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Abstract

Previous research on this project (in work by Saavedra and Smith) has presented performance
evaluation of sequential computers. That work presented (a) measurements of machines at the source
language primitive operation level; (b) analysis of standard benchmarks; (c) prediction of run times based
on separate measurements of the machines and the programs; (d) analysis of the effectiveness of compiler
optimizations; and (e) measurements of the performance and design of cache memories.

In this paper, we extend the earlier work to parallel computers. We describe a portable benchmarking
suite and performance prediction methodology, which accurately predicts the run times of Fortran 90
programs running upon supercomputers. The benchmarking suite measures the optimization capabilities
of a given Fortran 90 compiler, execution rates of abstract Fortran 90 operations, and the processing
characteristics of the underlying architecture as exposed by compiler-generated code. To predict the run
time of an arbitrary program, we combine our benchmark results with dynamic execution measurements,
and augment the resulting prediction with simple factors which account for overhead due to architecture-
specific effects, such as remote reference latencies. We measure two supercomputers: a dedicated
128-node TMC CM-5, a distributed memory multiprocessor, and a 4-node partition of a Cray YMP-C90,
a tightly-integrated shared memory multiprocessor. Our measurements show that the performance of the
YMP-C90 far outstrips that of the CM-5, due to the quality of the compilers available and the architectural
characteristics of each machine. To validate our prediction methodology, we predict the run time of five
interesting kernels on these machines; nearly all of the predicted run times are within 50-percent of actual
run times, much closer than might be expected.

�The authors’ research has been supported principally for this work by NASA under Grant NCC 2-550, and also in part by
the National Science Foundation under grants MIP-9116578 and CCR-9117028, by the State of California under the MICRO
program, and by Intel Corporation, Apple Computer Corporation, Sun Microsystems, Digital Equipment Corporation, Philips
Laboratories/Signetics, International Business Machines Corporation and Mitsubishi Electric Research Laboratories.



1 Introduction

Traditional benchmarking involves running a set of benchmarks believed to representative of some target
workload on one or more machines, and using the resulting run times as estimates of the performance of
those machines for that workload. This approach suffers from a number of defects, including the possibility
that the benchmark programs may not be representative, that the interaction between the benchmarks, the
compilers, and the machine architecture was unknown and could produce misleading results, and that it was
impossible to accurately predict the run time for one benchmark from that of another.

In earlier work by Saavedra and Smith ([8], [26], [14]), the approach which we call microbenchmarking
was developed to deal with the problems we list above. In [8], Saavedra presents a system which accurately
predicts the run time of Fortran 77 programs across a wide range of uniprocessors. The system models the
target computer as an abstract Fortran machine, which executes a set of Fortran abstract operations. To
predict the run time of a program A on a machine M , we measure PM =< P1; P2; :::; Pn >, where Pi is
the average execution time of abstract operation i, and CA =< C1; C2; :::; Cn >, where Ci is the number
of times abstract operation i was executed in A.1 Saavedra’s system includes a set of benchmarks which
measure PM for a given architecture, and utilities which instrument a given program to determine CA. The
predicted run time TM;A is simply the dot product of PM and CA

TM;A =
X

PiCi = PM � CA
Once PM has been measured, we can predict the run time of any number of arbitrary deterministic programs
upon the machine M without the need for any additional measurements of M , simply by instrumenting
each program A in question and tabulatingCA upon some other machine. Saavedra’s work was extended in
[26] to detect and evaluate compiler optimizations (and to predict the performance of optimized code), and
in [14] to measure cache and TLB performance and their effect on run times.

In this paper, we extend Saavedra’s work to parallel computers. The performance prediction of
automatically-parallelized programs running upon supercomputers is quite difficult. We can use the results
of conventional benchmark suites to construct very rough estimates of the run times of similar programs,
but we cannot adequately generalize such data for use in the prediction of arbitrary programs. Accurate
performance prediction requires a different approach.

Recently, the Fortran 90 standard was introduced; it extends Fortran 77 primarily by adding constructs
which allow the convenient and concise expression of operations upon arrays. Several supercomputer
manufacturers support and have produced Fortran 90 compilers, and most subsequent supercomputer Fortran
extensions, such as High Performance Fortran (HPF) [25], are based upon Fortran 90.

This paper describes a Fortran 90 benchmarking suite which measures various parameters of a Fortran
90 compiler and associated architecture, including the array operation execution rates, the optimization
capabilities of the compiler, and the processing characteristics of the underlying architecture as exposed by
compiler-generated code. We use these measurements to predict the run time of several Fortran 90 kernels.

This paper is organized as follows: Section 2 outlines the performance prediction system into which our
measurement suite fits, Section 3 discusses related work, Section 4 outlines the Fortran 90 standard, Section
5 describes our model of data-parallel computations, Section 6 describes the design of our measurement
suite, Section 7 validates our performance prediction strategy, and Section 8 presents our conclusions.

2 System Overview

As mentioned in the Introduction, our work extends Saavedra’s microbenchmarking suite into the parallel
domain. Figure 1 illustrates the basic composition of the performance prediction system which we envision.

1This fine grain measurement strategy is termed microbenchmarking.
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Figure 1: Overview of the Performance Prediction System

The system is composed of three major parts:2

� Measurement Suite: Measures the various parameters of our model of the target system, resulting
in a machine characterization.

� Instrumentor: Instruments the target program so that it outputs dynamic execution measurements.
� Run Time Predictor: Predicts the run time of the target program on the target machine by combining

the machine characterization, the dynamic execution measurements generated by the instrumented
target program, and the original target program source.

This work details our efforts to: (a) create an appropriate model of a Fortran 90 program running upon an
arbitrary supercomputer, (b) implement a Measurement Suite which estimates the parameters of this model,
and (c) compose an accurate prediction methodology which will be used to create an automatic Program
Instrumentor and Run Time Predictor at some later date.

We model a computer as an abstract Fortran 90 machine, in which the run time of a given operation is
derived from its type and the size of its operands, in the case that its operands are arrays. We then augment
this simple model to account for compiler optimizations and architecture-specific effects such as remote
reference overhead. Accordingly, the following four modules compose our Measurement suite:

� Array Operation Characterizer: Measures the execution rate of Fortran 90 array operations, for
various operand sizes.

� Optimization Characterizer: Determines the compiler’s ability to apply parallelizing optimizations.
� Architecture Characterizer: Measures the parameters of the various architectural features, such as

read/write latencies and scatter overhead.
� Serial Operation Characterizer: Measures the execution rate of Fortran 90 scalar operations.

We have designed and implemented all of the above components, except for the Serial Operation Charac-
terizer, since its functionality is included in Saavedra’s Fortran 77 measurement suite.

Each component of the Measurement Suite estimates the run time of a given operation via the linear
combination of the run time of one or more carefully selected Fortran 90 code segments. For example, to
crudely estimate cost of an array load, we might measure the run time of code segments A and B; code
segment A copies an array into another array and code segment B stores a constant into an array:

A: a=b B: a=1
2Some of this terminology in this section was borrowed from [8].
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If we model the system as a load-store architecture with an overhead of L per element loaded and S per
element stored, tA and tB , the measured run times of code segments A and B, are approximately

tA = nS + nL

tB = nS

Thus, we can approximate the cost of an array load as tA � tB = nL.3 Appendix A details the iterative
timing method used to measure the run time of each code segment, and the complications to the measurement
process which we encountered.

3 Previous and Related Work

Previous parallel performance prediction systems have taken one of three basic approaches. Simulation-
based approaches derive the predicted run time of a program by simulating its execution on the target
architecture. Simulation can be performed with varying degrees of abstraction, ranging from the instruction
level to the task level. Notable examples of simulation-based approaches include:

� The Rice Parallel Processing Testbed [5], a simulator which utilizes code profiling and libraries
simulating interprocessor communication to efficiently predict run time.

� Menasce and Barroso’s method [6], which uses several iterations of task-level simulation to charac-
terize the overhead due to contention in a shared memory system.

� NPAC’s Fortran 90D/HPF prediction suite [28], which predicts run time via the combination of user
and benchmark-specified measurements and a task graph representation of the target program, created
with a tool which emulates the specific behavior of NPAC’s Fortran 90D compiler.

Analytical approaches produce approximate predictions by solving for the various characteristics of a
probabilistic representation of the program, usually expressed as some variant of the Markov or Petri net
model. The most popular approach involves stochastic Petri nets; for an introduction, see [20] and [21].
Kernel-based approaches predict the run time of sections of code by interpolating from the run time of one
or more similar kernels.

Unfortunately, each of the above approaches has flaws, with respect to predicting the run time of
arbitrary Fortran 90 programs utilizing measurements from a portable Fortran 90 test suite. Instruction-
level simulations fail because they are machine-specific. Task-level simulations assume knowledge of the
number, organization, and composition of tasks composing a given parallel computation; however, we
cannot accurately predict this information for an arbitrary compiler/architecture pair. For example, the Y-
MP C90 cf77 compiler conditionally parallelizes array operations based on predicted work, unpredictably
affecting the characteristics and number of tasks composing the operation. Analytical approaches fail
because they produce probabilistic results quantifying expected behavior, rather than determining program
behavior for a specific set of inputs. Additionally, solutions to analytical representations grow very complex
and resource intensive for large programs. Solely kernel-based approaches are unsuitable simply because
we must measure a very large number of kernels to ensure the accurate performance prediction of arbitrary
constructs. Additionally, the algorithms used to match code to kernels and to interpolate run times are
potentially very complex.

An additional consideration is that our benchmarks are written in Fortran 90, which does not include
constructs which can specify the mapping of computation to specific hardware. Thus, we cannot easily
determine the performance of a single parallel node, since the compiler may produce executable code for a
given segment of benchmarking code which runs on the host processor, some subset of the parallel nodes,

3Of course, since we examine only one case in this example, pipelining and other effects heavily color our run time estimate.
Actual parameter calculations are more complex and involve more code segments, but involve the same basic approach.
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or both. Without single node performance measurements, we cannot easily predict the run time of a task on
that node, as required by many performance prediction systems.

Compiler optimizations complicate the performance prediction process. Saavedra investigated the effect
of compiler optimizations in the serial domain [26]; however, optimizations in the parallel domain have
a much larger effect. Compilers may apply source transformations which change the number operations
executed by certain code segments by several orders of magnitude. To account for such transformations, we
must collect measurements which allow us to predict how the compiler will modify and parallelize arbitrary
code. Several studies have examined the parallelization/vectorization of arbitrary code segments selected
in an ad hoc manner [10] [9]. Furthermore, studies have examined the overall contribution of various
parallelizing optimizations to speedup [22]. These results are instructive, but not particularly useful to us;
we must determine whether the compiler applies a specific operation in various specific cases.

4 Summary of the Fortran 90 Standard

This section attempts to provide a reasonable summary of the Fortran 90 standard and the terminology
we use to describe it. For a more detailed treatment, see [12], and for the standard itself, see [13].

The Fortran 90 standard includes the Fortran 77 standard and extends it by adding various constructs
and intrinsic functions. We use the term operation to denote the computation described by the application
of an operator, construct, or intrinsic function. Fortran 90 operations can be classified into two main groups:
scalar operations, which operate solely upon scalar operands, and array operations, which require some
combination of array and scalar operands. Array operations can be further separated into three groups:

� data parallel operations, which produce a result array in which the ith element is some function of
the ith element(s) in the array operand(s); for example, the dot product operation.

� reduction operations (reductions), which produce a scalar result which is some function of the array
operand(s); for example, a vector sum.

� transformation operations, which produce a result array which may be of different dimensions (shape)
than the source array(s), in which the ith element is the function of potentially many elements in the
array operand(s); for example, matrix multiplication.

Fortran 90 allows Fortran 77 operations and intrinsic functions to accept array arguments, and such
expressions are evaluated in a data-parallel fashion. For example, where a, b, and c are n-element arrays,
the following statements denote the data parallel addition of b and c and the assignment of the result to a:

a=b+c

Note that in all such expressions (by the definition of data parallel), all array operands must be con-
formable; that is, all operands must have the same rank and dimensions, with the exception of scalars, which
are conformable with all arrays.

An array operand can be an entire array, or an array section, which is composed of the elements in a
given array between indices x and y, separated by stride s. We specify an array section from source array
src as src([x][:[y][:[s]]]), where x and y default to the beginning and end of the array, and s defaults to 1.

Fortran 90 defines the where construct, which allows the application of a data parallel operation based
on the values in a conformable logical array, called a mask. For example, the expression

where (c.gt.1.0) c=0.0

zeroes all elements of c which are greater than 1.0. Fortran 90 also defines the merge intrinsic, which
produces an array composed of the elements of two source arrays, as selected by a mask.

Fortran 90 defines a gather operation, which collects scattered elements from a source array into a
contiguous space. Given a source array a, and an array b containing the indices of a to be gathered, the
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syntax is a(b). The result array is the same size as b, and element i of the result is element b(i) of a. A
scatter operation, the reverse of a gather, is specified similarly.

Fortran 90 lacks constructs which can map computations and data to specific hardware. The elements
of the result of an array operation may be calculated in any order, and such computations may utilize some
arbitrary subset of available hardware. Array layouts vary between machines and are compiler-specific.

Fortran 90 defines several intrinsic functions which perform array reduction operations, including:

� sum, product: Compute the sum (product) of the elements of an array.
� maxval, minval: Compute the maximum (minimum) value in an array.
� any, all: Test if any (all) elements in a logical array are true.

Fortran 90 defines several intrinsic functions which perform array transformation operations, including:

� matmul: Multiply two matrices.
� transpose: Transpose a 2-d array.
� pack, unpack: Pack (unpack) selected values of a given array into another array.

Finally, Fortran 90 defines various constructs and intrinsic functions which allow bit level manipulations
of integers, modular programming, array duplication, and dynamic storage allocation.

5 Parallel Computation - Models

Fortran 90 allows the expression of data-parallel computations; this section presents various models
of the execution of such computations, for the purpose of computing the run time of the operations, and
subsequently, the entire program.

We consider a straightforward data-parallel computation x = y � z, where � is an arbitrary binary
operation. Assuming that the contribution of architectural effects is additive,4 the execution time T is

T = S + maxfDi + Ci +Xi + Yi + Zig (0 � i < P ) (1)

where

P is the number of processors,
S is the time to start and terminate the parallel computation,
Di is the time spent distributing or acquiring work on processor i,
Ci is the time spent computing on processor i,
Xi is the time spent reading the necessary elements of x on processor i,
Yi is the time spent reading the necessary elements of y on processor i,
Zi is the time spent writing the calculated elements of z on processor i.

We assume that � has a uniform execution time of c per element, when reading operands to and from the
register file or lowest-level cache. Given that n is the number of elements in each array operand, Equation
1 reduces to the following forms, based upon the architecture and work-allocation strategy:

� Distributed Memory Multiprocessor or
Shared Memory Multiprocessor, Non-Caching, Nonuniform Memory Access;
Arrays Distributed in Blocked, Cyclic, or Blocked-Cyclic Layout;
Owner-Computes Rule:

4Saavedra’s research illustrated that the execution time of a program could be modelled by adding terms corresponding to various
architectural effects. In any case, so long as we can model the temporal overlap of such effects by terms dependentupon the number
of elements in each array operand, our conclusions still hold.
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T � S + n
P
(c+WL) + maxfXi + Yig (0 � i < P ) (1.a)

WL is the average time required to write an element to local storage.5 The maxfXi + Yig term rep-
resents the maximum time taken to read required array operand elements, since under our “additive
effects” assumption the processor does not overlap operand fetches. If we assume a flat communica-
tions network (i.e. one with uniform latency between each possible source and destination) a bi-level
distribution of access latencies, and if we know the layout of arrays x and y and ignore congestion
effects, we can easily compute Xi and Yi. Furthermore, if x, y, and z are distributed identically,
Xi = Yi =

n
P
RL, where RL is the average time required to read an element from local storage,

ignoring local memory hierarchy effects, and so

T � S + n
P
(c+WL + 2RL) (where operands are distributed identically)

� Shared Memory Multiprocessor, Uniform Memory Access;
Equally Sized Blocks Statically Assigned:

T � S + n
P (c+WS + 2RS) (1.b)

RS and WS are the average times required to read and write an element from or to shared memory,
respectively.

� Shared Memory Multiprocessor; Uniform Memory Access;
m-Element Blocks Dynamically Scheduled:

T � S + d n
mP eD +md n

mP e(c+WS + 2RS) (1.c)
� S + n

mP
D + n

P
(c+WS + 2RS) (for large n)

D is the time to dynamically acquire a block of work, RS and WS are defined as above.

The above cases cover most common architecture/work-allocation combinations, with the exception of
shared memory multiprocessors which use caches. The structure of each of the above equations is sim-
ilar, suggesting that a single model with small architecture-specific variations might predict performance
accurately.

Unfortunately, our search for suitable performance model is not yet finished. We have not yet considered
vector hardware, another common feature designed to utilize parallelism. A vector system is composed of
a bank of registers, each of which can hold an array of individual data elements, a set of heavily pipelined
functional units, used to process register contents, and mechanisms which allow register contents to be
rapidly read from and written to main memory. The number of elements which an individual register may
contain, commonly called the maximum vector length, varies from 32 up to 1024 in most architectures.

Often, n, the length of each operand in a data-parallel computation, will exceed V , the maximum vector
length. In such cases, the compiler generates code which processes the operands in runs of V elements;
this technique is called strip-mining and is implemented via an outer loop which coordinates the enclosed
vector operations. A reasonable approximation of the run time of a strip-mined vector computation, TV , is

TV = TO + dn=V eTL + nTE (2)

where

TO is the one-time computation startup time,
TL is the overhead of the strip-mining code and vector startup code, and
TE is the vector execution rate, per element.

For large values of n, the contribution of the TO term in Equation 2 becomes negligible, and we can
approximate the ceiling term as linear, resulting in the following approximation of TV for large n:

5Assuming an owner-computes rule, by definition, all writes will be to local storage.
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TV � n(TL=V + TE) (for large n) (3)

This means that, barring other contributions from other sources, we may be able to linearly interpolate the
performance of large strip-mined vector operations from other measurements of large strip-mined operations.
First, however, we must make one important modification to our model; effects which cause drops in vector
performance, such as those due to the design of the memory hierarchy, must be accommodated. For example,
the mean vector performance of the IBM 3090, as a function of n, is piecewise-linear [15], and depends upon
the what fraction of the operands and destination register fits within cache memory. We can accommodate
such effects by modifying Equations 2 and 3 such that TE is a function of n.

Now, we combine our models to create a single model of the vector-parallel execution of the data-parallel
computation x = y� z. We define c, the execution rate of operation �, per element, when operating to and
from the register file or lowest-level cache, as

c =
TV �M

n
(4)

where M is overhead due to memory reads and writes. We assume that we can model M and TE as
piecewise linear functions of n which are continuous for large n, and thus, all architecture/compiler-specific
derivations of Equation 1 are piecewise linear and continuous for large n, with the exception of Equation
1.a, which is piecewise linear excluding the factors which account for remote references.

Thus, we have a set of equations which model simple data-parallel operations as piecewise linear
functions of the operand size. As shown in Section 7, approximations of these functions, interpolated from
measurements sampled sparsely across the domain of array sizes, and combined with generic measurements
of architectural characteristics, accurately predict the run times of several diverse test kernels.

6 Design of the Measurement Suite

This section details the design of the components of the Measurement Suite: the Array Operation Char-
acterizer, Optimization Characterizer, and Architecture Characterizer. We used Saavedra’s measurement
suite as the Serial Operation Characterizer. The following constraints dictated the our design:

� portability: The system should be adaptable to all architectures/compilers with a limited number of
changes, all of which should be well-documented and consistent. Additionally, the system should
be able to measure a Fortran compiler which only supports some important subset of the Fortran 90
standard, such as array-extended Fortran 77 operations.

� generality: The measurement suite should produce measurements which can be utilized by a general
performance prediction model.

� tractability: The system should run in a reasonable amount of time, precluding experiments which
cover a large portion of the combinations of factors or measure the system at too high a resolution.

6.1 Array Operation Characterizer

The Array Operation Characterizer measures the average run time of each Fortran 90 array operation
over a wide range of array sizes. The run time of a specific Fortran 90 array operation is a function of many
factors, such as the:

� type of operation,
� size of the operands,
� distribution of the operands across the memory hierarchy,
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Architecture CM-5 Y-MP C90

Processors Tested 128 4
Processors Total 128 16
Processor Type SPARC custom
Memory Type distributed banked shared
Vector Hardware yes yes
Processor Clock Rate 32 MHz 400 MHz
Interconnection Network fat tree crossbar
Separate Host Processor yes no
Word Size 32 bits 64 bits
FP Single-Precision 32 bits 64 bits
Manufacturer Thinking Machines Corp. Cray Research

Table 1: Measured Architectures

� use of a mask or indexing array,
� other concurrent processing activity.

Ideally, we could vary each of the above factors independently over the set of commonly-encountered values,
producing a large matrix of measurements covering the space of commonly-executed array operations.
Unfortunately, such exhaustive testing would consume much time and violate our tractability constraint.

Instead, we measure the run time of each operation over a wide range of array sizes and fix all other
factors to values we would encounter in the best case. That is, all operands are distributed ideally across
the memory hierarchy,6 no mask or indexing array is specified, memory is referenced in a regular and
efficient manner, and there is minimal irregular computational activity on the system generated by other
users. Optimistically, we assume that by using the results of separate tests, we can predict the effects of
masks and indexing arrays, concurrently scheduled program segments, remote distributed operands in the
case of distributed memory machines, and problems such as bank conflicts in the case of shared memory
machines. See Section 7 for confirmation that these assumptions are reasonable.

Our suite measures the average and minimum run times of Fortran 90 array operations over a wide range
of array sizes, from less than 100 to over 1 million elements. By interpolating these measurements and
augmenting the results with architectural measurements, we can accurately estimate the execution time of
an operation for any array size.

6.1.1 Measurements

We tested our suite on the following architecture-compiler pairs:

� CM-5/cmf: An 128-node Thinking Machines Corporation CM-5, using the cmf compiler.
� CM-5/cmf-cmax: An 128-node Thinking Machines Corporation CM-5, using the cmf compiler

augmented with cmax, an optimizing source code translator.
� Y-MP C90/cf77: 4-nodes of a 16-node Cray Research Y-MP C90, using the cf77 compiler.
� Y-MP C90/f90: 4-nodes of a 16-node Cray Research Y-MP C90, using the f90 compiler.

Tables 1 and 2 describe each of the above architectures and compilers in greater detail.
The Array Operation Characterizer measures the run time of each relevant Fortran 90 array operation,

over a wide range of array sizes; Appendix D describes each of the measured parameters, and Appendix E
lists the specific run times of selected parameters for each compiler/architecture pair measured.

6Ideally, which in this case, means that each operand is distributed such that the aggregate access time is minimal.
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Compiler/Translator cmf cmax cf77 f90

Version VecUnit 2.1.1-2 2.0 6.0 1.0
Full F90 Support? yes yes no yes
Optimization Flags -O - -Zp -Wd"-eabi6 -gl" -O 3
Auto Parallelization? no yes yes yes

Table 2: Measured Compilers
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Figure 2: Code Segment Profiles - CM-5/cmf and CM-5/cmf-cmax

Analysis of the execution time of a given operation or code segment, as a function of the array size,
provides valuable insights as to how a given architecture/compiler pair executes the operation. For example,
Figure 2 shows the maximum observed run time of several code segments on the CM-5/cmf and CM-
5/cmf-cmax pairs,7 over a range of array sizes from 32 to over 8 million. We use the notation {R} to
indicate a single-precision real array, and {r} to indicate a single-precision real variable. Note that all
operands and destinations do not alias. Several characteristics become evident:

� The overhead of executing parallel operations is high, at least 40 �s per array operation, and the
compiler parallelizes all array operations over the array sizes measured, irregardless of the efficiency
of the resulting code.

� {R}=abs({R}) executes almost as fast as{R}=1, indicating good hardware support for the absolute
value operation.

� The profile of the execution rate of {r}=sum({R}) differs from the profiles of the other code
segments; for small array sizes, the execution rate is low, but for very large array sizes, it outperforms
all other code segments. This performance reflects the nature of the sum computation - its overhead
is large, since even for small array sizes, we must reduce each processor’s local sum to calculate a
single global sum; however, its peak performance rate is very high, since no writes to main memory
are generated during the local sum computation.

7Operation measurements were not affected by cmax.
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� For small array sizes, {R}={R}+{R} performs slightly worse than {R}={R}/{R}. Inspection of
the assembler code generated for each code segment shows that the setup and termination code for
array division is slightly more efficient than that for array addition, causing the discrepancy.
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Figure 4: Code Segment Profiles - Y-MP C90/f90

Figure 3 illustrates the maximum observed execution rate of the same set of code segments upon the Y-MP
C90/cf77 pair. The following characteristics are evident.

� The performance of each code segment, with the exception of {r}=sum({R}), is composed of three
major regimes. Regime 1 encompasses array sizes less than or equal to 128, Regime 2 includes array
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sizes greater than 128 and less than 128+x, where x is approximately linearly-related to the execution
rate of the operation in question (except for slow operations where x is 0), and Regime 3 includes all
larger array sizes. In Regime 1, the compiler generates single processor code, and each array operand
fits completely within a vector register. In Regime 2, the compiler generates uniprocessing code, but
vector operations are strip-mined, generating overhead which causes a drop in performance from the
peak in Regime 1. Finally, in Regime 3, the compiler generates multiprocessing code which utilizes
all four available processors and runs efficiently for large array sizes.

� A peculiar result is that array division has very high performance in Regime 1, which slowly decreases
as the array size approaches 128. This result is repeatable, and we could not determine its cause, but
theorize that it is related to unusual memory hierarchy or chaining behavior.

� In Regime 2, the performance of {R}=1 decreases with increasing array size, most likely due to bank
conflicts induced by the rapid rate at which elements are stored.

Finally, Figure 4 illustrates the maximum execution rate of the code segments upon the Y-MP C90/f90 pair.
The f90 compiler does not generate multiprocessing code for most array operations, so the machine yields
high performance where each array operand fits entirely within a vector register, and virtually equivalent
performance elsewhere. This behavior is particularly noticeable in the performance profile for R=1; the time
to store element is small relative to the stripmining overhead per element, so performance drops drastically
when the array store is stripmined, for all array sizes over 128.

While the profiles shown above are instructive, we cannot adequately compare the overall performance
of each architecture/compiler pair using similar graphs, due to the clutter induced by the large number of
individual parameters involved. For purposes of simplification, we compute a set of 22 reduced parameters,
each of which corresponds to the weighted average of a set of parameters which characterizes some
architectural function. Table 3 lists each reduced parameter and the architectural function(s) represented.
Appendix D contains the exact weighted average for each reduced parameter.

For presentation purposes, given a parameter Tn corresponding to the run time operation O (or the
average of a group of operation run times) for array size n, we define the simple-statement value of Tn, T+n,
as the average execution time of a code segment composed of the operation O upon non-aliasing operands
and storage in another non-aliasing destination. For example, given the parameter RS-ADD10000, which
represents the average run time of a data-parallel add of 10000-element single-precision floating-point array
operands, RS-ADD+10000 represents the run time of the code segment a=b+c, where a, b, and c refer to
separate, non-aliased vectors.

For each reduced parameter Rin, we define Nin as the normalized reduced parameter, calculated as

Nin = Rin=Ci
where C15 = n

3
2 , all other Ci = n

Ni is simply the value of the reduced parameter Ri per element computed, except in the case of R15, which
represents matrix multiplication; N15 represents the time required per multiply-and-accumulate operation
used in the naive matrix multiplication algorithm. Figure 5 shows the mean values of the simple-statement
normalized reduced parameters for an array sizes of 256 (28), 4096 (212), 65536 (216), and 1048576 (220).
All matrix operations were measured on square arrays of size

p
n by

p
n.

