unlike

the cross-connect networ ks , realtime networ ks have a ver y dynamic load, with connec-

tions coming and going as applications are star ted and ended. Since the establishment

protocols are distr ibuted, no single computer has the complete networ k configuration at

the time of the fault. All the networ k state must be gathered to the central computer

before the centralized algorithm can start operating. This latency would be negligible for

a LAN, but might be significant for a WAN. Further more, this higher latency would trans-

late to a much higher number of bits lost in a networ k with a high bandwidth-delay prod-

uct.

Centralized algorithms are susceptible to single-point failures , since all recoveries

would be stalled by a failure of the central computer, or of the control networ k which

connects the central computer to the switches. In the telecommunication networ ks , this

problem is mitigated by having more than one fault recovery computer and having

redundancy in the control networ k, so that the control networ k itself is fault-tolerant.

However, this increases the cost of the solution. We do not assume a separate control

networ k; rather, the recovery action is carried out over the data networ k itself. This fits in

better with our model of the realtime establishment protocols , which exchange control

messages over the data networ k. However, this makes the centralized approach much

less desirable, since the failures in the networ k that we need to recover from make the

48

-- --

collection and distribution process itself unrelia ble. The distributed algorithms deal explic-

itly with the problem of failed links. For example, the exchange of control messages with

neighbor s may be used as part of the process to determine the wor king topology of the

networ k, since the inability to exchange messages indicates a failure of the correspond-

ing link.

A distr ibuted algor ithm also scales better to larger networ ks , since the processing

power availa ble increases with the networ k size. The centralized scheme, on the other

hand, must run an optimization algorithm of exponential complexity on a single com-

puter. Thus , the major advantage of using a centralized solution (i.e., finding an optimal

solution) is infeasible for all but the smallest realtime networ ks . The establishment protocol

assumed in the networ k model is distributed for much the same reasons . A distr ibuted

fault recovery scheme has the advantage of fitting better with our distributed networ k

model.

A distr ibuted algor ithm would find a non-optimal solution based on a limited

exchange of infor mation faster than a centralized scheme and without relying on a sin-

gle central computer. This comes at the expense of possibly finding a solution consider-

ably wor se than the optimal. Since the distributed elements may have inconsistent views

of the networ k, the overall behavior of the system may be hard to under stand for an

implementor, and may be far from the expected and desirable behavior, even though

each individual element has a simple and understanda ble behavior. In spite of these dis-

advantages , this approach appear s more feasible for the case of realtime networ ks , and

will be explored here.

The channel management activity described in Chapter 2 is completely distributed,

since some admission control tests are perfor med on each node in the path of a candi-

date route. Selection of a candidate route may be either partially or completely dis-

tr ibuted. For a partially distributed route selection, each channel is routed separately on

a separate computer, but each individual route computation takes place on a single

49

-- --

computer. For a completely distributed scheme, each route is computed hop-by-hop in

a distr ibuted manner as the establishment request progresses through its forward pass .

While a fully distributed scheme is wor th investigating, the partially distributed route selec-

tion strategy is known to wor k well (it is used in the basic channel management protocol),

and will be used here.

3.5.3. Pre-computed vs. dynamic

The task of rerouting may be partially pre-computed in order to decrease the

response time of the recovery after a failure. This idea has been explored in the context

of the cross-connect layer of telecommunication networ ks , as mentioned in Section

1.4.2. In the context of realtime networ ks , multimedia traffic is expected to be much more

dynamic than the configuration presented by the cross-connect connections. A trunk is

a relatively long-lived connection. As such, the requirements of a set of trunks , character-

ized by source, destination, and bandwidth, are fair ly static. After the set of required

tr unks has been decided, the current configuration, as well as the recovery configura-

tions for all likely fault combinations, may be computed and stored. On the other hand,

for a realtime networ k, the set of active connections changes much more dynamically. In

addition, the time and space complexity of computing and storing the recovery configu-

rations for any such set is also larger, since the channel has a more complex state than a

cross-connect trunk. This makes it infeasible to pre-compute the set of recovery configu-

rations for all possible fault conditions each time the networ k state changes. A dynamic

approach, which computes the reconfiguration when the fault occurs, will be developed

and explored here.

3.5.4. Global vs . local knowledge

The extent to which knowledge is univer sally shared among the elements of a dis-

tr ibuted algor ithm can have a tremendous impact on the perfor mance and correctness

of the algorithm. At one extreme, we might allow all nodes to gain complete infor mation

50

-- --

about any change in the networ k state before computing the next step in the algorithm.

Since this would imply that all nodes have completely up-to-date knowledge of the net-

work state throughout the reconfiguration process , this is equivalent to a centralized

algor ithm in terms of goodness or optimality of the solution. At the other extreme, we

may choose to allow all nodes to run their reconfiguration algorithms with the view of the

networ k state that they had at the moment of the fault, without allowing any additional

communication. This would have the fastest response time of any algor ithm, but would

reroute fewer connections successfully, since the inconsistencies among the networ k

views of the separate networ k elements would lead to poor cooperation between the

nodes . Thus , by allowing more time for communication, we can improv e the success of

the rerouting algorithm.1

A FD

B

C E G

H

Figure 3.1: Avoiding collisions

A cer tain amount of communication is needed just to establish a consistent config-

uration. For example, in Figure 3.1, after the process of reconfiguration, if node A believes

that a connection passes through node A and node B, and the local state on node B

does not contain the same infor mation, then the configuration is not consistent, and

data transfer cannot take place correctly along the connection. This level of coopera-

tion is taken care of at the connection management level. If we use an underlying

1 Distr ibuted algor ithms may operate at any point on the trade-off cur ve, making them more con-
venient from the point of view of this research, where we are interested in exploring the trade-offs .

51

-- --

protocol such as RCAP or DCM, consistency of the configuration is ensured by the round-

tr ip mechanism for channel establishment. However, even beyond this level of communi-

cation, opportunities exist for non-cooperative behavior between nodes. If node A and

node B both decide to route a connection through link DF, and the resources on link DF

are insufficient to support both, then one of them will fail at the admission control stage.

This may even happen if sufficient resources for both channels exist on the link, due to the

excess forward pass reser vations of the first channel. If this infor mation had been avail-

able to node B, then it could have chosen a different path (e.g., BCEG), on which this

collision would not have occurred.

Pre-computed

Dynamic

Centralized

Optimal

Greedy

Distr ibuted

Figure 3.2: The sector of the solution space to be considered

Thus , the trade-off between speed and goodness of the solution computed by the

distr ibuted scheme needs to be explored. The best operating point for any networ k will

depend on the networ k size, the communication latencies, the level of load on the net-

work and many other var ia bles . In addition, at present the details of the algorithm are

completely unspecified. Thus, although we have restr icted our solution space by

52

-- --

consider ing only greedy, distr ibuted, and dynamic solutions (see Figure 3.2), we are still

left with a ver y large solution space to explore.

3.6. Issues not to be investig ated

To reduce the size of the problem at hand, we will make cer tain simplifying assump-

tions about the solution. We have already decided not to explore fault detection and

retur n to normal in any detail. Also, in the context of the Tenet scheme, the requirements

of the channel management task can be satisfied by the services provided by the com-

bination of RCAP and DCM. It fits all of the decisions taken so far, since it handles chan-

nels one at a time, using a distributed protocol to perfor m the admission control test, and

does not require any pre-computation. Thus, we will also assume that channel manage-

ment is perfor med by an existing realtime channel management protocol that supports

route modification.

We will also not explore the mechanism by which the resource state infor mation of

the networ k, required by the routing algorithm, is distributed to all the nodes in the net-

work. We assume that a relia ble broadcast protocol, as described in Section 2.5.3, is used

to maintain the routing table infor mation. Of course, such a method implies that the

ta bles are slightly out-of-date with respect to the true resource state of the networ k, and

are updated as messages come in through the networ k. This also implies that more infor-

mation can be obtained by simply waiting for the update messages to come in. Thus,

there is a trade-off between the amount of infor mation availa ble on which routing deci-

sions are based and the time that the scheme must wait to make the decisions.

When attempting to find a path to which a given channel may be rerouted, we

have the same objectives as mentioned in Section 2.5.4, where we descr ibed the graph

theoretic algorithm used to select a candidate route. The primar y cr iter ia are that suffi-

cient resources exist to support the traffic parameter s of the channel and that the end-

to-end delay bound of the channel is satisfied. The secondary objective is to minimize the

resource requirement of the candidate route. Since the route selection for the recovery

53

-- --

process will also be carried out in the same greedy manner as before, we can use the

Bellman-Ford algor ithm, with certain modifications. These modifications are required to

satisfy additional constraints , which are required by the recovery or tolerance schemes,

and will be described as the constraints come up.

Thus , by fixing the channel management and route update protocols , and using the

Bellman-Ford algor ithm to find the min-hop path meeting the delay and resource

requirements of a channel, we have simplified many aspects of the fault recovery activ-

ity. We will now descr ibe the issues that remain to be investigated through simulation.

3.7. Remaining issues

The decisions made in the previous sections fix most of the var ia bles in the scheme.

We are left with a few more or less orthogonal factor s: the locus of reroute, the timing of

the rerouting attempt, the retr ies in the event of failure, and the use of state prediction.

We will define these factor s in this section.

For each of the factor s named above, many solutions are feasible. Our objective is

to explore the extremes of the range of possible approaches to each factor, as well as

some intermediate solutions. Exper imenting with the extremes will tell us if the factor

being explored has any impact at all on the perfor mance of the scheme as a whole. The

exper iments with the intermediate approaches will give us some idea of how the perfor-

mance changes as the particular factor under consideration is var ied. For example, if the

perfor mance according to some metric is roughly constant across all the approaches to

a given factor, we can conclude that the particular metric is insensitive to var iations

within the factor. If the perfor mance is best at one of the extremes , we can be reason-

ably sure that we do not need more careful experiments to search intermediate points

for the best solution. If the perfor mance of an intermediate approach to the factor is the

best, more careful experiments are called for, perha ps in a more realistic environment

involving an actual implementation, to find the best solution for that factor.

54

-- --

G L

D

I

N

S

R

I

LHG

Locus of reroutePrediction

Retr y policy

Timing
Figure 3.3: 4-dimensional solution space to be explored

We can think of the factor s as defining a multi-dimensional space, and the var ious

approaches as hyper planes in which one coordinate is fixed. The schemes are points in

the solution space, where all the coordinates are fixed by specifying an approach for

each factor. In Figure 3.3, the approaches are mar ked on the dimensions by their abbre-

viated names (defined below). Not all the points in this 4-dimensional space correspond

to reasona ble schemes , as we shall see. Our simulation experiments will evaluate points in

this space on multiple metrics of perfor mance, attempting to find a scheme with good

perfor mance on all significant metrics .

3.7.1. Locus of reroute

The entire old route of the channel need not be subjected to a route selection pro-

cess . In most cases, only one component of the channel, such as a link or a node, is

affected by the failure, and it would suffice to find a new segment to replace a portion of

the route. The locus of reroute determines the portion of the current route of the channel

55

-- --

upon which a rerouting attempt will be made, and the node which perfor ms the reroute

selection. We consider three locus of reroute types: Global reroutes (G), Local reroutes

(L), and Hybr id reroutes (H). In all types of locus of reroutes , the traffic and perfor mance

character istics of any rerouted connection must be maintained after the rerouting is

completed.

Global rerouting: With this approach, which corresponds to end-to-end rerouting

(Section 1.4.2.1), the path of the rerouted connection is determined at the source node

based on the current networ k load and the traffic and perfor mance character istics of

the connection. This scheme considers all possible paths through the networ k. However,

the source needs to have infor mation about the resource state for all nodes in the net-

work. The infor mation on which this route selection is perfor med may be out of data,

more so for nodes far from the source. This might make Global rerouting sensitive to the

timing and prediction factor s , which tune the level of infor mation sharing and the time

spent waiting for infor mation.

IHGFE

DCBA

Figure 3.4: Local rerouting

Local rerouting: This approach to rerouting finds a new route from the node

upstream of the fault to the node downstream of the fault. It combines this segment with

the rest of the route from the original path. Since the path from the upstream node to the

downstream node may include some links in common with the original path, such redun-

dant sections are removed. For example, in Figure 3.4, the failed link FG is replaced by

the segment FBCHG. However, on combining with the original path, the common

56

-- --

por tions GH and HG are removed, giving the new route EFBCHI. This process of route

selection is perfor med at the fault detecting node. Since this is closer to the source of the

fault, and the routing also takes place over the nodes in the immediate vicinity, Local

rerouting should be able to route correctly with less waiting for infor mation to come in.

Thus , it should be less sensitive to the timing and prediction factor s . The locality of the

region affected might also make this scheme better able to handle multiple faults in dif-

ferent parts of the networ k, since one recovery attempt is relatively independent of the

other s . Finally, using as much of the old route as possible may also be beneficial, since

the request is less likely to fail on these trunks , as some resources are already reser ved.

Local rerouting is similar to link rerouting as discussed in Section 1.4.2.1. However, the

esta blishment passes are carr ied out over the entire route, not just the new segment, for

better resource balancing and to increase the chances of meeting the end-to-end

delay requirements . This comes at the expense of a longer time to complete the rerout-

ing, since the establishment passes must be made over the entire route.

Note that, although the need to perfor m end-to-end resource balancing does not

allow us to get the shorter recovery time of link rerouting, the amount of traffic rerouted

by Local rerouting should be as good as or better than that of link rerouting. Thus, to star t

with, we will explore Local rerouting as defined. Then, if the success of Local rerouting

warrants it, we can explore the possibility of reducing the time to reroute by changing our

resource balancing mechanism to exchange control messages over just the new seg-

ment.

Hybr id rerouting: Local rerouting considers a much smaller set of candidate routes

than Global rerouting during route selection. This makes it much harder for Local rerouting

to find a route that has sufficient resources . Hybr id rerouting attempts to retain the

advantages of Local while mitigating its disadvantages , by first trying a Local reroute,

then a Global reroute if the Local attempt fails .

57

-- --

3.7.2. Timing

The reroute timing policy selects the starting time of the reroute establishment

attempt for each individual channel. This factor seeks to mitigate the effect of route colli-

sions and database inconsistencies. Route collisions occur when an establishment

request, during the forward pass along a link, consumes a large fraction of the remaining

resources on the link, thus causing an immediately following forward pass establishment

request to fail due to lack of resources , even though on the reverse pass the for mer

esta blishment request would have relaxed its resource reser vations so that the latter

could have had its resource request honored. Reducing route collisions would increase

the proba bility of establishing a connection. Data base inconsistencies can also cause

rerouting attempts within a small time interval of each other to interfere with each other.

Had there been sufficient time between the two connection rerouting attempts for the

route update protocol to exchange the necessary infor mation, the routing database

would have reflected a more accurate networ k load, and the latter of the two reroutes

would have chosen a different path through the networ k.

Thus , by increasing the waiting time between rerouting attempts which use the

same links in the networ k, we can improv e the success of rerouting. Three possible

approaches are considered to explore the effect of the timing factor: Immediate (I),

Random(n) (R), and Sequential (S).

Immedia te timing: With this timing approach, rerouting attempts are initiated by the

controlling node as soon as a failure is repor ted to it. In the absence of any attempt to

predict the behavior of other nodes, this approach is character ized by the least cooper-

ation and potentially the most interference.

Random timing: With Random(n) timing, the rerouting attempt time is determined

by generating a random value from a unifor m distr ibution ov er an inter val of duration n.

This random value is added to the current time to obtain the reroute starting time. This

randomization decreases the chances of two rerouting attempts being perfor med

58

-- --

simultaneously over the same links in the networ k, and thus, should increase rerouting suc-

cess . Different values of the randomization interval n yield different var iations within Ran-

dom timing.

Sequential timing: With this timing approach, all rerouting attempts are handled

sequentially, with only one controlling node initiating a rerouting attempt at any given

time. When all the reroute attempts of a single affected connection are completed, only

then are rerouting attempts made on another connection. Sequential timing reduces

route collisions and database inconsistencies. In fact, if we allow sufficient time between

rerouting attempts, all nodes will perfor m route selection using up-to-date infor mation.

This is equivalent to a centralized scheme with respect to the rerouting success that can

be achieved, but is obtained at the cost of a much higher average time to reroute.

However, Sequential timing is useful since it represents the routing success that can be

obtained by eliminating all collisions. We cannot expect to reroute a significantly larger

amount of traffic without using global optimization techniques. As such, it serves as a

good control experiment, against which we can measure the perfor mance of the other

approaches .

3.7.3. Retry policy

The retr y policy deter mines the action that is taken if the route selection process

fails , or if the establishment attempt along the selected path fails . We exper imented with

No retr ies (N), Immediate retr ies (I), and Delayed retr ies (I).

No retr ies: In the absence of retr ies , if the first attempt to find a route fails the chan-

nel is abandoned and the client is infor med of the failure. The failed channel is torn down

and the resources released immediately.

Immedia te retr ies: With this approach to retr ies , if the route selection fails the chan-

nel is abandoned and torn down; if, however, the establishment attempt fails , new infor-

mation provided by recent database update messages is incorporated, the saturated

59

-- --

link (at which the previous reroute failed) is mar ked as a unusable for the route selection

process , and a new route selection is perfor med immediately. An esta blishment is

attempted on this route.

Delayed retr ies: With this approach, a retr y is scheduled for a later time. The satu-

rated link is not explicitly removed; rather, the route update infor mation that comes in

dur ing the interval may cause the route selection to choose a different path. The method

by which the interval is selected provides var iations within this approach. We exper i-

mented with fixed intervals , exponentially increasing intervals , and randomization.

Retr ies are repeated on failure up to a pre-deter mined limit; different values of the

limit give us different var iations within each approach. We also experimented with using

a cut-off time to stop further retr ies , instead of a number of attempts.

3.7.4. Prediction of networ k sta te

This factor determines the extent to which a node perfor ming route computation

modifies the infor mation availa ble in its routing tables at the time of route selection, on

the basis of the predicted behavior of other nodes. The infor mation in the routing tables

models the actual resource state in the networ k but may be slightly out-of-date. Predic-

tion aims to improv e the accuracy of the modeling, to try and accurately determine the

resource state likely to be found by the establishment request when it arrives at each

inter mediate node in the networ k. If prediction were perfect the effect would be to

spread the different establishment attempts out onto different paths in the networ k, since

the var ious nodes would cooperate to choose routes such that sufficient resources are

availa ble for each channel on each link.

Prediction has the same goal as the Random or Sequential timing approaches ,

where waiting for infor mation to come in allows the correct routing decision to be made.

Prediction attempts to obtain the same effect without the extra waiting time, by predict-

ing the change in routing infor mation which will occur.

60

-- --

We try two approaches within this factor: Local prediction (L) and Global prediction

(G). These names (and abbreviations) are also used by the approaches for locus of

reroute, but since we will always mention the factor being considered explicitly, no cause

for confusion should arise. Since other intermediate prediction schemes that we can

think of are fair ly complicated, we decided to explore them only if the Global prediction

approach offered sufficient improv ement over the Local one. The two approaches are

descr ibed below.

Local prediction: This is a minimal for m of prediction, consisting of each node only

tr ying to predict the result of its own establishment actions on its own local database. If a

node perfor ms two consecutive route computations, the latter is perfor med with the

appropr iate resources removed from the local database, so that it sees the state corre-

sponding to what would exist after the forward pass of the for mer esta blishment request.

This is the picture most likely to be seen by the second request as it propagates through

the networ k after the first one. Also, in order to compute a reroute, the resources corre-

sponding to the current channel are added to the networ k, since these resources are

availa ble to the alternate channel during the local admission tests. However, no attempt

is made to make the behavior of the nodes globally predicta ble. This level of prediction

requires no synchronization of reroutes , exchange of messages, or waiting time; thus, we

make this the default mode of operation, and compare the perfor mance of the Global

approach against the perfor mance of the Local one.

Global prediction: Although it is conceptually orthogonal to the other factor s ,

Global prediction would wor k best with Immediate timing, since, with the other timing

schemes , prediction is superfluous, as the infor mation is already updated by waiting. In

addition, the predicta bility of the timing of the Immediate approach makes the predic-

tion scheme easier to implement, since we know that all the nodes are perfor ming the

route computations at roughly the same time. In contrast, the behavior of the Random

timing approach is harder to predict, since the time at which the channel establishment

61

-- --

is perfor med depends on the state of the pseudo-random number generation function.

Thus , we only experiment with Global prediction in the context of the Immediate timing

approach.

With Global prediction, all nodes wait for a sufficient interval of time without per-

forming any channel administration activity, to ensure that the routing infor mation has

sta bilized to the same value on each node. The fault message ensures that all nodes

reach consensus about the set of channels to be rerouted. These channels are ordered

using the same rule on all nodes. The route selection algorithm is perfor med for all the

channels in the same order on all nodes. Since we only experiment with Global predic-

tion in the context of Immediate timing, all of the nodes are running this algorithm at

roughly the same time. After each route selection, the resources corresponding to the

forward pass reser vations are removed from the local routing tables . Since the same

action is perfor med at all nodes, and the initial state of the routing tables are the same,

all nodes make the same routing decisions. In fact, this is identical in effect to using a

centralized routing algorithm. Thus, unless the assumptions of identical initial state and no

extraneous channel management activity are broken, the routes found by this routing

process will always have sufficient resources for the channel being rerouted, since the

routing process models the actual establishment process . If the resource state during the

forward pass might cause the establishment of any channel to fail on a given link, the

algor ithm should either find a different route for the channel or fail to find a route at the

current time, since the resources used up by other channels are reflected in each local

data base.

Since the timing is Immediate, establishment attempts are generated at all the

nodes at the same time. Thus, the resource states seen by the route selection process

should be the same as the actual resources seen during establishment, and theoretically

no attempt should fail during establishment. However, this might happen if our idealized

assumptions about synchronization and complete coherence of the routing databases

62

-- --

are not satisfied. It might also happen if the order of channel establishment is different

from the order in the routing sequence, and the second channel has a tighter delay con-

straint than the first one.

Since the forward pass reser vations are higher than those after relaxation, it is impor-

tant to use retr ies for the channels for which routes could not be found during the first syn-

chronized routing attempt. Retries for these channels, as well as for any channels which

failed during establishment, may be perfor med in synchrony, after a sufficient interval to

complete all establishment attempts and update all databases again. Alternatively, the

retr ies may revert to the Random delay model. Both schemes were tried in our simula-

tions .

It is important for Global prediction that, apar t from the recovery action, all channel

management activity (i.e., establishment of new channels) be frozen during the time that

the synchronized routing attempts are being perfor med. Otherwise, the states seen by

the different nodes will be different during the routing process , due to the change

caused by this activity and the action of the route update protocol. This freezing of new

esta blishments would not be intolerable if the time interval for the synchronized phase

were shor t. Note that data deliver y for already established channels that were not

affected by the fault is not interrupted.

Global prediction

L

G

H

RR

N I D

Local prediction

R

H

G

L

R

DIN

Retr y policy

Locus of reroute

Timing

I

S

I

S

Figure 3.5: Valid reg ions of the 4-dimensional solution space

63

-- --

The Local prediction is valid with all combinations of the other factor s . Global pre-

diction, for the reasons mentioned above, is only useful with Immediate timing. Thus, the

valid schemes in the 4-dimensional space lie in the regions shown in Figure 3.5, which

shows the 4-dimensional space as two 3-dimensional spaces, one for Global prediction

and the other for Local prediction. In the space for Local prediction, all the schemes are

valid. These schemes are shown in solid lines. In the space for Global prediction, the

regions containing the Random and Sequential timing approaches do not contain rea-

sona ble schemes . These regions are bounded by dotted lines.

3.8. Conclusion

In this chapter, we have for mulated a framework for the systematic study of recov-

er y of realtime channels. A promising portion of the solution space has been isolated by

choosing greedy algorithms over ones which try to provide optimal solutions, distr ibuted

schemes over centralized control, and dynamic strategies rather than pre-computation

methods . Figure 3.2 shows the sector of the solution space thus identified. We have cho-

sen not to explore some issues by adopting the DCM protocol for changing the route of a

channel, the Bellman-Ford algor ithm to select the min-hop route meeting the perfor-

mance and traffic constraints , and the relia ble-broadcast-based route update protocol.

We have also chosen not to address the problems of fault detection and retur n-to-

nor mal, although we do retur n to them briefly in Chapter 5. The issues to be investigated

are locus of reroute, reroute timing, networ k state prediction, and retr y mechanisms . We

have identified some possible approaches to each of these factor s . The combination of

these approaches define schemes, although not all of them are reasona ble ones , as Fig-

ure 3.5 shows . In the next chapter, we proceed to explore the interesting schemes by sim-

ulation.

64

-- --

-- --

Cha pter 4: Evalua tion of fault recovery

4.1. Introduction

The problem of networ k fault recovery has been extensively studied. Cha pter 1 pro-

vides a survey of existing wor k explor ing various aspects of fault recovery in the context

of telecommunication networ ks and computer data networ ks . The field is relatively

mature and a good understanding of the issues involved in recovering from fault in these

networ ks exists . However, as we saw in Chapter 3, the assumptions for realtime networ ks

are considerably different. The situation is closest to that found in the cross-connect layer

of telecommunication networ ks , but the solutions used there cannot be applied directly

to the new environment without considerable thought and experimentation. In Chapter

3, we looked at the issues involved in redesigning the fault recovery mechanisms to wor k

with realtime networ ks . We presented some initial design choices, which narrowed the

solution space, and then proposed some orthogonal factor s that would allow us to

explore the remainder systematically. In this chapter, we present the results of the simula-

tion experiments that we perfor med. We first descr ibe, in Section 4.2, the simulation tools,

and then present and justify the experimental methodology. This includes identifying met-

rics of comparison that reflect the objectives of fault recovery specified in Chapter 3. We

also identify the internal and external factor s that are expected to effect the perfor-

mance of the schemes. In Section 4.3, we present a series of experiments and results , by

which we explore the chosen solution space for algorithms to reroute realtime connec-

tions after a networ k failure. Our conclusions from these experiments are summar ized in

Section 4.4.

4.2. Simula tion design

The recovery schemes were designed with as few assumptions about the underlying

realtime schemes as possible. However, in order to evaluate the sensitivity of the schemes

to the external factor s (such as the topology, the load, the traffic mix, and the number of

65

-- --

faults) and to pick the best combination of approaches for the internal factor s of the

scheme, we need to build a simulation model which specifies all the details of the under-

lying realtime networ k. For tunately, the author had access to a simulation package for

realtime communication on packet switching networ ks wr itten by Hui Zhang. This was

extended to include signaling and admission control using the Dynamic Channel Man-

agement protocol by Colin Parr is . This simulator provides a detailed packet level simula-

tion of the extended realtime channel scheme described in Section 2.5. The schemes for

fault recovery descr ibed in the previous chapter were implemented on top of this plat-

form by the author.

In this section we descr ibe the framework of the set of experiments perfor med using

this simulator. We first present an overview of the simulator. Then we consider the details

of the realtime networ k being simulated, and briefly describe the scheduling mechanism

used for packet forwarding and the admission control tests used during channel estab-

lishment, as implemented in this particular simulator. In the context of the scheduling dis-

cipline described, we present a metric of load that eases the task of comparing the per-

formance of different rerouting schemes. We define metrics of perfor mance that reflect

the objectives of fault recovery presented in Section 3.2. Then, we descr ibe the method-

ology of the experiments by identifying the internal and external factor s which affect our

chosen metrics . The external factor s such as topology and load are elements which are

not under the control of the scheme; thus, we study the sensitivity of the schemes to

these factor s . The internal factor s are the var ia bles within the scheme that we discussed

in the previous chapter. The simulation experiments are intended to measure the effect

of each factor on the overall success, as well as to evaluate the choices that can be

made within each factor, in order to maximize the reroute success. This for ms the body of

our simulation experiments , where we systematically try the var ious combinations of

approaches to each factor, and observe the effect on our metrics of perfor mance.

66

-- --

4.2.1. The simula tor

The simulator is based on the DCM simulator built by Colin Parr is and Hui Zhang [51].

It allows the user to specify a networ k topology, by defining the set of ver tices of a graph

(w hich correspond to the router s and hosts in the networ k) and the set of edges which

join the ver tices (w hich correspond to point-to-point links in the networ k). The edges have

proper ties such as link speed, and scheduling discipline, which are specified by the user.

The user also specifies a set of initial networ k events , which cause other events to be trig-

gered in the simulator. The main type of event specified by the user of the DCM simulator

is the channel establishment event. Each channel establishment event is character ized

by the traffic and perfor mance parameter s of the channel to be established. The traffic

parameter s suppor ted by this simulator are Xmin, Xave, I , and Smax. The simulator only

suppor ts deter ministic delay bounds; thus, the only perfor mance parameter is Dmax.

The channel establishment event causes the simulator to trigger a round-tr ip chan-

nel establishment. When the establishment is complete, packet transmission events are

tr iggered from the source node at intervals defined by the traffic parameter s . This simu-

lates data transfer along the channel.

The DCM simulator also allows its user to specify alternate establishment events , in

which an existing channel is subjected to parameter or route modification. The alternate

esta blishment event requires the user to specify the new traffic and perfor mance param-

eter s; a new route may be optionally specified.

Thus , the simulation is started with a set of events from an event file, each of which is

associated with a time and other necessary parameter s . As the simulation progresses ,

these events are processed in chronological order. The processing of an event such as a

request for establishment in turn causes several events to be created, such as a message

being sent from the source of the request to its neighbor, or the generation of data pack-

ets after the successful establishment of the channel. All events are maintained in a cal-

endar queue [13], and, as simulation time elapses , the next event is removed from the

67

-- --

queue and processed.

