
Improving World Wide Web Latency �

Venkata N. Padmanabhan
padmanab@CS.Berkeley.EDU

Report No. UCB/CSD-95-875

Computer Science Division

University of California at Berkeley
May, 1995

Abstract

The HTTP protocol, as currently used in the World Wide Web, uses a separate TCP con-

nection for each �le requested. This adds signi�cant and unnecessary overhead, especially in the

number of network round trips required. We analyse the costs of this approach and propose sim-

ple modi�cations to HTTP that, while interoperating with unmodi�ed implementations, avoid

the unnecessary network costs. We have implemented our modi�cations, and our measurements

show that they dramatically reduce latencies. We have also investigated the e�ectiveness of a

scheme to mask network latency by prefetching �les likely to be requested next, while the user

is browsing through the currently displayed page. Our results indicate a signi�cant bene�t from

prefetching at the cost of an increase in network tra�c.

1 Introduction

People use the World Wide Web (WWW) because it gives quick and easy access to a tremendous
variety of information in remote locations. Users do not like to wait for their results; they tend to
avoid or complain about Web pages that take a long time to retrieve. That is, users care about
Web latency.

Perceived latency comes from several sources. Web servers can take a long time to process a request,
especially if they are overloaded or have slow disks. Web clients can add delay if they do not quickly
parse the retrieved data and display it for the user. Latency caused by client or server slowness,
however, can in principle be reduced simply by buying a faster computer, or faster disks, or more
memory.

Web retrieval delay also depends on network latency. The Web is useful precisely because it provides
remote access, and transmission of data across a distance takes time. Some of this delay depends
on bandwidth; one cannot retrieve a 1 Mbyte �le across a 1 Mbit/sec link in less than 8 seconds.
You can in principle reduce this time by buying a higher-bandwidth link. But much of the latency
seen by Web users comes from propagation delay: the speed of light is a constant. You cannot send

�This work was supported in part by Digital Equipment Corporation's Western Research Laboratory.

1



even a single bit of information over, say, 3000 miles in less than 16 msec, no matter how much
money you have.

In practice, most retrievals over the World Wide Web result in the transmission of relatively small
amounts of data. (A randomly chosen sample of 200,000 HTTP retrievals shows a mean size of
12925 bytes and a median size of just 1770 bytes; excluding 12727 zero-length retrievals, the mean
was 13767 bytes and the median 1946 bytes.) This means that bandwidth-related delay may not
account for much of the perceived latency. For example, transmission of 20 Kbytes over a T1 (1.544
Mbit/sec) link takes about 100 msec. For comparison, the best-case small-packet round-trip time
(RTT) over a coast-to-coast (US) Internet path is about 70 msec; at least half of this delay depends
on the speed of light and is therefore intrinsic. When the network path is congested, queuing delays
can increase the RTT by large factors.

This means that, in order to avoid network latency, we must avoid the cost of round trips through
the network. Unfortunately, the Hypertext Transport Protocol (HTTP) [1], as it is currently used
in the Web, incurs many more round trips than necessary.

In the �rst part of this report, we analyse that problem, and show that almost all of the unnec-
essary round trips may be eliminated by surprisingly simple changes to the HTTP protocol and
its implementations. We then present results measured using prototype implementations, which
con�rm that our changes result in signi�cantly improved response times. This material is based on
our earlier paper [11].

During the course of our work, Simon Spero published an analysis of HTTP [15], which reached
conclusions similar to ours. However, we know of no other project, besides our own, that has
implemented the consequent modi�cations to HTTP, or that has quanti�ed the results.

Another approach for avoiding the cost of network round trips is to \hide" them from the user.
One way of doing this is to prefetch Web pages that the user is likely to access next, while the
user is browsing through the currently displayed page. Then, if the user does request one of the
prefetched pages, it will probably already be in the local site's cache. So, the network round trips
incurred while fetching the page from the server are hidden from the user.

While there have been studies of prefetching in other settings, we are not aware of any other work
in the particular context of the WWW. It is clear that the e�ectiveness of prefetching critically
depends on how good the predictions we make are. We use a scheme based on that proposed by
Gri�oen and Appleton [6] in the context of �le systems, with a few modi�cations. Details of the
our scheme and a discussion of our results are the subject of the second half of this report.

The rest of this report is organized as follows. In section 2, we brie
y discuss the basics of HTTP
that are needed to understand the rest of this report. Section 3 deals with the way HTTP uses
network connections, and analyses some of its drawbacks. In sections 4 and 5, we present two
di�erent changes to HTTP that we have implemented. An experimental evaluation of the reduction
in latency due to these modi�cations is presented in section 6. Then we move on to a discussion of
prefetching in section 7. In section 8, we present an evaluation of our prefetching scheme based on
log-driven simulations. We summarize our work in section 9, and present our conclusions in section
10.

2



2 HTTP protocol elements

We brie
y sketch the HTTP protocol, to provide su�cient background for understanding the rest
of this report. We omit a lot of detail not directly relevant to HTTP latency.

The HTTP protocol is layered over a reliable bidirectional byte stream, normally TCP [12]. Each
HTTP interaction consists of a request sent from the client to the server, followed by a response
sent from the server to the client. Requests and responses are expressed in a simple ASCII format.

The precise speci�cation of HTTP is in a state of 
ux. Most existing implementations conform to
[1]. A revision of the speci�cation is in progress.

An HTTP request includes several elements: a method such as GET, PUT, POST, etc.; a Uniform
Resource Locator (URL); a set of Hypertext Request (HTRQ) headers, with which the clients
speci�es things such as the kinds of documents it is willing to accept, authentication information,
etc; and an optional Data �eld, used with certain methods such as PUT.

The server parses the request, then takes action according to the speci�ed method. It then sends
a response to the client, including a status code to indicate if the request succeeded, or if not, why
not; a set of object headers, meta-information about the \object" returned by the server, optionally
including the \content-length" of the response; and a Data �eld, containing the �le requested, or
the output generated by a server-side script.

Note that both requests and responses end with a Data �eld of arbitrary length. The HTTP
protocol speci�es three possible ways to indicate the end of the Data �eld, in order of declining
priority:

1. If the \Content-Length" �eld is present, it indicates the size of the Data �eld and hence the
end of the message.

2. The \Content-Type" �eld may specify a \boundary" delimiter, following the syntax for MIME
multipart messages [2].

3. The server (but not the client) may indicate the end of the message simply by closing the
TCP connection after the last data byte.

Later on we will explore the implications of the message termination mechanism.

3 Message and packet exchanges in HTTP

We now look at the way the interaction between HTTP clients and servers appears on the network,
with particular emphasis on how this a�ects latency.

