
Sub-element Indexing and Probabilistic

Retrieval in the POSTGRES Database System

Anne Fontaine

May 23, 1995

1 Introduction

Most current information retrieval systems use boolean search methods to request and

retrieve documents. While e�ective for precise query speci�cations, boolean search
systems su�er when the request is of a more general nature such as in a subject search
request. If the query is too precise, the search may fail with no documents returned,
however, if the query is too general, too many documents may be returned with only
a few actually relevant. Moreover, the documents are not returned in an order to

make them easy to evaluate. More advanced retrieval systems, such as probabilistic
retrieval, are being explored to address some of these problems.

Probabilistic retrieval (PR) is an approach to information retrieval that attempts to
estimate the probability that a particular document is relevant to the user's infor-
mation need as expressed in a natural language query. Documents are returned to

the user ranked in descending order of this probability of relevance. The relevance
of a document is determined by an algorithm that considers the terms of the query,
the terms contained in the documents and how the terms are distributed within the

database collection to produce a rank value. The documents are then ordered accord-
ing to this rank value with the \correct" documents at the top of the list.

The query is entered as a natural language statement that is then scanned for im-
portant search terms. All documents with a term in common with the query (with
common words �ltered out) are returned to the ranking module which determines the

order in which the documents are returned. The natural language statement provides

an easy interface for the user to request information.

Our ranking strategy requires that frequency counts be calculated for keywords of

a document and for keywords throughout the collection. We developed an indexing
mechanism based on sub-element indexing to support this type of retrieval. Sub-

1

element indexing provides the ability to create indexes on components extracted from

both builtin and user-de�ned abstract data types. In conventional indexes the entire

contents of a given column are treated as a set of single elemental objects, one per row.

This type of indexing is not appropriate when the row/column values are themselves

complex objects made up of a collection of many "sub-elements". Examples include

text documents, arrays of other datatypes, maps, images, structured drawings, etc.,

where the user is interested, or able to specify in a query, only some part of the

information contained in the object.

The goal of this implementation is to create an environment in which to study various

indexing and ranking strategies. In particular, the ideas of Lynch[8] and Cooper[3] are

incorporated into the system. The POSTGRES database system was used because it

provides a exible environment in which to experiment with various access methods,

Functions, access methods and datatypes can be de�ned by the user and added more

easily than with most relational database systems. POSTGRES also provides support
for large object types that can be used to access full-text documents.

The next section summarizes the previous work that has inuenced the implementa-
tion described in this paper. The following sections describe the implementation of the

indexing and retrieval modules, and the retrieval experiments that were performed.
Following a discussion of the results obtained from this system is a description of the
implementation issues speci�c to the POSTGRES database system.

In this paper, the words keyword, term, and token are often used interchangeably, as
are the words record and tuple.

2 Related Work

Extensive work has been done in the area of indexing and probabilistic retrieval, how-

ever, only the material that is speci�cally related to this implementation is discussed
here.

Lynch and Stonebraker propose a method of extended indexing to support abstract
data types and user-de�ned operators [8]. This scheme allows indexes to be created

from a computed value of a column. The new List datatype is used to accomplish

this extension. Their proposal provides much of the foundation to the implementation

discussed in this paper.

Aoki implemented an approach to extended indexing along the ideas of Lynch and
Stonebraker with only slight changes [1]. Some of Aoki's work was restored from an

earlier version of POSTGRES, though most was modi�ed for this implementation.
Aoki created an fbtree (functional B-tree) access method, similar to a regular B-tree,

that supports multiple index keys from one column value. This code was recovered

2

and modi�ed to accommodate probabilistic retrieval. Other changes made to the

extended indexing code include changes to the postquel interface, changes to the

extract routine, and support for external document �le types.

Cooper, Gey, and Chen experimented with a probabilistic retrieval method using

staged logistic regression[3]. The equations that they derived are incorporated here

and form the basis of the ranking module of this implementation.

Larson created the Lassen system, an indexing and retrieval system that interfaces

with the POSTGRES database systems [6]. Lassen uses the POSTGRES rule system

to trigger routines that extract and index terms when a document is added to the

database. The interface retrieves and then ranks the documents returned by the

database system. Much of the indexing and retrieval functions of the Lassen system is

written as a front-end database application. Because of this, it uses more storage space

and requires a few more processing steps than if it were incorporated directly into

the database system. In describing the Lassen system, Larson also gives suggestions
on how these functions might be included in the POSTGRES backend.