The Kiviat graphs in Figure 5 provide insights into strengths and weaknesses of each architec-
ture/compiler pair. The CM-5/cmf pair performs very well for large array sizes, but falters when array
sizes become small, due to its very large operation startup overhead. In contrast, the Y-MP C90/cf77 pair
performs in a much more balanced manner; each reduced parameter varies by less than a factor of ten over
the measured values, as opposed to a factor of 1000 on the CM-5/cmf pair. The Y-MP C90/f90 pair appears
to have very balanced, efficient performance; however, this is due to the poor parallelization capabilities of
the f90 compiler, which, in most cases, utilizes one of the four available processors irregardless of array
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Parameter Operation/Function
R1 real SP addition
R2 real SP multiplication
R3 real SP arithmetic
R4 real SP F77 intrinsics
R5 real SP reductions
R6 real DP arithmetic
R7 real DP F77 intrinsics
R8 real DP reductions

Parameter Operation/Function
R9 complex arithmetic

R10 complex F77 intrinsics
R11 complex reductions
R12 integer arithmetic
R13 integer F77 intrinsics
R14 integer reductions
R15 matrix multiplication
R16 other matrix operations

Parameter Operation/Function
R17 type conversions
R18 comparisons
R19 logical operations
R20 logical reductions
R21 SP memory transfers
R22 DP memory transfers

Table 3: Reduced Parameters (SP and DP denote single and double precision, respectively.)
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Figure 5: Normalized Simple-Statement Reduced Parameters, for Various Array Sizes
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Naive

j=0
do i=1,n

j=j+1
a(j)=a(j)+1.0

end do

Opt

a=a+1.0

Figure 6: Naive and Opt which determine whether induction variable elimination is applied.

size. A notable exception are matrix operations, which the Y-MP C90/f90 pair multiprocesses and the
Y-MP C90/cf77 pair does not.

6.2 Optimization Characterizer

Compiler optimizations can radically change the execution time of a program; on many supercomputers,
a serially-executed loop may execute several orders of magnitude slower than the corresponding vectorized
or parallelized version. Several studies have investigated the ability of Fortran compilers to vectorize (e.g.
[10]) and parallelize (e.g. [9]) a set of code segments selected in an ad-hoc manner; however, we want to
determine the specific cases in which the compiler applies a given optimization, such that we can use this
information to predict how a compiler will optimize a specific program.

Many of the optimizations we measure, such loop collapsing and subroutine inlining, will improve
the execution time of a given code segment when it is executed serially. Many studies have examined
optimizations in the serial domain (for example, [26]); we, however, are interested in the ability of the
compiler to apply a given optimization, and then parallelize/vectorize the result. In the remainder of this
section, when referring to a optimizationO, we use the term “appliesO” to mean that the compiler transforms
the code using optimizationO and then parallelizes/vectorizes the result, where possible.

We use a simple method to determine whether the compiler applies an optimization O. We create and
time the execution of two code segments, which we call Naive and Opt. Naive is a code segment which is
amenable to the optimization O, and Opt is a code segment which has a run time similar or equal to the
optimized version of Naive - i.e. Opt is a source language optimized version of Naive. We design Naive
so it is not amenable to any other optimization, and will run much slower than Opt if the compiler does not
apply optimization O. If the run times of Naive and Opt are similar, we conclude that the compiler applies
optimizationO, otherwise, that it does not.

As an example of our optimization measurement strategy, suppose we want to see if the compiler applies
induction variable elimination. Figure 6 shows the Naive and Opt code segments for this test. If the compiler
does not apply induction variable elimination, the do-loop in the Naive segment must be executed serially,
due to the data dependencies induced between loop iterations by the induction variable i. The run times of
the two segments will differ significantly; the Naive segment will incur several cycles of loop and induction
variable computation overhead per element processed, while the Opt segment will be parallelized, resulting
in nearly linear speedup, and/or vectorized, resulting in an execution rate on a chained vector of slightly
more than one cycle per element in the worst case. In contrast, if the compiler applies induction variable
elimination, both the Naive and Opt code segments will be parallelized and their run times will be similar.

More formally, the measured mean run times of the code segments Naive and Opt are called tNaive
and tOpt, respectively. Since our measurements are noisy due to various random variations in run times
and to timer inaccuracies and resolution problems, (see Appendix A for details), our measured means are
estimations of the actual means. We define the 100(1 � �)-percent confidence intervals8 of our mean

8The 100p-percent confidence interval is the interval which contains the actual measurement with probability p.
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measurements as tNaive � cNaive and tOpt � cOpt, respectively, where the values of cNaive and cOpt are
dependent upon the value of �, the number of observations, and the variance of our measurements. We
define R as the ratio of tNaive to tOpt, and Rp as the lowest predicted ratio of tNaive to tOpt in the case where
O was not applied to Naive.

An approximation of the 100(1� �)2-percent9 confidence interval of the measured value of R is

(
tNaive � cNaive

tOpt + cOpt
;
tNaive + cNaive

tOpt � cOpt
)

If the confidence interval ofR is less thanRp, we conclude that the compiler appliedO to Naive successfully,
if the confidence interval of R is greater than Rp, we conclude that the was not able to apply O to Naive,
and if the confidence interval of R includes Rp, we are not sure.

At first glance, it might seem easy to calculate a value of Rp, by timing Naive in the absence of
optimization. Depending upon the compiler, however, disabling a given optimization O may disable other
optimizations which may effect the execution speed of Naive, such as software pipelining, loop unrolling,
and peephole optimization. Thus, we would compute an inflated value of Rp, which would be invalid, since
Rp is defined as the lowest predicted ratio of tNaive to tOpt in the case where O was not applied to Naive.
For example, on the Y-MP C90/f90 pair, the run time of the Naive code in Figure 6 (where n is 1000000)
is 0.56 seconds with all optimizations disabled, and 0.046 seconds with full scalar optimization enabled and
all other optimizations disabled. Instead, we must select Rp solely with our knowledge of the characteristics
of Naive and Opt, and the target machine type (some multiprocessor supercomputer). In most of our test
cases, we assume that unoptimized Naive code will run at least twice as slow as the parallelized/vectorized
code, and thus Rp = 2. Specific values of Rp are listed in Appendix E.

Some optimizations produce results which do not have a Fortran 90 analogue. For example, consider the
case where the compiler substitutes efficient code when it encounters a bin summation, a computation which
tallies the number of array elements which fall into each of a set of bins defined by some criteria. There is no
way to specify a bin summation efficiently in Fortran 90, so our standard Naive/Opt code segment approach
will not work. Instead, we compare the run time of a Naive code segment (defined as before) to the run time
of a code segment called Cripple. Cripple is a version of Naive which has been slightly modified so that
it cannot be optimized and has approximately the same run time as the unoptimized Naive segment. If the
run time of Naive is significantly less than that of Cripple, we conclude that the optimization was applied,
otherwise not.

6.2.1 Measurements

Table 4 summarizes our measurements; see Appendix F for a summary of each basic type of optimization.
As expected, cmf performs poorly, since it is not an automatically parallelizing compiler. cmf-cmax,
however, performs moderately well, although it generates suboptimal parallelized/vectorized code in some
situations. cf77 performs well, except for its surprising inability to apply the code motion and dead code
elimination optimizations. f90, which was partially based on cf77, includes all optimization capabilities
supported by cf77, with the exception of subroutine inlining. However, the quality of the optimized code
generated by f90 is inferior to that generated by cf77, since it is vectorized but not parallelized.

It is important to note that a very large number of factors, some of which are unpredictable, determine
whether a compiler will apply an optimization to an amenable section of code; for example, limited internal
table sizes may inhibit loop collapsing for very deep loops. Thus, the results of our tests should be used as
heuristic guides to the performance prediction system, not as absolute indicators.

9This is a lower bound; the actual probability thatR = x=y will fall in the interval (a; b) is
R
b

a

R
1

�1

fx(x)fy(x=z)dxdz, where
fx and fy are the probability density functions of x and y, respectively. This integral becomes messy when fx or fy are Student’s t
distribution, and its solution is not particularly important. The lower bound we have calculated suits our needs adequately.
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Optimization/Capability cmf cmf-cmax cf77 f90

loop collapsing no yes yes yes
code motion no no no no
common subexpression elimination partial yes yes yes
dead code elimination partial yes no yes
forward substitution no yes yes yes
induction variable elimination no partial partial partial
subroutine inlining no no partial no
recurrence substitution no no no no
reduction substitution no partial yes yes
scalar expansion no yes yes yes
semantic analysis no no yes yes
dependency analysis no yes yes yes
idiom recognition no partial yes yes

Table 4: Summary of Compiler Optimization Capabilities

6.3 Architecture Characterizer

The Architecture Characterizer (AC) measures various parameters of the compiler-constrained archi-
tecture, which is the actual architecture as visible through executable code generated the compiler. The
compiler-constrained architecture will have some subset of the features of the actual architecture and will
perform in a manner equivalent to or slower than the actual architecture.

The following sections explain the quantities measured by each module composing the AC, and the
models we use to predict run time; note that each heading indicates the name of the test, followed by its
abbreviation. For specific descriptions of the parameters measured, see Appendix D, and for details of the
mechanics of specific tests, see Appendix B.

6.3.1 Memory Hierarchy Access Characteristics - access

The access test measures remote or shared-memory read and write latencies, as well as gather and
scatter overhead, per element, and overhead due to random accesses in a shared memory system.

Ideally, the access test would characterize the average access time between each processor/processor
pair (in a distributed memory system) or each processor/memory location pair (in a shared memory system).
Unfortunately, it is very difficult to write a Fortran 90 benchmark which produces such a characterization,
since we have no control over the mapping of data and computation to processors. Instead, we measure the
latency of the average remote (or shared-memory) read or write; as a result, the flatter the communications
network in question, the better we characterize the latency of a random remote or shared memory access.
Several recent supercomputer architectures have communications networks which appear to be flat; processor
to processor latencies over the CM-5 fat tree range from 3 to 7 microseconds [3], and the Y-MP C90 provides
fairly uniform access times to its shared memory. However, on machines such as the T3D, which provide
hardware to accelerate block transfers and prefetch data [4], our characterization might cause significant
errors in the performance prediction of programs which make heavy use of such features.10

On some systems, serial code may be executed on a host processor, and this code may reference data
distributed across the processing nodes (or stored in the shared memory). Often, the host processor is
attached to the interconnection network in a suboptimal manner, and the latency of accesses from the host
processor to the processing nodes (or shared memory) may differ significantly from the latency of accesses

10Future versions of our measurement suite should characterize the average overhead for several different types of remote accesses
(random single element accesses, block transfers, etc.).
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between processing nodes (or between processing nodes and shared memory). To account for the potential
disparity, we include simple tests which measure the latencies of array references issued by serial code. We
term this type of access a “host remote access”.

6.3.2 Stride Effects - stride

The stride test measures the effect of the stride of memory accesses in a given computation upon
performance. We account for stride effects as overhead incurred upon each load. We define the following
quantities:

TS , the predicted run time of a stride s load from (or store to) an m-element array.
TL, the measured run time of a stride 1 load from (or store to) an m

s
element array.

Oi;n, the measured stride-induced overhead per element of a stride i reference to an n-element array.

We predict TS as follows:

TS = TL +
m

s
Os;m

where Os;m is defined by one of the two following models, and measured accordingly.

Cache Model:

Depending upon the stride, the size of the array operands, and the characteristics of the caches(s), the
execution rate of a given operation will vary widely. By measuring and analyzing of the execution rate over
a wide range of array and stride sizes, we can reconstruct the parameters of the cache, and we can use these
parameters to predict the effect of the cache upon the run time of a given program. We measure Oi;n over a
sparse range of array sizes and strides, using the method described in [14].

Three problems arise when attempting to measure cache performance on a parallel architecture, using a
Fortran 90 benchmark similar to that described in [14]:

� Inability to restrict measurements to a single node: The Fortran 90 benchmark is parallelizable. In
[16], Saavedra measures the cache performance of the KSR-1, but he does so by timing a single node
using an assembly language benchmark, which violates our portability constraint.

� Operating system-induced effects: On a system which lacks a virtually-addressed cache, the oper-
ating system may map adjacent pages into conflicting physical addresses in the cache, producing
unpredictable behavior.11

� Other effects: Since we cannot restrict our measurements to a single node, we must use the aggregate
performance of the system to infer cache characteristics. Unfortunately, it is difficult to factor out
other effects from our measurements, such as those due to vector processing, parallel operation startup
time, and poor compiler support.

As a result, our measurements may be too noisy to infer the exact organization of the memory hierarchy. For
example, thecmf compiler produces executable code in which the computationa(1:n)=a(1:n)+b(1:n)
runs faster than the corresponding non-unit stride computationa(1:n:s)= a(1:n:s)+b(1:n:s), even
though much less work is performed in the latter computation.

Since we cannot confidently derive memory hierarchy characteristics, we must approximate overhead
for unmeasured strides and array sizes by linearly interpolating from measured values.

11Saavedra overcame this problem by rebooting before each measurement, but this approach is not practical when measuring
heavily-utilized supercomputers.
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Figure 7: Stride-Induced Overhead Due To Bank Conflicts On The Cray YMP-C90

Bank Model:

Banked memory consists of a set of N individual memory systems, or banks, each of which is linked
together to form a larger memory, such that address i in the large memory is address i=N in bank i mod N .
Successive references to banked memory can proceed rapidly as long as the interval between two references
to a given bank is greater than the cycle time; otherwise, the two references will conflict and the computation
will stall until the bank can service the request. If we have N banks, and we reference memory with stride
k, we will utilize d N

gcd(N;k)e banks, and the others will remain idle. Thus, if the cycle time is TC , the access

time is TA, and the additional overhead per element is TO,12 the time to reference an element, c, including
overhead, is

c = max(TA; TC � (TA + TO)d
N

gcd(N; k)
e)

In most systems, the number of banks is a power of two and TA � TC ; therefore, all computations with
large power of two strides perform at much less than peak efficiency.

For example, Figure 7 shows the stride-induced overhead due to bank conflicts, on a single processor of
a Cray Y-MP C90, for a simple array operation involving a load, arithmetic operation, and store. The unit
stride operation ran at a rate of 3.3 ns per element. We can infer from the figure that 64 banks are referenced,
and that the cycle time of each bank is approximately half the maximum overhead (the operation in question
contains a load and a store), 30 nanoseconds.

We measure Bs, the overhead per element induced by an s-element stride, for all power of two values
of s less than or equal to M , where M is the power of two stride after which successive measured values of
B do not significantly increase. Since bank effects do not vary with array size, for any stride i or array size
n not measured, Oi;n = Bgcd(i;N).

12Such additional overhead might be due to logic in the vector load/store module.
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6.3.3 Distributed Memory Array Layout - layout

The layout test measured quantities which allow us to determine if the machine measured is a shared
memory or distributed memory system, as well as the default array layout in a distributed memory system.

6.3.4 Mask Effects - mask

The mask test measures the effects of a mask upon a computation. We define the following quantities:

TA, the measured run time of the unmasked computation A,
TR(r), the measured run time of the masked computation where(X) A,
where a fraction r of the elements in maskX are true, and the true elements are randomly distributed,
n is the number of elements in the maskX .

We predict TM , the run time of an m-element masked computationM in which a fraction x of the elements
in the mask are true, using one of the following models, assuming we have measured TU , the run time of
the corresponding unmasked computation U .

Partial Model:

Element i of the destination array is calculated and stored only if element i in the mask is true. All other
calculations are skipped:

TM = xTU +
m(TR(x)� xTA)

n

Full Model:

The entire result of the masked computation is computed as it would be in the corresponding unmasked
computation, and results are stored in a temporary array. Subsequently, the elements corresponding to true
elements in the mask are copied from the temporary array to the destination array:

TM = TU +
m(TR(x)� TA)

n

We use the full model when our measurements show that TR(r) > TA; otherwise, we use the partial model.
Unmeasured values of TR(r) are linearly interpolated from measured values.

6.3.5 Block Effects - block

The block test measures the difference between the run time of a simple array load/store and a block
load/store, where a block is defined as an array section with variable bounds or constant bounds which do not
correspond to the beginning or end of the source array. Efficient code can be generated for constant-bound
block loads/stores, so the block test also includes a test which determines whether block overhead is
incurred in such cases. We define several quantities:

TB, the predicted run time of an n-element block load from (or store to) an m-element array.
TL, the measured run time of a stride 1 load from (or store to) an n-element array.

We predict TB per one of the following models.

Partial Model:

We model overhead due to a block load as a function of the number of elements loaded:

TB = TL + nXn
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where Xn is the measured overhead per element loaded.

Full Model:

We model overhead due to a block load as a function of the size of the source array and the percentage
of elements loaded:

TB = TL +mY n

m

where Yp is the measured overhead per element in the source array, where 100p-percent of the elements are
loaded. In both models, unmeasured values of overhead are linearly interpolated from measured values.

6.3.6 Measurements

Table 5 shows the derived values of compiler-constrained architecture-specific parameters for both
architectures. Two interesting characteristics of the CM-5 emerge:13

� The overhead of a gather/scatter is more than 10 times the transfer rate, indicating poor com-
piler/architecture support for these operations.

� A host remote read14 costs a factor of 5 more than a normal remote read, and a sequential remote write
costs a factor of 10 more. Obviously, the CM-5 host processor is shoe-horned onto the communications
network quite sub-optimally.

Function/Parameter CM-5/cmf
Memory Transfer� 34.6 ns/real
Gather Overhead� 540. ns/real
Scatter Overhead� 476. ns/real
Remote Read Latency 10.7 �s/real
Remote Write Latency 3.03 �s/real
Host Remote Read Latency 59.6 �s/real
Host Remote Write Latency 34.6 �s/real
Default Array Layout blocked
Mask Effect Model full
Stride Effect Model cache
Block Effect Model full

Function Y-MP C90/cf77 Y-MP C90/f90
Memory Transfer� 4.83 ns/real 2.48 ns/real
Gather Overhead� 0.79 ns/real 0.73 ns/real
Scatter Overhead� 7.32 ns/real 0.55 ns/real
Random Read Overhead� 4.41 ns/real 2.69 ns/real
Random Write Overhead� 17.6 ns/real 5.11 ns/real
Serial Read/Write Overhead negligible negligible
Mask Effect Model full full
Stride Effect Model bank bank
Block Effect Model partial partial

Table 5: Summary of Derived Architectural Parameters (� = normalized to a single processor; for the purpose of
measurement normalization, we consider the Y-MP C90/f90 pair to be a uniprocessor, since we know f90 generates
uniprocessor code for our test cases.)

Similarly, we can draw the following conclusions from the comparison of derived parameters of the Y-MP
C90/cf77 and Y-MP C90/f90 pairs:

� The overhead of the scatter operation on the Y-MP C90/cf77 pair is much larger than that on the
Y-MP C90/f90 pair, indicating that cf77 supports the scatter operation poorly.

� Since the Y-MP C90/cf77 pair multiprocesses our benchmarking code while the Y-MP C90/f90
pair generally does not, a greater number of bank conflicts are induced on the former system, resulting
in a slower memory transfer rate and higher overhead due to sets of reads/writes to random locations.

13Use of cmax did not affect architectural results, so the CM-5/cmf results are identical to the CM-5/cmf-cmax results.
14As defined in Section 6.3.1, a host remote access is an access from or to the parallel nodes from the host processor.
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7 Verification of Predictive Capabilities

In this section, we present our prediction method and demonstrate that the results produced by our
Measurement Suite are useful for performance prediction.

7.1 Prediction Method

We have not yet fully automated the run-time prediction process, such as was accomplished for scalar
programs in [8]. Instead, here we predict the run time of all kernels by hand using the following method. To
predict the one-time run time of an array operationA, we first predict the run time of the basic array operation
B. The basic array operation B is defined as the unmasked operation in which operands are manipulated in
the same manner as in A. Given that array operands and results in A are n-element sections, the operands
and results inB are n-element arrays aligned optimally across the system. We replace reduction calculations
with scalars, and transformation operations with array loads. For example, if

A : where (a) b(1:j:i)=sqrt(c(n:m)*(0.5+d(e(f(k:l))))), then
B : s=sqrt(t*(0.5+u(v(w))))

We define the run time of B as TB. We calculate TB as

TB =
X

DiRi = D �R

where Di is the number of times operation i is executed in one execution of B, and Ri is the run time of
operation i. We then add overhead terms to TB as follows:

1. The overhead of any embedded reductions or transformation operations in A is computed recursively
via the method being described, and added.

2. We analyze each array operand and result in A, and if the operand/result contains a gather/scatter
or non-unit stride, we add the overhead per the appropriate model. Additionally, for each block
load/store, we compare the block parameters (start, finish, stride) to the blocks we have already
considered, and if they are different, we add block overhead for the load/store.

3. When the system is shared memory, for any array operands which are the result of a gather, we add
random read/write overhead if the indexing arrays do not contain linearly-related elements.

4. When the system is distributed memory, we assume an owner computes rule. We determine the
number of remote reads and writes by combining our knowledge of the default array layout, our
assumption of an owner-computes rule, and the values of the indexing arrays used to gather/scatter
and the bounds/stride of any array sections.

5. If the computation is masked, we add mask overhead per the appropriate model, and add the run time
of the mask computation.

We predict the run time of a program P on a compiler C and architecture M as follows:

1. We convert all sequential constructs inP parallelizable byC into their Fortran 90 array forms, yielding
a new program Q.

2. We count the number of times each line is executed in Q, and we determine the values of the masks,
indexing arrays, and array section parameters involved in each execution of any array operation.

3. We calculate the run time of serial code (code which is not an array operation) on a given line using
Saavedra’s method, with the exception that the latency of array accesses is represented using the host
read and write parameters when we determine that a host processor is present. We calculate the total
run time contribution of an array code segment S as the sum of the computed one-time run time of S
for each execution, per the known values of any involved masks, indexing arrays, etc.
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7.2 Test Kernels

We used the following five kernels to test our prediction system:

� ave, a Fortran 90 kernel which tests for errors produced by floating point roundoff. ave calculates
the sum of values in an array, repeatedly applies an averaging function to the array’s contents, and
then calculates the new sum of the values in the array. The kernel has high potential for efficient
parallel execution, since each step involves a data parallel operation or reduction on one or more
large well-aligned array operands; however, the compiler must recognize and parallelize the sum
computations, which are expressed sequentially.

� merge, a Fortran 90 implementation of Batcher’s odd-even merge sort [1]. The heart of the kernel
contains both masked and unmasked gather operations, as well as a large quantity of array integer bit
manipulations. Four 32768-element real arrays are sorted into ascending order.

� ep, the slightly modified version of the sample Fortran 90 implementation [19] of the Embarrassingly
Parallel Kernel of the NAS Parallel Benchmarks [18]. Using a parallelizable random number generator,
the kernel generates a large number of random two dimensional coordinates in a Gaussian distribution
about the origin, and tallies the number of coordinates which fall into each of a set of concentric
square regions about the origin. All array operations involve 8192-element REAL*8 arrays.

� multi, a kernel which solves for the potentials induced in a square cavity with fixed boundary
conditions, using a multigrid implementation of Jacobi relaxation. We represent the potential in the
cavity as a 1024 by 1024 grid. No convergence criterion is examined.

� tomcatv, a Fortran 77 SPEC kernel which performs mesh generation using Thompson’s Solver [27].
The code consists of a series of singly and doubly-nested loops, all of which are parallelizable and/or
vectorizable with varying degrees of difficulty.

Appendix G contains more detailed information about each kernel, as well as the equations used to calculate
predicted run times.

7.3 Predicted Run Times

Table 6 shows the observed run time of each kernel, the predicted run time, and the error of each
prediction. We report the predicted run time calculated using parameters derived from both mean and
minimum measurements.15 We wanted to see if our minimum measurements, which are largely noiseless,
produced better predictions than mean measurements; however, in general, the two methods seemed to
produce equally accurate predictions. Figure 8 plots the predicted mean run time versus the actual mean run
time of each kernel (the mean run times of the tomcatv kernel on the CM-5/cmf and CM-5/cmf-cmax
pairs are omitted due to their large run time). Note that there are no clear trends, at least that we can see, either
in general or relative to each architecture, in the deviation of our predictions from actual measurements.

We observe that the accuracy of our predictions is far better than can be obtained using Saavedra’s method
for scalar programs, even under optimistic assumptions.16 Table 7 compares the run time predictions
generated by the two methods for the Y-MP C90/cf77 pair. Saavedra’s method measures Fortran 77

15Due to the noise in our mean measurements and our linear parameter estimation methods, the predicted mean run time of a
program may be less than its predicted minimum run time. For example, consider that parameter X is derived from measurements
A and B as X = A � B. If the measured minimum of A is 4.0 and B is 3.0, the estimated minimum value of X is 1.0. If
the measured mean of A is 4.5 and B is 4.0, respectively, the estimated mean value of X is 0.5, which is less than the estimated
minimum value. Thus, for any program which has a predicted run time which heavily depends onX , the predicted mean run time
might be less than the predicted minimum run time.

16When calculating run times using Saavedra’s method, we optimistically assume (a) that array constructs are decomposed into
heavily unrolled loops which generated negligible loop and index arithmetic overhead, and (b) that the run time of the IEOR,
ISHFT, and IAND intrinsics on local variables is equivalent to the run time of a logical operation on local variables. We ignore
index arithmetic overhead for sequential constructs.
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Program Architecture/Compiler Mean Run Time (s) Minimum Run Time (s)
Predicted Actual Error (%) Predicted Actual Error (%)

ave CM-5/cmf 61.6 57.7 +6.9 61.1 57.0 +7.2
CM-5/cmf-cmax 1.97 1.35 -16.1 1.97 1.29 -14.0
Y-MP C90/cf77 1.32 1.79 -26.6 1.14 1.19 -3.9
Y-MP C90/f90 5.10 4.75 +7.3 4.95 4.65 +6.3

merge CM-5/cmf 5.46 4.77 +14.5 5.39 4.71 +14.5
CM-5/cmf-cmax 0.924 0.916 +0.9 0.899 0.862 +4.3
Y-MP C90/cf77 0.195 0.190 +2.8 0.138 0.148 -7.1
Y-MP C90/f90 0.510 0.703 -27.4 0.457 0.689 -33.4

ep CM-5/cmf 0.947 1.34 -29.4 0.946 1.33 -29.1
CM-5/cmf-cmax 0.947 1.31 -27.9 0.946 1.30 -27.0
Y-MP C90/cf77 0.401 0.294 +36.6 0.302 0.200 +51.4
Y-MP C90/f90 0.917 0.915 +0.2 0.824 0.903 -8.7

multi CM-5/cmf 16.0 25.5 -37.2 15.8 25.5 -37.6
CM-5/cmf-cmax 16.0 25.3 -37.4 15.8 25.3 -37.5
Y-MP C90/cf77 1.55 1.01 +53.0 1.11 0.993 +11.4
Y-MP C90/f90 4.26 1.12 +280. 4.38 1.07 +310.

tomcatv CM-5/cmfz 16600 > 7200. – 16500 > 7200. –
CM-5/cmf-cmax 838. 966. -13.3 831. 958. -13.3
Y-MP C90/cf77 1.36 0.980 +38.8 1.28 0.950 +34.5
Y-MP C90/f90 3.16 3.38 -6.5 3.29 3.33 -1.3

Table 6: Predicted And Actual Kernel Run Times (z = The run time of tomcatv on the CM-5/cmf pair
exceeded the 120 minute job limit)

Predicted Mean Run Time (s) Actual Mean
Kernel Saavedra’s Method Our Method Run Time (s)
ave 87.5 1.32 1.79
merge 3.04 0.195 0.190
ep 5.80 0.395 0.294
multi 12.5 1.55 1.01
tomcatv 16.1 1.36 0.980

Table 7: Comparison of Prediction Methods for the Y-MP C90/cf77 Pair

operations, often contained in nonvectorizable/unparallelizable loops, and does not include measurements
of Fortran 90 array operations. In most cases, array operations are heavily vectorized/parallelized, and
execute in a fraction of the time required by their unparallelized/nonvectorized Fortran 77 equivalents.
Thus, Saavedra’s system grossly overestimates the run time of programs which contain a large number of
array operations.

Unfortunately, one prediction, the run time of the multi kernel on the Y-MP C90/f90 pair, is poor.
Our suite measures the peak run time of array operations upon one-dimensional array operands, since
the involved computations should be the easiest to parallelize. The f90 compiler, however, generates
code which uniprocesses one-dimensional array operations, irregardless of the size of the operands, while
parallelizing some two-dimensional array operations. The run time of the multi kernel on a single
processor of the Y-MP C90/f90 pair has a mean of 3.87 seconds and minimum of 3.84 seconds, which
matches our prediction. Future versions of our suite should include tests which remedy this problem.
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8 Conclusions and Future Work

As we have shown, we can accurately predict the run time of many Fortran 77 and Fortran 90 programs via
a simple combination of serial and array operation execution rates, measurements of compiler optimizations,
measurements of program operation execution frequency, and generic architectural measurements.