The events simulated in the simulator include:

• Arr ival, queueing, and scheduling of packets in nodes

• Transmission and propagation of packets on the links

• Arr ival of requests from clients leading to channel administration messages being

sent to neighbors

• Arr ival of channel administration messages leading to admission control tests or tear

down calculations being perfor med

• Arr ival of route update messages leading to modification of the routing tables

The author modified the above simulator to permit the specification of fault events .

When a fault event occurs, the simulator automatically generates the necessary alter-

nate establishment events necessary to reroute the affected channels. The route, the

parameter specifications, and the time of the event are generated according to the

rerouting scheme being simulated.

A rerouting scheme is the combination of the approaches to each of the internal

factor s descr ibed in the previous chapter, i.e., one scheme may be Immediate timing,

Global locus of reroute, No retr ies , and Local prediction. The input file allows each of

these internal factor s to be set to a particular approach. The simulator models the cho-

sen scheme during the simulation, selecting routes , timing the establishment attempts

and retr ies , and perfor ming state prediction automatically. Thus , the simulator can model

any of the schemes in the solution space depicted in Figure 2.5. All the approaches to

the internal factor s descr ibed in the previous chapter are implemented. The reasona ble

schemes in the region of the solution space described in the previous chapter were tried

out in simulation.

The simulator also models the route update protocol, which modifies the local

data bases on which the nodes in the networ k make routing decisions, using a relia ble

68

-- --

broadcast method as described in Section 2.5.3. This allows us to study the effects of

incomplete or out-of-date infor mation, and the perfor mance of algorithms to counteract

these effects , in our experiments .

The simulator does not model the computational times for running the algorithms on

the nodes. This time is assumed to be zero in the simulation model. This can be justified by

measurements of the time to run the var ious pieces of code, as implemented in the simu-

lator and run on a DECstation 5000/240 [53]. The time to perfor m the simple RCSP admis-

sion control tests (described in Section 4.2.3) in the nodes on the forward and reverse

pass of the establishment process (measured value = 3.3 µs) is negligible compared to

the link propagation delays (10 ms). Since one execution of the test is perfor med for each

link crossed, the inclusion of this computation time in the simulation would make a ver y

small difference to the results . The time to run the routing algorithm on the ‘‘mesh’’ topol-

ogy (Figure 4.3) is around 1 ms, which is small compared to the round-tr ip time to perfor m

the establishment (average ≈ 100 ms). Again, since routing is perfor med once per round-

tr ip esta blishment attempt, the inclusion of this computational latency in the simulation

model would make no more than a few percent difference in the results .

4.2.2. The scheduling discipline

One of the fundamental processes being simulated is packet scheduling. As control

or data packets arrive at a node in the simulator, they are queued for service, and

ser ved in the order specified by the scheduling discipline at the node. The link (together

with the scheduling mechanism) can be viewed as a queueing server; there is one such

ser ver for each link on each node of the networ k. The scheduling discipline used for

packet forwarding in our experiments is Rate Control Static Prior ity (RCSP) scheduling [71].

We chose to use RCSP in our simulations for a number of reasons . RCSP separates the

issues of rate control and delay control by conceptually dividing the RCSP server into two

modules , as described below. This separation makes it possible to independently allocate

delay and bandwidth, allowing simple and fast admission control tests. This simplicity

69

-- --

allows us to analyze the effect of load on an RCSP networ k, making it easier to design

metr ics of load and perfor mance, which we use to present our results . Finally, the simpler

model facilitates our understanding of simulation results and eases the task of recognizing

unreasona ble results . This was especially useful in the earlier stages of our investigation,

when we were debugging the simulator.

The rate control module enforces the traffic specification constraints on a per chan-

nel basis; if streams become more bur sty (such as might happen as a result of passing

through a number of servers), they are smoothed out by the rate controller, so that they

will obey the traffic constraints again. This also serves to police the sources at the inputs to

the networ k. The static prior ity module assigns each channel to one of several prior ity lev-

els , each of which has an associated delay bound. Each prior ity level conceptually has

a separate queue, and packets are ser ved from the highest queue with a non-zero

queue length. The admission control tests are responsible for keeping the admitted load

for each level below the point where packets would violate the associated delay

bounds . Figure 4.1 shows a conceptual picture of the operation of the RCSP scheduler,

reproduced from [71].

4.2.3. The admission control tests

The admission control tests implemented in the simulator enforce a condition for call

admission that is sufficient, but not necessary, for the satisfaction of perfor mance guaran-

tees during packet forwarding. In other words , the bounds are not the tightest ones that

can be obtained. The calculations only take into account Xmin; thus , the bandwidth

reser vation is peak rate. However, the tests require minimal computation during establish-

ment. They are based on the following theorem, which is reproduced from [71].

Theorem 4.1: Let d1,d2, . . . ,dn (d1 < d2 < . . . < dn) be the delay bounds associated with

each of the n prior ity levels , respectively, in an RCSP server. Assume that the jth connec-

tion among the ik connections traver sing the server at prior ity level k has the traffic

70

-- --

Non-Real-Time Queue

One regulator for each

... ...

of the n connections Real-time Packet Queues

Regulated Traffic

Pr ior ity Level

Output

1

Regulator 1

Regulator 2

Regulator n

Input Traffic

(Real-time)

Input Traffic

(Non Real-time)

Rate Controller Scheduler

l

Figure 4.1: Rate Control Static Prior ity scheduler

specification (X k , j
min, X k , j

ave, I k , j , Sk , j). Also, assume that the link speed is l , and the size of the

largest packet that can be transmitted onto the link is Smax. If

m

k =1
Σ

ik

j=1
Σ





dm

X k , j
min




Sk , j + Smax ≤ dml (4.1)

the waiting time of an eligible packet at level m is bounded by dm.

Theorem 4.1 gives the admission control condition that needs to be tested. For each

pr ior ity level m, a state var ia ble Bm is maintained and initialized to Smax. When an estab-

lishment request for a new connection with traffic specification (Xmin, Xave, I , S) comes in,

the following tests are perfor med for m = 1 to n.

Bm +




dm

Xmin




S ≤ dml (4.2)

The new connection can be placed into prior ity level k without jeopardizing the perfor-

mance guarantees of other existing connections if and only if Equation 4.2 holds for

m ≥ k . If the condition is satisfied and the decision to put the connection into level k is

71

-- --

made, then Bm is updated for m ≥ k as follows:

Bm = Bm +




dm

Xmin




S (4.3)

The intuitive inter pretation of these tests is that Equation 4.1 computes a bound on

the maximum busy period of the queue at prior ity level m. This is defined as the maximum

contiguous period of time during which the queue at level m can contain one or more

packets . A busy period starts when a packet arr ives at an empty queue, and ends when

the last packet in the queue is transmitted. Since the maximum delay any packet at this

level can suffer is bounded by the maximum period, this serves as a sufficient (but not

tight) upper bound on packet delays for packets on this level. The last term on the left

hand side of Equation 4.1, Smax, accounts for the possibility that a best-effort packet was

already in service when the busy period started, since the service is non-preemptive.

Since the tests ensure that the new channel will always be rejected if the admission of the

new channel causes the busy period bounds to exceed the delay bounds for any level,

we can be sure that no packet in a channel belonging to level m will suffer a delay

bound greater than dm .

The above test takes care of the local delay bound for the channel. To ensure that

sufficient buffers exist, a buffer test is also perfor med, and the required memory is

reser ved for the use of the channel. The details of the buffer test are not mentioned here.

4.2.4. The load index

One problem facing any investigation that attempts to compare schemes involving

realtime channels is the one of choosing an index that character izes the load imposed

on a networ k by one or more channels . Finding a single number that captures the load is

hard because it depends on at least the following components of the load: the number

of realtime channels, the number of hops each channel traver ses , the traffic specifica-

tions of each channel (which has peak and average rate components), and the delay

72

-- --

requirements of the channels. A general solution to this problem is quite complex, and

some simplification is usually chosen. For example, the sum over all existing channels of

the product of the average rate (in bits per second) of the channel and the number of

links over which the channel passes could be used as a load index:

N

j=1
Σ S j I jH j

X j
ave

(4.4)

where N is the number of channels existing in the networ k, S j , X j
ave, and I j are from the

traffic description of channel j , and H j is the number of links channel j traver ses . This

would capture the average rate and the number of links affected. However, this load

metr ic would completely ignore the delay requirement of the channels.

Fewer low delay channels can be supported by a realtime networ k. Thus , if a low

delay channel is accepted, more of the resources are reser ved, and fewer channels can

be subsequently accepted. The reser vation due to delay bounds is harder to quantify

than the reser vations for buffer or bandwidth, but the admission control tests of Equation

4.1 express it algorithmically for the RCSP scheduling discipline. The establishment of a

channel leads to a decreased capacity of the networ k to accept further realtime con-

nections , and this decrease in capacity is greater if the delay bound required is lower. A

good load metric should be able to quantitatively capture this effect. The exact mathe-

matical proper ties of the reduction in realtime capacity depend on the admission con-

trol tests being used, which in turn depend on the packet ser vice discipline in the net-

work elements . The general problem is, thus , considerably harder, and we restr ict our-

selves to the specific case of Rate Control Static Prior ity (RCSP), with the simple admission

control tests described above.

The static prior ity module of an RCSP server consists of n pr ior ity queues , each of

which has an associated delay bound. For each level, the admission control mechanism

maintains a var ia ble, Bm (Eq. 4.3), which bounds the busy period for the corresponding

level; the test consists of recomputing Bm for all levels m ≥ k when a new channel is

73

-- --

introduced at level k , and ensuring that the new values are less than the corresponding

delay bounds (dm). Thus, adding a new channel at level k increases Bm for each level

m ≥ k (Eq. 4.3). The busy period bound Bm is , therefore, a direct measure of the load on a

par ticular ser ver at level m. Since the placement of a channel at a higher prior ity (lower

numbered) queue effects all lower prior ity (higher numbered) levels , the sum of Bm ov er

all levels , if used as a index of load, has the desirable proper ty that the placement of a

channel at a higher prior ity level has a larger affect on it. Since Bm = Smax in the absence

of any channels , we need to subtract Smax from Bm to make the load index zero at a

ser ver without any esta blished channels . We can normalize the index by dividing by the

link speed, l , to make it it possible to compare the loads on links with different speeds.

Finally, if we want to take into account the effect of load on the entire networ k, we can

add the index at a server over all servers in the networ k. There is one RCSP server for each

directed edge in the networ k graph (one in each direction for every link). The final index

of load is defined as follows:

load(t) =
e ∈∈E
Σ

n

k =1
Σ Bk ,e(t) − Smax

le
, (4.5)

where load (t) indicates the networ k load at a particular time t , and changes as chan-

nels are set up or torn down, E is the set of directed edges in the networ k, n is the number

of levels in the RCSP prior ity queue module, Bk ,e(t) is the value at time t of the maximum

busy period as defined in Equation 4.3, for level k at the server for the directed edge e,

and le is the link speed for the directed edge e. Load is measured in time units.

This index of load has many desirable proper ties . It is

• monotonically decreasing as a function of the delay requirements of the channels if

all other parameter s are kept constant

• linear ly increasing in the peak rate requirement of the channels (since the reser-

vations are peak rate)

74

-- --

• linear ly increasing with the number of links affected

• additive to a first approximation over sets of channels

The additive proper ty only holds if the channels in the set do not interfere with each

other, as is the case when, for instance, a channel takes a different route or a different

pr ior ity level because some other channel occupies a given set of resources . These prop-

er ties are shown in Figure 4.2.

Apar t from the intended use of this load index to design metrics to compare recov-

er y schemes , we can think of several other applications of the index. For instance, since

the index captures the effect of a channel or a set of channels on the networ k, it could

be used for pricing. Such a pricing scheme, where the price of service is directly related

to the effect on the networ k, has several advantages . For example, it would encourage

user s to use the networ k efficiently, since minimizing the cost to the user has been linked

to minimizing the effect on the networ k. In addition, since the metric captures the

resource state of an RCSP server in a single number, it may be used to guide the route

selection process . This would reduce the amount of infor mation to be carried for each

link by the route update protocol, and also reduce the computation to be perfor med for

route selection, which may be valua ble for extremely large networ ks . We will not explore

these possibilities any fur ther in this dissertation.

4.2.5. Metrics of comparison

In order to compare the perfor mances of different schemes, we have to be able to

quantitatively define what we mean by good perfor mance. There are several orthogo-

nal criter ia that must be considered. The amount of realtime load successfully recovered

is a major concern, since it has a significant impact, to both the networ k provider and the

clients . The time to perfor m the recovery is another criter ion of importance. Finally, the

effect on networ k resources is of concern to the networ k provider, since the recovery

may come at the cost of significantly lower remaining networ k ca pacity after the

75

-- --

50 100 150 200

0

20

40

60

delay (ms)
(i)

load
index Xmin = 2: •

Xmin = 4:
Xmin = 8:
Xmin = 16:∆

• • • • • • •
• • • •

•
•

•
•

• • •
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

0.1 0.2 0.3 0.4 0.5

0

20

40

60

packets/ms
(ii)

Delay = 50: •
Delay = 100:
Delay = 150:
Delay = 200:∆

•

•

•

•
•••• ∆∆∆∆∆∆∆∆

1 2 3 4 5 6

0

20

40

60

Number of hops
(iii)

D=13*n,Xmin=2: •
D=13*n,Xmin=4:
D=13*n,Xmin=8:
D=20*n,Xmin=8:∆

•

•

•

•

•

•

∆ ∆ ∆ ∆ ∆ ∆

2 4 6 8

0

50

100

150

200

250

No. of channels
(iv)

D=100,Xmin=8: •
D=100,Xmin=16:
D=100,Xmin=4:
D=150,Xmin=8:∆

•
•

•
•

•
•

•
•

∆
∆

∆
∆

∆
∆

∆
∆

Figure 4.2: Proper ties of the load index

recovery process has completed, if the resources are inefficiently allocated.

Fraction of realtime load rerouted

We would like to compare the amount of realtime load successfully rerouted by dif-

ferent rerouting schemes, but this is hard to do unless the term ‘‘amount of realtime load’’

is well defined. The problem here is that the sets of channels are heterogeneous , with

76

-- --

different traffic specifications and perfor mance requirements . Hence, it is difficult to say if

the amount of realtime load represented by one set is larger or smaller than another,

unless we reduce all these factor s to one number. The load index defined in Section 4.2.4

allows us to do that.

We first define load (c), the amount of realtime load contributed by a single chan-

nel c, for a given networ k topology and assuming a well defined deterministic routing

algor ithm, as the load index as defined in Equation 4.5, measured when the channel is

set up in the networ k with no other channels established in it. Of course, this is only well

defined if the routing algorithm is deterministic, i.e., always computes the same route

given the same input. The Bellman-Ford algor ithm descr ibed in Section 2.5.4 and used in

our simulations meets this requirement.

load (c) is the minimal increase in networ k load that the establishment of channel c

can cause on this networ k, and is indicative of the intrinsic resource requirements of the

channel. The difference in the load index measured in a non-empty networ k might be

larger than this, due to the channel taking a longer path or being assigned to higher pri-

or ity levels if the lower levels are occupied. However, under the assumption that the rout-

ing algorithm always picks the most efficient path and the relaxation strategy always

moves the channel to the lowest prior ity levels availa ble, it can never be smaller. Thus ,

load (c) is a measure of the lowest possible amount of resources required by the channel

c.

We define the amount of realtime load of a set of channels as the sum of the loads

of the individual channels. Thus , the amount of realtime load corresponding to a set of

channels C is:

load (C) =
c ∈∈C
Σ load (c) (4.6)

Note that the load index in the networ k, even with a fixed set of channels C, will depend

on the order and timing of the route computations and the establishments . On the other

77

-- --

hand, load (C) is uniquely defined as long as the routing algorithms and establishment

protocols are fixed. Its value is independent of the order ing of the channels. Under the

assumptions that the routing algorithm and relaxation mechanism always pick the short-

est paths and lowest prior ity levels possible, load (C) is less than or equal to load (t) after

esta blishing the set of channels C in the networ k.1

Finally, we can define the metric to measure the fraction of realtime load rerouted

following the occurrence of failure. The Success Ratio (SR) is defined as the fraction of

affected realtime load that is successfully rerouted, expressed as a percent:

SR =
load (R)
load (A)

* 100 (4.7)

where A is the set of affected channels, and R is the set of successfully rerouted channels.

Speed of recovery

The speed of recovery can be measured in terms of the average time to restore ser-

vice to a channel in the event of a failure. This is measured over the set of successfully

rerouted channels. The maximum time to recover any channel is also of interest, since this

is a measure of the time for the networ k to stabilize, as well as an indication of the wor st

case recovery time. Both these numbers can be easily obtained from our simulations .

Efficient use of networ k resources

We can expect the rerouted channel to use more resources than the original chan-

nel, since the shortest path is blocked by the failed link. In general, the more highly

loaded the networ k, the longer the alternate routes found will be, leading to more and

more inefficient use of resources . However, the rerouting scheme may itself lead to longer

reroute paths, and hence, to inefficient resource use. For example, the Local rerouting

approach will always tend to use longer paths than the Global approach, and the

1 We have overloaded the term load (X), but there should be no cause for confusion, since the
type of the argument indicates which definition is to be used.

78

-- --

penalties of this must be assessed. We would like to do this in a way more general than

compar ing path lengths. The load index defined previously allows us to do that by defin-

ing the excess resources (ER) consumed by a set of reroutes perfor med on a networ k in

the event of a failure as the difference between the actual resources used in the networ k

to support the successfully rerouted channels using the set of paths chosen by the rerout-

ing scheme and the minimum resources required to support the set of successfully

rerouted channels R, expressed as a percent of the minimum resources required:

ER =
actual − minimum

minimum
* 100 (4.8)

The resources actually used can be experimentally obtained (in simulation) by measur ing

the networ k load after the recovery process terminates , then tearing down the set of

channels R and measuring the load again. The difference in the two loads corresponds

to the resources actually used. The minimum resources required is approximated by

load (R). Thus, we have:

ER =
load (tR) − load (tTD) − load (R)

load (R)
* 100 (4.9)

where load (tR) is the load at the time the last successful reroute completes, load (tTD) is

the load after tearing down the set of successfully rerouted channels R , and load (R) is

the load as defined in Equation 4.6 for the set of successfully rerouted channels R.

4.2.6. Factor s affecting perfor mance

Now that we have defined what we mean by the perfor mance of a recovery

scheme, we can move on to identifying the set of factor s that will affect the perfor-

mance. The experiments will then consist of changing the factor s and observing the

effects on the perfor mance indices.

The factor s affecting perfor mance can be broken into two classes . Those in one

class , the external factor s , are independent of the schemes, and we need to make sure

that the schemes wor k well in the face of var iations of these factor s . This class of factor s

79

-- --

contains the networ k topology, the operating load on the networ k, the nature of the

applications , and so on.

The second class consists of the internal factor s of the recovery schemes . In the pre-

vious chapter, we have identified a set of orthogonal factor s , such as routing constraints ,

timing, retr ies , and state prediction, that are expected to affect the perfor mance of

recovery in different ways .

4.2.6.1. External factor s

The external factor s that are considered during our simulation experiments are the

networ k load, the failure mode, the networ k topology, and the traffic mix on the networ k.

We will measure the perfor mance of our schemes and how it changes when we var y the

exter nal factor s . While, in general, a networ k will be designed keeping these factor s in

mind, so that in the common case the networ k is operating with desirable character istics

such as low blocking proba bility for new channel requests , or high percentage of recov-

er y in the event of a failure, we should try to design schemes that degrade gracefully

when the operating environment becomes harsher. Thus , one interesting set of experi-

ments for any given scheme is to see if the perfor mance is sensitive to var iations of these

exter nal factor s .

Topology

The topology of the networ k can be specified in the input file of the simulator. The

topologies that we have chosen to examine all have high levels of redundancy. This is

necessar y for the success of the rerouting mechanisms, since they wor k by finding alter-

nate paths from the source to the destination when the fault occurs. However, we still

need to look at the effect of changing the topology on the schemes, since we would like

the scheme to be general.

The first topology we picked for our initial experiments is referred to as the ‘‘mesh’’

topology in the rest of the thesis. It is shown in Figure 4.3. Each link in the networ k has a

80

-- --

12

19

141311

16

23

1817

22

6 7 8 9

24 25

20

15

10

1 2 3 4 5

21

Figure 4.3: Square mesh topology

propagation latency of 10 ms, and a capacity of 10 Mbps. We chose this topology

because it is simple and regular, which made it possible for us to interpret our results more

easily. It also made it easier to recognize unreasona ble results , facilitating the tracking

down of bugs in the initial phases of our experiments . At the same time. the mesh topol-

ogy has multiple disjoint paths between every pair of nodes. It is 2-edge-connected,

since ver tices near the corner have only two disjoint paths between them. However, ver-

tices near the center have larger connectivity, as high as four. We considered folding the

graph into a torus to make the situation symmetric, but, we felt that it would not be repre-

sentative of realistic topologies. Real local and metropolitan area networ ks have almost

planar topologies, which can be abstracted by a square mesh as we have used.

Of course, real computer networ ks may have links joining ver tices which are not

geographic neighbors, making them not perfectly planar. Thus , we chose to enhance

the mesh graph with a few ‘‘tr unks’’ to increase its connectivity and make it less regular

(Figure 4.4). The trunks have a propagation latency of 25 ms and a capacity of 50 Mbps,

all the other links have the same character istics as in the mesh networ k. We used this as a

second test topology, to check whether the change in the topology would change our

81

-- --

1916

14

24 25

10

3

23

18

13

17

22

6 7 8 9

20

15

1 2 4 5

11

21

12

Figure 4.4: Square mesh topology with trunks

results completely. The new gra ph is 3-edge-connected, since the nodes in the corner s

have improv ed connectivity. We refer to this topology as the ‘‘mesh with trunks’’.

The two above gra phs are similar, hence, in order to make sure that a completely

different topology did not adver sely affect our schemes, we tried one more topology

based on the idea of a highly connected core, with peripheral nodes connected to the

core. Many networ ks found in real life (such as telephone networ ks and airline route

ma ps) look like this , since such topologies provide good connectivity, with short paths

between any pair of nodes, at reasona ble cost. Figure 4.5 shows the third networ k topol-

ogy, ‘‘core’’, used in our simulations . The central core (nodes 1 to 6) is a complete clique

of size six, with all links having a capacity of 10 Mbps and a latency of 10 ms. The periph-

eral nodes are locally gathered into two rings , and connected to three of the geographi-

cally closest central nodes to ensure redundancy. The ring is composed of links, each of 5

Mbps capacity and 10 ms latency. The links connecting the peripheral nodes to the cen-

tral core are also 5 Mbps and 10 ms links. The graph is 3-node-connected, since we can

find at most three node-disjoint paths between peripheral nodes in separate rings .

However, we can find five edge-disjoint paths between any pair of nodes. Nodes within

82

-- --

14 15 171613

121110987

654

321

Figure 4.5: Core topology

the same ring have both a node-connectivity and a link-connectivity of five.

All our sample topologies are well connected. We must keep in mind that our

schemes will not wor k well on poorly connected networ k such as trees . However, if our

schemes wor k well on these three topologies, we can feel more secure that their success

is not dependent on a particular topology, but that they will wor k well on any well con-

nected networ k.

Traffic Mix

The nature of the applications on the networ k would determine the traffic parame-

ter s and the perfor mance requirements demanded of the networ k. The choice of these

parameter s in a simulation is a difficult one, since no clear picture exists as of today of the

traffic character istics and perfor mance requirements of applications which will run on

realtime networ ks when they become widely availa ble. We must make the best guesses

we can about the classes of applications , their requirements , and the relative number s of

different types of applications using the networ k. For our experiments we chose three

classes of channels: one-way JPEG-compressed medium-quality video conferencing

83

-- --

channel: 2 Mbps (class A), CD quality audio channel: 200 Kbps (class B), and telephone

quality audio channel: 64 Kbps (class C). The admission control tests used in the simulator

only consider Xmin and the delay bound dm , so we keep Xave = Xmin. The value of I , there-

fore, is not significant. Smax was set to 10,000 bits for all packets , since this gave a reason-

ably small (1 ms) transmission time on the 10 Mbps links. Xmin was calculated accordingly,

from the rate requirements of each class.

We generated our first set of wor kloads from a distribution containing 30% class A

channels , 30% class B channels, and the rest from class C. The source and destination of

the channels were selected at random from the nodes on the peripher y of the mesh. The

delay requirement for the channels was generated from a unifor m distr ibution within

[x + 50, x + 100] ms, where x is the one-way minimum propagation delay from the source

of the channel to its destination. Thereafter, different wor kloads were created by using

different seeds for the random number generator to get different sets of channels. The

number of channels in the set was var ied to get wor kloads with different values of the

load index, as explained in the next section. The wor kloads generated with these distribu-

tions are referred to as the ‘‘or iginal mix’’ in the rest of this chapter.

To see if the nature of the application mix had a serious impact on our simulation

results , we generated another set of wor kloads with the following character istics . The dis-

tr ibution of the channels was changed to 10% class A channels, 40% class B channels,

and 50% class C channels. The distribution of source destination pairs was also changed

so that channels would always go either left to right or up to down in the mesh. Finally, we

changed the values of the load levels for this distribution (as explained in the next sec-

tion). This distribution is referred to as the ‘‘new mix’’ in the results .

Load

We perfor m all our simulation experiments for four levels of networ k load, keeping all

other factor s constant. This allows us to see how the scheme under consideration

behaves as load in the networ k increases . The load for the simulation is determined by

84

-- --

the set of channels alive in the networ k when a fault occurs. This is determined by the set

of establishment events in the event file before the fault event. We generate different

loads by creating event files with different numbers of channels from the distributions

defined above.

We use four load levels in each set of experiments , which we refer to as ‘‘low,’’

‘‘medium,’’ ‘‘medium high,’’ and ‘‘high’’. They correspond to different values of the load

index defined in Section 4.2.4. The values used in one set of experiments (part of the

‘‘or iginal mix’’ wor kload) are shown in Table 4.1. Also shown are sample utilization values

from one of the wor kload files , to help the reader get a better feel for the meaning of the

load index in terms of a more familiar metric of load. The average utilization is the total

reser ved rate expressed as a percentage of link capacity averaged over all links in the

networ k after the establishment of all the channels in the wor kload file, while the maxi-

mum is the utilization on the most heavily loaded link. We must, however, emphasize that

the load index captures more infor mation than is captured by utilization, since a set of

channels with identical rate parameter s but different delay requirements would have the

same utilization values but different load indices.

level load index average utilization max utilization

low 270 15.8 % 63.3 %
medium 616 32.0 % 84.7 %

medium-high 777 41.2 % 87.3 %
high 858 44.5 % 86.7 %

Ta ble 4.1: Load index levels

The different networ k topologies have different capacities; thus, different values of

the load index were used in experiments involving different topologies. In addition, for the

‘‘new mix’’ distr ibution we also increased the load values to see if that would change the

behavior of our schemes. Thus , while each set of experiments has four load levels , the

values may differ and will be printed on the load axis of each graph.

Each set of experiments was conducted with twelve wor kload files , consisting of

85

-- --

three wor kload files at each of the four load levels . The three wor kload files at a given

level were generated with the number of channels picked to give a load value close to

the desired load index when all the channels were set up. The results from each set of

three were averaged to increase our confidence in the results . Each of these experi-

ments takes an hour or more to run, depending on the class of wor kstation the simulator

is running on. Moreover, each experiment had to be repeated across a large number of

exter nal factor s and internal factor s (descr ibed below). Thus, conducting a significantly

larger number of experiments at each load level, while desirable, was not feasible.

We are using the results to compare the perfor mances of schemes. The numerical

values obtained as results are specific to the networ k topology and load mix. In addition,

the numerical values depend ver y much on the specific set of channels to be rerouted,

so that even at the same load level they var y widely. However, some clear trends are

obser vable about the relative perfor mance of the schemes. Thus , even though the

numer ical values do not converge, some schemes perfor m consistently better than oth-

er s . This is the kind of result that we shall present in the simulation section. Since we did

not perfor m each experiment a large number of times, statistical tests of confidence

could not be conducted.

Failure model

The nature of the failure being simulated has an influence on the ability of the

schemes to recover from the failure. We place certain restr ictions on the failures being

simulated. We only deal with link failures .2 We also deal only with fail-stop failures , in which

the failed component does not continue to transmit bad messages into the rest of the

networ k. Byzantine failures of nodes are especially hard to deal with, since it may not

even be possible to detect and isolate the failure. In the simulations perfor med, when a

2 Node failures may be dealt within this model by treating them as simultaneous multiple failures of
all links connecting to the failed node. However, for simplicity we restr icted the scope of the simula-
tions perfor med to link failures .

86

-- --

link fails , it simply stops transmitting data.

Finally, multiple failures are harder to deal with than single failures , because more of

the networ k load is affected, and less of the networ k is availa ble to service the recovery.

Multiple faults also aggravate the problem of collisions, discussed in Section 3.5.4. In addi-

tion, the physical distance between the two failures , and thus, between the two sets of

channels being rerouted, would affect the timing behavior of the route update process .

Some links of wide-area computer networ ks may be leased lines, which are them-

selves routed on top of the cross-connect layer of a telecommunication networ k. Thus , it

is possible for a single physical failure to be manifested as the multiple failures of two or

more links of the computer networ k, unless care is taken to place logically different links

(at the higher layer s) in physically separate links.

We simulate single faults and double faults in our experiments . However, since a sin-

gle fault is more likely, we consider recovery perfor mance for the single fault cases more

impor tant than that in the double fault cases.