Figure 1 depicts the exchanges at the beginning of a typical interaction, the retrieval of an HTML
document with at least one uncached inline image. In this �gure, time runs down the page, and
long diagonal arrows show packets sent from client to server or vice versa. These arrows are marked
with TCP packet types; note that most of the packets carry acknowledgements, but the packets
marked ACK carry only an acknowledgement and no new data. FIN and SYN packets in this
example never carry data, although in principle they sometimes could.

3



SYN

SYN

ACK
DAT

ACK

DAT
FIN

ACK
FIN

ACK SYN

SYN

ACK
DAT

DAT

Client Server

Server reads
from disk

Server reads
from disk

0 RTT

1 RTT

2 RTT

3 RTT

4 RTT

Client opens
TCP connection

Client sends
HTTP request
for HTML

Client parses
HTML
Client opens
TCP connection

Client sends
HTTP request
for image

Image begins
to arrive

ACK

Figure 1: Packet exchanges and round-trip times for HTTP

Shorter, vertical arrows show local delays at either client or server; the causes of these delays are
given in italics. Other client actions are shown in roman type, to the left of the Client timeline.

Also to the left of the Client timeline, horizontal dotted lines show the \mandatory" round trip times
(RTTs) through the network, imposed by the combination of the HTTP and TCP protocols. These
mandatory round-trips result from the dependencies between various packet exchanges, marked
with solid arrows. The packets shown with gray arrows are required by the TCP protocol, but do
not directly a�ect latency because the receiver is not required to wait for them before proceeding
with other activity.

The mandatory round trips are:

1. The client opens the TCP connection, resulting in an exchange of SYN packets as part of
TCP's three-way handshake procedure.

2. The client transmits an HTTP request to the server; the server may have to read from its disk
to ful�ll the request, and then transmits the response to the client. In this example, we assume
that the response is small enough to �t into a single data packet, although in practice it might
not. The server then closes the TCP connection, although if it has sent a Content-length �eld,
the client need not wait for the connection termination before continuing.

3. After parsing the returned HTML document to extract the URLs for inline images, the client
opens a new TCP connection to the server, resulting in another exchange of SYN packets.

4. The client again transmits an HTTP request, this time for the �rst inline image. The server
obtains the image �le, and starts transmitting it to the client.

Therefore, the earliest time at which the client could start displaying the �rst inline image would
be four network round-trip times after the user requested the document. Each additional inline
image requires at least two further round trips. In practice, with networks of �nite bandwidth or
documents larger than can �t into a small number of packets, additional delays will be encountered.

4



3.1 Other ine�ciencies

In addition to requiring at least two network round trips per document or inline image, the HTTP
protocol as currently designed has other ine�ciencies.

Because the client sets up a new TCP connection for each HTTP request, there are costs in addition
to network latencies:

� Connection setup requires a certain amount of processing overhead at both the server and
the client. This typically includes allocating new port numbers and resources, and creating
the appropriate data structures. Connection teardown also requires some processing time,
although perhaps not as much.

� The Web clearly needs some form of authentication, and perhaps also encryption for privacy
and data integrity. It would be quite expensive to re-authenticate principals on each HTTP
request.

� Although the TCP connections may be active for only a few seconds, the TCP speci�cation
requires that the host which closed the connection remember certain per-connection informa-
tion for four minutes [12] (although many implementations do violate this speci�cation and
use a much shorter timer.) A busy server could end up with its tables full of connections in
this \TIME-WAIT" state, either leaving no room for new connections, or at least imposing
excessive connection table management costs.

Current HTTP practice also means that most of these TCP connections carry only a few thousand
bytes of data. As we noted earlier, one sample showed a mean document size of about 13K bytes,
and a median of under 2K bytes. About 45% of these retrievals were for Graphics Interchange
Format [4] (GIF) �les, used for both inline and out-of-line images. This sub-sample showed a
slightly larger mean and a slightly smaller median; our guess is that the very large GIF �les were
not inline images. The proposed use of JPEG for inline images will tend to reduce these sizes.

Unfortunately, TCP does not fully utilize the available network bandwidth for the �rst few round-
trips of a connection. This is because modern TCP implementations use a technique called slow-

start [7] to avoid network congestion. The slow-start approach requires the TCP sender to open its
\congestion window" gradually, doubling the number of packets each round-trip time. TCP does
not reach full throughput until the e�ective window size is at least the product of the round-trip
delay and the available network bandwidth. This means that slow-start restricts TCP throughput,
which is good for congestion avoidance but bad for short-connection completion latency.

3.2 Quantifying TCP connection overheads

We performed a set of simple experiments to illustrate this e�ect. We used a simple client program,
which opens a connection to a server, tells the server how many bytes it wants, and then reads and
discards that many bytes from the server. The server, meanwhile, generates the requested number
of bytes from thin air, writes them into the connection, and then closes the connection. This closely
approximates the network activity of a single-connection HTTP exchange.

We measured three con�gurations: a \local" server, with a round-trip time of under 1 msec,
and 1460-byte TCP segments (packets); a \remote" server, across the width of the U.S., with a

5



1000 1e+07
Connection length (bytes)

10000 100000 1e+06
0

1.4e+06

200000

400000

600000

800000

1e+06

1.2e+06

T
h
ro

u
g
h
p
u
t 

(b
it

s/
se

c
o
n
d
)

Window = 32KB, MSS = 536
Window = 8KB

Window = 32KB, MSS = 1460

Figure 2: Throughput vs. connection length, RTT = 70 ms

1000 1e+07
Connection length (bytes)

10000 100000 1e+06
0

1e+07

2e+06

4e+06

6e+06

8e+06

T
h
ro

u
g
h
p
u
t 

(b
it

s/
se

c
o
n
d
)

Window = 32KB

Window = 8KB

Figure 3: Throughput vs. connection length, RTT near 0 ms

best-case RTT of 70 msec, and 1460-byte TCP segments; and the same remote server, but using
536-byte TCP segments. This last con�guration re
ects a widely-used technique meant to avoid
IP fragmentation [3]; more modern practice could use the full available packet size [9]. In each
con�guration, we measured throughput for a large variety of connection lengths and a few popular
TCP bu�er (maximum window) sizes. We did ten trials for each set of parameters, and plotted the
throughput of the best trial from each set (to help eliminate noise from other users of the network).
Figure 2 shows the results for the remote (70 msec) server; �gure 3 shows the local-server results.
Note that the two �gures have di�erent vertical scales.

