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Abstract

Previous research on this project (in work by Ssavedra and Smith) has presented performance
evaluation of sequential computers. That work presented (a) measurements of machines at the source
language primitiveoperationlevel; (b) analysisof standard benchmarks; (c) prediction of run times based
on separate measurements of the machines and the programs; (d) analysis of the effectiveness of compiler
optimizations; and (€) measurements of the performance and design of cache memories.

In this paper, we extend the earlier work to parallel computers. We describe a portable benchmarking
suite and performance prediction methodology, which accurately predicts the run times of Fortran 90
programs running upon supercomputers. The benchmarking suite measures the optimization capabilities
of a given Fortran 90 compiler, execution rates of abstract Fortran 90 operations, and the processing
characteristics of the underlying architecture as exposed by compiler-generated code. To predict therun
timeof an arbitrary program, we combine our benchmark results with dynamic execution measurements,
and augment the resulting prediction with simpl e factors which account for overhead dueto architecture-
specific effects, such as remote reference latencies. We measure two supercomputers: a dedicated
128-node TMC CM-5, adistributed memory multiprocessor, and a 4-node partition of aCray Y MP-C90,
atightly-integrated shared memory multiprocessor. Our measurements show that the performance of the
Y MP-C90far outstripsthat of the CM-5, dueto the quality of the compilersavailable and thearchitectural
characteristics of each machine. To validate our prediction methodol ogy, we predict the run time of five
interesting kernel s on these machines; nearly all of the predicted run times are within 50-percent of actua
run times, much closer than might be expected.

*The authors' research has been supported principally for this work by NASA under Grant NCC 2-550, and also in part by
the National Science Foundation under grants MIP-9116578 and CCR-9117028, by the State of California under the MICRO
program, and by Intel Corporation, Apple Computer Corporation, Sun Microsystems, Digital Equipment Corporation, Philips
Laboratories/Signetics, International Business Machines Corporation and Mitsubishi Electric Research L aboratories.



1 Introduction

Traditional benchmarking involvesrunning a set of benchmarksbelieved to representative of sometarget
workload on one or more machines, and using the resulting run times as estimates of the performance of
those machinesfor that workload. Thisapproach suffersfrom anumber of defects, including the possibility
that the benchmark programs may not be representative, that the interaction between the benchmarks, the
compilers, and the machine architecture was unknown and could produce misleading results, and that it was
impossibleto accurately predict the run time for one benchmark from that of another.

In earlier work by Saavedra and Smith ([8], [26], [14]), the approach which we call microbenchmarking
was devel oped to deal with the problemswelist above. In[8], Saavedra presents a system which accurately
predicts the run time of Fortran 77 programs across a wide range of uniprocessors. The system modelsthe
target computer as an abstract Fortran machine, which executes a set of Fortran abstract operations. To
predict the run time of a program A on a machine M, we measure Py =< P1, P, ..., P, >, where P, is
the average execution time of abstract operation ¢, and C'4y =< C1,C5, ..., (), >, where C; isthe number
of times abstract operation i was executed in A.> Saavedra's system includes a set of benchmarks which
measure Py for a given architecture, and utilitieswhich instrument a given program to determine C'4. The
predicted run time 7, 4 issimply the dot product of Py and C'4

Tara = ZPZCZ' =Py -Cy

Once P, has been measured, we can predict the run timeof any number of arbitrary deterministic programs
upon the machine M without the need for any additional measurements of M, ssimply by instrumenting
each program A in question and tabulating C'4 upon some other machine. Saavedra's work was extended in
[26] to detect and evaluate compiler optimizations (and to predict the performance of optimized code), and
in [14] to measure cache and TLB performance and their effect on run times.

In this paper, we extend Saavedra's work to paralel computers. The performance prediction of
automatically-parallelized programs running upon supercomputers is quite difficult. We can use the results
of conventional benchmark suites to construct very rough estimates of the run times of similar programs,
but we cannot adequately generalize such data for use in the prediction of arbitrary programs. Accurate
performance prediction requires a different approach.

Recently, the Fortran 90 standard was introduced; it extends Fortran 77 primarily by adding constructs
which alow the convenient and concise expression of operations upon arrays. Several supercomputer
manufacturers support and have produced Fortran 90 compilers, and most subsequent supercomputer Fortran
extensions, such as High Performance Fortran (HPF) [25], are based upon Fortran 90.

This paper describes a Fortran 90 benchmarking suite which measures various parameters of a Fortran
90 compiler and associated architecture, including the array operation execution rates, the optimization
capabilities of the compiler, and the processing characteristics of the underlying architecture as exposed by
compiler-generated code. We use these measurementsto predict the run time of several Fortran 90 kernels.

This paper isorganized asfollows: Section 2 outlinesthe performance prediction system into which our
measurement suitefits, Section 3 discussesrelated work, Section 4 outlinesthe Fortran 90 standard, Section
5 describes our model of data-paralel computations, Section 6 describes the design of our measurement
suite, Section 7 validates our performance prediction strategy, and Section 8 presents our conclusions.

2 System Overview

Asmentionedin thelntroduction, our work extends Saavedra' s mi crobenchmarking suiteintotheparall el
domain. Figure 1 illustratesthe basic composition of the performance prediction system which we envision.

1Thisfine grain measurement strategy is termed microbenchmarking.
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Figure 1: Overview of the Performance Prediction System

The system is composed of three major parts:?

e Measurement Suite: Measures the various parameters of our model of the target system, resulting
in amachine characterization.

e Instrumentor: Instrumentsthe target program so that it outputs dynamic execution measurements.

e Run TimePredictor: Predictstherun timeof thetarget program on the target machine by combining
the machine characterization, the dynamic execution measurements generated by the instrumented
target program, and the origina target program source.

Thiswork details our effortsto: (a) create an appropriate model of a Fortran 90 program running upon an
arbitrary supercomputer, (b) implement a M easurement Suite which estimates the parameters of thismode,
and (c) compose an accurate prediction methodology which will be used to create an automatic Program
Instrumentor and Run Time Predictor at some later date.

We model a computer as an abstract Fortran 90 machine, in which the run time of a given operation is
derived from itstype and the size of its operands, in the case that its operands are arrays. We then augment
this simple model to account for compiler optimizations and architecture-specific effects such as remote
reference overhead. Accordingly, the following four modules compose our M easurement suite:

e Array Operation Characterizer: Measures the execution rate of Fortran 90 array operations, for
various operand sizes.

e Optimization Characterizer: Determinesthe compiler’sability to apply parallelizing optimizations.

e Architecture Characterizer: Measures the parameters of the various architectural features, such as
read/write latencies and scatter overhead.

e Serial Operation Characterizer: Measures the execution rate of Fortran 90 scalar operations.

We have desighed and implemented al of the above components, except for the Serial Operation Charac-
terizer, sinceitsfunctionality isincluded in Saavedra's Fortran 77 measurement suite.

Each component of the Measurement Suite estimates the run time of a given operation via the linear
combination of the run time of one or more carefully selected Fortran 90 code segments. For example, to
crudely estimate cost of an array load, we might measure the run time of code segments A and B; code
segment A copies an array into another array and code segment B stores a constant into an array:

A: a=b B: a=1

2Some of this terminology in this section was borrowed from [8].




If we model the system as a load-store architecture with an overhead of 7. per element loaded and S per
element stored, ¢4 and ¢, the measured run times of code segments A and B, are approximately

t4y =nS+nlL
tg = nS

Thus, we can approximate the cost of an array load ast4 — tg = nL.3 Appendix A details the iterative
timing method used to measure the run time of each code segment, and the complicationsto the measurement
process which we encountered.

3 Previous and Related Work

Previous parale performance prediction systems have taken one of three basic approaches. Smulation-
based approaches derive the predicted run time of a program by simulating its execution on the target
architecture. Simulation can be performed with varying degrees of abstraction, ranging from the instruction
level to the task level. Notable examples of simulation-based approaches include:

e The Rice Parallel Processing Testbed [5], a simulator which utilizes code profiling and libraries
simulating interprocessor communication to efficiently predict run time.

e Menasce and Barroso’s method [6], which uses several iterations of task-level simulation to charac-
terize the overhead due to contention in a shared memory system.

e NPAC's Fortran 90D/HPF prediction suite [28], which predicts run time via the combination of user
and benchmark-specified measurements and atask graph representation of the target program, created
with atool which emulates the specific behavior of NPAC's Fortran 90D compiler.

Analytical approaches produce approximate predictions by solving for the various characteristics of a
probabilistic representation of the program, usually expressed as some variant of the Markov or Petri net
model. The most popular approach involves stochastic Petri nets; for an introduction, see [20] and [21].
Ker nel-based approaches predict the run time of sections of code by interpolating from the run time of one
or more similar kernels.

Unfortunately, each of the above approaches has flaws, with respect to predicting the run time of
arbitrary Fortran 90 programs utilizing measurements from a portable Fortran 90 test suite. Instruction-
level simulations fail because they are machine-specific. Task-level simulations assume knowledge of the
number, organization, and composition of tasks composing a given paralel computation; however, we
cannot accurately predict thisinformation for an arbitrary compiler/architecture pair. For example, the Y-
MP C90 cf 77 compiler conditionally parallelizes array operations based on predicted work, unpredictably
affecting the characteristics and number of tasks composing the operation. Analytical approaches fail
because they produce probabilistic results quantifying expected behavior, rather than determining program
behavior for aspecific set of inputs. Additionally, solutionsto anaytical representations grow very complex
and resource intensive for large programs. Solely kernel-based approaches are unsuitable simply because
we must measure avery large number of kernels to ensure the accurate performance prediction of arbitrary
constructs. Additionaly, the algorithms used to match code to kernels and to interpolate run times are
potentially very complex.

An additional consideration is that our benchmarks are written in Fortran 90, which does not include
constructs which can specify the mapping of computation to specific hardware. Thus, we cannot easily
determine the performance of a single parallel node, since the compiler may produce executable code for a
given segment of benchmarking code which runs on the host processor, some subset of the parallel nodes,

30f course, since we examine only one case in this example, pipelining and other effects heavily color our run time estimate.
Actual parameter calculations are more complex and involve more code segments, but involve the same basic approach.



or both. Without single node performance measurements, we cannot easily predict the run time of atask on
that node, as required by many performance prediction systems.

Compiler optimizationscomplicate the performance prediction process. Saavedrainvestigated theeffect
of compiler optimizations in the serial domain [26]; however, optimizations in the paralel domain have
a much larger effect. Compilers may apply source transformations which change the number operations
executed by certain code segments by several orders of magnitude. To account for such transformations, we
must collect measurementswhich alow usto predict how the compiler will modify and parallelize arbitrary
code. Severa studies have examined the parallelization/vectorization of arbitrary code segments selected
in an ad hoc manner [10] [9]. Furthermore, studies have examined the overall contribution of various
paralleizing optimizationsto speedup [22]. These results are instructive, but not particularly useful to us;
we must determine whether the compiler applies a specific operation in various specific cases.

4 Summary of the Fortran 90 Standard

This section attempts to provide a reasonable summary of the Fortran 90 standard and the terminology
we use to describeit. For amore detailed treatment, see [12], and for the standard itself, see [13].

The Fortran 90 standard includes the Fortran 77 standard and extends it by adding various constructs
and intrinsic functions. We use the term operation to denote the computation described by the application
of an operator, construct, or intrinsic function. Fortran 90 operations can be classified into two main groups:
scalar operations, which operate solely upon scalar operands, and array operations, which require some
combination of array and scalar operands. Array operations can be further separated into three groups:

e data parallel operations, which produce a result array in which the :th element is some function of
the :th element(s) in the array operand(s); for example, the dot product operation.

e reduction operations (reductions), which produce a scalar result which is some function of the array
operand(s); for example, avector sum.

o transformationoperations, which produce aresult array which may be of different dimensions(shape)
than the source array(s), in which the ;th element is the function of potentially many elementsin the
array operand(s); for example, matrix multiplication.

Fortran 90 allows Fortran 77 operations and intrinsic functions to accept array arguments, and such
expressions are evaluated in a data-parallel fashion. For example, where a, b, and ¢ are n-element arrays,
the following statements denote the data parallel addition of b and ¢ and the assignment of the result to a:

a=b+c

Note that in al such expressions (by the definition of data paralel), dl array operands must be con-
formable; that is, all operands must have the same rank and dimensions, with the exception of scalars, which
are conformable with al arrays.

An array operand can be an entire array, or an array section, which is composed of the elementsin a
given array between indices x and y, separated by stride s. We specify an array section from source array
srcassre( [X[: [VIL: [s]]]) » where x and y default to the beginning and end of the array, and s defaultsto 1.

Fortran 90 defines the wher e construct, which alowsthe application of adata parallel operation based
on the valuesin a conformable logical array, called amask. For example, the expression

where (c.gt.1.0) c=0.0

zeroes dl elements of ¢ which are greater than 1.0. Fortran 90 aso defines the mer ge intrinsic, which
produces an array composed of the elements of two source arrays, as selected by a mask.

Fortran 90 defines a gather operation, which collects scattered elements from a source array into a
contiguous space. Given a source array a, and an array b containing the indices of a to be gathered, the



syntax isa( b) . The result array is the same size as b, and element i of the result is element b(:) of a. A
scatter operation, the reverse of a gather, is specified similarly.

Fortran 90 lacks constructs which can map computations and data to specific hardware. The elements
of theresult of an array operation may be calculated in any order, and such computations may utilize some
arbitrary subset of available hardware. Array layoutsvary between machines and are compiler-specific.

Fortran 90 defines severd intrinsic functionswhich perform array reduction operations, including:

e sum pr oduct : Computethe sum (product) of the elements of an array.
e nmaxval , m nval : Compute the maximum (minimum) valuein an array.
e any, al | : Testif any (all) elementsin alogical array aretrue.

Fortran 90 defines severa intrinsic functionswhich perform array transformation operations, including:

e nmat mul : Multiply two matrices.
e transpose: Transpose a2-d array.
e pack, unpack: Pack (unpack) selected values of agiven array into another array.

Finally, Fortran 90 defines various constructs and intrinsic functionswhich alow bit level manipulations
of integers, modular programming, array duplication, and dynamic storage allocation.

5 Parallel Computation - Models

Fortran 90 dlows the expression of data-paralel computations; this section presents various models
of the execution of such computations, for the purpose of computing the run time of the operations, and
subsequently, the entire program.

We consider a straightforward data-parallel computation = y ¢ z, where @ is an arbitrary binary
operation. Assuming that the contribution of architectural effects is additive,* the executiontime 7' is

T=S4+max{D;+C;+ X;+Y;,+ 7} 0<i<P) (@)
where

P isthe number of processors,

S isthetimeto start and terminate the parallel computation,

D, isthetime spent distributing or acquiring work on processor ¢,

C'; isthe time spent computing on processor ¢,

X; isthetime spent reading the necessary elements of = on processor ¢,
Y; isthe time spent reading the necessary elements of y on processor ¢,
7; isthe time spent writing the cal culated elements of = on processor .

We assume that & has a uniform execution time of ¢ per element, when reading operands to and from the
register file or lowest-level cache. Given that » isthe number of elementsin each array operand, Equation
1 reduces to the following forms, based upon the architecture and work-all ocation strategy:

¢ Distributed Memory Multiprocessor or
Shared Memory Multiprocessor, Non-Caching, Nonuniform Memory Access,
Arrays Distributed in Blocked, Cyclic, or Blocked-Cyclic Layout;
Owner-Computes Rule:

4Saavedra'sresearchillustrated that the execution time of a program could be modelled by adding terms corresponding to various
architectural effects. In any case, solong aswe can model the temporal overlap of such effects by terms dependent upon the number
of elementsin each array operand, our conclusionsstill hold.



TS+ %(c+ W) +max{X;+ Y} 0<i<DP) (1.9)
W7, isthe average time required to write an element to local storage.® The max{X; + Y;} term rep-
resents the maximum time taken to read required array operand elements, since under our “additive
effects’ assumption the processor does not overlap operand fetches. If we assume a flat communica
tionsnetwork (i.e. one with uniform latency between each possible source and destination) abi-level
distribution of access latencies, and if we know the layout of arrays » and y and ignore congestion
effects, we can easily compute X; and Y;. Furthermore, if =, y, and = are distributed identicaly,
X; =Y, = 3R, where Ry, is the average time required to read an element from local storage,
ignoring local memory hierarchy effects, and so

T~ S+ 5(c+ Wi+ 2R1) (where operands are distributed identically)

e Shared Memory Multiprocessor, Uniform Memory Access;
Equally Sized Blocks Statically Assigned:

T~ S+ $(c+ Ws+ 2Rs) (1.b)

Rs and Wy are the average times required to read and write an element from or to shared memory,
respectively.

e Shared Memory Multiprocessor; Uniform Memory Access,
m-Element Blocks Dynamically Scheduled:

TS+ 21D+ m[2p](c+ Ws+ 2Rs) (10
~ S+ 5D+ E(c+ Ws + 2Rs) (for large n)

D isthetimeto dynamically acquire ablock of work, Rs and W are defined as above.

The above cases cover most common architecture/work-allocation combinations, with the exception of
shared memory multiprocessors which use caches. The structure of each of the above eguationsis sim-
ilar, suggesting that a single model with small architecture-specific variations might predict performance
accurately.

Unfortunately, our search for suitabl e performance model is not yet finished. We have not yet considered
vector hardware, another common feature designed to utilize parallelism. A vector system is composed of
a bank of registers, each of which can hold an array of individual data elements, a set of heavily pipelined
functional units, used to process register contents, and mechanisms which alow register contents to be
rapidly read from and written to main memory. The number of e ements which an individual register may
contain, commonly called the maximum vector length, varies from 32 up to 1024 in most architectures.

Often, n, thelength of each operand in adata-parallel computation, will exceed V', the maximum vector
length. In such cases, the compiler generates code which processes the operands in runs of V' elements;
this techniqueis called strip-mining and isimplemented via an outer loop which coordinates the enclosed
vector operations. A reasonable approximation of the run time of a strip-mined vector computation, 7y, is

Tv =T + [n/V}TL + nTg (2)
where

To isthe one-time computation startup time,
Tr, isthe overhead of the strip-mining code and vector startup code, and
Tr isthe vector execution rate, per element.

For large values of n, the contribution of the T term in Equation 2 becomes negligible, and we can
approximate the ceiling term as linear, resulting in the following approximation of Ty for large n:

SAssuming an owner-computesrule, by definition, all writes will beto local storage.



Ty = n(Tr/V 4+ Tg) (for large n) (3)

Thismeansthat, barring other contributionsfrom other sources, wemay beableto linearly interpolatethe
performanceof large strip-mined vector operationsfrom other measurementsof large strip-mined operations.
First, however, we must make one important modification to our model; effects which cause dropsin vector
performance, such asthosedue to the design of the memory hierarchy, must beaccommodated. For example,
the mean vector performance of the IBM 3090, asafunction of n, ispiecewise-linear [ 15], and depends upon
the what fraction of the operands and destination register fits within cache memory. We can accommodate
such effects by modifying Equations 2 and 3 such that 7'z isafunction of .

Now, we combineour model sto create asinglemode of thevector-parallel execution of thedata-parallel
computation z = y ¢ z. We define ¢, the execution rate of operation ¢, per element, when operating to and
from the register file or lowest-level cache, as

Ty -M
- n

c 4
where M is overhead due to memory reads and writes. We assume that we can model M and Tr as
piecewise linear functionsof » which are continuousfor large », and thus, all architecture/compiler-specific
derivations of Equation 1 are piecewise linear and continuous for large =, with the exception of Equation
1.a, which is piecewise linear excluding the factors which account for remote references.

Thus, we have a set of equations which model simple data-paralel operations as piecewise linear
functions of the operand size. Asshown in Section 7, approximations of these functions, interpolated from
measurements sampl ed sparsely across the domain of array sizes, and combined with generic measurements
of architectural characteristics, accurately predict the run times of severa diversetest kernels.

6 Design of the Measurement Suite

This section detail s the design of the components of the Measurement Suite: the Array Operation Char-
acterizer, Optimization Characterizer, and Architecture Characterizer. We used Saavedra's measurement
suite as the Seria Operation Characterizer. The following constraints dictated the our design:

e portability: The system should be adaptable to all architectures/compilers with alimited number of
changes, all of which should be well-documented and consistent. Additionally, the system should
be able to measure a Fortran compiler which only supports some important subset of the Fortran 90
standard, such as array-extended Fortran 77 operations.

e generality: The measurement suite should produce measurements which can be utilized by a general
performance prediction model.

e tractability: The system should run in a reasonable amount of time, precluding experiments which
cover alarge portion of the combinations of factors or measure the system at too high aresolution.

6.1 Array Operation Characterizer

The Array Operation Characterizer measures the average run time of each Fortran 90 array operation
over awiderange of array sizes. The run time of a specific Fortran 90 array operation is afunction of many
factors, such asthe:

e type of operation,
e size of the operands,
e distribution of the operands across the memory hierarchy,



| Architecture CM-5 Y-MP C90
Processors Tested 128 4
Processors Total 128 16
Processor Type SPARC custom
Memory Type distributed banked shared
Vector Hardware yes yes
Processor Clock Rate 32 MHz 400 MHz
I nterconnection Network fat tree crossbar
Separate Host Processor yes no
Word Size 32 bits 64 bits
FP Single-Precision 32 bits 64 bits
Manufacturer Thinking Machines Corp. Cray Research

Table 1: Measured Architectures

e useof amask or indexing array,
e other concurrent processing activity.

Idedlly, we could vary each of the above factorsindependently over the set of commonly-encountered val ues,
producing a large matrix of measurements covering the space of commonly-executed array operations.
Unfortunately, such exhaustive testing would consume much time and violate our tractability constraint.

Instead, we measure the run time of each operation over a wide range of array sizes and fix all other
factors to values we would encounter in the best case. That is, al operands are distributed ideally across
the memory hierarchy,® no mask or indexing array is specified, memory is referenced in a regular and
efficient manner, and there is minimal irregular computational activity on the system generated by other
users. Optimistically, we assume that by using the results of separate tests, we can predict the effects of
masks and indexing arrays, concurrently scheduled program segments, remote distributed operands in the
case of distributed memory machines, and problems such as bank conflicts in the case of shared memory
machines. See Section 7 for confirmation that these assumptions are reasonabl e.

Our suite measures the average and minimum run times of Fortran 90 array operationsover awide range
of array sizes, from less than 100 to over 1 million elements. By interpolating these measurements and
augmenting the results with architectural measurements, we can accurately estimate the execution time of
an operation for any array size.

6.1.1 Measurements

We tested our suite on the following architecture-compiler pairs:

e CM-5/cnf : An 128-node Thinking Machines Corporation CM-5, using thecnf compiler.

e CM-5/cnf - cmax: An 128-node Thinking Machines Corporation CM-5, using the cnf compiler
augmented with crmax, an optimizing source code tranglator.

e Y-MP C90/cf 77: 4-nodes of a 16-node Cray Research Y-MP C90, using thecf 77 compiler.

e Y-MP C90/f 90: 4-nodes of a16-node Cray Research Y-MP C90, using thef 90 compiler.

Tables 1 and 2 describe each of the above architectures and compilersin grester detail.

The Array Operation Characterizer measures the run time of each relevant Fortran 90 array operation,
over awide range of array sizes; Appendix D describes each of the measured parameters, and Appendix E
lists the specific run times of selected parameters for each compiler/architecture pair measured.

SIdeally, which in this case, means that each operand is distributed such that the aggregate accesstime is minimal.



Compiler/Tranglator cnf cmax cf 77 | £90 |

Version VecUnit 2.1.1-2 20 6.0 10
Full FOO Support? yes yes no yes
Optimization Flags -0 - -Zp -W"-eabi6 -gl" | -O 3
Auto Pardllelization? no yes yes yes

Table 2: Measured Compilers
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Figure 2: Code Segment Profiles - CM-5/cnf and CM-5/cnf - cnmax

Analysis of the execution time of a given operation or code segment, as a function of the array size,
provides valuableinsightsas to how agiven architecture/compiler pair executes the operation. For example,
Figure 2 shows the maximum observed run time of several code segments on the CM-5/cnf and CM-
5/cnf - crax pairs,” over arange of array sizes from 32 to over 8 million. We use the notation { R} to
indicate a single-precision real array, and {r} to indicate a single-precision real variable. Note that all
operands and destinationsdo not aias. Several characteristics become evident:

e The overhead of executing paralld operations is high, at least 40 us per array operation, and the
compiler parallelizes al array operations over the array sizes measured, irregardless of the efficiency
of the resulting code.

e {R} =abs({R}) executesalmost asfast as{ R} =1, indicating good hardware support for the absolute
value operation.

e The profile of the execution rate of {r}=sum({ R}) differs from the profiles of the other code
segments; for small array sizes, the execution rate islow, but for very large array sizes, it outperforms
all other code segments. This performance reflects the nature of the sumcomputation - its overhead
islarge, since even for small array sizes, we must reduce each processor’s local sum to calculate a
single global sum; however, its peak performance rate is very high, since no writes to main memory
are generated during the local sum computation.

"Operation measurementswere not affected by crmax.



e For smal array sizes, { R} ={ R} +{ R} performs slightly worsethan { R} ={ R} / { R} . Inspection of
the assembler code generated for each code segment shows that the setup and termination code for
array divisionis slightly more efficient than that for array addition, causing the discrepancy.

Maximum Code Segment Execution Rates - Y-MP C90/cf77
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Figure 4: Code Segment Profiles - Y-MP C90/f 90

Figure 3 illustrates the maximum observed execution rate of the same set of code segments upon the Y-MP
C90/cf 77 pair. The following characteristics are evident.

e Theperformance of each code segment, withthe exceptionof { r } =sum({ R} ) , iscomposed of three
major regimes. Regime 1 encompasses array Sizes less than or equal to 128, Regime 2 includes array

10



sizesgreater than 128 and lessthan 128+x, where = is approximately linearly-rel ated to the execution
rate of the operation in question (except for slow operationswhere z is 0), and Regime 3 includes all
larger array sizes. In Regime 1, the compiler generates single processor code, and each array operand
fits completely within a vector register. In Regime 2, the compiler generates uniprocessing code, but
vector operations are strip-mined, generating overhead which causes a drop in performance from the
peak in Regime 1. Finally, in Regime 3, the compiler generates multiprocessing code which utilizes
all four available processors and runs efficiently for large array sizes.

e A peculiar resultisthat array division hasvery high performance in Regime 1, which slowly decreases
asthe array size approaches 128. Thisresult is repeatable, and we could not determine its cause, but
theorizethat it isrelated to unusua memory hierarchy or chaining behavior.

¢ InRegime 2, the performance of { R} =1 decreases with increasing array size, most likely due to bank
conflicts induced by the rapid rate at which elements are stored.

Finally, Figure 4 illustratesthe maximum execution rate of the code segmentsupon the Y-M P C90/f 90 pair.
Thef 90 compiler does not generate multiprocessing code for most array operations, so the machineyields
high performance where each array operand fits entirely within a vector register, and virtually equivalent
performance elsewhere. Thisbehavior isparticul arly noticeablein the performance profilefor R=1; thetime
to store element is small relative to the stripmining overhead per element, so performance drops drastically
when the array storeis stripmined, for all array sizes over 128.

While the profiles shown above are instructive, we cannot adequately compare the overall performance
of each architecture/compiler pair using similar graphs, due to the clutter induced by the large number of
individual parameters involved. For purposes of simplification, we compute a set of 22 reduced parameters,
each of which corresponds to the weighted average of a set of parameters which characterizes some
architectural function. Table 3 lists each reduced parameter and the architectural function(s) represented.
Appendix D containsthe exact weighted average for each reduced parameter.

For presentation purposes, given a parameter T,, corresponding to the run time operation O (or the
average of agroup of operation runtimes) for array size n, we define the simple-statement value of T, T'+,,,
as the average execution time of a code segment composed of the operation O upon non-aliasing operands
and storage in another non-diasing destination. For example, given the parameter RS-ADD 1000, Which
represents the average run time of adata-parallel add of 10000-element single-precision floating-point array
operands, RS-ADD+1ggg0 represents the run time of the code segment a=b+c, where a, b, and ¢ refer to
separate, non-aiased vectors.

For each reduced parameter R:,,, we define Ni,, as the normalized reduced parameter, calculated as

Ni, = Ri, /C;
where C'15 = ng, dlother C; =n

N: is simply the value of the reduced parameter Ri per element computed, except in the case of R15, which
represents matrix multiplication; N15 represents the time required per multiply-and-accumul ate operation
used in the naive matrix multiplication algorithm. Figure 5 shows the mean values of the simple-statement
normalized reduced parameters for an array sizes of 256 (28), 4096 (2%2), 65536 (2'°), and 1048576 (2%).
All matrix operations were measured on square arrays of size \/n by \/n.