4.2.6.2. Internal factor s

As described in the previous chapter, the internal factor s of the recovery scheme

are: locus of reroute, timing, retr ies , and state prediction. The simulator is programmed to

accept parameter s from an input file, which allows the user to select combinations of

values for the internal factor s of the scheme. We will experiment with the effect of the

inter nal factor s on the perfor mance, to identify how much of an effect each factor has

on it, to select the correct approach for the important factor s , and to identify interac-

tions between factor s . The objective of these experiments is to come up with a scheme

that provides good perfor mance on all the metrics of comparison and is tolerant to var i-

ations in the external factor s .

87

-- --

4.3. Results

In this section, we discuss the most interesting results of the simulation experiments

perfor med using the framework descr ibed abov e. We first present the results concerning

the effects of the internal factor s , choosing as levels of the external factor s the ‘‘mesh’’

topology, the ‘‘or iginal mix’’, and single failures . Results are shown for all four load levels .

The next four subsections show the effects of the four internal factor s (timing, routing con-

straints , retr ies , and state prediction).

0

50

100
I

I

I

I

R1

R1

R1

R1

R2 R2

R2

R2

S
S

S

S

load=270 load=616 load=777 load=858

Routing = Global

(i)

SR (%)

0

5000

I I I I
R1 R1 R1 R1

R2 R2 R2 R2

S

S

S

S

load=270 load=616 load=777 load=858

Routing = Global

(ii)

TR (ms)

Figure 4.6: Effect of timing on (i) reroute success (ii) time to reroute

4.3.1. Effect of timing

Figure 4.6 shows the effect of var ying the timing, with the other internal factor s fixed

(Global locus of reroute, no retr ies , and Local prediction). The timing is var ied across

Immediate (I), Random over 300 ms (R1), Random over 1500 ms (R2), and Sequential (S).

Graph (i) shows the reroute success in terms of the Success Ratio (SR) defined in Equation

4.6. Graph (ii) shows the time to reroute (TR). The lower solid box shows the average time

to reroute, averaged over the set of successfully rerouted channels, measured from the

time of the fault to the time of successful re-esta blishment. The upper dashed box shows

88

-- --

the time to reroute for the last channel to be successfully rerouted.

We obser ve that, while Sequential successfully reroutes far more realtime load than

Immediate (roughly twice as much under high networ k loads), the time to reroute for

Sequential rules it out as a practical scheme. However, as we obser ved before, it is a use-

ful control scheme to compare the reroute success of other more practical schemes.

Ideally, we would like a scheme with the success of Sequential, but the timing character-

istics of Immediate. Randomization achieves this goal to a limited extent, since we

reroute some fraction of the difference between Immediate and Sequential at a more

reasona ble time to reroute. However, there is scope for improv ement, both in terms of

the success ratio and the time to reroute.

The average time to reroute a realtime channel using Immediate timing is about 130

ms . The average path length (from the distribution of source-destination pairs that we

used for this experiment) is five. Since each link has a propagation latency of 10 ms, the

expected round-tr ip time would be close to 100 ms. The remaining time can be

attr ibuted to the time for the fault message to reach the source node from the location

of the fault. The maximum time to reroute for the Random timing case is close to n + 150

ms , where n is the randomization interval, which is as expected. The timing character istics

of Immediate and Random are independent of the load, since they are deter mined by

the time taken to perfor m a round trip, and the value of the randomization interval.

However, the time to reroute for Sequential changes with the load, since it depends on

the number of channels being rerouted. It increases initially, as more channels are being

affected by the fault as the load increases . However, at high load it drops off, since less

channels can be successfully rerouted, and the maximum and average are calculated

ov er the set of successfully rerouted channels.

We only show the results for Random over 300 ms and Random over 1500 ms. Other

values of the randomization interval follow the same trends .

89

-- --

4.3.2. Effect of locus of reroute

Figure 4.7 (i) shows the effect of the locus of reroute on the reroute success. The tim-

ing is fixed to Random over 300 ms. The results for other timing values follow a similar

trend. We see that Local reroutes a far smaller set of channels than either Global or

Hybr id, especially at higher loads. This can be explained as due to the limited choice in

routes , since Global rerouting looks for a new route from the source to the destination,

while Local rerouting only tries to replace the section of the route corresponding to the

failed link. Thus, the set of possibilities considered by Global is much larger than that con-

sidered by Local. This reduces the chances of Local

0

50

100 G

G

G

G

H

H

H

H

L

L

L

L

load=270 load=616 load=777 load=858

Timing = Random over 300 ms

(i)

SR (%)

0

10

20

G

G
G

G

H

H

H

H

L

L

L

L

load=270 load=616 load=777 load=858

Timing = Random over 300 ms

(ii)

ER (%)

Figure 4.7: Effect of locus of reroute on (i) reroute success (ii) excess resources used

finding a route in heavily loaded networ ks , as well as makes it likely that any route found

by Local will be longer than one found by Global. The perfor mances of Global and

Hybr id are comparable, since, during Hybrid rerouting, any time the Local route cannot

be found, a Global route is sought. On the basis of these results , we have a strong reason

to reject Local rerouting as the correct approach to locus of reroute, but have no clear

choice between Global and Hybrid.

90

-- --

The effect of the locus of reroute on the efficiency of resource usage (ER) is shown in

graph (ii). Global rerouting is more efficient than the other routing schemes, across all

load values . This result holds across the other timing schemes too, and is mainly because

Global tries to find the shortest existing path from the source to the destination. This goal

also minimizes resource usage. Thus, from the point of view of resource usage, the perfor-

mance of Global rerouting is best.

Changing the locus of reroute does not change the time to reroute; hence, we do

not show a gra ph for it. The time to reroute for Local and Hybrid are ver y similar to that

seen in Figure 4.6 (ii), for all the approaches to the timing policy. For example, for Immedi-

ate timing, the average time to reroute is close to 130 ms, regardless of the locus of

reroute approach chosen. This is because the time to reroute is dominated by the round-

tr ip time for establishment, and the random waiting time in the case of the Random

approaches . Since the round-tr ip time is only marginally affected by the locus of reroute,

and the waiting time not at all, the overall effect of the locus of reroute on the timing is

negligible.

4.3.3. Effect of retr y policy

The effect of the retr y policy on the perfor mance metrics is shown in Figure 4.8.

Graphs (i) and (ii) show the success ratios for Immediate retr ies and Delayed retr ies . We

fix the locus of reroute to Global and look at the perfor mance across Immediate, Ran-

dom over 1500 ms, and Sequential. At each load level we show six bars. The dotted bars

depict the perfor mance for the scheme with retr ies , the plain bars show the perfor mance

without retr ies . The perfor mance for Immediate retr ies , with up to four retr ies in the event

of failure to reroute, is shown in graph (i). As we can see, the success ratio improv es when

we add retr ies , but the improv ement is smaller than the improv ement achieva ble through

randomization. Increasing the number of immediate retr ies does not apprecia bly

improv e the success ratio.

91

-- --

0

50

100
I

I

I

I

R R

R

R

S
S

S

S

load=270 load=616 load=777 load=858

Routing = Global

(i)

SR (%)

0

50

100
I

I

I

I

R R

R

R

S
S

S

S

load=270 load=616 load=777 load=858

Routing = Global

(ii)

SR (%)

0

500

1000

1500

2000

I I I I

R R R R

load=270 load=616 load=777 load=858

Routing = Global

(iii)

TR (ms)

0

5

10

15

I

I

I I

R

R

R

R

S

S S

S

load=270 load=616 load=777 load=858

Routing = Global

(iv)

ER (%)

Figure 4.8: Effect of retr y policy. (i) Immediate retr ies (ii)- (iv) Delayed retr ies

The success ratio for Delayed retr ies is shown in graph (ii), where we can see that this

approach is much more successful. In fact, Delayed retr ies can reroute as much realtime

load as Sequential timing, which is about the best we can do assuming a greedy strat-

egy, with the same routing algorithm and locus of reroute constraints .

The perfor mance of Delayed retr ies , as regards the time to reroute metric, is shown

in graph (iii). We only show the time to reroute for Immediate and Random, with and

92

-- --

without Delayed retr ies , since the time to reroute of Sequential is known to be ver y poor

(Fig. 4.6, (ii)), and plotting it would make the graph harder to read, because the scale for

Sequential is much larger. We note that the Immediate timing scheme, when we add

retr ies , suffers from an increase in the average time to reroute, and a much larger

increase in the maximum time to reroute. The retr y policy used to generate the graphs

shown is based on an exponentially increasing period3 ov er which the random delay is

chosen. Thus, the later retr ies are likely to occur after longer waiting periods .

From graph (iv) we can see that adding retr ies causes the resource usage to go up,

but this is reasona ble, since the amount of realtime load rerouted is also increasing. The

resource usage for Global does not exceed 15% over the minimum required. The perfor-

mance of Global in this regard continues to be better than that of the other schemes.

The time to reroute can be improv ed significantly without loss of reroute success or

of efficiency of resource usage, if we fix the retr y inter val to the correct value, instead of

star ting from a small interval and exponentially increasing it. Picking the right value for the

initial retr y inter val can make sure that most of the reroutes never go into a third retr y. For

the ‘‘mesh’’ networ k this value was experimentally found to be around 100 ms. This is also

the expected round-tr ip time for the traffic mix chosen. This can be explained as follows: if

the initial attempt failed due to a collision with another establishment in the networ k, the

fir st channel should wait for the establishment to finish and for the route updates gener-

ated by the establishment to reach the source node (of the first channel). The channel

esta blishment will take on average half a round trip time to complete, since on average

it will be half completed when the collision happens . The infor mation from the far thest

node will take on average half a round-tr ip time more to get to the source node. Thus,

we should generate our retr y at this time.

Figure 4.9 shows the change in the histogram of successfully rerouted channels

3 The range from which the random delay is chosen starts from a small value, and is doubled for
each additional retr y.

93

-- --

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200

load rerouted

time (ms)
(i)

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400

load rerouted

time (ms)
(ii)

Figure 4.9: Effect of retr y inter val on the histogram of time to reroute
(i) Exponential (ii) Fixed (100 ms)

(amount of realtime load vs. time to reroute), when we fix the retr y inter val to 100 ms. This

was the best perfor mance obtained with regard to the time to reroute metric out of a

large number of experiments with different methods of selecting the delay for each retr y,

such as different fixed intervals , randomly chosen intervals , and increasing intervals . Pick-

ing the right retr y inter val can pull in the tail of the histogram dramatically. In general, the

correct value of the retr y inter val will depend on the networ k topology, and the distribu-

tion of path lengths. Our hypothesis is that the average round-tr ip time is a good estimate

of the value the retr y inter val should be set to. This hypothesis will be tested on a different

topology in Section 4.3.7.

94

-- --

The perfor mance is sensitive to the selection of the correct interval. Thus, this should

be a tunable parameter of any implementation, to allow the value to be correctly

selected for a particular networ k topology and channel path-length distribution. Also,

evaluation of the var iation of perfor mance with respect to this parameter, in the context

of a real implementation, would be valua ble.

We also experimented with different numbers of retr ies , as well as using a threshold

of time to halt the retr y process . These allow the maximum time to reroute to be selected

to adjust for different application requirements; any channel remaining after the retr y

process is halted is torn down and its user infor med. While the number of retr ies and the

threshold method have ver y similar perfor mances , the latter appear s to be a more natu-

ral way to specify the maximum recovery time needed from the networ k.

0

50

100
L

L

L

L

G
G

G

G

load=270 load=616 load=777 load=858

Routing = Global
SR (%)

(i)

0

100

200

300

400
L L L L

G
G

G
G

load=270 load=616 load=777 load=858

Routing = Global
TR (ms)

(ii)

Figure 4.10: Effect of state prediction on
(i) time to reroute (ii) realtime load rerouted on first attempt

4.3.4. Effect of state prediction

Global prediction attempts to use knowledge of the behavior of other nodes in the

networ k to place reroute attempts on paths where collisions will not occur. This improv es

95

-- --

the rerouting success on the first attempt, making the retr y policy less important. This can

be seen in Figure 4.10, graph (i), where the amount of realtime load successfully rerouted

in the first attempt (without retr ies) is plotted. The two bar s shown for each wor kload are

‘‘Local prediction’’ (L) and ‘‘Global prediction’’ (G). With Global prediction, the first

attempt always reroutes more realtime load, leading to quicker recovery times for more

clients .

However, this amount of realtime load is less than that recovered by the Immediate

timing with Delayed retr ies scheme (the first dotted bar in Figure 4.8 (ii)). If we use Global

prediction in conjunction with Delayed retr ies we can recover exactly the same amount

of realtime load. However, the timing of the aggregate scheme is determined by the

Delayed retr y process , as shown in Figure 4.10, graph (ii). Both schemes use retr ies set to

an interval of 100 ms, which we saw perfor med well. We see that Global prediction per-

forms slightly better at low loads and comparably, or slightly wor se, at high loads. The

maximum time to reroute is affected more than the average. It seems that, as long as the

load is low enough to allow the prediction algorithm to reroute all the realtime load in the

fir st synchronized rerouting attempt, we get better timing with the Global prediction

scheme. However, as soon as the load increases to the point where the scheme is forced

to use retr ies , the timing is slightly wor se than with the Local prediction scheme.

We can also see this in the histogram of the time to reroute (Figure 4.11). The his-

togram for the scheme with Global prediction, shown in graph (ii), has a larger area

under 200 ms. However, because of the need to synchronize the reroute time across all

the nodes, the scheme with Global prediction adds an extra 50 ms or so to the start of

the recovery process . This shows up in the histograms as well as in the maximum time to

reroute.

One element that is ignored in our simulations is the computation time to run the

algor ithms . We justified this in Section 4.2.1 by looking at the measured values of the com-

putation time. However, that argument does not hold for Global prediction, since the

96

-- --

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400

load rerouted

time (ms)
(i)

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450

load rerouted

time (ms)
(ii)

Figure 4.11: Effect of state prediction on histogram of time to reroute
(i) Local prediction (ii) Global prediction

algor ithm involves running the routing algorithm for all the affected channels at each

node. The wor kloads being simulated have at most twenty channels affected by a single

fault. Since the synchronized algorithm is run only once at the start of the recovery (if the

retr ies are not using Global prediction, as was the case in the experiment that generated

graph (ii)), we can approximate the effect of including this computation time by sliding

the histogram to the right (increasing the recovery times) by 20 ms. This does not have a

big effect on our results; however, it does make the Global prediction scheme, which

already has a slightly higher maximum time to reroute than the Local prediction scheme,

even less attractive.

97

-- --

Overall, it appear s that, though Global prediction does improv e the amount of real-

time load rerouted in the first attempt, even more can be rerouted by using retr ies , and

the timing of the Global prediction scheme with retr ies is dominated by the timing of the

retr y process . In addition, the extra overhead incurred by the Global prediction scheme

at the start shows up in the for m of a slightly higher maximum time to reroute.

Moreover, we note that the synchronization overhead to get all the nodes to start

the establishments at the same time, as well as the extra computation time to run the

Global prediction algorithm, would scale with the number of channels affected by the

fault, and with the size of the networ k. For small networ ks , the Local prediction scheme

seems to wor k already slightly better than the Global prediction scheme, and this differ-

ence should tend to increase with the size of the networ k. Thus , ov erall, the gains offered

by Global prediction do not seem to justify the overheads and the increased complexity

of the scheme.

4.3.5. Effect of number of faults

The (Global routing, Immediate timing, Delayed retr y, Local prediction) scheme with

a well-chosen retr y inter val wor ks well in the case of a single fault. To see whether it con-

tinues to wor k for multiple failures , we simulated two faults in the networ k. Figure 4.12 (i)

shows the success ratio for the Immediate (I), Immediate with Delayed retr ies(ID), and

Sequential (S) schemes. The Delayed retr y scheme wor ks as well in the double failure

case, leading to success ratios as high as in the case of Sequential timing. Graph (ii)

compares the perfor mance of the Global prediction scheme with that of the Local pre-

diction scheme, by showing the amount of realtime load rerouted in the first attempt

(i.e., with no retr ies). As before, the Global prediction scheme perfor ms slightly better in

the first attempt by rerouting slightly more realtime load. Graph (iii) compares the effect

of two failures on average and maximum time to reroute. The two bar s shown for each

load are the Immediate without retr ies , and Immediate with Delayed retr ies set at 100 ms

inter vals , both with Local prediction. The timing of the Global prediction scheme with

98

-- --

0

50

100
I

I

I

I

ID
ID

ID ID

S
S

S S

load=270 load=616 load=777 load=858

Routing = Global

(i)

SR (%)

0

50

100
L

L

L

L

G

G

G

G

load=270 load=616 load=777 load=858

Routing = Global
SR (%)

(ii)

0

200

400

600

I I
I I

ID

ID

ID

ID

load=270 load=616 load=777 load=858

Routing = Global

(iii)

TR (ms)

0

20

40

60

80

G
G

G

G

H

H

H

H

L

L
L

L

load=270 load=616 load=777 load=858

Timing = Immediate
ER (%)

(iv)

Figure 4.12: Effect of number of faults on
(i) reroute success (ii) success of prediction (iii) time to reroute (iv) excess resources used

retr ies is ver y similar that of the scheme with Local prediction (graph (iii)), and hence is

not shown. The maximum time to reroute is longer for the two-failure case, since in Figure

4.9 we saw that the single failure maximum recovery time was less than 400 ms. However,

the two failure exper iment affected a larger number of channels; hence, a longer time to

recover is accepta ble. We exper imented with different values of the retr y inter val, but

the best perfor mance, shown here, is still for retr ies at 100 ms.

99

-- --

Graph (iv) looks at the excess resource (ER) used. We can see that Global rerouting

continues to perfor m well in this respect, but Hybrid and Local perfor m worse. The excess

resource used decreases when adding retr ies for Hybr id and Local locus of rerouting. This

is an artifact of the way in which retr ies are implemented; all retr ies are perfor med using

Global locus of reroutes . Thus , in the presence of retr ies , the scheme tends to behave

more like Global, and the efficiency of resource usage improv es. This supports our earlier

obser vation in favor of Global locus of reroute.

In general, the following conclusions are valid for both the single and double failure

exper iments:

• Immediate rerouting has the best time to recover.

• With Delayed retr ies the success ratio of Immediate retr y can be brought up to

match that of Sequential rerouting.

• By appropr iately choosing the retr y inter val we can keep the time to reroute down

to practical levels (average 200 ms, maximum 600 ms for two failures at high networ k

load).

• Global locus of reroute is the most efficient in terms of resource utilization.

4.3.6. Sensitivity to load mix

Figure 4.13 shows the effect of a different load mix on the perfor mance of some of

the approaches to failure recovery. The load mix used to generate this graph is the ‘‘new

mix’’ descr ibed in Section 4.2.6.1. The load levels used in this mix are shown on the x-axis

of the graphs . They span a wider range of values than the ones used in the previous mix.

The mix also uses different ratios for the different classes of traffic, and a different distribu-

tion of (source, destination) pairs.

The three bars shown at each load level in gra ph (i) are the success ratios for Imme-

diate timing without retr ies (I), with Delayed retr ies(ID), and for Sequential timing(S).

Adding Delayed retr ies to Immediate timing allows it to recover as much realtime load as

100

-- --

0

50

100
I

I

I

I

ID
ID

ID

ID

S
S

S

S

load=220 load=658 load=869 load=1061

Routing = Global

(i)

SR (%)

0

200

400

600

800

I I I IID

ID

ID

ID

load=220 load=658 load=869 load=1061

Routing = Global

(ii)

TR (ms)

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900

load rerouted

time (ms)
(iii)

Figure 4.13: Effect of new load mix on
(i) Success ratio (ii) Time to reroute (iii) Histogram of time to reroute

the Sequential approach. At the same time, graph (ii) shows that the time to recover is

not too long. The plain bar shows the time to recover for the Immediate timing scheme,

while the dotted bar shows the effect of adding retr ies . The load at the highest level in

this mix is more than in the last mix, so the recovery schemes are stressed more. This

increases the maximum time to recover as compared to that shown in Figure 4.9 or Figure

4.12. The average is less affected. The histogram of time to recover for the Delayed retr y

scheme is shown in graph (iii). We can see that ver y little realtime load lies in the tail of

the histogram; hence, most clients would see delays less than 400 ms. This is a desirable

101

-- --

character istic of the Delayed retr y scheme. We can also easily trade the amount of real-

time load rerouted for the maximum time to reroute, to accommodate tighter response

requirements , by not generating retr ies beyond a certain time after the fault.

To summar ize, the scheme with Delayed retr ies ada pted well to the change in load

mix. It continued to perfor m as well as the Sequential scheme in terms of the reroute suc-

cess . The maximum time to reroute increased; this can be attributed to the increased

load levels in the networ k. The change was not catastrophic, but graceful, since the

average time to reroute did not shift much, and few channels were aff ected by the

increased time to reroute. The efficiency of resource usage (not shown here) was also not

changed significantly.

4.3.7. Sensitivity to topology

Figure 4.14 shows some of the results of the experiments we perfor med to ver ify the

effect of changing the topology on the recovery schemes . In graph (i) and (ii) we look at

the effect of adding some trunks to the mesh topology to yield the ‘‘mesh with trunks’’

topology shown in Figure 4.4, using the ‘‘or iginal’’ load mix. Graph (i) shows the effect on

the reroute success. Adding the trunks increases the capacity of the networ k, so that,

with the same sets of channels, the networ k is less heavily loaded. This is seen in the lower

values of the load index, shown on the x-axis of the graph. Thus, the Sequential timing

scheme and the Immediate timing with Delayed retr ies can recover all of the affected

realtime load in this case. Graph (ii) shows the time to recover for the Immediate scheme

without retr ies (plain bars) and with Delayed retr ies (dotted bars).

We get similar results with the ‘‘core’’ topology (graphs (iii) and (iv)). With the given

load mix and load levels , all of the affected realtime load is successfully rerouted by the

Immediate timing scheme with retr ies within a reasona ble time. However, the time to

reroute can be further improv ed by changing the timing of the Delayed retr y. The best

timing comes for intervals close to 60 ms. We can reroute the same amount of realtime

load in a shorter time, as shown in the histograms in Figure 4.15. Again, this is roughly the

102

-- --

0

50

100
I I

I
I

ID ID ID IDS S S S

load=140 load=325 load=379 load=527

Routing = Global

(i)

SR (%)

0

100

200

300

I I I IID

ID

ID

ID

load=140 load=325 load=379 load=527

Routing = Global

(ii)

TR (ms)

0

50

100

I

I
I

I

ID ID ID IDS S S S

load=245 load=439 load=617 load=868

Routing = Global

(iii)

SR (%)

0

100

200

300

I I I
I

ID

ID
ID

ID

load=245 load=439 load=617 load=868

Routing = Global

(iv)

TR (ms)

Figure 4.14: Effect of topology. (i)-(ii) Mesh with added trunks (iii)-(iv) Core topology

average round-tr ip time for this networ k, suppor ting our earlier hypothesis .

Thus , all the general observations made with the mesh topology continue to hold for

the other topologies. The (Global routing, Immediate timing, Delayed retr ies , Local pre-

diction) scheme continues to give good perfor mance on all metrics of perfor mance. It is

quite insensitive to changes in topology, as long as the topology is well connected.

103

-- --

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400

load rerouted

time (ms)
(i)

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300

load rerouted

time (ms)
(ii)

Figure 4.15: Effect of retr y inter val on core topology (i) 100 ms interval (ii) 60 ms interval

4.4. Conclusion

The main conclusion that we can draw from the results presented above is that

schemes within the distributed, dynamic framework selected in the previous chapter can

reroute a significant portion of the affected realtime load in the event of a link fault,

within reasona ble times and without wasting networ k resources excessively. The schemes

are also reasona bly tolerant of changes in load, traffic mix, number of faults , and networ k

topology.

The experiments described in this chapter explored realtime channel recovery

along the dimensions of reroute timing, locus of reroute constraints , retr ies , and state pre-

diction. The effects of changes in these internal factor s were evaluated on the three

104

-- --

chosen metrics of recovery perfor mance: amount of realtime load rerouted, time taken

to reroute, and efficiency of resource usage.

Of the internal factor s considered, the retr y policy has the most profound effect on

the first two metr ics: fraction of realtime load rerouted and time to reroute. While Immedi-

ate retr ies did not provide a significant improv ement in amount of realtime load rerouted,

by adding a delay before initiating the retr y and computing the route based on route

update infor mation that arrived in the interval, we can improv e the success of the

scheme to the point where it rivals the amount of realtime load rerouted by the Sequen-

tial timing scheme. As pointed out in Section 3.7.2, the Sequential timing scheme elimi-

nates all collisions at the expense of longer times to reroute the channels. Thus , we can-

not expect to reroute a significantly higher amount of realtime load using a greedy strat-

egy, where each channel is rerouted independently of the others.

By experimenting with the interval between retr ies , we found an empirical value of

100 ms, at which the scheme perfor med best for the ‘‘mesh’’ topology. This is also roughly

the average round-tr ip time given the topology and the distribution of (source, destina-

tion) pairs. This fits the theory that a significant number of unsuccessful establishment

attempts occur due to collisions with other attempts during the forward pass . Thus , if the

retr y is timed to occur shortly after the other establishment completes and the infor-

mation reaches back to the node where the route computation is being perfor med, it

has the best chance of success and the shortest waiting time. However, the value of this

inter val will, in general, change with the networ k topology. A rule of thumb to help select

this interval for an implementation is to set it to the average round-tr ip time. Since the

perfor mance is quite sensitive to this parameter, this should, perhaps , be evaluated more

accurately in the context of a real implementation. In any case, the retr y inter val should

be a tunable parameter of an implementation, to make it easy to make it ada pt it to dif-

ferent topologies.

The locus of reroute policy has a significant impact on the reroute success and

105

-- --

efficiency of resource usage. Local rerouting, which is similar to link rerouting used in

telecommunication networ k recovery, perfor ms poor ly because it looks at a smaller set of

routes while selecting one for the channel, and because the longer paths found by this

scheme use more resources . This leads less of the affected realtime load being rerouted

at high networ k loads . Also, as implemented in our simulation, with a complete round trip

to balance resources along the path, Local rerouting did not lead to a reduction in the

time to reroute. If we had devised a scheme more faithful to link rerouting, which does

not require a complete round-tr ip esta blishment, we would definitely have gained in

ter ms of time to reroute, but would have been able to reroute even less realtime load,

because many of the channels would fail to meet their delay requirement along the

longer path if we did not adjust this delay along the entire path as we did in our imple-

mentation. This seems to rule out Local as a method of constraining the route selection.

Hybr id perfor med almost as well as Global in terms of success of rerouting. All of the

timing schemes were almost identical in terms of time to reroute, because of the round

tr ip for esta blishment. But in terms of resource usage efficiency, Global was the best, and,

since the perfor mances of Global and Hybrid are similar in all other respects , Global

appear s to be the correct approach to use for this aspect of the design.

Adding Global prediction to a scheme without retr ies allows us to recover a signifi-

cantly larger amount of realtime load. However, even more realtime load can be

restored by adding Delayed retr ies , and in this case the timing of the entire system is

dominated by that of the retr y process . Thus , the gains of using Global prediction are

diminished. In fact, since all the establishment attempts need to start at the same time for

Global prediction to wor k well, this adds a small, but not negligible, amount to the time

to reroute. In addition, the Global prediction algorithm takes more computation time to

run. To extrapolate this to other topologies, we note that the synchronization and compu-

tation time for Global prediction will grow with the number of sources affected by the

fault and with the size of the networ k; in a large networ k, this will be an even larger

106

-- --

problem. Thus, we reach the conclusion that Global prediction does not seem to be use-

ful as a mechanism to improv e the reroute success.

The effect of reroute timing on the amount of realtime load rerouted was significant,

but this gain came at the expense of increased time to reroute. The improv ement in per-

formance attained by adding retr ies exceeded what could achieved by randomized

timing, with lower increase in the time to reroute. In fact, the initial ideas that we devel-

oped for this internal factor were transferred to the retr y policy when we added delays to

the retr y scheme. In the presence of Delayed retr ies , Immediate timing seems to be the

best approach.

Of the external factor s considered, load seems to have the biggest effect on the

metr ics of perfor mance. Increasing the load reduces the amount of realtime load that a

recovery scheme can reroute. For the schemes using retr ies , the effect on the amount of

realtime load can be partially offset by trading off the time to reroute. By using retr ies , the

scheme takes more time, but manages to reroute more realtime load. However, there is

a limit on the extent to which this trade-off can be exploited, since beyond a certain

load level, which depends on the networ k’s capacity and topology, the amount of real-

time load that can be rerouted drops off, regardless of how long the scheme spends

retr ying. Also, there is a practical limit on how long a rerouting scheme should take,

because the affected channels are not transmitting data during this interval, and the

applications using the channels will eventually time out.

We obser ve that the schemes degrade gracefully with increasing load. However, in

order to give satisfactor y perfor mance, the networ k should be run at a load such that, in

the event of a failure, a large fraction of the channels can be rerouted. This is also consis-

tent with another requirement: that, in the absence of networ k faults , the proba bility that

a new request is accepted should be high. If the networ k is well dimensioned, both these

requirements should be satisfied. The problem of networ k dimensioning is not dealt with in

this thesis, but the maximum load at which a given networ k should be run, given a target

107

-- --

percentage of affected realtime load which we would like to recover within a given time

in the event of a fault, can be evaluated from our simulations .