Figure 2 shows that, in the remote case, using a TCP connection to transfer only 2 Kbytes results in
a throughput less than 10% of best-case value. Even a 20 Kbyte transfer achieves only about 50%
of the throughput available with a reasonable window size. This reduced throughput translates
into increased latency for document retrieval. The �gure also shows that, for this 70 msec RTT,
use of too small a window size limits the throughput no matter how many bytes are transferred.

We also note a signi�cant decline in throughput over this path for transfers longer than about

6



DAT

ACK

DAT

ACK

DAT

DAT

Client Server

Server reads
from disk

Server reads
from disk

0 RTT

1 RTT

2 RTT

Client sends
HTTP request
for HTML

Client parses
HTML
Client sends
HTTP request
for image

Image begins
to arrive

ACK

Figure 4: Packet exchanges for HTTP with persistent connections

500 Kbytes. This is caused by a breakdown in the TCP congestion-avoidance algorithm, as the
congestion window becomes larger than the router's queue limit. Note, however, that this problem
arises only for transfers orders of magnitude larger than typical HTML documents or inline images.
The dotted curve shows that by using a larger maximum segment size (MSS) (and hence fewer
packets for the same congestion window size), we can obtain somewhat better throughput for
lengthy transfers.

Even in the local case, per-connection overhead limits throughput to about 25% of capacity for
transfers of 2 Kbytes, and about 70% of capacity for transfers of 20 Kbytes. In this case, slow-
start is not involved, because the ULTRIX implementation of TCP avoids slow-start for local-net
connections.

4 Persistent Connections

Since the short lifetimes of HTTP connections causes performance problems, we tried the obvious
solution: use a single, long-lived connection for multiple HTTP transactions. The connection stays
open for all the inline images of a single document, and across multiple HTML retrievals. This
avoids almost all of the per-connection overhead, and also should help avoid the TCP slow-start
delays.

Figure 4 shows how this change a�ects the network latencies. This depicts the same kind of retrieval
as did �gure 1, except that the client already has a TCP connection open to the server, and does
not close it at the end of an HTTP exchange. Note that the �rst image arrives after just two round
trips, rather than four. Also, the total number of packets is much smaller, which should lead to
lower server load. Finally, since the ratio of connection lifetime to the length of the TIME-WAIT
state is higher, the server will have far fewer TCP connections (active or inactive) to keep track of.

In order to use long-lived connections, we had to make simple changes to the behavior of both client

7



and server. The client can keep a set of open TCP connections, one for each server with which it
has recently communicated; it can close connections as necessary to limit its resource consumption.
Even a client capable of maintaining only one open connection can bene�t, by simply not closing
the connection until it needs to contact a di�erent server. It is quite likely that two successive
HTTP interactions from a single client will be directed to the same server (although we have not
yet quanti�ed this locality).

The server also keeps a set of open TCP connections. Some HTTP servers fork a new process to
handle each new HTTP connection; these simply need to keep listening for further requests on the
open connection after responding to a request, rather than closing the connection and terminating.
This not only avoids connection overhead on each request; it also avoids the cost of forking a new
process for each request. Other servers manage multiple threads within a single process; these need
to keep a set of TCP connections open, and listen for new requests on all of them at once. Neither
approach is especially hard to implement.

With either approach, the server may need to limit the number of open connections. For example,
it could close the oldest connection when the number of open connections exceeds a threshold
(preferably not in the middle of responding to a request on this connection). For multiple-process
UNIX-based servers, for example, the parent process could send its oldest child a signal (interrupt)
saying \exit when you next become idle." Since servers may terminate connections at arbitrary
times, clients must be able to reopen connections and retry requests that fail because of this.

4.1 Detecting end-of-transmission

As we mentioned in section 2, HTTP provides three ways for the server to indicate the end of the
Data �eld of its responses: a Content-length �eld, a boundary delimiter speci�ed in the Content-
type �eld, or termination of the TCP connection. This presents a problem when the response is
generated by a script, since then the server process does not know how long the result will be (and
so cannot use Content-length), nor does it know the format of the data (and so cannot safely use
a predetermined delimiter sequence).

We considered several approaches in which the data stream from the script is passed through the
server on its way to the client:

Boundary delimiter The server can safely insert a boundary delimiter (perhaps as simple as a
single character) if it can examine the entire data stream and \escape" any instance of the
delimiter that appears in the data (as is done in the Telnet protocol [13]). This requires both
the server and client to examine each byte of data, which is clearly ine�cient.

Blocked data transmission protocol The server could read data from the script and send it
to the client in arbitrary-length blocks, each preceded by a length indicator. This would not
require byte-by-byte processing, but it would involve a lot of extra data copying on the server,
and would also require a protocol change.

Store-and-forward The server can read the entire output of the script into temporary storage,
then measure the length and generate a response with a correct Content-length �eld. This
requires extra copying and may be infeasible for large responses, but does not require a
protocol change.

8



None of these approaches appealed to us, because they all imposed extra work on the server (and
possibly the client).

We also considered using a separate control connection, as in FTP, via which the server could notify
the client of the amount of data it had transmitted on the data connection. This, however, might
be hard to implement and would double the amount of connection overhead, even in cases where
it is not needed.

We chose to stick with a simple, hybrid approach in which the server keeps the TCP connection
open in those cases where it can use the Content-length or boundary delimiter approaches, and
closes the connection in other cases (typically, when invoking scripts). In the common case, this
avoids the costs of extra TCP connections; in the less usual case, it may require extra connection
overhead but does not add data-touching operations on either server or client, and requires no
protocol changes.

4.2 Compatibility with older versions of HTTP

We wanted our modi�ed client to transparently interoperate with both standard and modi�ed
HTTP servers, and we wanted our modi�ed server to interoperate with both sorts of clients. This
means that the modi�ed client has to inform the server that the TCP connection should be retained,
and in such a way that an unmodi�ed server can ignore the request. This could be done by
introducing a new �eld in the HTRQ headers (see section 2) sent in the client's request. For
example, a future version of the HTTP speci�cation could de�ne a hold-connection �eld as a
part of the HTTP request.

For our experiments, we simply encoded this information in a new HTRQ header �eld; such unrec-
ognized �elds must be ignored by unmodi�ed servers.

5 Pipelining requests

Even with long-lived TCP connections, simple implementations of the HTTP protocol still require
at least one network round trip to retrieve each inline image. The client interacts with the server in
a stop-and-wait fashion, sending a request for an inline image only after having received the data
for the previous one.

There is no need for this, since the retrieval of one image in no way depends on the retrieval of
previous images. We considered several ways in which client requests could be pipelined, to solve
this problem.