Since it was intended as a prototype, our measurement suite is not complete. For example, we do
not measure the execution rates of some of the more obscure Fortran 90 operations, and no doubt, our
architecture measurements can be enhanced to yield results which better characterize the average case.
Furthermore, the augmentation of compiler tests will improve the accuracy of our guesses as to which
parallelizing/vectorizing optimizations are applied. No doubt, as new optimization technology is introduced
to production-quality compilers, such as the pipelining optimizations [24] found in the experimental Fortran
D compiler [23], our tests and models will need to be adjusted.

We designed our measurement suite with the goal of creating an automatic performance prediction
system. To complete the system, two major components must be implemented: the Instrumentor, which
adds code to a Fortran 90 program to collect the required dynamic execution measurements, and the Run Time
Predictor, which combines the original program source, dynamic execution measurements, and machine
characterization to produce a run time prediction. The design and implementation of each of these programs
will be challenging; the Instrumentor requires efficient statistic collection and storage methods, and the Run
Time Predictor requires extensive optimization analysis capabilities (similar in some regards to a production
Fortran 90 compiler, sans code generation capabilities). However, the reward for this effort will be a portable
automatic performance prediction system which accurately predicts the run time of Fortran 90 programs
running on supercomputers.
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Appendix A. Timing Method

To measure each code segment, we utilize timing code similar to that shown in Figure 9. The timing
code performs three tasks in sequence:

1. Iteratively determines the number of times we must execute the code segment to reduce the error in
our measurements to an acceptable level.

2. Measures a specified number of samples of the execution time of the code segment.
3. Calculates the mean and variance of the samples.

More specifically, to measure the average execution timeS of a code segmentX , we measure the run time of
a loop which containsX , plus data dependency-inducing code which reference operands present inX . This
loop iterates Nbody repetitions. Given that T is the execution time of this loop, C is the timing overhead,
and L is the loop overhead, we know that B, the execution time of the body of the loop, is

B = (T � C)=Nbody � L

Furthermore, S, the execution time of X , is

S = B �D

where D is the overhead of the dependency-inducing code included with X . Dependency-inducing code is
required to prevent the compiler from applying transformations which eliminate or destructively modify X

good=.false.
do ii=1,nobs

time=0.0
do while (.not.good.or.time.eq.0.0)

start=stimer()
do i=1,nbody

[ code segment to be measured ]

[ optimization thwarting dependencies ]

end do
finish=etimer()

time=finish-start
if (time.ge.clockres*1.0/error) good=.true.
if (.not.good) then

nbody=nbody+f(time,clockres,error)
endif

end do

sample(ii)=time/nbody
end do

mean=calcmean(sample,nobs)
variance=calcvariance(sample,nobs)
segmentmean=adjustmean(mean,nbody,...)
segmentvariance=adjustvariance(variance,nbody,...)

Figure 9: Skeleton of the Timing Code
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or the loop surrounding it. For example, consider that we want to measure the run time of the code segment
a=b+c. The inner timing loop, sans dependencies, is

do i=1,n
a=b+c

end do

Assuming that a, b, and c do not refer to the same storage, the compiler can eliminate the outer loop and
maintain semantic equivalence.

Typically, the dependency-inducing code consists of an assignment to a random element of each of the
operands, followed by an accumulation from a random element of the result. For example, to prevent the
compiler from destructively modifying the above example, we insert the following dependency-inducing
code into the loop

b(mod(irnd(),n)+1)=rnd()
c(mod(irnd(),n)+1)=rnd()
sum=sum+a(mod(irnd(),n)+1)

We print the value of sum at the end of each procedure containing such dependencies. We measure the
overhead of the the dependency-inducing code using a method similar to that which we employ to measure
S.

Given clock resolution R, we can accurately model the error introduced into T by the timing routines
as a uniformly distributed random variable over the interval (�R;R). Thus, the mean and variance of S are

Ŝ = (T̂ � Ĉ)=Nbody � L̂� D̂

Var(S) = (Var(T ) + Var(C))=N 2
body + Var(L) + Var(D) + R2=3N2

body

We select the number of observations,Nobs, as 35 or more so that we may utilize the normal distribution
as an approximation of Student’s t distribution in all confidence interval calculations. Nbody is determined
by an iterative process, such that if Var(S) is small relative to S, it is likely that the clock error will increase
p-percent confidence interval of S by a maximum of FS on either side, assuming that the clock error’s
contribution to Var(D) is low. Where p = 95, we selected values ofNobs and Nbody based on the criticality
of the code segment measurement to our operation parameter estimations, such that F varied from a few
percent to 10 percent.

Two major problems impeded our benchmarking process: buggy or inconsistent timers, and low-
frequency workload variations caused by other system users. We now discuss each in detail.

Buggy or inconsistent timers were a consistent impediment to our work. To determine the resolution of
a given set of timers, we measured the maximum reported elapsed time between neighboring timer calls.
The high resolution timers on the CM-5 usually incremented by approximately 60 microseconds per tick,
but would occasionally advance by up to 0.10 seconds, even when measured upon a dedicated machine.
Similarly, the Cray high resolution clock incremented by as much as 5 milliseconds, as reported by the
timef routine. The inconsistencies were not frequent, so we subjectively estimated the clock resolution
as the largest frequently-encountered clock increment, and we removed outliers which are a factor of Y
above the minimum measurement. Y was architecture-dependent and based on preliminary estimates of the
variability of operation run times.

On certain architectures, low-frequency workload variations complicate the measurement process. For
example, upon shared memory multiprocessors with banked memory, such as members of the Cray Y-
MP family, contention for the interconnection network and memory banks causes wide fluctuations in the
execution time of memory-intensive vector operations. Such contention stems from two sources (in a non-
dedicated machine): self-induced contention, in which the processors involved in the vector computation
reference memory sub-optimally, and user-induced contention, in which the reference patterns of other
jobs composing the system workload cause our job to stall. On the Cray Y-MP/8, an 8-processor system
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Figure 10: Sampled Run Time of Two Million-Element Array Addition and Storage, Over Various Periods

with 256 memory banks, both types of contention affect the run time of memory intensive operations
significantly[15]. As a result, to accurately measure the run time of code segments which are contention-
sensitive, we must be careful to collect many independent samples randomly distributed across the space of
possible workload-induced contention patterns.

Figure 10 illustrates the run time of a two million-element array addition and store, running upon the Y-
MP C90/cf77 pair, sampled during several randomly spaced five-minute periods at 1-second intervals. The
sample profiles are composed of runs of relatively undisturbed computation, interspersed among regions with
highly irregular sampled run time; as evidenced by the sample means calculated for each period, workload-
induced effects are significant and vary with very low frequency. As a result, the accurate characterization
of the average run time of contention-sensitive operations upon a non-dedicated Y-MP C90 may not be
possible using our benchmarking strategy, without long-term measurements which might potentially violate
our tractability constraints. Thus, for all parameters measured, in addition to the average value, we record
the minimum value, for use in predicting the minimum run time of a program, in the case that the average
values are not adequately determinable.
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Appendix B. Design Details of the Architecture Characterizer

This Appendix details the specific mechanics of several of the tests which compose the Architecture
Characterization Module.

B.1 Memory Hierarchy Access Characteristics - access

We use a simple method to measure gather and scatter overhead. First, we measure the run time of an
identity gather; that is, a gather using an identity array (element i of the array has value i) as the indexing
array. Given that an identity gather and store or an n-element array has an average run time of TGI , and the
time to copy an n-element array is TC , the total overhead imposed by the gather is TGR � TC , since the
gather is performing the same work as the transfer. We use a similar method to measure scatter overhead.

To determine the average cost of a single remote read, we measure the average run time of a random
gather; that is, a gather using an array which is some random permutation of an identity array. We assume
P processors, an average run time of a random gather and store, TGR, and an array size of n (where n is
large). On the average, n(P � 1)=P 2 references per processor in a random gather will be remote, so

TGR = TGI + (n(P � 1)=P 2)(TRD � TL)

where TRD is the cost of a remote read, and TL is the cost of a local read. If we assume that TL � TRD,
manipulating the above equation, we have

TRD =
P 2(TGR � TGI)

n(P � 1)

Note that the costs we calculate are approximations. Since the remote accesses are randomly distributed
across the processors, some processors will have to perform more remote accesses than the expected number;
if we assume an owner computes rule, this means some processors will go idle while others are still gathering.
This means that our measured TR is slightly inflated, but given a large n with respect to P , the difference is
negligible; for confirmation of this conjecture, see Appendix C.

B.2 Distributed Memory Data Layout - layout

The layout test uses a simple method to deduce the default layout of arrays and the number of
processors in a distributed memory system, assuming an owner-computes rule. We define a as an n-element
array, where n is large and a power of two, i as the n-element identity array, and p as an n-element indexing
array.

The layout of a a will be one of three types:17 blocked, cyclic, or blocked-cyclic. Given P , the number
of processors, we can describe any one of the above layouts with one parameter: B, the block size, in
elements. Element i is stored on on processor i=B mod P . A blocked layout corresponds to B = n=P , a
cyclic layout to B = 1, and a blocked-cyclic layout may be described by any of the intermediate values.

We define T (r) as the run time of the following computation (we assume that array 0 is the first element
in each array):

p = mod(i+ brnc; n)
a = a � a(p)

p is the identity array i, rolled upwards brnc elements. Assuming an owner-computes rule, the reference
patterns of the computationa = a�a(p)will change as r increases; to compute ai, a processor will reference

17In the absence of any bizarre compiler bugs or unusual optimizations.
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Figure 11: Ideal rotation fraction vs. execution time profiles for a 32-element array distributed across a
4-node system.
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Figure 12: Rotation fraction vs. execution time profile for a 512-element array distributed across an
128-node CM-5.

its local storage for the current value of ai, and will reference local or remote storage for the current value of
ap(i). Essentially, the value of T (r) represents the amount of overlap (in terms of elements allocated to the
same processor) of the original data layout and the same data layout rotated upward brnc elements. We can
imagine the layouts as two identical grates, one on top of the other, with holes in the grates corresponding
to the elements in a residing upon a certain processor. The amount of light shining through the grates
corresponds to the amount of overlap between the original and rotated layouts. Initially, the grates are
aligned at their ends, and the most light possible shines through the grate holes. As we move the top grate
to the right (corresponding to the rotation of the original layout upward), the holes in the grates no longer
exactly match up; slowly, the amount of light shining through the grates shrinks, until finally no light can
pass through. If the holes in the grate are large, there will be a region of grate positions (corresponding to
rotation values) where the amount of light shining through fades full to none, or vice versa.

The profile of T (r) versus r can be used to determine each of these parameters, and thus, the layout.
Figure 11 illustrates the ideal profiles corresponding to each layout, assuming that local and remote ref-
erences each incur a consistent amount of overhead. Note that in the block layout, there is one large dip,
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corresponding to the overlap of the continuous run of elements allocated on each processor. Conversely, in
the cyclic layout, the original and rotated layouts overlap only every P elements, with no overlap elsewhere,
yielding the bi-value result, with low values each P elements.

Figure 12 shows the rotation fraction versus execution time profile for a 512-element array distributed
upon an 128-node CM-5. We can deduce that the layout is blocked from the presence of a single large dip.
Interestingly, the dip is wider than expected, covering a range of rotation values from -0.06 to 0.06. We
believe this is due to the communication characteristics of the fat tree communications network; although
the network is generally flat, communications with "neighboring" processors tend to have slightly lower
latencies. We theorize that the spikes in the flat portion of the profile are due to cache effects local to each
processor, since they appear at fixed intervals of 64 elements.

SamplingT (r) over many values of r, where r varies linearly with some induction variable, as in Figure
12, is prohibitively expensive, so we assume that the number of processors and block size will be a power
of two, and only measure values of r which correspond to power of two block sizes.

Appendix C. Proofs

The following paragraphs support various conjectures about the distribution of random references across
processors in a random gather.

Given P processors involved in a random gather, we expect 100(P � 1)=P -percent of the references
on each processor to be remote. In the worst case, all references on a processor are remote, inflating our
estimation by of the remote reference latency by a factor of P=(P � 1), in the case that the latency of a
remote access is much more than that of a local access. Thus, on systems with a small number of processors,
such distortion of our measurements may be significant; the following analysis illustrates that the probability
of large distortions is negligible.

We first analyze the distribution of remote accesses in an n-element random gather upon a 2-processor
system. We define  

n

r

!
=

n!
r!(n � r)!

h(x; s; n1; n2) =

 
n1

x

! 
n2

s� x

!
 
n1 + n2

s

!

as the hypergeometric probability density function, which computes the probability that exactly x elements
of type 1 in a sample of s elements are selected, without replacement, from a set composed of n1 elements
of type 1 and n2 elements of type 2. We define

H(x; s; n1; n2) =

nX
i=x

h(i; s; n1; n2)

The probability that a processor will have a fraction of f remote accesses, where f � 0:5, is simply

y(f; n) = 2H(dfn=2e; n=2; n=2; n=2)

Table 8 illustrates y(0:55; n), the probability of a processor having 110-percent of the expected number of
remote accesses, for various values of n. Note that as n increases, y(0:55; n) rapidly decreases; for large
values of n, the probability of a significant deviation from the expected number of remote accesses on each
processor is negligible.
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n y(0:55; n)
50 0.656

100 0.317
150 0.191
200 0.203
250 0.129

Table 8: y(0:55; n) as a function of n.

n z(0:825; n; 4)
100 0.618
200 0.319
300 0.274
400 0.142
500 0.073

Table 9: z(0:825; n; 4) as a function of n.

We continue our analysis for systems with a slightly larger number of processors, modelling the selection
of the access type of each element in the random gather as a Bernoulli trial. Given P processors and an
n-element random gather, a processor will execute n=P trials, and the probability that each trial will result
in a remote access is (P � 1)=P . We define

b(x; n; p) =

 
n

x

!
px(1� p)n�x

as the binomial probability function, which gives the probability that exactly x Bernoulli trials will succeed
out of a set of n, with p probability of success for each trial. We define

B(x; n; p) =
nX
i=x

b(i; n; p)

The probability that one or more processors will have a fraction of f remote accesses is simply

z(f; n; P ) = 1 � (1 �B(dfn=Pe; n=P; (P � 1)=P ))P

Table 9 illustrates z(0:825; n; 4), the probability of any processor having 110-percent of the expected number
of remote accesses, for various values of n. Note that as n increases, z(0:825; n; 4) decreases; for large
values of n, the probability of a significant deviation from the expected number of remote accesses on each
processor is negligible.

Thus, for any number of processors, for large n, there is negligible probability of a large deviation from
the expected number of remote accesses.
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Appendix D. Parameter Names and Descriptions

This Appendix contains the names and meanings of parameters calculated in the Operation Measurement
and Architecture Characterization modules.

D.1 Operation Measurement Module Parameters

The following tables list each of the name of each parameter, which corresponds to the run time of a
given Fortran 90 array operation.

Parameter names are composed of one or more instances of some subset of the following components.
A type specifier establishes the type of operand(s) manipulated by a given operation, or the type of the
result; Table 10 lists the possible type specifiers. An operation specifier denotes the specific function of
an operation, which is usually independent of type (for instance, an array summation, or sine function).
Finally, a size specifier specifies the array size corresponding to a given parameter.

Specifier Operand Type
CS complex single-precision
L logical
I integer single-precision
RS real single-precision
RD real double-precision

Table 10: Type Specifiers

Individual parameters are systematically named and may be of one of two forms:

� T -On

where O is an operation specifier, T is a type specifier, and n is a size specifier.
Specifies a non-conversion array operation O of type T , for array size n.

� A-Bn

where A and B are type specifiers, and n is a size specifier.
Specifies a conversion array operation, from type A to type B, for array size n.

Note that when the array size omitted, we are referring to the characteristics of the parameter over some
range of array sizes.

Table 11 lists the possible non-conversion operation parameters, specifying each possible operation
specifier, legal type specifiers, and a description of the operation.
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Operation Legal Types Description
ABS CS I RD RS absolute value
ADD CS I RD RS addition
ADD2D CS I RD RS addition (2-d array)
ALL L all elements true?
AND L I AND operation
ANY L any elements true?
BITS I extract fixed set of bits
BITSV I extract varying set of bits
BSET I set fixed bit
BSETV I set varying bit
BTEST I test fixed bit
BTESTV I test varying bit
CONJG CS complex conjugate
COS CS RD RS cosine
COUNT L number of elements true
CSHIFT CS I RD RS circular shift
DIV CS I RD RS division
DOTPRODUCT CS I RD RS dot product
EOSHIFT CS I RD RS end-off shift
EQ CS I RD RS equivalence
EQCONST CS I RD RS equivalence to constant
EOR I exclusive-OR operation
EXP CS RD RS natural exponential
EXPI CS I RD RS exponentiation by integer
EXPS CS I RD RS exponentiation by real
GT I RD RS greater than
GTCONST I RD RS greater than constant
LOAD I L CS RD RS sequential load
LOG CS RD RS natural logarithm
MATMUL CS I RD RS matrix multiplication
MAX I RD RS maximum

Operation Legal Types Description
MAXLOC I RD RS location of max element
MAXVAL I RD RS value of max element
MERGEF RS RD vector merge (false mask)
MERGEH RS RD vector merge (half-true mask)
MERGET RS RD vector merge (true mask)
MOD I RD RS modulo
MUL CS I RD RS multiplication
MUL2D CS I RD RS multiplication (2-d arrays)
NOT L logical NOT operation
OHS I L CS RD RS parallel/store overhead
OR L I OR operation
PACKF RS RD pack vector (false mask)
PACKH RS RD pack vector (half-true mask)
PACKT RS RD pack vector (true mask)
PRODUCT CS I RD RS vector product
REAL CS conversion to real
SIN CS RD RS sine
SHFT I end-off bit shift
SHFTC I circular bit shift
SQRT CS RD RS square root
STORE2D CS I RD RS store of constant (2-d array)
STORE CS L I RD RS store of constant
SUM CS I RD RS vector sum
TAN RD RS tangent
TRANSFER2D CS I RD RS array transfer (2-d arrays)
TRANSFER CS L I RD RS array transfer
TRANSPOSE CS I RD RS matrix transpose
UNPACKF RS RD unpack vector (false mask)
UNPACKH RS RD unpack vector (half-true mask)
UNPACKT RS RD unpack vector (true mask)

Table 11: Individual Parameter Names and Descriptions

Table 12 describes the weighted averages used to calculate each of the 22 reduced parameters. We
selected the weight for each component parameter so that it roughly corresponds to the average number
of times we would expect the corresponding operation to be executed in the average program, relative
to the other operations used to calculate the reduced parameter. Of course, since the average program is
workload dependent, we select commonly-executed scientific codes as our workload. Our weights, which
were gleaned from Saavedra-Barrera’s work [8] and a highly-regarded computer architecture textbook [17],
should roughly correspond to the operation frequencies in the average scientific code.

D.2 Architecture Characterization Module Parameters

The following list describes the parameters measured by the Architecture Characterization Module.
Note that all overhead is per element, over the entire machine.

REM-READ, REM-WRITE: run time of the average remote read (write).
SREM-READ, SREM-WRITE: run time of the average sequential remote read (write).
OH-GATHER, OH-SCATTER: overhead (relative to the corresponding array access), per element,
of a gather (scatter).
OH-RAND-READ, OH-RAND-WRITE: overhead (relative to a linear read (write)), per element, of
a set of random reads (writes) to shared memory.
OH-CACHESTRIDEs; n: overhead, per element in the cache stride model (relative to the correspond-
ing stride 1 reference), due to a stride s reference to an n-element array.

Appendix D 33



R1
Parameter Weight

RS-ADD 1.000

R2
Parameter Weight

RS-MUL 1.000

R3
Parameter Weight

RS-DIV 0.800
RS-EXPI 0.180
RS-EXPS 0.020

R4
Parameter Weight

RS-LOG 0.125
RS-EXP 0.125
RS-SIN 0.125
RS-TAN 0.125
RS-ABS 0.125
RS-SQRT 0.125
RS-MOD 0.125
RS-MAX 0.125

R5
Parameter Weight

RS-SUM 0.400
RS-PRODUCT 0.200
RS-MAXVAL 0.200
RS-DOTPRODUCT 0.200

R6
Parameter Weight

RD-ADD 0.650
RD-MUL 0.250
RD-DIV 0.080
RD-EXPI 0.016
RD-EXPS 0.004

R7
Parameter Weight

RD-LOG 0.125
RD-EXP 0.125
RD-SIN 0.125
RD-TAN 0.125
RD-ABS 0.125
RD-SQRT 0.125
RD-MOD 0.125
RD-MAX 0.125

R8
Parameter Weight

RD-SUM 0.400
RD-PRODUCT 0.200
RD-MAXVAL 0.200
RD-DOTPRODUCT 0.200

R9
Parameter Weight

CS-ADD 0.650
CS-MUL 0.250
CS-DIV 0.080
CS-EXPI 0.016
CS-EXPS 0.004

R10
Parameter Weight

CS-LOG 0.200
CS-EXP 0.200
CS-SIN 0.200
CS-ABS 0.200
CS-SQRT 0.200

R11
Parameter Weight

CS-SUM 0.250
CS-PRODUCT 0.250
CS-DOTPRODUCT 0.500

R12
Parameter Weight

I-ADD 0.625
I-MUL 0.250
I-DIV 0.125

R13
Parameter Weight

I-MOD 0.334
I-MAX 0.333
I-ABS 0.333

R14
Parameter Weight

I-SUM 0.400
I-PRODUCT 0.200
I-MAXVAL 0.200
I-DOTPRODUCT 0.200

R15
Parameter Weight

RS-MATMUL 0.500
RD-MATMUL 0.250
CS-MATMUL 0.250

R16
Parameter Weight

RS-ADD2D 0.400
RS-TRANSPOSE 0.100
RD-ADD2D 0.200
RD-TRANSPOSE 0.050
CS-ADD2D 0.200
CS-TRANSPOSE 0.050

R17
Parameter Weight

RS-CS 0.100
RS-RD 0.100
I-RS 0.150
I-RD 0.100
I-CS 0.100
RS-I 0.150
RD-I 0.100
CS-REAL 0.100
CS-CONJG 0.100

R18
Parameter Weight

RS-EQ 0.0928
RS-GT 0.0927
RS-EQCONST 0.0928
RS-GTCONST 0.0927
RD-EQ 0.0625
RD-GT 0.0625
RD-EQCONST 0.0625
RD-GTCONST 0.0625
I-EQ 0.0625
I-GT 0.0625
I-EQCONST 0.0625
I-GTCONST 0.0625
CS-EQ 0.0625
CS-EQCONST 0.0625

R19
Parameter Weight

L-AND 0.334
L-OR 0.333
L-NOT 0.333

R20
Parameter Weight

L-ALL 0.334
L-ANY 0.333
L-COUNT 0.333

R21
Parameter Weight

RS-TRANSFER 1.000

R22
Parameter Weight

RD-TRANSFER 0.500
CS-TRANSFER 0.500

Table 12: Reduced Parameter Compositions
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OH-BANKSTRIDEs: overhead per element in the bank stride model (relative to the corresponding
stride 1 reference), due to a stride s reference.
OH-PARTIALMASKr, OH-FULLMASKr: overhead, per element, due to the specification of masked
computation (relative to the corresponding unmasked computation), where a fraction r of the elements
in the mask are true, using the partial (full) mask model.
OH-PARTIALBLOCKn: overhead, per element, due to the specification ofn-element block load/store
(relative to an unblocked load/store), where n elements are loaded/stored, using the partial block
model.
OH-FULLBLOCKp: overhead, per element, due to the specificatin of a block block load/store (relative
to an unblocked load/store), where p-percent of the elements are loaded from the source array, per the
full block model.
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Appendix E. Detailed Measurements

The following sections detail the specific values of various measurements.

E.1 Array Operation Characterizer Measurements

The following sections contain the specific values of array operation parameters measured for use in our
performance predictions. We measure values for array sizes of 64, 256, 1024, 4096, 16384, 65536, 262144,
and 1048576. We omit double-precision real measurements for the Y-MP C90/cf77 and Y-MP C90/f90
pairs, since they were not used in our predictions.