The number of simultaneous faults being dealt with has some affect on the metrics

of perfor mance. This wor ks in three ways: less of the networ k ca pacity and redundancy is

availa ble for rerouting; there are a larger number of channels to reroute, so the recovery

schemes are stressed more; and the multiple sets of channels being rerouted are physi-

cally separated by some distance in the networ k, so the route update process exhibits

different timing character istics . The overall observed eff ect on the perfor mance, in the

case of double failures and the Delayed retr y scheme, is that the recovery takes a little

longer, but can still reroute as much realtime load as the Sequential timing scheme.

The last two exter nal factor s , the load mix and the topology, do not seem to have a

significant effect on the recovery success of the schemes. The time to reroute, of course,

depends on the topology, and would increase with the average path length of the

channels to be rerouted. However, this is also true of the delay bounds that can be

offered on the channels. This implies that in any networ k on which reasona bly low delay

bounds can be offered, our schemes would be able to reroute a significant portion of the

affected traffic in a reasona ble time. The excess resource usage did not change signifi-

cantly with the topology. Thus , the schemes are relatively insensitive to the nature of the

networ k topology. We designed the schemes to be scalable and flexible, without any tar-

get load mixes or topologies in mind. The insensitivity of the schemes to these factor s vali-

dates our design choices. We must bear in mind, however, that the topologies tried in our

exper iments are all well-connected topologies, and that our results would not hold for

poor ly-connected topologies . This cannot be helped, since the basic idea on which the

schemes are based is that of finding alternate paths between the source and destina-

tion; if none exists, the scheme will not wor k. However, our experiments seem to indicate

that the results are not restr icted to any specific well-connected topology.

The scheme with the best perfor mance according to all our metrics of perfor mance

108

-- --

is the combination of Global locus of reroute, Immediate timing, Delayed retr ies , and

Local prediction. The salient features of this scheme is summar ized in Table 4.2. As with all

presented in

Proper ty Evaluation

Overhead in the absence of faults None

Amount of unrecovera ble realtime load As low as possible with greedy algorithms

Duration of disruption Depends on topology

Guarantee of recovery None

Overhead in the presence of faults Small

Ada pta bility to external factor s Good

Complexity Moderate

Ta ble 4.2: Proper ties of the fault recovery scheme selected

this chapter, it has no overhead, in terms of resources required or channel management

activity, in the absence of faults . It reroutes as much of the affected traffic as can be

expected from any greedy algorithm based on the Bellman-Ford algor ithm. Since the

Bellman-Ford algor ithm minimizes the resource usage of each individual route computa-

tion, we should no expect any better perfor mance without discarding the greedy

paradigm. The time to reroute, which determines the duration of the disruption, depends

on the topology. In the topologies tested it was found to be acceptable (average 200 ms

on the mesh topology). This value is related to the average round-tr ip time along the

channel; this is because all the major components of the time to reroute, such as the

time for an unsuccessful attempt, the delay before the next retr y, and the successful

attempt, are all related to the round-tr ip time. For most applications of realtime networ ks ,

the round-tr ip time has to be small to allow interactive communication without intolera-

ble delays. Thus , the recovery time offered by this scheme may be acceptable on most

realtime networ ks . However, this recovery is not guaranteed, since, under high networ k

load, some channels may not be successfully rerouted.

In the presence of faults , the overhead of this scheme is small, since it uses Global

locus of reroute, which minimizes the resource usage to the extent possible. It is also fair ly

ada ptive to the external factor s considered, such as topology, load, load mix, and

109

-- --

number of failures . Finally, the scheme is among the simplest of the schemes that we con-

sidered, from the point of view of implementation. This point is considered in more detail

in the next chapter, which deals with the high-level design of a protocol embodying the

ideas presented here and in the last chapter.

110

-- --

-- --

Cha pter 5: High level design of a fault recovery protocol

5.1. Introduction

The last two cha pter s presented a large number of decisions regarding the design

of mechanisms to perfor m fault recovery in a realtime networ k. In this chapter, we will

summar ize this infor mation and place it into the context of a high level descr iption of a

fault recovery protocol, intended to wor k with the Tenet Suite enhanced with the DCM

protocol (see Figure 2.2). This protocol will be called the Real Time Control Message Pro-

tocol (RTCMP), after the Internet Control Message Protocol (ICMP), the equivalent proto-

col in the Internet protocol stack.

The support for routing required by the fault recovery process may be implemented

by modifying the existing routing software of the realtime networ k. A routing function is

included in the software implementing the combined functionality of RCAP and DCM.

We will use the term ‘‘RCAP+DCM’’ loosely to refer to either the combined protocols or to

the software implementing them. Thus, the RTCMP implementation involves modifying the

routing function of RCAP+DCM, and extending the control interface to allow RTCMP to

use it appropr iately. In this chapter, we will describe the interface and the functionality

required from the routing element. The changes in software descr ibed will be relative to

the routing software as currently implemented in RCAP+DCM. However, this model should

also be applica ble to a separate routing module implementation such as in the Tenet

Suite 2 [36].

The rest of the fault recovery process will be implemented as a separate protocol,

namely, RTCMP, which will run on all the nodes where the Tenet control protocols run. The

RTCMP entity on a given node would exchange messages with neighboring RTCMP enti-

ties , the routing module, and the channel management process on the same machine.

The other events which would trigger action from the RTCMP protocol are timer events

and fault events generated by the networ k hardware. The interactions of the RTCMP pro-

tocol with the rest of the wor ld is shown in Figure 5.1. Since this high level descr iption is not

111

-- --

RCAP
+

DCM
Routing

Physical layer eventsTimer events

Other RTCMP entities

Logging Notify operator

RTCMP entity

Figure 5.1: Interactions for RTCMP

targeted to a specific networ k or operating system, no implementation details will be

provided.

5.2. Summary of design decisions

Star ting from a completely general framework for realtime channel recovery in the

beginning of Chapter 3, we narrowed down the possible choices, to the point where we

can now descr ibe the recovery process at a high level. In the previous two cha pter s , we

made several design decisions, which we will summar ize here.

The first set of decisions made were at a general level. We argued that a routing

strategy that optimizes the networ k routes on a global level is too time consuming and

unscala ble, given the dynamics and scale of realtime networ ks . We chose a greedy

strategy, in keeping with the strategy followed by the establishment protocol of the real-

time networ k, where each channel would be routed in isolation, minimizing resource

usage in this isolated context by using ‘‘min-hop’’ routing. In the context of this decision,

the question of whether the fault recovery algor ithm should be centralized or distributed

became easier to answer, since distributed algorithms can implement greedy strategies

equally well, and provide the benefits of scalability and robustness . We also chose to

dynamically compute the routes from scratch for each failure, rather than pre-compute

the configurations for all possible fault conditions, because of the dynamics of realtime

112

-- --

channel establishment and teardown, and the space complexity associated with

attempting to account for all possible configurations that a realtime networ k system

could be in. We decided to further explore, in the course of our experiments , the ques-

tion of the degree of infor mation exchange during a distributed recovery.

Thereafter, we eliminated some of the var ia bles in the experiments , such as the

method used for failure detection, the route update process , the graph theoretical algo-

rithm used to find the ‘‘min-hop’’ path, and the channel management process . We did

this either by making simplifying assumptions in our simulator, or by assuming support from

existing protocols . The remaining questions, open to investigation through simulation,

were: the constraints to be used on the route selection process , the timing of the reroute

and establishment attempts, the number and timing of retr ies , and the level of state pre-

diction used to improv e the recovery success . The issue of infor mation exchange is

implicit in the timing question and in the state prediction question, since the route

update protocol exchanges infor mation in the background continuously, so that, by wait-

ing for the appropr iate inter val, the infor mation needed is obtained without invoking an

active request-response protocol.

The experiments conducted in Chapter 4 led us to the conclusion that Global locus

of reroute, Immediate timing, Delayed retr ies , and Local prediction would provide a

recovery success comparable to that of the schemes with maximum overhead for infor-

mation exchange, but considerably faster. Methods that make decisions using the avail-

able infor mation, rather than waiting for infor mation to come in, seem to wor k best. The

only case where waiting for infor mation to come in seems to help is when an establish-

ment request has failed, and the protocol is attempting a retr y. The delay appropr iate for

the retr y is close to the average round-tr ip latency of the networ k.

For tunately, these choices are among the simplest that we looked at, which simpli-

fies the task of designing a protocol based on them. For example, Local locus of rerout-

ing is more complicated to implement that Global, since it involves a route computation

113

-- --

model significantly different from the model described in Chapter 2. Global locus of

reroute uses the same route computation model as RCAP+DCM, i.e., the route is com-

puted at the source, and the shortest path which meets the delay constraint is used.

Thus , the task of implementing this locus of reroute is the simplest, at least when the DCM

protocol is present. Immediate timing is also the simplest to implement, since it does not

require any timing cooperation between nodes. Similar ly, implementing Global state pre-

diction would have involved significant changes to the route computation software of

RCAP+DCM. Instead, it turns out that Local prediction perfor ms adequately. Local predic-

tion does involve some minimal changes to the current RCAP+DCM routing software and

its interface; these changes will be described in this chapter.

5.3. Description of the protocol

We will now provide a high level descr iption of RTCMP based on the ideas devel-

oped in the first few cha pter s . The framework provided in Chapter 3 will be used through-

out this chapter as the basis for our description. We will fill in the details, to the extent nec-

essar y for a high level design, but leaving out system-specific or implementation-specific

infor mation. This framework is based on the main tasks common to all fault recovery pro-

tocols . They are: detection, instigation, route computation, channel management, and

retur n to normal. All of these tasks need not be supported on all the nodes, though an

implementation might be easier to maintain if the same software runs on all the nodes of

the networ k.

5.3.1. Detection

Detection must be supported on all the nodes, since we assume that any link in the

networ k can fail. Thus, each node must monitor its neighboring links for failures . This would

be more efficient with some support from the physical layer, for example, posting of

events such as loss of transmission clock, physical layer protocol error s , and so on. The

software may react to these events , either by handling interrupts posted by the hardware

114

-- --

on the occurrence of such events , or by polling hardware status register s at intervals .

Events such as retr y timeouts of the relia ble control message exchange protocol used by

RCAP or RTCMP should also trigger detection. The specifics depend on the particular net-

working hardware and operating system structure, so we will not go into any fur ther

detail.

The support from the physical layer may be fast and efficient, but may not catch all

faults . Sometimes , a computer may fail without affecting the physical layer’s status of its

outgoing links. To deal with all failure conditions , as well as to handle networ ks where the

physical layer support may be inadequate, each node must ascertain the status of its

neighbor s by exchanging ‘‘ping’’ messages , whenever no data has been received on a

link for some duration of time. Each node is responsible for ensuring the health of all its

incoming links. Thus , if a link fails only in one direction, the node to which data stops arriv-

ing would send a ping message and after a few retr ies would detect the fault. This mech-

anism is slower than detection supported by the physical layer, and adds some control

ov erhead to the networ k, but is general enough to be applica ble to any computer net-

work. It can detect any fail-stop failures that the physical layer does not detect. It is also

general enough to support recovery from node failures , since the fail-stop mode failure of

a node can be detected by the neighboring nodes by the ping method as the failures of

all the links connecting to the node, even if the physical layer is not affected.

Finally, error rates are another mechanism to detect failures . If a link has ver y high

error rates , so that the quality of the realtime data received from it is unacceptable, it

would be better to declare it faulty for realtime purposes , and remove all realtime chan-

nels from it. This may be a temporar y problem, so that, if the error rate improv es after

some time, we would retur n the link to realtime service. Such phenomena may be

obser ved on links established over micro-wave transmission systems, where the error rate

changes with the atmospheric conditions. The physical layer may maintain a count of

physical layer protocol violations over small intervals , and the RTCMP software should poll

115

-- --

this infor mation, and maintain its own filtered counts as described below. If the data

deliver y protocols implement link level checksums , the error s detected by these check-

sums should also be counted. This error infor mation may be used as described in [4], nor-

malizing the error rate by the actual data transmission rate in the same interval, and using

this metric to declare a failure when the normalized error rate crosses an upper threshold.

< tb

> ta

DA

Figure 5.2: Hysteresis loop to avoid oscillations

To reduce the occurrence of oscillations of the link status between ‘‘alive’’ and

‘‘dead’’, with its associated instigation of fault recovery and retur n to normal actions ,

some low level validation of the faults detected is essential. A simple hysteresis method is

presented in Figure 5.2. A link is classified as faulty if a permanent fault is detected by the

other means described above, or if the number of transient error s detected at the physi-

cal layer in an interval Ia , expressed as a fraction of the actual data bits transferred,

exceeds ta . However, it is only retur ned to service if no permanent fault is present and the

transient fault ratio measured over a larger interval Ib is less than a threshold tb . Ia should

be small, and chosen depending on the reaction time desired for detection. Ib should be

relatively long to avoid oscillations and to ensure that the link is stable before retur ning it

to service. It should be at least as long as the sum of the time to recover from a fault and

the time to retur n to normal after a restoral, since in general we want to avoid declaring

another fault on the same link before the retur n to normal procedure is complete. ta

should be chosen depending on the error rate tolerable for a typical application running

116

-- --

on the realtime networ k. tb should be at least an order of magnitude lower and may be

chosen based on the expected error rates on the transmission medium.

When a fault is detected, the protocol should infor m a human networ k operator to

repair the fault, log the event for maintenance and tracing purposes , and also instigate

automatic recovery.

5.3.2. Instigation

Instigation of the restoral process is perfor med by the node that detects the fault.

This consists of relia bly broadcasting a fault message, containing the link identifier of the

failed link, to all nodes in the networ k so that the routing table in every node reflects the

topology after the fault. We need the relia bility to ensure that all the nodes receive the

same infor mation about the set of failed links. If the underlying networ k suppor ts relia ble

broadcast, then this problem is solved. If not, the relia ble broadcast is achieved by the

RTCMP protocol using a constrained flooding method. The purpose of constrained flood-

ing is to ensure that, as long as the networ k is not partitioned by a set of faults , the route

update messages reach all the nodes in the networ k. We also want to ensure that mes-

sages do not traver se any link more than once. The arrival of the fault message at any

node causes it to remove the failed link from the topological database.

For the following discussion of the constrained flooding method, we assume a lower

layer transpor t protocol with checksums and retransmissions to take care of transmission

error s . We also assume that clocks are synchronized using a time protocol such as NTP.

Each fault message is tagged with a unique fault number, containing the unique identi-

fier of the node and a time stamp. Fault messages have a maximum time to live (MTTL),

which is a constant known to all the nodes, and which is larger than the maximum possi-

ble time to travel across the networ k’s diameter. All RTCMP daemons keep a list of the

fault numbers they have seen, and these numbers are not removed from this list until they

are older than MTTL. Fault messages older than MTTL are never forwarded. A message

with a fault number which is in the list is also not forwarded. Each RTCMP daemon

117

-- --

forwards a fault message, if it is less than MTTL old1 and the fault number is not in the list,

to all its neighbors. This ensures that the message reaches all reacha ble nodes , and no

link is traver sed twice.

The description of the protocol in Chapter 3 also called for a separate reroute mes-

sage to be sent to the source of each channel affected by the fault. This was needed to

suppor t the var iety of options we were consider ing at that stage. However, if we look at

the contents of the reroute message in the context of the decisions that have been

taken, we find that it only contains the channel identifier of the channel to be rerouted.

We can eliminate this message by including the entire set of channels affected by the

failure in the fault message. This infor mation must be obtained by quer ying the local

channel management daemon, so the control interface of the channel management

software must export a function which takes in a link identifier and retur ns the channel

identifier s of the set of channels using the link. This set of channel identifiers is then

included in the fault message broadcast to all the nodes.

5.3.3. Route selection

The route selection function needs to be implemented only on the host machines of

the networ k. Each host node perfor ms route computation for the affected channels origi-

nating at that node. To do this , it needs to identify the channels originating locally from

the set of channel identifiers carr ied in the fault message. The RTCMP daemon should

quer y the channel management process to find the set of channels currently originating

from the node, and then find its intersection with the set of channels in the fault message.

The recovery action described next is perfor med for this set of channels. Eliminating the

reroute message saves any implementation complexity that could have been caused by

the arrivals of the fault and reroute messages in different order s .

The process of route selection is perfor med at the source node, using the Global

1 if (time stamp > current time - MTTL)

118

-- --

locus of reroute constraint, Immediate timing, and Local state prediction. The path

selected is the minimum-hop path which has sufficient resources to support the channel

and meets the delay constraints . This is computed using the Bellman-Ford algor ithm. The

infor mation about resources and delay bounds on links is based on the infor mation in the

routing database at the time of the computation, subject to the modifications of Local

prediction.

In the event of the first attempt failing, the reroute is retr ied after an interval, which is

set to the expected round-tr ip latency of the networ k. The route computation during the

retr y would be based on the route update messages that came in during the delay inter-

val, since the route update protocol would have continued to exchange messages and

update the database in the interval. The retr y inter val should be a tunable parameter of

the RTCMP implementation, since the perfor mance of the scheme was seen to be ver y

sensitive to the value of this parameter in our experiments . The retr y process should be

halted after a fixed interval from the time of the fault, based on the desired maximum

response time for the recovery process . This may also be a tunable parameter.

Since the route computation is always perfor med at the source (the Local routing

alter native was rejected due to its poor perfor mance), we can either keep the route

computation task in the software for RCAP+DCM or have a separate routing module, as

long as the control interface supports the needed functionality.

The general functionality needed in the routing module and in its control interface is

descr ibed below. Fir stly, the control interface of the routing module should allow RTCMP

to infor m it of the failed links, so that they are removed from consideration during route

computation. Secondly, RTCMP needs to specify a set of channels to be rerouted, rather

than just one as in the interface provided to the clients. This makes it easier for the routing

module to implement the third requirement, which is that the routing software must han-

dle simultaneous route requests using the Local prediction algorithm.

119

-- --

In the specific context of RCAP+DCM, since all the parameter s of the channels to

be rerouted are already known, and they are not changed during the recovery process ,

the reroute request interface of the system is simplified. RTCMP just needs to pass to

RCAP+DCM the set of channel identifiers. RCAP+DCM can look up the channel parame-

ter s from the state stored during the original establishment. This single request subsumes

both the routing request and the establishment request, since the RCAP+DCM software

perfor ms both actions. We also make one request for all the channels that need to be

rerouted at a time, so that the routing software may perfor m Local prediction on this set

of channels. This call must be non-blocking, unlike the interface to the clients, since

RTCMP might need to react to some other event while RCAP+DCM is perfor ming the

esta blishments . In order to have RCAP+DCM perfor m Local prediction, we would need to

modify the routing software. RCAP+DCM already interacts with the route update proto-

col to modify the database on which routing in based.

Thus , we can simplify the software str ucture of RTCMP, as well as minimize the

changes that need to be made to the existing realtime networ k control software, by

appropr iately extending the interface to the routing module, and implementing the nec-

essar y functionality there. The timing and retr ies are handled in the RTCMP software.

5.3.4. Channel management

The channel management task needs to be implemented on all the nodes of the

networ k on which resources exist to be managed. This includes all the nodes in which RTIP

is implemented, as well as any switches which can provide realtime data forwarding

without RTIP, but need admission control and resource management support. However,

the interface to the RTCMP protocol only needs to exist on the host machines of the net-

work. In the context of RCAP+DCM, since the routing and channel management func-

tions are implemented in the same software entity, the requests for route computation

and channel management may be merged into a single call. Channel management, as

implemented in DCM, involves a round trip for establishment along the new path,

120

-- --

followed by a teardown pass along the old path. In case the attempt fails , RTCMP is asyn-

chronously infor med. This causes RTCMP to set a timer event, so that, after the appropr i-

ate delay, a retr y is attempted. The number of retr ies is limited, as described in Chapter 4.

No channel management action needs to be taken by RTCMP, apar t from specifying the

reroute requests and retr ies at appropr iate times .

5.3.5. Return to nor mal

The retur n to normal task needs to be implemented on the host machines of the

networ k. This action is perfor med on the detector node, adjacent to the failed link, which

also detected the failure. A retur n to normal is detected when the hysteresis loop of Fig-

ure 5.2 restores the link to active status . Since the channels that were rerouted on the

detection of the failure may be now on non-optimal paths, we need to reroute them to

use shorter paths involving the restored link if necessary. When the link was detected to

be in a failed state, the process was time-critical, because the service of the channels on

the failed link were disr upted by the failure, and quick recovery was required. In contrast,

the retur n to normal event is not time critical, since no channel is disrupted. If we use the

DCM protocol to perfor m these reroutes , we get the added benefit that, even dur ing the

re-esta blishment process , none of the channels have their service affected. Thus, all that

is necessary is to make sure that the rerouting load on RCAP+DCM is not excessive, since

this might affect the service seen by other realtime users trying to set up new connec-

tions . We want all the channels to eventually move back to their optimal paths, to

reduce the realtime load on the networ k.

On detecting a retur n to normal, the detector broadcasts the ‘‘retur n to normal’’

message, which contains the link identifier, to all nodes. The RTCMP daemon on every

node contacts the routing module to restore the link into the topology and then trigger s

a reroute on every locally originating channel, which was rerouted during the fault recov-

er y, or created during the period between the fault and the retur n to normal. This task is

perfor med at low prior ity so that it does not affect other channel establishment requests

121

-- --

handled by this node. The process looks at all eligible channels and tries to find one for

which it can find a shorter route. The source routing algorithm is used without any addi-

tional constraint except the end-to-end delay bound. When such a channel is found, the

process initiates a reroute onto the shorter path, and then waits for a random time inter-

val with mean T , chosen appropr iately to keep the expected channel management

load on the networ k low. The randomization ensures that the retr y processes from differ-

ent nodes are not synchronized. The process is started at the time when the link is

restored, and after a time interval of nT , where n is the number of affected channels, all

channels would be back on their shortest paths. The process terminates when none of

the remaining eligible channels can be rerouted to a shorter path. The DCM protocol

ensures that the perfor mance of any of the channels is not affected during the re-

esta blishment process .

This idea can be extended to general load balancing by having this process run

continuously at a ver y low frequency for all channels, rather than only for the channels

defined as eligible above.

5.4. Changes to the RCAP+DCM software

The changes which must be made to the control interface of the routing module

and the channel establishment software are summar ized below.

• Infor m routing function of failure (used on all nodes)

• Infor m routing function of restoral (used on all nodes)

• Request reroute for set of channels (used on hosts)

• Quer y to find all channels traver sing a link (used on the node detecting the failure)

• Quer y to find all channels originating from a node (used on hosts)

• Request establishment for channel on a specific route (used on hosts)

The first three features belong to the interface to the routing module, and the last

three to the interface to the channel administration software. Since for RCAP+DCM both

122

-- --

routing and channel administration are implemented in the same software entity, the

third and sixth features may be combined into one call to the combined interface.

The main change needed to the routing software as implemented in RCAP+DCM is

the addition of Local prediction. Since the update of the routing database by the route

update protocol involves some latency, if the routing protocol is given a number of chan-

nels to route simultaneously (as is true for Immediate timing), then the database should

be modified after each route is computed to remove the resources that would be

reser ved by the channel on its forward pass . This is the state that would be seen by the

subsequent channels, if they happen to get routed on common links. However, this modi-

fied image of the networ k should be temporar y, since the retur n-pass resource reser-

vations will be lower, and the route update protocol will bring in the correct infor mation,

as each channel is established. Thus, in our simulation implementation, we used a tempo-

rary copy of the database, which we modified as we computed the set of routes , and

finally discarded. The original copy of the database was only modified as the route

update messages came in.

The interface to the routing algorithm must also be extended to take into account

the fault tolerance schemes; these schemes and the extensions required for them are

descr ibed in Chapter 6.

5.5. Conclusions

We presented a high level descr iption of a protocol to support rerouting of realtime

connections in the event of a fault. The protocol does not discriminate between chan-

nels , but attempts to recover as many as it can, within the desired maximum response

time of the recovery process . For channels that cannot be rerouted within this time, the

recovery protocol infor ms the user of the failure of the networ k recovery and tears the

channel down. This should only happen when the networ k is operating close to the maxi-

mum realtime load that can be supported.

123

-- --

The recovery schemes designed fit well into the existing realtime networ k suppor t

protocols . The routing software and interface of RCAP+DCM must be modified to some

extent, to allow links to be removed or restored by RTCMP, to implement Local prediction

for multiple simultaneous route computations, and to support the fault tolerant channels

that will be described in the next chapter. The channel management interface of

RCAP+DCM must also be modified to support some query functions needed by RTCMP,

and to combine the routing and establishment requests for multiple channels into a sin-

gle call. However, the basic software model remains valid, and RTCMP can perfor m its

tasks as a user of the RCAP+DCM interface.

Many questions have been left unanswered. For example, can multiple prior ities for

channel rerouting be supported in this paradigm? We can easily extend it to two levels:

no recovery suppor t for some channels, and support for other channels, by extending

the channel perfor mance specifications to include a flag to indicate this. The above

actions would only be perfor med for channels with the recovery flag on. But to extend

this to multiple levels of prior ity would involve non-tr ivial extensions .

Another interesting question is related to the interface of the Tenet Suite 2. How can

this interface best be extended to provide support for fault recovery? This question too is

beyond the scope of this dissertation.

There is also the problem of networ k secur ity; that is, how do we prevent some

unauthor ized process from using the RCAP+DCM control interface to reroute channels

that it should not be allowed to reroute? This, and other questions, can only answered in

the context of a particular implementation, and a specific operating system; hence, we

leave the questions open for future wor k.

124

-- --

-- --

Cha pter 6: A proactive scheme for fault tolerance

6.1. Introduction

This chapter presents some possible schemes to provide fault tolerance on top of an

under lying realtime service. The approach used is to make reser vations on multiple paths,

using the availa ble ca pacity and connectivity of the networ k, to provide fault-tolerant

realtime connections, which can offer a var iety of grades of service in the presence of

networ k faults . Forward Error Correction (FEC) techniques are used in conjunction with

the multi-path reser vation when completely transparent fault-tolerance is required. This

approach is useful in a networ k where the transmission capacity is relatively abundant,

and for applications where tolerance to failures and non-stop operation is essential. This

approach would not make sense in a bandwidth-poor environment such as the current

Inter net, where depr iving other users of bandwidth to increase the tolerance of one’s

connection would be regarded as anti-social behavior. However, with the gigabit per

second networ ks envisioned in the future, bandwidth requirements may become less of

an issue, and the improv ement in the service provided may allow some applications to

use a shared networ k, which would otherwise require a private networ k.

The ability to put many different classes of applications , including those that require

some degree of fault tolerance, on the same networ k opens up the possibility of reduc-

ing the cost of the service by exploiting economies of scale. The target applications for

this service include remote surger y, space missions, industr ial control, and so on, where

fault-tolerant realtime audio-visual communication is required. Some interactive multime-

dia applications may also benefit from fault tolerance, if the associated costs, in ter ms of

increased resource requirement, are low enough.

The underlying realtime service allows for the reser vation of buffers on a per-

connection basis to eliminate loss due to buffer overflow. That still leaves two sources of

packet loss in the networ k: transmission error s and networ k failures , which are not cov-

ered by the guarantees provided by the Tenet scheme. The primar y objective of the

125

-- --

mechanisms presented in this chapter are to handle networ k failures . However, tolerance

to error s is provided are a side-benefit of using FEC to control loss due to faults .

An error can be looked at as a transient fault in the networ k. A long term fault, on

the other hand, is one where the link does not transmit infor mation for a long period of

time, relative to packet transmission times. There is a continuum of error states in between

these two extremes , and, for practical purposes , one may define a threshold of error

rates , as described in the previous chapter, beyond which the link is removed from ser-

vice. For simplicity, we will consider only the two extremes , and assume that either pack-

ets are lost with a constant (low) independent proba bility on all links, or that a link fails

and does not transmit any infor mation at all. We will discuss both the error-tolerant and

fault-tolerant proper ties of the schemes.

The schemes for fault tolerance presented here are based on the idea of dispersity

routing [44], described in Chapter 1. However, application to realtime networ ks requires a

reconsideration of the capacity and perfor mance requirements . Fur thermore, the ability

to continue to provide realtime ser vice in the event of a fault must be built into the

schemes , and validated through simulation. This chapter takes the idea of dispersity rout-

ing and modifies it in the context of realtime networ ks , to for m several schemes which

provide different levels of service, at different costs to the networ k. Some of the schemes

provide completely transparent tolerance to restr icted networ k fault scenarios (e.g., sin-

gle or double faults) at the cost of increased bandwidth requirement. This is done by

using multiple paths and FEC to introduce sufficient redundancy so that some of the

paths can fail without disrupting the flow of data. The principle of realtime channels are

used to provide guaranteed perfor mance service on each of the paths, so that the over-

all service is also guaranteed.

Some other schemes offer gracefully degrading service as the number of faults in

the networ k increase. They use the multiple paths through the networ k to provide a ser-

vice whose capacity degrades gracefully, and use appropr iate coding techniques to

126

-- --

ensure that any of the surviving streams can be used independent of the others. Still

other schemes provide a service, which is disrupted in the event of a failure, but the

recovery is guaranteed and the recovery time is short. This is made possible by preser ving

the backup resources , but allowing non-realtime data to use this spare capacity until it is

needed to recover from a fault.

A framework to classify the different schemes is developed in Section 6.3, which also

descr ibes the service offered by each scheme, and the expected impact on networ k

ca pacity based on bandwidth requirements . In Section 6.4, we present the design of our

exper iments . Section 6.5 presents the results of the simulations , which validate the service

offered, and provide a more accurate picture of the networ k ca pacity issues . We then

discuss some practical issues in Section 6.6, such as the changes to the networ k interface

required to support fault-tolerant realtime connections, and the interaction with the

recovery schemes described in the previous part of the thesis. Section 6.7 concludes by

summar izing the service provided and the networ k costs of the schemes, and comparing

them to another existing approach to fault tolerance [74]. We star t with Section 6.2,

which provides some background infor mation to be used in the course of the chapter.