5.1 The GETALL method

When a client does a GET on a URL corresponding to an HTML document, the server just sends
back the contents of the corresponding �le. The client then sends separate requests for each inline
image. Typically, however, most or all of the inline images reside on the same site as the HTML
document, and will ultimately come from the same server.

We propose adding to HTTP a GETALL method, specifying that the server should return an

9



HTML document and all of its inline images residing on that server. On receiving this request,
the server parses the HTML �le to �nd the URLs of the images, then sends back the �le and the
images in a single response. The client uses the Content-length �elds to split the response into its
components.

The parsing of HTML documents is an additional load for the server. However, it is not expected
to be too expensive, especially compared to the cost of parsing many additional HTTP requests.
Or, the server could keep a cache of the URLs associated with speci�c HTML �les, or even a
precomputed database.

One can implement the GETALL method using an ordinary GET, using an additional �eld in the
HTRQ header to indicate that the client wants to perform a GETALL. This allows a modi�ed client
to interoperate with an unmodi�ed server; in this case, the client notes that it has not received all
the images when the connection is closed, and simply retrieves them the traditional way.

5.2 The GETLIST method

HTTP clients typically cache recently retrieved images, to avoid unnecessary network interactions.
A server has no way of knowing which of the inline images in a document are in the client's cache.
Since the GETALL method causes the server to return all the images, this seems to defeat the
purpose of the client's image cache (or of a caching relay [5]). GETALL is still useful in situations
where the client knows that it has no relevant images cached (for example, if its cache contains no
images from the server in question).

Therefore, we propose adding a GETLIST mechanism, allowing a client to request a set of docu-
ments or images from a server. A client can use a GET to retrieve an HTML �le, then use the
GETLIST mechanism to retrieve in one exchange all the images not in its cache. (On subsequent
accesses to the same HTML �le, the client can request the HTML and all images in one message.)

Logically, a GETLIST is the same as a series of GETs sent without waiting for the previous one
to complete. We in fact chose to implement it this way, since it requires no protocol change and it
performs about the same as an explicit GETLIST would.

Our client uses a simple heuristic to decide between using GETALL and GETLIST. When it
accesses a document for the �rst time, it uses GETALL, even though there is a small chance that
its cache contains some of the inline images. It keeps a cache, listing for each known image URL
the URL of the document that contained it, so the client can distinguish between documents for
which it de�nitely has cached images, and those for which it probably does not (some images may
be referenced by several documents). We have not done su�cient studies of actual HTTP usage to
determine if this heuristic results in excessive retrievals of cached images.

6 Experimental Results

In this section, we report on simple experiments to measure the e�ect of the new protocol on
observed latency.

We implemented our protocol changes by modifying the Mosaic V2.4 client, and the NCSA httpd

V1.3 server. Both client and server were run on MIPS-based DECstation systems, running the

10



0 102 4 6 8
Number of inlined images

0

10

2

4

6

8
N

e
tw

o
rk

 l
a
te

n
c
y
 (

se
c
o
n
d
s) Old protocol

Long-lived connections
New protocol with pipelining

Figure 5: Latencies for a remote server, image size = 2544 bytes

ULTRIX operating system. The Mosaic client ran on a DECstation 3100 with 24M bytes of
memory; this is a relatively slow system and so we measured network retrieval times, not including
the time it took to render images on the display.

In our experiments, we measured the time required to load a document and all of its inline images.
We created documents with di�erent numbers of inline images, and with images of various sizes.
We did these measurements for both a local server, accessed via a 10 Mbit/sec Ethernet with a
small RTT, and a remote server, access via a 1.544 Mbit/sec T1 link with a best-case RTT of about
70 msec.

Figure 5 shows how load time depends on the number of images retrieved, using 2544-byte images
and the remote server. Our modi�ed HTTP protocol cuts the latency by more than half, about
what we expected from the reduced number of round trips. These images are about the median
size observed in our traces, and so we do expect to see this kind of speedup in practice. While more
than half of the improvement comes from pipelining, even without pipelining long-lived connections
do help.

Figure 6 shows that load time depends on the number of images retrieved. In this case, using
45566-byte images and the remote server, the new protocol improves latency by about 22%; less
than in �gure 5 but still noticeable. In this case, the actual data transfer time begins to dominate
the connection setup and slow-start latencies.

We summarize our results for trials using the remote server and various image sizes in �gure 7 and
using the local server in �gure 8. These graphs show the relative improvement from the modi�ed
protocol, including pipelining. In general, the bene�t from the modi�ed protocol is greatest for
small images and for at least a moderate number of images.

Even though the round-trip time to the local server is much smaller than that to the remote server,
the modi�ed protocol still provides signi�cant improvements for local retrievals. For the local case,
long-lived connections without pipelining reduces latency by only about 5% to 15%; this implies
that the reduction in round trips is more important that the per-connection overheads.

Note that for the relatively small transfers associated with the median image size, slow-start laten-
cies cannot account for much of the delay; in these tests, the TCP MSS was 1460 bytes, and traces

11



0 102 4 6 8
Number of inlined images

0

35

5

10

15

20

25

30
N

e
tw

o
rk

 l
a
te

n
c
y
 (

se
c
o
n
d
s)

Old protocol
Long-lived connections
New protocol with pipelining

Figure 6: Latencies for a remote server, image size = 45566 bytes

0 122 4 6 8 10
Number of inlined images

0

1

0.2

0.4

0.6

0.8

R
a
ti

o
 o

f 
n
e
tw

o
rk

 l
a
te

n
c
y

45566 bytes

7588 bytes

2544 bytes

12188 bytes

25751 bytes

Figure 7: Latency improvements for a remote server

0 122 4 6 8 10
Number of inlined images

0

1

0.2

0.4

0.6

0.8

R
a
ti

o
 o

f 
n
e
tw

o
rk

 l
a
te

n
c
y 45566 bytes

7588 bytes

2544 bytes

12188 bytes

25751 bytes

Figure 8: Latency improvements for a local server

12



showed that slow-start did not limit the window size.

7 Prefetching �les

Thus far, we have discussed modi�cations to the HTTP protocol as a way of substantially reducing
latency. There are, of course, other possibilities for latency reduction. We now discuss one idea
which is motivated by the following observation. The usual way users browse the Web is to follow
hyperlinks, going from one Web page to another, which is generally on the same server. Typically,
there is a pause after each page is loaded, while the user is browsing through the displayed material.
This time could be used by the client to prefetch �les that are likely to be accessed soon, thereby
avoiding network latency if and when those �les are actually requested.