Note that the values of some parameters may be computed as negative; such parameters are negligible
when compared to other related parameters.
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64-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 8.6757e-05 (8.5874e-05,8.7640e-05) 8.5696e-05
RS-LOAD 2.4821e-06 (1.8585e-06,3.1057e-06) 2.5957e-06
RS-ADD -2.4490e-06 (-3.3247e-06,-1.5732e-06) -2.3043e-06
RS-MUL -2.2201e-06 (-3.2076e-06,-1.2325e-06) -2.5461e-06
RS-SQRT 2.7734e-07 (-9.1508e-07,1.4698e-06) 5.9158e-07
RS-LOG 2.4817e-05 (2.3463e-05,2.6171e-05) 2.4116e-05
RS-EXPI -2.2642e-07 (-1.4978e-06,1.0450e-06) -4.2648e-07
RS-EXPS 4.8687e-05 (4.7164e-05,5.0209e-05) 4.7852e-05
RS-SIN 1.2940e-05 (1.1679e-05,1.4201e-05) 1.2812e-05
RS-GT 5.1652e-06 (3.3931e-06,6.9373e-06) 5.2890e-06
RS-I 1.4158e-05 (1.2827e-05,1.5489e-05) 1.4549e-05

RS-MAX -2.1954e-06 (-3.8520e-06,-5.3889e-07) -2.2904e-06
RS-GTCONST 6.6533e-06 (5.3372e-06,7.9694e-06) 7.1793e-06

RD-OHS 9.1657e-05 (9.0512e-05,9.2802e-05) 8.9681e-05
RD-LOAD 4.5231e-07 (-1.2805e-07,1.0327e-06) 3.1394e-07
RD-ADD -2.3910e-07 (-1.1775e-06,6.9930e-07) 3.1540e-07
RD-MUL -6.0767e-07 (-1.6705e-06,4.5517e-07) 6.0555e-07
RD-SQRT 1.1879e-06 (-2.1524e-07,2.5910e-06) 2.1921e-06
RD-LOG 1.8703e-05 (1.7284e-05,2.0122e-05) 1.9965e-05
RD-EXPI 6.1405e-06 (4.7504e-06,7.5305e-06) 7.6538e-06
RD-EXPS 5.3672e-05 (5.2127e-05,5.5218e-05) 5.4525e-05
RD-SIN 2.1289e-05 (1.9815e-05,2.2764e-05) 2.2318e-05
RD-GT 1.4326e-05 (1.2666e-05,1.5986e-05) 1.5037e-05
RD-I 3.4055e-06 (2.1274e-06,4.6837e-06) 4.1924e-06

RD-MAX -1.2717e-06 (-2.9793e-06,4.3588e-07) -1.8270e-07
RD-GTCONST 9.1655e-06 (7.8817e-06,1.0449e-05) 9.9113e-06

L-OHS 8.7526e-05 (8.6515e-05,8.8537e-05) 8.6198e-05
L-LOAD 2.4821e-06 (1.8585e-06,3.1057e-06) 2.5957e-06

L-OR 4.4673e-06 (2.7709e-06,6.1637e-06) 5.0327e-06
L-NOT 2.5419e-06 (8.4403e-07,4.2397e-06) 2.7798e-06
I-OHS 8.7526e-05 (8.6515e-05,8.8537e-05) 8.6198e-05

I-LOAD 2.4821e-06 (1.8585e-06,3.1057e-06) 2.5957e-06
I-GT 6.2826e-06 (4.5416e-06,8.0235e-06) 6.2791e-06

I-AND 2.4395e-08 (-1.7344e-06,1.7832e-06) -5.2608e-07
I-SHFT 1.5291e-06 (2.2029e-07,2.8379e-06) 1.8063e-06
I-ADD -1.7560e-06 (-2.7520e-06,-7.5992e-07) -1.6705e-06
I-RS 1.1842e-06 (-6.5386e-08,2.4338e-06) 1.0814e-06

256-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 8.7692e-05 (8.6479e-05,8.8906e-05) 8.5258e-05
RS-LOAD 2.6823e-06 (2.0804e-06,3.2841e-06) 2.7846e-06
RS-ADD -2.3475e-06 (-3.4355e-06,-1.2594e-06) -1.9880e-06
RS-MUL -2.8087e-06 (-3.8978e-06,-1.7195e-06) -1.8513e-06
RS-SQRT 5.7254e-08 (-1.4042e-06,1.5187e-06) 1.7909e-06
RS-LOG 2.4651e-05 (2.3156e-05,2.6145e-05) 2.6201e-05
RS-EXPI -9.0152e-07 (-2.3421e-06,5.3904e-07) 7.6935e-07
RS-EXPS 4.8032e-05 (4.6399e-05,4.9664e-05) 4.9333e-05
RS-SIN 1.3543e-05 (1.2014e-05,1.5071e-05) 1.4680e-05
RS-GT 5.5381e-06 (3.7502e-06,7.3259e-06) 6.4240e-06
RS-I 1.2326e-05 (1.0913e-05,1.3740e-05) 1.3785e-05

RS-MAX -3.1011e-06 (-4.8867e-06,-1.3155e-06) -1.7136e-06
RS-GTCONST 8.2488e-06 (6.8186e-06,9.6790e-06) 9.3137e-06

RD-OHS 9.2408e-05 (9.1198e-05,9.3619e-05) 9.0144e-05
RD-LOAD 7.8015e-07 (1.7089e-07,1.3894e-06) 7.1736e-07
RD-ADD -6.0428e-07 (-1.6351e-06,4.2655e-07) -2.1673e-08
RD-MUL -9.3112e-07 (-2.0270e-06,1.6476e-07) 1.7162e-07
RD-SQRT 1.4785e-06 (-2.7703e-09,2.9597e-06) 2.9927e-06
RD-LOG 2.0056e-05 (1.8498e-05,2.1615e-05) 2.1494e-05
RD-EXPI 5.0714e-06 (3.6191e-06,6.5238e-06) 6.8901e-06
RD-EXPS 5.3921e-05 (5.2209e-05,5.5633e-05) 5.4755e-05
RD-SIN 2.2680e-05 (2.1072e-05,2.4288e-05) 2.3627e-05
RD-GT 1.4197e-05 (1.2349e-05,1.6044e-05) 1.5451e-05
RD-I 1.9755e-06 (5.8269e-07,3.3683e-06) 3.4142e-06

RD-MAX -1.2992e-08 (-1.8183e-06,1.7923e-06) 1.3286e-06
RD-GTCONST 1.0527e-05 (9.1091e-06,1.1944e-05) 1.2073e-05

L-OHS 8.7021e-05 (8.5870e-05,8.8171e-05) 8.4932e-05
L-LOAD 2.6823e-06 (2.0804e-06,3.2841e-06) 2.7846e-06

L-OR 5.9969e-06 (4.2482e-06,7.7456e-06) 7.3217e-06
L-NOT 4.1247e-06 (2.3802e-06,5.8692e-06) 5.4153e-06
I-OHS 8.7021e-05 (8.5870e-05,8.8171e-05) 8.4932e-05

I-LOAD 2.6823e-06 (2.0804e-06,3.2841e-06) 2.7846e-06
I-GT 7.6207e-06 (5.8201e-06,9.4214e-06) 7.9739e-06

I-AND -2.5948e-06 (-4.3452e-06,-8.4442e-07) -1.4722e-06
I-SHFT -1.2435e-06 (-2.6321e-06,1.4503e-07) 9.2775e-08
I-ADD -2.4289e-06 (-3.3969e-06,-1.4609e-06) -2.2119e-06
I-RS -1.3790e-06 (-2.8717e-06,1.1370e-07) 7.1264e-08
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1024-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 8.5778e-05 (8.4647e-05,8.6909e-05) 8.4217e-05
RS-LOAD 2.5029e-06 (1.8995e-06,3.1063e-06) 2.4898e-06
RS-ADD -2.7667e-06 (-3.8046e-06,-1.7287e-06) -2.2661e-06
RS-MUL -2.5229e-06 (-3.5189e-06,-1.5268e-06) -2.1934e-06
RS-SQRT 1.0480e-06 (-3.8006e-07,2.4760e-06) 1.7361e-06
RS-LOG 2.5015e-05 (2.3523e-05,2.6508e-05) 2.5395e-05
RS-EXPI -8.2556e-07 (-2.2151e-06,5.6393e-07) 2.8825e-08
RS-EXPS 4.8508e-05 (4.7015e-05,5.0001e-05) 4.8907e-05
RS-SIN 1.3242e-05 (1.1774e-05,1.4709e-05) 1.3835e-05
RS-GT 4.6139e-06 (2.9103e-06,6.3176e-06) 5.7366e-06
RS-I 1.1066e-05 (9.7076e-06,1.2424e-05) 1.1994e-05

RS-MAX -2.2039e-06 (-3.9315e-06,-4.7621e-07) -1.3000e-06
RS-GTCONST 6.4807e-06 (5.1373e-06,7.8241e-06) 7.6329e-06

RD-OHS 8.8601e-05 (8.7439e-05,8.9763e-05) 8.7390e-05
RD-LOAD 7.0400e-07 (7.4455e-08,1.3335e-06) 4.0150e-07
RD-ADD -3.5959e-07 (-1.3927e-06,6.7355e-07) 2.3607e-07
RD-MUL -3.0590e-07 (-1.4025e-06,7.9069e-07) 4.7364e-07
RD-SQRT 2.9004e-06 (1.4033e-06,4.3975e-06) 3.4187e-06
RD-LOG 2.0464e-05 (1.8995e-05,2.1932e-05) 2.1194e-05
RD-EXPI 6.1677e-06 (4.7404e-06,7.5950e-06) 7.0056e-06
RD-EXPS 5.4548e-05 (5.3007e-05,5.6089e-05) 5.5133e-05
RD-SIN 2.2810e-05 (2.1353e-05,2.4268e-05) 2.3620e-05
RD-GT 1.3501e-05 (1.1744e-05,1.5257e-05) 1.5176e-05
RD-I 6.8147e-07 (-7.0905e-07,2.0720e-06) 1.7547e-06

RD-MAX -3.8972e-07 (-2.1819e-06,1.4024e-06) 7.0919e-07
RD-GTCONST 9.0221e-06 (7.6394e-06,1.0405e-05) 1.0283e-05

L-OHS 8.7752e-05 (8.6676e-05,8.8829e-05) 8.5980e-05
L-LOAD 2.5029e-06 (1.8995e-06,3.1063e-06) 2.4898e-06

L-OR 4.9092e-06 (3.2082e-06,6.6102e-06) 6.1579e-06
L-NOT 2.8685e-06 (1.1573e-06,4.5798e-06) 3.8809e-06
I-OHS 8.7752e-05 (8.6676e-05,8.8829e-05) 8.5980e-05

I-LOAD 2.5029e-06 (1.8995e-06,3.1063e-06) 2.4898e-06
I-GT 6.0525e-06 (4.3388e-06,7.7662e-06) 6.9927e-06

I-AND -2.9104e-06 (-4.6166e-06,-1.2041e-06) -1.8150e-06
I-SHFT -1.6848e-06 (-3.0085e-06,-3.6105e-07) -5.2308e-07
I-ADD -2.2248e-06 (-3.2558e-06,-1.1937e-06) -1.7689e-06
I-RS -1.8731e-07 (-1.6018e-06,1.2272e-06) 6.1861e-07

4096-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 8.6948e-05 (8.5718e-05,8.8178e-05) 8.4612e-05
RS-LOAD 2.7318e-06 (2.1107e-06,3.3528e-06) 2.8017e-06
RS-ADD -3.6298e-06 (-4.7167e-06,-2.5429e-06) -2.5524e-06
RS-MUL -3.4809e-06 (-4.5827e-06,-2.3790e-06) -3.0071e-06
RS-SQRT -1.1406e-06 (-2.6378e-06,3.5666e-07) 3.7579e-07
RS-LOG 2.2989e-05 (2.1470e-05,2.4508e-05) 2.4138e-05
RS-EXPI -2.8443e-06 (-4.3433e-06,-1.3452e-06) -1.2381e-06
RS-EXPS 4.6919e-05 (4.5343e-05,4.8494e-05) 4.8168e-05
RS-SIN 1.1242e-05 (9.7176e-06,1.2767e-05) 1.2562e-05
RS-GT 3.3881e-06 (1.7027e-06,5.0736e-06) 3.3234e-06
RS-I 9.3744e-06 (8.0737e-06,1.0675e-05) 1.0049e-05

RS-MAX -4.7394e-06 (-6.5502e-06,-2.9286e-06) -2.9631e-06
RS-GTCONST 5.4493e-06 (4.1457e-06,6.7528e-06) 5.3369e-06

RD-OHS 9.2860e-05 (9.1708e-05,9.4012e-05) 9.0749e-05
RD-LOAD 3.9387e-07 (-2.1042e-07,9.9815e-07) 3.4181e-07
RD-ADD -9.6156e-08 (-1.0461e-06,8.5374e-07) 3.2211e-07
RD-MUL -8.0090e-07 (-1.9147e-06,3.1288e-07) 4.7025e-07
RD-SQRT 1.1570e-06 (-3.1305e-07,2.6271e-06) 2.1392e-06
RD-LOG 1.8998e-05 (1.7562e-05,2.0434e-05) 2.0266e-05
RD-EXPI 5.0961e-06 (3.6835e-06,6.5086e-06) 6.7084e-06
RD-EXPS 5.3875e-05 (5.2334e-05,5.5417e-05) 5.5041e-05
RD-SIN 2.1793e-05 (2.0279e-05,2.3306e-05) 2.2916e-05
RD-GT 1.3064e-05 (1.1403e-05,1.4724e-05) 1.3670e-05
RD-I -2.8095e-07 (-1.5412e-06,9.7929e-07) 4.6836e-07

RD-MAX -8.2296e-07 (-2.6207e-06,9.7475e-07) 3.8344e-07
RD-GTCONST 8.3694e-06 (7.0805e-06,9.6583e-06) 9.0206e-06

L-OHS 9.0036e-05 (8.9047e-05,9.1025e-05) 8.8766e-05
L-LOAD 2.7318e-06 (2.1107e-06,3.3528e-06) 2.8017e-06

L-OR 3.2948e-06 (1.6121e-06,4.9776e-06) 3.6203e-06
L-NOT 2.5168e-06 (8.3380e-07,4.1997e-06) 3.0204e-06
I-OHS 9.0036e-05 (8.9047e-05,9.1025e-05) 8.8766e-05

I-LOAD 2.7318e-06 (2.1107e-06,3.3528e-06) 2.8017e-06
I-GT 4.3475e-06 (2.6565e-06,6.0384e-06) 4.5903e-06

I-AND -4.3375e-06 (-6.0039e-06,-2.6712e-06) -3.8807e-06
I-SHFT -2.3250e-06 (-3.5939e-06,-1.0561e-06) -1.6549e-06
I-ADD -2.6372e-06 (-3.6953e-06,-1.5791e-06) -2.4053e-06
I-RS -4.4465e-07 (-1.9111e-06,1.0218e-06) 1.1557e-06
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16384-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 9.3528e-05 (9.2379e-05,9.4676e-05) 9.2174e-05
RS-LOAD 3.4715e-06 (2.8440e-06,4.0991e-06) 3.3104e-06
RS-ADD -2.1778e-06 (-3.2802e-06,-1.0755e-06) -1.6621e-06
RS-MUL -2.3915e-06 (-3.3742e-06,-1.4088e-06) -1.7208e-06
RS-SQRT 8.7352e-06 (7.2759e-06,1.0194e-05) 9.5632e-06
RS-LOG 8.3767e-05 (8.2072e-05,8.5463e-05) 8.4261e-05
RS-EXPI 3.7475e-06 (2.3277e-06,5.1673e-06) 4.5748e-06
RS-EXPS 1.7355e-04 (1.7135e-04,1.7574e-04) 1.7305e-04
RS-SIN 5.7816e-05 (5.6244e-05,5.9387e-05) 5.8260e-05
RS-GT 7.2992e-06 (5.5099e-06,9.0886e-06) 8.5027e-06
RS-I 1.2137e-05 (1.0718e-05,1.3557e-05) 1.3071e-05

RS-MAX -1.6639e-06 (-3.4486e-06,1.2088e-07) -6.9138e-07
RS-GTCONST 1.0217e-05 (8.6576e-06,1.1777e-05) 1.0673e-05

RD-OHS 1.0056e-04 (9.9379e-05,1.0175e-04) 9.8406e-05
RD-LOAD 1.3829e-06 (7.0439e-07,2.0613e-06) 1.5377e-06
RD-ADD -2.3023e-07 (-1.3778e-06,9.1734e-07) 4.9683e-07
RD-MUL -1.9580e-07 (-1.1829e-06,7.9133e-07) 1.5259e-07
RD-SQRT 1.2934e-05 (1.1440e-05,1.4428e-05) 1.4253e-05
RD-LOG 8.4699e-05 (8.2992e-05,8.6407e-05) 8.5199e-05
RD-EXPI 1.0154e-05 (8.6506e-06,1.1657e-05) 1.1223e-05
RD-EXPS 2.0074e-04 (1.9851e-04,2.0296e-04) 2.0114e-04
RD-SIN 9.4511e-05 (9.2634e-05,9.6387e-05) 9.5014e-05
RD-GT 1.6548e-05 (1.4628e-05,1.8468e-05) 1.6796e-05
RD-I 1.3451e-06 (-1.3687e-07,2.8270e-06) 1.5141e-06

RD-MAX 9.1424e-07 (-9.8495e-07,2.8134e-06) 2.1078e-06
RD-GTCONST 1.3055e-05 (1.1588e-05,1.4522e-05) 1.3474e-05

L-OHS 9.3162e-05 (9.2030e-05,9.4295e-05) 9.1732e-05
L-LOAD 3.4715e-06 (2.8440e-06,4.0991e-06) 3.3104e-06

L-OR 5.7279e-06 (3.9446e-06,7.5113e-06) 6.9128e-06
L-NOT 2.8709e-06 (1.0833e-06,4.6584e-06) 3.8599e-06
I-OHS 9.3162e-05 (9.2030e-05,9.4295e-05) 9.1732e-05

I-LOAD 3.4715e-06 (2.8440e-06,4.0991e-06) 3.3104e-06
I-GT 9.5120e-06 (7.7228e-06,1.1301e-05) 1.0541e-05

I-AND -2.0856e-06 (-3.8697e-06,-3.0145e-07) -1.0934e-06
I-SHFT -2.5237e-07 (-1.6531e-06,1.1483e-06) 5.1835e-07
I-ADD -1.5022e-06 (-2.4583e-06,-5.4602e-07) -1.0680e-06
I-RS -2.4376e-06 (-3.8557e-06,-1.0194e-06) -1.6008e-06

65536-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 1.1917e-04 (1.1744e-04,1.2089e-04) 1.1678e-04
RS-LOAD 5.4898e-06 (4.5886e-06,6.3909e-06) 5.2954e-06
RS-ADD 2.1534e-06 (6.3651e-07,3.6704e-06) 2.7581e-06
RS-MUL 1.9737e-06 (2.7802e-07,3.6693e-06) 3.1633e-06
RS-SQRT 4.6305e-05 (4.4099e-05,4.8510e-05) 4.8099e-05
RS-LOG 3.2887e-04 (3.2519e-04,3.3255e-04) 3.2890e-04
RS-EXPI 2.5583e-05 (2.3476e-05,2.7691e-05) 2.7246e-05
RS-EXPS 6.7697e-04 (6.7129e-04,6.8264e-04) 6.7462e-04
RS-SIN 2.4265e-04 (2.3982e-04,2.4549e-04) 2.4339e-04
RS-GT 1.8590e-05 (1.5850e-05,2.1329e-05) 2.0420e-05
RS-I 1.3831e-05 (1.1717e-05,1.5944e-05) 1.5980e-05

RS-MAX 9.3883e-06 (6.7817e-06,1.1995e-05) 1.1238e-05
RS-GTCONST 2.3538e-05 (2.1384e-05,2.5692e-05) 2.5378e-05

RD-OHS 1.3977e-04 (1.3754e-04,1.4200e-04) 1.3518e-04
RD-LOAD 5.4879e-06 (4.5219e-06,6.4540e-06) 5.0990e-06
RD-ADD 1.5658e-06 (-3.7560e-07,3.5072e-06) 3.6179e-06
RD-MUL 1.7380e-06 (-2.4366e-07,3.7196e-06) 3.6578e-06
RD-SQRT 6.2223e-05 (5.9541e-05,6.4906e-05) 6.5888e-05
RD-LOG 3.4656e-04 (3.4292e-04,3.5020e-04) 3.4900e-04
RD-EXPI 2.6533e-05 (2.3929e-05,2.9138e-05) 3.0759e-05
RD-EXPS 7.8777e-04 (7.8200e-04,7.9354e-04) 7.8942e-04
RD-SIN 3.8189e-04 (3.7809e-04,3.8570e-04) 3.8516e-04
RD-GT 2.3863e-05 (2.1033e-05,2.6694e-05) 2.5971e-05
RD-I 1.3298e-06 (-8.0359e-07,3.4631e-06) 3.5499e-06

RD-MAX 9.1184e-06 (5.9314e-06,1.2305e-05) 1.2956e-05
RD-GTCONST 2.4031e-05 (2.1856e-05,2.6206e-05) 2.5997e-05

L-OHS 1.2171e-04 (1.1996e-04,1.2347e-04) 1.1909e-04
L-LOAD 5.4898e-06 (4.5886e-06,6.3909e-06) 5.2954e-06

L-OR 7.1847e-06 (4.5297e-06,9.8397e-06) 9.0118e-06
L-NOT 1.1252e-06 (-1.5048e-06,3.7553e-06) 3.3121e-06
I-OHS 1.2171e-04 (1.1996e-04,1.2347e-04) 1.1909e-04

I-LOAD 5.4898e-06 (4.5886e-06,6.3909e-06) 5.2954e-06
I-GT 2.0408e-05 (1.7756e-05,2.3061e-05) 2.2028e-05

I-AND -8.0259e-07 (-3.4168e-06,1.8116e-06) 1.4750e-06
I-SHFT 1.4348e-07 (-1.9464e-06,2.2334e-06) 2.0734e-06
I-ADD 2.5153e-06 (9.8427e-07,4.0464e-06) 3.3471e-06
I-RS 2.2022e-06 (1.3908e-07,4.2653e-06) 4.0033e-06

A
ppendix

E
39



262144-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 2.3825e-04 (2.3454e-04,2.4197e-04) 2.3200e-04
RS-LOAD 1.4424e-05 (1.2621e-05,1.6227e-05) 1.4571e-05
RS-ADD 7.9185e-06 (4.4421e-06,1.1395e-05) 9.5869e-06
RS-MUL 1.3752e-05 (1.0645e-05,1.6859e-05) 1.6022e-05
RS-SQRT 1.7827e-04 (1.7343e-04,1.8310e-04) 1.8299e-04
RS-LOG 1.2894e-03 (1.2778e-03,1.3010e-03) 1.2880e-03
RS-EXPI 9.6252e-05 (9.1533e-05,1.0097e-04) 1.0051e-04
RS-EXPS 2.6699e-03 (2.6504e-03,2.6894e-03) 2.6647e-03
RS-SIN 9.6961e-04 (9.6130e-04,9.7791e-04) 9.7154e-04
RS-GT 7.5462e-05 (7.0092e-05,8.0831e-05) 7.8462e-05
RS-I 2.4413e-05 (2.0180e-05,2.8646e-05) 2.7487e-05

RS-MAX 3.5358e-05 (2.9706e-05,4.1010e-05) 3.9182e-05
RS-GTCONST 8.4084e-05 (7.9657e-05,8.8512e-05) 8.6945e-05

RD-OHS 2.9458e-04 (2.9014e-04,2.9901e-04) 2.8790e-04
RD-LOAD 2.7369e-05 (2.5188e-05,2.9549e-05) 2.6737e-05
RD-ADD -2.8921e-07 (-4.3816e-06,3.8032e-06) 3.6469e-06
RD-MUL 4.2106e-06 (2.1261e-07,8.2086e-06) 6.2581e-06
RD-SQRT 2.4194e-04 (2.3609e-04,2.4779e-04) 2.4759e-04
RD-LOG 1.3831e-03 (1.3702e-03,1.3961e-03) 1.3825e-03
RD-EXPI 8.3219e-05 (7.7762e-05,8.8677e-05) 8.8315e-05
RD-EXPS 3.1285e-03 (3.1048e-03,3.1522e-03) 3.1185e-03
RD-SIN 1.5369e-03 (1.5228e-03,1.5510e-03) 1.5342e-03
RD-GT 6.1167e-05 (5.5106e-05,6.7228e-05) 6.3884e-05
RD-I -3.0514e-07 (-4.6870e-06,4.0767e-06) 3.2002e-06

RD-MAX 2.8698e-05 (2.2160e-05,3.5237e-05) 3.5194e-05
RD-GTCONST 7.2199e-05 (6.7709e-05,7.6688e-05) 7.6122e-05

L-OHS 2.2755e-04 (2.2406e-04,2.3103e-04) 2.2284e-04
L-LOAD 1.4424e-05 (1.2621e-05,1.6227e-05) 1.4571e-05

L-OR 2.2371e-05 (1.7105e-05,2.7637e-05) 2.5545e-05
L-NOT 4.0195e-06 (-1.2203e-06,9.2593e-06) 7.2127e-06
I-OHS 2.2755e-04 (2.2406e-04,2.3103e-04) 2.2284e-04

I-LOAD 1.4424e-05 (1.2621e-05,1.6227e-05) 1.4571e-05
I-GT 7.4800e-05 (6.9423e-05,8.0178e-05) 7.6948e-05

I-AND 2.2818e-05 (1.7568e-05,2.8068e-05) 2.5687e-05
I-SHFT 1.4409e-05 (1.0189e-05,1.8628e-05) 1.7025e-05
I-ADD 1.4489e-05 (1.1251e-05,1.7726e-05) 1.6731e-05
I-RS -1.5973e-07 (-4.5885e-06,4.2691e-06) 4.5015e-06

1048576-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 6.5853e-04 (6.4766e-04,6.6940e-04) 6.4727e-04
RS-LOAD 9.6175e-05 (9.0458e-05,1.0189e-04) 9.5450e-05
RS-ADD 2.4317e-05 (1.4058e-05,3.4577e-05) 2.6931e-05
RS-MUL 2.2516e-05 (1.2228e-05,3.2804e-05) 2.7129e-05
RS-SQRT 7.2238e-04 (7.0685e-04,7.3791e-04) 7.2617e-04
RS-LOG 5.1812e-03 (5.1485e-03,5.2140e-03) 5.1759e-03
RS-EXPI 3.9136e-04 (3.7716e-04,4.0556e-04) 3.9854e-04
RS-EXPS 1.0742e-02 (1.0679e-02,1.0804e-02) 1.0719e-02
RS-SIN 3.9052e-03 (3.8708e-03,3.9395e-03) 3.9007e-03

RS-MAX 1.4786e-04 (1.3113e-04,1.6459e-04) 1.5814e-04
RD-OHS 8.5811e-04 (8.4623e-04,8.6998e-04) 8.5215e-04

RD-LOAD 1.3975e-04 (1.3275e-04,1.4676e-04) 1.3627e-04
RD-ADD -8.1615e-06 (-1.9691e-05,3.3677e-06) -5.3154e-06
RD-MUL -1.0660e-05 (-2.2703e-05,1.3817e-06) -4.7231e-06
RD-SQRT 9.9204e-04 (9.7417e-04,1.0099e-03) 9.9359e-04
RD-LOG 5.6172e-03 (5.5651e-03,5.6693e-03) 5.5801e-03
RD-EXPI 3.4376e-04 (3.2781e-04,3.5970e-04) 3.4682e-04
RD-EXPS 1.2582e-02 (1.2489e-02,1.2676e-02) 1.2533e-02
RD-SIN 6.1532e-03 (6.1039e-03,6.2024e-03) 6.1362e-03

RD-MAX 1.1691e-04 (9.7158e-05,1.3666e-04) 1.2462e-04
L-LOAD 9.6175e-05 (9.0458e-05,1.0189e-04) 9.5450e-05
I-LOAD 9.6175e-05 (9.0458e-05,1.0189e-04) 9.5450e-05

I-RS 2.7585e-06 (-1.0783e-05,1.6300e-05) 7.2701e-06
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E.1.2 Y-MP C90/cf77 Operation Measurements

64-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 1.8957e-07 (1.3049e-07,2.4865e-07) 1.0918e-07
RS-LOAD -4.4621e-08 (-1.2780e-07,3.8554e-08) 2.7141e-08
RS-ADD 2.0926e-07 (1.2593e-07,2.9259e-07) 1.3698e-07
RS-MUL 1.9573e-07 (1.1236e-07,2.7910e-07) 1.2253e-07
RS-SQRT 2.0584e-06 (1.9554e-06,2.1615e-06) 2.0623e-06
RS-LOG 5.7688e-06 (5.6609e-06,5.8766e-06) 5.7133e-06
RS-EXPI 1.4724e-06 (1.3698e-06,1.5751e-06) 1.4765e-06
RS-EXPS 2.1615e-05 (2.1454e-05,2.1776e-05) 2.1552e-05
RS-SIN 8.6851e-06 (8.5712e-06,8.7991e-06) 8.5917e-06
RS-GT 2.4085e-07 (6.3995e-08,4.1771e-07) 1.6467e-07

RS-I 1.5045e-07 (4.7635e-08,2.5327e-07) 1.5009e-07
RS-MAX 2.1381e-07 (3.7194e-08,3.9042e-07) 1.4591e-07

RS-GTCONST 1.6238e-07 (6.0103e-08,2.6465e-07) 1.6040e-07
L-OHS 9.2865e-08 (3.3601e-08,1.5213e-07) 2.8678e-08

L-LOAD -4.4621e-08 (-1.2780e-07,3.8554e-08) 2.7141e-08
L-OR 3.2513e-07 (1.4844e-07,5.0182e-07) 2.4416e-07

L-NOT 2.8580e-07 (1.0912e-07,4.6248e-07) 2.0611e-07
I-OHS 9.2865e-08 (3.3601e-08,1.5213e-07) 2.8678e-08

I-LOAD -4.4621e-08 (-1.2780e-07,3.8554e-08) 2.7141e-08
I-GT 9.0856e-08 (-8.5802e-08,2.6751e-07) 1.5404e-08

I-AND 3.5080e-07 (1.7363e-07,5.2797e-07) 2.5952e-07
I-SHFT 1.2790e-07 (2.5635e-08,2.3017e-07) 1.2688e-07
I-ADD 1.5250e-07 (6.9189e-08,2.3581e-07) 7.3385e-08
I-RS 9.2744e-08 (-9.4059e-09,1.9489e-07) 9.7033e-08

256-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 2.6542e-07 (2.5265e-07,2.7818e-07) 2.4425e-07
RS-LOAD 7.7806e-08 (6.7260e-08,8.8353e-08) 6.7476e-08
RS-ADD 4.3638e-07 (4.2188e-07,4.5089e-07) 4.4816e-07
RS-MUL 4.3765e-07 (4.2369e-07,4.5162e-07) 4.3776e-07
RS-SQRT 1.1339e-05 (1.1241e-05,1.1438e-05) 1.0435e-05
RS-LOG 1.8250e-05 (1.8139e-05,1.8362e-05) 1.8028e-05
RS-EXPI 5.5006e-06 (5.4404e-06,5.5609e-06) 5.3942e-06
RS-EXPS 8.1431e-05 (7.9710e-05,8.3151e-05) 7.4981e-05
RS-SIN 2.4514e-05 (2.4367e-05,2.4661e-05) 2.4244e-05
RS-GT 6.5245e-07 (6.2374e-07,6.8115e-07) 6.3238e-07

RS-I 6.3574e-07 (6.1429e-07,6.5718e-07) 6.0960e-07
RS-MAX 1.0019e-06 (9.7479e-07,1.0290e-06) 1.0118e-06

RS-GTCONST 6.2735e-07 (6.0565e-07,6.4905e-07) 5.9691e-07
L-OHS 2.0309e-07 (1.8657e-07,2.1961e-07) 2.1867e-07

L-LOAD 7.7806e-08 (6.7260e-08,8.8353e-08) 6.7476e-08
L-OR 7.5509e-07 (7.2629e-07,7.8389e-07) 7.2466e-07