The Kiviat graphs in Figure 5 provide insights into strengths and wesknesses of each architec-
ture/compiler pair. The CM-5/cnf pair performs very well for large array sizes, but falters when array
sizes become small, dueto itsvery large operation startup overhead. In contrast, the Y-MP C90/cf 77 pair
performs in a much more balanced manner; each reduced parameter varies by less than a factor of ten over
the measured val ues, as opposed to afactor of 1000 onthe CM-5/cnf pair. TheY-MP C90/f 90 pair appears
to have very baanced, efficient performance; however, thisis dueto the poor parallelization capabilities of
thef 90 compiler, which, in most cases, utilizes one of the four available processors irregardless of array
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Parameter | Operation/Function Parameter Operation/Function
R1 real SP addition R9 complex arithmetic Parameter | Operation/Function
R2 real SP multiplication R10 complex F77 intrinsics R17 type conversions
R3 real SP arithmetic R11 complex reductions R18 comparisons
R4 real SP F77 intrinsics R12 integer arithmetic R19 logical operations
R5 real SP reductions R13 integer F77 intrinsics R20 logical reductions
R6 real DP arithmetic R14 integer reductions R21 SP memory transfers
R7 real DP F77 intrinsics R15 matrix multiplication R22 DP memory transfers
R8 real DP reductions R16 other matrix operations

Table 3: Reduced Parameters (SP and DP denote single and double precision, respectively.)

CM-5/cnf

Y-MP C90/f 90

2 1

Y-MP C90/cf 77

2 1

2

Parameter Value

10“3
~i1lus
100 ns

Array Size
Il 1048576
[ 65536

[ ] 4096

[ ]256

Figure 5: Normalized Simple-Statement Reduced Parameters, for Various Array Sizes
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Naive Opt

i=0

do i=1,n
j=j+1 a=a+l.0
a(j)=a(j)+1.0

end do

Figure 6: Naive and Opt which determine whether induction variable elimination is applied.

size. A notable exception are matrix operations, which the Y-MP C90/f 90 pair multiprocesses and the
Y-MP C90/cf 77 pair does not.

6.2 Optimization Characterizer

Compiler optimizationscan radically change the execution time of aprogram; on many supercomputers,
aserialy-executed loop may execute several orders of magnitude slower than the corresponding vectorized
or parallelized version. Several studies have investigated the ability of Fortran compilers to vectorize (e.g.
[10]) and parallelize (e.g. [9]) aset of code segments selected in an ad-hoc manner; however, we want to
determine the specific cases in which the compiler applies a given optimization, such that we can use this
information to predict how a compiler will optimize a specific program.

Many of the optimizations we measure, such loop collapsing and subroutine inlining, will improve
the execution time of a given code segment when it is executed serially. Many studies have examined
optimizations in the seriadd domain (for example, [26]); we, however, are interested in the ability of the
compiler to apply a given optimization, and then parallelize/vectorize the result. In the remainder of this
section, whenreferringto aoptimization O, we usetheterm “appliesO” to mean that the compiler transforms
the code using optimization O and then parallelizes/vectorizes the result, where possible.

We use a simple method to determine whether the compiler applies an optimization O. We create and
time the execution of two code segments, which we call Naive and Opt. Naive is a code segment which is
amenable to the optimization O, and Opt is a code segment which has a run time similar or equal to the
optimized version of Naive - i.e. Opt is a source language optimized version of Naive. We design Naive
so it is not amenable to any other optimization, and will run much slower than Opt if the compiler does not
apply optimization O. If the run times of Naive and Opt are similar, we conclude that the compiler applies
optimization O, otherwise, that it does not.

Asan exampl e of our optimization measurement strategy, suppose we want to seeif the compiler applies
inductionvariable elimination. Figure 6 showsthe Naive and Opt code segmentsfor thistest. If the compiler
does not apply induction variable elimination, the do-loop in the Naive segment must be executed seridly,
due to the data dependencies induced between loop iterations by theinduction variablei . The run times of
the two segmentswill differ significantly; the Naive segment will incur several cycles of loop and induction
variable computation overhead per element processed, while the Opt segment will be parallelized, resulting
in nearly linear speedup, and/or vectorized, resulting in an execution rate on a chained vector of slightly
more than one cycle per element in the worst case. In contrast, if the compiler applies induction variable
elimination, both the Naive and Opt code segmentswill be parallelized and their run times will be similar.

More formally, the measured mean run times of the code segments Naive and Opt are called tnaive
and topt, respectively. Since our measurements are noisy due to various random variations in run times
and to timer inaccuracies and resolution problems, (see Appendix A for details), our measured means are
estimations of the actual means. We define the 100(1 — «)-percent confidence intervals® of our mean

8The 100p-percent confidenceinterval is the interval which contains the actual measurement with probability p.
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measurements as Najve = cNaive and topt £ copt, respectively, where the values of ¢y, and co,; are
dependent upon the value of «, the number of observations, and the variance of our measurements. We
define R astheratio of {Najve tO topt, ad 12, asthe lowest predicted ratio of ¢Najve 0 topt in the case where
O was not applied to Naive.

An approximation of the 100(1 — «)2-percent® confidence interval of the measured value of R is

INaive — CNaive !Naive + CNaive
topt+copt ~ topt — copt

If the confidenceinterval of R islessthan R,,, we conclude that the compiler applied O to Naive successfully,
if the confidence interval of R is greater than R, we conclude that the was not able to apply O to Naive,
and if the confidence interval of E includes R,,, we are not sure.

At first glance, it might seem easy to caculate a value of E,, by timing Naive in the absence of
optimization. Depending upon the compiler, however, disabling a given optimization O may disable other
optimizations which may effect the execution speed of Naive, such as software pipelining, loop unrolling,
and peephol e optimization. Thus, wewould compute an inflated value of E,, which would beinvalid, since
R, is defined as the lowest predicted ratio of ¢Najve 10 topt in the case where O was not applied to Naive.
For example, on the Y-MP C90/f 90 pair, the run time of the Naive code in Figure 6 (where n is 1000000)
is0.56 secondswith all optimizationsdisabled, and 0.046 seconds with full scalar optimization enabled and
all other optimizationsdisabled. Instead, we must select £, solely with our knowledge of the characteristics
of Naive and Opt, and the target machine type (some multiprocessor supercomputer). In most of our test
cases, we assume that unoptimized Naive code will run at least twice as slow as the parallelized/vectorized
code, and thus R, = 2. Specific values of R, arelisted in Appendix E.

Some opti mizations produce resul ts which do not have a Fortran 90 analogue. For example, consider the
case where the compiler substitutesefficient code when it encounters a bin summation, a computationwhich
talliesthe number of array elementswhich fall into each of aset of bins defined by somecriteria Thereisno
way to specify a bin summation efficiently in Fortran 90, so our standard Naive/Opt code segment approach
will not work. Instead, we compare the run time of a Naive code segment (defined as before) to therun time
of a code segment called Cripple. Crippleisaversion of Naive which has been slightly modified so that
it cannot be optimized and has approximately the same run time as the unoptimized Naive segment. If the
run time of Naive is significantly less than that of Cripple, we conclude that the optimization was applied,
otherwise not.

6.2.1 Measurements

Table 4 summarizes our measurements; see Appendix Ffor asummary of each basic type of optimization.
As expected, cnf performs poorly, since it is not an automatically paraleizing compiler. cnf - cmax,
however, performs moderately well, although it generates suboptimal paralelized/vectorized code in some
situations. cf 77 performs well, except for its surprising inability to apply the code motion and dead code
elimination optimizations. f 90, which was partialy based on cf 77, includes al optimization capabilities
supported by cf 77, with the exception of subroutineinlining. However, the quality of the optimized code
generated by f 90 isinferior to that generated by cf 77, sinceit is vectorized but not parallelized.

It isimportant to note that a very large number of factors, some of which are unpredictable, determine
whether a compiler will apply an optimization to an amenable section of code; for example, limited internal
table sizes may inhibit loop collapsing for very deep loops. Thus, the results of our tests should be used as
heuristic guides to the performance prediction system, not as absolute indicators.

Thisis alower bound; the actual probability that R = « /y will fall in theinterval (a, b) is fab [ fo() fy(x/2)dudz, where
f= and £, arethe probability density functions of « and y, respectively. Thisintegral becomes messy when f, or f, are Student’st
distribution, and its solution is not particularly important. Thelower bound we have cal culated suits our needs adequately.
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Optimi zati on/Capability | cnf | cnf-cmax [ cf77 | 190
loop collapsing no yes yes yes
code motion no no no no
common subexpression elimination partial yes yes yes
dead code elimination partial yes no yes
forward substitution no yes yes yes
induction variable elimination no partial partial partial
subroutineinlining no no partial no
recurrence substitution no no no no
reduction substitution no partial yes yes
scalar expansion no yes yes yes
semantic analysis no no yes yes
dependency andysis no yes yes yes
idiom recognition no partial yes yes

Table 4: Summary of Compiler Optimization Capabilities

6.3 Architecture Characterizer

The Architecture Characterizer (AC) measures various parameters of the compiler-constrained archi-
tecture, which is the actua architecture as visible through executable code generated the compiler. The
compiler-constrained architecture will have some subset of the features of the actual architecture and will
perform in a manner equivalent to or slower than the actual architecture.

The following sections explain the quantities measured by each module composing the AC, and the
models we use to predict run time; note that each heading indicates the name of the test, followed by its
abbreviation. For specific descriptions of the parameters measured, see Appendix D, and for details of the
mechanics of specific tests, see Appendix B.

6.3.1 Memory Hierarchy Access Characteristics- access

The access test measures remote or shared-memory read and write latencies, as well as gather and
scatter overhead, per element, and overhead due to random accesses in a shared memory system.

Idedlly, theaccess test would characterize the average access time between each processor/processor
pair (in adistributed memory system) or each processor/memory location pair (in ashared memory system).
Unfortunately, it is very difficult to write a Fortran 90 benchmark which produces such a characterization,
since we have no control over the mapping of data and computation to processors. Instead, we measure the
latency of the average remote (or shared-memory) read or write; as aresult, the flatter the communications
network in question, the better we characterize the latency of a random remote or shared memory access.
Severa recent supercomputer architectures have communi cations networkswhich appear to beflat; processor
to processor | atencies over the CM-5 fat tree range from 3to 7 microseconds|[ 3], and the Y-MP C90 provides
fairly uniform access times to its shared memory. However, on machines such as the T3D, which provide
hardware to accelerate block transfers and prefetch data [4], our characterization might cause significant
errors in the performance prediction of programs which make heavy use of such features.'®

On some systems, seriad code may be executed on a host processor, and this code may reference data
distributed across the processing nodes (or stored in the shared memory). Often, the host processor is
attached to the interconnection network in a suboptimal manner, and the latency of accesses from the host
processor to the processing nodes (or shared memory) may differ significantly from the latency of accesses

OFyture versions of our measurement suite should characterizethe average overhead for several different typesof remote accesses
(random single element accesses, block transfers, etc.).
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between processing nodes (or between processing hodes and shared memory). To account for the potential
disparity, we include simpl e tests which measure the latencies of array references issued by seria code. We
term this type of access a“host remote access’.

6.3.2 Stride Effects-stri de

The st ri de test measures the effect of the stride of memory accesses in a given computation upon
performance. We account for stride effects as overhead incurred upon each load. We define the following
guantities:

T, the predicted run time of astride s load from (or store to) an m-element array.
T'r,, the measured run time of astride 1 load from (or storeto) an - element array.
O », the measured stride-induced overhead per element of a stride  reference to an n-element array.

We predict T's asfollows:
TS = TL + mOs,m
S

where O, ,,, is defined by one of the two following models, and measured accordingly.

CacheModd:

Depending upon the stride, the size of the array operands, and the characteristics of the caches(s), the
execution rate of a given operation will vary widely. By measuring and analyzing of the execution rate over
awide range of array and stride sizes, we can reconstruct the parameters of the cache, and we can use these
parameters to predict the effect of the cache upon the run time of a given program. We measure O; ,, over a
gparse range of array sizes and strides, using the method described in [14].

Three problems arise when attempting to measure cache performance on a parale architecture, using a
Fortran 90 benchmark similar to that described in [14]:

e Inability to restrict measurements to a single node: The Fortran 90 benchmark is paraldizable. In
[16], Saavedra measures the cache performance of the KSR-1, but he does so by timing a single node
using an assembly language benchmark, which violates our portability constraint.

e Operating system-induced effects: On a system which lacks a virtually-addressed cache, the oper-
ating system may map adjacent pages into conflicting physical addresses in the cache, producing
unpredictable behavior.1

e Other effects. Since we cannot restrict our measurementsto a single node, we must use the aggregate
performance of the system to infer cache characteristics. Unfortunately, it is difficult to factor out
other effects from our measurements, such asthose dueto vector processing, parallel operation startup
time, and poor compiler support.

Asaresult, our measurements may be too noisy toinfer the exact organization of the memory hierarchy. For
example, thecnf compiler producesexecutablecodeinwhichthecomputationa( 1: n) =a( 1: n) +b( 1: n)
runsfaster than the corresponding non-unit stridecomputationa( 1: n: s) = a(1: n: s) +b(1: n: s), even
though much less work is performed in the latter computation.

Since we cannot confidently derive memory hierarchy characteristics, we must approximate overhead
for unmeasured strides and array sizes by linearly interpolating from measured values.

1 saavedra overcame this problem by rebooting before each measurement, but this approach is not practical when measuring
heavily-utilized supercomputers.
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Stride-Induced Overhead Due To Bank Conflicts

70 Cray YMP-C90, single processor, 3.3 ngelement maximum processing rate
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Figure 7: Stride-Induced Overhead Due To Bank Conflicts On The Cray Y MP-C90

Bank Modd:

Banked memory consists of a set of NV individua memory systems, or banks, each of which is linked
together to form alarger memory, such that address i in thelarge memory isaddress ¢/N inbank ¢ mod V.
Successive references to banked memory can proceed rapidly aslong astheinterval between two references
to agiven bank isgreater than the cycle time; otherwise, thetwo references will conflict and the computation
will stall until the bank can service the request. If we have N banks, and we reference memory with stride
k, wewill utilize[gcdfvimﬂ)} banks, and the others will remainidle. Thus, if the cycle timeis7, the access
timeis 7, and the additional overhead per element is 7,12 the time to reference an element, ¢, including

overhead, is

N

c=max(Ty,Tc — (Ta+To) [WU

In most systems, the number of banks is a power of two and Ty < T¢; therefore, all computations with
large power of two strides perform at much less than peak efficiency.

For example, Figure 7 shows the stride-induced overhead due to bank conflicts, on a single processor of
aCray Y-MP C90, for asimple array operation involving aload, arithmetic operation, and store. The unit
stride operation ran at arate of 3.3 nsper element. We caninfer from the figure that 64 banks are referenced,
and that the cycle time of each bank isapproximately half the maximum overhead (the operation in question
contains aload and a store), 30 nanoseconds.

We measure B, the overhead per element induced by an s-element stride, for all power of two values
of s lessthan or equal to M, where M isthe power of two stride after which successive measured val ues of
B do not significantly increase. Since bank effects do not vary with array size, for any stride: or array size
n not measured, Oi,n = Bgcd(i,N)-

25ych additional overhead might be dueto logic in the vector load/store module.
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6.3.3 Distributed Memory Array Layout - | ayout

Thel ayout test measured quantitieswhich allow usto determineif the machine measured is a shared
memory or distributed memory system, as well as the default array layout in a distributed memory system.

6.3.4 Mask Effects - mask

Themask test measures the effects of amask upon a computation. We define the following quantities:

T4, the measured run time of the unmasked computation A,

Tr(r), the measured run time of the masked computationwher e( X) A,

where afraction r of the elementsin mask X are true, and the true el ements are randomly distributed,
n isthe number of elementsinthe mask X.

We predict T, the run time of an m-element masked computation A in which afraction = of the elements
in the mask are true, using one of the following models, assuming we have measured 777, the run time of
the corresponding unmasked computation U.

Partial M odd:

Element ¢ of the destination array is calculated and stored only if element : inthemask istrue. All other
calculations are skipped:
m(Tr(z) — aT4)
n

Ty =21y +

Full Modd:

The entire result of the masked computation is computed as it would be in the corresponding unmasked
computation, and results are stored in atemporary array. Subsequently, the elements corresponding to true
elementsin the mask are copied from the temporary array to the destination array:

m(Tr(z) — T4)

Ty =1v +

We use the full model when our measurements show that 7'z () > 7'4; otherwise, we use the partial model.
Unmeasured values of 7'z (r) are linearly interpolated from measured values.

6.3.5 Block Effects - bl ock

The bl ock test measures the difference between the run time of asimple array 1oad/store and a block
load/store, where ablock isdefined as an array section with variable bounds or constant boundswhich do not
correspond to the beginning or end of the source array. Efficient code can be generated for constant-bound
block loads/stores, so the bl ock test aso includes a test which determines whether block overhead is
incurred in such cases. We define severa quantities:

T, the predicted run time of an n-element block load from (or store to) an m-element array.
Tr,, the measured run time of a stride 1 load from (or storeto) an n-element array.

We predict T’z per one of the following models.

Partial Modd:
We modd overhead due to a block load as a function of the number of el ements |oaded:

Tg =11+ nX,
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where X, isthe measured overhead per element loaded.

Full Modd:

We model overhead due to a block load as a function of the size of the source array and the percentage
of elements loaded:

Tg =1, +mY=

where Y, isthe measured overhead per element in the source array, where 100p-percent of the elements are
loaded. In both models, unmeasured values of overhead are linearly interpolated from measured val ues.

6.3.6 Measurements

Table 5 shows the derived values of compiler-constrained architecture-specific parameters for both
architectures. Two interesting characteristics of the CM-5 emerge: '3

e The overhead of a gather/scatter is more than 10 times the transfer rate, indicating poor com-
piler/architecture support for these operations.

¢ A host remoteread™ costsafactor of 5 morethan anormal remote read, and a sequential remotewrite
costsafactor of 10more. Obviously, the CM-5 host processor isshoe-horned onto the communi cations
network quite sub-optimally.

Function/Parameter CM-5/cnf

Memory Transfers 34.6 ng/red

Gather Overhead 540. ns/real Function Y-MP C90/cf 77 | Y-MP C90/f 90
Scatter Overheadx 476. ngredl Memory Transfers 4.83 ngredl 248 ngredl
Remote Read Latency 10.7 pus/red Gather Overheadx 0.79 ngredl 0.73 ngredl
Remote Write Latency 3.03 ugred Scatter Overheadx 7.32 ngredl 0.55 ng/redl
Host Remote Read Latency | 59.6 pS/redl Random Read Overhead 4.41 ngreal 2.69 ngredl
Host Remote Write Latency | 34.6 puS/red Random Write Overhead: 17.6 ng/red 5.11 ngredl
Default Array Layout blocked Seria Read/Write Overhead negligible negligible
Mask Effect Model full Mask Effect Modéel full full
Stride Effect Model cache Stride Effect Model bank bank
Block Effect Model full Block Effect Model partial partial

Table 5: Summary of Derived Architectural Parameters (x = normalized to a single processor; for the purpose of
measurement normalization, we consider the Y-MP C90/f 90 pair to be a uniprocessor, since we know f 90 generates
uniprocessor code for our test cases.)

Similarly, we can draw the following conclusions from the comparison of derived parameters of the Y-MP
C90/cf 77 and Y-MP C90/f 90 pairs:

e The overhead of the scatter operation on the Y-MP C90/cf 77 pair is much larger than that on the
Y-MP CO0/f 90 pair, indicating that cf 77 supportsthe scatter operation poorly.

e Since the Y-MP C90/cf 77 pair multiprocesses our benchmarking code while the Y-MP C90/f 90
pair generally does not, agreater number of bank conflicts are induced on the former system, resulting
in aslower memory transfer rate and higher overhead due to sets of reads/writes to random locations.

BUse of crax did not affect architectural results, so the CM-5/cnf results are identical to the CM-5/cnf - cmax results.
1 As defined in Section 6.3.1, a host remote accessis an accessfrom or to the parallel nodes from the host processor.
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7 Verification of Predictive Capabilities

In this section, we present our prediction method and demonstrate that the results produced by our
Measurement Suite are useful for performance prediction.

7.1 Prediction Method

We have not yet fully automated the run-time prediction process, such as was accomplished for scalar
programsin [8]. Instead, here we predict therun timeof al kernels by hand using the following method. To
predict theone-timeruntimeof an array operation A, wefirst predict therun time of thebasic array operation
B. Thebasic array operation B is defined as the unmasked operation in which operands are manipulated in
the same manner asin A. Given that array operands and resultsin A are n-element sections, the operands
andresultsin B are n-element arrays aligned optimally acrossthe system. We replace reduction calculations
with scalars, and transformation operations with array loads. For example, if

A where (a) b(1:j:i)=sqrt(c(n:m*(0.5+d(e(f(k:1))))), then
B: s=sqrt(t*(0.5+u(v(w))))

We definetherun timeof B as1g. We caculate T as
Ts=> DiRi=D-R

where D; is the number of times operation 7 is executed in one execution of B, and R; is the run time of
operation i. We then add overhead termsto 7'z as follows:

1. Theoverhead of any embedded reductions or transformation operationsin A is computed recursively
viathe method being described, and added.

2. We analyze each array operand and result in A, and if the operand/result contains a gather/scatter
or non-unit stride, we add the overhead per the appropriate model. Additionaly, for each block
load/store, we compare the block parameters (start, finish, stride) to the blocks we have aready
considered, and if they are different, we add block overhead for the load/store.

3. When the system is shared memory, for any array operands which are the result of a gather, we add
random read/write overhead if the indexing arrays do not contain linearly-related elements.

4. When the system is distributed memory, we assume an owner computes rule. We determine the
number of remote reads and writes by combining our knowledge of the default array layout, our
assumption of an owner-computes rule, and the values of the indexing arrays used to gather/scatter
and the bounds/stride of any array sections.

5. If the computation is masked, we add mask overhead per the appropriate model, and add the run time
of the mask computation.

We predict the run time of a program P on acompiler C' and architecture M as follows:

1. Weconvert al sequential constructsin P parallelizable by C' intotheir Fortran 90 array forms, yielding
anew program ¢).

2. We count the number of times each line is executed in (), and we determine the values of the masks,
indexing arrays, and array section parameters involved in each execution of any array operation.

3. We cdculate the run time of seria code (code which is not an array operation) on agiven line using
Saavedra’'s method, with the exception that the latency of array accessesis represented using the host
read and write parameters when we determine that a host processor is present. We calculate the total
run time contribution of an array code segment .S' as the sum of the computed one-time run time of S
for each execution, per the known values of any involved masks, indexing arrays, etc.

20



7.2 Test Kernds

We used the following five kernelsto test our prediction system:

e ave, aFortran 90 kernel which testsfor errors produced by floating point roundoff. ave caculates
the sum of valuesin an array, repeatedly applies an averaging function to the array’s contents, and
then calculates the new sum of the values in the array. The kernel has high potential for efficient
parallel execution, since each step involves a data paralel operation or reduction on one or more
large well-aligned array operands; however, the compiler must recognize and parallelize the sum
computations, which are expressed sequentially.

e er ge, aFortran 90 implementation of Batcher’s odd-even merge sort [1]. The heart of the kernel
contains both masked and unmasked gather operations, as well as alarge quantity of array integer bit
manipulations. Four 32768-element real arrays are sorted into ascending order.

e ep, thedightly modified version of the sample Fortran 90 implementation [19] of the Embarrassingly
Parallel Kernel of theNASParallel Benchmarks[18]. Using aparallelizablerandom number generator,
thekernel generates alarge number of random two dimensional coordinatesin a Gaussian distribution
about the origin, and tallies the number of coordinates which fal into each of a set of concentric
square regions about the origin. All array operations involve 8192-element REAL* 8 arrays.

e mul ti, akernd which solves for the potentias induced in a square cavity with fixed boundary
conditions, using a multigrid implementation of Jacobi relaxation. We represent the potentia in the
cavity asa 1024 by 1024 grid. No convergence criterion is examined.

e tonctat v, aFortran 77 SPEC kernel which performs mesh generation using Thompson’s Solver [27].
The code consistsof aseries of singly and doubly-nested loops, all of which are parall€elizable and/or
vectorizable with varying degrees of difficulty.

Appendix G contains more detailed information about each kernel, as well asthe equationsused to calcul ate
predicted run times.

7.3 Predicted Run Times

Table 6 shows the observed run time of each kerndl, the predicted run time, and the error of each
prediction. We report the predicted run time calculated using parameters derived from both mean and
minimum measurements.'® We wanted to see if our minimum measurements, which are largely noiseless,
produced better predictions than mean measurements; however, in genera, the two methods seemed to
produce equally accurate predictions. Figure 8 plotsthe predicted mean run time versus the actual mean run
time of each kernel (the mean run times of thet ontat v kernel on the CM-5/cnf and CM-5/cnf - cnmax
pairsareomitted duetotheir largeruntime). Notethat thereare no clear trends, at | east that we can see, either
in general or relative to each architecture, in the deviation of our predictions from actual measurements.

We observethat the accuracy of our predictionsisfar better than can be obtai ned using Saavedra's method
for scalar programs, even under optimistic assumptions.*® Table 7 compares the run time predictions
generated by the two methods for the Y-MP C90/cf 77 pair. Saavedra's method measures Fortran 77

®Due to the noise in our mean measurements and our linear parameter estimation methods, the predicted mean run time of a
program may beless than its predicted minimum run time. For example, consider that parameter X is derived from measurements
Aand Bas X = A — B. If the measured minimum of A is 4.0 and B is 3.0, the estimated minimum value of X is 1.0. If
the measured mean of A is4.5 and B is 4.0, respectively, the estimated mean value of X is 0.5, which is less than the estimated
minimum value. Thus, for any program which has a predicted run time which heavily depends on X, the predicted mean run time
might be less than the predicted minimum run time.

®When calculating run times using Saavedra's method, we optimistically assume (a) that array constructs are decomposed into
heavily unrolled loops which generated negligible loop and index arithmetic overhead, and (b) that the run time of the | EOR,
I SHFT, and | AND intrinsics on local variablesis equivalent to the run time of alogical operation on local variables. We ignore
index arithmetic overhead for sequential constructs.
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Program Architecture/Compiler Mean Run Time (9) Minimum Run Time (s)
Predicted | Actua | Error (%) | Predicted | Actua | Error (%)
ave CM-5/cnf 61.6 57.7 +6.9 61.1 57.0 +7.2
CM-5/cnf - cnax 197 135 -16.1 197 129 -14.0
Y-MP C90/cf 77 132 1.79 -26.6 114 119 -39
Y-MP C90/f 90 5.10 4.75 +7.3 4.95 4.65 +6.3
ner ge CM-5/cnf 5.46 477 +14.5 5.39 471 +14.5
CM-5/cnf - cmax 0.924 0.916 +0.9 0.899 0.862 +4.3
Y-MP C90/cf 77 0.195 0.190 +2.8 0.138 0.148 -7.1
Y-MP C90/f 90 0.510 0.703 274 0.457 0.689 -334
ep CM-5/crf 0.947 134 -29.4 0.946 133 -29.1
CM-5/cnf - crmax 0.947 131 -27.9 0.946 1.30 -27.0
Y-MP C90/cf 77 0.401 0.294 +36.6 0.302 0.200 +51.4
Y-MP C90/f 90 0.917 0.915 +0.2 0.824 0.903 -8.7
mul ti CM-5/crf 16.0 255 -37.2 15.8 255 -37.6
CM-5/cnf - crmax 16.0 253 -37.4 15.8 253 -37.5
Y-MP C90/cf 77 155 1.01 +53.0 111 0.993 +11.4
Y-MP C90/f 90 4.26 112 +280. 4.38 1.07 +310.
tontatv | CM-5/cnf § 16600 | >7200. - 16500 | >7200. -
CM-5/cnf - cmax 838. 966. -13.3 831. 958. -133
Y-MP C90/cf 77 1.36 0.980 +38.8 1.28 0.950 +34.5
Y-MP C90/f 90 3.16 3.38 -6.5 3.29 3.33 -1.3

Table 6: Predicted And Actual Kernel Run Times (¥ = The run time of t ontat v on the CM-5/cnf pair
exceeded the 120 minute job limit)

Predicted Mean Run Time (s) Actua Mean
Kernel SaavedrasMethod | Our Method | Run Time ()
ave 875 1.32 1.79
nmer ge 3.04 0.195 0.190
ep 5.80 0.395 0.294
mul ti 125 155 1.01
tonctat v 16.1 1.36 0.980

Table 7: Comparison of Prediction Methods for the Y-MP C90/cf 77 Pair

operations, often contained in nonvectorizable/unparallelizable loops, and does not include measurements
of Fortran 90 array operations. In most cases, array operations are heavily vectorized/parallelized, and
execute in a fraction of the time required by their unparallelized/nonvectorized Fortran 77 equivalents.
Thus, Saavedra's system grossly overestimates the run time of programs which contain a large number of
array operations.