The basic idea is for the server to make predictions about the likelihood that a particular Web
page will be accessed next, and convey this to the client. The client program can then decide
whether or not to actually prefetch the page. This partitioning of work between the server and
clients is natural because, on the one hand, the server has the opportunity to observe the pattern
of accesses from several clients and use this information to make intelligent predictions, while on
the other hand the clients are in the best position to decide whether or not they want to expend
the resources (CPU time, memory, network bandwidth, etc.) needed to prefetch data. The human
user is totally oblivious of all this.

As an aside, we note that the server could prefetch �les from disk into memory, independent of
clients. However, the bene�t of this would be limited because of the dominance of network latency
over disk latency, especially in a wide-area context. So in this study, we only investigated prefetching
from the server to clients, across the network.

7.1 Model for prefetching

We now describe our model for how prefetching will be done. There are two types of user-level
processes running on the server machine. One is the regular HTTP server process, httpd, with some
additions as described below. This process forks o� child processes to handle incoming requests from
clients. The other process is the prefetch daemon, prefetchd, which makes prefetching decisions.
There is only one prefetchd per server, not a new one for each client request or for each client.

On receiving a request from a client, httpd passes on the identity of the client and the �les requested
to prefetchd. In this context, we are only concerned with �le accesses, so prefetchd only looks
at client requests using the GET method or its variants (such as GETALL or GETLIST). The
prefetchd uses the prediction algorithm described in the next subsection to determine candidate
�les for being prefetched based on the likelihood of their being accessed soon, and conveys this
information to the concerned client. This can be piggy-backed on the reply sent by httpd to the
client, in a special �eld.

The client, essentially an enhanced version of a browser such as Mosaic, looks at the reply sent by
the server and decides whether or not to prefetch the �les. It could base its decision on a variety
of factors such as the contents of its local cache (which might already contain the �le), the current
CPU load, its current mode of operation (such as image loading being turned o�), etc. In fact, the
client process could use such feedback information from the system it is running on, to tune the

13



popular.html

home.html

image1.gif

image2.gif

0.5 0.9

0.2

0.2
0.5

0.01

Figure 9: A small portion of a dependency graph

\aggressiveness" with which it prefetches data.

Once the client has decides to prefetch a �le, it sends a prefetch request to the server. In the request
it also indicates that it is prefetching data and not requesting data that the user has asked for. This
information can potentially be used by the server in a variety of ways. Prefetchd could decide not
to do any further prefetching computation based on this request since it is itself a prefetch request.
Also if multiple requests are being scheduled in any way, this request could be assigned a lower
priority than the more immediate fetches.

7.2 Prediction algorithm

Our prediction algorithm is based on that described by Gri�oen and Appleton [6]. However, there
are a few noteworthy di�erences. First, while their scheme was designed for use by the operating
system to prefetch �les from disk into the �le system cache, our model is a distributed one with
user-level processes at the server and clients managing prefetching across the network, into the
client's cache. So our scheme does not require any kernel modi�cations.

Second, the scheme described in [6] does not try to maintain a distinction between accesses by
di�erent processes (the clients in the context of a �le system). This could cause it to (incorrectly)
think of independent accesses (by di�erent processes) that just happen to occur close together in
time, as related. As we explain below, our scheme avoids this problem of false dependencies.

The prediction algorithm is based on the idea of constructing a dependency graph that depicts the
pattern of accesses to di�erent �les stored at the server. The graph has a node for every �le that
has ever been accessed. One could, however, decide to prune it by deleting nodes that have not
been accessed for a long time. There is an arc from node A to B if and only if, at some point in
time, B was accessed within w accesses after A, where w is the lookahead window size. The weight
on the arc is the ratio of the number of accesses to B within a window after A, to the number of
accesses to A itself. Figure 9 depicts a small portion of a dependency graph.

The dependency graph is dynamically updated as the server receives new requests. This is done by
the prefetch daemon, prefetchd, which receives information about requests from each child httpd

14



forked o� by the server. It maintains a circular bu�er of size equal to the window size w for each
client (more precisely, each client host, because we believe that it is a reasonable approximation to
assume that there is not more that one Web client running on a host) that is currently connected
to this server. When it receives a new request from one of the server processes, it inserts the id
of the �le accessed into the corresponding circular bu�er. Only the entries within a ring-bu�er are
considered related, so the corresponding arcs in the dependency graph are updated. This logically
separates out accesses by di�erent clients and thereby avoids the problem of false dependencies.

The prefetch daemon bases its prefetching decisions on the dependency graph. If the arc from A

to B has a high weight, it means that, whenever A is accessed, there is a good chance of B being
accessed soon afterwards. So in such a case it would make sense to prefetch B. In general, the
daemon would declare B to be a candidate for prefetching if the arc from A to B has a weight
higher than the prefetch threshold p.

7.3 Some Issues

We have implemented the prefetch daemon, and have made the necessary changes to httpd to
communicate information on accesses to prefetchd through a UNIX pipe. In case of a GETALL
or GETLIST request, the modi�ed httpd will convey this fact to prefetchd so that the latter
is aware that all the �les corresponding to the GETALL or GETLIST have already been sent to
the client and hence need not be considered as candidates for being prefetched at this time. We
have not yet implemented the client-server communications interface and the client-side support
for prefetching.

There is an issue of how the lookahead window is to be managed when there are multiple accesses
to the same �le within a window. For instance, consider a window size of 10 and the sequence of
accesses ABB � � �A � � �A � � �ABB, where � � � denotes gaps much larger than the window size. If we
counted the multiple occurences of B within a window, then the weight of the arc from A to B

would be 4=4 = 1. However, this does not re
ect the dependency between accesses to A and B

correctly because, in fact, 50% of the time, B does not follow A within a window. Caching at the
clients should eliminate such multiple accesses, but they happen sometimes, typically because the
data pointed to by a URL (B in this case) is updated regularly. We ignored such multiple accesses
to the same �le within a window while computing the weights on arcs.

8 Experimental Evaluation of Prefetching

In this study, we have chosen to evaluate the usefulness of our prefetching scheme using log-driven
simulation. The prefetch daemon can run in a simulation mode where it uses access logs of Web
servers as input, and computes metrics like the miss-rate for a client (i.e., the fraction of accesses
that are to blocks (of �les) not already in the client's cache), the average retrieval time per �le,
the increase in the amount of network tra�c due to prefetching, and so on. The simulator allows
changing various parameters, such as the prefetch threshold, p, the lookahead window size, w, the
maximum number of URL's that prefetchd can predict as candidates for prefetching at any one
time, i (standing for the amount of \intelligence" the server can convey to the clients), the size of
the client cache, c, and so on.