L-NOT 6.2686e-07 (5.9857e-07,6.5515e-07) 6.0995e-07
I-OHS 2.0309e-07 (1.8657e-07,2.1961e-07) 2.1867e-07

I-LOAD 7.7806e-08 (6.7260e-08,8.8353e-08) 6.7476e-08
I-GT 4.2269e-07 (3.9471e-07,4.5067e-07) 4.0949e-07

I-AND 1.0699e-06 (9.0204e-07,1.2378e-06) 7.7523e-07
I-SHFT 1.4437e-06 (1.2813e-06,1.6061e-06) 1.1517e-06
I-ADD 4.9497e-07 (4.7040e-07,5.1954e-07) 4.6206e-07
I-RS 5.8343e-07 (5.6457e-07,6.0230e-07) 5.9059e-07
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1024-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 7.0445e-07 (6.3486e-07,7.7404e-07) 7.2761e-07
RS-LOAD 3.0453e-07 (2.2567e-07,3.8338e-07) 2.3639e-07
RS-ADD 1.6262e-06 (1.5394e-06,1.7130e-06) 1.6417e-06
RS-MUL 1.7520e-06 (1.6590e-06,1.8451e-06) 1.6978e-06
RS-SQRT 1.5689e-05 (1.5191e-05,1.6187e-05) 1.5054e-05
RS-LOG 4.0483e-05 (4.0227e-05,4.0740e-05) 4.0071e-05
RS-EXPI 2.2276e-05 (2.2104e-05,2.2447e-05) 2.2288e-05
RS-EXPS 3.0427e-04 (3.0258e-04,3.0596e-04) 2.9965e-04
RS-SIN 6.0197e-05 (5.9829e-05,6.0564e-05) 5.9334e-05
RS-GT 1.8271e-06 (1.6487e-06,2.0056e-06) 1.8125e-06

RS-I 1.8206e-06 (1.7065e-06,1.9347e-06) 1.7824e-06
RS-MAX 4.8031e-06 (4.6261e-06,4.9801e-06) 4.8294e-06

RS-GTCONST 1.8443e-06 (1.7295e-06,1.9592e-06) 1.7692e-06
L-OHS 1.3828e-06 (1.3035e-06,1.4621e-06) 1.4488e-06

L-LOAD 3.0453e-07 (2.2567e-07,3.8338e-07) 2.3639e-07
L-OR 1.9999e-06 (1.8205e-06,2.1794e-06) 1.9666e-06

L-NOT 1.5625e-06 (1.3841e-06,1.7409e-06) 1.5060e-06
I-OHS 1.3828e-06 (1.3035e-06,1.4621e-06) 1.4488e-06

I-LOAD 3.0453e-07 (2.2567e-07,3.8338e-07) 2.3639e-07
I-GT 1.8863e-06 (1.6990e-06,2.0735e-06) 1.8067e-06

I-AND 2.2691e-06 (2.0604e-06,2.4779e-06) 2.1463e-06
I-SHFT 3.9184e-06 (3.8003e-06,4.0366e-06) 3.8449e-06
I-ADD 1.7896e-06 (1.6942e-06,1.8849e-06) 1.7419e-06
I-RS 2.5450e-06 (2.4370e-06,2.6529e-06) 2.5486e-06

4096-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 9.0895e-06 (8.6134e-06,9.5656e-06) 8.6533e-06
RS-LOAD 7.6422e-07 (4.8965e-07,1.0388e-06) 3.8191e-07
RS-ADD 1.9478e-06 (1.4009e-06,2.4947e-06) 2.0393e-06
RS-MUL 1.9851e-06 (1.4840e-06,2.4862e-06) 1.8821e-06
RS-SQRT 3.9983e-05 (3.7186e-05,4.2780e-05) 2.9058e-05
RS-LOG 1.7060e-04 (1.6200e-04,1.7920e-04) 1.2937e-04
RS-EXPI 2.2982e-05 (2.2406e-05,2.3558e-05) 2.3693e-05
RS-EXPS 4.6128e-04 (4.4233e-04,4.8022e-04) 3.6827e-04
RS-SIN 2.5970e-04 (2.4088e-04,2.7853e-04) 1.8711e-04
RS-GT 4.2870e-06 (3.1252e-06,5.4488e-06) 1.3613e-06

RS-I 3.8806e-06 (2.8491e-06,4.9122e-06) 1.3161e-06
RS-MAX 7.7663e-06 (6.3032e-06,9.2295e-06) 4.6338e-06

RS-GTCONST 4.2790e-06 (3.1788e-06,5.3793e-06) 1.1725e-06
L-OHS 7.8462e-06 (6.9926e-06,8.6997e-06) 8.9599e-06

L-LOAD 7.6422e-07 (4.8965e-07,1.0388e-06) 3.8191e-07
L-OR 2.3337e-06 (1.3134e-06,3.3539e-06) 1.5594e-06

L-NOT 1.5375e-06 (5.1351e-07,2.5614e-06) 7.2976e-07
I-OHS 7.8462e-06 (6.9926e-06,8.6997e-06) 8.9599e-06

I-LOAD 7.6422e-07 (4.8965e-07,1.0388e-06) 3.8191e-07
I-GT 1.9492e-06 (9.3202e-07,2.9665e-06) 1.4290e-06

I-AND 2.0557e-06 (1.0388e-06,3.0726e-06) 1.6088e-06
I-SHFT 5.6667e-06 (4.7420e-06,6.5914e-06) 4.0772e-06
I-ADD 2.8337e-06 (2.3411e-06,3.3263e-06) 1.7861e-06
I-RS 2.1544e-06 (1.4727e-06,2.8361e-06) 1.5980e-06
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16384-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 1.0210e-05 (7.6431e-06,1.2778e-05) 1.1790e-05
RS-LOAD 3.7532e-06 (1.5086e-06,5.9978e-06) 2.5228e-06
RS-ADD 7.6708e-06 (4.9042e-06,1.0437e-05) 4.7340e-06
RS-MUL 9.8271e-06 (6.5282e-06,1.3126e-05) 5.6217e-06
RS-SQRT 2.3694e-04 (2.1969e-04,2.5419e-04) 1.2780e-04
RS-LOG 6.3230e-04 (5.9098e-04,6.7362e-04) 4.7918e-04
RS-EXPI 1.4163e-04 (1.3372e-04,1.4954e-04) 9.5619e-05
RS-EXPS 1.6324e-03 (1.5528e-03,1.7120e-03) 1.4351e-03
RS-SIN 9.6406e-04 (8.7807e-04,1.0501e-03) 6.9099e-04
RS-GT 5.3919e-06 (-2.7617e-06,1.3545e-05) 1.8811e-06

RS-I -3.0978e-06 (-9.9075e-06,3.7119e-06) 3.4854e-06
RS-MAX 4.1023e-05 (3.4857e-05,4.7188e-05) 2.2303e-05

RS-GTCONST 5.2165e-06 (-1.8835e-06,1.2316e-05) 2.7457e-06
L-OHS 1.9018e-05 (1.2590e-05,2.5446e-05) 1.3582e-05

L-LOAD 3.7532e-06 (1.5086e-06,5.9978e-06) 2.5228e-06
L-OR 1.7938e-06 (-6.1961e-06,9.7837e-06) 2.1211e-06

L-NOT -2.6882e-06 (-1.0569e-05,5.1922e-06) 9.7461e-07
I-OHS 1.9018e-05 (1.2590e-05,2.5446e-05) 1.3582e-05

I-LOAD 3.7532e-06 (1.5086e-06,5.9978e-06) 2.5228e-06
I-GT -5.4350e-06 (-1.3277e-05,2.4069e-06) 1.9598e-06

I-AND -4.3626e-06 (-1.2214e-05,3.4887e-06) 2.6668e-06
I-SHFT 8.1504e-06 (1.3391e-06,1.4962e-05) 1.4531e-05
I-ADD 1.8703e-05 (1.0754e-05,2.6653e-05) 7.1444e-06
I-RS 1.3580e-05 (9.3376e-06,1.7822e-05) 4.3456e-06

65536-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 2.3224e-05 (1.8243e-05,2.8206e-05) 2.4953e-05
RS-LOAD 2.4279e-06 (-1.2627e-06,6.1185e-06) 5.3697e-06
RS-ADD 4.2030e-05 (3.6180e-05,4.7880e-05) 2.5156e-05
RS-MUL 4.3148e-05 (3.6686e-05,4.9610e-05) 2.3486e-05
RS-SQRT 4.6598e-04 (4.5926e-04,4.7270e-04) 4.6042e-04
RS-LOG 1.9272e-03 (1.9116e-03,1.9428e-03) 1.8501e-03
RS-EXPI 3.5811e-04 (3.5156e-04,3.6465e-04) 3.5245e-04
RS-EXPS 5.6589e-03 (5.6144e-03,5.7034e-03) 5.3434e-03
RS-SIN 2.3837e-03 (2.3249e-03,2.4425e-03) 2.2567e-03
RS-GT 4.7137e-05 (3.2713e-05,6.1562e-05) 1.0051e-05

RS-I 2.5213e-05 (1.3284e-05,3.7143e-05) 9.7899e-06
RS-MAX 8.1426e-05 (7.2498e-05,9.0355e-05) 7.1788e-05

RS-GTCONST 4.3637e-05 (3.0562e-05,5.6712e-05) 9.3100e-06
L-OHS 3.3543e-05 (2.2620e-05,4.4466e-05) 3.4450e-05

L-LOAD 2.4279e-06 (-1.2627e-06,6.1185e-06) 5.3697e-06
L-OR 2.9483e-05 (1.5799e-05,4.3167e-05) 1.3276e-05

L-NOT 1.1381e-05 (-1.8056e-06,2.4568e-05) 3.9093e-06
I-OHS 3.3543e-05 (2.2620e-05,4.4466e-05) 3.4450e-05

I-LOAD 2.4279e-06 (-1.2627e-06,6.1185e-06) 5.3697e-06
I-GT 2.8252e-05 (1.4721e-05,4.1784e-05) 1.3562e-05

I-AND 3.6120e-05 (2.2413e-05,4.9828e-05) 1.4412e-05
I-SHFT 6.1873e-05 (5.0328e-05,7.3419e-05) 5.6706e-05
I-ADD 4.1681e-05 (3.5645e-05,4.7718e-05) 2.4970e-05
I-RS 2.3926e-05 (1.7720e-05,3.0132e-05) 1.8624e-05
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262144-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 1.2748e-04 (1.0003e-04,1.5493e-04) 7.8420e-05
RS-LOAD 3.1849e-05 (1.6779e-05,4.6918e-05) 2.2872e-05
RS-ADD 1.2514e-04 (1.0143e-04,1.4885e-04) 9.5227e-05
RS-MUL 5.5928e-05 (2.5914e-05,8.5943e-05) 8.5608e-05
RS-SQRT 1.7798e-03 (1.7467e-03,1.8129e-03) 1.8352e-03
RS-LOG 7.9792e-03 (7.6538e-03,8.3046e-03) 7.4670e-03
RS-EXPI 1.4538e-03 (1.3587e-03,1.5490e-03) 1.4087e-03
RS-EXPS 2.2204e-02 (2.2023e-02,2.2385e-02) 2.1322e-02
RS-SIN 9.4417e-03 (9.0362e-03,9.8472e-03) 8.7465e-03
RS-GT 1.8316e-04 (1.3919e-04,2.2714e-04) 1.1449e-04

RS-I 1.8575e-04 (1.5038e-04,2.2112e-04) 1.1263e-04
RS-MAX 2.2105e-04 (1.8022e-04,2.6188e-04) 2.8372e-04

RS-GTCONST 2.3534e-04 (1.9695e-04,2.7373e-04) 1.1344e-04
L-OHS -4.4123e-05 (-7.6098e-05,-1.2148e-05) 3.5179e-05

L-LOAD 3.1849e-05 (1.6779e-05,4.6918e-05) 2.2872e-05
L-OR 2.3621e-04 (1.8950e-04,2.8293e-04) 1.2660e-04

L-NOT 1.8753e-04 (1.4228e-04,2.3279e-04) 9.2014e-05
I-OHS -4.4123e-05 (-7.6098e-05,-1.2148e-05) 3.5179e-05

I-LOAD 3.1849e-05 (1.6779e-05,4.6918e-05) 2.2872e-05
I-GT 2.4221e-04 (1.9592e-04,2.8849e-04) 1.2599e-04

I-AND 3.3352e-04 (2.7801e-04,3.8903e-04) 1.3160e-04
I-SHFT 4.1418e-04 (3.7183e-04,4.5652e-04) 3.0133e-04
I-ADD 2.1337e-04 (1.7960e-04,2.4714e-04) 1.0626e-04
I-RS 3.3435e-05 (1.1669e-06,6.5704e-05) 7.0426e-05

1048576-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 3.3597e-04 (2.2447e-04,4.4748e-04) 2.8627e-04
RS-LOAD 1.2453e-04 (5.5445e-05,1.9361e-04) 9.8571e-05
RS-ADD 5.9876e-04 (5.0649e-04,6.9102e-04) 3.3131e-04
RS-MUL 3.1657e-04 (1.9080e-04,4.4235e-04) 3.8226e-04
RS-SQRT 7.3616e-03 (7.1680e-03,7.5552e-03) 7.3492e-03
RS-LOG 2.9979e-02 (2.9427e-02,3.0532e-02) 2.8864e-02
RS-EXPI 8.2416e-03 (7.8137e-03,8.6695e-03) 6.0005e-03
RS-EXPS 9.6197e-02 (9.4757e-02,9.7636e-02) 9.0576e-02
RS-SIN 3.5806e-02 (3.5390e-02,3.6221e-02) 3.4005e-02
RS-GT 2.2284e-05 (-2.0339e-04,2.4795e-04) 1.9671e-04

RS-I -5.8714e-06 (-1.9194e-04,1.8019e-04) 2.2688e-04
RS-MAX 1.0329e-03 (8.5506e-04,1.2106e-03) 1.1155e-03

RS-GTCONST -3.7153e-05 (-2.2303e-04,1.4873e-04) 2.1043e-04
L-OHS 5.7968e-04 (4.0716e-04,7.5221e-04) 3.4965e-04

L-LOAD 1.2453e-04 (5.5445e-05,1.9361e-04) 9.8571e-05
L-OR 5.1054e-05 (-1.7442e-04,2.7653e-04) 2.2410e-04

L-NOT 3.5663e-05 (-1.8978e-04,2.6111e-04) 1.2543e-04
I-OHS 5.7968e-04 (4.0716e-04,7.5221e-04) 3.4965e-04

I-LOAD 1.2453e-04 (5.5445e-05,1.9361e-04) 9.8571e-05
I-GT -8.8978e-06 (-2.3000e-04,2.1220e-04) 2.4771e-04

I-AND 4.1133e-05 (-1.8272e-04,2.6499e-04) 2.7285e-04
I-SHFT 7.4080e-04 (5.5465e-04,9.2695e-04) 9.7303e-04
I-ADD 5.9888e-04 (5.0816e-04,6.8959e-04) 4.8942e-04
I-RS 6.2676e-04 (4.7089e-04,7.8262e-04) 3.0081e-04
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E.1.3 Y-MP C90/f90 Operation Measurements

64-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 7.7672e-08 (6.9121e-08,8.6223e-08) 6.7078e-08
RS-LOAD 4.0519e-09 (2.2964e-09,5.8073e-09) 5.9411e-09
RS-ADD 1.6310e-07 (1.5533e-07,1.7086e-07) 1.4902e-07
RS-MUL 1.4519e-07 (1.3717e-07,1.5321e-07) 1.4513e-07
RS-SQRT 2.1033e-06 (2.0863e-06,2.1204e-06) 2.1083e-06
RS-LOG 5.7956e-06 (5.7606e-06,5.8306e-06) 5.7265e-06
RS-EXPI 1.5136e-06 (1.4990e-06,1.5282e-06) 1.5186e-06
RS-EXPS 2.2003e-05 (2.1874e-05,2.2133e-05) 2.1846e-05
RS-SIN 8.7512e-06 (8.6970e-06,8.8053e-06) 8.6477e-06
RS-GT 1.9750e-07 (1.8770e-07,2.0729e-07) 1.8043e-07

RS-I 1.5364e-07 (1.4449e-07,1.6278e-07) 1.4236e-07
RS-MAX 1.7024e-07 (1.5948e-07,1.8100e-07) 1.7020e-07

RS-GTCONST 1.5424e-07 (1.4513e-07,1.6335e-07) 1.4347e-07
L-OHS -1.1960e-09 (-8.6040e-09,6.2119e-09) 3.1954e-09

L-LOAD 4.0519e-09 (2.2964e-09,5.8073e-09) 5.9411e-09
L-OR 2.6774e-07 (2.5772e-07,2.7776e-07) 2.5213e-07

L-NOT 2.1347e-07 (2.0368e-07,2.2327e-07) 2.0190e-07
I-OHS -1.1960e-09 (-8.6040e-09,6.2119e-09) 3.1954e-09

I-LOAD 4.0519e-09 (2.2964e-09,5.8073e-09) 5.9411e-09
I-GT 8.1406e-08 (7.1950e-08,9.0862e-08) 7.2393e-08

I-AND 2.7590e-07 (2.6593e-07,2.8586e-07) 2.6086e-07
I-SHFT 3.9982e-07 (3.9008e-07,4.0955e-07) 3.8827e-07
I-ADD 1.0116e-07 (9.4887e-08,1.0744e-07) 8.6644e-08
I-RS 9.7921e-08 (8.7777e-08,1.0807e-07) 1.0247e-07

256-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 2.3064e-07 (2.1526e-07,2.4603e-07) 1.6144e-07
RS-LOAD 5.5955e-09 (1.0082e-09,1.0183e-08) 1.0464e-08
RS-ADD 5.5062e-07 (5.3647e-07,5.6476e-07) 5.8095e-07
RS-MUL 5.5383e-07 (5.4136e-07,5.6629e-07) 5.4445e-07
RS-SQRT 7.2001e-06 (7.1557e-06,7.2444e-06) 7.2477e-06
RS-LOG 2.0731e-05 (2.0597e-05,2.0866e-05) 2.0367e-05
RS-EXPI 5.5696e-06 (5.4922e-06,5.6471e-06) 5.4879e-06
RS-EXPS 7.7840e-05 (7.7239e-05,7.8440e-05) 7.6359e-05
RS-SIN 3.2928e-05 (3.2723e-05,3.3132e-05) 3.2105e-05
RS-GT 4.9745e-07 (4.7913e-07,5.1578e-07) 5.0206e-07

RS-I 2.7352e-07 (2.1528e-07,3.3176e-07) 3.9123e-07
RS-MAX 1.1707e-06 (1.1494e-06,1.1920e-06) 1.2027e-06

RS-GTCONST 3.7144e-07 (3.5575e-07,3.8714e-07) 3.8910e-07
L-OHS 2.8072e-07 (2.6783e-07,2.9362e-07) 2.4208e-07

L-LOAD 5.5955e-09 (1.0082e-09,1.0183e-08) 1.0464e-08
L-OR 3.6186e-07 (3.4355e-07,3.8018e-07) 3.6616e-07

L-NOT 2.9736e-07 (2.8005e-07,3.1467e-07) 3.1818e-07
I-OHS 2.8072e-07 (2.6783e-07,2.9362e-07) 2.4208e-07

I-LOAD 5.5955e-09 (1.0082e-09,1.0183e-08) 1.0464e-08
I-GT 3.6241e-07 (3.4499e-07,3.7983e-07) 3.8438e-07

I-AND 3.5406e-07 (3.3423e-07,3.7389e-07) 3.7446e-07
I-SHFT 1.0847e-06 (1.0518e-06,1.1177e-06) 1.0807e-06
I-ADD 5.3569e-07 (5.2673e-07,5.4464e-07) 5.2732e-07
I-RS 3.0919e-07 (1.9897e-07,4.1941e-07) 4.8935e-07
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1024-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 1.1593e-06 (8.3619e-07,1.4824e-06) 1.0046e-06
RS-LOAD 7.5807e-08 (2.0874e-09,1.4953e-07) 7.9707e-08
RS-ADD 1.8123e-06 (1.7281e-06,1.8965e-06) 1.8674e-06
RS-MUL 2.0565e-06 (1.4358e-06,2.6772e-06) 1.7346e-06
RS-SQRT 2.9593e-05 (2.9004e-05,3.0183e-05) 2.8949e-05
RS-LOG 8.5242e-05 (8.3922e-05,8.6561e-05) 8.3398e-05
RS-EXPI 2.2634e-05 (2.2147e-05,2.3121e-05) 2.2155e-05
RS-EXPS 3.0984e-04 (3.0728e-04,3.1241e-04) 3.0278e-04
RS-SIN 1.3575e-04 (1.3343e-04,1.3808e-04) 1.3155e-04
RS-GT 5.2837e-07 (2.2542e-07,8.3133e-07) 1.1093e-06

RS-I -1.8072e-07 (-4.4197e-07,8.0522e-08) 7.2623e-07
RS-MAX 5.1078e-06 (4.7408e-06,5.4749e-06) 4.9860e-06

RS-GTCONST -1.5979e-07 (-4.2251e-07,1.0294e-07) 7.0162e-07
L-OHS 2.5926e-06 (2.3433e-06,2.8419e-06) 1.6138e-06

L-LOAD 7.5807e-08 (2.0874e-09,1.4953e-07) 7.9707e-08
L-OR 7.1564e-08 (-2.2110e-07,3.6422e-07) 7.5858e-07

L-NOT -3.4195e-07 (-6.3239e-07,-5.1505e-08) 5.6735e-07
I-OHS 2.5926e-06 (2.3433e-06,2.8419e-06) 1.6138e-06

I-LOAD 7.5807e-08 (2.0874e-09,1.4953e-07) 7.9707e-08
I-GT 1.4946e-07 (-1.4143e-07,4.4034e-07) 1.0251e-06

I-AND 5.2872e-07 (-2.7671e-07,1.3342e-06) 1.0036e-06
I-SHFT 2.3287e-06 (2.0671e-06,2.5904e-06) 3.2921e-06
I-ADD 1.9353e-06 (1.8498e-06,2.0208e-06) 1.8795e-06
I-RS 1.2846e-06 (9.4953e-07,1.6197e-06) 1.3533e-06

4096-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 8.4964e-06 (3.1835e-06,1.3809e-05) 3.8770e-06
RS-LOAD -6.7174e-08 (-6.0143e-07,4.6708e-07) 7.1384e-09
RS-ADD 7.9178e-06 (3.2910e-06,1.2545e-05) 7.5798e-06
RS-MUL 7.0129e-06 (1.4081e-06,1.2618e-05) 7.5633e-06
RS-SQRT 1.5322e-04 (1.0140e-04,2.0504e-04) 1.1637e-04
RS-LOG 5.2656e-04 (3.5685e-04,6.9627e-04) 3.2739e-04
RS-EXPI 9.5011e-05 (7.9826e-05,1.1020e-04) 8.9182e-05
RS-EXPS 1.2117e-03 (1.2029e-03,1.2205e-03) 1.2012e-03
RS-SIN 5.1972e-04 (5.1363e-04,5.2580e-04) 5.2123e-04
RS-GT 1.5243e-06 (-2.7014e-07,3.3188e-06) 3.9267e-06

RS-I -8.6923e-07 (-2.4038e-06,6.6530e-07) 1.8139e-06
RS-MAX 1.9246e-05 (1.2959e-05,2.5534e-05) 2.0787e-05

RS-GTCONST -1.0850e-06 (-2.6194e-06,4.4952e-07) 1.8161e-06
L-OHS 1.0679e-05 (9.2416e-06,1.2116e-05) 7.7471e-06

L-LOAD -6.7174e-08 (-6.0143e-07,4.6708e-07) 7.1384e-09
L-OR 3.6952e-06 (1.7893e-06,5.6012e-06) 3.9318e-06

L-NOT 4.1730e-07 (-1.4740e-06,2.3086e-06) 1.8227e-06
I-OHS 1.0679e-05 (9.2416e-06,1.2116e-05) 7.7471e-06

I-LOAD -6.7174e-08 (-6.0143e-07,4.6708e-07) 7.1384e-09
I-GT 3.9264e-06 (1.9719e-06,5.8808e-06) 4.0790e-06

I-AND 1.4667e-06 (-3.3259e-07,3.2660e-06) 3.8207e-06
I-SHFT 9.0555e-06 (7.5181e-06,1.0593e-05) 1.1882e-05
I-ADD 8.3629e-06 (7.7523e-06,8.9735e-06) 7.8707e-06
I-RS 1.2659e-06 (-4.0741e-06,6.6059e-06) 5.6902e-06
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16384-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 1.6212e-05 (1.4848e-05,1.7575e-05) 1.1504e-05
RS-LOAD 2.3990e-06 (1.4722e-06,3.3258e-06) 1.1039e-06
RS-ADD 2.7846e-05 (2.6385e-05,2.9308e-05) 3.0279e-05
RS-MUL 2.8202e-05 (2.7012e-05,2.9391e-05) 3.1273e-05
RS-SQRT 4.6423e-04 (4.6122e-04,4.6725e-04) 4.6911e-04
RS-LOG 1.3482e-03 (1.3401e-03,1.3563e-03) 1.3276e-03
RS-EXPI 3.5637e-04 (3.5377e-04,3.5898e-04) 3.6113e-04
RS-EXPS 4.8315e-03 (4.8056e-03,4.8573e-03) 4.7998e-03
RS-SIN 2.1120e-03 (2.0995e-03,2.1244e-03) 2.1015e-03
RS-GT 1.1789e-05 (9.7013e-06,1.3877e-05) 1.3615e-05

RS-I 1.5673e-05 (1.4188e-05,1.7158e-05) 8.7971e-06
RS-MAX 8.0986e-05 (7.8609e-05,8.3363e-05) 8.6655e-05

RS-GTCONST 5.9360e-06 (4.6395e-06,7.2325e-06) 7.8178e-06
L-OHS 3.0538e-05 (2.9662e-05,3.1415e-05) 2.9713e-05

L-LOAD 2.3990e-06 (1.4722e-06,3.3258e-06) 1.1039e-06
L-OR 1.0746e-05 (8.6657e-06,1.2827e-05) 1.2865e-05

L-NOT 3.2969e-06 (1.2352e-06,5.3586e-06) 6.4630e-06
I-OHS 3.0538e-05 (2.9662e-05,3.1415e-05) 2.9713e-05

I-LOAD 2.3990e-06 (1.4722e-06,3.3258e-06) 1.1039e-06
I-GT 1.3333e-05 (1.1247e-05,1.5419e-05) 1.5231e-05

I-AND 1.2824e-05 (1.0744e-05,1.4904e-05) 1.4606e-05
I-SHFT 4.5363e-05 (4.4021e-05,4.6705e-05) 4.7317e-05
I-ADD 2.7769e-05 (2.6652e-05,2.8887e-05) 2.8087e-05
I-RS 2.0458e-05 (1.8779e-05,2.2137e-05) 2.5728e-05

65536-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 6.9076e-05 (3.9834e-05,9.8319e-05) 5.3843e-05
RS-LOAD 4.0849e-05 (1.8241e-05,6.3456e-05) 7.7244e-06
RS-ADD 6.6897e-05 (3.7205e-05,9.6588e-05) 1.1370e-04
RS-MUL 6.3056e-05 (3.4066e-05,9.2046e-05) 1.0990e-04
RS-SQRT 1.8179e-03 (1.7794e-03,1.8563e-03) 1.8622e-03
RS-LOG 5.4343e-03 (5.2354e-03,5.6332e-03) 5.2403e-03
RS-EXPI 1.3872e-03 (1.3494e-03,1.4250e-03) 1.4313e-03
RS-EXPS 2.0260e-02 (1.8599e-02,2.1922e-02) 1.9055e-02
RS-SIN 8.4210e-03 (8.3158e-03,8.5262e-03) 8.2525e-03
RS-GT 2.8216e-05 (-2.3114e-05,7.9545e-05) 4.9073e-05

RS-I 3.0313e-05 (1.8284e-07,6.0443e-05) 3.6394e-05
RS-MAX 2.8294e-04 (2.2838e-04,3.3750e-04) 3.2485e-04

RS-GTCONST 2.7125e-05 (-3.0021e-06,5.7252e-05) 3.3122e-05
L-OHS 8.5923e-05 (6.6031e-05,1.0582e-04) 1.1078e-04