Unfortunately, one prediction, the run time of thenul ti kernel on the Y-MP C90/f 90 pair, is poor.
Our suite measures the peak run time of array operations upon one-dimensiona array operands, since
the involved computations should be the easiest to pardlelize. The f 90 compiler, however, generates
code which uniprocesses one-dimensional array operations, irregardless of the size of the operands, while
paraldizing some two-dimensional array operations. The run time of the mul ti kernel on a single
processor of the Y-MP C90/f 90 pair has a mean of 3.87 seconds and minimum of 3.84 seconds, which
matches our prediction. Future versions of our suite should include tests which remedy this problem.
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Figure 8: Predicted Versus Actual Mean Run Time of Test Kernels

8 Conclusions and Future Work

Aswehaveshown, wecan accurately predict theruntimeof many Fortran 77 and Fortran 90 programsvia
asimplecombination of serial and array operation execution rates, measurements of compiler optimizations,
measurements of program operation execution frequency, and generic architectural measurements.

Since it was intended as a prototype, our measurement suite is not complete. For example, we do
not measure the execution rates of some of the more obscure Fortran 90 operations, and no doubt, our
architecture measurements can be enhanced to yield results which better characterize the average case.
Furthermore, the augmentation of compiler tests will improve the accuracy of our guesses as to which
parallelizing/vectorizing optimizationsare applied. No doubt, as new optimization technol ogy isintroduced
to production-quality compilers, such asthe pipelining optimizations[24] found in the experimental Fortran
D compiler [23], our tests and models will need to be adjusted.

We designed our measurement suite with the goal of creating an automatic performance prediction
system. To complete the system, two maor components must be implemented: the Instrumentor, which
adds codeto aFortran 90 program to collect the required dynami c execution measurements, and the Run Time
Predictor, which combines the original program source, dynamic execution measurements, and machine
characterization to produce arun timeprediction. The design and implementation of each of these programs
will be chalenging; the Instrumentor requires efficient statistic collection and storage methods, and the Run
Time Predictor requires extensive optimization analysis capabilities (similar in someregards to a production
Fortran 90 compil er, sans code generation capabilities). However, thereward for thiseffort will be aportable
automatic performance prediction system which accurately predicts the run time of Fortran 90 programs
running on supercomputers.
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Appendix A. Timing Method

To measure each code segment, we utilize timing code similar to that shown in Figure 9. The timing
code performs three tasksin sequence:

1. Ilteratively determines the number of times we must execute the code segment to reduce the error in
our measurements to an acceptable level.

2. Measures a specified number of samples of the execution time of the code segment.

3. Calculates the mean and variance of the samples.

M ore specifically, to measure the average execution time.S of acode segment X', we measure the run time of
aloop which contains X, plus data dependency-inducing code which reference operands present in X'. This
loop iterates Ny,q, repetitions. Given that 7' is the execution time of this loop, C' is the timing overhead,
and L istheloop overhead, we know that B, the execution time of the body of the loop, is

B=(T-C)/Nyay — L
Furthermore, .S, the execution time of X, is
S=B-D

where D isthe overhead of the dependency-inducing code included with X'. Dependency-inducing codeis
required to prevent the compiler from applying transformations which eliminate or destructively modify X

good=. f al se.
do ii=1, nobs
time=0.0
do while (.not.good.or.tine.eq.O0.0)
start=stiner()
do i =1, nbody

[ code segment to be measured |
[ optimization thwarting dependencies]

end do
finish=etinmer()

time=finish-start
if (time.ge.clockres*1l.0/error) good=.true
if (.not.good) then
nbody=nbody+f (ti ne, cl ockres, error)
endi f
end do

sanpl e(ii)=tine/ nbody
end do

nean=cal crrean( sanpl e, nobs)

vari ance=cal cvari ance( sanpl e, nobs)

segnent mean=adj ust mean( nean, nbody, .. .)

segnent var i ance=adj ust vari ance(vari ance, nbody, .. .)

Figure 9: Skeleton of the Timing Code
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or theloop surrounding it. For example, consider that we want to measure the run time of the code segment
a=b+c. Theinner timing loop, sans dependencies, is

do i=1,n
a=b+c
end do

Assuming that a, b, and ¢ do not refer to the same storage, the compiler can eliminate the outer loop and
maintain semantic equiva ence.

Typically, the dependency-inducing code consists of an assignment to a random element of each of the
operands, followed by an accumulation from arandom element of the result. For example, to prevent the
compiler from destructively modifying the above example, we insert the following dependency-inducing
code into the loop

b(mod(irnd(), n)+1)=rnd()

c(nmod(irnd(), n)+1)=rnd()

sumesunmta( mod(i rnd(), n) +1)
We print the value of sumat the end of each procedure containing such dependencies. We measure the
overhead of the the dependency-inducing code using a method similar to that which we employ to measure
S

Given clock resolution R, we can accurately model the error introduced into 7' by the timing routines
asauniformly distributed random variable over theinterval (— R, R). Thus, the mean and variance of S are

S=(T-C)/Nyoay — L — D
Var(S) = (Var(T) + Var(C))/Nf,q, + Var(L) + Var(D) + R?/3N2,,

We select the number of observations, Vs, as 35 or more so that we may utilize the normal distribution
as an approximation of Student’s ¢ distributionin all confidence interval calculations. V.4, is determined
by an iterative process, such that if Var(.S) issmall relativeto S, it islikely that the clock error will increase
p-percent confidence interva of S by a maximum of F'S on either side, assuming that the clock error's
contributionto Var(D) islow. Where p = 95, we selected values of N,;5 and Ny,4, based on the criticaity
of the code segment measurement to our operation parameter estimations, such that F' varied from a few
percent to 10 percent.

Two major problems impeded our benchmarking process. buggy or inconsistent timers, and low-
frequency workload variations caused by other system users. We now discuss each in detail.

Buggy or inconsistent timers were a consistent impediment to our work. To determine the resol ution of
agiven set of timers, we measured the maximum reported elapsed time between neighboring timer calls.
The high resolution timers on the CM-5 usually incremented by approximately 60 microseconds per tick,
but would occasionally advance by up to 0.10 seconds, even when measured upon a dedicated machine.
Similarly, the Cray high resolution clock incremented by as much as 5 milliseconds, as reported by the
ti mef routine. The inconsistencies were not frequent, so we subjectively estimated the clock resolution
as the largest frequently-encountered clock increment, and we removed outliers which are a factor of Y
above the minimum measurement. Y was architecture-dependent and based on preliminary estimates of the
variability of operation run times.

On certain architectures, low-frequency workload variations complicate the measurement process. For
example, upon shared memory multiprocessors with banked memory, such as members of the Cray Y-
MP family, contention for the interconnection network and memory banks causes wide fluctuations in the
execution time of memory-intensive vector operations. Such contention stems from two sources (in a non-
dedicated machine): self-induced contention, in which the processors involved in the vector computation
reference memory sub-optimally, and user-induced contention, in which the reference patterns of other
jobs composing the system workload cause our job to stall. On the Cray Y-MP/8, an 8-processor system

Appendix A 26



M easurements of Memory I ntensive Operation Over Random Periods
Cray YMP/C90, cf77 compiler, 4 processors
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Figure 10: Sampled Run Time of Two Million-Element Array Addition and Storage, Over Various Periods

with 256 memory banks, both types of contention affect the run time of memory intensive operations
significantly[15]. Asa result, to accurately measure the run time of code segments which are contention-
sensitive, we must be careful to collect many independent samplesrandomly distributed across the space of
possi ble workload-induced contention patterns.

Figure 10 illustrates the run time of atwo million-element array addition and store, running upon the Y-
MP C90/cf 77 pair, sampled during several randomly spaced five-minute periods at 1-second intervals. The
sampleprofiles are composed of runsof relatively undisturbed computation, interspersed among regionswith
highly irregular sampled run time; as evidenced by the sample means cal culated for each period, workload-
induced effects are significant and vary with very low frequency. As aresult, the accurate characterization
of the average run time of contention-sensitive operations upon a non-dedicated Y-MP C90 may not be
possible using our benchmarking strategy, without long-term measurements which might potentialy violate
our tractability constraints. Thus, for al parameters measured, in addition to the average value, we record
the minimum value, for use in predicting the minimum run time of a program, in the case that the average
values are not adequately determinable.
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Appendix B. Design Details of the Architecture Characterizer

This Appendix details the specific mechanics of severa of the tests which compose the Architecture
Characterization Module.

B.1 Memory Hierarchy Access Characteristics- access

We use a simple method to measure gather and scatter overhead. First, we measure the run time of an
identity gather; that is, a gather using an identity array (element ¢ of the array has value ¢) as the indexing
array. Given that an identity gather and store or an n-element array has an average run time of T, and the
time to copy an n-element array is 7, the total overhead imposed by the gather is T;gr — T, since the
gather is performing the same work as the transfer. We use a similar method to measure scatter overhead.

To determine the average cost of a single remote read, we measure the average run time of a random
gather; that is, a gather using an array which is some random permutation of an identity array. We assume
P processors, an average run time of a random gather and store, Tz, and an array size of n (where n is
large). On the average, n(P — 1)/ P? references per processor in arandom gather will be remote, so

Ter = Tar+ (n(P —1)/P?)(Trp — T1)

where Trp isthe cost of aremote read, and 77, isthe cost of aloca read. If we assumethat 77, < Trp,
mani pul ating the above equation, we have

P?(Tgr — Tar)
n(P —1)

Trp =

Notethat the costs we calcul ate are approximations. Since the remote accesses are randomly distributed
acrossthe processors, someprocessorswill haveto perform moreremote accesses than the expected number;
if weassumean owner computesrule, thismeans someprocessorswill goidlewhile othersare still gathering.
Thismeans that our measured T'r isslightly inflated, but given alarge » with respect to P, the differenceis
negligible; for confirmation of this conjecture, see Appendix C.

B.2 Disributed Memory Data Layout - | ayout

The | ayout test uses a simple method to deduce the default layout of arrays and the number of
processorsin adistributed memory system, assuming an owner-computesrule. We define a as an n-element
array, where n islarge and apower of two, ¢ asthe n-element identity array, and p as an n-element indexing
array.

Thelayout of a« will be one of three types:1’ blocked, cyclic, or blocked-cyclic. Given P, the number
of processors, we can describe any one of the above layouts with one parameter: B, the block size, in
elements. Element : is stored on on processor i/ B mod P. A blocked layout correspondsto B = n/P, a
cyclic layoutto B = 1, and ablocked-cyclic layout may be described by any of the intermediate values.

We define 7' (r) as the run time of the following computation (we assume that array O isthefirst element
in each array):

p=mod(i+ |rn|,n)
a=axa(p)

pistheidentity array ¢, rolled upwards | rn | elements. Assuming an owner-computesrule, thereference
patterns of the computation e = a a(p) will change asr increases; to compute a;, a processor will reference

|n the absenceof any bizarre compiler bugs or unusual optimizations.
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Figure 12: Rotation fraction vs. execution time profile for a 512-element array distributed across an
128-node CM-5.

itslocal storage for the current value of «;, and will reference local or remote storage for the current value of
a,(;)- Essentidly, the value of T'(r) represents the anount of overlap (in terms of elements allocated to the
same processor) of the original datalayout and the same datalayout rotated upward | rn | elements. We can
imagine the layouts as two identical grates, one on top of the other, with holes in the grates corresponding
to the elements in « residing upon a certain processor. The amount of light shining through the grates
corresponds to the amount of overlap between the original and rotated layouts. Initiadly, the grates are
aligned at their ends, and the most light possible shines through the grate holes. As we move the top grate
to the right (corresponding to the rotation of the original layout upward), the holes in the grates no longer
exactly match up; slowly, the amount of light shining through the grates shrinks, until finaly no light can
pass through. If the holesin the grate are large, there will be aregion of grate positions (corresponding to
rotation values) where the amount of light shining through fades full to none, or vice versa.

The profile of 7'(r) versus r can be used to determine each of these parameters, and thus, the layout.
Figure 11 illustrates the ideal profiles corresponding to each layout, assuming that local and remote ref-
erences each incur a consistent amount of overhead. Note that in the block layout, there is one large dip,
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corresponding to the overlap of the continuous run of elements alocated on each processor. Conversely, in
the cyclic layout, the original and rotated layouts overlap only every P elements, with no overlap el sewhere,
yielding the bi-value result, with low values each P elements.

Figure 12 shows the rotation fraction versus execution time profile for a 512-element array distributed
upon an 128-node CM-5. We can deduce that the layout is blocked from the presence of asinglelarge dip.
Interestingly, the dip is wider than expected, covering a range of rotation values from -0.06 to 0.06. We
believe this is due to the communication characteristics of the fat tree communications network; athough
the network is generally flat, communications with "neighboring" processors tend to have dightly lower
latencies. We theorize that the spikesin the flat portion of the profile are due to cache effects local to each
processor, since they appear at fixed intervals of 64 elements.

Sampling 7' (r) over many valuesof r, where r varies linearly with someinduction variable, asin Figure
12, is prohibitively expensive, so we assume that the number of processors and block size will be a power
of two, and only measure values of r which correspond to power of two block sizes.

Appendix C. Proofs

Thefollowing paragraphs support various conjectures about the distribution of random references across
processors in arandom gather.

Given P processors involved in a random gather, we expect 100( P — 1)/ P-percent of the references
on each processor to be remote. In the worst case, al references on a processor are remote, inflating our
estimation by of the remote reference latency by a factor of /(P — 1), in the case that the latency of a
remote access is much morethan that of alocal access. Thus, on systemswith asmall number of processors,
such distortion of our measurements may be significant; thefollowing anaysisillustratesthat the probability
of large distortionsis negligible.

We first analyze the distribution of remote accesses in an n-element random gather upon a 2-processor

system. We define
ny\ n!
r ) el (n—r)!

2)(.2)
o

as the hypergeometric probability density function, which computes the probability that exactly » elements
of type 1 in asampleof s elements are selected, without replacement, from a set composed of n1 elements
of type 1 and n, elements of type 2. We define

h(z;s,n1,ng) =

n

H(z;s,n1,n2) = Z h(i; s, n1, n2)

The probability that a processor will have afraction of f remote accesses, where f > 0.5, issimply
y(fin) =2H([fn/2];n/2,n/2,n/2)

Table 8 illustrates y(0.55, n), the probability of a processor having 110-percent of the expected number of
remote accesses, for various values of n. Note that as n increases, y(0.55, n) rapidly decreases; for large
values of », the probability of a significant deviation from the expected number of remote accesses on each
processor is negligible.
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n | y(0.55,n)
50 0.656
100 0.317
150 0.191
200 0.203
250 0.129

Table 8: y(0.55, n) as afunction of n.

n | 2(0.825,n,4)
100 0.618
200 0.319
300 0.274
400 0.142
500 0.073

Table 9: 2(0.825, n, 4) asafunction of n.

We continueour analysisfor systemswith aslightly larger number of processors, modellingthe selection
of the access type of each element in the random gather as a Bernoulli trial. Given P processors and an
n-element random gather, a processor will execute n/ P trials, and the probability that each trial will result
in aremote accessis (P — 1) /P. We define

b(z;n,p) = ( Z )px(l—p)”_l’

as thebinomia probability function, which gives the probability that exactly = Bernoulli trials will succeed
out of aset of n, with p probability of successfor each trial. We define

n

B(z;n,p) = Z b(i;n, p)

The probability that one or more processors will have afraction of f remote accessesis simply
2(f,n, P)=1- (1= B([fn/Pl;n/P,(P - 1)/P))"

Table9illustrates z(0.825, n, 4), the probability of any processor having 110-percent of the expected number
of remote accesses, for various values of ». Note that as » increases, z(0.825, n, 4) decresses; for large
values of », the probability of a significant deviation from the expected number of remote accesses on each
processor is negligible.

Thus, for any number of processors, for large n, thereis negligible probability of alarge deviation from
the expected number of remote accesses.
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Appendix D. Parameter Names and Descriptions

ThisAppendix containsthe names and meanings of parameters cal cul ated in the Operation M easurement
and Architecture Characterization modules.

D.1 Operation Measurement Module Parameters

The following tables list each of the name of each parameter, which corresponds to the run time of a
given Fortran 90 array operation.

Parameter names are composed of one or more instances of some subset of the following components.
A type specifier establishes the type of operand(s) manipulated by a given operation, or the type of the
result; Table 10 lists the possible type specifiers. An operation specifier denotes the specific function of
an operation, which is usually independent of type (for instance, an array summation, or sine function).
Finally, a size specifier specifies the array size corresponding to a given parameter.

Specifier Operand Type

Cs complex single-precision
L logical

| integer single-precision
RS real single-precision
RD real double-precision

Table 10: Type Specifiers
Individual parameters are systematically named and may be of one of two forms:

o T-0O,
where O is an operation specifier, T' is atype specifier, and n isa size specifier.
Specifies a non-conversion array operation O of type T', for array size n.

o A-B,
where A and B are type specifiers, and » is a size specifier.
Specifies a conversion array operation, from type A to type B, for array size n.

Note that when the array size omitted, we are referring to the characteristics of the parameter over some
range of array sizes.

Table 11 lists the possible non-conversion operation parameters, specifying each possible operation
specifier, legal type specifiers, and a description of the operation.
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Operation Lega Types Description

ABS CSIRD RS absolute value

ADD CSIRD RS addition

ADD2D CSIRD RS addition (2-d array)
ALL L all elementstrue?
AND LI AND operation

ANY L any elementstrue?
BITS | extract fixed set of bits
BITSV | extract varying set of bits
BSET | set fixed bit

BSETV | set varying bit

BTEST | test fixed bit

BTESTV | test varying bit

CONJG Cs complex conjugate
COs CSRD RS cosine

COUNT L number of elements true
CSHIFT CSIRD RS circular shift

DIV CSIRD RS division
DOTPRODUCT | CSIRD RS dot product

EOSHIFT CSIRD RS end-off shift

EQ CSIRD RS equivalence
EQCONST CSIRD RS equivalenceto constant
EOR | exclusive-OR operation
EXP CSRD RS natural exponential
EXPI CSIRD RS exponentiation by integer
EXPS CSIRD RS exponentiation by real
GT I RD RS greater than
GTCONST I RD RS greater than constant
LOAD ILCSRDRS | sequentia load

LOG CSRD RS natural logarithm
MATMUL CSIRD RS matrix multiplication
MAX | RD RS maximum

Operation Lega Types Description

MAXLOC I RD RS location of max element
MAXVAL I RD RS value of max element
MERGEF RSRD vector merge (false mask)
MERGEH RSRD vector merge (half-true mask)
MERGET RSRD vector merge (true mask)
MOD | RD RS modulo

MUL CSIRDRS multiplication

MUL2D CSIRDRS multiplication (2-d arrays)
NOT L logical NOT operation
OHS ILCSRDRS | pardlél/store overhead

OR LI OR operation

PACKF RSRD pack vector (false mask)
PACKH RSRD pack vector (half-true mask)
PACKT RSRD pack vector (true mask)
PRODUCT CSIRDRS vector product

REAL Cs conversionto real

SIN CSRD RS sine

SHFT | end-off bit shift

SHFTC | circular bit shift

SORT CSRD RS square root

STORE2D CSIRDRS store of constant (2-d array)
STORE CSLIRDRS | storeof constant

SUM CSIRDRS vector sum

TAN RD RS tangent

TRANSFER2D | CSIRD RS array transfer (2-d arrays)
TRANSFER CSL I RDRS | array transfer
TRANSPOSE CSIRDRS matrix transpose
UNPACKF RSRD unpack vector (false mask)
UNPACKH RSRD unpack vector (half-true mask)
UNPACKT RSRD unpack vector (true mask)

Table 11: Individual Parameter Names and Descriptions

Table 12 describes the weighted averages used to calculate each of the 22 reduced parameters. We
selected the weight for each component parameter so that it roughly corresponds to the average number
of times we would expect the corresponding operation to be executed in the average program, relative
to the other operations used to calculate the reduced parameter. Of course, since the average program is
workload dependent, we select commonly-executed scientific codes as our workload. Our weights, which
were gleaned from Saavedra-Barrera’s work [8] and a highly-regarded computer architecture textbook [17],
should roughly correspond to the operation frequencies in the average scientific code.

D.2 Architecture Characterization Module Parameters

The following list describes the parameters measured by the Architecture Characterization Module.
Note that all overhead is per element, over the entire machine.

REM-READ, REM-WRITE: run time of the average remote read (write).

SREM-READ, SREM-WRITE: run time of the average sequential remote read (write).
OH-GATHER, OH-SCATTER: overhead (relative to the corresponding array access), per €lement,
of agather (scatter).
OH-RAND-READ, OH-RAND-WRITE: overhead (relative to alinear read (write)), per e ement, of
aset of random reads (writes) to shared memory.
OH-CACHESTRIDE; ,,: overhead, per element in the cache stride mode! (relative to the correspond-
ing stride 1 reference), due to a stride s reference to an n-element array.
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R1 R9 R17
Parameter Weight Parameter Weight Parameter Weight
RS-ADD 1.000 CSADD 0.650 RS-CS 0.100
CSMUL 0.250 RS-RD 0.100
R2 _ CSDIV 0.080 I-RS 0.150
Parameter Weight | ["csEXPI 0.016 I-RD 0.100
RSMUL 1.000 CSEXPS 0.004 I-CS 0.100
=3 RS 0.150
: R10 _ RD-| 0.100
Parameter Weight Parameter Weight | "CSREAL 0.100
RSDIV 0.800 CSLOG 0.200 CS-CONJG 0.100
RS-EXPI 0.180 CSEXP 0.200
RS-EXPS 0.020 CS-SIN 0.200 R18
= CSABS 0.200 Parameter Weight
: CS-SQRT 0.200 RSE 0.0928
Parameter Weight = RSG$ 0.0927
RSLOG 0.125 R11 _ RSEQCONST 0.0928
RSEXP 0125 Parameter Weight | "RS.GTCONST 0.0927
RS-SIN 0.125 CS-SUM 0.250 RD-EQ 0.0625
RSTAN 0125 CS-PRODUCT 0.250 RD-GT 0.0625
RSABS 0.125 CS-DOTPRODUCT 0.500 RD-EQCONST 0.0625
RS SQRT 0125 RD-GTCONST 0.0625
RS-MOD 0.125 R12 E0 0.0625
RS-MAX 0.125 Parameter Weight | (== 00605
RE I-XADD 0625 | "I"EqconsT 0.0625
_ I-MUL 0.250
Parameter Weight | Moy ANEE I-GTCONST 0.0625
RS-SUM 0.400 - CSEQ 0.0625
RS-PRODUCT 0.200 R13 CSEQCONST 0.0625
RS-MAXVAL 0.200 Parameter Weight =19
RS-DOTPRODUCT 0.200 I-MOD 0.334 e— Weight
I-MAX 0.333 AND 0334
R6 _ I-ABS 0.333 '
Parameter Weight L-OR 0.333
RD-ADD 0.650 R14 L-NOT 0.333
RD-MUL 0.250 Parameter Weight )
RD-DIV 0.080 I-SUM 0.400 .
Parameter Weight
RD-EXPI 0.016 I-PRODUCT 0.200 AL 0 33 2
RD-EXPS 0.004 I-MAXVAL 0.200 T ANY 0333
= I-DOTPRODUCT 0.200 L COUNT 0333
Parameter Weight R15 RoT
RD-LOG 0.125 Parameter Weight Baraeier Weight
RD-EXP 0.125 RS-MATMUL 0.500 SSTRANSFER 1000
RD-SIN 0.125 RD-MATMUL 0.250 :
RD-TAN 0.125 CSMATMUL 0.250 ROD
RD-ABS 0.125 = Parameter Weight
RD-SORT 0.125 = e RD-TRANSFER 0.500
RD-MOD 0.125 ameter eight
CSTRANSFER 0.500
RS- TRANSPOSE 0.100
RS RD-ADD2D 0.200
Parameter Weight | | RD-TRANSPOSE 0.050
RD-SUM 0.400 CSADD2D 0.200
RD-PRODUCT 0.200 CS TRANSPOSE 0.050
RD-MAXVAL 0.200
RD-DOTPRODUCT | 0.200

Appendix D

Table 12: Reduced Parameter Compositions

34



OH-BANKSTRIDE;: overhead per element in the bank stride model (relative to the corresponding
stride 1 reference), dueto a stride s reference.

OH-PARTIALMASK,., OH-FULLMASK,.: overhead, per e ement, dueto the specification of masked
computation (rel ative to the corresponding unmasked computation), where afraction » of the elements
in the mask are true, using the partia (full) mask model.

OH-PARTIALBLOCK,,: overhead, per element, dueto the specification of »-element block |oad/store
(relative to an unblocked load/store), where n elements are loaded/stored, using the partial block
model.

OH-FULLBLOCK ,: overhead, per element, dueto the specificatin of ablock block |oad/store(rel ative
to an unblocked load/store), where p-percent of the el ements are |oaded from the source array, per the
full block model.
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Appendix E. Detailed M easurements

Thefollowing sections detail the specific values of various measurements.

E.1 Array Operation Characterizer Measurements

Thefollowing sections contai n the specific values of array operation parameters measured for usein our
performance predictions. We measure values for array sizes of 64, 256, 1024, 4096, 16384, 65536, 262144,
and 1048576. We omit double-precision real measurements for the Y-MP C90/cf 77 and Y-MP C90/f 90
pairs, since they were not used in our predictions.