We used access logs from the commercial Web server of Digital Equipment Corporation for driving

15



our simulations. This was a regular httpd server from NCSA, so there were no GETALL or
GETLIST accesses. For each set of parameter values, the simulator used the �rst 50000 access log
entries just to gain su�cient \intelligence" by building up its dependency graph, without simulating
prefetching. It then used the next 70000 entries to simulate the working of a real system with
prefetching predictions and updates to the dependency graph. It also simulated an LRU cache at
each client to determine the miss rates, average retrieval time, and the fractional increase in network
tra�c due to prefetching. We assumed that a client always prefetches �les which the server advises
it to, except when the �le is already present in the client's local cache.

The parameters were varied as follows. The prefetch threshold, p, took values from 0.0 through 1.1,
increasing in steps of 0.1. The weight on an arc in the dependency graph can never exceed 1.0 (since,
as explained earlier, duplicates within a window are ignored), so setting it to 1.1 corresponded to
no prefetching. The lookahead window, w, was varied from the minimum value 2 (corresponding
to looking ahead just one step) to 10. The parameter i was varied from 1 to 2, and was also set to
1, which corresponded to there being no limit on the number of URLs that can be predicted for
being prefetched at any one time.

The miss rate was computed by counting the total number of block misses on real accesses (not
prefetches), and dividing by the total number of blocks accessed. The block size was set to 8 KB,
and was used as the smallest unit for caching at the clients. The size of the cache at each client
host was set to 4 MB. The average access time per �le was computed using the model described in
section 8.2.1. The ratio of the amount of network tra�c with prefetching to that without prefetching
(which we call the fractional tra�c increase) was used as a measure of increased network tra�c
due to prefetching.

We now discuss the results we obtained based on two di�erent models of the system.

8.1 A simple model

In this case, we model the prefetching as happening instantaneously in the following sense:

� Prefetching activity does not delay the servicing of regular fetches from the server.

� A �le that is prefetched appears instantly in the client's cache, so if the very next request
from the client is for that �le, it will result in a hit.

While these assumptions are certainly not realistic, they simplify the model and allow us to deter-
mine a useful upper bound on the bene�t derived from prefetching.

Figure 10 plots the aggregate miss rate for all client caches for di�erent values of the prefetch
threshold, p, and the lookahead window size, w. We see the general trend that the miss rate increases
as p increases, because of the decreasing aggressiveness with which prefetching is done. However,
for large w and small p, the miss rate worsens with more aggressive prefetching, presumably because
a large number of �les, even those with very little likelihood of being accessed soon, are prefetched,
and knock out more useful ones from the cache. The other trend is that the miss rate decreases
with increasing w because a larger lookahead window captures dependencies between accesses that
are not necessarily successive.

With this model, the behaviors of the miss rate and the average access time metrics would be
identical because both are linear functions of the amount of data corresponding to misses in the

16



w=6

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
iss

 R
at

e

Prefetch Threshold

w=2
w=4

w=10
w=8

Figure 10: Aggregate cache miss rate for all clients (each with a 4 MB cache) versus the prefetch

threshold. There is no limit on the amount of prefetching information the server can pass on to a

client (i.e., i = 1). w is the lookahead window size.

clients' caches.

Figure 11 shows the fractional increase in network tra�c due to prefetching. We see that for smaller
values of p and larger values of w (which corresponds to more aggressive prefetching), network tra�c
increases rapidly. Note that in the �gure we have only plotted values of p larger than 0.3 because
the curves shoot up for smaller values of p.

Our goal is to determine whether there are values of p and w for which there is a substantial
reduction in miss rate over the case of no prefetching (p > 1), while the increase in network tra�c
is tolerable. From �gures 10 and 11, we see that w = 2 results in a miss rate signi�cantly higher
than for other values of w, but also the lowest increase in network tra�c. Among the other values
of w, w = 4 looks most promising with a miss rate almost as low as for higher values of w, and the
lowest increase in network tra�c. So in the rest of this discussion we shall concentrate on w = 2
and w = 4.

The miss rate when there is no prefetching is about 0.88. For w = 2, the miss rate curve does not
show a marked upswing at any particular value of p, rather it increases quite steadily. So choosing
a value of p near the middle, say p = 0:5, the miss rate decreases to about 0.58 (an improvement of
about 34% over no prefetching) at the cost of a 38% increase in network tra�c. For w = 4, there
a signi�cant point of in
ection in the miss rate curve at p = 0:7. At this point, the miss rate is
about 0.55 (an improvement of 38%) , while the increase in network tra�c is about 43%. Thus we
see that, if we are ready to pay for about a 40% increase in network tra�c, the miss rate can be
reduced by about the same fraction, thereby resulting in a signi�cant reduction in latency.

Thus far we assumed that the server, at any one time, could predict an arbitrary number of �les as
candidates for being prefetched, and convey this to the clients (i.e., i = 1). It would be interesting
to investigate whether a restriction on the amount of this \intelligence" can still result in signi�cant
gains over no prefetching. In particular, we consider the cases when the server, after receiving each
fetch request, passes prefetch advice on at most one or two (i = 1 or i = 2) �les. Figures 12 and
13 compare these cases with that when i = 1, for w = 2. We note that the three curves merge for
p > 0:3, which in any case is the portion that we are interested in. The reason is that, for larger

17



w
=

1
0

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.4

1
.60

.3
0

.4
0

.5
0

.6
0
.7

0
.8

0
.9

1
1
.1

Fractional Increase in Network Traffic

P
refetch

 T
h
resh

o
ld

w
=

2
w

=
4

w
=

6
w

=
8

F
igu

re
1
1:

T
h
e
fra

ctio
n
a
l
in
crea

se
in

n
etw

o
rk

tra
�
c
d
u
e
to

p
refetch

in
g
versu

s
th
e
p
refetch

th
resh

o
ld
.

A
ga
in
,
i
=
1
:

valu
es

o
f
p
,
few

er
�
les

q
u
alify

for
b
ein

g
p
refetch

ed
.
In

fact,
th
e
�
gu
res

in
d
icate

th
at

th
e
n
u
m
b
er

is
ty
p
ica

lly
on
e
or

tw
o,

w
h
ich

is
en
cou

ragin
g
b
ecau

se
it
m
ean

s
th
at

th
e
serv

er
d
o
es

n
ot

h
ave

to
p
iggy

b
ack

m
u
ch

p
refetch

in
g
in
form

ation
on
to

rep
lies

sen
t
to

th
e
clien

ts.