L-LOAD 4.0849e-05 (1.8241e-05,6.3456e-05) 7.7244e-06
L-OR 2.7910e-05 (-2.2220e-05,7.8040e-05) 5.7355e-05

L-NOT -1.2924e-05 (-6.2330e-05,3.6482e-05) 2.6783e-05
I-OHS 8.5923e-05 (6.6031e-05,1.0582e-04) 1.1078e-04

I-LOAD 4.0849e-05 (1.8241e-05,6.3456e-05) 7.7244e-06
I-GT 2.3737e-05 (-2.5705e-05,7.3179e-05) 5.4065e-05

I-AND 2.5732e-05 (-2.3693e-05,7.5158e-05) 5.6031e-05
I-SHFT 1.8802e-04 (1.5781e-04,2.1822e-04) 1.9340e-04
I-ADD 7.8611e-05 (5.4785e-05,1.0244e-04) 1.1550e-04
I-RS 4.6014e-05 (9.0392e-06,8.2989e-05) 9.2025e-05
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262144-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 2.9302e-04 (2.6837e-04,3.1768e-04) 2.5529e-04
RS-LOAD 8.1290e-06 (-2.2393e-05,3.8651e-05) 2.0708e-05
RS-ADD 4.6972e-04 (4.3729e-04,5.0216e-04) 4.4554e-04
RS-MUL 4.7771e-04 (4.4461e-04,5.1081e-04) 4.5045e-04
RS-SQRT 7.4224e-03 (7.3718e-03,7.4731e-03) 7.4302e-03
RS-LOG 2.1447e-02 (2.1338e-02,2.1556e-02) 2.1186e-02
RS-EXPI 5.8146e-03 (5.7363e-03,5.8930e-03) 5.7052e-03
RS-EXPS 7.9228e-02 (7.8859e-02,7.9598e-02) 7.7632e-02
RS-SIN 3.3626e-02 (3.3389e-02,3.3862e-02) 3.3001e-02
RS-GT 1.7263e-04 (1.0140e-04,2.4385e-04) 1.9483e-04

RS-I 7.3693e-05 (2.6193e-05,1.2119e-04) 1.2684e-04
RS-MAX 1.3426e-03 (1.2599e-03,1.4253e-03) 1.3001e-03

RS-GTCONST 5.1389e-05 (3.9373e-06,9.8840e-05) 1.1569e-04
L-OHS 5.5494e-04 (5.1876e-04,5.9113e-04) 4.7513e-04

L-LOAD 8.1290e-06 (-2.2393e-05,3.8651e-05) 2.0708e-05
L-OR 2.0283e-04 (1.3169e-04,2.7397e-04) 2.3420e-04

L-NOT 5.0269e-05 (-2.0780e-05,1.2132e-04) 9.9762e-05
I-OHS 5.5494e-04 (5.1876e-04,5.9113e-04) 4.7513e-04

I-LOAD 8.1290e-06 (-2.2393e-05,3.8651e-05) 2.0708e-05
I-GT 2.0211e-04 (1.3080e-04,2.7341e-04) 2.3021e-04

I-AND 1.7438e-04 (1.0321e-04,2.4555e-04) 2.0328e-04
I-SHFT 6.8593e-04 (6.3809e-04,7.3376e-04) 7.5148e-04
I-ADD 4.5213e-04 (4.1617e-04,4.8809e-04) 4.5194e-04
I-RS 3.1995e-04 (2.8053e-04,3.5938e-04) 3.3668e-04

1048576-Element Array Size:

Parameter
Mean Value
(seconds)

95-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

RS-OHS 1.0534e-03 (1.0103e-03,1.0965e-03) 8.5912e-04
RS-LOAD 8.9373e-05 (7.1107e-05,1.0764e-04) 1.1358e-04
RS-ADD 1.8633e-03 (1.8195e-03,1.9070e-03) 1.8296e-03
RS-MUL 1.8621e-03 (1.8198e-03,1.9045e-03) 1.8606e-03
RS-SQRT 2.9715e-02 (2.9608e-02,2.9822e-02) 2.9849e-02
RS-LOG 8.5948e-02 (8.5743e-02,8.6153e-02) 8.5314e-02
RS-EXPI 2.2836e-02 (2.2728e-02,2.2943e-02) 2.2920e-02
RS-EXPS 3.1034e-01 (3.1008e-01,3.1059e-01) 3.0884e-01
RS-SIN 1.3435e-01 (1.3416e-01,1.3453e-01) 1.3337e-01
RS-GT 8.5067e-04 (7.5063e-04,9.5072e-04) 8.5305e-04

RS-I 4.0610e-04 (2.6966e-04,5.4254e-04) 4.8973e-04
RS-MAX 5.2289e-03 (5.1623e-03,5.2956e-03) 5.3146e-03

RS-GTCONST 3.2674e-04 (2.4352e-04,4.0997e-04) 5.0020e-04
L-OHS 2.0961e-03 (2.0165e-03,2.1757e-03) 1.8702e-03

L-LOAD 8.9373e-05 (7.1107e-05,1.0764e-04) 1.1358e-04
L-OR 7.2839e-04 (6.3806e-04,8.1872e-04) 8.1305e-04

L-NOT 2.1452e-04 (1.2580e-04,3.0325e-04) 3.7012e-04
I-OHS 2.0961e-03 (2.0165e-03,2.1757e-03) 1.8702e-03

I-LOAD 8.9373e-05 (7.1107e-05,1.0764e-04) 1.1358e-04
I-GT 7.4184e-04 (6.5142e-04,8.3226e-04) 8.3083e-04

I-AND 7.7592e-04 (6.8448e-04,8.6736e-04) 8.1798e-04
I-SHFT 2.8067e-03 (2.7216e-03,2.8918e-03) 3.0026e-03
I-ADD 1.8760e-03 (1.7453e-03,2.0067e-03) 1.8173e-03
I-RS 1.3353e-03 (1.2864e-03,1.3841e-03) 1.4862e-03
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E.2 Optimization Characterizer Measurements

The following tables describe the results of compiler tests on each of our architectures, except for
the CM-5/cmf pair, which did not pass any tests, except for the elimination of dead code and common
subexpression elimination from array statements.

Section 6.2 explains our testing method. The following tables give the 95-percent confidence intervals
of the run time of the Naive and Opt code segments, the confidence interval of R computed from these run
times, Rp, the lowest predicted value of R in the case that Naive was not optimized, and our conclusion as
to whether or not the compiler applied the optimization in the specific test case.

Note that all tests marked with a bold-faced asterix (*) use a Naive/Cripple test. Additionally, some
tests crashed the compiler in question and are indicated by dashes in the corresponding rows.

E.2.1 CM-5/cmf-cmax Compiler Optimization Results

Test
Naive Run Time
95% Conf. Int.

(seconds)

Opt /Cripple
Run Time

95% Conf. Int.
(seconds)

R

90% Conf. Int.
(seconds)

Rp Applied?

collapses depth 2 loops (2.47e-5, 3.68e-5) (3.13e-5,3.95e-5) (0.626,1.17) 1.2 yes
collapses depth 3 loops (2.38e-5, 3.52e-5) (3.16e-5,3.62e-5) (0.657,1.11) 1.2 yes
collapses depth 4 loops (3.00e-5, 3.53e-5) (2.59e-5,3.85e-5) (0.78,1.36) 1.2 maybe
common subexpression elimination in non-F90 array op-
erations

(6.38e-5, 7.04e-5) (5.64e-5,6.50e-5) (0.981,1.25) 1.3 yes

common subexpression elimination F90 array operations (5.59e-5, 6.42e-5) (5.69e-5,6.30e-5) (0.886,1.13) 1.3 yes
dead scalar code eliminated (-1.59e-5,-4.65e-6) (2.71e-5,3.17e-5) (-5.03e-1,-1.71e-1) 1.1 yes
dead array code eliminated (2.76e-5, 3.14e-5) (2.71e-5,3.17e-5) (0.87,1.16) 1.5 yes
substitutes value for variable assigned the constant 0,
when the variable is assigned in the same basic block

(3.51e-5, 3.94e-5) (3.38e-5,3.54e-5) (0.993,1.16) 2 yes

substitutes value for variable assigned the constant 1,
when the variable is assigned in the same basic block

(1.96e-4, 2.13e-4) (1.95e-4,2.05e-4) (0.953,1.09) 2 yes

substitutes value for variable assigned the constant 0,
when the variable is assigned outside the basic block

(1.43e-4, 1.67e-4) (3.38e-5,3.54e-5) (4.04,4.92) 2 no

substitutes value for variable assigned the constant 1,
when the variable is assigned outside the basic block (1.92e-4, 2.07e-4) (1.95e-4,2.05e-4) (0.937,1.06) 2 yes

substitutes value for variable assigned a constant sym-
bolic expression, when the variable is assigned in the
same basic block

(3.70e-4, 4.14e-4) (3.63e-4,3.86e-4) (0.959,1.14) 2 yes

substitutes value for variable assigned a constant sym-
bolic expression, when the variable is assigned outside
the basic block

(6.02e-4, 6.15e-4) (3.73e-4,4.14e-4) (1.45,1.65) 2 yes

semantic analysis - producesefficient code when the sub-
stituted variable has value 0

(2.10, 2.14) (3.38e-5,3.54e-5) (5.95e+4,6.32e+4) 2 no

semantic analysis - producesefficient code when the sub-
stituted variable has value 1

(2.10, 2.14) (1.95e-4,2.05e-4) (1.02e+4,1.1e+4) 2 no

eliminates an induction variable indexing a 1-d array in a
simple loop

(2.11e-5, 2.76e-5) (2.18e-5,2.62e-5) (0.805,1.26) 2 yes

eliminates an induction variable in a 2-d loop indexing a
1-d array

- - - - -

eliminates an induction variable in a 2-d loop indexing
a 1-d array, where the induction variable is assigned a
value in the outer loop

- - - - -

eliminates an induction variable indexing a 2-d array (1.55e-5, 8.78e-5) (3.94e-5,4.78e-5) (0.325,2.22) 2 maybe
inline substitution of functions returning a real value - 1
level deep

(1.63e-1, 1.65e-1) (3.02e-5,3.40e-5) (4.81e+3,5.46e+3) 2 no

inline substitution of functions returning a real value - 2
levels deep

(1.71e-1, 1.78e-1) (2.88e-5,3.09e-5) (5.55e+3,6.18e+3) 2 no

inline substitution of functions returning an integer value
- 1 level deep

(6.52e-2, 6.77e-2) (3.28e-4,3.54e-4) (184,206) 2 no
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Test
Naive Run Time
95% Conf. Int.

(seconds)

Opt /Cripple
Run Time

95% Conf. Int.
(seconds)

R

90% Conf. Int.
(seconds)

Rp Applied?

inline substitution of functions returning an integer value
- 2 levels deep

(3.29e-2, 3.37e-2) (3.24e-4,3.30e-4) (99.7,104) 2 no

code motion - code moved upward one level where pos-
sible

(2.60e-1, 2.64e-1) (2.60e-4,2.88e-4) (902,1.02e+3) 2 no

code motion - code moved upward two levels where pos-
sible

(2.61e-1, 2.63e-1) (2.70e-4,2.84e-4) (921,974) 2 no

substitutes efficient code for array-based reccurences * (1.36, 1.38) (2.17,2.20) (0.616,0.635) 0.5 no
substitutes efficient code for array sum computations * (1.78e-4, 1.80e-4) (8.10e-1,8.21e-1) ( 2.16e-4, 2.22e-4) 0.5 yes
substitutes efficient code for array product computations
*

(1.81e-4, 1.83e-4) (8.11e-1,8.18e-1) ( 2.21e-4, 2.26e-4) 0.5 yes

scalar expansion in a single loop nest (3.20e-5, 3.84e-5) (3.76e-5,4.55e-5) (0.704,1.02) 2 yes
scalar expansion in a double loop nest (3.82e-5, 5.34e-5) (2.01e-5,3.43e-5) (1.11,2.66) 2 maybe
array privatization, where the temporary array is defined
in the same loop as it is used

(2.08e-5, 3.53e-5) (2.01e-5,3.43e-5) (0.607,1.76) 2 yes

array privatization, where the temporary array is defined
in a loop neighboring the loop where it is used

(3.22e-5, 5.45e-5) (2.01e-5,3.43e-5) (0.94,2.71) 2 maybe

parallelizes a dependency-free1-d loop, where the source
and sink elements are in seperate regions of the array

(3.92e-4, 4.03e-4) (3.67e-4,3.93e-4) (0.996,1.1) 2 yes

parallelizes a dependency-free1-d loop, where the source
and sink elements are interleaved

(2.12e-4, 2.17e-4) (2.17e-4,2.31e-4) (0.917,1) 2 yes

parallelizes a dependency-free1-d loop, where the source
and sink element indices are defined as linear functions
of the loop variable

(1.07e-3, 1.10e-3) (1.13e-3,1.21e-3) (0.884,0.974) 2 yes

parallelizes a dependency-free2-d loop, where the source
and sink elements are defined as linear functions of the
loop variable

(9.62e-4, 1.30e-3) (1.04e-3,1.07e-3) (0.897,1.25) 2 yes

removes stores to temporary arrays (3.43e-5, 4.29e-5) (3.47e-5,4.20e-5) (0.816,1.24) 1.1 maybe
parallelizes the loop assignment of a arithmetic function
of the loop variable to an array * (3.03e-5, 3.96e-5) (4.19e-2,5.07e-2) ( 5.98e-4, 9.45e-4) 0.5 yes

parallelizes the loop assignment of a function of the loop
variable to an array, where the function involves an in-
trinsic *

(4.17e-5, 5.10e-5) (4.65e-2,4.75e-2) ( 8.77e-4, 1.10e-3) 0.5 yes

parallelizes the loop assignment of a function of the loop
variable to an array,where the function involves an integer
leaf function *

(6.71e-2, 6.82e-2) (4.19e-2,4.30e-2) (1.56,1.63) 0.5 no

parallelizes a serially-expressed gather (5.19e-4, 5.63e-4) (5.15e-4,5.23e-4) (0.992,1.09) 2 yes
parallelizes a serially-expressed scatter (6.26e-2, 6.56e-2) (2.70e-4,2.85e-4) (219,243) 2 no
parallelizes a serially-expressed computation involving
two permutation arrays

(1.13e-1, 1.14e-1) (1.27e-3,1.32e-3) (85.4,89.7) 2 no

parallelizes a serially-expressed bin summation * (6.21e-2, 6.31e-2) (1.08e-1,1.10e-1) (0.567,0.583) 0.5 no
parallelizes a serially-expressed all up to element array
sum *

(6.21e-2, 6.39e-2) (6.22e-2,6.42e-2) (0.968,1.03) 0.5 no

parallelizes a serially-expressed where operation (2.45e-5, 3.26e-5) (2.42e-5,3.75e-5) (0.655,1.35) 2 yes
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E.2.2 Y-MP C90/cf77 Compiler Optimization Results

Test
Naive Run Time
95% Conf. Int.

(seconds)

Opt /Cripple
Run Time

95% Conf. Int.
(seconds)

R

90% Conf. Int.
(seconds)

Rp Applied?

collapses depth 2 loops (1.45e-5, 1.64e-5) (1.49e-5,1.64e-5) (0.884,1.1) 1.2 yes
collapses depth 3 loops (1.25e-5, 1.39e-5) (1.58e-5,1.74e-5) (0.717,0.88) 1.2 yes
collapses depth 4 loops (1.37e-5, 1.39e-5) (1.98e-5,2.22e-5) (0.616,0.703) 1.2 yes
common subexpression elimination in non-F90 array op-
erations

(5.47e-3, 5.51e-3) (5.98e-3,6.04e-3) (0.905,0.922) 1.3 yes

common subexpression elimination F90 array operations (5.49e-3, 5.68e-3) (5.99e-3,6.05e-3) (0.907,0.948) 1.3 yes
dead scalar code eliminated (2.20e-3, 2.41e-3) (8.51e-4,8.63e-4) (2.55,2.83) 1.1 no
dead array code eliminated (2.51e-3, 2.53e-3) (8.51e-4,8.63e-4) (2.91,2.98) 1.5 no
substitutes value for variable assigned the constant 0,
when the variable is assigned in the same basic block

(8.37e-4, 8.46e-4) (8.52e-4,8.81e-4) (0.95,0.994) 2 yes

substitutes value for variable assigned the constant 1,
when the variable is assigned in the same basic block

(4.74e-3, 4.79e-3) (4.77e-3,4.82e-3) (0.984,1.01) 2 yes

substitutes value for variable assigned the constant 0,
when the variable is assigned outside the basic block

(8.92e-4, 9.85e-4) (8.52e-4,8.81e-4) (1.01,1.16) 2 yes

substitutes value for variable assigned the constant 1,
when the variable is assigned outside the basic block

(4.76e-3, 4.82e-3) (4.77e-3,4.82e-3) (0.988,1.01) 2 yes

substitutes value for variable assigned a constant sym-
bolic expression, when the variable is assigned in the
same basic block

(5.02e-4, 5.95e-4) (4.95e-4,5.72e-4) (0.877,1.2) 2 yes

substitutes value for variable assigned a constant sym-
bolic expression, when the variable is assigned outside
the basic block

(4.29e-4, 4.73e-4) (4.35e-4,4.81e-4) (0.892,1.09) 2 yes

semantic analysis - producesefficient code when the sub-
stituted variable has value 0

(1.40e-3, 1.68e-3) (8.52e-4,8.81e-4) (1.59,1.98) 2 yes

semantic analysis - producesefficient code when the sub-
stituted variable has value 1

(4.81e-3, 4.99e-3) (4.77e-3,4.82e-3) (0.999,1.05) 2 yes

eliminates an induction variable indexing a 1-d array in a
simple loop

(1.25e-3, 1.61e-3) (1.17e-3,1.37e-3) (0.913,1.37) 2 yes

eliminates an induction variable in a 2-d loop indexing a
1-d array

(1.17e-2, 1.20e-2) (1.17e-3,1.37e-3) (8.56,10.3) 2 no

eliminates an induction variable in a 2-d loop indexing
a 1-d array, where the induction variable is assigned a
value in the outer loop

(1.16e-2, 1.19e-2) (1.17e-3,1.37e-3) (8.51,10.2) 2 no

eliminates an induction variable indexing a 2-d array (2.80e-3, 2.99e-3) (1.19e-3,1.41e-3) (1.99,2.51) 2 maybe
inline substitution of functions returning a real value - 1
level deep

(9.42e-5, 1.04e-4) (7.91e-5,9.50e-5) (0.992,1.32) 2 yes

inline substitution of functions returning a real value - 2
levels deep

(4.01e-2, 4.10e-2) (1.31e-4,1.56e-4) (258,312) 2 no

inline substitution of functions returning an integer value
- 1 level deep

(2.40e-2, 2.49e-2) (1.05e-4,1.19e-4) (201,238) 2 no

inline substitution of functions returning an integer value
- 2 levels deep

(2.06e-2, 2.11e-2) (6.30e-5,7.40e-5) (279,335) 2 no

code motion - code moved upward one level where pos-
sible

(2.58e-1, 2.59e-1) (7.87e-5,8.01e-5) (3.21e+3,3.29e+3) 2 no

code motion - code moved upward two levels where pos-
sible

(1.60e-3, 1.61e-3) (9.60e-5,1.04e-4) (15.3,16.8) 2 no

substitutes efficient code for array-based reccurences * (5.64e-2, 5.66e-2) (1.10e-1,1.10e-1) (0.514,0.517) 0.5 no
substitutes efficient code for array sum computations * (1.05e-3, 1.22e-3) (5.48e-2,5.53e-2) (0.0189,0.0223) 0.5 yes
substitutes efficient code for array product computations
*

(6.89e-4, 7.19e-4) (5.36e-2,5.38e-2) (0.0128,0.0134) 0.5 yes

scalar expansion in a single loop nest (1.17e-3, 1.18e-3) (1.50e-3,1.62e-3) (0.723,0.787) 2 yes
scalar expansion in a double loop nest (1.53e-3, 1.54e-3) (1.53e-3,1.55e-3) (0.981,1.01) 2 yes
array privatization, where the temporary array is defined
in the same loop as it is used

(6.09e-3, 6.15e-3) (1.53e-3,1.55e-3) (3.92,4.01) 2 no

array privatization, where the temporary array is defined
in a loop neighboring the loop where it is used

(4.10e-3, 4.14e-3) (1.53e-3,1.55e-3) (2.64,2.7) 2 no
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Test
Naive Run Time
95% Conf. Int.

(seconds)

Opt /Cripple
Run Time

95% Conf. Int.
(seconds)

R

90% Conf. Int.
(seconds)

Rp Applied?

parallelizes a dependency-free1-d loop, where the source
and sink elements are in seperate regions of the array

(4.89e-4, 5.41e-4) (4.89e-4,4.95e-4) (0.989,1.11) 2 yes

parallelizes a dependency-free1-d loop, where the source
and sink elements are interleaved

(7.17e-4, 7.94e-4) (6.67e-4,6.76e-4) (1.06,1.19) 2 yes

parallelizes a dependency-free1-d loop, where the source
and sink element indices are defined as linear functions
of the loop variable

(1.92e-3, 1.94e-3) (1.92e-3,1.95e-3) (0.985,1.01) 2 yes

parallelizes a dependency-free2-d loop, where the source
and sink elements are defined as linear functions of the
loop variable

(5.30e-3, 5.35e-3) (7.28e-3,7.34e-3) (0.722,0.734) 2 yes

removes stores to temporary arrays (1.26e-3, 1.27e-3) (1.16e-3,1.18e-3) (1.07,1.09) 1.1 yes
parallelizes the loop assignment of a arithmetic function
of the loop variable to an array * (7.11e-5, 7.27e-5) (3.11e-3,3.14e-3) (0.0226,0.0234) 0.5 yes

parallelizes the loop assignment of a function of the loop
variable to an array, where the function involves an in-
trinsic *

(6.76e-4, 7.11e-4) (4.19e-2,4.20e-2) (0.0161,0.017) 0.5 yes

parallelizes the loop assignment of a function of the loop
variable to an array,where the function involves an integer
leaf function *

(1.35e-4, 1.36e-4) (1.55e-3,1.56e-3) (0.0864,0.0881) 0.5 yes

parallelizes a serially-expressed gather (4.73e-5, 4.85e-5) (4.71e-5,4.77e-5) (0.992,1.03) 2 yes
parallelizes a serially-expressed scatter (6.42e-4, 6.49e-4) (6.46e-4,6.53e-4) (0.983,1.01) 2 yes
parallelizes a serially-expressed computation involving
two permutation arrays

(4.34e-3, 4.39e-3) (4.26e-3,4.31e-3) (1.01,1.03) 2 yes

parallelizes a serially-expressed bin summation * (4.14e-3, 4.22e-3) (7.37e-3,7.45e-3) (0.555,0.573) 0.5 no
parallelizes a serially-expressed all up to element array
sum *

(2.03e-3, 2.07e-3) (3.39e-3,3.43e-3) (0.591,0.611) 0.5 no

parallelizes a serially-expressed where operation (4.85e-5, 4.90e-5) (4.85e-5,4.91e-5) (0.988,1.01) 2 yes
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E.2.3 Y-MP C90/f90 Compiler Optimization Results

Test
Naive Run Time
95% Conf. Int.

(seconds)

Opt /Cripple
Run Time

95% Conf. Int.
(seconds)

R

90% Conf. Int.
(seconds)

Rp Applied?

collapses depth 2 loops (1.65e-5, 1.68e-5) (1.62e-5,1.64e-5) (1,1.04) 1.2 yes
collapses depth 3 loops (1.87e-5, 1.91e-5) (1.89e-5,1.92e-5) (0.976,1.01) 1.2 yes
collapses depth 4 loops (2.53e-5, 2.57e-5) (2.53e-5,2.57e-5) (0.986,1.01) 1.2 yes
common subexpression elimination in non-F90 array op-
erations

(2.42e-2, 2.44e-2) (2.44e-2,2.46e-2) (0.985,1) 1.3 yes

common subexpression elimination F90 array operations (2.43e-2, 2.45e-2) (2.42e-2,2.44e-2) (0.997,1.01) 1.3 yes
dead scalar code eliminated (3.93e-3, 3.98e-3) (3.87e-3,3.93e-3) (1,1.03) 1.1 yes
dead array code eliminated (3.91e-3, 3.97e-3) (3.87e-3,3.93e-3) (0.997,1.03) 1.5 yes
substitutes value for variable assigned the constant 0,
when the variable is assigned in the same basic block

(3.89e-3, 3.94e-3) (3.94e-3,3.99e-3) (0.975,1) 2 yes

substitutes value for variable assigned the constant 1,
when the variable is assigned in the same basic block

(4.71e-3, 4.76e-3) (4.71e-3,4.76e-3) (0.99,1.01) 2 yes

substitutes value for variable assigned the constant 0,
when the variable is assigned outside the basic block

(3.93e-3, 3.99e-3) (3.94e-3,3.99e-3) (0.986,1.01) 2 yes

substitutes value for variable assigned the constant 1,
when the variable is assigned outside the basic block

(4.73e-3, 4.79e-3) (4.71e-3,4.76e-3) (0.994,1.02) 2 yes

substitutes value for variable assigned a constant sym-
bolic expression, when the variable is assigned in the
same basic block

(1.94e-3, 1.97e-3) (1.91e-3,1.94e-3) (1,1.03) 2 yes

substitutes value for variable assigned a constant sym-
bolic expression, when the variable is assigned outside
the basic block

(1.93e-3, 1.95e-3) (1.91e-3,1.94e-3) (0.993,1.02) 2 yes

semantic analysis - producesefficient code when the sub-
stituted variable has value 0

(4.63e-3, 4.71e-3) (3.94e-3,3.99e-3) (1.16,1.19) 2 yes

semantic analysis - producesefficient code when the sub-
stituted variable has value 1

(4.69e-3, 4.75e-3) (4.71e-3,4.76e-3) (0.985,1.01) 2 yes

eliminates an induction variable indexing a 1-d array in a
simple loop

(3.88e-3, 3.93e-3) (3.89e-3,3.94e-3) (0.985,1.01) 2 yes

eliminates an induction variable in a 2-d loop indexing a
1-d array

(3.89e-3, 3.95e-3) (3.89e-3,3.94e-3) (0.988,1.02) 2 yes

eliminates an induction variable in a 2-d loop indexing
a 1-d array, where the induction variable is assigned a
value in the outer loop

- - - - -

eliminates an induction variable indexing a 2-d array (3.89e-3, 3.95e-3) (4.04e-3,4.14e-3) (0.939,0.977) 2 yes
inline substitution of functions returning a real value - 1
level deep

(4.84e-2, 4.86e-2) (2.45e-4,2.48e-4) (195,198) 2 no

inline substitution of functions returning a real value - 2
levels deep

(8.99e-2, 9.10e-2) (3.16e-4,3.21e-4) (281,288) 2 no

inline substitution of functions returning an integer value
- 1 level deep

(4.95e-2, 4.98e-2) (2.80e-4,2.83e-4) (175,178) 2 no

inline substitution of functions returning an integer value
- 2 levels deep

(4.04e-2, 4.09e-2) (1.70e-4,1.72e-4) (235,241) 2 no

code motion - code moved upward one level where pos-
sible

(6.25e-3, 6.32e-3) (2.58e-4,2.62e-4) (23.9,24.5) 2 no

code motion - code moved upward two levels where pos-
sible

(6.69e-3, 6.78e-3) (2.60e-4,2.63e-4) (25.4,26.1) 2 no

substitutes efficient code for array-based reccurences * (5.60e-2, 5.62e-2) (8.32e-2,8.49e-2) (0.659,0.675) 0.5 no
substitutes efficient code for array sum computations * (2.32e-3, 2.35e-3) (5.63e-2,5.67e-2) (0.0409,0.0416) 0.5 yes
substitutes efficient code for array product computations
*

(2.32e-3, 2.35e-3) (5.64e-2,5.67e-2) (0.041,0.0416) 0.5 yes

scalar expansion in a single loop nest (5.07e-3, 5.15e-3) (5.11e-3,5.18e-3) (0.978,1.01) 2 yes
scalar expansion in a double loop nest (5.13e-3, 5.20e-3) (5.09e-3,5.15e-3) (0.995,1.02) 2 yes
array privatization, where the temporary array is defined
in the same loop as it is used

(2.06e-2, 2.08e-2) (5.09e-3,5.15e-3) (4,4.09) 2 no

array privatization, where the temporary array is defined
in a loop neighboring the loop where it is used

(2.27e-2, 2.30e-2) (5.09e-3,5.15e-3) (4.41,4.51) 2 no
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Test
Naive Run Time
95% Conf. Int.