6.2. Background

This section summar izes some background infor mation on compression algorithms

and error-correcting codes. While the fault tolerance schemes to be developed in this

cha pter are applica ble to any realtime data, video traffic requires some special consid-

eration. The realtime paradigm is well suited to audio-visual infor mation, because of the

regular time-based nature of the infor mation. Audio, having a lower bandwidth require-

ment, can be handled much more easily by the fault tolerance mechanisms. Video is

harder, firstly, because the larger bandwidth forces us to seek solutions that use resources

more efficiently, and secondly, because, due to the large bandwidth requirements and

the inherent redundancy of video, it is usually transmitted compressed, and some of the

compression techniques introduce dependencies in the video stream. This increases the

127

-- --

fault and loss sensitivity of video . We devote Section 6.2.1 to a discussion of the compres-

sion techniques, with special consideration of how par tial infor mation may be decoded.

We provide a brief description of intra-frame, inter-frame, block update and hierarchical

compression ideas.

In the sub-section on error correction, we provide a description of diver sity encod-

ing and Prior ity Encoding Transmission (PET). These techniques can be used to increase

the redundancy of a stream and to split the stream into multiple streams to enhance the

error and fault tolerance proper ties . Reader s familiar with the above can safely skip this

section, since we will not go into extensive detail.

6.2.1. Compression techniques

Intra-frame compression

Intra-frame compression techniques take advantage of the spatial redundancy

inherent in the digital representation of most pictures . The infor mation required to

descr ibe one pixel is usually ver y similar to that required to describe the next one. The

intra-frame compression technique proposed by the Joint Pictures Experts Group (JPEG)

depends on dividing the screen into blocks of 8x8 pixels, subjecting each block to a Dis-

crete Cosine Transfor m (DCT), quantization, and Huffman encoding. This process can typ-

ically compress the representation of the picture by a factor of 10:1; the level of com-

pression can be traded off for picture quality, leading to a large range of possible com-

pression ratios .

Pure intra-frame compression does not take advantage of the temporal redun-

dancy inherent in video sequences, especially at the higher frame rates . However, each

frame can be decoded independently of all others. Since each lost packet only affects

one frame of the video sequence, compression codes like JPEG are relatively tolerant of

packet loss . When a packet is lost, an unknown number of bytes of the current frame has

been lost, and the decoder state is not synchronized with the bit stream contained in the

128

-- --

next packet. Thus, most decoders discard the bits until the next mar ker, where the state

can be synchronized and decoding restar ted. Such mar ker s are always present at the

star t of a new frame, but may occur more frequently, such as at the start of every new

packet. However, many current JPEG compression/decompression hardware devices

only arrange for resynchronization at the start of each frame. Since resynchronization

can always be achieved by the start of the next frame boundary, no more than one

frame is ever aff ected by a single packet loss .

Inter-frame compression

Exploiting the temporal redundancy of video sequences permits an additional

improv ement in compression ratio. Since the picture does not change much from one

frame to the next, a frame can be expressed as the change from the last frame using a

much smaller number of bits than required to independently code the entire frame. This

idea is used in the coding standards proposed by the Motion Pictures Experts Group

(MPEG), where frames can be of three types. I frames are coded using pure intra-frame

compression, similar to JPEG compression. P frames are coded on a block basis; each

block is coded either in predictive mode or intra-frame mode depending on the accu-

racy of the prediction based on the motion estimation. The intra-frame mode is the same

as for the I frame blocks . In predictive mode, a block is represented as a set of motion

vector s , inter polated relative to the closest preceding I frame, and prediction error infor-

mation. I and P frames are also known as ‘‘anchor frames’’. B frames are inter polated

based on the closest preceding and following anchor frames . The compression or

decompression of B frames requires waiting for frames later in the sequence, leading to

increased delays, buffer requirements , as well as compression complexity. In addition, the

video service becomes even more susceptible to error s since there are more dependen-

cies . Thus , inter polative coding (and, hence, use of B frames) may not be suitable for

realtime applications [49].

129

-- --

Inter-frame compressed video suffers from dependencies between frames . Thus ,

the loss of an I frame affects the entire group of pictures (GOP) until the next I frame.

Thus , if possible, the networ k should try harder not to lose an I frame than a P (or B) frame.

Some ATM networ ks will provide differential cell dropping, so that, in case of buffer over-

flow, cells mar ked as lower prior ity will be dropped in preference to higher prior ity cells .

However, the losses due to transmission error s and faults cannot be prior itized directly. In

the next section, we will discuss a differential FEC scheme, which allows different levels of

redundancy to be impar ted to different portions of a video stream, to achieve a similar

effect.

Asynchronous video coding

The basic idea behind asynchronous video schemes is to treat video as a series of

updates to the screen, so that infor mation can be displayed when the packet contain-

ing it arrives , independently of other packets in the same stream. For example, block

update compression treats the screen as a matr ix of blocks , and transmits a block only if

it has changed (by more than a threshold) since the last time it was transmitted, thereby

taking advantage of some of the temporal locality in video. Blocks may be compressed,

using techniques such as DCT, to fur ther reduce the bandwidth required. This technique is

especially suited to video without much action, panning or scene changes, such as usu-

ally found in video conferencing, lectures , and so on. Each block is transmitted with the

position infor mation necessary to render it. If a packet is composed of randomly selected

blocks , the loss of a packet has an effect distributed over the entire picture. This scheme

is fair ly tolerant of losses, especially for the classes of video applications just mentioned.

The typical image is a human in front of a static background; the blocks being updated

correspond to the human as she moves around. Thus, a block which is updated is likely to

be updated again soon, as the human will move around in the same portion of the

image. Even if an update is lost, it will be updated again soon afterwards .

130

-- --

The above technique has been used in a video conferencing tool called nv , with a

fair degree of success. The compression can be perfor med in software in realtime, lead-

ing to applica bility to a large class of hardware platfor ms. The major complaint with the

technique is that people in the image tend to leave body parts scattered around the

screen, when packets are lost. To par tially compensate for packet loss , a background

refresh process sends the entire picture, block by block, at a rate chosen depending on

the overall bandwidth constraints . The technique can scale to the availa ble bandwidth

by changing the block size, the update rate, the threshold for transmitting a block, and

the background refresh rate. The picture quality, as well as loss tolerance, increases with

increasing the background refresh rate, increasing the update rate, decreasing the

threshold for transmission, and decreasing the blocks size; this improv ement comes at the

cost of the increased bandwidth needed by the video stream.

Similar ideas are being investigated by at least two groups of researcher s [45, 48]. An

additional twist to the basic idea is to generate multiple sub-streams by separating the

regions of fast motion and slow motion, and sending more detail for the slow motion

regions . The sub-stream for the fast motion regions contains more frequent updates, but

less detail. This sub-stream is more impor tant to the perceptual quality of the video. A

third sub-stream may contain the refresh infor mation. The idea of multiple sub-streams for

compressed video is applica ble to non-asynchronous video coding schemes as well,

and is generally referred to as hierarchical compression.

Hierarchical Compression

Hierarchical compression consists of coding video sequences into a number of

compressed sub-streams with the proper ty that an image sequence can be recon-

str ucted from many subsets of the set of sub-streams . If all the sub-streams are used, the

highest-quality video sequence is obtained. However, if a lower bandwidth stream is

required, some of the sub-streams may be dropped, and the decoding algorithm can still

recover a lower-quality video, where the quality of the video is somehow related to the

131

-- --

cumulative bit-rate of the received subset.

One possible scheme for hierarchical compression uses a stream of highly com-

pressed video as the base low-quality signal. The other streams provide different levels of

enhancement infor mation, so that in combination with the base stream, var ious levels of

higher quality video may be obtained. Such video compression schemes are also known

as scalable or multi-resolution compression. They are useful for multicast, since, if the

route to a particular receiver does not have enough resources to support the highest res-

olution, some fraction of the scalable stream may be dropped in the networ k, to allow

communication at some reduced quality. They also allow var ia ble quality video to be

retr ieved from a video server, depending on the bandwidth that can be supported by

the server and the networ k at the time. In the context of ATM networ ks , the cells of the

higher layer s of a scalable video stream may be mar ked to be dropped first in the event

of congestion. When congestion occurs, the video would degrade to the lower quality,

since only the cells of the higher layer s would be dropped.

MPEG-2 contains scalable modes which can offer such multi-resolution compression

to a limited extent. Temporal scalability can be provided somewhat artificially by treating

the I, P and B frames as separate streams of hierarchically encoded video. Another possi-

ble approach is to include more frames in the enhancement layer. Spatial scalability can

be provided by improving the high resolution image by combining motion prediction, the

base layer image, and prediction error infor mation. SNR scalability is supported by using

coar se quantization of the DCT coefficients for the lower layer, and sending additional

residual infor mation at the higher layer. The number of levels that can be provided, as

well as the compression efficiency for the higher layer s , is limited compared to true scal-

able compression techniques such as 3-D sub-band coding, where sub-band transfor ms

are used in the temporal domain as well as in the spatial domain. Unfor tunately, the

delays incurred in the compression and decompression of true 3-D sub-band coded

video are currently too expensive for interactive applications . Research into reducing

132

-- --

these problems is in progress [62].

6.2.2. Error correcting codes

This section describes some forward error correction coding techniques. Diver sity

coding is used to recover from the loss of a known set of code words from a larger set of

transmitted words . The Prior ity Encoding Transmission (PET) extends these coding ideas to

multiple levels of redundancy for different layer s of a hierarchical stream.

Diver sity coding

Given a message, consisting of K equal sub-messages of equal length, can we cre-

ate L additional code sub-messages, of the same length, such that the original message

can be reconstr ucted from some fraction of the K + L sub-messages? Forward error cor-

rection codes to solve this problem exist, and are easier to implement than standard

error-correcting codes, because the decoding algorithm knows which contiguous por-

tions of the encoded message have been lost. A simple example of a code which can

recover the original message from any K sub-messages from a set of K + 1 sub-messages

is the parity code. The original message is broken into K equal parts , and the K + 1st sub-

message (of the same length as each of the K par ts) is constructed as the bitwise parity

of the K par ts . If any one sub-message is lost, it can be reconstr ucted as the bitwise parity

of the ones that were received. Codes which can recover the original message from any

K of the received sub-messages are known as maximum distance separable codes. A

large class of non-binary codes , the Reed-Solomon codes, achieve this limit [42]. No

code can recover from loss of more than L messages .

The parity code is simple enough to be implemented in software at realtime speeds.

The non-binary codes can be implemented in inexpensive hardware at high speeds [5].

They may also be implemented in software, and run at close to realtime speeds on cur-

rent high end wor kstations . Exper iments perfor med in the context of the PET project

(descr ibed in the next section) at the International Computer Science Institute at

133

-- --

Ber keley show that a software implementation of the Reed-Solomon codes can run at

rates of up to 1.2 Mbps on a SPARC 10 wor kstation with a 50 MHz processor [39]. Recent

work showed the feasibility of proba bilistic decoding, with high proba bility for large N ,

using binary codes . Binar y codes can be implemented in software at high speeds

because bit operations such as XORs and shifts wor k very fast on general purpose CPUs.

However, the restr iction that N be large limits the applica bility of the proba bilistic tech-

niques to our fault tolerance mechanisms. Wor k in progress in the PET project suggests

that these ideas may be extended to deterministic binary maximum distance separable

codes , which would have all the proper ties of Reed-Solomon codes, but run consider-

ably faster. There is reason to believe that, with better coding techniques and faster gen-

eral purpose CPUs becoming availa ble every year, in the near future it may be possible

to implement these codes at sufficiently high speeds in software.

Pr ior ity Encoding Transmission

The basic idea behind Prior ity Encoding Transmission (PET) is to provide different lev-

els of redundancy to the different layer s in a hierarchically encoded video stream. Var i-

ous underlying FEC coding technique may be used to provide the redundancy. In [1], the

coding is based on interpolation of polynomials. A faster implementation [39] is based on

the Reed-Solomon codes described earlier, and wor k is in progress to speed up the

implementation using the proba bilistic and deterministic coding techniques described in

the previous section. By appropr iately encoding the different layer s of the hierarchically

encoded video with different levels of prior ity, we can create a combined stream with

some overhead with respect to the original stream, depending on the levels of redun-

dancy added. The stream has built-in redundancy, so it may be transmitted on a networ k

which does not provide any fur ther loss protection. On arrival at the destination, depend-

ing on the number of packets lost, we can extract some of the higher prior ity streams .

The number of streams which can be extracted depends on the degree of redundancy

provided to each of the streams and the number of lost packets . Thus , we can trade-off

134

-- --

the bandwidth of the resulting stream against the level of tolerance.

To give a concrete example, consider an MPEG stream that consists of only I and P

frames , and header infor mation.1 The size of the header stream can be neglected com-

pared to the size of the other two streams . Let us assume an average I frame of 25

Kbytes and an average P frame of 5 Kbytes . Assume that the sequence of frames com-

posing the group of pictures (GOP) are IPPPPPPPPP, which is repeated three times a sec-

ond, giving us a 30 frames/second video stream. Thus, the I stream is 75 Kbytes/s , and the

P stream is 135 Kbytes/second, for a total average stream rate of 205 Kbytes/second.

We may choose to send the header infor mation with 3 times redundancy, the I

stream with 1.5 times redundancy, and the P stream without any redundancy. The overall

ca pacity requirement of the stream after PET encoding is 1.17 times the original. Any one

third of the packets over which the infor mation of an individual I frame is distributed may

be lost without affecting the correct and complete reception of that I frame. However,

the loss of any packet would affect the corresponding P frame. The header has the high-

est level of redundancy, since it is needed to decode any stream at all, but it occupies a

very small fraction of the bit stream. The PET scheme also includes appropr iate packetiza-

tion techniques that spread out the original and redundant infor mation among the

packets , so that really any one third of the packets corresponding to the GOP can be

lost without affecting the reconstr uction of the I frame.

6.3. Schemes for fault tolerance

In this section, we will attempt to set up a framework for our experiments by classify-

ing fault tolerance schemes along four dimensions. Then we will describe the individual

schemes in some detail, and show how the application of var ious combinations of the

levels of these four factor s give us schemes with different proper ties and different capac-

ity requirements .

1 The header contains infor mation such as the color map and is necessary to use any of the other
infor mation.

135

-- --

6.3.1. Classification

The schemes for fault tolerance dealt with in this chapter can be character ized by

three var ia bles: disper sity, redundancy, and disjointness. Finally, the schemes with redun-

dancy may be hot or cold. These ideas are explained in this sub-section.

Disper sity

Disper sity is the idea of sending the infor mation across a number of paths in the net-

work. This idea was first proposed by Maxemchuk in [44], as mentioned in Chapter 1.

Each message to be transmitted on a dispersity system with N paths is fragmented into N

sub-messages . Each of the sub-messages are transmitted on one of these paths. At the

destination, the original message is reassembled. The advantages of spreading the infor-

mation out on N paths are:

• The transmission time is reduced to approximately 1/Nth of its single-path value.

• The load on any one specific path is smaller.

• The effect of bursts is spread out over the networ k.

• In the event of a networ k failure, the transmission capacity of the aggregate system

is only partially affected.

Note that this system is not transparently fault-tolerant. It merely reduces the effect

of the failure on the client.

In the context of a realtime networ k, the different paths of a dispersity system are

subject to realtime constraints . These constraints can be met by using realtime channels

as the component paths of the dispersity system. In other words , after choosing the set of

paths which for m the dispersity system, the realtime networ k perfor ms channel establish-

ment on each of the paths. We will use the term sub-channel to refer to one of the real-

time channels of a dispersity system. One of the constraints the system should satisfy for

efficient operation is that the paths should have roughly equal delays bounds. This should

be a criter ion in the path selection process , as well as in the choice of the end-to-end

136

-- --

delay requirements specified in the establishment process for the sub-channels.

If the delays are not equal, buffers will be required at the destination to equalize

delays , so as to deliver the packets in order. Buffers will also be required to smooth out

networ k jitter. If the realtime networ k provides jitter control, the buffer requirements at the

destination can be reduced. We will wor k out these requirements in the next section. An

incidental benefit of this process of delay equalization is that the networ k jitter is removed

from the infor mation stream.

Since we use realtime channels as the component paths of the dispersity system,

the deliver y of messages at the destination is bounded by the perfor mance guarantees

in the absence of faults . Even in the presence of faults , the perfor mance of the surviving

sub-channels are still guaranteed. We will show how we can use this to provide guaran-

teed service to the application using the dispersity system.

The number of paths chosen, N , is one of the var ia bles that character ize the system.

Redundancy

Redundancy is the idea of sending more infor mation than the message, in order to

be able to reconstr uct the message in the event of loss in the networ k. It may be used

independently of the idea of dispersity, by adding FEC to a single realtime channel. In

conjunction with dispersity routing, it can be used by sending the redundant infor mation

along a separate path. For example, of the N paths , only K may carr y the message

stream. Thus, for a given message, the system would break it into K equal sub-messages

and transmit them on the K paths . The rest of the paths may be used to transmit redun-

dant infor mation, which would be used to reconstr uct the original message in the event

of loss of some of the K or iginal pieces of the message. A simple redundant system can

be designed with K = N − 1. In this case the single redundancy sub-channel carries a bit-

wise parity calculated over the N − 1 pieces of the message. If any N − 1 of the total sub-

messages arrives at the destination, the message can be reconstr ucted. Error correction

137

-- --

codes which wor k for arbitrar y N and K exist. In the case of maximum distance separable

codes , if any N − K of the messages are received, the message can be recovered.

The var ia ble K in relation to N defines the degree of redundancy. K = 1 is corre-

sponds to duplicating the same infor mation on N channel, uses N times the bandwidth of

a non-fault-tolerant realtime channel, and has the largest fault tolerance. K = N corre-

sponds to a dispersity system without any redundancy.

A disper sity system with redundancy requires N/K times the bandwidth of a non-

fault-tolerant realtime channel with the same traffic and perfor mance requirements .

When redundancy is used in combination with dispersity, we get the following additional

advantages as compared to a dispersity system without redundancy:

• The system is error tolerant. A certain number of the pieces of the message can be

corr upted or lost without affecting the decoding of the message. The number

depends on N , K , and the error-correcting code. It can be no larger than N − K .

• The system is transparently fault-tolerant. A certain fraction of the paths can be

affected by failure, without interrupting the flow of the infor mation. Again, the

specifics of the error-correcting code determine the number of failures that can be

tolerated.

Moreover, since the service of the underlying realtime channels is realtime, we

obtain perfor mance bounds on the service provided by the dispersity system. The appli-

cation sees fault tolerant realtime service, with guarantees on packet-deliver y that con-

tinue to hold in the presence of restr icted faults . The restr iction on the types of faults cov-

ered depend on the level of redundancy of the system, and the nature of the FEC code

used. Examples of types of faults that may be covered include single faults , double

faults , and so on.

Disjointness

In general, the paths used in the dispersity systems should be disjoint. For these

138

-- --

systems to wor k, the routing algorithm in the networ k must be able to recognize channels

belonging to a dispersity system, and place them on disjoint paths. If the paths are not

disjoint, then many of the advantages of dispersity systems are lost. In particular, the fail-

ures of the paths are no longer independent, since, if a shared link fails , two or more

paths can simultaneously stop transmitting data. However, disjointness is a ver y har sh

restr iction, especially as N approaches the edge connectivity of the networ k topology.

By allowing some links to be shared, we might be able to set up many more connections

in the networ k. We would like to answer the question: can any of the advantages of dis-

per sity routing still be provided after relaxing the disjointness criter ion?

If the constraint is completely relaxed, then it is possible for a link to be shared by all

the paths in a dispersity system, leading to the undesirable character istic that if that link

fails , the capacity of the system is reduced to zero. Therefore, we must put in some con-

straint, which, while looser than the strict disjointness constraint, should still allow the dis-

per sity system to have prova bly good tolerance character istics . If we allow a link to be

used by at most two channel routes , then we know that a single failure will not affect

more than two of the paths. Then, by imposing the restr iction N − K ≥ 2, the system can

continue to be tolerant to single faults , assuming maximum distance separable codes. Of

cour se, this system would require more networ k bandwidth than the N − K = 1 system with

the same capacity. We look at the costs and benefits of such methods below. In ter ms of

our character ization, we can define a var ia ble S , which places a limit on how many

paths can share a link.

The routing algorithm in the networ k must take the var ia ble S into account while

routing channels which belong to a dispersity system. Of course, even if the system

allows links to be shared (i.e., S > 1), the routing algorithm should try to find paths which

do not share links , and only use paths with shared links if no paths meeting the delay con-

straint exist, which do not share links .

Thus , a disper sity system can be character ized by the triple (N , K , S). This tr iple also

139

-- --

tells us how fault-tolerant the system can possibly be. If we use a maximum distance sep-

arable code, the system can tolerate up to




N − K
S





faults in the networ k transparently. For

example, the (5, 3, 2) system can tolerate one fault with a maximum distance separable

error-correcting code.

Hot vs. cold standby

In addition to the above three var ia bles , a disper sity system with redundancy

(N > K) can be run in a hot or cold standby mode. In case of hot standby mode, the

extra sub-channels actually carry FEC infor mation. In the event of packet loss or failure,

the destination can recover without any exchange of messages with the source. In the

case of cold standby, the extra sub-channels are not used, except in the event of a fail-

ure. This extra capacity can be used to transmit non-realtime traffic during normal usage,

with the understanding that, in the event of failure, the capacity will be appropr iated for

use by the fault-tolerant realtime connection. When the failure occur s , we incur an extra

delay before recovery due to the need to infor m the source of the failure, so that it can

shift the transmission to the back-up sub-channels. However, the capacity is guaranteed

to be there, unlike what happens in the reactive fault recovery mechanisms we

descr ibed in the previous part of the thesis.

6.3.2. Description of schemes

In this section, we discuss in further detail some of the interesting regions in the

4-dimensional space described by the above framework. The gains in service provided

by the dispersity systems falling into each region, as well as the attendant costs in terms

of increased bandwidth, delay, or implementation complexity, are discussed. We show

how to compute the traffic and perfor mance specifications of the sub-channels, as well

as bounds on the buffer requirements at the destination. We also mention any additional

suppor t, from coding techniques, or from the networ k that may be required to make

140

-- --

each scheme wor k.

Disper sity routing without redundancy - (N , N , 1) systems .

Schemes within this category spread the data packets out into the networ k using

realtime channels on disjoint paths. If N paths are used, the bandwidth reser ved on each

path is 1/Nth of the total required capacity. In the case of networ k failure, some of the

paths survive and continue to carry data while the others are being rerouted. Thus,

some lower bandwidth communication is maintained under fault conditions. The system

has no overhead in terms of extra bandwidth requirement. However, it suffers from a

degradation in service, which can be partially character ized by the loss of 1/Nth of the

bandwidth in the event of a single failure. In the case of video transmission, depending

on the compression and/or error-correcting technique being used, the destination may

ada pt more or less gracefully to this loss instantaneously. In all cases, when the sender is

infor med, the system can be re-arranged to get the full benefit of the remaining capac-

ity. We will now look at some of the compression techniques, and analyze how they

would adapt instantaneously to the failure, even before the sender re-arranges its opera-

tion.

The system would wor k well with video compression codes in which a packet trans-

mitted on a given path is independent of packets on the other paths. Compression

codes without inter-frame compression, such as JPEG, fit this model. As long as we make

all packets corresponding to a single JPEG frame follow the same path, we have each

stream independent of all other streams . In this case, failure of any path would result in a

reduction of the frame-rate of the video stream seen at the destination. There would also

be a small increase in the irregular ity of the displayed stream, since we would see N − 1

frames displayed smoothly, and then a discontinuity. This could be fixed as soon as the

source is made aware of the fault, by adjusting the frame-rate to use the availa ble

ca pacity.

141

-- --

This idea would also wor k reasona bly well with asynchronous video coding

schemes , such as the block update scheme described in Section 6.2.1. The following

considerations must be kept in mind. The number of paths N should be large, since the

fraction of traffic lost in the event of a fault is 1/N and the block update scheme is loss tol-

erant only up to some limit. The source should be notified by the networ k, and should

adjust to using only the surviving links until the fault recovery process restores the failed

link. This could be done by scaling back the block compression algorithm to a lower

bandwidth as described in Section 6.2.1, and transmitting the infor mation only on the sur-

viving sub-channels. The picture quality after scaling back would be better than the pic-

ture quality while 1/Nth of the packets are being lost.

Compression codes that use hierarchical encoding could also wor k with (N , N , 1)

disper sity systems , in conjunction with Prior ity Encoding Transmission (PET). By appropr i-

ately selecting the levels of redundancy on the var ious layer s in the hierarchical com-

pression scheme, we can create a coded stream which would degrade by layer s as the

number of faults in the networ k increases . The example wor ked out in Section 6.2.2, if split

appropr iately into 3 streams , and transmitted on a (3, 3, 1) system, would provide both I

and P streams in the normal case, and only the I stream in the event of a failure. Note

that the degradation is present only during the time it takes the networ k to recover the

failed sub-channel. The overhead in this example is 17%, as wor ked out in Section 6.2.2.

Audio data, having much lower bandwidth requirements , may be handled using

the systems with redundancy, to be descr ibed below. Other realtime that can be parti-

tioned into multiple streams in such a way that any of the streams can be dropped with-

out affecting the utility of the other streams can enjoy the graceful degradation charac-

ter istics of the dispersity systems without redundancy. The graceful degradation is mani-

fested as a loss of bandwidth when a failure occur s . The guarantees on the other perfor-

mance bounds provided by the realtime networ k, such as delay, jitter, and loss due to

buffer overflow, continue to be valid.

142

-- --

Realtime data that cannot be partitioned into multiple streams as described above

can be carried on such systems with a temporar y disr uption dur ing failure, notification of

the source and destination, and scaling back and adjustment at the source to use the

sur viving paths . However, since the round-tr ip delay of the channel has to be small in

order to be suitable for interactive use, the latency of this notification process will also be

small, and may be acceptable for many applications . In addition, the notification time

can be bounded, at least statistically, by reser ving resources for the control activity.

Since the coding step is absent for these systems, we do not need to fragment

each message across the paths. Rather, each message may be sent on a single path,

and the different messages may be sent round-robin on the paths in the system. This

saves us the fragmentation overhead. Thus, messages are sent on the sub-channels at a

rate 1/K th the total rate, but the message size remains the same. No delay is added due

to fragmentation or encoding. Thus:

X ′
min = Xmin ⋅ K

X ′
ave = Xave ⋅ K

I ′ = I
S ′

max = Smax

Dmax
′ = Dmax

(6.1)

The number of buffers needed at the destination to equalize the delays between

paths , absorb jitter, and reorder the packets can be computed using the following for-

mula:

B =





Dmax
′ −

j<N
min(Dp j)

X ′
min

+ 1





, (6.2)

where Dmax
′ is the delay bound on the sub-channels in the dispersity system, as calcu-

lated in Equation 6.1, Dp j is the minimum delay (transmission + propagation) on the path

for sub-channel j , and X ′
min is the minimum inter-packet time on the sub-channels. B is an

upper bound on the buffers required. We will compare the buffers actually used in the

simulation experiments to this bound. The buffer space for reassembly should be large

143

-- --

enough to hold B packets from each sub-channel in the dispersity system. The memory

required is, thus , N ⋅ B ⋅ S ′
max.

The buffer space requirement at the receiver could be reduced in a networ k that

implements jitter control by taking advantage of the fact that no packet can arrive

before Dma x ′ − Jma x ′ at the destination. Thus , the number of buffers required is

reduced to:

B =




Jmax
′

X ′
min

+ 1




(6.3)

Our simulation did not implement jitter control, but a description of how jitter control may

be provided in a packet switched networ k may be found in [31].

Disper sity routing with redundancy - (N , K , 1) systems with K < N

Disper sity systems with redundancy operate by breaking each message into K

packets of equal size. Then, they compute N − K redundant packets using an appropr i-

ate coding technique, and transmit the N resultant packets onto N realtime channels. At

the destination, the original message can be reconstr ucted from any K packets , if the

coding technique used in maximum distance separable.

Schemes within this category use N/K times the networ k bandwidth, compared to

the bandwidth required to support a non-fault-tolerant realtime channel with the same

specifications . These schemes use the FEC infor mation on the N − K extra paths to

recover instantaneously and transparently from up to N − K faults . The bandwidth over-

head of such a system is, thus ,
N − K

K
. For example, a one megabit per second video

stream carried on a (3, 2, 1) system would require three sub-channels each with half

megabit per second capacity.

Note that we can build systems with fault-tolerance identical to a PET stream being

carr ied on an (N , N , 1) system as a combination of different (N , K , 1) systems . The exam-

ple provided for PET in Section 6.2.2 is equivalent to a combination of a (3, 1, 1) system for

144

-- --

the header stream, a (3, 2, 1) system for the I stream, and a (3, 3, 1) system for the P

stream, using the same set of three paths. While the details of encoding are different, the

amount of fault and error tolerance provided is the same.

The systems for K = 1 and K = N − 1 are easier to implement, since K = 1 corresponds

to sending the same data on all N sub-channels , and K = N − 1 corresponds to the parity

system. The other systems would need some hardware suppor t, such as described in [5],

or fast CPUs to perfor m the coding and decoding in software. New coding techniques

are under investigation [39], which might solve this problem. The systems with K = N − 1,

which we will call the parity code systems, are currently the most practica ble systems ,

given CPU speeds and the complexity of the algorithms for coding and decoding maxi-

mum distance separable codes.