8
.2

A
m
o
r
e
r
e
a
lis
t
ic
m
o
d
e
l

O
n
e
of

th
e
d
raw

b
ack

s
of

th
e
m
o
d
el
u
sed

in
th
e
p
rev

iou
s
su
b
section

w
as

th
at

it
d
id

n
ot

take
in
to

con
sid

era
tio

n
th
e
in
terarriva

l
tim

es
b
etw

een
req

u
ests.

It
is
p
ossib

le
th
at

req
u
ests

for
�
les

th
at

th
e

p
refetch

d
aem

on
is
very

g
o
o
d
at

p
red

ictin
g
arrive

b
efore

th
e
clien

t
is
ab
le
to

p
refetch

th
em

.
In

th
is

ca
se,

th
e
p
rev

io
u
s
m
o
d
el
w
ou
ld

in
correctly

con
sid

er
th
ese

as
h
its.

In
th
is
m
ore

realistic
m
o
d
el,

w
e
u
se

th
e
in
terarrival

tim
es

an
d
an

estim
ate

of
th
e
tim

e
it
w
ill

tak
e

to
co
m
p
lete

th
e
p
refetch

,
to

d
ecid

e
w
h
eth

er
th
ere

is
en
ou
gh

tim
e
for

th
e
p
refetch

to
b
e
com

p
leted

b
efore

th
e
�
le
is
a
ctu

a
lly

n
eed

ed
b
y
th
e
clien

t.
It
is
p
ossib

le
th
at,

w
h
ile

th
ere

is
n
ot

su
�
cien

t
tim

e,
p
refetch

in
g
still

red
u
ces

th
e
la
ten

cy
to

a
certain

ex
ten

t
b
ecau

se
th
e
p
refetch

req
u
est

is
sen

t
b
y
th
e

clien
t
b
efo

re
th
e
n
eed

to
fetch

th
a
t
�
le
actu

ally
arises.

S
in
ce,

in
th
is
case,

th
e
m
iss

rate
m
etric

d
o
es

n
o
t
re


ect
su
ch

p
artia

l
b
en
e�
ts,

w
e
rep

ort
th
e
average

access
tim

e
p
er

�
le
in
stead

.

8
.2
.1

E
s
tim

a
tin

g
th
e
tim

e
fo
r
p
r
e
fe
tc
h
in
g

W
e
n
eed

ed
to

b
e
a
b
le
to

estim
a
te

th
e
tim

e
it
takes

for
a
clien

t
to

p
refetch

a
�
le,

i.e.,
th
e
d
u
ration

fro
m

w
h
en

it
sen

d
s
th
e
p
refetch

req
u
est

to
th
e
server

till
th
e
tim

e
it
receiv

es
all

th
e
d
ata.

In
ord

er
to

d
ev
elo

p
a
m
o
d
el
for

th
is,

w
e
n
eed

ed
d
ata

p
oin

ts.
U
n
fortu

n
ately,

th
e
server's

log
on
ly

con
tain

ed
lo
cal

tim
in
g
in
form

atio
n
,
so

w
e
n
eed

ed
an
oth

er
w
ay

of
gettin

g
d
ata

p
oin

ts.
W
e
in
stru

m
en
ted

th
e

N
C
S
A
M
o
sa
ic
b
row

ser
to

reco
rd

th
e
tim

e
tak

en
to

fetch
each

�
le
an
d
th
e
size

of
th
e
�
le.

R
u
n
n
in
g

th
e
b
row

ser
o
n
a
h
o
st

a
t
B
erkeley,

w
e
con

n
ected

to
th
e
sam

e
W
eb

serv
er

w
h
ose

logs
w
e
u
sed

for
a
ll
of

o
u
r
sim

u
la
tion

s.
A
b
o
u
t
23
0
d
ata

p
oin

ts
w
ere

ob
tain

ed
b
y
ran

d
om

ly
accessin

g
W
eb

p
ages

on
th
at

serv
er.

18



i=2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
iss

 R
at

e

Prefetch Threshold

i=infinity
i=1

Figure 12: Aggregate cache miss rate for all clients versus the prefetch threshold for w = 2 and

various values of i.

i=2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1

Fr
ac

tio
na

l I
nc

re
as

e i
n 

N
et

w
or

k 
Tr

af
fic

Prefetch Threshold

i=infinity
i=1

Figure 13: The fractional increase in network tra�c due to prefetching versus the prefetch threshold

for w = 2 and various values of i.

19



Linear Model

0

1

2

3

4

5

6

0 2000 4000 6000 8000 10000 12000 14000

Ti
m

e 
to

 fe
tc

h 
(s

ec
on

ds
)

File size (bytes)

Figure 14: A scatter plot of the times to fetch �les (Web pages, inline images, etc.) of di�erent sizes

from DEC's Commercial Web Server, and the line corresponding to the linear regression model.

Since the time to prefetch a �le would be roughly the same as the time to just fetch the �le on
demand (i.e., when the user clicks on the corresponding URL), we used the data points obtained
above to build a model for the time to prefetch a �le. We hypothesized that this time depends
mainly on the size of the �le, and ignored other factors. One major concern is that our experiments
were conducted from a client host at Berkeley, so our data points would not, in general, match those
obtained from another site. We were, however, constrained by logistics to conduct experiments only
at Berkeley. It is likely, though we are not sure, that most accesses to the Web server in question
are made from hosts with similar network connectivity as Berkeley, so our model would still be a
good approximation.

We use a linear regression technique [8] to model the time to prefetch a �le. The basic idea is to
come up with a linear model that minimizes the sum of squared errors, while ignoring outliers. A
scatter plot of the data points and the line obtained from the regression model is shown in �gure
14. The line corresponds to the equation y = 1:13 + 5:36 � 10�5x.

8.2.2 Simulation Results

We now present the results of simulations that use the interarrival time information from the server
log and estimations from the regression model to �lter out prefetches that happen too late, and
consequently do not help bring down the miss-rate. Note that there is no additional network tra�c
corresponding to these \wasteful" prefetches because a server would not try to fetch a �le for which
a prefetch is pending completion, and vice versa.

From �gures 15 and 16, we see that, with our more realistic model for prefetching, the average
access times are higher and the network tra�c is lower for the same values of p and w. This is
what we would expect given that some of the prefetches in the previous model will be �ltered out
here.

Since the price we pay for prefetching is essentially the increase in network tra�c, it would be
interesting to compare the average access times with the two models for the same increase in
network tra�c, say 40%. With the simple model, the average access time drops to about 0.78

20



Realistic; w=2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 A
cc

es
s T

im
e

Prefetch Threshold

Simple; w=2
Simple; w=4

Realistic; w=4

Figure 15: Comparison of the average access time per �le for this model (labeled \regression") with

that for the simple model from section 8.1.