Note that the values of some parameters may be computed as negative; such parameters are negligible
when compared to other related parameters.
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LE

64-Element Array Size:

256-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds) Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 8.6757e-05 (8.5874e-05,8.7640e-05) 8.5696e-05 RS-OHS 8.7692e-05 (8.6479e-05,8.8906e-05) 8.5258e-05
RS-LOAD 2.4821e-06 (1.8585e-06,3.1057e-06) 2.5957e-06 RS-LOAD 2.6823e-06 (2.0804e-06,3.2841e-06) 2.7846e-06
RS-ADD -2.4490e-06 (-3.3247e-06,-1.5732e-06) -2.3043e-06 RS-ADD -2.3475e-06 (-3.4355e-06,-1.2594e-06) -1.9880e-06
RS-MUL -2.2201e-06 (-3.2076€-06,-1.2325e-06) -2.5461e-06 RS-MUL -2.8087e-06 (-3.8978e-06,-1.7195e-06) -1.8513e-06
RS-SQRT 2.7734e-07 (-9.1508e-07,1.4698e-06) 5.9158e-07 RS-SQRT 5.7254e-08 (-1.4042¢e-06,1.5187e-06) 1.7909e-06
RS-LOG 2.4817e-05 (2.3463e-05,2.6171e-05) 2.4116e-05 RS-LOG 2.4651e-05 (2.3156€-05,2.6145e-05) 2.6201e-05
RS-EXPI -2.2642e-07 (-1.4978e-06,1.0450e-06) -4.2648e-07 RS-EXPI -9.0152e-07 (-2.3421e-06,5.3904e-07) 7.6935e-07
RS-EXPS 4.8687e-05 (4.7164e-05,5.0209e-05) 4.7852e-05 RS-EXPS 4.8032e-05 (4.6399e-05,4.9664e-05) 4.9333e-05
RS-SIN 1.2940e-05 (1.1679e-05,1.4201e-05) 1.2812e-05 RS-SIN 1.3543e-05 (1.2014e-05,1.5071e-05) 1.4680e-05
RS-GT 5.1652e-06 (3.3931e-06,6.9373e-06) 5.2890e-06 RS-GT 5.5381e-06 (3.7502e-06,7.3259e-06) 6.4240e-06
RS 1.4158e-05 (1.2827e-05,1.5489¢e-05) 1.4549e-05 RS 1.2326e-05 (1.0913e-05,1.3740e-05) 1.3785e-05
RS-MAX -2.1954e-06 (-3.8520e-06,-5.3889¢-07) -2.2904e-06 RS-MAX -3.1011e-06 (-4.8867e-06,-1.3155e-06) -1.7136e-06
RS-GTCONST 6.6533e-06 (5.3372e-06,7.9694e-06) 7.1793e-06 RS-GTCONST 8.2488e-06 (6.8186e-06,9.6790e-06) 9.3137e-06
RD-OHS 9.1657e-05 (9.0512e-05,9.2802e-05) 8.9681e-05 RD-OHS 9.2408e-05 (9.1198e-05,9.3619e-05) 9.0144e-05
RD-LOAD 4.5231e-07 (-1.2805e-07,1.0327e-06) 3.1394e-07 RD-LOAD 7.8015e-07 (1.7089e-07,1.3894e-06) 7.1736e-07
RD-ADD -2.3910e-07 (-1.1775e-06,6.9930e-07) 3.1540e-07 RD-ADD -6.0428e-07 (-1.6351e-06,4.2655e-07) -2.1673e-08
RD-MUL -6.0767e-07 (-1.6705e-06,4.5517e-07) 6.0555e-07 RD-MUL -9.3112e-07 (-2.0270e-06,1.6476e-07) 1.7162e-07
RD-SQRT 1.1879e-06 (-2.1524e-07,2.5910e-06) 2.1921e-06 RD-SQRT 1.4785e-06 (-2.7703e-09,2.9597e-06) 2.9927e-06
RD-LOG 1.8703e-05 (1.7284e-05,2.0122e-05) 1.9965e-05 RD-LOG 2.0056e-05 (1.8498e-05,2.1615e-05) 2.1494e-05
RD-EXPI 6.1405e-06 (4.7504e-06,7.5305e-06) 7.6538e-06 RD-EXPI 5.0714e-06 (3.6191e-06,6.5238e-06) 6.8901e-06
RD-EXPS 5.3672e-05 (5.2127e-05,5.5218e-05) 5.4525e-05 RD-EXPS 5.3921e-05 (5.2209e-05,5.5633e-05) 5.4755e-05
RD-SIN 2.1289e-05 (1.9815e-05,2.2764e-05) 2.2318e-05 RD-SIN 2.2680e-05 (2.1072e-05,2.4288e-05) 2.3627e-05
RD-GT 1.4326e-05 (1.2666€-05,1.5986e-05) 1.5037e-05 RD-GT 1.4197e-05 (1.2349e-05,1.6044e-05) 1.5451e-05
RD-I 3.4055e-06 (2.1274e-06,4.6837e-06) 4.1924e-06 RD-I 1.9755e-06 (5.8269e-07,3.3683e-06) 3.4142e-06
RD-MAX -1.2717e-06 (-2.9793e-06,4.3588e-07) -1.8270e-07 RD-MAX -1.2992e-08 (-1.8183e-06,1.7923e-06) 1.3286e-06
RD-GTCONST 9.1655e-06 (7.8817e-06,1.0449¢e-05) 9.9113e-06 RD-GTCONST 1.0527e-05 (9.1091e-06,1.1944e-05) 1.2073e-05
L-OHS 8.7526e-05 (8.6515e-05,8.8537e-05) 8.6198e-05 L-OHS 8.7021e-05 (8.5870e-05,8.8171e-05) 8.4932e-05
L-LOAD 2.4821e-06 (1.8585e-06,3.1057e-06) 2.5957e-06 L-LOAD 2.6823e-06 (2.0804e-06,3.2841e-06) 2.7846e-06
L-OR 4.4673e-06 (2.7709e-06,6.1637e-06) 5.0327e-06 L-OR 5.9969e-06 (4.2482e-06,7.7456€-06) 7.3217e-06
L-NOT 2.5419e-06 (8.4403e-07,4.2397e-06) 2.7798e-06 L-NOT 4.1247e-06 (2.3802e-06,5.8692e-06) 5.4153e-06
I-OHS 8.7526e-05 (8.6515e-05,8.8537e-05) 8.6198e-05 I-OHS 8.7021e-05 (8.5870e-05,8.8171e-05) 8.4932e-05
I-LOAD 2.4821e-06 (1.8585e-06,3.1057e-06) 2.5957e-06 I-LOAD 2.6823e-06 (2.0804e-06,3.2841e-06) 2.7846e-06
I-GT 6.2826e-06 (4.5416e-06,8.0235e-06) 6.2791e-06 I-GT 7.6207e-06 (5.8201e-06,9.4214e-06) 7.9739%-06
I-AND 2.4395e-08 (-1.7344e-06,1.7832e-06) -5.2608e-07 I-AND -2.5948e-06 (-4.3452e-06,-8.4442e-07) -1.4722e-06
I-SHFT 1.5291e-06 (2.2029e-07,2.8379e-06) 1.8063e-06 I-SHFT -1.2435e-06 (-2.6321e-06,1.4503e-07) 9.2775e-08
I-ADD -1.7560e-06 (-2.7520e-06,-7.5992e-07) -1.6705e-06 I-ADD -2.4289e-06 (-3.3969e-06,-1.4609e-06) -2.2119e-06
I-RS 1.1842e-06 (-6.5386€e-08,2.4338e-06) 1.0814e-06 I-RS -1.3790e-06 (-2.8717e-06,1.1370e-07) 7.1264e-08
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1024-Element Array Size:

4096-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds) Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 8.5778e-05 (8.4647e-05,8.6909e-05) 8.4217e-05 RS-OHS 8.6948e-05 (8.5718e-05,8.8178e-05) 8.4612e-05
RS-LOAD 2.5029e-06 (1.8995e-06,3.1063e-06) 2.4898e-06 RS-LOAD 2.7318e-06 (2.1107e-06,3.3528e-06) 2.8017e-06
RS-ADD -2.7667e-06 (-3.8046€-06,-1.7287e-06) -2.2661e-06 RS-ADD -3.6298e-06 (-4.7167e-06,-2.5429¢-06) -2.5524e-06
RS-MUL -2.5229e-06 (-3.5189e-06,-1.5268e-06) -2.1934e-06 RS-MUL -3.4809e-06 (-4.5827¢e-06,-2.3790e-06) -3.0071e-06
RS-SQRT 1.0480e-06 (-3.8006€e-07,2.4760e-06) 1.7361e-06 RS-SQRT -1.1406e-06 (-2.6378e-06,3.5666e-07) 3.7579e-07
RS-LOG 2.5015e-05 (2.3523e-05,2.6508e-05) 2.5395e-05 RS-LOG 2.2989%e-05 (2.1470e-05,2.4508e-05) 2.4138e-05
RS-EXPI -8.2556e-07 (-2.2151e-06,5.6393e-07) 2.8825e-08 RS-EXPI -2.8443e-06 (-4.3433e-06,-1.3452e-06) -1.2381e-06
RS-EXPS 4.8508e-05 (4.7015e-05,5.0001e-05) 4.8907e-05 RS-EXPS 4.6919e-05 (4.5343e-05,4.8494e-05) 4.8168e-05
RS-SIN 1.3242e-05 (1.1774e-05,1.4709e-05) 1.3835e-05 RS-SIN 1.1242e-05 (9.7176e-06,1.2767e-05) 1.2562e-05
RS-GT 4.6139e-06 (2.9103e-06,6.3176e-06) 5.7366e-06 RS-GT 3.3881e-06 (1.7027e-06,5.0736e-06) 3.3234e-06
RS 1.1066e-05 (9.7076e-06,1.2424e-05) 1.1994e-05 RS 9.3744e-06 (8.0737e-06,1.0675e-05) 1.0049e-05
RS-MAX -2.2039e-06 (-3.9315e-06,-4.7621e-07) -1.3000e-06 RS-MAX -4.7394e-06 (-6.5502e-06,-2.9286e-06) -2.9631e-06
RS-GTCONST 6.4807e-06 (5.1373e-06,7.8241e-06) 7.6329e-06 RS-GTCONST 5.4493e-06 (4.1457e-06,6.7528e-06) 5.3369e-06
RD-OHS 8.8601e-05 (8.7439e-05,8.9763e-05) 8.7390e-05 RD-OHS 9.2860e-05 (9.1708e-05,9.4012e-05) 9.0749e-05
RD-LOAD 7.0400e-07 (7.4455e-08,1.3335e-06) 4.0150e-07 RD-LOAD 3.9387e-07 (-2.1042e-07,9.9815e-07) 3.4181e-07
RD-ADD -3.5959e-07 (-1.3927e-06,6.7355e-07) 2.3607e-07 RD-ADD -9.6156e-08 (-1.0461e-06,8.5374e-07) 3.2211e-07
RD-MUL -3.0590e-07 (-1.4025e-06,7.9069e-07) 4.7364e-07 RD-MUL -8.0090e-07 (-1.9147e-06,3.1288e-07) 4.7025e-07
RD-SQRT 2.9004e-06 (1.4033e-06,4.3975e-06) 3.4187e-06 RD-SQRT 1.1570e-06 (-3.1305e-07,2.6271e-06) 2.1392e-06
RD-LOG 2.0464e-05 (1.8995e-05,2.1932e-05) 2.1194e-05 RD-LOG 1.8998e-05 (1.7562e-05,2.0434e-05) 2.0266e-05
RD-EXPI 6.1677e-06 (4.7404e-06,7.5950e-06) 7.0056e-06 RD-EXPI 5.0961e-06 (3.6835e-06,6.5086€e-06) 6.7084e-06
RD-EXPS 5.4548e-05 (5.3007e-05,5.6089e-05) 5.5133e-05 RD-EXPS 5.3875e-05 (5.2334e-05,5.5417e-05) 5.5041e-05
RD-SIN 2.2810e-05 (2.1353e-05,2.4268e-05) 2.3620e-05 RD-SIN 2.1793e-05 (2.0279e-05,2.3306e-05) 2.2916e-05
RD-GT 1.3501e-05 (1.1744e-05,1.5257e-05) 1.5176e-05 RD-GT 1.3064e-05 (1.1403e-05,1.4724e-05) 1.3670e-05
RD-I 6.8147e-07 (-7.0905e-07,2.0720e-06) 1.7547e-06 RD-I -2.8095e-07 (-1.5412e-06,9.7929¢-07) 4.6836e-07
RD-MAX -3.8972e-07 (-2.1819e-06,1.4024e-06) 7.0919e-07 RD-MAX -8.2296e-07 (-2.6207e-06,9.7475e-07) 3.8344e-07
RD-GTCONST 9.0221e-06 (7.6394e-06,1.0405e-05) 1.0283e-05 RD-GTCONST 8.3694e-06 (7.0805e-06,9.6583e-06) 9.0206e-06
L-OHS 8.7752e-05 (8.6676e-05,8.8829e-05) 8.5980e-05 L-OHS 9.0036e-05 (8.9047e-05,9.1025e-05) 8.8766e-05
L-LOAD 2.5029e-06 (1.8995e-06,3.1063e-06) 2.4898e-06 L-LOAD 2.7318e-06 (2.1107e-06,3.3528e-06) 2.8017e-06
L-OR 4.9092e-06 (3.2082e-06,6.6102e-06) 6.1579e-06 L-OR 3.2948e-06 (1.6121e-06,4.9776€-06) 3.6203e-06
L-NOT 2.8685e-06 (1.1573e-06,4.5798e-06) 3.8809e-06 L-NOT 2.5168e-06 (8.3380e-07,4.1997e-06) 3.0204e-06
I-OHS 8.7752e-05 (8.6676e-05,8.8829e-05) 8.5980e-05 I-OHS 9.0036e-05 (8.9047e-05,9.1025e-05) 8.8766e-05
I-LOAD 2.5029e-06 (1.8995e-06,3.1063e-06) 2.4898e-06 I-LOAD 2.7318e-06 (2.1107e-06,3.3528e-06) 2.8017e-06
I-GT 6.0525e-06 (4.3388e-06,7.7662e-06) 6.9927e-06 I-GT 4.3475e-06 (2.6565e-06,6.0384¢e-06) 4.5903e-06
I-AND -2.9104e-06 (-4.6166€e-06,-1.2041e-06) -1.8150e-06 I-AND -4.3375e-06 (-6.0039e-06,-2.6712e-06) -3.8807e-06
I-SHFT -1.6848e-06 (-3.0085e-06,-3.6105e-07) -5.2308e-07 I-SHFT -2.3250e-06 (-3.5939e-06,-1.0561e-06) -1.6549e-06
I-ADD -2.2248e-06 (-3.2558e-06,-1.1937e-06) -1.7689e-06 I-ADD -2.6372e-06 (-3.6953e-06,-1.5791e-06) -2.4053e-06
I-RS -1.8731e-07 (-1.6018e-06,1.2272e-06) 6.1861e-07 I-RS -4.4465e-07 (-1.9111e-06,1.0218e-06) 1.1557e-06




3 Xipusddy

6€

16384-Element Array Size:

65536-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds) Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 9.3528e-05 (9.2379e-05,9.4676e-05) 9.2174e-05 RS-OHS 1.1917e-04 (1.1744e-04,1.2089e-04) 1.1678e-04
RS-LOAD 3.4715e-06 (2.8440e-06,4.0991e-06) 3.3104e-06 RS-LOAD 5.4898e-06 (4.5886e-06,6.3909e-06) 5.2954e-06
RS-ADD -2.1778e-06 (-3.2802e-06,-1.0755e-06) -1.6621e-06 RS-ADD 2.1534e-06 (6.3651e-07,3.6704e-06) 2.7581e-06
RS-MUL -2.3915e-06 (-3.3742e-06,-1.4088e-06) -1.7208e-06 RS-MUL 1.9737e-06 (2.7802e-07,3.6693e-06) 3.1633e-06
RS-SQRT 8.7352e-06 (7.2759e-06,1.0194e-05) 9.5632e-06 RS-SQRT 4.6305e-05 (4.4099e-05,4.8510e-05) 4.8099e-05
RS-LOG 8.3767e-05 (8.2072e-05,8.5463e-05) 8.4261e-05 RS-LOG 3.2887e-04 (3.2519e-04,3.3255e-04) 3.2890e-04
RS-EXPI 3.7475e-06 (2.3277e-06,5.1673e-06) 4.5748e-06 RS-EXPI 2.5583e-05 (2.3476e-05,2.7691e-05) 2.7246e-05
RS-EXPS 1.7355e-04 (1.7135e-04,1.7574e-04) 1.7305e-04 RS-EXPS 6.7697e-04 (6.7129e-04,6.8264¢e-04) 6.7462e-04
RS-SIN 5.7816e-05 (5.6244e-05,5.9387e-05) 5.8260e-05 RS-SIN 2.4265e-04 (2.3982e-04,2.4549e-04) 2.4339%-04
RS-GT 7.2992e-06 (5.5099e-06,9.0886€e-06) 8.5027e-06 RS-GT 1.8590e-05 (1.5850e-05,2.1329e-05) 2.0420e-05
RS 1.2137e-05 (1.0718e-05,1.3557e-05) 1.3071e-05 RS 1.3831e-05 (1.1717e-05,1.5944e-05) 1.5980e-05
RS-MAX -1.6639e-06 (-3.4486€-06,1.2088e-07) -6.9138e-07 RS-MAX 9.3883e-06 (6.7817e-06,1.1995e-05) 1.1238e-05
RS-GTCONST 1.0217e-05 (8.6576e-06,1.1777e-05) 1.0673e-05 RS-GTCONST 2.3538e-05 (2.1384e-05,2.5692e-05) 2.5378e-05
RD-OHS 1.0056e-04 (9.9379e-05,1.0175e-04) 9.8406e-05 RD-OHS 1.3977e-04 (1.3754€-04,1.4200e-04) 1.3518e-04
RD-LOAD 1.3829e-06 (7.0439e-07,2.0613e-06) 1.5377e-06 RD-LOAD 5.4879e-06 (4.5219e-06,6.4540e-06) 5.0990e-06
RD-ADD -2.3023e-07 (-1.3778e-06,9.1734e-07) 4.9683e-07 RD-ADD 1.5658e-06 (-3.7560e-07,3.5072e-06) 3.6179e-06
RD-MUL -1.9580e-07 (-1.1829e-06,7.9133e-07) 1.5259e-07 RD-MUL 1.7380e-06 (-2.4366€e-07,3.7196e-06) 3.6578e-06
RD-SQRT 1.2934e-05 (1.1440e-05,1.4428e-05) 1.4253e-05 RD-SQRT 6.2223e-05 (5.9541e-05,6.4906e-05) 6.5888e-05
RD-LOG 8.4699e-05 (8.2992e-05,8.6407e-05) 8.5199e-05 RD-LOG 3.4656e-04 (3.4292e-04,3.5020e-04) 3.4900e-04
RD-EXPI 1.0154e-05 (8.6506e-06,1.1657e-05) 1.1223e-05 RD-EXPI 2.6533e-05 (2.3929e-05,2.9138e-05) 3.0759e-05
RD-EXPS 2.0074e-04 (1.9851e-04,2.0296e-04) 2.0114e-04 RD-EXPS 7.8777e-04 (7.8200e-04,7.9354e-04) 7.8942e-04
RD-SIN 9.4511e-05 (9.2634e-05,9.6387e-05) 9.5014e-05 RD-SIN 3.8189%e-04 (3.7809e-04,3.8570e-04) 3.8516e-04
RD-GT 1.6548e-05 (1.4628e-05,1.8468e-05) 1.6796e-05 RD-GT 2.3863e-05 (2.1033e-05,2.6694e-05) 2.5971e-05
RD-I 1.3451e-06 (-1.3687e-07,2.8270e-06) 1.5141e-06 RD-I 1.3298e-06 (-8.0359¢e-07,3.4631e-06) 3.5499e-06
RD-MAX 9.1424e-07 (-9.8495e-07,2.8134e-06) 2.1078e-06 RD-MAX 9.1184e-06 (5.9314e-06,1.2305e-05) 1.2956e-05
RD-GTCONST 1.3055e-05 (1.1588e-05,1.4522¢-05) 1.3474e-05 RD-GTCONST 2.4031e-05 (2.1856e-05,2.6206e-05) 2.5997e-05
L-OHS 9.3162e-05 (9.2030e-05,9.4295e-05) 9.1732e-05 L-OHS 1.2171e-04 (1.1996e-04,1.2347e-04) 1.1909e-04
L-LOAD 3.4715e-06 (2.8440e-06,4.0991e-06) 3.3104e-06 L-LOAD 5.4898e-06 (4.5886e-06,6.3909e-06) 5.2954e-06
L-OR 5.7279e-06 (3.9446e-06,7.5113e-06) 6.9128e-06 L-OR 7.1847e-06 (4.5297e-06,9.8397e-06) 9.0118e-06
L-NOT 2.8709e-06 (1.0833e-06,4.6584¢e-06) 3.8599e-06 L-NOT 1.1252e-06 (-1.5048e-06,3.7553e-06) 3.3121e-06
I-OHS 9.3162e-05 (9.2030e-05,9.4295e-05) 9.1732e-05 I-OHS 1.2171e-04 (1.1996e-04,1.2347e-04) 1.1909e-04
I-LOAD 3.4715e-06 (2.8440e-06,4.0991e-06) 3.3104e-06 I-LOAD 5.4898e-06 (4.5886e-06,6.3909e-06) 5.2954e-06
I-GT 9.5120e-06 (7.7228e-06,1.1301e-05) 1.0541e-05 I-GT 2.0408e-05 (1.7756e-05,2.3061e-05) 2.2028e-05
I-AND -2.0856e-06 (-3.8697e-06,-3.0145e-07) -1.0934e-06 I-AND -8.0259e-07 (-3.4168e-06,1.8116e-06) 1.4750e-06
I-SHFT -2.5237e-07 (-1.6531e-06,1.1483e-06) 5.1835e-07 I-SHFT 1.4348e-07 (-1.9464e-06,2.2334e-06) 2.0734e-06
I-ADD -1.5022e-06 (-2.4583e-06,-5.4602e-07) -1.0680e-06 I-ADD 2.5153e-06 (9.8427e-07,4.0464e-06) 3.3471e-06
I-RS -2.4376e-06 (-3.8557e-06,-1.0194e-06) -1.6008e-06 I-RS 2.2022e-06 (1.3908e-07,4.2653e-06) 4.0033e-06




3 Xipusddy

ov

262144-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value
Parameter (seconds) Interval (seconds) (seconds)
RSOHS 2.38256.04 (2.34546-04,2.41976-04) 2.32006-04
RSLOAD 14424605 (1.26216-05,1.62276-05) 14571605
RSADD 7.01856-06 (44421606, 11396 05) 9.58696-06 _
RSMUL 137526:05 (1.06456-05,1.68596.05) 1.60226.05 1048576-Element Array Size:
RS-SORT 17827604 (1.7343e-04,1.8310604) 18299604 _ _
RSLOG 1.2894-03 (1.27786:03,1.30106-03) 1.2880-03 Porameter | Mean Value 95-Percent Confidence Minimum Value
RSEXPI 9.62526.05 (9.15336-05,1.0097¢-04) 10051604 (seconds) Interval (seconds) (seconds)
RSEXPS 2.66996-03 (2.65046-03,2.68%46-03) 2.6647e-03 RSOHS 6.58536-04 (6.47666-04,6.69406-04) 6.47276-04
RSSIN 9.6061e-04 (0.61306-04,9.77916-04) 9.7154e-04 RSLOAD | 96175605 (9.04586-05,1.0189¢-04) 9.54506-05
RSGT 75462605 (7.00926-05,8.08316-05) 7.84626-05 RSADD 2431705 (1.40586-05,3.45776-05) 2.60316.05
RS 2.44136.05 (2.01806-05,2.86466-05) 2.74876-05 RSMUL 22516605 (1.22286-05,3.28046 05) 2.71296.05
RSMAX 35358605 (2.97066-05,4.10106-05) 3.01826.05 RSSORT | 7.22386.04 (7.06856-04,7.37916-04) 7.2617e-04
RSGTCONST | 84084605 (7.96576-05,8.85126-05) 8.60456-05 RSLOG 51812603 (5.14856-03,5.21406-03) 51759603
RD-OHS 2.04586-04 (2.90146-04,2.99016 04) 2.87906-04 RSEXPI 3.0136e-04 (3.77166-04,4.05566 04) 3.0854e-04
RD-LOAD 2.73696-05 (2.51886-05,2.95496-05) 2.67376.05 RSEXPS | 10742602 (1.0679¢-02,1.08046 02) 10719602
RD-ADD 2.89216-07 (-4.38166-06,3.80326-06) 3.64696-06 RSSIN 3.00526-03 (3.87086-03,3.93956 03) 3.9007e-03
RD-MUL 4.21066-06 (2.1261e-07,8.20866-06) 6.2581-06 RSMAX 14786604 (1.3113e-04,1.64506-04) 15814604
RD-SORT 2.4104e-04 (2.36006-04,2.4779¢-04) 2.47596-04 RD-OHS | 85811604 (8.46236-04,8.69986-04) 85215604
RD-LOG 13831603 (1.37026-03,1.39616-03) 13825603 RD-LOAD | 13975604 (1.32756-04,1.46766-04) 13627604
RD-EXPI 8.32196.05 (7.77626-05,8.86776-05) 8.83156.05 RD-ADD | -8.16156.06 (-1.96916-05,3.3677e-06) 53154606
RD-EXPS 3.12856.03 (3.10486-03,3.15226.03) 31185603 RD-MUL | -1.06606-05 (-2.27036-05,1.3817e-06) 47231606
RD-SIN 15369603 (1.52286-03,1.55106-03) 15342603 RD-SORT | 9.9204604 (9.7417e-04,1.0099¢-03) 9.0359¢-04
RD-GT 6.11676.05 (5.51066-05,6.72286-05) 6.38846-05 RD-.LOG | 56172603 (5.56516-03,5.66936-03) 55801603
RDA ~3.05146-07 (-4.68706-06,4.0767e-06) 3.20026-06 RD-EXPI 3.43766-04 (3.27816-04,3.59706-04) 3.46826-04
RD-MAX 2.86086-05 (2.21606-05,3.52376-05) 35194605 RD-EXPS | 12582602 (1.24896-02,1.26766-02) 12533602
RD-GTCONST | 7.2199¢-05 (6.77096-05,7.66886-05) 7.61226.05 RD-SIN 6.15326.03 (6.1039¢-03,6.20246-03) 6.13626-03
L-OHS 2.27556-04 (2.24066-04,2.31036-04) 22284604 RD-MAX | 11691e04 (9.71586-05,1.36666-04) 12462604
L-LOAD 14424605 (1.2621e-05,1.6227-05) 14571605 L-LOAD 9.61756-05 (9.04586-05,1.0189¢-04) 9.54506-05
L-OR 22371605 (1.71056-05,2.7637-05) 2.55456-05 I-LOAD 9.61756-05 (9.04586-05,1.0189-04) 9.54506-05
L-NOT 2.01956-06 (-1.22036-06,9.25932-06) 72127606 I-RS 2.75856-06 (-1.0783e-05,1.6300e-05) 7.27016-06
I-OHS 2.27556-04 (2.24066-04,2.31036-04) 22284604
I-LOAD 14424605 (1.26216-05,1.62276-05) 14571605
-GT 7.48006-05 (6.94236-05,8.01786-05) 7.60486-05
I-AND 22818605 (1.75686-05,2.80686-05) 25687605
I-SHET 1440005 (1.0189¢05,1.86286-05) 1.70256-05
I-ADD 14489605 (1.12516-05,1.77266-05) 16731605
RS 15973607 (-4.58856-06,4.26916-06) 4.50156-06




E.1.2 Y-MP C90/cf 77 Operation Measurements

64-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 1.8957e-07 (1.3049e-07,2.4865e-07) 1.0918e-07
RS-LOAD -4.4621e-08 (-1.2780e-07,3.8554e-08) 2.7141e-08
RS-ADD 2.0926e-07 (1.2593e-07,2.9259¢-07) 1.3698e-07
RS-MUL 1.9573e-07 (1.1236e-07,2.7910e-07) 1.2253e-07
RS-SQRT 2.0584e-06 (1.9554e-06,2.1615e-06) 2.0623e-06
RS-LOG 5.7688e-06 (5.6609e-06,5.8766e-06) 5.7133e-06
RS-EXPI 1.4724e-06 (1.3698e-06,1.5751e-06) 1.4765e-06
RS-EXPS 2.1615e-05 (2.1454e-05,2.1776e-05) 2.1552e-05
RS-SIN 8.6851e-06 (8.5712e-06,8.7991e-06) 8.5917e-06
RS-GT 2.4085e-07 (6.3995e-08,4.1771e-07) 1.6467e-07
RS 1.5045e-07 (4.7635e-08,2.5327e-07) 1.5009e-07
RS-MAX 2.1381e-07 (3.7194e-08,3.9042¢-07) 1.4591e-07
RS-GTCONST 1.6238e-07 (6.0103e-08,2.6465e-07) 1.6040e-07
L-OHS 9.2865e-08 (3.3601e-08,1.5213e-07) 2.8678e-08
L-LOAD -4.4621e-08 (-1.2780e-07,3.8554e-08) 2.7141e-08
L-OR 3.2513e-07 (1.4844e-07,5.0182¢e-07) 2.4416e-07
L-NOT 2.8580e-07 (1.0912e-07,4.6248e-07) 2.0611e-07
I-OHS 9.2865e-08 (3.3601e-08,1.5213e-07) 2.8678e-08
I-LOAD -4.4621e-08 (-1.2780e-07,3.8554e-08) 2.7141e-08
I-GT 9.0856e-08 (-8.5802e-08,2.6751e-07) 1.5404e-08
I-AND 3.5080e-07 (1.7363e-07,5.2797e-07) 2.5952e-07
I-SHFT 1.2790e-07 (2.5635e-08,2.3017e-07) 1.2688e-07
I-ADD 1.5250e-07 (6.9189e-08,2.3581e-07) 7.3385e-08
I-RS 9.2744e-08 (-9.4059e-09,1.9489¢e-07) 9.7033e-08