Disper sity schemes with redundancy provide completely transparent fault-tolerant

ser vice to the application. For fault conditions that are within the recovery ability of the

error-correcting code (less than N − K faults , assuming maximum distance separable

codes), no degradation of service is seen on. Since we use realtime channels as the

component paths of the dispersity system, all messages are delivered according to the

perfor mance bounds guaranteed to the application, even after a failure has occurred.

Thus , the service provided is fault-tolerant realtime ser vice, within the strict Tenet definition

of realtime; that is, the guarantees provided are mathematically prova ble. The ability to

recover transparently from the loss or corruption due to transmission error s of N − K pack-

ets from the same message is also provided as a side benefit.

The parameter s to be used for establishing the sub-channels of the dispersity system

with redundancy can be calculated from the parameter s of the request as follows . Since

each message on the entire system causes a packet to be transmitted on each sub-

channel, Xmin, Xave, and I are the same as in the original request. The packet size is 1/K th

of the message size transmitted on the system. The delay for fragmenting and encoding

the packets must be accounted for while setting the delay bound for the sub-channels.

145

-- --

For some systems, such as the (N , 1, 1) systems , dcode and dfrag may be zero or negligible:

X ′
min = Xmin

X ′
ave = Xave

I ′ = I

S ′
max =

Smax

K
Dmax

′ = Dmax − dcode − dfrag

(6.4)

At the destination, the time to decode the packets must be added to the end-to-end

delay, before the decision about acceptance for the entire system can be made. The

buffer requirements at the destination for these systems are the same as described in

Equations 6.2 and 6.3.

Disper sity routing with some shared links - (N , K , 2) systems

In case a completely disjoint set of paths cannot be found, the scheme can still

continue to wor k using some partially disjoint paths. Relaxing the constraint thus allows us

to set up a larger number of connections in the same networ k. The increase in capacity

provided by relaxing this constraint will be investigated in the simulations . We will only look

at systems with S = 1 (links may only lie on one path) and S = 2 (each link may only be

shared by two paths). The routing algorithm is constructed to use shared links only when

no other path can be found.

The service offered by such systems in the absence of faults is ver y close to that

offered by the (N , K , 1) systems . If we assume that the loss rates due to transmission error s

on on all links are identical, and time-independent, the proba bility of a loss which is unre-

covera ble is the same for both systems. However, on real links, bit error s are auto-

correlated, and thus the proba bility of loss due to a transmission error seen by two pack-

ets which cross the same link closely together in time are not completely independent.

Therefore, the service seen by the (N , K , 2) system may be slightly wor se than the service

seen by the (N , K , 1) system. This effect would decrease with the packet size, since the

auto-correlation would not be observed at the larger time scale of the packet

146

-- --

transmission time, and hence, the proba bility of loss for two different packets would be

almost independent.

In the event of the failure of an unshared link, the effect on the two systems is the

same. If the link which fails is shared, then this results in a failure of two sub-channels in the

(N , K , 2) system. There are three possible approaches to offering a meaningful service in

this context.

Fir stly, if the system under consideration is a non-redundant dispersity system (N = K),

the loss in capacity of the connection in the event of a single failure will be either 1/N or

2/N , depending on whether a shared or an unshared link failed. This may be an accept-

able service for large N , especially since we are operating in a heavily loaded networ k,

where the better S = 1 connection could not be established due to existing reser vations .

The service after a fault is still realtime, since the perfor mance guarantees are still valid;

however, the loss in bandwidth for an S = 2 system is larger than that for the S = 1 system if

a shared link fails .

Secondly, in case the user asks for an (N , N − 1, 1) connection, but the routing algo-

rithm retur ns an (N , N − 1, 2) connection, we know this can only happen because an

(N , N − 1, 1) connection could not be created. At this point, the user may be infor med of

the paths found. From a knowledge of the number of links that are shared between two

paths , and the proba bility of failure of each link, the user (or the networ k) can compute

the proba bilities of an uncovered failure (failure of a link which is shared between two

paths) and of a covered failure (failure that affects a link that is not shared). The user can

then decide if he wants to accept this limited fault-tolerance, perhaps for a lower cost

than for full tolerance. In this case, the fault-tolerance provided cannot be guaranteed,

since only some of the failures are cov ered.

Finally, a third way is to use extra redundancy in the coding, i.e., use an FEC code

that can survive the failure of two sub-channels . If the original request is for a (4, 3, 1) sys-

tem and four disjoint paths cannot be found, the user might also be satisfied with a

147

-- --

(5, 3, 2) system or a (4, 2, 2) system, as long as the total data rate is the same, since the

fault and transmission error tolerance character istics of both systems are at least as good

as that of the (4, 3, 1) system. The system is transparently tolerant to all single failures (and

can even sur vive double failures , unless the shared link fails). Realtime guarantees con-

tinue to be met without disruption after the fault. The questions that remain to be

answered are:

• In a heavily loaded networ k where an (N , N − 1, 1) system cannot be routed, is it

likely that we find paths for an (N , N − 2, 2) system, given such as system requires

more networ k bandwidth than an (N , N − 1, 1) system?

• How much of a detrimental effect would such a trade-off have on the capacity of

the networ k to support realtime connections?

Hot standby systems

In the most general interpretation of the term, all the schemes described so far for

disper sity systems with redundancy are hot standby systems . This means that the capac-

ity of the extra sub-channels is used to transmit redundant infor mation, which can be

relied on to recover the data in the event that some of the sub-channels fail. However,

the common usage of the term ‘‘hot standby’’ is for systems where no encoding or

decoding is required for the standby. The most common example of a hot standby sys-

tem is that provided by a (2, 1, 1) system, where the source transmits the same data down

two disjoint sub-channels. The destination uses the data from either channel, whichever

comes in first. This allows completely transparent tolerance, to both losses and faults , with-

out the need for notification of either source or destination. There is no degradation of

the realtime perfor mance of the system for single faults . In addition, the system needs

only two disjoint paths in the networ k, which is a much easier constraint to satisfy than N

disjoint paths for large N . Fur ther, there is no overhead for special fragmentation and

encoding at the source, or reassembly and decoding at the destination. No extra buffers

are needed at the destination to equalize delays. On the negative side, the system uses

148

-- --

twice the networ k ca pacity of the non-fault-tolerant realtime channel. This idea could be

extended to (N , 1, 1) systems , for tolerance to N − 1 simultaneous faults , but with

increased capacity overhead.

Cold standby systems

For cold standby operation, an (N , K , 1) system is operated with K sub-channels in

use during normal operation. The capacity of the other N − K sub-channels is free for best

effort data traffic. In the case of a fault the realtime dispersity system switches the data

which was being carried by the affected sub-channel to one of the alternate channels.

This involves a latency for infor ming the source and for the source to switch channels.

However, no channel setup is required, since the resources are reser ved at the time the

(N , K , 1) system is established. Only the packets transmitted by the source on the failed

channel after the failure would be lost. All packets transmitted on the backup will be

delivered within the perfor mance bounds, since the reser vations are ready and waiting.

The duration of the disruption would depend on the time for the notification message to

reach the source, and could be statistically bounded by reser ving resources for the con-

trol messages.

No extra suppor t from the networ k is required to use the resources of the spare sub-

channel for best effort data traffic during normal operation. The realtime networ k is

already designed to allow the unused capacity of realtime channels to be used by best

effort data traffic. Of cour se, leaving the spare capacity unused is only useful if sufficient

best effort datagram traffic exists to use it.

IFI and SFI channels

Finally, we discuss two other schemes which have been proposed for fault-tolerant

realtime networ ks , in order to compare the networ k requirements and the services

offered to those of the schemes proposed here. These schemes were also mentioned in

Cha pter 1. Single Failure Immune (SFI) channels, proposed in [73], provide immunity to

149

-- --

single failures , but use roughly three times the capacity required by a non-fault-tolerant

realtime channel. The basic idea is to start with a realtime channel, remove single links

from it and run routing algorithms to find the smallest additional set of links, which would

allow the system to keep running if that link failed. The routing algorithm used to add the

links is similar to link rerouting, but this process is perfor med a prior i dur ing esta blishment,

rather than at the time of the fault. At each stage, the smallest set of links is added,

which would allow the system to survive the fault, subject to the delay constraints . This

process is repeated for all the links in the original realtime channel. Finally, resources are

reser ved on each link in the system. The aggregate set of links has the proper ty that in

the event of failure of any single link of the original realtime channel, the data stream

can be rerouted by the node adjacent to the failed link, to follow an alter nate path

which consists only of links within the aggregate set of links (excluding the failed link), and

still obey the delay constraints . In the example provided in the paper, the fault-tolerant

channel has close to three times the number of links as the original realtime channel.

Thus , under the approximation that the delay constraints on all the links are close to each

other, roughly three times the resources are required by the SFI channel as compared to

the non-fault-tolerant realtime channel. However, since the scheme is a cold-standby

one, the reser ved capacity can continue to be used by best effort traffic until the fault

occur s . The system requires networ k suppor t to allow the intermediate nodes to update

channel identifier mappings after detecting the fault. The disruption of service is limited

to the amount of time to perfor m this activity.

This idea is extended in [74] to cover isolated failures , i.e., to provide Isolated Failure

Immune (IFI) channels. Node faults are defined as isolated as long as the source and des-

tination are not faulty, and no two adjacent nodes are faulty. A link is defined to be faulty

not only if it fails , but also if the node to which the link leads fails . Link failures are said to

be isolated if any two faulty links are not originating from the same functioning node, or

directed to the destination node of the channel. The routing constraints of SFI channels

150

-- --

Destination

Source

1

2

3

4 6

5

Figure 6.1: One set of isolated link failures which the IFI channel can survive

are modified to extend the fault tolerance to all sets of faults which do not violate the

restr ictions defined above. The overhead (number of extra links added to the realtime

channel) continues to be roughly three. The other restr ictions of the SFI scheme, such as

networ k suppor t to change the channel identifier mappings to make sure the data fol-

lows the new path in the event of a fault, hold. The IFI scheme offers a better service,

since tolerance to multiple faults is provided. In fact as Figure 6.1 shows , a ver y large num-

ber of links can fail before an IFI channel is disabled. However, the IFI techniques are only

valid in ver y restr icted networ k topologies , since IFI sets of links do not exist in most com-

mon topologies. For example, in the mesh topology of Figure 6.2, the failures of links (2,3),

(7,8), (12,13), (17,18), and (22,23), while isolated, break the graph into two disconnected

components . Even if reser vations are made on all of the links of the graph, the result is still

not IFI. Thus, no IFI set of links exists in this (and most) graphs . The topology of the HARTS

networ k, in the context of which the IFI channel is defined, is a wrapped hexagonal

mesh. This is the only commonly-used networ k topology in which IFI channels exist; thus,

the applica bility of the algorithms and theorems of [74] is ver y restr icted.

6.4. Simula tor design

The simulator described in Chapter 4 was modified to conduct experiments con-

cer ning the fault tolerance provided and the networ k resources used by the dispersity

151

-- --

21

54321

10

15

20

2524

9876

22

17 18

23

16

11 13 14

19

12

Figure 6.2: No IFI set of links exists in a square mesh topology

systems described in this chapter. The following changes to the simulator had to be

implemented.

• The parameter s for the sub-channels are calculated according the dispersity sys-

tems being simulated, as described in Equations 6.1 or 6.4.

• The routing algorithm had to be modified to route the sub-channels belonging to a

disper sity system on disjoint paths. If disjoint paths cannot be found links, can be

shared by at most S sub-channels . The routing algorithm attempts to keep the num-

ber of such shared links as small as possible.

• The routing algorithm tries to find paths with equal delay. Any differences in the

delays on the different paths are equalized by buffers at the destination. Statistics

are maintained about the number of buffers used.

• The generation of a packet at the source causes the transmission of N sub-

messages , one on each path in the dispersity system.

• The statistics maintained by the simulation depend on the dispersity system being

simulated. For example, for a (5, 3, 1) system, the message is counted as being

152

-- --

successfully delivered to the application, when any three of the sub-messages cor-

responding to the message have arr ived.

Routing for the sub-channels of a dispersity system is perfor med one by one. The first

sub-channel is routed as a normal realtime channel. The additional constraints of disjoint-

ness are added for each subsequent route calculation. The changes to the routing algo-

rithm were implemented as a set of preprocessing steps on the graph representing the

networ k before the Bellman-Ford algor ithm was run. To enforce disjoint paths, the links

corresponding to the paths which should not be used are removed from the graph by

setting the delay on the path to infinity. To allow links to be shared S times , we maintain a

variable Ue associated with each link e, which is the number of times the link e has been

used by sub-channels in the dispersity system. When Ue ≥ S , the link e is removed from

the graph by setting the delay to infinity as before. If 0 < Ue < S , we want the routing

algor ithm to find paths including e only if other paths do not exist. We replace each such

link by n links , each with a delay of 1/n times the delay on the original link. Since the

algor ithm retur ns the shortest path which meets the delay constraints , it finds paths which

do not use the shared links before it find paths including them, up to a difference in path

lengths which can be tuned by changing n. We do not change the end-to-end delay

on any path by this replacement process; thus, we are guaranteed to find all paths even-

tually.

The method of reassembly used in the simulator consisted of a circular buffer, each

slot capa ble of holding N sub-messages . The structure is shown in Figure 6.3. A newly

arr iving sub-message is placed into the appropr iate slot in the circular buffer. The index

into the circular buffer is the remainder after dividing the sequence number on the

packet modulo B. As soon as K sub-messages have arr ived for the same sequence num-

ber, the message may be reconstr ucted. Reconstr ucted messages are passed in

sequence number order to the application, and the corresponding slot in the circular

buffer is freed for reuse. Alternatively, we may hold each message up to the end of its

153

-- --

delay bound, thereby removing all the jitter from the stream. This may be done using

time-stamps on packets and the knowledge of the delay bound Dmax, if the clocks on

the source and destination machines are synchronized, as may be done using a time

protocol such as NTP. Since we know that no sub-message can be delayed by more than

Dmax
′, the number of buffers required is bounded, and we are guaranteed not to wrap

around in the circular buffer. Of cour se, the reassembly code checks this condition, to

ensure that older packets do not get assembled with sub-messages from current mes-

sages . Such a case would be counted as a violation of the delay bound guarantee, and

the old packet discarded.

TailHead

. .

.

. .
.

.
.

.

.

.
.

.

Increasing sequence numbers

Figure 6.3: Structure of reassembly buffer for N = 4

The simulator models this behavior at the level of detail of individual packets . Thus ,

the encoding and decoding operations , which occur at the bit-level, are not simulated.

The transmission of a message on the dispersity system is modeled as the transmission of

packets on each sub-channel of the dispersity system, but the bit level contents of the

packets are not simulated. The arrival of the appropr iate number2 of packets from the

same message at the destination is interpreted as a successfully decoded message, and

the statistics are updated accordingly. Encoding and decoding times are not modeled,

2 Depending on the dispersity system being simulated.

154

-- --

since they are dependent on the coding algorithms , which are still under development,

and on the hardware availa ble on the wor kstation.

We modeled the process of notification of the source to initiate switching, since a

fault message is sent from the detector to the source to initiate fault recovery, and the

same message can be assumed to trigger the switching for the cold standby systems .

The process of switching itself can be assumed to take a negligibly small amount of time,

as compared to the notification time, which involves networ k communication.

The requirements of a realtime dispersity system are descr ibed, in the event file from

which simulation is started, by the end-to-end traffic specifications and perfor mance

requirements and the var ia bles N , K , and S . The parameter s of the sub-channels are cal-

culated as defined in Equation 6.1 or Equation 6.4. The additional restr ictions on the rout-

ing algorithm are automatically generated, using the routing extensions described

abov e.

6.5. Simula tion results

The experiments perfor med using the simulator fall into two categor ies . The first set

of experiments are intended to ver ify the level of fault tolerance provided by the disper-

sity systems. Since the reser vations are pro-active, and the guarantees provided on the

sub-channels are mathematical and deterministic in the absence of losses in the net-

work, we can prov e that the service guarantees hold, given that the assumptions about

the fault(s) and other losses are satisfied. The simulations serve to confir m these expecta-

tions , as well as to demonstrate the wor ka bility of the systems to a fair level of detail. In

the presence of networ k losses due to transmission error s and faults , which are not cov-

ered by the Tenet guarantees , the dispersity systems can provide lower packet loss than

the basic realtime channel; this perfor mance is experimentally evaluated and compared

to values computed from a simple proba bilistic model of networ k loss in the first part of

this section. For the dispersity schemes with redundancy, the service provided is mathe-

matically guaranteed even in the event of a failure; thus, we expect that, in the absence

155

-- --

of transmission error s , no message will miss its deadline. This is confirmed in our simulation

exper iments . We also measure the buffer requirements of the dispersity systems, to cross

check them against the computed values from Equation 6.2.

The second category of exper iments perfor med deal with the impact of the disper-

sity systems on networ k ca pacity. The simple analysis provided in the previous section

shows that the resources consumed by an (N , K , S) system are approximately N/K times

the resources consumed by an equivalent non-fault-tolerant realtime channel. In simula-

tion, we compare this result to the number of instances of each type of system that can

be established in the networ k under var ying load conditions. This provides us with a bet-

ter empirical understanding of the effect of the more subtle issues, such as the effect on

the networ k ca pacity of splitting the resource requirements among N sub-channels on

different paths and the proba bility of finding resources on N disjoint paths.

6.5.1. Perfor mance results

The first set of experiments conducted consisted of setting up one connection using

the dispersity system under consideration, in a networ k carr ying different levels of back-

ground load, and simulating the service provided in the presence and absence of faults

and losses due to transmission error s in the networ k. The networ k being simulated is the

‘‘core’’ topology discussed in Chapter 4. The background load is obtained by choosing

a set of channel requests from the ‘‘or iginal’’ distr ibution of Chapter 4. Zero or one faults

are simulated, depending on the experiment. Losses due to transmission error s are simu-

lated by dropping each packet with a given proba bility on each link. Though the simula-

tor supports specifying loss proba bilities for each link separately, in the experiments

descr ibed here all links were assigned the same loss proba bility.

All the experiments described in this section were perfor med for all of the dispersity

systems . The perfor mances observed for all the dispersity systems meet the expectations

of Section 6.3.2. We will not present all the results for each separate dispersity system.

Rather, we will use a running example, to present some specific results . The general

156

-- --

1 2 3

654

7 8 9 10 11 12

1716151413

Figure 6.4: (3, 2, 1) disper sity system simula ted

conclusions presented below from the specific experiment are applica ble to the entire

set of dispersity systems, unless otherwise noted. Where there are differences , we will

show the perfor mance of some of the other systems as well.

The example system is a (3, 2, 1) disper sity system, established from node 8 to node

14 in the networ k depicted in Figure 6.4. The traffic parameter s for the fault-tolerant dis-

per sity system were Xmin = 5 ms, Xave = 5 ms, I = 500 ms, and Smax = 10000 bits. This corre-

sponds to a 2 Mbps JPEG compressed stream, called a class A channel in Chapter 4. The

end-to-end delay bound for the system is seventy milliseconds, and the minimum propa-

gation and transmission delay is thirty-five milliseconds . B as computed by Equation 6.2 is

eight. The simulator does not support statistical delay bounds, jitter control, or var ia ble

buffer overflow proba bilities . Thus , by default, Zmin = 1, Jmax = Dmax, and Wmin = 1. In terms

of Figure 6.3, we need at the destination (node 14) a circular buffer eight deep and three

wide. We have S ′
max = 5000 bits or 625 bytes . This is the size of each buffer unit in the circu-

lar buffer. The total memory needed is, thus , 15,000 bytes .

157

-- --

The simulation was perfor med for zero and one fault in the networ k, at var ious prob-

abilities of packet loss on the links, and var ious extraneous loads in the networ k. The net-

work load was created by esta blishing varying numbers of simple realtime channels in

the networ k, before star ting the observation of the fault-tolerant system. The measure-

ment was perfor med by allowing the experiment to run for 39 seconds of simulated time.

This took an hour or more of actual time, depending on the speed of the machine run-

ning the simulation and the other load on the machine, because of the level of detail

being simulated. The simulator kept track of the number of packets dropped, the number

of messages decoded, the buffers used, and so on. When a fault was simulated, all pack-

ets on the failed link were lost. The fault recovery process described in Chapter 4 was

activated, and the affected channels rerouted. Unlike the experiments in Chapter 4,

data transmission across a link could also fail randomly with a proba bility deter mined by

a parameter of the experiment, simulating losses due to transmission error s . At simulated

time equal to 39 seconds, the measurements were written out to a file. Further simulation,

involving tearing down the affected channels to compute the efficiency of resource

usage, was perfor med, and at simulated time equal to 43 seconds, more statistics were

collected and the simulation was stopped.

The general results which apply to all the experiments perfor med, but for which no

graphs need to be shown, are descr ibed fir st. The service provided met the realtime

guarantees in all cases. No packets were delivered after the delay bound. In the

absence of losses due to transmission error s , no messages were lost for zero and one link

failures . These observations were not affected by the level of the extra realtime load on

the networ k, since the guarantees on the sub-channels hold irrespective of the other traf-

fic.

In the experiments in which failure was simulated, one of the links in the central core

was removed from ser vice. This caused the fault recovery process described in the previ-

ous chapter s to be triggered. The fault message reached the source in under 20 ms,

158

-- --

because of the topology and proximity of the failed link to all sources . This is a measure of

the time for notifying the source to perfor m switching for the cold standby sources , and is

dependent on the topology. The fault recovery process also rerouted the failed sub-

channel to an alternate path. In all our experiments , the reroute was successfully com-

pleted.

We also measured the maximum buffer occupancy in the circular buffers dur ing the

simulation. No more than eight buffers were needed for the running example of the

(3, 2, 1) system, which matches the calculated bound exactly. The actual usage was less

in the experiments with no faults and low loss rates due to transmission error s , since the

maximum buffers are only needed when a message fails to be successfully decoded until

its deadline. In case more than N − K sub-messages from the same message are lost, the

reassembly algorithm waits until the delay bound for the message expires . The message is

then deemed lost, and the buffers for the sub-messages are freed. In the meantime,

other messages may have come in with the minimum propagation delay in the networ k.

Thus , in the case of experiments involving significant loss due to faults or transmission error

the buffer size is predicted by Equation 6.2 exactly. The load due to the other realtime

channels in the networ k did not affect the buffer requirement at all.

The numbers of buffers required by all the dispersity systems shown here are fair ly

moderate. The calculation for B is identical for all of them, since the delay bounds and

the minimum propagation delay on the shortest path are the same. This analysis was

confir med by our simulations in all cases. The only difference in buffer requirements

among the var ious disper sity systems is the width of the buffer, which is given by N . Thus ,

the largest amount of memory (25,000 bytes) is required by the systems with N = 5. This

amount of memory is fine for most general-pur pose computer s , and would also be

accepta ble for specialized devices like set-top boxes . The lesson here is that, by control-

ling the end-to-end delay for the component sub-channels, we have reduced the prob-

lem of buffering at the destination. In case the buffer requirements do become

159

-- --

significant, as might happen for higher bandwidth connections than the 2 Mbps chan-

nels we used in our simulations , we can reduce them by using jitter control (Eq. 6.3).

When we introduce losses of packets due to transmission error s in the networ k, we

demonstrate the loss-tolerant nature of the system. The transmission error process used in

the simulation is ver y simplistic, since we drop packets with a fixed low proba bility on

every link. This is not an accurate model of real transmission error s , since the error process

displays temporal auto-correlation at the bit level. However, at the longer interval corre-

sponding to the transmission time of a packet, this correlation is much less noticeable. In

our experiments , the packet size is 10,000 bits, which would make the proba bility of loss

even for consecutive packets almost independent. Thus, our assumption of stochastic

independence for the transmission error process is reasona ble.

0

50

100

150

200

250

(1,1) (1,1)

(1,1)

(1,1)

(2,1) (2,1) (2,1) (2,1)(3,2) (3,2) (3,2)

(3,2)

(4,3) (4,3) (4,3)

(4,3)

(5,4) (5,4) (5,4)

(5,4)

error=0 error=10−4 error=10−3 error=10−2

Packet loss

Figure 6.5: Packet loss vs. loss rate for dispersity systems with N - K = 1,
no networ k failure case

Note that the loss process we are simulating does not include losses from buffer over-

flow at the nodes, since those are controlled by the realtime networ k. While the observed

160

-- --

loss character istics of packet switched networ ks do display auto-correlation at the

packet level, the main source of such losses is buffer overflow due to congestion at net-

work router s . This source of loss is eliminated in our experiments3 by the realtime protocols ,

by reser ving buffers on a per connection basis, so that buffers are guaranteed to be pre-

sent when a realtime packet arr ives at any node.

Figure 6.5 shows the effect of the loss rate due to transmission error s in the networ k

on the loss of messages as seen by the application using the dispersity system. On the x-

axis , we have the proba bility of losing a packet on any link. Note that the graph shows

loss rates in the networ k up to a 10−2 proba bility of losing a packet dur ing each transmis-

sion on every link in the networ k. These are not meant to be representative of transmission

error rates in real networ ks . The actual error rates seen in fiber-optic transmission systems

are much lower. We simulated high transmission error rates so that we could observe a

significant number of lost packets and its effect on the overall dispersity system. On the y-

axis we have the number of messages lost by the system. There are 5 bar s for each loss

rate, but up to a loss rate of 10−3, most of them are of close to zero height. The height of

each bar denotes the number of messages lost by the dispersity system due to lost pack-

ets . The number of packets lost on the sub-channels is, of cour se, larger, since a message

is lost only if sufficient packets are lost to defeat the redundancy in the system. The tuple

shown over each bar is (N , K) for the dispersity system represented by the bar. The var i-

able S is 1 for all the systems simulated, so it is not shown. Only the systems with N − K = 1

and the (1, 1) system are shown here. The (1, 1) system is the simple realtime channel with-

out any fault tolerance.

Since the simulator models packet loss by dropping packets with a fixed indepen-

dent proba bility (one of the parameter s of the experiment) during each packet transmis-

sion event, the loss rates are ver y close to that calculated from the knowledge of the loss

rates on each link and assuming independent events . For example, the (1, 1) system is a

3 Buffer overflow proba bility is always zero in the perfor mance model implemented in the simulator.

161

-- --

simple realtime channel with no added tolerance. With a loss rate due to transmission

error s in the networ k equal to a proba bility of 10−3 of dropping a packet dur ing a trans-

mission event, and the path length equal to three, the proba bility of a message being

successfully received is 0. 9993 ≈ 0. 997. Since 7669 packets were transmitted during this

exper iment, the expected number of lost messages was 23. 19 messages were obser ved

lost in the experiment. If the experiment were carr ied on for a longer time, the observed

number would converge to the expected mean. The expected number of lost messages

for the fault-tolerant systems can be similarly calculated, since the paths are disjoint, and

therefore independent. The calculated numbers match the simulated behavior. The

number of messages lost is also independent of the load on the networ k due to other

realtime channels, because the effect of loss due to congestion is eliminated by buffer

and bandwidth reser vation at intermediate nodes by the realtime protocols .

The loss process being simulated is extremely simple and the graph for Figure 6.5

could have been easily computed analytically. We present it to give the reader an idea

of the error tolerance benefits of the dispersity schemes. The results merely confirm that

the simulator is behaving as expected, and demonstrate the wor ka bility of the schemes

to a certain extent.

Figure 6.6 shows the perfor mance of the dispersity systems when a fault also occurs

dur ing the experiment. Now the number of packets lost in the simulation includes the

number lost on the failed channel. The system continues to provide realtime perfor mance

with increased tolerance to loss as compared to the non-fault-tolerant realtime channel,

but the losses noted are slightly higher. The loss is controlled by two mechanisms . Fir st, the

duration of the outage of a sub-channel is limited by the recovery process that reroutes

the faulty sub-channel. We will retur n to this point in the next section. Secondly, the

redundant coding provided (for systems with N > K) controls the number of lost messages

dur ing the outage. Thus, though the non-fault-tolerant channel (the (1, 1) system) lost 15

messages during the period of outage in the experiment with loss rate = 0, the other

162

-- --

systems did not lose any messages . In a networ k with extremely high loss rates , the disper-

sity systems do lose messages, but far less than the system without redundancy. These

high loss rates are not expected to be seen in most networ ks under normal conditions ,

since we are referr ing only to losses due to transmission error s here, and the transmission

error proper ties of most current networ ks (and ver y likely that of future networ ks too) are

far better than the rates at which we see lost messages in these experiments .

Figure 6.7 shows the perfor mance of the systems with N − K = 2 and with a fault dur-

ing the experiment. These systems are tolerant even at ver y high loss rates and one fault

in the networ k. These systems also need the same amount of buffering at the destination

to equalize delays and reassemble the packets . The cost of using the higher level of

redundancy is the higher bandwidth requirement of the system. A (4, 2) system needs

twice the bandwidth of a non-fault-tolerant realtime channel, as opposed to a (4, 3) sys-

tem, which needs only 1.33 times the bandwidth. However, the effect on the networ k

ca pacity is more complex than can be understood by just considering the bandwidth of

the component sub-channels, for reasons which are explored in the next set of experi-

ments .