(seconds)

Opt /Cripple
Run Time

95% Conf. Int.
(seconds)

R

90% Conf. Int.
(seconds)

Rp Applied?

parallelizes a dependency-free1-d loop, where the source
and sink elements are in seperate regions of the array

(2.02e-3, 2.06e-3) (1.98e-3,2.01e-3) (1.01,1.04) 2 yes

parallelizes a dependency-free1-d loop, where the source
and sink elements are interleaved

(2.35e-3, 2.38e-3) (2.37e-3,2.40e-3) (0.982,1.01) 2 yes

parallelizes a dependency-free1-d loop, where the source
and sink element indices are defined as linear functions
of the loop variable

(1.92e-3, 1.95e-3) (3.15e-3,3.18e-3) (0.605,0.618) 2 yes

parallelizes a dependency-free2-d loop, where the source
and sink elements are defined as linear functions of the
loop variable

(5.02e-3, 5.07e-3) (2.38e-3,2.42e-3) (2.07,2.13) 2 no

removes stores to temporary arrays (1.11e-2, 1.12e-2) (9.78e-3,9.92e-3) (1.12,1.14) 1.1 no
parallelizes the loop assignment of a arithmetic function
of the loop variable to an array * (2.45e-4, 2.47e-4) (3.07e-3,3.11e-3) (0.0788,0.0805) 0.5 yes

parallelizes the loop assignment of a function of the loop
variable to an array, where the function involves an in-
trinsic *

(2.70e-3, 2.73e-3) (4.88e-3,4.95e-3) (0.546,0.558) 0.5 no

parallelizes the loop assignment of a function of the loop
variable to an array,where the function involves an integer
leaf function *

(3.14e-2, 3.18e-2) (3.17e-2,3.19e-2) (0.986,1) 0.5 no

parallelizes a serially-expressed gather (1.57e-4, 1.59e-4) (1.60e-4,1.62e-4) (0.969,0.995) 2 yes
parallelizes a serially-expressed scatter (6.57e-4, 6.64e-4) (6.54e-4,6.61e-4) (0.994,1.02) 2 yes
parallelizes a serially-expressed computation involving
two permutation arrays

(5.23e-3, 5.42e-3) (5.10e-3,5.15e-3) (1.02,1.06) 2 yes

parallelizes a serially-expressed bin summation * (4.88e-3, 4.98e-3) (8.07e-3,8.15e-3) (0.599,0.617) 0.5 no
parallelizes a serially-expressed all up to element array
sum *

(1.31e-3, 1.32e-3) (1.74e-3,1.77e-3) (0.74,0.759) 0.5 no

parallelizes a serially-expressed where operation (3.90e-4, 4.77e-4) (3.13e-4,3.20e-4) (1.22,1.52) 2 yes
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E.3 Architecture Characterizer Measurements

The following tables detail our architectural measurements.

E.3.1 CM-5/cmf Architecture Results

Full block model, full mask model, cache stride model.
Constant bound block references incur overhead.

Parameter
Mean Value
(seconds)

90-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

REM-READ 9.9302e-06 (9.8300e-06,1.0030e-05) 9.7152e-06
REM-WRITE 2.9409e-06 (2.9218e-06,2.9600e-06) 2.9001e-06
SREM-READ 5.9581e-05 (5.9017e-05,6.0144e-05) 5.9099e-05
SREM-WRITE 3.4622e-05 (3.4415e-05,3.4829e-05) 3.4267e-05
OH-GATHER 5.4865e-09 (4.7767e-09,6.1964e-09) 5.0840e-09
OH-SCATTER 4.6402e-09 (4.6165e-09,4.6638e-09) 4.6131e-09

OH-CACHESTRIDE2,65536 3.9308e-09 (3.8768e-09,3.9849e-09) 3.8483e-09
OH-CACHESTRIDE8,65536 1.6277e-08 (1.5757e-08,1.6797e-08) 1.5367e-08
OH-CACHESTRIDE32,65536 6.3213e-08 (6.2111e-08,6.4315e-08) 6.1327e-08
OH-CACHESTRIDE128,65536 2.4903e-07 (2.4797e-07,2.5009e-07) 2.4572e-07
OH-CACHESTRIDE512,65536 1.0066e-06 (9.9084e-07,1.0224e-06) 9.8100e-07
OH-CACHESTRIDE2,262144 1.9598e-09 (1.9408e-09,1.9788e-09) 1.9334e-09
OH-CACHESTRIDE8,262144 7.8168e-09 (7.7561e-09,7.8776e-09) 7.7202e-09
OH-CACHESTRIDE32,262144 3.1672e-08 (3.1206e-08,3.2137e-08) 3.1043e-08

OH-CACHESTRIDE128,262144 1.2772e-07 (1.2514e-07,1.3029e-07) 1.2354e-07
OH-CACHESTRIDE512,262144 5.0551e-07 (4.9818e-07,5.1285e-07) 4.9344e-07
OH-CACHESTRIDE2,1048576 1.6808e-09 (1.6615e-09,1.7001e-09) 1.6540e-09
OH-CACHESTRIDE8,1048576 6.6532e-09 (6.6266e-09,6.6798e-09) 6.6229e-09

OH-CACHESTRIDE32,1048576 2.6787e-08 (2.6531e-08,2.7044e-08) 2.6495e-08
OH-CACHESTRIDE128,1048576 1.1761e-07 (1.0049e-07,1.3473e-07) 1.0593e-07
OH-CACHESTRIDE512,1048576 4.3292e-07 (4.2519e-07,4.4065e-07) 4.2368e-07

OH-FULLMASK0 4.1653e-10 (4.0040e-10,4.3267e-10) 4.1940e-10
OH-FULLMASK25 4.1608e-10 (4.0039e-10,4.3177e-10) 4.1927e-10
OH-FULLMASK50 4.1777e-10 (4.0155e-10,4.3400e-10) 4.1949e-10
OH-FULLMASK75 4.3051e-10 (4.0595e-10,4.5508e-10) 4.1946e-10

OH-FULLMASK100 4.1880e-10 (4.0302e-10,4.3458e-10) 4.1970e-10
OH-FULLBLOCK0 1.1488e-09 (1.1382e-09,1.1594e-09) 1.1375e-09

OH-FULLBLOCK12 1.1057e-09 (1.0847e-09,1.1266e-09) 1.0890e-09
OH-FULLBLOCK25 1.0402e-09 (1.0317e-09,1.0487e-09) 1.0370e-09
OH-FULLBLOCK50 9.3605e-10 (9.2399e-10,9.4810e-10) 9.3261e-10
OH-FULLBLOCK100 7.2291e-10 (7.0728e-10,7.3854e-10) 7.2353e-10

E.3.2 Y-MP C90/cf77 Architecture Results

Partial block model, full mask model, bank stride model.
Constant bound block references do not incur significant overhead.
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Parameter
Mean Value
(seconds)

90-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

OH-RAND,READ 4.7707e-09 (4.2404e-09,5.3010e-09) 2.7227e-09
OH-RAND,WRITE 1.7650e-08 (1.5816e-08,1.9484e-08) 1.4404e-08

OH-GATHER 1.9664e-10 (1.2042e-10,2.7286e-10) 1.3150e-10
OH-SCATTER 1.8316e-09 (1.7732e-09,1.8901e-09) 2.3071e-09

OH-BANKSTRIDE2 3.0197e-10 (2.0457e-10,3.9936e-10) 1.8891e-10
OH-BANKSTRIDE4 9.3616e-10 (8.2922e-10,1.0431e-09) 6.7888e-10
OH-BANKSTRIDE8 3.0296e-09 (2.8303e-09,3.2290e-09) 1.9145e-09
OH-BANKSTRIDE16 6.0458e-09 (5.8026e-09,6.2891e-09) 3.5653e-09
OH-BANKSTRIDE32 1.3045e-08 (1.2432e-08,1.3658e-08) 7.1932e-09
OH-BANKSTRIDE64 2.6222e-08 (2.5199e-08,2.7244e-08) 1.5421e-08

OH-BANKSTRIDE128 2.7667e-08 (2.5988e-08,2.9346e-08) 1.8911e-08
OH-BANKSTRIDE256 3.4986e-08 (3.3307e-08,3.6665e-08) 2.2652e-08
OH-BANKSTRIDE512 5.0548e-08 (4.8871e-08,5.2225e-08) 3.9601e-08

OH-FULLMASK0 4.6312e-10 (3.4547e-10,5.8078e-10) 2.4124e-10
OH-FULLMASK25 5.3527e-09 (5.1345e-09,5.5708e-09) 3.7756e-09
OH-FULLMASK50 5.5061e-09 (5.2534e-09,5.7589e-09) 3.7180e-09
OH-FULLMASK75 5.5015e-09 (5.1860e-09,5.8170e-09) 3.4023e-09

OH-FULLMASK100 5.5801e-09 (5.2850e-09,5.8752e-09) 3.5740e-09
OH-PARTIALBLOCK16 8.9994e-08 (1.9464e-08,1.6052e-07) 2.9642e-08
OH-PARTIALBLOCK256 7.7009e-09 (1.5670e-09,1.3835e-08) 3.8264e-09
OH-PARTIALBLOCK4096 1.9227e-09 (1.7613e-09,2.0842e-09) 1.9079e-09
OH-PARTIALBLOCK65536 1.4724e-10 (4.9131e-11,2.4535e-10) 6.8782e-11

OH-PARTIALBLOCK262144 2.1587e-10 (1.0430e-10,3.2745e-10) 1.5179e-10
OH-PARTIALBLOCK1048576 1.7512e-10 (6.4474e-11,2.8578e-10) 9.1809e-12

E.3.3 Y-MP C90/f90 Architecture Results

Partial block model, full mask model, bank stride model.
Constant bound block references do not incur significant overhead.

Parameter
Mean Value
(seconds)

90-Percent Confidence
Interval (seconds)

Minimum Value
(seconds)

OH-RAND,READ 1.0754e-08 (1.0377e-08,1.1131e-08) 1.0390e-08
OH-RAND,WRITE 2.0473e-08 (1.4788e-08,2.6159e-08) 1.4728e-08

OH-GATHER 7.2863e-10 (6.8146e-10,7.7579e-10) 6.8337e-10
OH-SCATTER 5.4722e-10 (5.0464e-10,5.8981e-10) 5.7459e-10

OH-BANKSTRIDE2 1.1643e-10 (-5.3411e-10,7.6696e-10) 5.4003e-10
OH-BANKSTRIDE4 1.2499e-09 (5.9931e-10,1.9005e-09) 1.5848e-09
OH-BANKSTRIDE8 5.7511e-09 (5.0998e-09,6.4023e-09) 6.0240e-09
OH-BANKSTRIDE16 1.2803e-08 (1.2145e-08,1.3460e-08) 1.2794e-08
OH-BANKSTRIDE32 2.7267e-08 (2.6606e-08,2.7927e-08) 2.7266e-08
OH-BANKSTRIDE64 5.7796e-08 (5.7108e-08,5.8484e-08) 5.7347e-08

OH-BANKSTRIDE128 5.8336e-08 (5.7641e-08,5.9032e-08) 5.7826e-08
OH-BANKSTRIDE256 5.9440e-08 (5.8667e-08,6.0213e-08) 5.7845e-08
OH-BANKSTRIDE512 7.6560e-08 (6.0183e-08,9.2936e-08) 5.9344e-08

OH-FULLMASK0 5.5128e-09 (5.0851e-09,5.9405e-09) 4.8904e-09
OH-FULLMASK25 1.5474e-08 (1.4927e-08,1.6021e-08) 1.3169e-08
OH-FULLMASK50 1.5954e-08 (1.5247e-08,1.6662e-08) 1.2945e-08
OH-FULLMASK75 1.7447e-08 (1.6665e-08,1.8230e-08) 1.3211e-08

OH-FULLMASK100 1.6165e-08 (1.5230e-08,1.7099e-08) 1.3147e-08
OH-PARTIALBLOCK16 4.6877e-08 (2.0399e-08,7.3354e-08) 1.6987e-08
OH-PARTIALBLOCK256 3.5644e-09 (-3.1366e-10,7.4424e-09) 5.5318e-10
OH-PARTIALBLOCK4096 0.0000e+00 (0.0000e+00,0.0000e+00) 7.0828e-11
OH-PARTIALBLOCK65536 0.0000e+00 (0.0000e+00,0.0000e+00) 2.8337e-11

OH-PARTIALBLOCK262144 0.0000e+00 (0.0000e+00,0.0000e+00) 0.0000e+00
OH-PARTIALBLOCK1048576 0.0000e+00 (0.0000e+00,0.0000e+00) 0.0000e+00
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Appendix F. Optimization Descriptions

This section describes and gives examples of each of the basic types of optimizations which the
Optimization Characterizer detects.

F.1 Code Motion

Segments of code inside a do-loop which calculate values which could be calculated outside the loop
are relocated, eliminating redundant computations and exposing other optimizations.

Before After Notes
do i=1,n

a(i)=a(i)+1.0
k=2.0

end do
a(0)=a(0)+k

k=2.0
do i=1,n

a(i)=a(i)+1.0
end do
a(0)=a(0)+k

none

F.2 Common Subexpression Elimination

As suggested by the name, redundant expressions which perform identical calculations on the same
operands are removed and replaced with a reference to the initially calculated value.

Before After Notes

a=a*b*b-f(b*b)
c=b*b
a=a+c-f(c) none

F.3 Dead Code Elimination

Occasionally, the application of optimizations (or programmer oversight) creates segments of code
which have no semantic effect on the outcome of the program; such code is eliminated.

Before After Notes
do i=1,n

a(i)=a(i)+1.0
b(i)=dead()

end do

do i=1,n
a(i)=a(i)+1.0

end do

b is not used anywhere in
the program, dead has
no side effects.

F.4 Forward Substitution

At compile-time, any expressions which can be determined to have been assigned to variables in the
computation are substituted for the variable references, in the hope that other optimizations will be exposed.

Before After Notes
j=n/2
do i=1,n/2

a(i)=a(i+j)+1.0
end do

do i=1,n/2
a(i)=a(i+n/2)+1.0

end do
none

F.5 Induction Variable Elimination

do-loops often contain induction variables, which are incremented by a constant factor each iteration
of the loop and generally used to serially reference arrays at some given stride. Induction variables produce
inter-iteration data dependencies, and can be eliminated by replacing the references to the induction variable
by a linear function of the loop variable.
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Before After Notes
j=0
do i=1,n

j=j+1
a(j)=a(i)*b(i)

end do

do i=1,n
a(i)=a(i)*b(i)

end do
none

F.6 Loop Collapsing

Loop nests are condensed where possible, such that two or more nested loops become a single loop;
the dimensions of any arrays referenced by such loops are condensed to one dimension. Loop collapsing
reduces loop overhead, and sometimes allows more effective vectorization.

Before After Notes

do i1=1,n1
do i2=1,n2

a(i1,i2)=a(i1,i2)*b(i1,i2)
end do

end do

do i=1,n1*n2
acoll(i)=acoll(i)*bcoll(i)

end do

acoll and bcoll cor-
respond to collapsed ver-
sions of a and b, respec-
tively.

F.7 Recurrence Substitution

Solutions or efficient solvers are substituted for recurrences.

Before After Notes
do i=1,n

a=a*b
end do

a=a*b**n none

F.8 Reduction Substitution

Reductions, such as the sum or product of the elements in a vector, are replaced by finely-tuned code or
subroutines.

Before After Notes
sum=0.0
do i=1,n

sum=sum+a(i)
end do

sum=sumvector(a)

sumvector is an effi-
cient vector sum imple-
mentation.

F.9 Idiom Recognition

Operations expressed in a serial manner which typically have special compiler or hardware support,
such as gather/scatter or masked operations, are recognized and parallelized/vectorized.

Before After Notes
do i=1,n

if (a(i).gt.0.0) b(i)=a(i)
end do

where (a.gt.0.0) b=a none
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F.10 Scalar Expansion

Programmers often use scalar temporaries inside ofdo-loops to store intermediate values; unfortunately,
these temporaries create output dependences. Each temporary is expanded into a vector, each element of
which holds the value of the temporary for a certain iteration of the loop, eliminating the write after write
dependence and resulting in code which is more likely amenable to parallelization.

Before After Notes
do i=1,n

x=c(i)*b(i)
a(i)=a(i)+x

end do

do i=1,n
x(i)=c(i)*b(i)
a(i)=a(i)+x(i)

end do

none

F.11 Semantic Analysis

The compiler analyzes a computation to determine which values of involved variables will allow
optimization, and it produces multiple compiled versions of the code to be executed conditionally at run
time. Of course, the compiler does not check all the possible combinations of each possible value of each
variable involved in the computation; usually, it uses a pattern matching algorithm to derive regions of
variable values which allow other optimizations to be applied.

One version of the compiled code executes serially, and is run when values of involved variables induce
data dependencies which inhibit optimizations, and the others are efficient versions in which the values of
involved variables allow various optimizations.

Before After Notes

do i=1,n-j
a(i)=a(i+j)*b(i)

end do

if (j.ge.0) then
do i=1,n-j

a(i)=a(i+j)*b(i)
end do

else
do i=1,n-j

a(i)=a(i+j)*b(i)
end do

endif

The compiler will parallelize the first loop
in the After section, since the values
which j can have in the first loop will not
cause optimization-inhibitingdata depen-
dencies, but not the second

F.12 Subroutine Inlining

The contents of leaf functions are expanded inline, eliminating subroutine call overhead and exposing
other potential optimizations. Inline expansion may proceed many levels deep, or may be limited to small
functions or those returning constants.

Before After Notes
real function leaf(x)

leaf=x**3
end

[...]

do i=1,n
a(i)=leaf(a(i))

end do

do i=1,n
a(i)=a(i)**3

end do
none

F.13 Data Dependency Analysis

The compiler attempts to recognize loops which are free of true data dependencies; such loops can be
trivially parallelized/vectorized. For example, simple arithmetic tests exist to determine the absence of data
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dependencies in loops in which an elements of an array are read and written using indices calculated as
linear functions of the loop variable. [17]

Before After Notes

do i=1,n/3
a(3*i)=a(2*i+3)+b(i)

end do

a(3:n:3)=a(5:n/3*2+3:2)+
b(1:n/3)

The compiler determines that the
original loop contains no data de-
pendencies.
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Appendix G. Kernel Run Time Prediction Calculations

The following sections detail each kernel, as well as the equations used to predict their run times. For
most of our test kernels, serial computation composes a negligible portion of the run time, and we omit
corresponding terms from our calculations except where noted.

We predict that a compiler optimizes a given code segment if the results of our compiler optimizations
indicated that it parallelized the most similar segment in our test suite. We optimistically assume that the
compiler applies optimizations for which we could not reach a definite conclusion.

Our measurements indicate that constant bound blocks do not incur significant overhead on the Cray
YMP-C90, so block overhead is omitted in appropriate calculations.

G.1 ave Kernel Predictions

01: before=0.
02: do i = 1,n
03: before=before+a(i)
04: end do
05:
06: do i = 1,1000
07: a1=a(1)
08: a2=a(2)
09: an1=a(n-1)
10: an=a(n)
11: a(2:n-1)=0.25*a(1:n-2)+0.5*a(2:n-1)+0.25*a(3:n)
12: a(1)=0.25*a2+0.5*a1+0.25*an
13: a(n)=0.25*a1+0.5*an+0.25*an1
14: end do
15:
16: after=0.
17: do i = 1,n
18: after=after+a(i)
19: end do

Figure 13: Core of the ave Kernel

ave is a Fortran 90 kernel which performs a computation consisting of three steps:

1. Summation the elements in the array using an accumulator inside a do-loop.

2. 1000 applications of an averaging function, which is essentially Jacobi relaxation in one dimension,
to the array, expressed using array notation .

3. Summation the elements in the array using an accumulator inside a do-loop.

We pick an array size of 500000 elements. Figure 13 shows the body of the ave kernel.
Step 2 in the ave computation is trivially parallelizable; the other steps, however, are expressed

sequentially, and the compiler must recognize them and parallelize them. Steps 1 and 3 are parallelized by
all compiler/architecture pairs with the exception of CM-5/cmf.

The following paragraphs detail our run time prediction calculations. SOR-SUMS corresponds to the
parallelized sum computations in lines 1 through 4 and 16 through 19.

SOR-SUMS = 2 � RS-SUM500000 + 2 � RS-OHS500000 + 2 � RS-LOAD500000
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SOR-MAIN-FULL corresponds to the run time of line 11, in the case that we represent overhead due to
block references by the full model.

OH-FULLBLOCKTOTAL = 500000 � OH-FULLBLOCK100

SOR-MAIN-FULL = 3000 �RS-MUL500000+2000 �RS-ADD500000+3000 �RS-LOAD500000+1000 �

RS-OHS500000 + 3000 � OH-FULLBLOCKTOTAL

SOR-MAIN-NONE corresponds to the run time of line 11, in the case that no block overhead is accrued.

SOR-MAIN-NONE = 3000 �RS-MUL500000+2000 �RS-ADD500000+3000 �RS-LOAD500000+1000 �

RS-OHS500000

SOR-MAIN-REM1 and SOR-MAIN-REM2 correspond to the cost remote references generated in lines 7
through 10 and 12 though 13, respectively.

SOR-MAIN-REM1 = 4000 � SREM-READ + 2000 � SREM-WRITE

SOR-MAIN-REM2 = 2000 � REM-READ

SOR-SUMS-REM corresponds to the cost of sequential remote reads generated by the unparallelized sum
computations in lines 1 through 4 and 16 through 19.

SOR-SUMS-REM = 1e+06 � SREM-READ

SOR-CRAY corresponds to the total run time on the Cray architecture, SOR-CMF corresponds to the run
time on the CM-5/cmf pair (sans contributions due to serial non-access computations, which are negligible),
and SOR-CMAX corresponds to the run time on the CM-5/cmf-cmax pair.

SOR-CRAY = SOR-SUMS+ SOR-MAIN-NONE+ SOR-MAIN-REM1+ SOR-MAIN-REM2

SOR-CMF = SOR-SUMS-REM + SOR-MAIN-FULL+ SOR-MAIN-REM1+ SOR-MAIN-REM2

SOR-CMAX = SOR-SUMS + SOR-MAIN-FULL+ SOR-MAIN-REM1+ SOR-MAIN-REM2
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G.2 merge Kernel Predictions

01: real a(0:nn-1)
02: integer off,off2
03: integer index(0:nn-1)
04: integer numbers(0:nn-1)
05: logical mask(0:nn-1)
06:
07: do i=0,nn-1
08: numbers(i)=i
09: end do
10:
11: do oi=1,n
12:
13: do i=oi,1,-1
14:
15: off=2**i
16: off2=off/2
17: if (i.eq.oi.and.i.ne.1) then
18: index=ishft(ishft(numbers,-i),i)+off-1-
19: + iand(numbers,off-1)
20: else
21: index=ieor(numbers,off2)
22: endif
23: mask=.not.(numbers.gt.index.xor.a(index).gt.a)
24: where (mask)
25: a=a(index)
26: end where
27:
28: end do
29: end do

Figure 14: Core of the merge Kernel

merge is a Fortran 90 implementation of Batcher’s odd-even merge sort, which sorts n numbers in
O(n log2 n) time. The sort can operate on data in place, is relatively efficient for medium sized arrays,
and is not stable.18 The main loop of our implementation, shown in Figure 14, sorts a four arrays of nn
quasi-random reals into ascending order.

In our specific benchmark, nn is 32768, and n is 15. Thus, the code inside the two do-loops is executed
a total of 120 iterations per array sorted. We assume that on each iteration, an average of half of the elements
in the array being sorted are swapped.

MERGE-1-4 and MERGE-1-128 correspond to the total run time of line 23 on a 4-processor shared
memory architecture and an 128-processor distributed memory architecture with blocked data layout,
respectively.

OH-RAND-READ-NORM = 0.25 � OH-RAND-READ

MERGE-1-4 = 120 � L-OHS32768 + 120 � L-NOT32768 + 120 � I-LOAD32768 + 120 � I-GT32768 +
120 � I-LOAD32768 + 120 � L-OR32768 + 120 � RS-LOAD32768 + 120 � RS-GT32768 + 3.93216e+06 �

OH-GATHER + 3.93216e+06 � OH-RAND-READ-NORM+ 120 � RS-LOAD32768

18A stable sort retains the original ordering of records with the same key.
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MERGE-1-128 = 120 � L-OHS32768 + 120 � L-NOT32768 + 120 � I-LOAD32768 + 120 � I-GT32768 +
120 � I-LOAD32768 + 120 � L-OR32768 + 120 � RS-LOAD32768 + 120 � RS-GT32768 + 3.93216e+06 �

OH-GATHER + 917504 � REM-READ-NORM + 92 � RS-LOAD32768

MERGE-2 corresponds to the total run time of line 21.

MERGE-2 = 106 � I-OHS32768 + 106 � I-LOAD32768 + 106 � I-EOR32768

MERGE-3 corresponds to the total run time of lines 18 though 19.

MERGE-3 = 14�I-OHS32768+28�I-SHFT32768+14�I-LOAD32768+14�I-ADD32768+14�I-AND32768+
14 � I-LOAD32768

MERGE-4-REM corresponds to the total run time of lines 7 though 9, unparallelized.

MERGE-4-REM = 32768 � SREM-WRITE

MERGE-4-PAR corresponds to the run time of lines 7 though 9, parallelized on 4 processors.

MERGE-4-PAR = 8192 � SREM-WRITE

MERGE-5-FULL-4 and MERGE-5-FULL-128 correspond to the total run time of the lines 24 though 26,
in the case that the where statement is executed in a manner corresponding to the full mask model, for a
4-processor shared memory machine and an 128-processor distributed memory architecture with blocked
data layout, respectively.

MERGE-5-FULL-4 = 3.93216e+06�OH-FULLMASK50+120�RS-OHS32768+3.93216e+06�OH-GATHER+
3.93216e+06 � RAND-READ

MERGE-5-FULL-128 = 3.93216e+06�OH-FULLMASK50+120�RS-OHS32768+92�RS-LOAD32768+
3.93216e+06 � OH-GATHER + 917504 � REM-READ-NORM

The MERGE-CMF, MERGE-CMAX, MERGE-CF77, and MERGE-F90 parameters correspond to the total
run time on the CM-5/cmf, CM-5/cmf-cmax, Y-MP C90/cf77, and Y-MP C90/f90pairs, respectively.

MERGE-CMF = 4 � MERGE-1-128 + 4 � MERGE-2 + 4 � MERGE-3 + 4 � MERGE-4-REM + 4 �

MERGE-5-FULL-128

MERGE-CMAX = 4 � MERGE-1-128 + 4 � MERGE-2 + 4 � MERGE-3 + 4 � MERGE-5-FULL-128

MERGE-CF77 = 4 � MERGE-1-4 + 4 � MERGE-2 + 4 � MERGE-3 + 4 � MERGE-4-PAR + 4 �

MERGE-5-FULL-4

MERGE-F90 = 4�MERGE-1-4+4�MERGE-2+4�MERGE-3+4�MERGE-4-REM+4�MERGE-5-FULL-4
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G.3 ep Kernel Predictions

01: do j = 1 ,2**(M-N)
02:
03: call ARANLC( A ,y ,x, nn )
04: call ARANLC( A ,x ,y, nn )
05:
06: xk = x * R45 - 1.0
07: yk = y * R45 - 1.0
08: t = xk**2 + yk**2
09:
10: select = ( t .LE. 1.0 )
11: where( select )
12: t = SQRT( -2 * LOG( t ) / t )
13: xk = xk * t
14: yk = yk * t
15: sumx = sumx + xk
16: sumy = sumy + yk
17: ic = INT( MAX( ABS(xk) ,ABS(yk) ) )
18: endwhere
19:
20: do i = 0 , NQ-1
21: where( select .AND. ic .EQ. i )
22: + counts(i,:) = counts(i,:) + 1
23: enddo
24:
25: enddo
26:
27: sumx1 = SUM( sumx )
28: sumy1 = SUM( sumy )
29: do i=0,nq-1
30: countslice=counts(i,:)
31: counts1(i) = SUM(countslice)
32: end do

[...]