256-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 2.6542e-07 (2.5265e-07,2.7818e-07) 2.4425e-07
RS-LOAD 7.7806e-08 (6.7260e-08,8.8353e-08) 6.7476e-08
RS-ADD 4.3638e-07 (4.2188e-07,4.5089¢-07) 4.4816e-07
RS-MUL 4.3765e-07 (4.2369e-07,4.5162¢e-07) 4.3776e-07
RS-SQRT 1.1339e-05 (1.1241e-05,1.1438e-05) 1.0435e-05
RS-LOG 1.8250e-05 (1.8139e-05,1.8362¢e-05) 1.8028e-05
RS-EXPI 5.5006e-06 (5.4404e-06,5.5609e-06) 5.3942e-06
RS-EXPS 8.1431e-05 (7.9710e-05,8.3151e-05) 7.4981e-05
RS-SIN 2.4514e-05 (2.4367e-05,2.4661e-05) 2.4244e-05
RS-GT 6.5245e-07 (6.2374e-07,6.8115e-07) 6.3238e-07
RS 6.3574e-07 (6.1429e-07,6.5718e-07) 6.0960e-07
RS-MAX 1.0019e-06 (9.7479e-07,1.0290e-06) 1.0118e-06
RS-GTCONST 6.2735e-07 (6.0565e-07,6.4905e-07) 5.9691e-07
L-OHS 2.0309e-07 (1.8657e-07,2.1961e-07) 2.1867e-07
L-LOAD 7.7806e-08 (6.7260e-08,8.8353e-08) 6.7476e-08
L-OR 7.5509e-07 (7.2629e-07,7.8389e-07) 7.2466e-07
L-NOT 6.2686e-07 (5.9857e-07,6.5515e-07) 6.0995e-07
I-OHS 2.0309e-07 (1.8657e-07,2.1961e-07) 2.1867e-07
I-LOAD 7.7806e-08 (6.7260e-08,8.8353e-08) 6.7476e-08
I-GT 4.2269e-07 (3.9471e-07,4.5067e-07) 4.0949e-07
I-AND 1.0699e-06 (9.0204e-07,1.2378e-06) 7.7523e-07
I-SHFT 1.4437e-06 (1.2813e-06,1.6061e-06) 1.1517e-06
I-ADD 4.9497e-07 (4.7040e-07,5.1954e-07) 4.6206e-07
I-RS 5.8343e-07 (5.6457e-07,6.0230e-07) 5.9059e-07
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1024-Element Array Size:
Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 7.0445e-07 (6.3486e-07,7.7404e-07) 7.2761e-07
RS-LOAD 3.0453e-07 (2.2567e-07,3.8338e-07) 2.3639e-07
RS-ADD 1.6262e-06 (1.5394e-06,1.7130e-06) 1.6417e-06
RS-MUL 1.7520e-06 (1.6590e-06,1.8451e-06) 1.6978e-06
RS-SQRT 1.5689e-05 (1.5191e-05,1.6187e-05) 1.5054e-05
RSLOG 4.0483e-05 (4.0227e-05,4.0740e-05) 4.0071e-05
RS-EXPI 2.2276e-05 (2.2104e-05,2.2447e-05) 2.2288e-05
RS-EXPS 3.0427e-04 (3.0258e-04,3.0596e-04) 2.9965e-04
RS-SIN 6.0197e-05 (5.9829e-05,6.0564e-05) 5.9334e-05
RS-GT 1.8271e-06 (1.6487e-06,2.0056e-06) 1.8125e-06
RS 1.8206e-06 (1.7065e-06,1.9347e-06) 1.7824e-06
RS-MAX 4.8031e-06 (4.6261e-06,4.9801e-06) 4.8294e-06
RS-GTCONST 1.8443e-06 (1.7295e-06,1.9592e-06) 1.7692e-06
L-OHS 1.3828e-06 (1.3035e-06,1.4621e-06) 1.4488e-06
L-LOAD 3.0453e-07 (2.2567e-07,3.8338e-07) 2.3639e-07
L-OR 1.9999e-06 (1.8205e-06,2.1794e-06) 1.9666e-06
L-NOT 1.5625e-06 (1.3841e-06,1.7409e-06) 1.5060e-06
I-OHS 1.3828e-06 (1.3035e-06,1.4621e-06) 1.4488e-06
I-LOAD 3.0453e-07 (2.2567e-07,3.8338e-07) 2.3639e-07
I-GT 1.8863e-06 (1.6990e-06,2.0735e-06) 1.8067e-06
I-AND 2.2691e-06 (2.0604e-06,2.4779-06) 2.1463e-06
I-SHFT 3.9184e-06 (3.8003e-06,4.0366e-06) 3.8449e-06
I-ADD 1.7896e-06 (1.6942e-06,1.8849-06) 1.7419e-06
I-RS 2.5450e-06 (2.4370e-06,2.6529-06) 2.5486e-06

4096-Element Array Size:
Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 9.0895e-06 (8.6134e-06,9.5656e-06) 8.6533e-06
RS-LOAD 7.6422e-07 (4.8965e-07,1.0388e-06) 3.8191e-07
RS-ADD 1.9478e-06 (1.4009e-06,2.4947e-06) 2.0393e-06
RS-MUL 1.9851e-06 (1.4840e-06,2.4862e-06) 1.8821e-06
RS-SQRT 3.9983e-05 (3.7186€-05,4.2780e-05) 2.9058e-05
RSLOG 1.7060e-04 (1.6200e-04,1.7920e-04) 1.2937e-04
RS-EXPI 2.2982e-05 (2.2406e-05,2.3558e-05) 2.3693e-05
RS-EXPS 4.6128e-04 (4.4233e-04,4.8022e-04) 3.6827e-04
RS-SIN 2.5970e-04 (2.4088e-04,2.7853e-04) 1.8711e-04
RS-GT 4.2870e-06 (3.1252e-06,5.4488e-06) 1.3613e-06
RS 3.8806e-06 (2.8491e-06,4.9122e-06) 1.3161e-06
RS-MAX 7.7663e-06 (6.3032e-06,9.2295e-06) 4.6338e-06
RS-GTCONST 4.2790e-06 (3.1788e-06,5.3793e-06) 1.1725e-06
L-OHS 7.8462e-06 (6.9926e-06,8.6997e-06) 8.9599e-06
L-LOAD 7.6422e-07 (4.8965e-07,1.0388e-06) 3.8191e-07
L-OR 2.3337e-06 (1.3134e-06,3.3539%-06) 1.5594e-06
L-NOT 1.5375e-06 (5.1351e-07,2.5614e-06) 7.2976e-07
I-OHS 7.8462e-06 (6.9926e-06,8.6997e-06) 8.9599e-06
I-LOAD 7.6422e-07 (4.8965e-07,1.0388e-06) 3.8191e-07
I-GT 1.9492e-06 (9.3202e-07,2.9665e-06) 1.4290e-06
I-AND 2.0557e-06 (1.0388e-06,3.0726e-06) 1.6088e-06
I-SHFT 5.6667e-06 (4.7420e-06,6.5914e-06) 4.0772e-06
I-ADD 2.8337e-06 (2.3411e-06,3.3263e-06) 1.7861e-06
I-RS 2.1544e-06 (1.4727e-06,2.8361e-06) 1.5980e-06
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16384-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 1.0210e-05 (7.6431e-06,1.2778e-05) 1.1790e-05
RS-LOAD 3.7532e-06 (1.5086e-06,5.9978e-06) 2.5228e-06
RS-ADD 7.6708e-06 (4.9042e-06,1.0437e-05) 4.,7340e-06
RS-MUL 9.8271e-06 (6.5282e-06,1.3126e-05) 5.6217e-06
RS-SQRT 2.3694e-04 (2.1969e-04,2.5419e-04) 1.2780e-04
RS-LOG 6.3230e-04 (5.9098e-04,6.7362¢e-04) 4.7918e-04
RS-EXPI 1.4163e-04 (1.3372e-04,1.4954e-04) 9.5619e-05
RS-EXPS 1.6324e-03 (1.5528e-03,1.7120e-03) 1.4351e-03
RS-SIN 9.6406e-04 (8.7807e-04,1.0501e-03) 6.9099e-04
RS-GT 5.3919e-06 (-2.7617e-06,1.3545e-05) 1.8811e-06
RS -3.0978e-06 (-9.9075e-06,3.7119e-06) 3.4854e-06
RS-MAX 4.1023e-05 (3.4857e-05,4.7188e-05) 2.2303e-05
RS-GTCONST 5.2165e-06 (-1.8835e-06,1.2316e-05) 2.7457e-06
L-OHS 1.9018e-05 (1.2590e-05,2.5446e-05) 1.3582e-05
L-LOAD 3.7532e-06 (1.5086e-06,5.9978e-06) 2.5228e-06
L-OR 1.7938e-06 (-6.1961e-06,9.7837e-06) 2.1211e-06
L-NOT -2.6882e-06 (-1.0569e-05,5.1922¢-06) 9.7461e-07
I-OHS 1.9018e-05 (1.2590e-05,2.5446¢e-05) 1.3582e-05
I-LOAD 3.7532e-06 (1.5086e-06,5.9978e-06) 2.5228e-06
I-GT -5.4350e-06 (-1.3277e-05,2.4069¢e-06) 1.9598e-06
I-AND -4.3626e-06 (-1.2214e-05,3.4887e-06) 2.6668e-06
I-SHFT 8.1504e-06 (1.3391e-06,1.4962¢e-05) 1.4531e-05
I-ADD 1.8703e-05 (1.0754€-05,2.6653e-05) 7.1444e-06
I-RS 1.3580e-05 (9.3376e-06,1.7822¢e-05) 4.3456e-06

65536-Element Array Size:
Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 2.3224e-05 (1.8243e-05,2.8206e-05) 2.4953e-05
RS-LOAD 2.4279e-06 (-1.2627e-06,6.1185e-06) 5.3697e-06
RS-ADD 4.2030e-05 (3.6180e-05,4.7880e-05) 2.5156e-05
RS-MUL 4.3148e-05 (3.6686e-05,4.9610e-05) 2.3486e-05
RS-SQRT 4.6598e-04 (4.5926e-04,4.7270e-04) 4.6042e-04
RS-LOG 1.9272e-03 (1.9116e-03,1.9428e-03) 1.8501e-03
RS-EXPI 3.5811e-04 (3.5156e-04,3.6465e-04) 3.5245e-04
RS-EXPS 5.6589e-03 (5.6144e-03,5.7034e-03) 5.3434e-03
RS-SIN 2.3837e-03 (2.3249e-03,2.4425e-03) 2.2567e-03
RS-GT 4.7137e-05 (3.2713e-05,6.1562¢e-05) 1.0051e-05
RS 2.5213e-05 (1.3284€-05,3.7143e-05) 9.7899e-06
RS-MAX 8.1426e-05 (7.2498e-05,9.0355¢e-05) 7.1788e-05
RS-GTCONST 4.3637e-05 (3.0562e-05,5.6712e-05) 9.3100e-06
L-OHS 3.3543e-05 (2.2620e-05,4.4466e-05) 3.4450e-05
L-LOAD 2.4279e-06 (-1.2627e-06,6.1185e-06) 5.3697e-06
L-OR 2.9483e-05 (1.5799e-05,4.3167e-05) 1.3276e-05
L-NOT 1.1381e-05 (-1.8056e-06,2.4568e-05) 3.9093e-06
I-OHS 3.3543e-05 (2.2620e-05,4.4466e-05) 3.4450e-05
I-LOAD 2.4279e-06 (-1.2627e-06,6.1185e-06) 5.3697e-06
I-GT 2.8252e-05 (1.4721e-05,4.1784e-05) 1.3562e-05
I-AND 3.6120e-05 (2.2413e-05,4.9828e-05) 1.4412e-05
I-SHFT 6.1873e-05 (5.0328e-05,7.3419e-05) 5.6706e-05
I-ADD 4.1681e-05 (3.5645e-05,4.7718e-05) 2.4970e-05
I-RS 2.3926e-05 (1.7720e-05,3.0132¢e-05) 1.8624e-05
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262144-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 1.2748e-04 (1.0003e-04,1.5493e-04) 7.8420e-05
RS-LOAD 3.1849e-05 (1.6779e-05,4.6918e-05) 2.2872e-05
RS-ADD 1.2514e-04 (1.0143e-04,1.4885e-04) 9.5227e-05
RS-MUL 5.5928e-05 (2.5914e-05,8.5943e-05) 8.5608e-05
RS-SQRT 1.7798e-03 (1.7467e-03,1.8129e-03) 1.8352e-03
RSLOG 7.9792e-03 (7.6538e-03,8.3046e-03) 7.4670e-03
RS-EXPI 1.4538e-03 (1.3587e-03,1.5490e-03) 1.4087e-03
RS-EXPS 2.2204e-02 (2.2023e-02,2.2385e-02) 2.1322e-02
RS-SIN 9.4417e-03 (9.0362e-03,9.8472e-03) 8.7465e-03
RS-GT 1.8316e-04 (1.3919e-04,2.2714e-04) 1.1449e-04
RS 1.8575e-04 (1.5038e-04,2.2112e-04) 1.1263e-04
RS-MAX 2.2105e-04 (1.8022e-04,2.6188e-04) 2.8372e-04
RS-GTCONST 2.3534e-04 (1.9695e-04,2.7373e-04) 1.1344e-04
L-OHS -4.4123e-05 (-7.6098e-05,-1.2148e-05) 3.5179e-05
L-LOAD 3.1849e-05 (1.6779e-05,4.6918e-05) 2.2872e-05
L-OR 2.3621e-04 (1.8950e-04,2.8293e-04) 1.2660e-04
L-NOT 1.8753e-04 (1.4228e-04,2.3279%-04) 9.2014e-05
I-OHS -4.4123e-05 (-7.6098e-05,-1.2148e-05) 3.5179e-05
I-LOAD 3.1849e-05 (1.6779e-05,4.6918e-05) 2.2872e-05
I-GT 2.4221e-04 (1.9592e-04,2.8849-04) 1.2599e-04
I-AND 3.3352e-04 (2.7801e-04,3.8903e-04) 1.3160e-04
I-SHFT 4.1418e-04 (3.7183e-04,4.5652e-04) 3.0133e-04
I-ADD 2.1337e-04 (1.7960e-04,2.4714e-04) 1.0626e-04
I-RS 3.3435e-05 (1.1669e-06,6.5704e-05) 7.0426e-05

1048576-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 3.3597e-04 (2.2447e-04,4.4748e-04) 2.8627e-04
RS-LOAD 1.2453e-04 (5.5445e-05,1.9361e-04) 9.8571e-05
RS-ADD 5.9876e-04 (5.0649e-04,6.9102e-04) 3.3131e-04
RS-MUL 3.1657e-04 (1.9080e-04,4.4235e-04) 3.8226e-04
RS-SQRT 7.3616e-03 (7.1680e-03,7.5552e-03) 7.3492e-03
RS-LOG 2.9979e-02 (2.9427e-02,3.0532e-02) 2.8864e-02
RS-EXPI 8.2416e-03 (7.8137e-03,8.6695e-03) 6.0005e-03
RS-EXPS 9.6197e-02 (9.4757e-02,9.7636e-02) 9.0576e-02
RS-SIN 3.5806e-02 (3.5390e-02,3.6221e-02) 3.4005e-02
RS-GT 2.2284e-05 (-2.0339e-04,2.4795e-04) 1.9671e-04
RS -5.8714e-06 (-1.9194e-04,1.8019e-04) 2.2688e-04
RS-MAX 1.0329e-03 (8.5506e-04,1.2106e-03) 1.1155e-03
RS-GTCONST -3.7153e-05 (-2.2303e-04,1.4873e-04) 2.1043e-04
L-OHS 5.7968e-04 (4.0716e-04,7.5221e-04) 3.4965e-04
L-LOAD 1.2453e-04 (5.5445e-05,1.9361e-04) 9.8571e-05
L-OR 5.1054e-05 (-1.7442e-04,2.7653e-04) 2.2410e-04
L-NOT 3.5663e-05 (-1.8978e-04,2.6111e-04) 1.2543e-04
I-OHS 5.7968e-04 (4.0716e-04,7.5221e-04) 3.4965e-04
I-LOAD 1.2453e-04 (5.5445e-05,1.9361e-04) 9.8571e-05
I-GT -8.8978e-06 (-2.3000e-04,2.1220e-04) 24771e-04
I-AND 4.1133e-05 (-1.8272e-04,2.6499e-04) 2.7285e-04
I-SHFT 7.4080e-04 (5.5465e-04,9.2695¢e-04) 9.7303e-04
I-ADD 5.9888e-04 (5.0816e-04,6.8959¢-04) 4.8942e-04
I-RS 6.2676e-04 (4.7089e-04,7.8262¢e-04) 3.0081e-04
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E.1.3 Y-MP C90/f 90 Operation Measurements

64-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 7.7672e-08 (6.9121e-08,8.6223e-08) 6.7078e-08
RS-LOAD 4.0519e-09 (2.2964e-09,5.8073e-09) 5.9411e-09
RS-ADD 1.6310e-07 (1.5533e-07,1.7086e-07) 1.4902e-07
RS-MUL 1.4519e-07 (1.3717e-07,1.5321e-07) 1.4513e-07
RS-SQRT 2.1033e-06 (2.0863e-06,2.1204e-06) 2.1083e-06
RS-LOG 5.7956e-06 (5.7606e-06,5.8306e-06) 5.7265e-06
RS-EXPI 1.5136e-06 (1.4990e-06,1.5282¢-06) 1.5186e-06
RS-EXPS 2.2003e-05 (2.1874e-05,2.2133e-05) 2.1846e-05
RS-SIN 8.7512e-06 (8.6970e-06,8.8053e-06) 8.6477e-06
RS-GT 1.9750e-07 (1.8770e-07,2.0729e-07) 1.8043e-07
RS 1.5364e-07 (1.4449e-07,1.6278e-07) 1.4236e-07
RS-MAX 1.7024e-07 (1.5948e-07,1.8100e-07) 1.7020e-07
RS-GTCONST 1.5424e-07 (1.4513e-07,1.6335e-07) 1.4347e-07
L-OHS -1.1960e-09 (-8.6040e-09,6.2119e-09) 3.1954e-09
L-LOAD 4.0519e-09 (2.2964e-09,5.8073e-09) 5.9411e-09
L-OR 2.6774e-07 (2.5772e-07,2.7776e-07) 2.5213e-07
L-NOT 2.1347e-07 (2.0368e-07,2.2327e-07) 2.0190e-07
I-OHS -1.1960e-09 (-8.6040e-09,6.2119e-09) 3.1954e-09
I-LOAD 4.0519e-09 (2.2964e-09,5.8073e-09) 5.9411e-09
I-GT 8.1406e-08 (7.1950e-08,9.0862¢-08) 7.2393e-08
I-AND 2.7590e-07 (2.6593e-07,2.8586e-07) 2.6086e-07
I-SHFT 3.9982e-07 (3.9008e-07,4.0955¢e-07) 3.8827e-07
I-ADD 1.0116e-07 (9.4887e-08,1.0744e-07) 8.6644e-08
I-RS 9.7921e-08 (8.7777e-08,1.0807e-07) 1.0247e-07

256-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 2.3064e-07 (2.1526e-07,2.4603e-07) 1.6144e-07
RS-LOAD 5.5955e-09 (1.0082e-09,1.0183e-08) 1.0464e-08
RS-ADD 5.5062e-07 (5.3647e-07,5.6476e-07) 5.8095e-07
RS-MUL 5.5383e-07 (5.4136e-07,5.6629e-07) 5.4445e-07
RS-SQRT 7.2001e-06 (7.1557e-06,7.2444e-06) 7.2477e-06
RS-LOG 2.0731e-05 (2.0597e-05,2.0866e-05) 2.0367e-05
RS-EXPI 5.5696e-06 (5.4922¢-06,5.6471e-06) 5.4879e-06
RS-EXPS 7.7840e-05 (7.7239e-05,7.8440e-05) 7.6359e-05
RS-SIN 3.2928e-05 (3.2723e-05,3.3132e-05) 3.2105e-05
RS-GT 4.9745e-07 (4.7913e-07,5.1578e-07) 5.0206e-07
RS 2.7352e-07 (2.1528e-07,3.3176e-07) 3.9123e-07
RS-MAX 1.1707e-06 (1.1494e-06,1.1920e-06) 1.2027e-06
RS-GTCONST 3.7144e-07 (3.5575e-07,3.8714e-07) 3.8910e-07
L-OHS 2.8072e-07 (2.6783e-07,2.9362¢e-07) 2.4208e-07
L-LOAD 5.5955e-09 (1.0082e-09,1.0183e-08) 1.0464e-08
L-OR 3.6186e-07 (3.4355e-07,3.8018e-07) 3.6616e-07
L-NOT 2.9736e-07 (2.8005e-07,3.1467e-07) 3.1818e-07
I-OHS 2.8072e-07 (2.6783e-07,2.9362¢e-07) 2.4208e-07
I-LOAD 5.5955e-09 (1.0082¢-09,1.0183e-08) 1.0464e-08
I-GT 3.6241e-07 (3.4499e-07,3.7983e-07) 3.8438e-07
I-AND 3.5406e-07 (3.3423e-07,3.7389¢-07) 3.7446e-07
I-SHFT 1.0847e-06 (1.0518e-06,1.1177e-06) 1.0807e-06
I-ADD 5.3569e-07 (5.2673e-07,5.4464e-07) 5.2732e-07
I-RS 3.0919e-07 (1.9897e-07,4.1941e-07) 4.8935e-07

Appendix E

45



1024-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 1.1593e-06 (8.3619e-07,1.4824e-06) 1.0046e-06
RS-LOAD 7.5807e-08 (2.0874e-09,1.4953e-07) 7.9707e-08
RS-ADD 1.8123e-06 (1.7281e-06,1.8965e-06) 1.8674e-06
RS-MUL 2.0565e-06 (1.4358e-06,2.6772e-06) 1.7346e-06
RS-SQRT 2.9593e-05 (2.9004e-05,3.0183e-05) 2.8949e-05
RSLOG 8.5242e-05 (8.3922e-05,8.6561e-05) 8.3398e-05
RS-EXPI 2.2634e-05 (2.2147e-05,2.3121e-05) 2.2155e-05
RS-EXPS 3.0984e-04 (3.0728e-04,3.1241e-04) 3.0278e-04
RS-SIN 1.3575e-04 (1.3343e-04,1.3808e-04) 1.3155e-04
RS-GT 5.2837e-07 (2.2542e-07,8.3133e-07) 1.1093e-06
RS -1.8072e-07 (-4.4197e-07,8.0522e-08) 7.2623e-07
RS-MAX 5.1078e-06 (4.7408e-06,5.4749-06) 4.9860e-06
RS-GTCONST -1.5979e-07 (-4.2251e-07,1.0294e-07) 7.0162e-07
L-OHS 2.5926e-06 (2.3433e-06,2.8419-06) 1.6138e-06
L-LOAD 7.5807e-08 (2.0874e-09,1.4953e-07) 7.9707e-08
L-OR 7.1564e-08 (-2.2110e-07,3.6422e-07) 7.5858e-07
L-NOT -3.4195e-07 (-6.3239e-07,-5.1505e-08) 5.6735e-07
I-OHS 2.5926e-06 (2.3433e-06,2.8419e-06) 1.6138e-06
I-LOAD 7.5807e-08 (2.0874e-09,1.4953e-07) 7.9707e-08
I-GT 1.4946e-07 (-1.4143e-07,4.4034e-07) 1.0251e-06
I-AND 5.2872e-07 (-2.7671e-07,1.3342e-06) 1.0036e-06
I-SHFT 2.3287e-06 (2.0671e-06,2.5904e-06) 3.2921e-06
I-ADD 1.9353e-06 (1.8498e-06,2.0208e-06) 1.8795e-06
I-RS 1.2846e-06 (9.4953e-07,1.6197e-06) 1.3533e-06

4096-Element Array Size:
Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 8.4964e-06 (3.1835e-06,1.3809e-05) 3.8770e-06
RS-LOAD -6.7174e-08 (-6.0143e-07,4.6708e-07) 7.1384e-09
RS-ADD 7.9178e-06 (3.2910e-06,1.2545e-05) 7.5798e-06
RS-MUL 7.0129e-06 (1.4081e-06,1.2618e-05) 7.5633e-06
RS-SQRT 1.5322e-04 (1.0140e-04,2.0504e-04) 1.1637e-04
RSLOG 5.2656e-04 (3.5685e-04,6.9627e-04) 3.273%-04
RS-EXPI 9.5011e-05 (7.9826e-05,1.1020e-04) 8.9182e-05
RS-EXPS 1.2117e-03 (1.2029e-03,1.2205e-03) 1.2012e-03
RS-SIN 5.1972e-04 (5.1363e-04,5.2580e-04) 5.2123e-04
RS-GT 1.5243e-06 (-2.7014e-07,3.3188e-06) 3.9267e-06
RS -8.6923e-07 (-2.4038e-06,6.6530e-07) 1.8139e-06
RS-MAX 1.9246e-05 (1.2959e-05,2.5534e-05) 2.0787e-05
RS-GTCONST -1.0850e-06 (-2.6194e-06,4.4952e-07) 1.8161e-06
L-OHS 1.0679e-05 (9.2416e-06,1.2116e-05) 7.7471e-06
L-LOAD -6.7174e-08 (-6.0143e-07,4.6708e-07) 7.1384e-09
L-OR 3.6952e-06 (1.7893e-06,5.6012e-06) 3.9318e-06
L-NOT 4.1730e-07 (-1.4740e-06,2.3086e-06) 1.8227e-06
I-OHS 1.0679e-05 (9.2416e-06,1.2116e-05) 7.7471e-06
I-LOAD -6.7174e-08 (-6.0143e-07,4.6708e-07) 7.1384e-09
I-GT 3.9264e-06 (1.9719e-06,5.8808e-06) 4.0790e-06
I-AND 1.4667e-06 (-3.3259e-07,3.2660e-06) 3.8207e-06
I-SHFT 9.0555e-06 (7.5181e-06,1.0593e-05) 1.1882e-05
I-ADD 8.3629e-06 (7.7523e-06,8.9735e-06) 7.8707e-06
I-RS 1.2659e-06 (-4.0741e-06,6.6059e-06) 5.6902e-06
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16384-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 1.6212e-05 (1.4848e-05,1.7575e-05) 1.1504e-05
RS-LOAD 2.3990e-06 (1.4722e-06,3.3258e-06) 1.1039e-06
RS-ADD 2.7846e-05 (2.6385e-05,2.9308e-05) 3.0279e-05
RS-MUL 2.8202e-05 (2.7012e-05,2.9391e-05) 3.1273e-05
RS-SQRT 4.6423e-04 (4.6122e-04,4.6725e-04) 4.6911e-04
RS-LOG 1.3482e-03 (1.3401e-03,1.3563e-03) 1.3276e-03
RS-EXPI 3.5637e-04 (3.5377e-04,3.5898e-04) 3.6113e-04
RS-EXPS 4.8315e-03 (4.8056e-03,4.8573e-03) 4.,7998e-03
RS-SIN 2.1120e-03 (2.0995e-03,2.1244e-03) 2.1015e-03
RS-GT 1.1789e-05 (9.7013e-06,1.3877e-05) 1.3615e-05
RS 1.5673e-05 (1.4188e-05,1.7158e-05) 8.7971e-06
RS-MAX 8.0986e-05 (7.8609e-05,8.3363e-05) 8.6655e-05
RS-GTCONST 5.9360e-06 (4.6395e-06,7.2325e-06) 7.8178e-06
L-OHS 3.0538e-05 (2.9662e-05,3.1415e-05) 2.9713e-05
L-LOAD 2.3990e-06 (1.4722e-06,3.3258e-06) 1.1039e-06
L-OR 1.0746e-05 (8.6657e-06,1.2827e-05) 1.2865e-05
L-NOT 3.2969e-06 (1.2352e-06,5.3586e-06) 6.4630e-06
I-OHS 3.0538e-05 (2.9662e-05,3.1415e-05) 2.9713e-05
I-LOAD 2.3990e-06 (1.4722e-06,3.3258e-06) 1.1039e-06
I-GT 1.3333e-05 (1.1247e-05,1.5419e-05) 1.5231e-05
I-AND 1.2824e-05 (1.0744e-05,1.4904e-05) 1.4606e-05
I-SHFT 4.5363e-05 (4.4021e-05,4.6705e-05) 4.7317e-05
I-ADD 2.7769e-05 (2.6652e-05,2.8887e-05) 2.8087e-05
I-RS 2.0458e-05 (1.8779e-05,2.2137e-05) 2.5728e-05