Overall, in this set of experiments we have shown that, at the level of detail that our

simulator models a realtime networ k, and subject to the limitations in the faults being sim-

ulated, the service provided by the dispersity systems meets our expectations, even in

the presence of single link faults and reasona ble transmission error rates . The realtime

guarantees are never violated, and the error and fault tolerance is enhanced. Further,

the perfor mance is guaranteed independently of the load, since the component sub-

channels of the dispersity systems are realtime channels. With the error rates seen in cur-

rent transmission systems, any of these dispersity systems will provide adequate protection

against single failures . Thus , the choice of which one to use is dictated in part by the

question of the degree of tolerance required, that is, whether tolerance against a single

fault, two faults , or n-faults is required. The degree of tolerance is determined by N − K ,

163

-- --

0

50

100

150

200

250

(1,1) (1,1)

(1,1)

(1,1)

(2,1) (2,1) (2,1)
(2,1)

(3,2) (3,2) (3,2)

(3,2)

(4,3) (4,3) (4,3)

(4,3)

(5,4) (5,4) (5,4)

(5,4)

error=0 error=10−4 error=10−3 error=10−2

Packet loss

Figure 6.6: Packet loss vs. loss rate for dispersity systems with N - K = 1, one failure

0

50

100

150

200

250

(1,1) (1,1)

(1,1)

(1,1)

(4,2) (4,2) (4,2) (4,2)(5,3) (5,3) (5,3) (5,3)

error=0 error=10−4 error=10−3 error=10−2

Packet loss

Figure 6.7: Packet loss vs. loss rate for dispersity systems with N - K = 2, one failure

164

-- --

assuming maximum distance separable codes. If the decoding needs to be perfor med

in software using a low-perfor mance CPU, the parity code restr icts us to N − K = 1 systems .

Between systems with the same value of N − K , the simple analysis based on the amount

of extra bandwidth used (
N − K

K
) seems to suggest that the higher the values of N (and

K), the lower the impact on the rest of the networ k. This issue of networ k ca pacity will be

explored in the second set of experiments with the simulator.

6.5.2. Networ k ca pacity

The effect of the different dispersity systems on networ k ca pacity was tested by see-

ing how many connections of each type could be established starting with a given initial

load. The initial load is determined by the set of simple realtime channels already estab-

lished in the networ k before the experiment starts , and is fixed by including a prefix with

the same set of channel requests in the event file from which the simulation is started. The

exper iment is conducted for each type of dispersity system, for four initial load conditions.

For each value of load, we repeat the experiment for three sets of channels generated

from different random seeds, which have the same load index in the ‘‘core’’ networ k. The

results are averaged from these three experiments . The number of connections that can

be established is determined by attempting to set up a larger number than can be possi-

bly successful, and then counting the number of successful establishments . The source

and destination are chosen from opposite sides of the core topology randomly. The traf-

fic and perfor mance parameter s of the dispersity systems are the same as in the last sec-

tion. The parameter s of the background load are picked from the ‘‘or iginal’’ distr ibution

again.

The effect of introducing dispersity without redundancy is explored first. These sys-

tems can be character ized by N = K . As explained is Section 6.3.2, the service provided

by such systems degrades partially in the event of a fault, until the failed sub-channel is

rerouted. During this time, a lower bandwidth connection is maintained. The bandwidth

165

-- --

requirement of the dispersity system is the same as that of the non-fault-tolerant realtime

channel; thus, one might expect that the same number of total connections can be

esta blished for each dispersity system as for the non-fault-tolerant realtime channel.

However, the simple model based on bandwidth does not take into account the external

fragmentation due to the size of the bandwidth requirement of the channel relative to

the capacity of the link, and the proba bilities of finding multiple paths meeting the delay

constraints and having adequate resources . This depends ver y much on the particular

networ k topology; for example, the fact that we can find five link-disjoint paths is based

on the excellent level of connectivity of the ‘‘core’’ topology. It also depends on the

background load. The experimental results show the effect of the level of disper sity on

the ability to set up fault-tolerant connections for different levels of networ k load, and

allow us to draw conclusions about the effect of the establishment of a fault-tolerant

connection on the networ k’s ability to accept subsequent realtime requests , as well as

about the level of difficulty of finding the required number of disjoint paths in the networ k.

Figure 6.8 shows the number of connections of each type which could be set up, for

the dispersity systems without redundancy, at different realtime load levels in the networ k.

The (1, 1) system is the non-fault-tolerant realtime channel, which serves as the control for

the experiment. We note that, at all load levels , the number of connections that can be

set up first increases and then decreases with N . This requires some explanation. The initial

increase is due to the fact that each sub-channel in a dispersity system has a smaller-

bandwidth requirement than the original request, and the requirement gets smaller with

increasing N . Thus , the level of exter nal fragmentation on the links decreases , since

smaller bandwidth channels can be packed more efficiently on the links. This effect

increases with the load on the networ k, since the remaining capacity of the networ k is

smaller compared to the size of a single request, leading to more exter nal fragmentation.

This effect would be more pronounced in a networ k with small capacity, and less pro-

nounced in networ ks where the capacity is much larger than the requirement of a single

166

-- --

0

10

20

30

40
(1,1)

(1,1)

(1,1)

(1,1)

(2,2)

(2,2)

(2,2)

(2,2)

(3,3)

(3,3)

(3,3)

(3,3)

(4,4)

(4,4)

(4,4)

(4,4)

(5,5)

(5,5)

(5,5)

(5,5)

load=277 load=480 load=666 load=905

Connections .

Figure 6.8: Number of connections established for dispersity systems without redundancy

realtime channel.

The fact that the bandwidth requirement of each individual sub-channel is smaller

than the total requirement of the dispersity system also has an important effect on the

ca pacity of the networ k to accept subsequent realtime requests until the dispersity sys-

tem is torn down. Since the amount of resources used on each path is lower, the effect of

the request is spread out over the entire networ k, so more capacity remains on each

individual path as compared to a realtime channel that places all its resource require-

ment on a single path. The amount of actual traffic from the dispersity system on each

path is also lower than the traffic on the single path of an equivalent realtime channel.

Thus , the dispersity system is friendly to other users, both realtime and non-realtime, of the

networ k.

The subsequent decrease in number of connections established with increasing N is

due to the limited number of disjoint routes in the networ k. As mentioned before, the

167

-- --

maximum number of link-disjoint paths between nodes on different sides of the core

topology is five. Thus, as N approaches five, the number of choices between alternative

paths for the set of routes decreases . At N = 5, we need to find resources on all the avail-

able paths; if any path is too highly loaded, the request fails . Thus , the ability to establish

a large number of fault-tolerant connections, and the proba bility of being able to estab-

lish one in a highly loaded networ k, decreases as N approaches the number of alternate

paths availa ble. For N > 5, no connections can be established in this networ k. This obser-

vation is important, since we do not anticipate that even ver y large integrated-ser vices

networ ks will have more than four or five disjoint paths availa ble between any source-

destination pairs. This shows that the practicality of any disper sity scheme with large N is

limited by the networ k topology.

The number of connections that can be established starting from a lightly loaded

networ k is an indication of the capacity of the networ k regarding the specific dispersity

system. Thus, in this topology, the number of (5, 5) connections that can be established is

a little more than half the number of non-fault-tolerant realtime channels that can be

esta blished. As explained before, this is because N is at the limit imposed by the number

of disjoint paths availa ble in the networ k. On the other hand, we can actually establish

more (3, 3) connections than non-fault-tolerant realtime channels, because at this stage

the effect of reduced external fragmentation is more impor tant. Thus , bandwidth is just

one of the three factor s that determine the number of connections that can be estab-

lished in a networ k.

The number of connections that can be established in a heavily loaded networ k is

indicative of the relative proba bility of being successful in establishing a connection

using a specific dispersity system in a similarly loaded networ k. In other words , we can

inter pret the sizes of the bars at load=905 to mean that we can expect to establish a

(4, 4) connection with greater proba bility of success than even a non-fault-tolerant real-

time channel if the networ k is heavily loaded. This result is surpr ising, since it counters our

168

-- --

initial intuition that finding resources on four paths successfully, especially when there are

only five availa ble, should be harder than finding resources on just one. However, we

should interpret the result to mean that at the high load level, because of the small

amount of resources left on each link, the influence of external fragmentation is more

impor tant than the effect of the disjoint path restr iction.

An apparent contradiction can be pointed out in this argument. We note that the

number of (4, 4) connections that can be set up at low loads is less than that number for

the non-fault-tolerant realtime channels. But we are claiming that at high networ k loads ,

it is easier to set up (4, 4) connections. Thus , in the experiment starting at low loads , when

the networ k is becoming saturated after establishing 35 connections, we should be still

be able to establish more (4, 4) connections than (1, 1) channels, which is contradicted

by the observed results .

The explanation for this apparent contradiction is that the nature of the high net-

work load seen by the (4, 4) connections towards the end of the experiment starting with

load=277 is not the same as that seen by the (4, 4) connections in the experiment starting

with load=905. The networ k state in the second case is much more random, and there-

fore likely to be unifor m, because of the distribution of the requests which created the

load. They are composed of requests from three classes of applications , most of which

are much smaller in bandwidth requirement. Thus, the resources reser ved on all the links

are much more likely to be smoothly distributed. On the other hand, the set of requests

that created an equally high load index in the first experiment is not so random; they are

all (4, 4) requests from Class A. The dispersity system breaks the request into four smaller

sub-channels , but the capacity requirements of each is still larger than that of most of the

requests in the distribution comprising the load in the second experiment, since the ‘‘or igi-

nal’’ distr ibution is composed mostly of Class B and C requests . The routing algorithm used

is deterministic; so, it tends to send the sub-channels to the same set of links. Towards the

end of the experiment starting at low load, some of the links had sufficient availa ble

169

-- --

ca pacity, but four disjoint paths with sufficient capacity could not be found, because of

the unbalanced distribution of the load. On the other hand, in the experiment starting at

high load, the load is evenly distributed on all the links, so that several (4, 4) connections

can still be established. Thus, we should restate our earlier observation to say that, with

the given topology, when the networ k is highly loaded and subject to the constraint that

the load is evenly distributed, it easier to set up a (4, 4) connection than a non-fault-

tolerant realtime channel.

This leads to the conclusion that the routing algorithm as implemented does not

deal effectively with a large number of requests of the same class of dispersity system.

The behavior of the networ k can be improv ed by suita bly randomizing the routing algo-

rithm for all channels, and specifically for the dispersity sub-channels. We needed the

deter ministic proper ty of the routing algorithm to for mally define the load indices, since

they are only well defined if the path followed, and hence the load generated, is deter-

ministic for the same networ k state. We also needed a deterministic behavior to make

the experiments repeata ble. But in an implementation of the realtime networ k, some

care should be taken to design the routing algorithm to spread out the requests on the

availa ble paths , and randomization is one possible way of achieving this.

Figure 6.9 shows the change in behavior when we lift the strict disjoint-paths con-

straint and set S = 2. This allows the routing algorithm to retur n paths that share links

between at most two sub-channels . Thus , in the event of a single fault, depending on

which link failed, up to two of the sub-channels may fail. However, while the degradation

of service will be more severe, some communication will still continue if N > 2. Thus , for

N = 5, in the event of a failure in a shared link, the surviving capacity of the system would

be 3/5 of the original, while in the case of an unshared link it would be 4/5. As men-

tioned before, intra-frame compression codes such as JPEG can continue to function

under such conditions, since the data on one path is not dependent for its decoding on

the data from another path. The graph shows that the negative eff ect of increasing N is

170

-- --

0

10

20

30

40
(1,1)

(1,1)

(1,1)

(1,1)

(2,2)

(2,2)

(2,2)

(2,2)

(3,3)

(3,3)

(3,3)

(3,3)

(4,4)

(4,4)

(4,4)

(4,4)

(5,5)

(5,5)

(5,5)

(5,5)

load=277 load=480 load=666 load=905

Connections .

Figure 6.9: Effect of allowing S = 2 on dispersity systems without redundancy

0

10

20

30

40
(1,1)

(1,1)

(1,1)

(1,1)

(2,1)

(2,1)

(2,1)

(2,1)

(3,2)

(3,2)

(3,2)

(3,2)

(4,3)

(4,3)

(4,3)

(4,3)

(5,4)

(5,4)

(5,4)

(5,4)

load=277 load=480 load=666 load=905

Connections .

Figure 6.10: Number of connections established for dispersity systems with N - K = 1

171

-- --

greatly reduced, so that even the N = 5 system can establish as many connections as the

non-fault-tolerant realtime channel in a lightly loaded networ k. At higher loads, the dis-

per sity systems establish far more connections than the non-fault-tolerant realtime chan-

nel. They would also have a lower eff ect on future connection requests , since the effect is

spread out over the networ k, and not concentrated on one route. The implementation of

such systems is simpler than for the systems with redundancy, since no FEC computation is

required at the source or destination, and fragmentation and reassembly are also

avoided. Thus, these systems have no major disadvantage compared to non-fault-

tolerant realtime channels, apar t from the slight increase in implementation complexity

to handle multiple paths, and the restr iction about the kinds of data that can be carried.

Only data that can be broken into N streams , each of which can be decoded and used

independent of the arrival of the other streams , can enjoy the full benefit of the redun-

dancy systems without redundancy. Other for ms of data can also be carried, but in this

case service will be interrupted in the event of failure, for the interval of time needed to

infor m the source, so that it can arrange to use the surviving links.

Figure 6.10 shows the effect of introducing redundancy into var ious disper sity sys-

tems with N − K = 1; the (1, 1) system is the non-fault-tolerant realtime channel shown for

reference. We see that adding redundancy reduces the capacity of the networ k to sup-

por t these systems, since they add some overhead to the networ k. This effect is com-

bined with the effect of the improv ement due to reduced external fragmentation, and

the effect of the disjoint-paths requirement. The dominant effect at low load and with

small N is that of the bandwidth overhead. Thus, the (2, 1) system can establish half the

number of connections as the basic realtime scheme, and the (3, 2) system roughly two

thirds of the number. As N approaches 5, the effect of the connectivity of the topology

star ts being felt, so that the number of connections which can be established for the

(4, 3) system is less than three four ths . For N = 5, the effect of the networ k connectivity

becomes large enough to drive the number of connections for the (5, 4) systems below

172

-- --

that of the (4, 3) system. However, as we increase the load, the effect of reduced exter-

nal fragmentation becomes more impor tant, since the remaining capacity on some links

becomes comparable to the bandwidth requirements of the channels. At extremely high

loads , we can actually establish as many or slightly more (5, 4) connections as a (1, 1) sys-

tem. At this stage, the effect of reduced fragmentation, caused by splitting the requests

into smaller sub-channels, dominates . Note that we do not get the benefit of reduced

fragmentation for the (2, 1) system at all, since the sub-channels have the same band-

width requirements as the original. Thus, for this system the total capacity requirements

deter mine the number of channels that can be established at all load levels .

The conclusions we can draw from the above obser vations are:

• the effect of the increased bandwidth is partially offset by splitting a request into

smaller sub-channels;

• this process also decreases the effect the scheme has on other traffic, and on future

realtime requests;

• the advantage of splitting the request increases with the realtime load on the net-

work, so that, in a highly loaded networ k, the dispersity systems can be set up as

easily as a non-fault-tolerant realtime channel; and

• the disjoint-path constraint becomes significant as N approaches the number of

availa ble disjoint paths, reducing the number of dispersity systems with large N that

can be established in a networ k, as well as making it more difficult to set up a dis-

per sity system with large N in a highly loaded networ k.

Figure 6.11 shows the impact of allowing S = 2 on the ability of the networ k to

accept dispersity systems with N − K = 1. We notice that the effect of the networ k con-

nectivity is reduced, so that, for low loads , the number of connections that can be suc-

cessfully established is determined primar ily by bandwidth considerations . At higher

loads , the reduced fragmentation caused by the smaller bandwidth requirements of the

sub-channels allows many more connections to be set up for the dispersity systems. In

173

-- --

0

10

20

30

40
(1,1)

(1,1)

(1,1)

(1,1)

(2,1)

(2,1)

(2,1)

(2,1)

(3,2)

(3,2)

(3,2)

(3,2)

(4,3)

(4,3)

(4,3)

(4,3)

(5,4)

(5,4)

(5,4)

(5,4)

load=277 load=480 load=666 load=905

Connections .

Figure 6.11: Effect of allowing S = 2 on dispersity systems with N - K = 1

0

10

20

30

40
(1,1)

(1,1)

(1,1)

(1,1)

(4,2)

(4,2)

(4,2)

(4,2)

(5,3)

(5,3)

(5,3)

(5,3)

load=277 load=480 load=666 load=905

Connections .

Figure 6.12: Number of connections established for dispersity systems with a N - K = 2

174

-- --

0

10

20

30

40
(1,1)

(1,1)

(1,1)

(1,1)

(4,2)

(4,2)

(4,2)

(4,2)

(5,3)

(5,3)

(5,3)

(5,3)

load=277 load=480 load=666 load=905

Connections .

Figure 6.13: Effect of allowing S = 2 on dispersity systems with N - K = 2

0

10

20

30

40
(1,1)

(1,1)

(1,1)

(1,1)

(4,3)

(4,3)

(4,3)

(4,3)

(5,4)

(5,4)

(5,4)

(5,4)

load=277 load=480 load=666 load=905

Connections .

Figure 6.14: Equivalent dispersity systems with no shared links and N - K = 1

175

-- --

fact, the (4, 3) and the (5, 4) systems are comparable to the non-fault-tolerant realtime

channel at low loads , and better at high loads, in ter ms of the number of connections

esta blished. Unfor tunately, if a shared link fails , the service provided by such systems is

interr upted, so the fault tolerance in these systems only applies to failures of the unshared

links in the system.

Figure 6.12 shows the effect of increasing the level of redundancy. The dispersity sys-

tems shown have N − K = 2; the (1, 1) system is again shown for reference. We note that

now the effect of the increased capacity dominates, so that, even at ver y high loads,

fewer disper sity connections can be set up than non-fault-tolerant realtime channels.

The main reason is that the sub-channels are now as large as the original channel, so we

get no decrease in fragmentation. The effect of the disjoint-paths constraint continues to

be visible. When we modify the constraint, by setting S = 2 (Fig. 6.13), we get no

improv ement for the (4, 2) system. The explanation for this behavior is that the reduced

fragmentation effect is not applica ble, since each sub-channel has the same bandwidth

requirements as the original request. Thus, the only factor is the bandwidth requirement,

which restr icts the number of (4, 2) connections to roughly half the number of basic real-

time connections. For the (5, 3) system, the fragmentation effect does play a small role,

so that, at higher loads, the number of (5, 3) connections is comparable to the number of

non-fault-tolerant realtime channels. If the networ k had a higher degree of edge con-

nectivity, higher values of N would yield better capacity character istics for (N , N − 2, 2).

The fault tolerance character istics of the (N , N − 2, 2) systems are comparable to or

better than those of the (N , N − 1, 1) systems . Thus , if one were attempting to establish a

(4, 3, 1) connection, and the networ k failed to find a four th disjoint path, one of the

options availa ble to the user would be to set S = 2, and attempt to establish a (4, 2) or a

(5, 3) system. Comparing the number of connections that can be established in Figure

6.13 and Figure 6.14, we see that the (5, 3, 2) system may indeed be a viable alternative

to the (5, 4, 1) or the (4, 3, 1) systems , since the proba bilities of establishing connections for

176

-- --

these systems in heavily loaded networ ks seem to be comparable.

6.6. Implementation issues

The mechanisms to support the dispersity schemes can be easily separated from

most of the networ k and transpor t layer issues. The dispersity mechanisms are mostly end-

to-end ones and may be implemented on the source and destination of the connection,

on top of a realtime service provided by the transpor t layer of a realtime protocol suite.

In the OSI model, we may place this functionality in the presentation layer, since it deals

with issues such as encoding and decoding the data. For the Internet model, we may

imagine implementing the dispersity mechanism as a librar y of functions which the user

may load into his applications . The services to be provided by this librar y would include

the control interface to set up fault tolerant channels, the coding and fragmentation

needed at the source, and the reassembly and decoding required at the destination.

An interesting question is whether a user-level implementation can operate fast

enough to satisfy the typical application’s bandwidth requirements , since data may

need to be copied several times in the process of fragmentation, coding and finally

transfer to the ker nel. These issues can only be completely solved by full implementation

in the context of a particular operating system. However, we believe that implementation

at the user level is feasible, since techniques such as shared memory can be used to min-

imize the number of times data needs to be copied, and the problems of efficient user-

kernel interactions have been successfully dealt with in networ king applications before.

We will leave these ver y impor tant problems to future wor k, and focus here on two sub-

jects: the changes to the control interface to the networ k, which must be provided to

make the task of implementing dispersity systems above the transpor t layer possible; and

the interactions with the fault recovery process described in the earlier part of this disser-

tation.

177

-- --

6.6.1. Networ k interface

The networ k must provide a richer control of the routing process to the higher layer s

than is currently provided by the control interface offered by the realtime protocols of the

Tenet Suite 1. The control interface of the transpor t layer we assumed in Chapter 4, based

on the DCM approach, allowed routing and rerouting requests of realtime channels to

be specified, but did not permit the specification of relationships between channels. For

the dispersity systems, we need to be able to specify relationships such as disjointness

and partial disjointness.

The simplest extension to the control interface, which we implemented in the simula-

tor, includes the optional specification of a set of channels C and the var ia ble S , in addi-

tion to the parameter s already provided by the client, while making a channel establish-

ment request. The dispersity system, establishing connections on behalf of the client, uses

this interface to infor m the establishment protocol of the set of channels for which the

level of disjointness specified by S is desired. This is proper ty of the channel is maintained

by the channel management software (RCAP+DCM), as part of the parameter s of the

channel, so that if the channel needs to be rerouted in the future, the disjointness con-

straints need not be specified again. The networ k uses these parameter s , and its knowl-

edge of the routes traver sed by the channels, to enforce the correct level of disjointness

as described in Section 6.4. A more general interface, which allows the specification of

an extendible set of relationships , is provided in [36] in the context of the Tenet Scheme 2.

6.6.2. Interactions with fault recovery

One of the factor s mentioned in the experimental ver ification of the loss tolerance

provided by the dispersity systems is that the networ k automatically recovers the failed

sub-channels , restor ing the connection to full tolerance. The sub-channel affected by

the fault is subjected to the same recovery process as the other realtime channels. In all

the experiments perfor med to simulate the effect of a networ k fault, this recovery process

successfully rerouted the affected sub-channel. As we saw in Chapter 4, this process is

178

-- --

very fast, so that, for the ‘‘core’’ networ k topology, the average recovery time is around

100 ms, and the wor st case recovery time is around 400 ms. Thus , in most cases, at least

in a proper ly dimensioned networ k running at reasona ble load levels , the recovery will be

completed rapidly, restor ing the connection to full fault tolerance, so that a second fault

occurr ing at a later time is handled correctly.

However, the recovery is not guaranteed, since, as we obser ved in Chapter 4, at

high loads some of the affected channels may not be successfully rerouted. In addition,

the sub-channel has constraints on rerouting, determined by the paths of the other chan-

nels and the value of S , These constraints are par t of the parameter s which the channel

management software (RCAP+DCM) maintains , so that when the reroute is requested by

RTCMP the correct routing action is taken by the routing module. However, the con-

straints make it harder to find a valid path. Thus , it is possible that the networ k will fail to

find a path within the limits imposed by the desired recovery response time.

For a non-fault-tolerant realtime channel, it makes sense to stop the retr y process

after the desired recovery response time has elapsed. However, for the fault-tolerant

connections , the service to the application is either not affected at all, or partially

degraded, by the failure. Thus, if the recovery protocol described in Chapter 5 cannot

find a reroute path, the fault tolerance scheme should, at its own level, continue to try to

reroute the remaining sub-channel. This should be done at a low frequency to avoid

imposing a high load on the establishment mechanisms of the networ k. Even if the recov-

er y is achieved several seconds after the failure, it is useful, since the connection is

restored to full fault tolerance, so that the service is not interrupted in the event of a sub-

sequent failure.

The mechanisms to continue to generate routing requests for a failed sub-channel,

in the event that the automatic networ k-initiated recovery process fails , should be imple-

mented in the software of the dispersity system. The resources corresponding to the failed

sub-channel should be released, to prevent deadlock. This should also reduce the

179

-- --

expected waiting time till a channel can be rerouted, since these resources will allow

some other waiting channel to succeed. Then, at a low frequency, so as not to impose a

high load on the establishment process , the dispersity software should generate routing

requests with the appropr iate disjointness constraints . Eventually, when the realtime load

on the networ k decreases , the sub-channel will be rerouted and the system restored to

full fault tolerance. We take the position that, in a proper ly dimensioned networ k, it

should rarely happen that the networ k fails to recover a connection, which then must be

reesta blished by the dispersity system. If such events were frequent, this would imply that

the networ k was being operated close to its realtime capacity. In fact, in a networ k

where the realtime resources availa ble are limited, so that only few realtime connections

can be established, fault-tolerant realtime channels should proba bly not be offered.

6.7. Conclusions

In this chapter, we have proposed dispersity routing as a mechanism to provide fault

tolerance to realtime communication networ ks . We wor ked out the detail of the

schemes by looking at compression, error correction, routing, and reassembly issues. We

presented a framework that we used to classify the var ious schemes . The schemes dis-

cussed include dispersity systems with var ious levels of dispersity (N), var ious levels of

redundancy (K), and var ious levels of strictness of the disjoint-path constraint (S), and

hot/cold standby systems . We looked at some other existing approaches to providing

fault-tolerant realtime communication, to compare benefits and costs. Finally, we pre-

sented a simulation model, which we used to study the perfor mance of the dispersity sys-

tems and the capacity of the realtime networ k needed to support them.

The proper ties of some of the schemes are summar ized in Tables 6.1 and 6.2. For the

disper sity systems without redundancy (i.e., the (N , N , 1) systems), the service provided in

the absence of faults in the networ k is the same as that provided by a non-fault-tolerant

realtime channel. The service provided in the event of a fault is communication with the

same delay constraints , but a degraded bandwidth availa bility. A fraction of the

180

-- --

Proper ty (N , N , 1) (N , N − 1, 1) (N , K , 1) | K < N − 1

B/W Overhead None 1/(N − 1)
N − K

K
Increased capacity Slight decrease More decreaseImpact on networ k ca-

pacity

Level of fault tolerance None 1 fault N − K faults
Level of error tolerance None 1 N − K
Duration of disruption Recovery time No disr uption No disruption
Ser vice dur ing disr uption No disruption No disr uptionLower B/W realtime
Routing constraints Easy for small N ,

hard for large N
Easy for small N ,
hard for large N

Easy for small N ,
hard for large N

None Low HighEncoding/decoding

complexity

Ta ble 6.1: Proper ties of var ious disper sity systems

Proper ty (N , N − 1, 2) (N , K , 2) | K < N − 1 hot standby cold standby

B/W Overhead 1/(N − 1)
N − K

K
1 0

Small decrease Small decrease Large decrease No impactImpact on networ k ca-

pacity

Level of fault tolerance Partial N − K − 1 faults 1 fault 1 fault
Level of error tolerance 1 N − K 1 0
Duration of disruption Recovery time No disr uption No disruption Notification time
Ser vice dur ing disr uption No service No disr uption No disruption No ser vice
Routing constraints Easy Easy Easy Easy

Low High None NoneEncoding/decoding

complexity

Ta ble 6.2: Proper ties of some more disper sity systems

realtime packets are lost due to the fault, but the rest reach the destination before their

deadlines . For the systems with disjoint paths (S = 1), the extent of the degradation is a

1/N decrease in capacity; for the systems with S = 2, the extent of degradation is either

1/N or 2/N , depending on whether a shared or unshared link failed. These systems require

limited buffering at the destination, bounded by Equation 6.2, to equalize delays on the

paths . This buffer can be also used to remove networ k jitter from the message stream

delivered to the application, assuming NTP synchronized clocks on the source and desti-

nation hosts. The effect of non-redundant dispersity on the capacity of the networ k is

good, since the resource usage is spread out over the networ k. The number of connec-

tions that can be established is larger than for the non-fault-tolerant realtime channels,

181

-- --

except when N approaches the degree of edge connectivity of the networ k. In this

case, relaxing the disjointness constraint allows more such connections to be established,

with a controlled decrease in the relia bility provided. The service in this case can be

modeled based on independence of proba bilities of failure and error events on each

link, allowing simple calculations of the expected fault tolerance to be used in deciding

which dispersity system to use. On the negative side, these systems require a small

increase in complexity to set up multiple sub-channels, suppor t from the networ k to do

the constrained routing of sub-channels, and reassembly support at the destination. In

addition, these systems can only be used with realtime data that can be split into inde-

pendent streams , so that an entire stream can be lost temporar ily without render ing the

other streams useless. Video compressed with intra-frame compression schemes such as

JPEG satisfies this requirement. Block update techniques can also be used on top of

these dispersity systems, since each block can be rendered independently of the others.

Scala ble media, such as hierarchical video, can also be used in conjunction with PET

encoding to provide a system that degrades gracefully with failed sub-channels.

The dispersity systems with redundancy (i.e., (N , K , 1) systems with K < N) can be

used to provide completely undegraded service in the presence of restr icted networ k

faults . They also improv e the tolerance of the connection to losses due to transmission

error s . The redundancy introduces some overhead in terms of the extra bandwidth

required from the networ k. However, the dispersity spreads this effect over a number of

paths , so that the effect of a single sub-channel on the links it traver ses can be made

smaller than that of the original request. Thus, the effect of the increased overhead is par-

tially compensated. The smaller requirements of the individual sub-channels also reduce

exter nal fragmentation on the links, allowing more connections to be established.

However, for large values of N the connections are hard to esta blish because of the dis-

jointness constraint. This can be relaxed by setting S = 2, thereby allowing more connec-

tions to be established. Since as many unshared links are used as possible, systems with

182

-- --

S = 2 may provide some of the fault tolerance proper ties of disjoint-path systems, in cases

where disjoint paths cannot be found, but this tolerance is only applica ble to the

unshared links in the system. Further, extra redundancy (N − K = 2) can be used to

improv e the fault tolerance, allowing an S = 2 system to be fully tolerant to single faults .