Fr
ac

tio
na

l I
nc

re
as

e i
n 

N
et

w
or

k 
Tr

af
fic

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Prefetch Threshold

Simple; w=2
Simple; w=4

Realistic; w=2
Realistic; w=4

Figure 16: Comparison of the cache miss rates for this model with that for the simple model.

seconds (an improvement of 36% over no prefetching). With the more realistic model, the average
access time is about 0.78-0.80 (an improvement of 34.5% to 36%) depending on w. Thus there is
still a signi�cant reduction in the miss rate as a result of prefetching.

9 Summary

We have analysed and quanti�ed several sources of signi�cant latency in the World Wide Web,
problems that are inherent in the way HTTP is currently used. We have proposed several simple
changes in HTTP that, individually or together, substantially reduce latency, while interoperating
with unmodi�ed servers and clients. These changes may also help reduce server loading.

We have also presented a prefetching scheme for the WWW aimed at masking latencies, in which
the servers tell clients which �les are likely to be requested next by the user, and each client decides

21



whether or not to prefetch those �les. We have analysed the bene�ts of prefetching based on two
di�erent models. The �rst is a simple one that assumes that prefetches happen in�nitely fast, so
the prefetched data is always available at the client host before the next access by that client. Then
we re�ned this model by using the inter-arrival times between accesses and an estimate for how
long a prefetch would take to complete, to �lter out prefetches that happen with not enough time
left till the next access.

The results from our simulations show that a substantial reduction in the latency perceived by
a client (quanti�ed in terms of the average time to access a �le) can achieved at the cost of a
signi�cant increase in the network tra�c. For instance, the reduction in latency is about 36% at
the cost of a 40% increase in network tra�c, with both the simple and the more re�ned models.

10 Conclusions

We have investigated several techniques for reducing latency in the World Wide Web. Based on
this, we would suggest the following for future versions of the HTTP protocol:

1. There is a mismatch between the byte-oriented service of TCP and the message-based interface
needed by HTTP. The ideal solution would be a session layer on top of TCP that would provide
a message-based interface over a single TCP connection. However, in the absence of this, the
HTTP protocol should have support for persistent connections built into it.

2. Primitives that are able to operate on a group of �les/URLs at a time (such as GETLIST or
GETALL) should be supported in order to reduce the number of network round trips.

3. Prefetching might be worthwhile, especially when increasing bandwidth demands does not
signi�cantly degrade service for other users nor increase the cost for service. An example
would be a ground station downloading data over a direct broadcast satellite (DBS) downlink
that provides a channel exclusively to that station. The HTTP protocol could have a facility
that allows servers to piggyback prefetching hints on replies to clients. Also, it would help
scheduling at a server if prefetches could be distinguished from regular fetches (for instance,
to give them lower priority).

There have been other approaches suggested for reducing WWW latency, most notably that used
by Netscape. From the networking standpoint, Netscape derives its speed from having several
simultaneous TCP connections to the server, to retrieve data. The advantage of this approach over
ours is that it does not require any modi�cations to existing servers. However, there are several
drawbacks. Using multiple connections would be unfair to other protocols, such as the �le transfer
protocol (FTP) [14], that use a single connection to retrieve data (ignoring the control connection
of FTP). Further, a bunch of TCP connections would be less regulated than a single connection.
For instance, a packet loss on one connection would not cause the other connections to reduce their
window sizes, though it is likely that the packet loss is an early symptom of congestion along the
route which is, in fact, common to all the connections. Finally, Netscape does not avoid the paying
the cost of slow start repeatedly.

There is at least one other work [10] that discusses these issues, and makes a strong case for
persistent HTTP connections.

22



Acknowledgements

I would like to thank Dr. Je�rey Mogul very much for supervising this project during the summer
of 1994 while I was an intern at Digital Equipment Corporation's Western Research Lab, and for
the useful discussions and suggestions even afterwards. I am grateful to my advisor, Professor
Domenico Ferrari, for his constant support and encouragement, and for the opportunity to work
as a part of the Tenet research group. I would also like to thank Digital's Western Research
Lab, Network Systems Lab, and Cambridge Research Lab for allowing me to use their computing
facilities for the purpose of this research.

References

[1] Tim Berners-Lee. \Hypertext Transfer Protocol (HTTP)", Internet Draft draft-ietf-iiir-http-
00.txt, IETF, November, 1993. This is a working draft.

[2] N.Borenstein, N.Freed. \MIME (Multipurpose Internet Mail Extensions) Part One: Mech-
anisms for Specifying and Describing the Format of Internet Message Bodies", RFC 1521,

Internet Engineering Task Force, September, 1993.

[3] R.Braden. \Requirements for Internet Hosts { Communication Layers", RFC 1122, Internet

Enginnering Task Force, October, 1989.

[4] CompuServ, Incorporated. Graphics Interchange Format Standard, 1987.

[5] Steven Glassman. \A Caching Relay for the World Wide Web", Proceedings of the First In-

ternational World Wide Web Conference, Geneva, pages 314-329, May, 1994.

[6] James Gri�oen and Randy Appleton. \Reducing File System Latency using a Predictive Ap-
proach", Proceedings of the 1994 Summer USENIX Technical Conference, Boston MA, June,
1994.

[7] Van Jacobson. \Congestion Avoidance and Control", Proceedings of the ACM SIGCOMM

Conference, Stanford, CA, August, 1988.

[8] Raj Jain \The Art of Computer Systems Performance Analysis", John Wiley & Sons, Inc.,
1991.

[9] Je�rey C. Mogul and Stephen Deering. \Path MTU Discovery", RFC 1191, Network Infor-

mation Center, SRI International, November, 1990.

[10] Je�rey C. Mogul. \The Case for Persistent-Connection HTTP", Proceedings of the ACM SIG-

COMM Conference (to appear), Boston, MA, August, 1995.

[11] Venkata N. Padmanabhan and Je�rey C. Mogul. \Improving HTTP Latency", Proceedings of
the Second International World Wide Web Conference, Chicago, IL, pages 995-1005, October,
1994.

[12] J.Postel. \Transmission Control Protocol", RFC 793, Network Information Center, SRI In-

ternational, September, 1981.

[13] J.Postel, J.Reynolds. \Telnet Protocol Speci�cation", RFC 854, Network Information Center,

SRI International, May, 1983.

23



[14] J.Postel, J.Reynolds. \File Transfer Protocol (FTP)", RFC 959, Network Information Center,

SRI International, October, 1985.

[15] Simon E. Spero.
\Analysis of HTTP Performance Problems", URL http://elanor.oit.unc.edu/http-prob.html,
July, 1994.

24