65536-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 6.9076e-05 (3.9834e-05,9.8319e-05) 5.3843e-05
RS-LOAD 4.,0849e-05 (1.8241e-05,6.3456e-05) 7.7244e-06
RS-ADD 6.6897e-05 (3.7205e-05,9.6588e-05) 1.1370e-04
RS-MUL 6.3056e-05 (3.4066e-05,9.2046e-05) 1.0990e-04
RS-SQRT 1.8179e-03 (1.7794e-03,1.8563e-03) 1.8622e-03
RS-LOG 5.4343e-03 (5.2354e-03,5.6332e-03) 5.2403e-03
RS-EXPI 1.3872e-03 (1.3494e-03,1.4250e-03) 1.4313e-03
RS-EXPS 2.0260e-02 (1.8599e-02,2.1922¢-02) 1.9055e-02
RS-SIN 8.4210e-03 (8.3158e-03,8.5262¢e-03) 8.2525e-03
RS-GT 2.8216e-05 (-2.3114e-05,7.9545e-05) 4.9073e-05
RS 3.0313e-05 (1.8284e-07,6.0443e-05) 3.6394e-05
RS-MAX 2.8294e-04 (2.2838e-04,3.3750e-04) 3.2485e-04
RS-GTCONST 2.7125e-05 (-3.0021e-06,5.7252e-05) 3.3122e-05
L-OHS 8.5923e-05 (6.6031e-05,1.0582¢e-04) 1.1078e-04
L-LOAD 4.,0849e-05 (1.8241e-05,6.3456e-05) 7.7244e-06
L-OR 2.7910e-05 (-2.2220e-05,7.8040e-05) 5.7355e-05
L-NOT -1.2924e-05 (-6.2330e-05,3.6482¢e-05) 2.6783e-05
I-OHS 8.5923e-05 (6.6031e-05,1.0582¢e-04) 1.1078e-04
I-LOAD 4.,0849e-05 (1.8241e-05,6.3456e-05) 7.7244e-06
I-GT 2.3737e-05 (-2.5705e-05,7.3179e-05) 5.4065e-05
I-AND 2.5732e-05 (-2.3693e-05,7.5158e-05) 5.6031e-05
I-SHFT 1.8802e-04 (1.5781e-04,2.1822¢-04) 1.9340e-04
I-ADD 7.8611e-05 (5.4785e-05,1.0244e-04) 1.1550e-04
I-RS 4.6014e-05 (9.0392e-06,8.2989¢-05) 9.2025e-05
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262144-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 2.9302e-04 (2.6837e-04,3.1768e-04) 2.5529e-04
RS-LOAD 8.1290e-06 (-2.2393e-05,3.8651e-05) 2.0708e-05
RS-ADD 4.6972e-04 (4.3729e-04,5.0216e-04) 4.4554e-04
RS-MUL 4.7771e-04 (4.4461e-04,5.1081e-04) 4.5045e-04
RS-SQRT 7.4224e-03 (7.3718e-03,7.4731e-03) 7.4302e-03
RS-LOG 2.1447e-02 (2.1338e-02,2.1556e-02) 2.1186e-02
RS-EXPI 5.8146e-03 (5.7363e-03,5.8930e-03) 5.7052e-03
RS-EXPS 7.9228e-02 (7.8859e-02,7.9598e-02) 7.7632e-02
RS-SIN 3.3626e-02 (3.3389e-02,3.3862e-02) 3.3001e-02
RS-GT 1.7263e-04 (1.0140e-04,2.4385e-04) 1.9483e-04
RS 7.3693e-05 (2.6193e-05,1.2119e-04) 1.2684e-04
RS-MAX 1.3426e-03 (1.2599e-03,1.4253e-03) 1.3001e-03
RS-GTCONST 5.1389e-05 (3.9373e-06,9.8840e-05) 1.1569e-04
L-OHS 5.5494e-04 (5.1876e-04,5.9113e-04) 4.7513e-04
L-LOAD 8.1290e-06 (-2.2393e-05,3.8651e-05) 2.0708e-05
L-OR 2.0283e-04 (1.3169e-04,2.7397e-04) 2.3420e-04
L-NOT 5.0269e-05 (-2.0780e-05,1.2132e-04) 9.9762e-05
I-OHS 5.5494e-04 (5.1876e-04,5.9113e-04) 4.7513e-04
I-LOAD 8.1290e-06 (-2.2393e-05,3.8651e-05) 2.0708e-05
I-GT 2.0211e-04 (1.3080e-04,2.7341e-04) 2.3021e-04
I-AND 1.7438e-04 (1.0321e-04,2.4555e-04) 2.0328e-04
I-SHFT 6.8593e-04 (6.3809e-04,7.3376e-04) 7.5148e-04
I-ADD 45213e-04 (4.1617e-04,4.8809-04) 4.5194e-04
I-RS 3.1995e-04 (2.8053e-04,3.5938e-04) 3.3668e-04

1048576-Element Array Size:

Mean Value 95-Percent Confidence Minimum Value

Parameter (seconds) Interval (seconds) (seconds)
RS-OHS 1.0534e-03 (1.0103e-03,1.0965e-03) 8.5912e-04
RS-LOAD 8.9373e-05 (7.1107e-05,1.0764e-04) 1.1358e-04
RS-ADD 1.8633e-03 (1.8195e-03,1.9070e-03) 1.8296e-03
RS-MUL 1.8621e-03 (1.8198e-03,1.9045e-03) 1.8606e-03
RS-SQRT 2.9715e-02 (2.9608e-02,2.9822¢-02) 2.9849e-02
RS-LOG 8.5948e-02 (8.5743e-02,8.6153e-02) 8.5314e-02
RS-EXPI 2.2836e-02 (2.2728e-02,2.2943e-02) 2.2920e-02
RS-EXPS 3.1034e-01 (3.1008e-01,3.1059e-01) 3.0884e-01
RS-SIN 1.3435e-01 (1.3416e-01,1.3453e-01) 1.3337e-01
RS-GT 8.5067e-04 (7.5063e-04,9.5072¢e-04) 8.5305e-04
RS 4.0610e-04 (2.6966e-04,5.4254¢e-04) 4.8973e-04
RS-MAX 5.2289e-03 (5.1623e-03,5.2956e-03) 5.3146e-03
RS-GTCONST 3.2674e-04 (2.4352e-04,4.0997e-04) 5.0020e-04
L-OHS 2.0961e-03 (2.0165e-03,2.1757e-03) 1.8702e-03
L-LOAD 8.9373e-05 (7.1107e-05,1.0764e-04) 1.1358e-04
L-OR 7.2839%-04 (6.3806e-04,8.1872¢e-04) 8.1305e-04
L-NOT 2.1452e-04 (1.2580e-04,3.0325¢e-04) 3.7012e-04
I-OHS 2.0961e-03 (2.0165e-03,2.1757e-03) 1.8702e-03
I-LOAD 8.9373e-05 (7.1107e-05,1.0764e-04) 1.1358e-04
I-GT 7.4184e-04 (6.5142e-04,8.3226¢e-04) 8.3083e-04
I-AND 7.7592e-04 (6.8448e-04,8.6736e-04) 8.1798e-04
I-SHFT 2.8067e-03 (2.7216e-03,2.8918e-03) 3.0026e-03
I-ADD 1.8760e-03 (1.7453e-03,2.0067e-03) 1.8173e-03
I-RS 1.3353e-03 (1.2864e-03,1.3841e-03) 1.4862e-03
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E.2 Optimization Characterizer M easurements

The following tables describe the results of compiler tests on each of our architectures, except for
the CM-5/cnf pair, which did not pass any tests, except for the elimination of dead code and common
subexpression elimination from array statements.

Section 6.2 explains our testing method. The following tables give the 95-percent confidence intervas
of the run time of the Naive and Opt code segments, the confidence interval of R computed from these run
times, R, the lowest predicted value of R in the case that Naive was not optimized, and our conclusion as

to whether or not the compiler applied the optimization in the specific test case.

Note that al tests marked with a bold-faced asterix (*) use a Naive/Cripple test. Additionally, some
tests crashed the compiler in question and are indicated by dashesin the corresponding rows.

E.21 CM-5/cnf-cmax Compiler Optimization Results

Opt /Cripple

Naive Run Time Run Time R
Test 95% Conf. Int. 95% Conf. Int 90% Conf. Int. Ry | Applied?
(seconds) (seconds) (seconds)

collapses depth 2 loops (2.47e-5,3.68e-5) | (3.13e-5,3.95e-5) (0.626,1.17) 12 yes
collapses depth 3 loops (2.38e-5,3.52e-5) | (3.16e-5,3.62e-5) (0.657,1.11) 12 yes
collapses depth 4 loops (3.00e-5,3.53e-5) | (2.59-5,3.85e-5) (0.78,1.36) 12 maybe
common Subexpressioneliminationinnon-FS0array op- | (g 3865 7.04e5) | (5.64e5,650e-5) |  (0.981,1.25) 13| yes
common subexpressionelimination FO0 array operations | (5.59e-5, 6.42e-5) | (5.69e-5,6.30e-5) (0.886,1.13) 13 yes
dead scalar code eliminated (-1.59¢e-5,-4.65e-6) | (2.71e-5,3.17e-5) | (-5.03e-1,-1.71e-1) | 1.1 yes
dead array code eliminated (2.76e-5,3.14e-5) | (2.71e-5,3.17e-5) (0.87,1.16) 15 yes
substitutes value for variable assigned the constant 0,
when the varizbleis assigned in the same basic block (3.51e-5,3.94e-5) | (3.38e-5,3.54e-5) (0.993,1.16) 2 yes
substitutes value for variable assigned the constant 1,
when the varizbleis assigned in the same basic block (1.96e-4,2.13e-4) | (1.95e-4,2.05e-4) (0.953,1.09) 2 yes
substitutes value for variable assigned the constant 0,
when the variableis assigned outside the basic block (143e-4,1.67e4) | (3.38e-5354e5) (4.04,4.92) 2 no
substitutes value for variable assigned the constant 1,
when the variableis assigned outside the basic block (1.92e-4,2.07e-4) | (1.95e-4,2.05e-4) (0.937,1.06) 2 yes
substitutes value for variable assigned a constant sym-
bolic expression, when the variable is assigned in the | (3.70e-4,4.14e-4) | (3.63e-4,3.86e-4) (0.959,1.14) 2 yes
same basic block
substitutes value for variable assigned a constant sym-
bolic expression, when the variable is assigned outside | (6.02e-4,6.15e-4) | (3.73e-4,4.14e-4) (1.45,1.65) 2 yes
the basic block _
semantic analysis- producesefficient codewhen the sub- (2.10,2.14) (3.38e-5354e5) | (5.95e+4,6.3%e+4) | 2 no
stituted variable has value 0
semantic analysis- producesefficient codewhen the sub-
Sttuted variablehesvaluel | (2.10,2.14) (1.95e-4,2.05e-4) | (L02et+4,1.1e+d) | 2 no
gml’fltgﬁsn inductionvariableindexingal-daayina | ;1105 »76e5) | (2.18¢52.62¢-5) (0.805,1.26) 2 yes
eliminates an induction variable in a 2-d loop indexing a ) ) ) ) )
1-d array
eliminates an induction variable in a 2-d loop indexing
a 1-d array, where the induction variable is assigned a - - - - -
value in the outer loop
eliminates an induction variable indexing a 2-d array (1.55e-5,8.78¢e-5) | (3.94e-5,4.78e-5) (0.325,2.22) 2 maybe
:gfl'ge d‘?ezg't“t'on of functionsreturning areal value- 1 | ) g3 1 1 650 1) | (3.02653.4005) | (4.81e+3546e+3) | 2 no
:g'gi ?egﬁ'tu“on of functionsreturning areal value-2 | ) 7101 17g01) | (2.886-53095) | (555¢+36.186+3) | 2 no
inline substitution of functionsreturning an integer value (6.526-2,6.7762) | (3.286-4,3546-4) (184,206) 2 no
- 1level deep
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Opt /Cripple

Appendix E

Naive Run Time Run Time R
Test 95% Conf. Int. 90% Conf. Int. Ry | Applied?
95% Conf. Int.
(seconds) (seconds)
(seconds)

inline substitution of functionsreturning an integer value
-2 levels deep (3.29e-2,3.37e-2) | (3.24e-4,3.30e-4) (99.7,104) 2 no
code motion - code moved upward one level where pos- (2.60e-1,2.64e-1) | (2.60e-4,2.88¢e-4) (902,1.02¢+3) > no
sble . ,2. . 2. 1.
code motion - code moved upward two levelswhere pos- (261e-1,263e-1) | (2.70e-4,2.84e-4) (921,974) > no
sible ) T ) " '
substitutes efficient code for array-based reccurences* (1.36, 1.38) (2.17,2.20) (0.616,0.635) 05 no
substitutes efficient code for array sum computations* (1.78e-4,1.80e-4) | (8.10e-1,8.21e-1) | (2.16e-4,2.22e-4) | 05 yes
substitutes efficient code for array product computations
S ayp p (181e-4,1.83e-4) | (8.1le-1,8.18e1) | (2.21e-4,2.26e-4) | 05 yes
scalar expansionin asingle loop nest (3.20e-5,3.84e-5) | (3.76e-5/4.55e-5) (0.704,1.02) 2 yes
scalar expansionin a doubleloop nest (3.82e-5,5.34e-5) | (2.01e-5,3.43e-5) (1.11,2.66) 2 maybe
array privatization, where the temporary array is defined
in the same loop as it is used (2.08e-5,3.53e-5) | (2.01e-5,3.43e-5) (0.607,1.76) 2 yes
array privatization, where the temporary array is defined
in aloop neighboring the loop whereit is used (3.22e-5,5.45e-5) | (2.01e-5,3.43e-5) (0.94,2.71) 2 maybe
parallelizesadependency-freel-dloop, wherethe source
and sink dlements arein seperate regionsof the array (3.92e-4,4.03e-4) | (3.67e-4,3.93e-4) (0.996,1.1) 2 yes
parallelizesadependency-freel-dloop, wherethesource | 5 150 4 5 17e-4) | (2.17e-4,2.31e-4) (0917,1) 2 yes
and sink elements are interleaved ' ' '
parallelizesadependency-freel-dloop, wherethe source
and sink element indices are defined as linear functions | (1.07e-3,1.10e-3) | (1.13e-3,1.21e-3) (0.884,0.974) 2 yes
of theloop variable
parallelizesadependency-free2-dloop, wherethe source
and sink elements are defined as linear functions of the | (9.62e-4,1.30e-3) | (1.04e-3,1.07e-3) (0.897,1.25) 2 yes
loop variable
removesstores to temporary arrays (3.43e-5,4.29-5) | (3.47e-5/4.20e-5) (0.816,1.24) 11 maybe
parallelizes the loop assignment of a arithmetic function
of the loop variable to an array * (3.03e-5,3.96e-5) | (4.19e-2,5.07e-2) | (5.98e-4,9.45e-4) | 0.5 yes
parallelizes the loop assignment of afunction of theloop
variable to an array, where the function involvesan in- | (4.17e-5,5.10e-5) | (4.65e-2,4.75e-2) | (8.77e-4,1.10e-3) | 0.5 yes
trinsic *
parallelizes the loop assignment of afunction of theloop
variableto an array, wherethefunctioninvolvesaninteger | (6.71e-2,6.82e-2) | (4.19e-2,4.30e-2) (1.56,1.63) 0.5 no
leaf function *
parallelizes a serially-expressed gather (5.19e-4,5.63e-4) | (5.15e-4,5.23e-4) (0.992,1.09) 2 yes
parallelizes a serially-expressed scatter (6.26e-2,6.56e-2) | (2.70e-4,2.85e-4) (219,243) 2 no
parallelizes a serially-expressed computation involving
W0 permutation arrays (1.13e-1, 1.14e-1) | (1.27e-3,1.32e-3) (85.4,89.7) 2 no
parallelizes a serially-expressed bin summation * (6.21e-2,6.31e-2) | (1.08e-1,1.10e-1) (0.567,0.583) 05 no
par nf'ie“zes a serially-expressed all up to element amay | (5105 639e2) | (6.22¢2642¢2) |  (0.968,1.03) 05 no
parallelizes a serially-expressed wher e operation (2.45e-5,3.26e-5) | (2.42e-5,3.75e-5) (0.655,1.35) 2 yes
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E.22 Y-MP C90/cf 77 Compiler Optimization Results

Naive Run Time OSL;C.F: Ef:;le R
Test 95% Conf. Int. 95% Contf. Int 90% Conf. Int. Ry | Applied?
(seconds) (seconds) (seconds)

collapses depth 2 loops (1.45e-5,1.64e-5) | (1.49e-5,1.64e-5) (0.884,1.1) 12 yes

collapses depth 3 loops (1.25e-5,1.3%-5) | (1.58e-5,1.74e-5) (0.717,0.88) 12 yes

collapses depth 4 loops (1.37e-5,1.3%-5) | (1.98e-5,2.22e-5) (0.616,0.703) 12 yes

common subexpressioneliminationinnon-FO0aTay op- | (547¢.3 551e3) | (598¢36.04e3) | (09050922) | 13 | yes

common subexpressionelimination FO0 array operations | (5.49e-3,5.68e-3) | (5.99e-3,6.05e-3) (0.907,0.948) 13 yes

dead scalar code eliminated (2.20e-3,2.41e-3) | (8.51e-4,8.63e-4) (2.55,2.83) 11 no

dead array code eliminated (2.51e-3,2.53e-3) | (8.51e-4,8.63e-4) (2.91,2.98) 15 no

substitutes value for variable assigned the constant 0,

when the varizbleis assigned in the same basic block (8.37e-4,8.46e-4) | (8.52e-4,8.81e-4) (0.95,0.994) 2 yes

substitutes value for variable assigned the constant 1,

when the variableis assigned in the same basic block (4.74e-3,4.79e-3) | (4.77e-3,4.82e-3) (0.984,1.01) 2 yes

substitutes value for variable assigned the constant 0,

when the variableis assigned outsidethe basic block | (89264 9.85¢-4) | (8.52e-4881e4) | (101,116) 2| yes

substitutes value for variable assigned the constant 1,

when the variableis assigned outside the basic block (4.76e-3,4.82e-3) | (4.77e-3,4.82e-3) (0.988,1.01) 2 yes

substitutes value for variable assigned a constant sym-

bolic expression, when the variable is assigned in the | (5.02e-4,5.95e-4) | (4.95e-4,5.72e-4) (0.877,1.2) 2 yes

same basic block

substitutes value for variable assigned a constant sym-

bolic expression, when the variable is assigned outside | (4.29e-4,4.73e-4) | (4.35e-4,4.81e-4) (0.892,1.09) 2 yes

the basic block

semantic analysis- producesefficient codewhen the sub-

Situted variable has value 0 (1.40e-3,1.68e-3) | (8.52e-4,8.81e-4) (1.59,1.98) 2 yes

semantic analysis- producesefficient codewhen the sub- >

situted varizble hs value 1 . . (4.81e-3,4.99e-3) | (4.77e-3,4.82e-3) (0.999,1.05) yes

gml';altgﬁsn inductionvarisbleindexingal-darayina | oeq 3 1 6163) | (117e3137e3) |  (0.913137) 2 yes

i'_'g":;ty% aninduction variablein a2-dloopindexinga | 1 1765 1 206.2) | (1.1763,1.376-3) (856,10.3) 2 no

eliminates an induction variable in a 2-d loop indexing

a 1-d array, where the induction variable is assigned a | (1.16e-2,1.19e-2) | (1.17e-3,1.37e-3) (8.51,10.2) 2 no

value in the outer loop

eliminates an induction variable indexing a 2-d array (2.80e-3,2.99e-3) | (1.19e-3,1.41e-3) (1.99,2.51) 2 maybe

: gl/l ged?ezstltutlon of functionsreturning area value - 1 (9.426-5,1.04e-4) | (7.916-5,9.506-5) (0.992,1.32) 5 yes

inline substitution of functions returning area value - 2 (4.01e-2,4.10e2) | (1.31e-4,1.56e-4) (258,312) 2 no

levels deep

inline substitution of functionsreturning an integer value (2.40e-2,2.49¢-2) | (1.05e-4,1.19e-4) (201,238) 2 no

- 1level deep

inline substitution of functionsreturning an integer value

- 2 levels deep (2.06e-2,2.11e-2) | (6.30e-5,7.40e-5) (279,335) 2 no

;‘l’)‘l‘g motion - code moved upward one level wherepos- | ) g0 1 > 50e.1) | (7.87¢-5,801e5) | (321e+33.29e+3) | 2 no

;‘l’)‘l‘g motion - codemoved upwardtwo levelswherepos- | 1 606 3 1 616.3) | (9.60e-5,1.04e-4) (15.3,16.8) 2 no

substitutes efficient code for array-based reccurences* (5.64e-2,5.66e-2) | (1.10e-1,1.10e-1) (0.514,0.517) 05 no

substitutes efficient code for array sum computations* (1.05e-3,1.22e-3) | (5.48e-2,5.53e-2) (0.0189,0.0223) 0.5 yes

substitutes efficient code for aray product Computations | g gge 4, 7 19e-4) | (5.36e-2,5.38¢-2) | (0.012800134) | 05 |  yes

scalar expansionin asingle loop nest (1.17e-3,1.18e-3) | (1.50e-3,1.62e-3) (0.723,0.787) 2 yes

scalar expansionin a double loop nest (1.53e-3,1.54e-3) | (1.53e-3,1.55e-3) (0.981,1.01) 2 yes

array privatization, where the temporary array is defined

in the same loop as it is used (6.09e-3,6.15e-3) | (1.53e-3,1.55e-3) (3.92,4.01) 2 no

array privatization, where the temporary array is defined

in a-loop neighboring the loop where it is used (4.10e-3,4.14e-3) | (1.53e-3,1.55e-3) (2.64,2.7) 2 no
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Opt /Cripple

Naive Run Time Run Time R
Test 95% Conf. Int. 90% Conf. Int. Ry | Applied?
95% Conf. Int.
(seconds) (seconds)
(seconds)
parallelizesadependency-freel-dloop, wherethe source
and sink elements are in seperate regionsof the array (4.89e-4,5.41e-4) | (4.89e-4,4.95¢-4) (0.989,1.11) 2 yes
parallelizesadependency-freel-dloop, wherethesource | (7176 4 79464y | (6.67e-4,6.76e-4) |  (1.06,1.19) 2 yes
and sink elements are interleaved
parallelizesadependency-freel-dloop, wherethe source
and sink element indices are defined as linear functions | (1.92e-3,1.94e-3) | (1.92e-3,1.95e-3) (0.985,1.01) 2 yes
of theloop variable
parallelizesadependency-free2-dloop, wherethe source
and sink elements are defined as linear functions of the | (5.30e-3,5.35e-3) | (7.28e-3,7.34e-3) (0.722,0.734) 2 yes
loop variable
removesstores to temporary arrays (1.26e-3,1.27e-3) | (1.16e-3,1.18e-3) (1.07,1.09) 11 yes
parallelizes the loop assignment of a arithmetic function
of the loop variable to an array * (7.11e-5,7.27e-5) | (3.11e-3,3.14e-3) | (0.0226,0.0234) | 05 yes
parallelizes the loop assignment of afunction of theloop
variable to an array, where the function involvesan in- | (6.76e-4,7.11e-4) | (4.19e-2,4.20e-2) | (0.0161,0.017) | 05 yes
trinsic *
parallelizes the loop assignment of afunction of theloop
variableto an array, wherethefunctioninvolvesaninteger | (1.35e-4,1.36e-4) | (1.55e-3,1.56e-3) | (0.0864,0.0881) | 0.5 yes
leaf function *
parallelizes a serially-expressed gather (4.73e-5,4.85e-5) | (4.71e-5,4.77e-5) (0.992,1.03) 2 yes
parallelizes a serially-expressed scatter (6.42e-4,6.49-4) | (6.46e-4,6.53e-4) (0.983,1.01) 2 yes
parallelizes a serially-expressed computation involving
tWo permutation arrays (4.34e-3,4.3%-3) | (4.26e-3,4.31e-3) (1.01,1.03) 2 yes
parallelizes a serially-expressed bin summation * (4.14e-3,4.22e-3) | (7.37e-3,7.45e-3) (0.555,0.573) 05 no
par n‘?'ie“zes a serially-expressed all up to element armay | (55303 5 07e-3) | (3.39¢-3343e3) | (0591,0611) | 05 no
parallelizes a serially-expressed wher e operation (4.85e-5,4.90e-5) | (4.85e-5,4.91e-5) (0.988,1.01) 2 yes
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E.23 Y-MP C90/f 90 Compiler Optimization Results

Naive Run Time OSL;C.F: Ef:;le R
Test 95% Conf. Int. 95% Contf. Int 90% Conf. Int. Ry | Applied?
(seconds) (seconds) (seconds)
collapses depth 2 loops (1.65e-5,1.68e-5) | (1.62e-5,1.64e-5) (1,1.04) 12 yes
collapses depth 3 Toops (1.87e-5,1.91e-5) | (1.89e-5,1.92e-5) (0.976,1.01) 12 yes
collapses depth 4 loops (2.53e-5,2.57e-5) | (2.53e-5,2.57e-5) (0.986,1.01) 12 yes
Common Subexpressioneliminationinnon-FO0aTay op- | > 450 2 a4e2) | (2.44e-2,2.466-2) (0.985,1) 13| vyes
common subexpressionelimination FO0 array operations | (2.43e-2,2.45e-2) | (2.42e-2,2.44e-2) (0.997,1.01) 13 yes
dead scalar code eliminated (3.93e-3,3.98¢e-3) | (3.87e-3,3.93e-3) (1,1.03) 11 yes
dead array code eliminated (3.91e-3,3.97e-3) | (3.87e-3,3.93e-3) (0.997,1.03) 15 yes
substitutes value for variable assigned the constant 0,
when the variableis assigned in the same basic block (389e:3,394e:3) | (3.94e-3,3.99-3) (0.975.1) 2 yes
substitutes value for variable assigned the constant 1,
when the variableis assigned in the same basic block (4.71e-3,4.76e-3) | (4.71e-3,4.76e-3) (0.99,1.01) 2 yes
substitutes value for variable assigned the constant 0,
when the varicbleis assigned outside the basic block (3.93e-3,3.99e-3) | (3.94e-3,3.99e-3) (0.986,1.01) 2 yes
substitutes value for variable assigned the constant 1,
when the variableis assigned outside the basic block (4.73e-3,4.79¢-3) | (4.71e-3,4.76e-3) (0.994,1.02) 2 yes
substitutes value for variable assigned a constant sym-
bolic expression, when the variable is assigned in the | (1.94e-3,1.97e-3) | (1.91e-3,1.94e-3) (1,1.03) 2 yes
same basic block
substitutes value for variable assigned a constant sym-
bolic expression, when the variable is assigned outside | (1.93e-3,1.95e-3) | (1.91e-3,1.94e-3) (0.993,1.02) 2 yes
the basic block
;ei'tﬁ‘;"gé' f/;r:‘:gz z;smfgfe”' cientcodewhenthesub- |, 6303 47163) | (39463399¢3) |  (1.16,1.19) 2 ves
semantic analysis- producesefficient codewhen the sub-
situted varizble hs value 1 . . (4.69e-3,4.75e-3) | (4.71e-3,4.76e-3) (0.985,1.01) 2 yes
gml’ffgﬁsn inductionvarigbleindexingal-darayina | ggq 3 39303) | (389e-3394e3) | (0.985101) | 2 yes
i'_'g":;ty% aninduction variablein a2-dloopindexinga | 5 gg0 3 3 950.3) | (3806:339463) |  (09881.02) | 2 yes
eliminates an induction variable in a 2-d loop indexing
a 1-d array, where the induction variable is assigned a - - - - -
value in the outer loop
eliminates an induction variable indexing a 2-d array (3.89e-3,3.95e-3) | (4.04e-34.14e-3) (0.939,0.977) 2 yes
:gl/l ged?ezstl tution of functionsreturning area value- 1 (4.846-2,4.8602) | (2.45e-4,2.48e-4) (195,198) 2 no
inline substitution of functions returning area value - 2 (8.99e-2,9.1062) | (3.16e-4,3.21e-4) (281,288) 2 no
levels deep
inline substitution of functionsreturning an integer value (4.956-2,4.9862) | (2.80e-4,2.83e-4) (175,178) 2 no
- 1level deep
inline substitution of functionsreturning an integer value
- 2 levelsdeep (4.04e-2,4.09¢-2) | (1.70e-4,1.72e-4) (235,241) 2 no
;‘l’)‘l‘g motion - code moved upward one level wherepos- | g 550 3 6 320.3) | (258e-4,2.6264) | (23.9,24.5) 2 no
;‘l’)‘l‘g motion - codemovedupwardtwo levelswherepos- | 5 6903 §78e-3) | (2.60e-4,263e-4) | (25.4,26.1) 2 no
substitutes efficient code for array-based reccurences* (5.60e-2,5.62e-2) | (8.32e-2,8.49¢-2) (0.659,0.675) 05 no
substitutes efficient code for array sum computations* (2.32e-3,2.35e-3) | (5.63e-2,5.67e-2) | (0.0409,0.0416) | 0.5 yes
*substl tutes efficient code for array product computations (2.32¢-3,2.35¢-3) | (5.64e-2,5.676-2) (0.041,0.0416) 05 yes
scalar expansionin asingle loop nest (5.07e-3,5.15e-3) | (5.11e-3,5.18e-3) (0.978,1.01) 2 yes
scalar expansionin a double loop nest (5.13e-3,5.20e-3) | (5.09e-3,5.15e-3) (0.995,1.02) 2 yes
array privatization, where the temporary array is defined
in the same loop as it is used (2.06e-2,2.08e-2) | (5.09e-3,5.15e-3) (4,4.09) 2 no
array privatization, where the temporary array is defined
in a-loop neighboring the loop where it is used (2.27e-2,2.30e-2) | (5.09e-3,5.15e-3) (4.41,451) 2 no
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Opt /Cripple

Naive Run Time Run Time R
Test 95% Conf. Int. 95% Conf. Int 90% Conf. Int. Ry | Applied?
(seconds) oo (seconds)
(seconds)
parallelizesadependency-freel-dloop, wherethe source
and sink elements are in seperate regions of the array (2.02e-3,2.06e-3) | (1.98e-3,2.01e-3) (1.01,1.04) 2 yes
parallelizesadependency-freel-dloop, wherethesource | (5 3503 5 3863) | (2376-32.40e-3) | (0.982,1.01) 2 yes
and sink elements are interleaved ' ' '
parallelizesadependency-freel-dloop, wherethe source
and sink element indices are defined as linear functions | (1.92e-3,1.95e-3) | (3.15e-3,3.18e-3) (0.605,0.618) 2 yes
of theloop variable
parallelizesadependency-free2-dloop, wherethe source
and sink elements are defined as linear functions of the | (5.02e-3,5.07e-3) | (2.38e-3,2.42e-3) (2.07,2.13) 2 no
loop variable
removesstores to temporary arrays (1.11e-2,1.12e-2) | (9.78e-3,9.92e-3) (1.12,1.14) 11 no
parallelizes the loop assignment of a arithmetic function
of the loop variable to an array * (2.45e-4,2.47e-4) | (3.07e-3,3.11e-3) | (0.0788,0.0805) | 0.5 yes
parallelizes the loop assignment of afunction of theloop
variable to an array, where the function involvesan in- | (2.70e-3,2.73e-3) | (4.88e-3,4.95e-3) (0.546,0.558) 05 no
trinsic *
parallelizes the loop assignment of afunction of the loop
variabletoanarray, wherethefunctioninvolvesaninteger | (3.14e-2,3.18e-2) | (3.17e-2,3.19¢-2) (0.986,1) 05 no
leaf function *
parallelizes a serially-expressed gather (1.57e-4,1.59%-4) | (1.60e-4,1.62e-4) (0.969,0.995) 2 yes
parallelizes a serially-expressed scatter (6.57e-4,6.64e-4) | (6.54e-4,6.61e-4) (0.994,1.02) 2 yes
parallelizes a serially-expressed computation involving
tWo permutation arrays (5.23e-3,5.42e-3) | (5.10e-3,5.15e-3) (1.02,1.06) 2 yes
parallelizes a serially-expressed bin summation * (4.88e-3,4.98e-3) | (8.07e-3,8.15e-3) (0.599,0.617) 05 no
par nf"ie“zes a serially-expressed all up to element atay | () 3143 1396.3) | (17463177-3) | (0.740.759) | 05 no
parallelizes a serially-expressed wher e operation (3.90e-4,4.77e-4) | (3.13e-4,3.20e-4) (1.22,1.52) 2 yes
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E.3 Architecture Characterizer M easurements

Thefollowing tables detail our architectural measurements.