This gives the user a number of options in case the disjoint paths cannot be found. Disper-

sity systems with K = N − 1 can be implemented using parity codes, which allow deploy-

ment on low-end general purpose computers. Systems with K < N − 1 require more

sophisticated encoding/decoding support.

All the systems described above can be considered hot standby systems . A canon-

ical example of hot standby system is the (2, 1, 1) system, where the same infor mation is

sent down to disjoint paths. Whichever stream reaches the destination is used for display.

This system is ver y useful in networ ks with limited connectivity, since only two disjoint paths

are required. However, the system uses twice the networ k resources that a non-fault-

tolerant realtime channel would use. A cold standby scheme, which uses only one of the

sub-channels , but reser ves resources on the second sub-channel, so that in the event of

a failure it can be sure of having the capacity, is less wasteful of networ k resources . It

allows best-effort traffic to use the capacity of the second path in normal usage, but suf-

fers disr uption of service in the event of a fault, for a period of time determined by the

time needed to infor m the source and switch transmission to the standby channel. In

WANs , this disruption may be substantial, since the delay-bandwidth product may be

large. However, the duration of the disruption less than the time for a round trip on the

channel, which must be small if the communication is interactive in nature. Most of the

applications of realtime networ ks fall into this category.

Finally, in compar ing the schemes described here with IFI realtime channels, we

note that the IFI technique is usable in the highly regular wrapped hexagonal mesh

topology of the HARTS networ k, but, in a general graph, the algorithm would not always

find a valid set of links. In fact, in most networ ks IFI sets of links would not exist. The

183

-- --

disper sity technique is much more general, since in most networ ks we can at least find

two disjoint paths between two hosts . Of course, dispersity wor ks better, in ter ms of

resource usage, for larger N , but, if such a set of disjoint paths cannot be found, a num-

ber of alternatives exist. Secondly, the IFI scheme uses three times the networ k resources

needed by the non-fault-tolerant realtime channel, while the dispersity systems offer a

variety of services , with a corresponding var iety of capacity overheads . To be fair, the IFI

scheme is a cold standby scheme, so that the resources can be used by best-effort traffic

until the fault occurs, but the resultant reduction in realtime capacity is significant. In

addition, the scheme requires networ k suppor t, to allow the nodes to change routing

infor mation automatically in response to the failure. It is not clear from [74] what the

latency associated with this action might be. Most of the networ k suppor t needed by the

disper sity schemes is already provided by existing realtime protocols , such as DCM; the

incremental support required is limited to adding to the networ k control interface the

ability to specify the disjointness constraints .

The major advantage of the IFI channel is that it continues to provide realtime com-

munication in the face of several failures . We would argue that such failures are

extremely unlikely, except in the event of major natural disasters, and that in that event,

most applications will have to stop transmitting to allow emergency communications to

occur. For the vast bulk of applications , the tolerance provided by the dispersity systems

is sufficient. For mission critical applications , something like IFI channels would be appro-

pr iate, though it would have to run in more general networ k environments than the

HAR TS networ k.

SFI channels are more general than IFI channels, and may be used with all topolo-

gies . However, the service provided is tolerance to single faults , and their the realtime

resource usage of three times the requirements of a non-fault-tolerant realtime channel is

excessive. Again, the technique is cold, so that the resources may be used in the

absence of faults by non-realtime data, but it reduces a little too much the realtime

184

-- --

ca pacity of the system. Dispersity systems provide tolerance to single faults at a fraction

of the overhead, and a far larger range of useful levels of fault tolerance.

In conclusion, we have shown that dispersity routing is a ver y general method for

improving the failure and loss tolerance of realtime channels. It can provide a ver y large

variety of services: from transparent tolerance to graceful degradation of service; from

instantaneous recovery to recovery within one round trip for message exchange; and

from tolerance to single restr icted failures4 to complete tolerance to N − K faults . The cost

of the system, in terms of the networ k bandwidth needed, depends on the level of

redundancy provided, but is ameliorated by the effect of spreading the resource usage

among multiple paths, and by the reduced external fragmentation of the link capacity.

Most of the networ k suppor t required is already provided by realtime protocols such as

those of the Tenet Suite. The additional support required, limited to supplementary rout-

ing constraints , has been described in Section 6.6. The remaining mechanisms of the

fault-tolerant systems can be implemented at or above the transpor t layer.

4 Restr icted to failure of the unshared links in an (N , N − 1, 2) system.

185

-- --

-- --

Cha pter 7: Conclusions

7.1. Introduction

This thesis started out to answer the question of how to improv e the fault-handling

character istics of realtime networ ks . In this chapter we will summar ize the arguments and

results presented. Then, we will retur n to the original requirements spelled out in Chapter

1, to see if the mechanisms proposed in the thesis satisfy them. We will briefly present the

main contributions of our wor k, and then close with a discussion of the issues open for

future research.

7.2. Summary of the disserta tion

In Chapter 1, we looked at the realtime channel paradigm, noted its promise in the

light of the requirements of future broadband integrated-ser vices networ ks , and felt the

need to investigate mechanisms to deal with fault recovery and fault tolerance for real-

time networ ks . Such mechanisms are beneficial, both to the client, who gets improv ed

ser vice, and to the networ k, which does not lose revenue due to lost traffic. We identified

proactive mechanisms to be used if a disruption of service is not tolerable to the applica-

tion and the cost of the extra resources required is a less important issue. Reactive

schemes are useful for dealing with failures when the cost of providing redundancy is too

high in a particular networ k or when the application can tolerate rare disr uptions due to

failures . We sur veyed some wor k in designing and evaluating survivable networ k topolo-

gies . We looked at existing fault-recovery techniques , and noted that the assumptions,

on which they are based, are not applica ble to realtime networ ks . We also looked at

fault-tolerance techniques, and surveyed some forward error correction and dispersity

routing strategies that might be useful for realtime channels.

In Chapter 2, we descr ibed the Tenet Realtime Protocol Suite 1. We outlined the

basic approach, as well as the specific control protocols RCAP and DCM. We also sur-

veyed some other realtime schemes. Cha pter 3 extracted the common principles

186

-- --

behind a number of these schemes. These basic principles , which are fundamental to

realtime networ ks , may be taken as a starting point for designing the fault-handling

mechanisms , so that these mechanisms may be applica ble to as wide a set of realtime

networ ks as possible. Thereafter, we descr ibed a ver y general framework for the fault-

recovery process . We considered a number of basic design alternatives , and made

some fundamental decisions. A fur ther set of choices were made by default, when we

chose not to further explore the issues of the fault-detection process , the route update

protocol, the channel management protocol, and the algorithm to select the min-hop

path from a graph. Finally, we identified a number of issues to explore by simulation.

Cha pter 4 descr ibed our simulation experiments , by which we made decisions

about the issues we had chosen to explore. We also showed that, with the correct

choices , schemes within the design space we had chosen to explore could recover a

significant portion of the affected traffic within reasona ble amounts of time. The schemes

were also shown to be tolerant to changes in networ k load, networ k topology, traffic mix,

and simultaneous failures of two links . In Chapter 5, we put the ideas together into a

descr iption of a protocol to reroute realtime channels in the event of a fault, which would

work in the realtime networ k environment provided by the Tenet Protocol Suite 1, includ-

ing the DCM control protocol.

Finally, in Cha pter 6, we examined the problem of fault tolerance, and explored a

specific proactive mechanism, namely, disper sity routing. We wor ked out the details of a

scheme to use dispersity routing to provide fault-tolerant realtime communication, simu-

lated the service provided, and explored the effect on networ k ca pacity. We concluded

that dispersity routing could provide a wide var iety of fault-tolerant realtime services

when implemented on top of a basic realtime service. Even when redundancy was

used to improv e the fault tolerance and loss tolerance of the dispersity systems, the net-

work costs were found to be lower than anticipated for many of the schemes, because

the effect was spread out over a number of paths in the networ k. Implementation at the

187

-- --

higher levels of the protocol stack is possible if adequate networ k suppor t is provided. The

necessar y networ k suppor t was also described in Chapter 6.

7.3. Requirements re-examined

We star ted out in Chapter 1 with a set of requirements for the control mechanisms

of a realtime networ k. The control mechanisms were required to:

• Enhance the ability to deal with failure conditions

• Use resources efficiently in bandwidth-poor networ ks

• Provide fast control in high-bandwidth wide-area (high delay-bandwidth product)

networ ks

• Provide a range of services: transparent fault tolerance for applications which need

it, low disr uption times for others

• Wor k efficiently in the common cases, but deal gracefully with the unlikely occur-

rences

• Be applica ble to a var iety of networ ks , under a var iety of conditions

Some of these requirements may conflict. For example, the goal of providing effi-

cient use of resources in a bandwidth-poor environment might lead to increased latency

of response, which might be unacceptable in high delay-bandwidth networ ks . Thus , a

range of mechanisms are needed. We looked at a bipartite classification of networ k

control mechanisms, proactive and reactive. The proactive schemes have resources

ready to handle wor st-case scenar ios . Thus , they react faster, but are more wasteful of

resources . Reactive schemes involve a latency for reaction, but only use resources when

needed, so they are more efficient. Thus, depending on the application requirements ,

and the resource availa bility in the networ k, the correct set of mechanisms may be cho-

sen to satisfy the needed requirements . In the next section, we will describe the mecha-

nisms that were proposed in this thesis, and evaluate the extent to which they satisfy

these requirements .

188

-- --

7.4. Contributions

We descr ibed two sets of mechanisms in this thesis. The fault-recovery mechanisms

developed in the first half of the thesis are designed to satisfy the requirements of efficient

operation in the common fault-free case, but restore as many realtime channels as possi-

ble in the event of a failure. The fault-tolerance schemes provide a higher level of relia bil-

ity at increased cost. We will see to what extent they meet the requirements described in

the previous section.

The networ k recovery mechanisms described in Chapter s 3, 4, and 5 meet the

requirement of efficient use of resources . In the common fault-free case, the networ k uses

no extra resources , as compared to the control mechanisms without fault-handling

ca pa bility. In the event of failure, the simulation studies perfor med show that the reroute

process uses minimally more resources than would be required in the best possible case

(i.e., if each channel were to be routed in an empty networ k). Fur thermore, in the net-

works of the scale considered, the reaction is fair ly ra pid, since the average reroute is

completed within 100-200 ms depending on the networ k topology. The mechanisms also

deal well with two simultaneous failures , different networ k topologies , load conditions,

and traffic mixes. Only one level of fault-recovery ser vice is provided, since all channels

are subjected to the same recovery process .

Thus , the first, second and fifth requirements are satisfied. The requirement of speed

is also partially satisfied, since the recovery is fast enough for many applications in the

topologies tested, but may not be adequate for wide-area networ ks , where the latency

for reaction would be higher. Of cour se, the recovery process itself is not realtime, since

there is no guarantee that it will succeed at all.

The average recovery time is dominated by the networ k transmission and propaga-

tion times. Thus , the average recovery time would grow approximately propor tional to

the round-tr ip time on the realtime channels. Since most of the applications requir ing

realtime services require reasona bly low delay bounds, the fault-recovery mechanisms

189

-- --

will also perfor m adequately on any networ k where a such a service can be offered.

The fault-tolerance mechanisms described in Chapter 6 span a wide range of effi-

ciencies for networ k resource usage. The systems without redundancy actually increase

the networ k ca pacity, compared to the basic realtime channels. They also provide

graceful degradation of service in the face of faults in the networ k. They wor k with a

number of loss-tolerant compression schemes, such as JPEG and block compression, as

well as with hierarchical compression schemes in conjunction with PET. The systems with

redundancy add bandwidth overhead in retur n for increased fault tolerance. The cold

standby schemes allow the spare capacity to be used by best-effort traffic, but suffer

some latency to switch to the backup channel when the fault occurs. Thus , the set of

mechanisms described allow us to provide a range of services at var ying levels of effi-

ciency for resource usage. The service offered is insensitive to the load on the networ k,

since the proactive reser vation provides service guarantees . The schemes are valid in

any networ k topology with a high degree of edge connectivity.

Thus , the dispersity schemes satisfy all the requirements . Even the efficient resource

use requirement is met, to var ious extents , by the different systems; the systems without

redundancy meet it fully. Together with the recovery protocol, they provide a powerful

way of improving the fault tolerance of realtime networ ks , offering a var iety of levels of

improv ement in service, at different costs in terms of the reduced capacity of the net-

work.

In addition to the actual schemes presented, the thesis also provides a ver y useful

framework to evaluate ideas for the fault recovery of realtime channels. The ideas pre-

sented are applica ble to any networ k that satisfies the assumptions of Section 3.3. These

are the minimum possible set of assumptions about the realtime networ k. Fur ther, we

attempted to provide convincing arguments to justify the portion of the solution space

for recovery mechanisms that we explored in detail. We hope to have convinced the

reader that all interesting solutions to the problem should lie within the framework we

190

-- --

provided. Thus, our framework can be used to compare and evaluate any fur ther ideas

of fault recovery for realtime networ ks that might be developed in the future. In particu-

lar, the load index we developed is useful, since it allows comparisons of a multi-

dimensional quantity, the amount of traffic, in one dimension. While this load index is

restr icted to RCSP scheduling networ ks , the basic ideas may be applied to other band-

width reser vation and prior ity schemes , and the load indices developed may also be

used for diver se applications such as routing and charging.

Finally, the chapter on fault tolerance presented a comparison of the existing

approaches to fault tolerance for realtime channels with the realtime dispersity systems.

In this process , we spelled out a set of criter ia, which may be used to evaluate and com-

pare other fault tolerance mechanisms for realtime channels, when they will be devel-

oped.

7.5. Future wor k

One ver y impor tant task left to be accomplished is the implementation of the ideas

proposed in this thesis in a realtime networ king environment. Arguing about the validity of

our ideas from first principles is important, in that we can be more cer tain that the ideas

are wor th the time and effort of implementation. However, no amount of simulation or

analysis can prov e a concept as effectively as implementation.

Unfor tunately, the time is not yet mature for these ideas to be tested in an actual

implementation. The assumption of our schemes is that a realtime networ k with high

degree of edge-connectivity exists. So far, the Tenet protocols have only been imple-

mented in testbeds, where the topology is too simple to try these ideas out. The only

existing DCM implementation does not yet support route modification. No other realtime

networ k implementations with the richness and functionality of the Tenet Suite exist as

yet. Thus, the all important last step, implementation of the RTCMP protocol, must wait

until the realtime environment is ready to support it. Given the rate at which realtime net-

working research and deployment is being conducted, this time should not be ver y far in

191

-- --

the future.

Many questions have been raised, elsewhere in this thesis, and left unanswered.

Some of them are implementation-related, such as that about whether an implementa-

tion of the fault tolerance schemes in user space can be made sufficiently efficient. One

may also ask how the recovery and tolerance model fits into the Tenet Suite 2 interface.

Other s are more basic, such as that about whether multiple prior ities for failure recovery

can be provided within the recovery model. Can networ k secur ity be included into the

model without major changes to the interfaces proposed? These questions, and many

other s , are left open for future research.

192

-- --

-- --

Bibliography

[1] A. Albanese, J. Bloemer, J. Edmonds and M. Luby, ‘Priority Encoding

Transmission’, 35th Annual Symposium on Foundations of Computer Science,

1994.

[2] ‘FDDI Station Management Standard’, ANSI X3T9.5 Revision 5.1, American

National Standards Institute, September 1989.

[3] D. P. Anderson, R. G. Herrtwich and C. Schaefer, ‘SRP: A Resource Reservation

Protocol for Guaranteed Performance Communication in Internet’, Tech. Rpt.-

90-006, International Computer Science Institute, Berkeley, California, February

1990.

[4] M. Antonellini and L. Sebastiani, ‘Error Rates: A Convenient Technique for

Trigerring Fault Management Procedures’, Proceedings of the IFIP TC 6/WG 6.6

Symposium on Integrated Network Management, Boston, MA, May 1989.

[5] E. Ayanoglu, C. I, R. D. Gitlin and J. E. Mazo, ‘Diversity coding: Using error

control for self healing in communication networks’, Proceedings of

INFOCOM’90, San Francisco, California, June 1990, 95-104.

[6] E. Ayanoglu, C. I, R.D.Gitlin and I. Bar-David, ‘Analog diversity coding to

provide transparent self-healing communication networks’, Proceedings of

GLOBECOM’90, San Diego, California, Dec 1990, 683-688.

[7] A. Banerjea and B. Mah, ‘The Real-Time Channel Administration Protocol’,

Proceedings of the 2nd International Workshop on Network and Operating

System Support for Digital Audio and Video (NOSSDAV’91), Heidelberg,

Germany, November 1991, 160-170.

[8] A. Banerjea, E. W. Knightly, F. L. Templin and H. Zhang, ‘Experiments with the

Tenet Real-Time Protocol Suite on the Sequoia 2000 Wide Area Network’,

Proceedings of ACM Multimedia ’94, San Francisco, October 1994, 183-192.

193

-- --

also available as Tech. Rpt.-94-020, International Computer Science Institute,

Berkeley, CA, April 1994.

[9] A. Banerjea, D. Ferrari, B. Mah, M. Moran, D. Verma and H. Zhang, ‘The Tenet

Real-Time Protocol Suite: Design, Implementation, and Experiences’, Tech.

Rpt.-94-059, International Computer Science Institute, Berkeley, California,

November 1994.

[10] M. Barezzani, E. Pedrinelli and M. Gerla, ‘Protection Planning in Transmission

Networks’, Proceedings of SUPERCOMM / International Conference on

Communications ’92, Chicago, Illinois, June 1992.

[11] ‘SONET Add-Drop Multiplex Equipment Generic Criteria for a Unidirectional

Path Protection Switched Self-Healing Ring Implementation’, Bellcore

Technical Advisory TA-000496, Bell Communications Research, August 1990.

[12] A. Bellary and K. Mizushima, ‘Intelligent Transport Network Survivability: Study of

Distributed and Centralized Control Techniques using Dept. of Comp. Sci. and

ADMs’, Proceedings of Globecom’90, San Diego, California, Dec 1990, 1264-

1268.

[13] R. Brown, ‘Calendar Queues: A fast O(1) Priority Queue Implementation for the

Simulation Event Set Problem’, Communications of the ACM 31, 10 (October

1988), 1220-1227.

[14] R. H. Cardwell, C. L. Monma and T. Wu, ‘Computer-aided Design Procedures

for Survivable Fiber Optic Networks’, IEEE Journal Selected Areas in

Communication 7 (1989).

[15] V. P. Chaudhary, K. R. Krishnan and C. D. Pack, ‘Implementing Dynamic

Routing in the Local Telephone Networks of USA’, Proceedings of ITC-13,

Copenhagen, Denmark, June 1991.

[16] C. Cheng, ‘A Loop-Free Extended Bellman Ford Routing Protocol without

194

-- --

Bouncing Effect’, ACM Computer Communication Review 19, 4 (1989), 224-

236.

[17] S. Chiou and V. O. K. Li, ‘Diversity Transmissions in a Communication network

with Unreliable Components’, Proceedings of ICC’87, Seattle, Washington,

June 1987, 968-973.

[18] S. Chiou and V. O. K. Li, ‘An Optimal Two-copy Routing Scheme in a

Communication Network’, Proceedings of INFOCOM’88, New Orleans,

Louisiana, April 1988, 288-197.

[19] I. Cidon, I. Gopal and R. Guerin, ‘Bandwidth Management and Congestion

Control in PlaNET’, IEEE Communications Magazine, October 1991, 54-64.

[20] D. Clark, S. Shenker and L. Zhang, ‘Supporting Real-Time Applications in an

Integrated Services Packet Network: Architecture and Mechanism’,

Proceedings of ACM SIGCOMM’92, Baltimore, Maryland, August 1992, 14-26.

[21] B. A. Coan, W. E. Leland, M. P. Vecchi, A. Weinrib and L. T. Wu, ‘Using

Distributed Topology Update and Preplanned Configuration to Achieve Trunk

Network Survivability’, IEEE Transactions on Reliability 49, 4 (October 1991).

[22] C. J. Colbourn and L. D. Nel, ‘Using and Abusing Bounds for Network Reliability’,

Proceedings of Globecom’90, San Diego, California, Dec 1990, 663-668.

[23] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press,

Princeton, New Jersey, 1963.

[24] E. W. Dijkstra, ‘A Note on Two Problems in Connection with Graphs’, Numerical

Mathematics 1 (1959), 269-271.

[25] R. Doverspike, ‘A Multi-Layered Model for Survivability in Intra-LATA Transport

Networks’, Proceedings of IEEE GLOBECOM ’91, Phoenix, Arizona, December

1991.

195

-- --

[26] D. Ferrari, ‘Client Requirements for Real-Time Communication Services’, IEEE

Communications Magazine 28, 11 (1990).

[27] D. Ferrari, ‘Real-Time Communication in Packet-Switching Wide-Area

Networks’, Tech. Rpt.-89-022, International Computer Science Institute,

Berkeley, California, May 1989.

[28] D. Ferrari and D. Verma, ‘A Scheme for Real-Time Channel Establishment in

Wide-Area Networks’, Tech. Rpt.-89-036, International Computer Science

Institute, Berkeley, California, May 1989.

[29] D. Ferrari, ‘Real-time Communication in an Internetwork’, Journal of High

Speed Networks 1, 1 (January 1992), 79-103.

[30] D. Ferrari, A. Banerjea and H. Zhang, ‘Network Support for Multimedia - A

Discussion of the Tenet Approach’, Tech. Rpt.-92-072, International Computer

Science Institute, Berkeley, CA, October 1992.

[31] D. Ferrari, ‘Distributed Delay Jitter Control in Packet-Switching Internetworks’,

Journal of Internetworking: Research and Experience 4, 1 (1993), 1-20.

[32] D. Ferrari, A. Banerjea and H. Zhang, ‘Network Support for Multimedia - A

Discussion of the Tenet Approach’, Computer Networks and ISDN Systems 26,

10 (July 1994), 1267-80.

[33] S. Floyd, ‘Issues in Flexible Resource Management for Datagram Networks’,

Proceedings of the 3rd Workshop on Very High Speed Networks, Maryland,

March 1992.

[34] W. D. Grover, ‘The Self-Healing Network: A Fast Distributed Restoration

Technique for Networks using Digital Cross-connect Machines’, Proceedings of

IEEE Global Telecommunications Conference, December 1987, 28.2.1-28.2.6.

[35] R. Guerin, H. Ahmadi and M. Naghshineh, ‘Equivalent Capacity and Its

Application to Bandwidth Allocation in High-Speed Networks’, IEEE Journal on

196

-- --

Selected Areas in Communications 9, 7 (September 1991), 968-981.

[36] A. Gupta and M. Moran, ‘Channel Groups: A Unifying abstraction for

specifying inter-stream relationships’, Tech. Rpt.-93-015, International Computer

Science Institute, Berkeley, California, March 1993.

[37] R. G. Herrtwich, Personal communication, November 1992.

[38] J. Hyman and A. Lazar, ‘MARS: The Magnet II Real-Time Scheduling algorithm’,

Proceedings of ACM SIGCOMM’91 Conference, Zurich, Switzerland,

September 1991, 285-293.

[39] M. Kalfane, Personal communication, October 1994.

[40] H. Komine, T. Chuja, T. Ogura, K. Miyazaki and T. Soejima, ‘A Distributed

Restoration Algorithm for Multiple Link and Node Failures of Transport

Networks’, Proceedings of IEEE Global telecommunications Conference,

December 1990, 403.4.1-403.4.5.

[41] K. R. Krishnan and T. J. Ott, ‘Forward Looking Routing: A New State Dependent

Routing Scheme’, Proceedings of ITC-12, Torino, Italy, June 1988.

[42] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes,

North-Holland, New York, 1977.

[43] B. Mah, Design of a Realtime Channel Administration Protocol, University of

California at Berkeley, 1993. Masters Thesis.

[44] N. F. Maxemchuk, ‘Dispersity Routing’, Proceedings of ICC’75, San Francisco,

California, June 1975, 41.10-41.13.

[45] S. McCanne, Personal communication, October 1994.

[46] J. McQuillan, ‘The New Routing Algorithm for the ARPANET’, IEEE Transactions

on Communications COM-28 (May 1980).

[47] K. Menger, ‘Zur allgemeinen Kurventheorie’, in Fundamenta Mathematicae,

1927, 96-115.

197

-- --

[48] D. Messerschmitt, Asynchronous video coding, Infonet meeting at University of

California, Berkeley, 15 November 1994.

[49] P. Pancha and M. E. Zarki, ‘MPEG Coding for Variable Bit Rate Video

Transmission’, IEEE Communications 32, 5 (May 1994), 54-66.

[50] A. K. J. Parekh, A Generalized Processor Sharing Approach to Flow Control in

Integrated Services Networks, Massachusetts Institute of Technology, February

1992. PhD Thesis.

[51] C. Parris, H. Zhang and D. Ferrari, Dynamic Management of Guaranteed

Performance Multimedia Connections, to appear in ACM Journal of

Multimedia Systems, April 1993.

[52] C. Parris and D. Ferrari, ‘A Dynamic Connection Management Scheme for

Guaranteed Performance Services in Packet-Switching Integrated Services

Networks’, Tech. Rpt.-93-005, International Computer Science Institute,

Berkeley, California, January 1993.

[53] C. Parris, Dynamic Channel Management, University of California at Berkeley.

PhD Thesis.

[54] S. Rai and S. Soh, ‘A Computer Approach for Reliability Evaluation of

Telecommunication Networks with Heterogeneous Links’, IEEE Transactions on

Reliability 49, 4 (October 1991).

[55] T. Rodeheffer and M. D. Schroeder, Automatic Reconfiguration in Autonet,

Lecture at University of California, Berkeley, September 1992.

[56] H. Sakauchi, Y. Nishimura and S. Hasegawa, ‘A Self-healing Network with an

Economic Spare-Channel Assignment’, Proceedings of IEEE Global

Telecommunications Conference, December 1990, 403.1.1-403.1.6.

[57] M. Schroeder, A. Birell, M. Burrows, H. Murray, R. Needham, T. Rodeheffer, E.

Satterthwaite and C. Thacker, ‘Autonet: A High-Speed Self-Configuring Local

198

-- --

Area Network Using Point-To-Point Links’, IEEE Journal Selected Areas in

Communication 9, 8 (October 1991), 1318-1335.

[58] M. Schroeder, Circuit Management in AN2, Lecture at University of California,

Berkeley, October 1992.

[59] K. G. Shin, ‘HARTS - A Distributed Real-time Architecture’, Computer 24, 5 (May

1991), 25-35.

[60] M. Stoer, Design of Survivable Networks, Springer-Verlag, 1991.

[61] R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and

Applied Mathematics, Philadelphia, Pennsylvania, 1983.

[62] D. Taubman and A. Zakhor, ‘Highly Scalable, Low Delay Video Compression’,

IEEE International Conference on Image Processing, November 1994.

[63] C. Vogt, R. Herrtwich and R. Nagaragan, ‘HeiRAT - The Heidelberg Resource

and Administration Technique: Design Philosophy and Goals’, IBM Technical

Report No. 43.9243 , IBM ENC, Heidelberg, Germany, 1992.

[64] C. H. Yang and S. Hasegawa, ‘FITNESS: Failure Immunization Technology for

Network Service Survivability’, Proceedings of IEEE Global Telecommunications

Conference, November/December 1988, 47.3.1-47.3.6.

[65] M. Yoshida and H. Okazaki, ‘New Planning Architecture for Reliable and Cost-

effective Network Design’, Proceedings of ITC-12, Torino, Italy, June 1988.

[66] M. Yoshida and H. Okazaki, ‘Cooperative Control over Logical and Physical

Networks for Multiservice Environments’, IEICE Transactions E.74, 12 (December

1991).

[67] W. T. Zaumen and J. J. Garcia-Luna-Aceves, ‘Dynamics of Distributed Shortest-

Path Routing Algorithms’, Computer Communications Review 21, 4 (September

1991), ACM Press.

199

-- --

[68] L. Zhang, A New Architecture for Packet Switched Network Protocols,

Massachusetts Institute of Technology, July 1989. PhD Thesis.

[69] H. Zhang and T. Fisher, ‘Preliminary Measurement of RMTP/RTIP’, Proceedings of

the Third International Workshop on Network and Operating System Support for

Digital Audio and Video (NOSSDAV’92), San Diego, CA, November 1992.

[70] L. Zhang, S. Deering, D. Estrin, S. Shenker and D. Zappala, ‘RSVP: A New

Resource Reservation Protocol’, IEEE Communications Magazine 31, 9

(September 1993), 8-18.

[71] H. Zhang and D. Ferrari, ‘Rate-Controlled Static Priority Queueing’, Proceedings

of IEEE INFOCOM’93, San Francisco, California, April 1993, 227-236.

[72] H. Zhang, Service Disciplines for Integrated Services Packet-Switching

Networks, University of California at Berkeley, November 1993. PhD Thesis,

Tech. Rpt.-UCB/CSD-94-788.

[73] Q. Zheng and K. G. Shin, ‘Fault-tolerant real-time communication in distributed

computing systems’, Proceedings of the 22nd International Symposium on

Fault-Tolerant Computing, Boston, MA, July 1992.

[74] Q. Zheng and K. G. Shin, Establishment of Isolated Failure Immune Real-Time

Channels in HARTS, to appear in IEEE Transactions on Parallel and Distributed

Systems.

200

-- --