33: subroutine ARANLC( A ,Xk ,Xkp1, n )
34:
35: real A
36: real Xk(n)
37: real Xkp1(n)
38: real t1(n),t2(n),x1(n),x2(n) ,z(n)
39:
40: a1 = AINT( R23 * A )
41: a2 = A - T23 * a1
42: x1 = AINT( R23 * Xk )
43: x2 = Xk - T23 * x1
44:
45: t1 = a1 * x2 + a2 * x1
46: z = t1 - T23 * AINT( R23 * t1 )
47: t2 = T23 * z + a2 * x2
48: Xkp1 = t2 - T46 * AINT( R46 * t2 )
49:
50: return
51: end

Figure 15: Core of the ep Kernel

ep is the sample version of the Embarrassingly Parallel kernel of the NAS Parallel Benchmark suite,
modified so it compiles on all systems in question. Using a parallelizable random number generator, the
kernel generates a large number (221) of random two dimensional coordinates in a Gaussian distribution
about the origin, and tallies the number of coordinates which fall into each of a set of concentric square
regions also centered on the origin. The random number generator stores and manipulates 48-bit integer
quantities using the mantissa of REAL*8 variables.

We measure the parallel random number and coordinate generation, region testing, and result calculation
portions of the kernel. We generate 2097512 (221 ) coordinates, in batches of 8196 (213), and calculate the
number of coordinates falling into each of 10 annuli.

The following calculations compose our predictions:
EP-ARANLC-RS-1 is the run time of a single call to the aranlc subroutine as in line 3.

EP-ARANLC-RS-1 = 256 �RS-OHS8192+256 �RS-LOAD8192+256 �RS-I8192+256 � I-RS8192+256 �

RS-OHS8192 + 512 � RS-LOAD8192 + 256 � RS-ADD8192 + 256 � RS-MUL8192 + 256 � RS-OHS8192 +
256 �RS-LOAD8192+256 �RS-I8192+256 � I-RS8192+256 �RS-OHS8192+512 �RS-LOAD8192+256 �

RS-ADD8192+256 �RS-MUL8192+256 �RS-OHS8192+1024 �RS-LOAD8192+512 �RS-MUL8192+
256�RS-ADD8192+256�RS-OHS8192+512�RS-LOAD8192+512�RS-MUL8192+256�RS-ADD8192+
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256 �RS-I8192+256 � I-RS8192+256 �RS-OHS8192+512 �RS-LOAD8192+512 �RS-MUL8192+256 �

RS-ADD8192 + 256 � RS-OHS8192 + 512 � RS-LOAD8192 + 512 � RS-MUL8192 + 256 � RS-ADD8192 +
256 � RS-I8192 + 256 � I-RS8192

EP-RS-1 is the total time spent in the aranlc subroutine.

EP-RS-1 = 2 � EP-ARANLC-RS-1

EP-RS-2 is the run time of lines 6 through 8.

EP-RS-2 = 256 �RS-OHS8192+256 �RS-LOAD8192+256 �RS-MUL8192+256 �RS-ADD8192+256 �

RS-OHS8192 + 256 � RS-LOAD8192 + 256 � RS-MUL8192 + 256 � RS-ADD8192 + 256 � RS-OHS8192 +
512 � RS-LOAD8192 + 512 � RS-EXPI8192 + 256 � RS-ADD8192

EP-RS-3 is the run time of line 10.

EP-RS-3 = 256 � L-OHS8192 + 256 � RS-LOAD8192 + 256 � RS-GTCONST8192

OH-FULLMASK79 = 0.84 � OH-FULLMASK75 + 0.16 � OH-FULLMASK100

EP-RS-4 is the run time of lines 11 through 18.

EP-RS-4 = 256�L-OHS8192+2.09715e+06�OH-FULLMASK79+256�RS-OHS8192+256�RS-SQRT8192+
512�RS-LOAD8192+256�RS-LOG8192+256�RS-OHS8192+512�RS-LOAD8192+256�RS-MUL8192+
256�RS-OHS8192+512�RS-LOAD8192+256�RS-MUL8192+256�RS-OHS8192+512�RS-LOAD8192+
256 �RS-ADD8192+256 �RS-OHS8192+512 �RS-LOAD8192+256 �RS-ADD8192+256 � I-OHS8192+
512 � RS-LOAD8192 + 256 � RS-MAX8192 + 256 � RS-ABS8192 + 256 � RS-I8192

OH-FULLMASK37 = 0.52 � OH-FULLMASK25 + 0.48 � OH-FULLMASK50

OH-FULLMASK34 = 0.64 � OH-FULLMASK25 + 0.36 � OH-FULLMASK50

OH-FULLMASK06 = 0.76 � OH-FULLMASK0 + 0.24 � OH-FULLMASK25

EP-RS-5 is the run time of lines 20 through 23.

EP-RS-5 = 2.09715e+06 � OH-FULLMASK37 + 2.09715e+06 � OH-FULLMASK34 + 2.09715e+06 �

OH-FULLMASK06+2.09715e+06�OH-FULLMASK0+2.09715e+06�OH-FULLMASK0+2.09715e+06�
OH-FULLMASK0+2.09715e+06�OH-FULLMASK0+2.09715e+06�OH-FULLMASK0+2.09715e+06�
OH-FULLMASK0 + 2.09715e+06 � OH-FULLMASK0 + 2560 � L-LOAD8192 + 2560 � L-AND8192 +
5120 � I-LOAD8192 + 256 � I-GT8192 + 2560 � I-OHS8192 + 256 � I-LOAD8192 + 256 � I-ADD8192

EP-RS-6 is the run time of lines 29 through 32.

EP-RS-6 = I-SUM8192+I-LOAD8192+I-SUM8192+I-LOAD8192+10�I-OHS8192+10�I-LOAD8192+
10 � I-SUM8192 + 10 � I-LOAD8192

EP-RS is the total run time of the kernel, using single precision reals as storage for integers.

EP-RS = EP-RS-1 + EP-RS-2 + EP-RS-3 + EP-RS-4 + EP-RS-5 + EP-RS-6

The following calculations compute EP-RD, the total run time of the kernel, using double precision reals as
storage for integers. Sans changes from single to double precision, the calculations are the same as those
used to calculate EP-RS.
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EP-ARANLC-RD-1 = 256�RD-OHS8192+256�RD-LOAD8192+256�RD-I8192+256�I-RD8192+256�
RD-OHS8192+512 �RD-LOAD8192+256 �RD-ADD8192+256 �RD-MUL8192+256 �RD-OHS8192+
256�RD-LOAD8192+256�RD-I8192+256�I-RD8192+256�RD-OHS8192+512 �RD-LOAD8192+256�

RD-ADD8192+256 �RD-MUL8192+256 �RD-OHS8192+1024 �RD-LOAD8192+512 �RD-MUL8192+
256�RD-ADD8192+256�RD-OHS8192+512�RD-LOAD8192+512�RD-MUL8192+256�RD-ADD8192+
256 �RD-I8192+256 � I-RD8192+256 �RD-OHS8192+512 �RD-LOAD8192+512 �RD-MUL8192+256 �

RD-ADD8192+256 �RD-OHS8192+512 �RD-LOAD8192+512 �RD-MUL8192+256 �RD-ADD8192+
256 � RD-I8192 + 256 � I-RD8192

EP-RD-1 = 2 � EP-ARANLC-RD-1

EP-RD-2 = 256 �RD-OHS8192+256 �RD-LOAD8192+256 �RD-MUL8192+256 �RD-ADD8192+256 �

RD-OHS8192+256 �RD-LOAD8192+256 �RD-MUL8192+256 �RD-ADD8192+256 �RD-OHS8192+
512 � RD-LOAD8192 + 512 � RD-EXPI8192 + 256 � RD-ADD8192

EP-RD-3 = 256 � L-OHS8192 + 256 � RD-LOAD8192 + 256 � RD-GTCONST8192

EP-RD-4 = 256 � L-OHS8192 + 2.09715e+06 � OH-FULLMASK79 + 256 � RD-OHS8192 + 256 �

RD-SQRT8192+512 �RD-LOAD8192+256�RD-LOG8192+256�RD-OHS8192+512�RD-LOAD8192+
256�RD-MUL8192+256�RD-OHS8192+512�RD-LOAD8192+256�RD-MUL8192+256�RD-OHS8192+
512�RD-LOAD8192+256�RD-ADD8192+256�RD-OHS8192+512�RD-LOAD8192+256�RD-ADD8192+
256 � I-OHS8192 + 512 � RD-LOAD8192 + 256 � RD-MAX8192 + 512 � RD-ABS8192 + 256 � RD-I8192

EP-RD-5 = 2.09715e+06 � OH-FULLMASK37 + 2.09715e+06 � OH-FULLMASK34 + 2.09715e+06 �

OH-FULLMASK06+2.09715e+06�OH-FULLMASK0+2.09715e+06�OH-FULLMASK0+2.09715e+06�
OH-FULLMASK0+2.09715e+06�OH-FULLMASK0+2.09715e+06�OH-FULLMASK0+2.09715e+06�
OH-FULLMASK0 + 2.09715e+06 � OH-FULLMASK0 + 2560 � L-LOAD8192 + 2560 � L-AND8192 +
5120 � I-LOAD8192 + 256 � I-GT8192 + 2560 � I-OHS8192 + 256 � I-LOAD8192 + 256 � I-ADD8192

EP-RD-6 = I-SUM8192+I-LOAD8192+I-SUM8192+I-LOAD8192+10�I-OHS8192+10�I-LOAD8192+
10 � I-SUM8192 + 10 � I-LOAD8192

EP-RD = EP-RD-1 + EP-RD-2 + EP-RD-3 + EP-RD-4+ EP-RD-5 + EP-RD-6
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G.4 multi Kernel Predictions

01: do while (step.ge.1)
02:
03: ni=32
04:
05: do i=1,ni
06:
07: ax=ifirststep
08: ay=ax
09: bx=n+ifirststep-1
10: by=bx
11:
12: sss(ax:bx:step,ay:by:step)=
13: 0.2*sss(ax:bx:step,ay:by:step)+
14: 0.2*sss(ax+step:bx+step:step,ay:by:step)+
15: 0.2*sss(ax-step:bx-step:step,ay:by:step)+
16: 0.2*sss(ax:bx:step,ay-step:by-step:step)+
17: 0.2*sss(ax:bx:step,ay+step:by+step:step)
18:
19: end do
20:
21: if (step.ge.2) then
22:
23: sss(ax+step/2:bx+step/2:step,ay+step/2:by+step/2:step)=
24: 0.25*sss(ax:bx:step,ay:by:step)+
25: 0.25*sss(ax+step:bx+step:step,ay:by:step)+
26: 0.25*sss(ax:bx:step,ay+step:by+step:step)+
27: 0.25*sss(ax+step:bx+step:step,ay+step:by+step:step)

28: sss(ax:bx:step,ay+step/2:by+step/2:step)=
29: 0.25*sss(ax:bx:step,ay:by:step)+
30: 0.25*sss(ax:bx:step,ay+step:by+step:step)+
31: 0.25*sss(ax-step/2:bx-step/2:step,ay+step/2:
32: by+step/2:step)+
33: 0.25*sss(ax+step/2:bx+step/2:step,ay+step/2:
34: by+step/2:step)
35:
36: sss(ax+step/2:bx+step/2:step,ay:by:step)=
37: 0.25*sss(ax:bx:step,ay:by:step)+
38: 0.25*sss(ax+step:bx+step:step,ay:by:step)+
39: 0.25*sss(ax+step/2:bx+step/2:step,ay-step/2:
40: by-step/2:step)+
41: 0.25*sss(ax+step/2:bx+step/2:step,ay+step/2:
42: by+step/2:step)
43:
44: end if
45:
46: step=step/2
47: ni=ni/2
48:
49: end do

Figure 16: Core of the multi Kernel

multi solves for the potentials induced in a two-dimensional cavity with specified boundary conditions;
more specifically, we compute the solution to Laplace’s Equation over a 1024 by 1024 element grid, for
5 random sets of boundary conditions. multi uses a multigrid version of Jacobi relaxation to speed
convergence; in other words, we utilize grids of increasing resolution as the simulation requires. When
we have calculated a solution for an n by n grid, we simply interpolate these values into a 2n by 2n grid,
calculate the solution for the higher density grid, and repeat the forementioned steps until we reach the
appropriate grid density. In the case of the multi kernel, we start by solving for a grid size of 16 by 16,
and we increase the dimensions by a factor of two until we reach 1024 by 1024. No convergence criteria
are examined, and we iterate 32 steps at each grid resolution.

To avoid copy steps when we increase the grid density, we simply map our coarse grid to a 1024 by
1024 array, where the points in an n by n grid are separated by 1024=n elements in the 1024 by 1024 array.
To simplify the handling of boundary conditions, we pad our 1024 by 1024 array with 64 elements on each
side. These pad elements are set to the appropriate boundary condition values.

MULTI-1 = RS-STORE1327104 + 4 � RS-STORE73428

MULTI-2-SBANKn corresponds to the run time of a set of 32 Jacobi iterations where the stride is n.

MULTI-2-SBANKn = RS-OHS(1024=n)2+4�RS-ADD(1024=n)2+5�RS-MUL(1024=n)2+5�RS-LOAD(1024=n)2+

6(1024=n)2
� OH-BANKSTRIDEn + 5(1024=n)2

� OH-PARTIALBLOCK(1024=n)2

MULTI-2-SBANK1 = RS-OHS1048576+4�RS-ADD1048576+5�RS-MUL1048576+5�RS-LOAD1048576+
5.24288e+06 � OH-PARTIALBLOCK1048576

MULTI-2-BANK = 32 �MULTI-2-SBANK64+32 �MULTI-2-SBANK32 +32 �MULTI-2-SBANK16+
32 �MULTI-2-SBANK8+32 �MULTI-2-SBANK4+32 �MULTI-2-SBANK2+32 �MULTI-2-SBANK1
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MULTI-3-SBANKn = 3 � RS-OHS(1024=n)2 + 12 � RS-MUL(1024=n)2 + 9 � RS-ADD(1024=n)2 + 12 �

RS-LOAD(1024=n)2+15(1024=n)2
�OH-BANKSTRIDEn+15(1024=n)2

�OH-PARTIALBLOCK(1024=n)2

MULTI-3-BANK = MULTI-3-SBANK64+MULTI-3-SBANK32+MULTI-3-SBANK16+MULTI-3-SBANK8+
MULTI-3-SBANK4 + MULTI-3-SBANK2

MULTI-BANK = 5 � MULTI-1 + 5 � MULTI-2-BANK+ 5 � MULTI-3-BANK

The following are predictions which cover the CM-5/cmf and CM-5/cmf-cmaxpairs:

OH-CACHESTRIDETIME = ++ � OH-CACHESTRIDE:::

OH-FULLBLOCKTIME = +frac1 � OH-FULLBLOCKsize1 + frac2 � OH-FULLBLOCKsize2

MULTI-2-SCACHEn = RS-OHS-256(1024=n)2 + 4 � RS-ADD(1024=n)2 + 5 � RS-MUL(1024=n)2 + 5 �

RS-LOAD(1024=n)2 + 6 � OH-CACHESTRIDETIME1024=n+ 5 � OH-FULLBLOCKTIME1024=n

MULTI-2-SCACHE1 = RS-OHS1048576+4�RS-ADD1048576+5�RS-MUL1048576+5�RS-LOAD1048576+
5 � OH-FULLBLOCKTIME1

MULTI-2-CACHE = 32�MULTI-2-SCACHE64+32�MULTI-2-SCACHE32+16�MULTI-2-SCACHE32+
8�MULTI-2-SCACHE32+4�MULTI-2-SCACHE32+2�MULTI-2-SCACHE32+1�MULTI-2-SCACHE32

MULTI-3-SCACHEn = 3 � RS-OHS(1024=n)2 + 12 � RS-MUL(1024=n)2 + 9 � RS-ADD(1024=n)2 + 12 �

RS-LOAD(1024=n)2 + 15 � OH-CACHESTRIDETIME1024=n + 15 � OH-FULLBLOCKTIME1024=n

MULTI-3-CACHE = MULTI-3-SCACHE64+MULTI-3-SCACHE32+MULTI-3-SCACHE16+MULTI-3-SCACHE8+
MULTI-3-SCACHE4 + MULTI-3-SCACHE2

The following approximate the overhead of messages passed during each Jacobi iterations, on an 128-
processor system with the array distributed in blocked fashion (144 by 72 blocks).

MULTI-2-REM-12864 = 6 � REM-READ

MULTI-2-REM-12832 = 13 � REM-READ

MULTI-2-REM-12816 = 27 � REM-READ

MULTI-2-REM-1288 = 54 � REM-READ

MULTI-2-REM-1284 = 108 � REM-READ

MULTI-2-REM-1282 = 216 � REM-READ

MULTI-2-REM-1281 = 432 � REM-READ

MULTI-2-REM-128 is the overhead of messages passed in the Jacobi steps, per solution generated.

MULTI-2-REM-128 = 64�MULTI-2-REM-12832+32�MULTI-2-REM-12832+16�MULTI-2-REM-12832+
8�MULTI-2-REM-12832+4�MULTI-2-REM-12832+2�MULTI-2-REM-12832+1�MULTI-2-REM-12832

MULTI-3-REM-128 is the overhead of messages generated in the grid interpolation phase, per solution
generated.

MULTI-3-REM-128 = 1296 � REM-READ
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MULTI-F90, MULTI-F77, MULTI-CMF, and MULTI-CMAX are the predicted run times on the Y-MP
C90/f90, Y-MP C90/cf77, CM-5/cmf, and CM-5/cmf-cmax pairs, respectively.

MULTI-CRAY = MULTI-BANK

MULTI-F90 = MULTI-CRAY

MULTI-F77 = MULTI-CRAY

MULTI-CM5 = 5�MULTI-1+5�MULTI-2-CACHE+5 �MULTI-3-CACHE+5�MULTI-2-REM-128+
5 � MULTI-3-REM-128

MULTI-CMF = MULTI-CM5

MULTI-CMAX = MULTI-CM5
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G.5 tomcatv Kernel Predictions

01: C
02: C J-LOOP
03: C
04: M = 0
05: DO 310 J = J1P,J2M
06: JP = J+1
07: JM = J-1
08: M = M+1
09: C
10: C I-LOOP
11: C
12: DO 250 I = I1P,I2M
13: IP = I+1
14: IM = I-1
15: XX = X(IP,J)-X(IM,J)
16: YX = Y(IP,J)-Y(IM,J)
17: XY = X(I,JP)-X(I,JM)
18: YY = Y(I,JP)-Y(I,JM)
19: A = 0.25*(XY*XY+YY*YY)
20: B = 0.25*(XX*XX+YX*YX)
21: C = 0.125 *(XX*XY+YX*YY)
22: QI = 0.
23: QJ = 0.
24: C QI = A*0.5
25: C QJ = B*0.5
26: AA(I,M) = -B
27: DD(I,M) = B+B+A*REL
28: PXX = X(IP,J)-2.*X(I,J)+X(IM,J)
29: QXX = Y(IP,J)-2.*Y(I,J)+Y(IM,J)
30: PYY = X(I,JP)-2.*X(I,J)+X(I,JM)
31: QYY = Y(I,JP)-2.*Y(I,J)+Y(I,JM)
32: PXY = X(IP,JP)-X(IP,JM)-X(IM,JP)+X(IM,JM)
33: QXY = Y(IP,JP)-Y(IP,JM)-Y(IM,JP)+Y(IM,JM)
34: C
35: C CALCULATE RESIDUALS ( EQUIVALENT TO RIGHT HAND SIDES...
36: C
37: RX(I,M) = A*PXX+B*PYY-C*PXY+XX*QI+XY*QJ
38: RY(I,M) = A*QXX+B*QYY-C*QXY+YX*QI+YY*QJ
39: 250 CONTINUE
40: 310 CONTINUE
41: C
42: C DETERMINE MAXIMUM VALUES OF RESIDUALS
43: C
44: DO 270 J = 1,M
45: DO 270 I = I1P,I2M
46: IF(ABS(RX(I,J)).LT.ABS(RXM)) GOTO 262
47: RXM = RX(I,J)
48: IRXM = I
49: JRXM = J
50: 262 IF(ABS(RY(I,J)).LT.ABS(RYM)) GOTO 270
51: RYM = RY(I,J)
52: IRYM = I
53: JRYM = J

54: 270 CONTINUE
55: C
56: C SOLVE TRIDIAGONAL SYSTEMS IN PARALLEL
57: C
58: IF(M-1)601,201,301
59: 201 CONTINUE
60: DO 102 I = I1P,I2M
61: RX(I,1) = RX(I,1)/DD(I,1)
62: RY(I,1) = RY(I,1)/DD(I,1)
63: 102 CONTINUE
64: GOTO 601
65: 301 DO 103 I = I1P,I2M
66: D(I,1) = 1./DD(I,1)
67: 103 CONTINUE
68: DO 401 J = 2,M
69: DO 401 I = I1P,I2M
70: R = AA(I,J)*D(I,J-1)
71: D (I,J) = 1./(DD(I,J)-AA(I,J-1)*R)
72: RX(I,J) = RX(I,J) - RX(I,J-1)*R
73: RY(I,J) = RY(I,J) - RY(I,J-1)*R
74: 401 CONTINUE
75: DO 411 I = I1P,I2M
76: RX(I,M) = RX(I,M)*D(I,M)
77: RY(I,M) = RY(I,M)*D(I,M)
78: 411 CONTINUE
79: DO 501 J = 2,M
80: K = M-J+1
81: DO 501 I = I1P,I2M
82: RX(I,K) = (RX(I,K)-AA(I,K)*RX(I,K+1))*D(I,K)
83: RY(I,K) = (RY(I,K)-AA(I,K)*RY(I,K+1))*D(I,K)
84: 501 CONTINUE
85: C
86: C ADD CORRECTIONS
87: C
88: L = 0
89: DO 290 J = J1P,J2M
90: L = L+1
91: DO 290 I = I1P,I2M
92: X(I,J) = X(I,J)+RX(I,L)
93: Y(I,J) = Y(I,J)+RY(I,L)
94: 290 CONTINUE
95: C
96: C PREPARE OUTPUT OF CONVERGENCE BEHAVIOUR
97: C
98: 601 LL = LL+1
99: WRITE (6,1300)LL,IXCM,JXCM,DXCM,

100: 1 IYCM,JYCM,DYCM,
101: 2 IRXM,JRXM, RXM,
102: 3 IRYM,JRYM, RYM
103: ABX = ABS(RXM)
104: ABY = ABS(RYM)
105: DMAX = AMAX1(ABX,ABY)
106: IF(LL.LT.LMAX.AND.DMAX.GT.EPS) GOTO 190

Figure 17: Core of the tomcatv Kernel

tomcatv performs the generation of a 257 by 257 grid using Thompson’s method. The program is a
member of the SPEC benchmarking suite and conforms to the Fortran 77 standard. The program consists
of a set of singly and doubly-nested loops of depths one and two, each of which can be parallelized with
varying degrees of difficulty. We refer to a do-loop which includes code up to label n as loop n. The cf77,
f90, and cmf-cmax compilers parallelize all inner loops, and the doubly nested loop 310. Loop 270 is not
parallelized by any compiler, and its run time composes a significant portion of the run time of tomcatv
on all platforms.

The following are computations of the run time of the kernel:
TCV-CRAY-310-250 is the parallel run time of loop 310.

TCV-CRAY-310-250= 4 �RS-OHS65025+18�RS-LOAD65025+22�RS-ADD65025+22�RS-MUL65025

TCV-CRAY-103 is the parallel run time of loop 103.

TCV-CRAY-103 = RS-OHS255 + RS-LOAD255 + RS-DIV255
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TCV-CRAY-401-INNER is the parallel run time of the inner loop of loop 401.

TCV-CRAY-401-INNER = 3 � RS-OHS255 + 8 � RS-LOAD255 + 4 � RS-MUL255 + 3 � RS-ADD255 +
RS-DIV255

TCV-CRAY-401 is the parallel run time of loop 401.

TCV-CRAY-401 = 255 � TCV-CRAY-401-INNER+ 256 � SEQ-LOIN

TCV-CRAY-411 is the parallel run time of loop 411.

TCV-CRAY-411 = RS-OHS255 + 2 � RS-LOAD255 + RS-MUL255

TCV-CRAY-501-INNER is the parallel run time of the inner loop in loop 501.

TCV-CRAY-501-INNER = 2 � RS-OHS255 + 6 � RS-LOAD255 + 4 � RS-MUL255 + 2 � RS-ADD255

TCV-CRAY-501 is the parallel run time of loop 501.

TCV-CRAY-501 = 255 � TCV-CRAY-501-INNER+ 256 � SEQ-LOIN

TCV-CRAY-290 is the parallel run time of loop 290.

TCV-CRAY-290 = 2 � RS-OHS65025 + 4 � RS-LOAD65025 + 2 � RS-ADD65025

TCV-CRAY-270-ONE is the sequential run time of one iteration of the computation inside loop 270. Based
on our measurements, the code inside either if statement is run 0.7 percent of the possible number of
executions.

TCV-CF77-270-ONE= 4 � SEQ-ABSS+ 2 � SEQ-ARR2+ 2 � SEQ-CRSL+ 2 � RAND-READ+ 1.99 �

SEQ-GOTO + 0.014 � SEQ-ARR2+ 0.042 � SEQ-TRSL

TCV-CRAY-270 is the sequential run time of loop 270.

TCV-CRAY-270 = 65025 � TCV-CRAY-270-ONE+ 256 � SEQ-LOIN

TCV-CRAY-ONE is the run time of the a single iteration of the mesh generation process on the Y-MP C90.

TCV-CRAY-ONE = TCV-CRAY-310-250+ TCV-CRAY-103+ TCV-CRAY-401+ TCV-CRAY-411+
TCV-CRAY-501+ TCV-CRAY-290+ TCV-CRAY-270

TCV-CF77 and TCV-F90 are the run times of the kernel on the Y-MP C90/cf77 and Y-MP C90/f90 pairs,
respectively.

TCV-CF77 = 100 � TCV-CF77-ONE

TCV-F90 = TCV-CF77

The following are calculations of the run time on the CM-5 platform. TCV-CMF is the run time on the
CM-5/cmf pair. The cmf compiler does not parallelize the code at all, so we approximate the run time as
the sum of the overhead host remote reads and writes and ignore other constributions. We calculate that
tomcatv performs approximately 2.5 million host remote reads and 0.5 million host remote writes.

TCV-CMF = 2500000 � SREM-READ + 500000 � SREM-WRITE

Note that all parameters TCV-CMAX-n are calculated as the corresponding parameter TCV-CRAY-n, with
the exception that all parameters which represent operations on single precision operands are replaced by
their double precision counterparts. TCV-CMAX-270-ONE is the run time of one execution of the inner
computation of loop 270.
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TCV-CMAX-270-ONE = 2 � SREM-READ

TCV-CMAX-270 is the run time of loop 270.

TCV-CMAX-270 = 65025 � TCV-CMAX-270-ONE

TCV-CMAX-OH represents the overhead due to block references and remote reads. We assume an 8 by
16 blocked array distribution. We calculate that there are approximate 3666 remote reads per iteration,
and 4100 block loads/stores. Since the block overhead on the CM-5 is represented by the full block
model is largely independent of the number of elements loaded, we approximate all block loads using the
OH-FULLBLOCK0.

TCV-CMAX-OHBLOCKTOTAL = 66049 � OH-FULLBLOCK0

TCV-CMAX-OH = 3666 � REM-READ4100 � OH-FULLBLOCKTOTAL

TCV-CMAX-ONE = TCV-CMAX-310-250+TCV-CMAX-103+TCV-CMAX-401+TCV-CMAX-411+
TCV-CMAX-501+ TCV-CMAX-290+ TCV-CMAX-270+ TCV-CMAX-OH

TCV-CMAX-3-ONE = 3 � SREM-READ + 2 � SREM-WRITE

TCV-CMAX-3 = 65025 � TCV-CMAX-3-ONE

TCV-CMAX is the run time of the kernel on the CM-5/cmf-cmax pair.

TCV-CMAX = 100 � TCV-CMAX-ONE+ TCV-CMAX-3
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