E.3.1 CM-5/cnf Architecture Results

Full block moddl, full mask model, cache stride modd!.
Constant bound block references incur overhead.

Mean Value 90-Percent Confidence Minimum Value
Parameter (seconds) Interval (seconds) (seconds)

REM-READ 9.9302e-06 (9.8300e-06,1.0030e-05) 9.7152e-06
REM-WRITE 2.9409e-06 (2.9218e-06,2.9600e-06) 2.9001e-06
SREM-READ 5.9581e-05 (5.9017e-05,6.0144e-05) 5.9099e-05
SREM-WRITE 3.4622e-05 (3.4415e-05,3.4829¢-05) 3.4267e-05
OH-GATHER 5.4865e-09 (4.7767e-09,6.1964¢e-09) 5.0840e-09
OH-SCATTER 4.6402e-09 (4.6165e-09,4.6638e-09) 4.6131e-09
OF-CACHESTRIDE , 65536 39308600 (3.87686-09,3.98496-09) 38483609
OH-CACHESTRIDEg 65536 16277608 (15757608, 1.67976-08) 15367608
OH-CACHESTRIDEg 65536 63213608 (6:21116-08,6.43156-08) 61327608
OF-CACHESTRIDE] 25 65536 24903607 (24797e-07,250096-07) 24572607
OH-CACHESTRIDES 5 65536 1.00666-06 (9.90846.07,1.02246-06) 9.81006-07
OH-CACHESTRIDE, 262144 1.05086-00 (1.940809,1.97836.09) 10334600
OH-CACHESTRIDEG 262144 7.8168.00 (7.75616-00,7.87766-09) 7.72026.00
OH-CACHESTRIDEg 262144 31672608 (3.12066-08,3.21376.09) 31043608
OH-CACHESTRI DE128.262144 1.2772e-07 (1.2514e-07,1.3029¢e-07) 1.2354e-07
OH-CACHESTRIDEg 5 260144 | 50551607 (4.98182-07,5.12856.07) 49344607
OH-CACHESTRI DE2,1048576 1.6808e-09 (1.6615e-09,1.7001e-09) 1.6540e-09
OF-CACHESTRIDEg 1048576 66532600 (6.62666-09,6.67986-09) 66229609
OH-CACHESTRIDE 1048576 | 26787608 (2.65316.08,2.70446-06) 26495608
OF-CACHESTRIDE] 28 1048575 | 11761607 (1.0049¢-07,134736-07) 10593607
OF-CACHESTRIDE5 1, 1048576 | 43202607 (4.2519¢-07,4.40656-07) 42368607
OH-FULLMASKy 4.1653e-10 (4.0040e-10,4.3267¢e-10) 4.1940e-10
OH-FULLMASK 55 4.1608e-10 (4.0039e-10,4.3177e-10) 4.1927e-10
OH-FULLMASK 5q 4.1777e-10 (4.0155e-10,4.3400e-10) 4.1949e-10
OH-FULLMASK 75 4.3051e-10 (4.0595e-10,4.5508e-10) 4.1946e-10
OH-FULLMASK 100 4.1880e-10 (4.0302e-10,4.3458e-10) 4.1970e-10
OH-FULLBLOCK g 1.1488e-09 (1.1382e-09,1.1594¢e-09) 1.1375e-09
OH-FULLBLOCK 15 1.1057e-09 (1.0847e-09,1.1266e-09) 1.0890e-09
OH-FULLBLOCK og 1.0402e-09 (1.0317e-09,1.0487e-09) 1.0370e-09
OH-FULLBLOCK gq 9.3605e-10 (9.2399e-10,9.4810e-10) 9.3261e-10
OH-FULLBLOCK 109 7.2291e-10 (7.0728e-10,7.3854¢e-10) 7.2353e-10

E.3.2 Y-MP C90/cf 77 Architecture Results
Partial block moddl, full mask model, bank stride mode!.

Constant bound block references do not incur significant overhead.
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Mean Value 90-Percent Confidence Minimum Value
Parameter (seconds) Interval (seconds) (seconds)

OH-RAND,READ 4.7707e-09 (4.2404e-09,5.3010e-09) 2.7227e-09
OH-RAND,WRITE 1.7650e-08 (1.5816e-08,1.9484¢e-08) 1.4404e-08
OH-GATHER 1.9664e-10 (1.2042e-10,2.7286€e-10) 1.3150e-10
OH-SCATTER 1.8316e-09 (1.7732e-09,1.8901e-09) 2.3071e-09
OH-BANKSTRIDE»> 3.0197e-10 (2.0457e-10,3.9936e-10) 1.8891e-10
OH-BANKSTRIDE,4 9.3616e-10 (8.2922e-10,1.0431e-09) 6.7888e-10
OH-BANKSTRIDEg 3.0296e-09 (2.8303e-09,3.2290e-09) 1.9145e-09
OH-BANKSTRIDE g 6.0458e-09 (5.8026e-09,6.2891e-09) 3.5653e-09
OH-BANKSTRIDE3» 1.3045e-08 (1.2432e-08,1.3658e-08) 7.1932e-09
OH-BANKSTRI DE64 2.6222e-08 (2.5199e-08,2.7244¢e-08) 1.5421e-08
OH-BANKSTRIDE 158 2.7667e-08 (2.5988e-08,2.9346e-08) 1.8911e-08
OH-BANKSTRIDE 50 3.4986e-08 (3.3307e-08,3.6665e-08) 2.2652e-08
OH-BANKSTRIDEg, o 5.0548e-08 (4.8871e-08,5.2225¢e-08) 3.9601e-08
OH-FULLMASKO 4.6312e-10 (3.4547e-10,5.8078e-10) 2.4124e-10
OH-FULLMASK 55 5.3527e-09 (5.1345e-09,5.5708e-09) 3.7756e-09
OH-FULLMASK 5q 5.5061e-09 (5.2534e-09,5.7589¢e-09) 3.7180e-09
OH-FULLMASK 75 5.5015e-09 (5.1860e-09,5.8170e-09) 3.4023e-09
OH-FULLMASK 1099 5.5801e-09 (5.2850e-09,5.8752¢e-09) 3.5740e-09
OH-PARTIALBLOCK 14 8.9994e-08 (1.9464e-08,1.6052¢e-07) 2.9642¢e-08
OH-PARTIALBLOCK 556 7.7009e-09 (1.5670e-09,1.3835€e-08) 3.8264e-09
OH-PARTIALBLOCK 4096 1.9227e-09 (1.7613e-09,2.0842¢e-09) 1.9079e-09
OH-PARTIALBLOCK g&52g 1.4724e-10 (4.9131e-11,2.4535e-10) 6.8782¢e-11
OH-PARTIALBLOCK 260144 21587610 (1.04306-10,3.27456-10) 15179610
OH-PARTIALBLOCK 1048576 1.7512e-10 (6.4474e-11,2.8578e-10) 9.1809e-12

E.3.3 Y-MP C90/f 90 Architecture Results
Partial block moddl, full mask model, bank stride mode!.

Constant bound block references do not incur significant overhead.

Mean Value 90-Percent Confidence Minimum Value
Parameter (seconds) Interval (seconds) (seconds)

OH-RAND,READ 1.0754e-08 (1.0377e-08,1.1131e-08) 1.0390e-08
OH-RAND,WRITE 2.0473e-08 (1.4788e-08,2.6159¢-08) 1.4728e-08
OH-GATHER 7.2863e-10 (6.8146e-10,7.7579e-10) 6.8337e-10
OH-SCATTER 5.4722e-10 (5.0464e-10,5.8981e-10) 5.7459e-10
OH-BANKSTRIDE> 1.1643e-10 (-5.3411e-10,7.6696e-10) 5.4003e-10
OH-BANKSTRIDE,4 1.2499e-09 (5.9931e-10,1.9005€e-09) 1.5848e-09
OH-BANKSTRIDEg 5.7511e-09 (5.0998e-09,6.4023e-09) 6.0240e-09
OH-BANKSTRIDE 5 1.2803e-08 (1.2145e-08,1.3460e-08) 1.2794e-08
OH-BANKSTRIDEgz» 2.7267e-08 (2.6606e-08,2.7927e-08) 2.7266e-08
OH-BANKSTRIDEgy4 5.7796e-08 (5.7108e-08,5.8484¢e-08) 5.7347e-08
OH-BANKSTRIDE 98 5.8336e-08 (5.7641e-08,5.9032e-08) 5.7826e-08
OH-BANKSTRIDE cg 5.9440e-08 (5.8667e-08,6.0213e-08) 5.7845e-08
OH-BANKSTRIDEg, o 7.6560e-08 (6.0183e-08,9.2936e-08) 5.9344e-08
OH-FULLMASK 5.5128e-09 (5.0851e-09,5.9405e-09) 4.8904e-09
OH-FULLMASK 55 1.5474e-08 (1.4927e-08,1.6021e-08) 1.3169e-08
OH-FULLMASK g 1.5954e-08 (1.5247e-08,1.6662¢e-08) 1.2945e-08
OH-FULLMASK 45 1.7447e-08 (1.6665e-08,1.8230e-08) 1.3211e-08
OH-FULLMASK 109 1.6165e-08 (1.5230e-08,1.7099e-08) 1.3147e-08
OH-PARTIALBLOCK 14 4.6877e-08 (2.0399e-08,7.3354¢e-08) 1.6987e-08
OH-PARTIALBLOCK 556 3.5644e-09 (-3.1366€e-10,7.4424e-09) 5.5318e-10
OH-PARTIALBLOCK 4096 0.0000e+00 (0.0000e+00,0.0000e+00) 7.0828e-11
OH-PARTIALBLOCK gran 0.00006+00 (0.0000e+00,0.0000e+00) 283376 11
OH-PARTIALBLOCK 260144 0.0000e+00 (0.0000e+00,0.0000e+00) 0.0000e+00
OH-PARTIALBLOCK ;04076 | 0.00006+00 (0.0000€+00,0.0000€+00) 0.00006+00
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Appendix F.  Optimization Descriptions

This section describes and gives examples of each of the basic types of optimizations which the
Optimization Characterizer detects.

F.1 CodeMotion

Segments of code inside ado-loop which calculate values which could be calculated outside the loop
are relocated, eliminating redundant computations and exposing other optimizations.

Before After Notes
do i=1,n k=2.0
a(i)=a(i)+1.0 do i=1,n
k=2.0 a(i)=a(i)+1.0 none
end do end do
a(0)=a(0)+k a(0)=a(0)+k

F.2 Common Subexpression Elimination

As suggested by the name, redundant expressions which perform identical calculations on the same
operands are removed and replaced with areference to theinitially calculated value.

Before After Notes
c=b*b
a=a+c-f(c)

a=a*b*b-f (b*b) none

F.3 Dead CodeElimination

Occasionally, the application of optimizations (or programmer oversight) creates segments of code
which have no semantic effect on the outcome of the program; such code is eliminated.

Before After Notes
doi=l,n . do i=1,n b isnot used anywherein
‘;‘E: ;;g(egéz)lo a(i)=a(i)+1.0 the program, dead has
end do :
end do no side effects.

F4 Forward Substitution

At compile-time, any expressions which can be determined to have been assigned to variables in the
computation are substituted for the variable references, in the hope that other optimizationswill be exposed.

Before After Notes
j=n/2 L
doi=hn/2 1o @0 ;(_ul) 2;(2. +n/2)+1. 0 none
endag;)_a(l R end do

F.5 Induction Variable Elimination

do-loops often contain induction variables, which are incremented by a constant factor each iteration
of theloop and generally used to serially reference arrays at some given stride. Induction variables produce
inter-iteration data dependencies, and can be eliminated by replacing the references to theinduction variable
by alinear function of the loop variable.
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F.6

F.7

Before

After

Notes

j=0
do i=1,n
i=+1
a(j)=a(i)*b(i)
end do

do i=1,n
a(i)=a(i)*b(i)

end do

none

Loop Collapsing

Loop nests are condensed where possible, such that two or more nested |oops become a single loop;
the dimensions of any arrays referenced by such loops are condensed to one dimension. Loop collapsing
reduces loop overhead, and sometimes allows more effective vectorization.

Before After Notes
do i1=1,n1 acol | and bcol | cor-
do i2=1,n2 do i=1,n1*n2 respondtoco”ap%dver_
a(il,i2)=a(il,i2)*b(il,i2 acol | (i)=acol | (i)*bcoll (i) )
end do end do sionsof a and b, respec-
end do tively.
Recurrence Substitution
Solutions or efficient solvers are substituted for recurrences.
Before After Notes
do i=1,n
a=a*b a=a*b**n none
end do

F.8 Reduction Substitution
Reductions, such as the sum or product of the elementsin avector, are replaced by finely-tuned code or
subroutines.
Before After Notes

sum=0. 0 sunvect or isan effi-

do ;J,lr{:gumra(i ) sunFsunvect or (a) cient vector sum imple-

end do mentation.
F.9 Idiom Recognition

Operations expressed in a serial manner which typicaly have specia compiler or hardware support,
such as gather/scatter or masked operations, are recognized and parallelized/vectorized.

Before

After

Notes

do i=1,n
if (a(i).gt.0.0) b(i)=a(i)
end do

where (a.gt.0.0) b=a

none
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F.10 Scalar Expansion

Programmers often use scal ar temporariesinside of do-loops to storeintermediateval ues; unfortunately,
these temporaries create output dependences. Each temporary is expanded into a vector, each element of
which holds the value of the temporary for a certain iteration of the loop, eliminating the write after write
dependence and resulting in code which is more likely amenable to parallelization.

Before After Notes

do i=1,n do i=1,n
x=c(i)*b(i) x(i)=c(i)*b(i)
a(i)=a(i)+x a(i)=a(i)+x(i)
end do end do

none

F.11 Semantic Analyss

The compiler analyzes a computation to determine which values of involved variables will allow
optimization, and it produces multiple compiled versions of the code to be executed conditionally at run
time. Of course, the compiler does not check al the possible combinations of each possible value of each
variable involved in the computation; usually, it uses a pattern matching algorithm to derive regions of
variable values which alow other optimizationsto be applied.

Oneversion of the compiled code executes serialy, and is run when values of involved variablesinduce
data dependencies which inhibit optimizations, and the others are efficient versions in which the values of
involved variables alow various optimizations.

Before After Notes
if (j.ge.0) then
doi=1,n-j _ Thecompiler will parallelizethefirst loop
do i=1,n-j ond o) TR the After section, since the values
a(i)=a(i+)*b(i) el se whichj can haveinthefirst loop will not
end do do i=1,n-j PSR )
a(i)=ali+)*b(i) causgoptlmlzamlon inhibitingdata depen
end do dencies, but not the second
endi f

F.12 Subroutinelnlining

The contents of leaf functions are expanded inline, eliminating subroutine call overhead and exposing
other potential optimizations. Inline expansion may proceed many levels deep, or may be limited to small
functions or those returning constants.

Before After Notes
real function |eaf(x)
| eaf =x**3
end
do i=1,n
[...] a(i)=a(i)**3 none
end do
do i=1,n
a(i)=leaf(a(i))
end do

F.13 Data Dependency Analysis

The compiler attempts to recognize loops which are free of true data dependencies; such loops can be
trivialy parallelized/vectorized. For example, simplearithmetic tests exist to determine the absence of data
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dependencies in loops in which an elements of an array are read and written using indices calculated as
linear functions of the loop variable. [17]

Before After Notes
do i=1,n/3 The compiler determines that the
a(3*i)=a(2*i +3) +b(i) | a(3:n:3)=a(5:n/3*2+3:2) 4 origina loop containsno datade-
end do b( 1:n/ 3) -
pendencies.
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Appendix G. Kernel Run Time Prediction Calculations

The following sections detail each kernel, as well as the equations used to predict their run times. For
most of our test kernels, serial computation composes a hegligible portion of the run time, and we omit
corresponding terms from our calcul ations except where noted.

We predict that a compiler optimizes a given code segment if the results of our compiler optimizations
indicated that it parallelized the most similar segment in our test suite. We optimistically assume that the
compiler applies optimizationsfor which we could not reach a definite conclusion.

Our measurements indicate that constant bound blocks do not incur significant overhead on the Cray
YMP-C90, so block overhead is omitted in appropriate cal culations.

G.1 ave Kernd Predictions

01: bef or e=0

02: doi =1,n

03: bef or e=bef or e+a(i)

04: end do

05:

06: do i = 1,1000

07: al=a(1)

08: a2=a(2)

09: anl=a(n-1)

10: an=a( n)

11: a(2:n-1)=0. 25*a( 1: n-2) +0. 5*a(2: n- 1) +0. 25*a(3: n)
12: a( 1) =0. 25*a2+0. 5*al+0. 25*an
13: a(n)=0.25*al1+0. 5*an+0. 25*anl
14: end do

15:

16: af t er =0.

17: doi =1,n

18: after=after+a(i)

19: end do

Figure 13: Core of theave Kernel

ave isaFortran 90 kernel which performs a computation consisting of three steps:
1. Summation the eementsin the array using an accumulator inside a do-loop.

2. 1000 applications of an averaging function, which is essentially Jacobi relaxation in one dimension,
to the array, expressed using array notation .

3. Summation the elementsin the array using an accumulator inside a do-loop.

We pick an array size of 500000 elements. Figure 13 showsthe body of the ave kerndl.

Step 2 in the ave computation is trivially paraldizable; the other steps, however, are expressed
sequentially, and the compiler must recognize them and parallelize them. Steps 1 and 3 are paralelized by
all compiler/architecture pairs with the exception of CM-5/cnf .

The following paragraphs detail our run time prediction calculations. SOR-SUMS corresponds to the
parallelized sum computationsin lines 1 through 4 and 16 through 19.

SOR-SUMS = 2 - RS- SUMggaggo + 2 - RS-OHSs00000 + 2 - RS-LOADsgoo00
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SOR-MAIN-FULL corresponds to the run time of line 11, in the case that we represent overhead due to
block references by the full model.

OH-FULLBLOCKTOTAL = 500000 - OH-FULLBLOCK 109

SOR-MAIN-FULL = 3000 RS-MULspg000-+ 2000- RS-ADDsongo0-+ 3000 RS-LOADsg0000+ 1000-
RS'OHSSOOOOO + 3000 - OH-FULLBLOCKTOTAL

SOR-MAIN-NONE corresponds to the run time of line 11, in the case that no block overhead is accrued.

SOR-MAIN-NONE = 3000- RS-M UL500000—|— 2000- RS—ADD500000—|— 3000- RS-LOA D500000+ 1000-
RS-OHSs00000

SOR-MAIN-REM1 and SOR-MAIN-REM2 correspond to the cost remote references generated in lines 7
through 10 and 12 though 13, respectively.

SOR-MAIN-REM1 = 4000 - SREM-READ + 2000 - SREM-WRITE

SOR-MAIN-REM2 = 2000 - REM-READ

SOR-SUMS-REM corresponds to the cost of sequential remote reads generated by the unparallelized sum
computationsin lines 1 through 4 and 16 through 19.

SOR-SUMS-REM = 1e+06 - SREM-READ

SOR-CRAY corresponds to the total run time on the Cray architecture, SOR-CMF corresponds to the run
timeonthe CM-5/cnf pair (sans contributionsdueto serial non-access computations, which are negligible),
and SOR-CMAX corresponds to the run time on the CM-5/cnf - cmax pair.

SOR-CRAY = SOR-SUMS + SOR-MAIN-NONE 4+ SOR-MAIN-REM1 + SOR-MAIN-REM2
SOR-CMF = SOR-SUMS-REM + SOR-MAIN-FULL + SOR-MAIN-REM1 + SOR-MAIN-REM2

SOR-CMAX = SOR-SUMS + SOR-MAIN-FULL + SOR-MAIN-REM1 + SOR-MAIN-REM2
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G.2 mer ge Kernd Predictions

01: real a(0:nn-1)

02: integer off,off2

03: i nteger index(0:nn-1)

04: i nteger nunbers(0:nn-1)

05: | ogi cal nask(0: nn-1)

06:

07: do i=0,nn-1

08: nunbers(i) =

09: end do

10:

11: do oi=1,n

12:

13: do i=o0i,1,-1

14.

15: of f =2**j

16: of f 2=o0f f/ 2

17: if (i.eq.oi.and.i.ne.1) then
18: i ndex=i shft (i shft(nunbers,-i),i)+off-1-
19: + i and( nunbers, of f-1)

20: el se

21: i ndex=i eor (nunbers, of f 2)
22: endi f

23: mask=. not . (nunbers. gt. i ndex. xor. a(i ndex).gt. a)
24: wher e (nask)

25: a=a(i ndex)

26: end where

27:

28: end do

29: end do

Figure 14: Core of the mer ge Kernel

nmer ge is a Fortran 90 implementation of Batcher's odd-even merge sort, which sorts » numbers in
O(nlog?n) time. The sort can operate on data in place, is relatively efficient for medium sized arrays,
and is not stable.® The main loop of our implementation, shown in Figure 14, sorts a four arrays of nn
quasi-random reals into ascending order.

In our specific benchmark, nn is 32768, and n is15. Thus, the code inside the two do-loopsis executed
atotal of 120 iterationsper array sorted. \We assumethat on each iteration, an average of half of the elements
in the array being sorted are swapped.

MERGE-1-4 and MERGE-1-128 correspond to the total run time of line 23 on a 4-processor shared
memory architecture and an 128-processor distributed memory architecture with blocked data layout,
respectively.

OH-RAND-READ-NORM = 0.25 - OH-RAND-READ
MERGE-1-4 = 120 - L-OHSz768 + 120 - L-NOT3276g8 + 120 - I-LOAD32768 + 120 - 1-GT32768 +

120 - I-LOAD35768 + 120 - L-OR3576g + 120 - RS-LOAD3576g + 120 - RS-GT3o768 + 3.93216e+06 -
OH-GATHER + 3.932166+06 - OH-RAND-READ-NORM + 120 - RS-LOADg2765

18/ stable sort retainsthe original ordering of records with the same key.
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MERGE-1-128 = 120 - L-OHSgp76g + 120 - L-NOT 32768 + 120 - [-LOAD3276g + 120 - 1-GT32768 +
120 - I-LOAD35768 + 120 - L-OR35768 + 120 - RS-LOAD3576g + 120 - RS-GT3o768 + 3.93216e+06 -
OH-GATHER + 917504 - REM-READ-NORM + 92 - RS-LOAD3,765

MERGE-2 corresponds to the total run time of line 21.
MERGE-2 = 106 - |-OHSg276g + 106 - I-LOAD32768 + 106 - I-EOR35768
MERGE-3 corresponds to the total run time of lines 18 though 19.

MERGE-3 = 14-1-OHSgzo768+28:1-SHF T 30768+ 14-1-LOAD3576g+ 14 1-ADD3276g+ 14-1-AND32768+
14 1-LOAD3p768

MERGE-4-REM corresponds to the total run time of lines 7 though 9, unparallelized.
MERGE-4-REM = 32768 - SREM-WRITE

MERGE-4-PAR corresponds to the run time of lines 7 though 9, parallelized on 4 processors.
MERGE-4-PAR = 8192 - SREM-WRITE

MERGE-5-FULL-4 and MERGE-5-FULL-128 correspond to the total run time of the lines 24 though 26,
in the case that the wher e statement is executed in a manner corresponding to the full mask mode, for a
4-processor shared memory machine and an 128-processor distributed memory architecture with blocked
datalayout, respectively.

MERGE-5-FULL-4 = 3.93216e+06-OH-FULLMASK 59-+120-RS-OHS3,765+3.93216e+06- OH-GATHER+
3.93216e+06 - RAND-READ

MERGE-5-FULL-128 = 3.93216e+06- OH-FULLMASK 59+ 120-RS-OHS3,765+92- RS-LOAD3p768+
3.93216e+06 - OH-GATHER + 917504 - REM-READ-NORM

The MERGE-CMF, MERGE-CMAX, MERGE-CF77, and MERGE-F90 parameters correspond to the total
run time on the CM-5/cnf , CM-5/cnf - crmax, Y-MP C90/cf 77, and Y-MP C90/f 90pairs, respectively.

MERGE-CMF = 4 - MERGE-1-128 + 4 - MERGE-2 + 4 - MERGE-3 + 4 - MERGE-4-REM + 4 -
MERGE-5-FULL-128

MERGE-CMAX = 4- MERGE-1-128 4+ 4 - MERGE-2 + 4 - MERGE-3 + 4 - MERGE-5-FULL-128

MERGE-CF77 = 4 - MERGE-1-4 + 4 - MERGE-2 + 4 - MERGE-3 + 4 - MERGE-4-PAR + 4 -
MERGE-5-FULL-4

MERGE-F90 = 4-MERGE-1-4+4-MERGE-2+4-MERGE-3+4-MERGE-4-REM+4-MERGE-5-FULL-4
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G.3 ep Kernd Predictions

01: doj =1,2**(MN) 33: subroutine ARANLC( A , Xk , Xkpl, n )
02: 34:

03: call ARANLC( A,y ,X, nn) 35: real A

04: call ARANLC( A ,x ,y, nn) 36: real Xk(n)

05: 37: real Xkpl(n)

06: xk = x * R45 - 1.0 38: real ti(n),t2(n),x1(n),x2(n) ,z(n)
07: yk =y * R45 - 1.0 39:

08: t = xk**2 + yk**2 40: al = AINT( R23 * A)

09: 41: a2 = A- T23 * al

10: select = (t .LE. 1.0) 42: x1 = AINT( R23 * Xk )

11: where( sel ect ) 43: x2 = Xk - T23 * x1

12: t = SQRT( -2 * LOY t ) / t ) 44:

13: xk = xk * t 45: tl =al * x2 + a2 * x1

14: yk = yk * t 46: z =t1- T23 * AINT( R23 * t1 )
15: sunmx = sunx + xk 47: t2 =T23 * z + a2 * x2

16: sunmy = suny + yk 48: Xkpl = t2 - T46 * AINT( R46 * t2 )
17: ic = INT( MAX( ABS(xk) ,ABS(yk) ) ) 49:

18: endwher e 50: return

19: 51: end

20: doi =0, NQ1

21: where( select .AND. ic .EQ i )

22: + counts(i,:) = counts(i,:) + 1

23: enddo

24:

25: enddo

26:

27: sunxl = SUM sunx )

28: sunyl = SUM suny )

29: do i=0,ng-1

30: countslice=counts(i,:)

31: countsl(i) = SUM countslice)

32: end do

[...]

Figure 15: Core of the ep Kernel

ep is the sample version of the Embarrassingly Paralld kernel of the NAS Parallel Benchmark suite,
modified so it compiles on all systemsin question. Using a paralelizable random number generator, the
kernel generates a large number (221) of random two dimensional coordinates in a Gaussian distribution
about the origin, and tallies the number of coordinates which fall into each of a set of concentric square
regions also centered on the origin. The random number generator stores and manipulates 48-bit integer
guantities using the mantissaof REAL* 8 variables.

We measurethe parallel random number and coordinate generation, region testing, and result calculation
portions of the kernel. We generate 2097512 (2% ) coordinates, in batches of 8196 (212), and calculate the
number of coordinates falling into each of 10 annuli.

The following cal culations compose our predictions:

EP-ARANLC-RS-1 istherun timeof asinglecal to thear anl ¢ subroutineasinline 3.

EP-ARANLC-RS-1 = 256- RS-OHSg 97 + 256 RS-LOADg1gp + 256 - RS-Ig190+ 256 - 1-RSg192 + 256 -
RS-OHSg197 + 512 - RS-LOADg192 + 256 - RS- ADDg19p + 256 - RSMULg197 + 256 - RSOHSg190 +
256- RS- LOADg192+ 256 - RS-1g192 + 256 - -RSg192 4 256 - RS-OHSg197+ 512 - RS- LOADg 92 + 256 -
RS-ADDg192 4+ 256 - RS-MULg192 + 256 - RS-OHSg197 + 1024 - RS- LOADg197 + 512- RSMULg192 +
256-RS-A DD8192 +256. RS—OHSglgz +512.-RS-LOA D8192+ 512.RS-MU L8192 +256-RS-A DD8192—|—
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256- RS-1g192 + 256 - 1-RSg192 + 256 - RS-OHSg192 + 512 - RS-LOADg192 + 512 - RS-MULg192 4 256 -
RS-ADDg192 + 256 - RS-OHSg197 + 512 - RS-LOADg197 4+ 512 - RSMULg192 + 256 - RS-ADDg192 +
256 - RS-lg192 + 256 - 1-RSg192

EP-RS-1 isthetota time spent in thear anl ¢ subroutine.
EP-RS-1 = 2-EP-ARANLC-RS-1
EP-RS-2 isthe run time of lines 6 through 8.

EP-RS-2 = 256- RS-OHSg197 + 256 - RS- LOADg197 + 256 - RS-MULg197 + 256 - RS-ADDg192 4 256 -
RS—OHSBlgz + 256 - RS—LOAD8192 + 256 - RS-M ULgi92 + 256 - RS—ADD8192 + 256 - RS—OHSBlgz +
512. RS—LOAD8192 + 512 . RS-EX P|8192 + 256 - RS—ADD8192

EP-RS-3 istherun time of line 10.

EP-RS-3 = 256 - L-OHSg197 + 256 - RS-LOADg;gp + 256 - RS-GTCONSTg147

OH-FULLMASK 79 = 0.84 - OH-FULLMASK 75 + 0.16 - OH-FULLMASK 100

EP-RS-4 isthe run time of lines 11 through 18.

EP-RS-4 = 256-L-OHSg1gp+2.09715e+06-OH-FULLMASK 79+ 256-RS-OHSg192-+256-RS-SQRTg 95+
512-RS-LOADg192+256-RS-LOGg192+256- RS-OHSg192+512-RS-LOADg1 92+ 256- RSMUL g190+
256-RS-OHSg192+512-RS-LOADg1g2+256-RS-MUL g190+256- RS-OHSg192+ 512-RS-LOADg192+
256-RS-ADDg1gy + 256 - RS-OHSg192 + 512 - RS-LOADg 92 + 256 - RS-ADDg192 + 256 - I-OHSg192 +
512 - RS-LOADg1g2 + 256 - RSMAXg192 + 256 - RSABSg197 + 256 - RS-Ig192

OH-FULLMASK37 = 0.52 - OH-FULLMASK 55 + 0.48 - OH-FULLMASK 59
OH-FULLMASK34 = 0.64 - OH-FULLMASK 55 + 0.36 - OH-FULLMASK 59

OH-FULLMASKgs = 0.76 - OH-FULLMASK + 0.24 - OH-FULLMASK o5

EP-RS-5 isthe run time of lines 20 through 23.

EP-RS-5 = 2.09715e+06 - OH-FULLMASK 37 + 2.09715e+06 - OH-FULLMASK 34 + 2.09715e+06 -
OH-FULLMASK gg+2.09715e+06-OH-FULLMASK g +2.09715e+06-OH-FUL LMA SK g +2.09715e+06-
OH-FULLMASK g+2.09715e+06- OH-FULLMASK 9+2.09715e+06-OH-FULLMASK g+2.09715e+06-
OH-FULLMASK + 2.097156+06 - OH-FULLMASK + 2560 - L-LOADg1gp + 2560 - L-ANDggp +
5120 - I-LOADg g2 + 256 - I-GTg1g2 + 2560 - I-OHSg192 + 256 - I-LOADg g2 + 256 - I-ADDg192

EP-RS-6 isthe run time of lines 29 through 32.

EP-RS-6 = I-SUMg1g2+1-LOADg1g2+ 1-SUMg192+ 1-LOADg192+ 10- [-OHSg192+ 10 I-LOADg192+
10- 1-SUMg1g2 + 10 - I-LOADg1 92

EP-RSisthetota run time of the kernel, using single precision reals as storage for integers.

EP-RS = EP-RS-1 + EP-RS-2 + EP-RS-3 + EP-RS-4 + EP-RS-5 + EP-RS-6

Thefollowing cal culations compute EP-RD, thetotal run time of the kernel, using double precision reals as
storage for integers. Sans changes from single to double precision, the calculations are the same as those

used to calculate EP-RS.
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EP-ARANLC-RD-1 = 256-RD-OHSg197-+ 256- RD-LOADgygp+ 256- RD-Ig197+ 256- 1-RDggp+ 256-
RD-OHSg192 + 512 - RD-LOADg192 + 256 - RD-ADDg197 + 256 - RD-MULg192 4 256 - RD-OHSg197 +
256- RD-LOADg 192+ 256- RD-lg192+ 256 1-RDg19p+ 256 - RD-OHSg197+ 512 RD-LOADg192 + 256
RD-ADDg1g2+ 256 - RD-MULg192+ 256 - RD-OHSg192 + 1024 - RD-LOADg192+ 512 - RD-MULg1 92+
256-RD-ADDg1gp+256-RD-OHSg19o+512-RD-LOADg192+512-RD-MULg192+256-RD-ADDg1 g0+
256- RD-lg1g2 + 256 1-RDg19p 4 256 - RD-OHSg192 4 512- RD-LOADg192 + 512- RD-MULg19p + 256 -
RD-ADDg1go + 256 - RD-OHSg192 + 512 - RD-LOADg 92 + 512- RD-MULg192 + 256 - RD-ADDg192 +
256 - RD-lg192 + 256 - [-RDg192

EP-RD-1 = 2. EP-ARANLC-RD-1

EP-RD-2 = 256-RD-OHSg192 + 256 - RD-LOADg192 + 256 - RD-MULg197+ 256 - RD-ADDg1g2 4 256 -
RD-OHSg192 + 256 - RD-LOADg192 + 256 - RD-MULg192 4 256 - RD-ADDg192 + 256 - RD-OHSg197 +
512 - RD-LOADg1 g2 + 512 - RD-EXPlg192 + 256 - RD-ADDgs g

EP-RD-3 = 256 - L-OHSg192 + 256 - RD-LOADg g7 + 256 - RD-GTCONSTg 92

EP-RD-4 = 256 - L-OHSg1gp + 2.097156+06 - OH-FULLMASK7g + 256 - RD-OHSg197 + 256 -
RD-SQRTg 9o+ 512- RD-LOADg192 + 256 - RD-LOGg1 g2 + 256- RD-OHSg192 + 512- RD-LOADg192+
256-RD-MULg192+256-RD-OHSg192+512-RD-LOADg192+ 256-RD-M UL g192+256-RD-OHSg1 90+
512-RD-LOADg19>+256-RD-ADDg1g2+256-RD-OHSg192>+512-RD-L OA Dg19>+256-RD-ADDg1 g0+
256 - [-OHSg192 + 512 - RD-LOADg192 + 256 - RD-MAXg192 + 512 - RD-ABSg192 + 256 - RD-lg192

EP-RD-5 = 2.09715e+06 - OH-FULLMASK 37 4+ 2.09715e+06 - OH-FULLMASK 34 + 2.09715e+06 -

OH-FULLMASK gg-+2.09715e+06- OH-FULLMA SK g+2.09715e+06- OH-FUL LMA SK g+2.09715e+06-

OH-FULLMASK g+2.09715e+06- OH-FULLMASK 9+2.09715e+06-OH-FULLMASK g+2.09715e+06-
OH-FULLMASK + 2.097156+06 - OH-FULLMASK + 2560 - L-LOADgjgp + 2560 - L-ANDggp +
5120 - I-LOADg g2 + 256 - I-GTg1gp + 2560 - I-OHSg192 + 256 - I-LOADg g2 + 256 - I-ADDg192

EP-RD-6 = I-SUMg192+1-LOADg192+1-SUMg192+1-LOADg192+ 10-I-OHSg1 92+ 10- I-LOADg192+
10- 1-SUMg1g2 + 10 - I-LOADg1 92

EP-RD = EP-RD-1 + EP-RD-2 + EP-RD-3 + EP-RD-4 4+ EP-RD-5 + EP-RD-6
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G.4 nmulti Kernel Predictions

28: sss(ax: bx: step, ay+st ep/ 2: by+st ep/ 2: step) =
01: do while (step.ge.1) 29: 0. 25*sss(ax: bx: st ep, ay: by: step) +
02: 30: 0. 25*sss(ax: bx: st ep, ay+st ep: by+st ep: st ep) +
03: ni =32 31: 0. 25*sss(ax- st ep/ 2: bx-step/ 2: step, ay+st ep/ 2:
04: 32: by+st ep/ 2: step) +
05: do i=1,ni 33: 0. 25*sss(ax+st ep/ 2: bx+st ep/ 2: step, ay+st ep/ 2:
06: 34: by+st ep/ 2: st ep)
07: ax=ifirststep 35:
08: ay=ax 36: sss(ax+step/ 2: bx+st ep/ 2: step, ay: by: step) =
09: bx=n+ifirststep-1 37: 0. 25*sss(ax: bx: st ep, ay: by: step) +
10: by=bx 38: 0. 25*sss(ax+st ep: bx+st ep: st ep, ay: by: st ep) +
11: 39: 0. 25*sss(ax+st ep/ 2: bx+st ep/ 2: st ep, ay-step/ 2:
12: sss(ax: bx: step, ay: by: step) = 40: by- step/ 2: step) +
13: 0. 2*sss(ax: bx: step, ay: by: step) + 41: 0. 25*sss(ax+st ep/ 2: bx+st ep/ 2: st ep, ay+step/ 2:
14: 0. 2*sss(ax+st ep: bx+st ep: st ep, ay: by: step) + 42: by+st ep/ 2: st ep)
15: 0. 2*sss(ax- step: bx-step: step, ay: by: step) + 43:
16: 0. 2*sss(ax: bx: step, ay- st ep: by- step: step) + 44: end if
17: 0. 2*sss(ax: bx: step, ay+st ep: by+st ep: st ep) 45:
18: 46: step=step/ 2
19: end do 47: ni =ni/2
20: 48:
21: if (step.ge.2) then 49: end do
22:
23: sss(ax+step/ 2: bx+st ep/ 2: st ep, ay+st ep/ 2: by+st ep/ 2: step) =
24: 0. 25*sss(ax: bx: st ep, ay: by: step) +
25: 0. 25*sss(ax+st ep: bx+st ep: st ep, ay: by: st ep) +
26: 0. 25*sss(ax: bx: st ep, ay+st ep: by+st ep: st ep) +
27: 0. 25*sss(ax+st ep: bx+st ep: st ep, ay+st ep: by+st ep: st ep)

Figure 16: Core of thenul ti Kernel

nmul ti solvesfor the potential sinduced in atwo-dimensional cavity with specified boundary conditions;
more specifically, we compute the solution to Laplace’s Equation over a 1024 by 1024 element grid, for
5 random sets of boundary conditions. rul ti uses a multigrid version of Jacobi relaxation to speed
convergence; in other words, we utilize grids of increasing resolution as the simulation requires. When
we have calculated a solution for an » by n grid, we simply interpolate these values into a 2n by 2n grid,
calculate the solution for the higher density grid, and repeat the forementioned steps until we reach the
appropriate grid density. In the case of thenul ti kernel, we start by solving for a grid size of 16 by 16,
and we increase the dimensions by a factor of two until we reach 1024 by 1024. No convergence criteria
are examined, and we iterate 32 steps at each grid resolution.

To avoid copy steps when we increase the grid density, we simply map our coarse grid to a 1024 by
1024 array, where the pointsin ann by n grid are separated by 1024/ elementsin the 1024 by 1024 array.
To simplify the handling of boundary conditions, we pad our 1024 by 1024 array with 64 elements on each
side. These pad elements are set to the appropriate boundary condition values.

MULTI-1 = RS-STORE; 327104 + 4 - RS- STORE73428

MULTI-2-SBANK,, corresponds to the run time of a set of 32 Jacobi iterations where the strideis n.

MULTI-2-SBANK,, = RS-OHS|1054/,,)2+4RS-ADD,1094/,,)2+5RSMUL (104 /,,)2+5RS-LOAD 154 ,,)2+
6(1024/n)? - OH-BANKSTRIDE, + 5(1024/n)? - OH-PARTIALBLOCK (1054/,,)2

MULTI-2-SBANK1 = RS-OHS;4g576+4-RS-ADD104g576+5 RS-MUL 1048576+5-RS-LOAD1 048576+
5.24288e+06 - OH-PARTIALBLOCK 1048576

MULTI-2-BANK = 32- MULTI-2-SBANKg4 + 32- MULTI-2-SBANK 3, + 32 - MULTI-2-SBANK 15+
32-MULTI-2-SBANKg+ 32- MULTI-2-SBANK4 + 32- MULTI-2-SBANK> + 32- MULTI-2-SBANK
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RS-LOAD (104,,)2+15(1024/n)2 OH-BANK STRIDE, +15(1024/n)% OH-PARTIALBLOCK (104,12

MULTI-3-BANK = MULTI-3-SBANKg4-+MULTI-3-SBANK 3p-+MULTI-3-SBANK 15+MULTI-3-SBANK g+
MULTI-3-SBANK, + MULTI-3-SBANK >

MULTI-BANK = 5-MULTI-1+ 5 MULTI-2-BANK + 5- MULTI-3-BANK
Thefollowing are predictions which cover the CM-5/cnf and CM-5/cnf - cmaxpairs:

OH-CACHESTRIDETIME = ++ - OH-CACHESTRIDE...

OH-FULLBLOCKTIME = +fracl - OH-FULLBLOCK gz¢1 + frac2 - OH-FULLBLOCK g ze2

RS-LOAD,;,,,)2 + 6 - OH-CACHESTRIDETIME 034/, + 5 - OH-FULLBLOCKTIME g4,

MULTI-2-SCACHE; = RS-OHS; g48576+4-RS-ADD1g4g576+5-RSMUL 1048576 +5-RS-LOAD 1048576+
5. OH-FULLBLOCKTIME;

MULTI-2-CACHE = 32-MULTI-2-SCACHE64+32-MULTI-2-SCACHEz,+16-MULTI-2-SCACHEz,>+
8-MULTI-2-SCACHEz>+4-MULTI-2-SCACHEzp+2-MULTI-2-SCACHEZ>+1-MULTI-2-SCACHE3;

RS-LOAD 4554/,)2 + 15 - OH-CACHESTRIDETIME 04y, + 15 - OH-FULLBLOCKTIME 1054,

MULTI-3-CACHE = MULTI-3-SCACHEg4+MULTI-3-SCACHEz,+MULTI-3-SCACHE 5+MULTI-3-SCACHEg +
MULTI-3-SCACHE4 + MULTI-3-SCACHE;

The following approximate the overhead of messages passed during each Jacobi iterations, on an 128-
processor system with the array distributed in blocked fashion (144 by 72 blocks).

MULTI-2-REM-128g4 = 6 - REM-READ

MULTI-2-REM-1283, = 13 - REM-READ
MULTI-2-REM-128,¢ = 27 - REM-READ
MULTI-2-REM-128g = 54 - REM-READ

MULTI-2-REM-128, = 108 - REM-READ
MULTI-2-REM-128, = 216 - REM-READ
MULTI-2-REM-128;, = 432 - REM-READ

MULTI-2-REM-128 is the overhead of messages passed in the Jacobi steps, per solution generated.

MULTI-2-REM-128 = 64-MULTI-2-REM-12835,+32-MULTI-2-REM-1283,+16-MULTI-2-REM-1283,+
8-MULTI-2-REM-12835+4-MULTI-2-REM-1283>+2-MULTI-2-REM-1283,+1-MULTI-2-REM-1283,

MULTI-3-REM-128 is the overhead of messages generated in the grid interpolation phase, per solution
generated.

MULTI-3-REM-128 = 1296 - REM-READ
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MULTI-F90, MULTI-F77, MULTI-CMF, and MULTI-CMAX are the predicted run times on the Y-MP
C90/f 90, Y-MP C90/cf 77, CM-5/cnf , and CM-5/cnf - crmax pairs, respectively.

MULTI-CRAY = MULTI-BANK
MULTI-FO0 = MULTI-CRAY
MULTI-F77 = MULTI-CRAY

MULTI-CM5 = 5-MULTI-1+45-MULTI-2-CACHE+5-MULTI-3-CACHE+5-MULTI-2-REM-128+
5-MULTI-3-REM-128

MULTI-CMF = MULTI-CM5

MULTI-CMAX = MULTI-CM5
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G.5 tonctatv Kernd Predictions

01: C 54: 270 CONTI NUE

02: C J-LOOP 55: C

03: C 56: C SOLVE TRI DI AGONAL SYSTEMS | N PARALLEL
04: M= 0 57: C

05: DO 310 J = JIP,J2M 58: I F(M 1) 601, 201, 301

06: JP = J+1 59: 201 CONTI NUE

07: IM = J-1 60: DO 102 I = 11P, 12M

08: M = Ml 61: RX(1,1) = RX(1,1)/DD(1,1)

09: C 62: RY(1,1) = RY(I,1)/DD(1,1)

0. C |-LOooP 63: 102 CONTI NUE

1: C 64: GOTO 601

12: DO 250 I = 11P,12M 65: 301 DO 103 I = 11P,12M

13: IP = 1+1 66: D(1,1) = 1./DXI, 1)

14: IM=1-1 67: 103 CONTI NUE

15: XX = X(1P,J)-X(1MJ) 68: DO 401 J=2M

16: YX = Y(IP,J)-Y(IMJ) 69: DO 401 | = I1P,12M

17: XY = X(1,IP)-X(1,IM 70: R = AA(L, J)*D(1,J-1)

18: YY = Y(I,JP)-Y(I,IM 71: D (1,J) = 1./(DD(1,J)-AA(l,J-1)*R)
19: A = 0. 25%( XY*XY+YY*YY) 72: RX(1,J) = RX(1,J) - RX(1,J-1)*R
20: B = 0.25%( XX* XX+YX* YX) 73: RY(1,J) = RY(I,J) - RY(I,J-1)*R
21: C = 0.125 *(XX* XY+YX* YY) 74: 401 CONTI NUE

22: Q =o. 75: DO 411 | = 11P,I2M

23: Q =o0. 76: RX(1,M = RX(1,M*D(1, M

24: C Q = A0.5 77: RY(1,M = RY(I,M*D(1, M

25. C Q = B*0.5 78: 411 CONTI NUE

26: AA(I,M = -B 79: DO 501 J=2M

27: DD(1,M = B+B+A*REL 80: K = MJ+1

28: PXX = X(1P,J)-2.*X(1,J3)+X(1 M J) 81: DO 501 | = 11P,12M

29: QXX = Y(IP,J)-2.*Y(1,3)+Y(IM J) 82: RX(1,K) = (RX(1,K)-AA(T, K)*RX(1, K+1))*D(1, K)
30: PYY = X(1,JdP)-2.*X(1,J)+X(1,JIM 83: RY(1,K) = (RY(I,K)-AA(I, K)*RY(I, K+1))*D(1, K)
31: QYY = Y(1,3P)-2.*Y(1,3)+Y(1,IM 84: 501 CONTI NUE

32: PXY = X(1P, JP)-X(1P, IM-X(1 M JIP)+X(I M IM 85: C

33: QXY = Y(1P,JP)-Y(IP,IM-Y(IMJIP)+Y(I1 M IM 86: C ADD CORRECTI ONS

34: C 87: C

35: C CALCULATE RESI DUALS ( EQUI VALENT TO RI GHT HAND SI DES... 88: L=0

3: C 89: DO 290 J = JIP,J2M

37: RX(1,M = A*PXX+B* PYY- C* PXY+XX* Q +XY* QI 90: L =L+l

38: RY(1,M = A*QXX+B* QYY- C* QXY+YX* Q +YY* QJ 91: DO 290 I = 11P, 12M

39: 250 CONTI NUE 92: X(1,3) = X(1,3)+RX(1, L)

40: 310 CONTI NUE 93: Y(1,3) = Y(I,J)+RY(I, L)

41: C 94: 290 CONTI NUE

42: C DETERM NE MAXI MUM VALUES OF RESI DUALS 95: C

43: C 9: C PREPARE QUTPUT OF CONVERGENCE BEHAVI QUR
44: DO 270 J=1,M 97: C

45: DO 270 I = 11P,12M 98: 601 LL = LL+1

46: I F(ABS(RX(1,J)).LT.ABS(RXM)) GOTO 262 99: VR TE (6, 1300) LL, | XCM JXCM DXCM
a7: RXM = RX(1,J) 100: 1 1 YCM JYCM DYCM
48: IRXM = | 101: 2 I RXM JRXM  RXM
49: JRM = J 102: 3 IRYM JRYM RYM
50: 262 | F(ABS(RY(1,J)).LT. ABS(RYM) GOTO 270 103: ABX = ABS(RXM

51: RYM = RY(1,J) 104: ABY = ABS(RYM

52: IRM = | 105: DVAX = AMAX1( ABX, ABY)

53: JRYM = J 106: I F(LL. LT. LMAX. AND. DVAX. GT. EPS) GOTO 190

Figure 17: Coreof thet ontat v Kernel

t ontat v performs the generation of a 257 by 257 grid using Thompson’s method. The program isa
member of the SPEC benchmarking suite and conforms to the Fortran 77 standard. The program consists
of a set of singly and doubly-nested loops of depths one and two, each of which can be parallelized with
varying degrees of difficulty. Werefer to ado-loop which includes code uptolabel » asloop n. Thecf 77,
f 90, and cnf - crrax compilersparalleize al inner loops, and the doubly nested |oop 310. Loop 270 isnot
paralldized by any compiler, and its run time composes a significant portion of the run time of t ontat v
on al platforms.

The following are computations of the run time of the kernel:

TCV-CRAY-310-250 isthe parallel run time of loop 310.

TCV-CRAY-310-250 = 4- RS—OHSSSOZS"" 18- RS-LOA D65025+ 22. RS—ADD65025—|— 22-RS-M UL65025
TCV-CRAY-103 isthe paralld runtime of loop 103.
TCV-CRAY-103 = RS- OHSy55 + RS-LOAD 255 + RS-DIV 955
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TCV-CRAY-401-INNER isthe parallel run time of theinner loop of loop 401.

TCV-CRAY-401-INNER = 3 - RS—OHSZ55 + 8- RS—LOAD255 +4.RSM UL255 +3- RS—ADD255 +
RS-DIV 55

TCV-CRAY-401 isthe parallel run time of loop 401.
TCV-CRAY-401 = 255 - TCV-CRAY-401-INNER + 256 - SEQ-LOIN
TCV-CRAY-411 isthe parallel run timeof loop 411.
TCV-CRAY-411 = RS-OHSs55 + 2 - RS-LOAD 55 + RS-MUL 255
TCV-CRAY-501-INNER isthe parallel run time of the inner loop in loop 501.
TCV-CRAY-501-INNER = 2 - RS-OHS55 + 6 - RS-LOADs55 + 4 - RS-MUL 955 4 2 - RS-ADDos5
TCV-CRAY-501 isthe parallel run time of loop 501.
TCV-CRAY-501 = 255 - TCV-CRAY-501-INNER + 256 - SEQ-LOIN
TCV-CRAY-290 isthe parallel run time of loop 290.
TCV-CRAY-290 = 2 - RS-OHSg5005 + 4 - RS-LOADg50p5 + 2 - RS-ADDgsgps

TCV-CRAY-270-ONE isthe sequential run time of one iteration of the computationinsideloop 270. Based
on our measurements, the code inside either i f statement is run 0.7 percent of the possible number of
executions.

TCV-CF77-270-ONE = 4 - SEQ-ABSS+ 2 - SEQ-ARR2 + 2- SEQ-CRSL + 2- RAND-READ + 1.99-
SEQ-GOTO + 0.014 - SEQ-ARR2 + 0.042 - SEQ-TRSL

TCV-CRAY-270 is the sequential run time of loop 270.
TCV-CRAY-270 = 65025 - TCV-CRAY-270-ONE + 256 - SEQ-LOIN
TCV-CRAY-ONE isthe run time of the asingleiteration of the mesh generation process on the Y-MP C9O0.

TCV-CRAY-ONE = TCV-CRAY-310-250+ TCV-CRAY-103 + TCV-CRAY-401 + TCV-CRAY-411 +
TCV-CRAY-501 + TCV-CRAY-290 4+ TCV-CRAY-270

TCV-CF77 and TCV-F90 are the run times of the kernel on the Y-MP C90/cf 77 and Y-MP C90/f 90 pairs,
respectively.

TCV-CF77 = 100 - TCV-CF77-ONE

TCV-F90 = TCV-CF77

The following are caculations of the run time on the CM-5 platform. TCV-CMF is the run time on the
CM-5/cnf pair. Thecnf compiler does not parallelize the code at all, so we approximate the run time as
the sum of the overhead host remote reads and writes and ignore other constributions. We calculate that
t ontat v performs approximately 2.5 million host remote reads and 0.5 million host remote writes.

TCV-CMF = 2500000 - SREM-READ + 500000 - SREM-WRITE

Notethat al parameters TCV-CMAX-n are calculated as the corresponding parameter TCV-CRAY-n, with
the exception that al parameters which represent operations on single precision operands are replaced by
their double precision counterparts. TCV-CMAX-270-ONE is the run time of one execution of the inner
computation of loop 270.
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TCV-CMAX-270-ONE = 2 - SREM-READ
TCV-CMAX-270 is the run time of loop 270.
TCV-CMAX-270 = 65025 - TCV-CMAX-270-ONE

TCV-CMAX-OH represents the overhead due to block references and remote reads. We assume an 8 by
16 blocked array distribution. We calculate that there are approximate 3666 remote reads per iteration,
and 4100 block loads/stores. Since the block overhead on the CM-5 is represented by the full block
mode is largely independent of the number of elements loaded, we approximate al block loads using the
OH-FULLBLOCK.

TCV-CMAX-OHBLOCKTOTAL = 66049 - OH-FULLBLOCK]
TCV-CMAX-OH = 3666 - REM-READ4100 - OH-FULLBLOCKTOTAL

TCV-CMAX-ONE = TCV-CMAX-310-2504+TCV-CMAX-103+TCV-CMAX-401+TCV-CMAX-411+
TCV-CMAX-501+ TCV-CMAX-290+ TCV-CMAX-270+ TCV-CMAX-OH

TCV-CMAX-3-ONE = 3- SREM-READ + 2 - SREM-WRITE

TCV-CMAX-3 = 65025 - TCV-CMAX-3-ONE

TCV-CMAX istherun time of the kernel on the CM-5/cnf - crmax pair.
TCV-CMAX = 100 - TCV-CMAX-ONE + TCV-CMAX-3
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