This implementationwas designed speci�cally to incorporate the indexing and ranking
functions directly into the POSTGRES database system. The POSTGRES database

system was used because it provides a exible environment in which to experiment
with various access methods, abstract datatypes, and user-de�ned functions. It also
provides an environment where the ideas of Lynch[8] and Cooper[3] can be evaluated.

3 POSTGRES

POSTGRES is a relational database system designed to allow easy extensibility [9].
Users can create their own abstract data types, operators, functions and access meth-
ods [10] [11]. In this adaptation, a new access method was added to accommodate the

new indexing strategy. Although the functions to extract keywords from documents
and to rank the documents are built directly into the system, we designed them so

that user can also de�ne their own functions and register them with the database.

POSTGRES also supports a wide variety of abstract data types. It has several dif-

ferent implementations of large objects all of which are accessed via typical �le op-

erations [12]. Although large objects can include photographs, video streams, and

documents, we focus on full-text documents and use the External large object type

in this implementation. The External type stores the full path name of the external
�le in the large object column and does not copy the �le into the database system.

There is, therefore, no transaction processing and crash recovery support when using
the External large object. Because of this, there is some security risk in using this

�le type.

3

Extensive changes to the system were made to complete this implementation. Not

only was a new access method added, but the parser, optimizer, executor, and system

catalogs were modi�ed. With this framework in place, we can use the extensibility

feature to experiment with alternative ranking and tokenizing routines.

4 Sub-element Indexing

Most relational indexing methods produce one index value from a column value, which

is usually the column value itself. For bibliographic data, however, this value is often

a �lename or a document identi�er which is generally not a useful index key.

To index on a value other that the actual column value, POSTGRES implemented

the functional index. The functional index runs a function over the column value to
produce another value that is then indexed. Although the index value has changed,

there is still only one index value per column.

This implementation combines the idea of the functional index with the ability to
index more than one value per column into the indexing module itself. The indexing
model has been extended to recognize the type of object that it has been given and
index based on that type. When a document type is encountered, the indexing module

extracts the keywords from the document, counts the number of occurrences within
the document and inserts an index record on each of the unique keywords.

There are three steps to the algorithm for indexing a document:

� Tokenize Keywords

� Index Keywords

� Update Meta Data

Each step is further described in the sections below.

4.1 Tokenize Keywords

The tokenize process breaks up a string value into individual tokens that are then

candidates for index keys. A default tokenize routine is provided in the implementa-

tion, but the user can also de�ne a more specialized routine and register it with the
POSTGRES database.

The default routine extracts alphabetic characters and converts them to lower-case to

allow for case-insensitive searching. Hyphenated words are split into separate tokens.

4

Abbreviations are not expanded. Alternate spellings are not considered and numbers

are not extracted. It is a simple routine that considers the end of the term when it

encounters any non-alphabetic character. After the token is extracted, it is checked

against a list of stopwords and passed through a stemming process. Each of these

processes are further described in more detail below.

4.1.1 Stoplist Tokens

Stopwords are common words that are insigni�cant as index keys. They include

prepositions, articles, possessives, some passive verbs and some adverbs. Because

they occur in many documents, their discriminatory value is low and they are not

useful as index terms.

Stopwords can account for a large fraction of a document's terms. Removing these
words as index candidates, can reduce the amount of storage space needed and the

amount of retrieval time required. Storage space requirements will be less because
fewer terms will be indexed making the size of the index �le smaller. Retrieval
time will be shorter because fewer terms will match and therefore fewer irrelevant
documents will be returned.

Our list of stopwords is maintained in the system table pg stoplist and currently

contains 417 words. Words can be added and deleted to the system table, thereby
customizing the stoplist for the documents of a particular database.

The stoplist is loaded into the system table when the database is built. The �rst
time the stoplist routine is accessed, the entire list of stopwords is loaded into an in-
memory hash table. This hash table reduces the time needed to stoplist a document
and is available for subsequent document insertions.

4.1.2 Stem Tokens

Stemming is the process of �nding morphological variants of a term, often based on
�nding a common root term. The stemming routine used here is an implementation of
the Porter stemming algorithm that removes su�xes of a termwhen certain conditions

are met [5]. For example, it looks for a plural ending and when one is found removes

it from the end of the word.

Stemming combines common root words of a document into one index record. The

frequency count of this index record is the number of occurrences of all the variants of
this common root word. The retrieval process is then a�ected by how the terms are

stemmed. Not only are common root terms retrieved, but the ordering of documents
is also a�ected because the ranking equation considers the frequency count associated

with the root terms. Given a request �nd documents about distributed networks, the

5

Word Tolower Stop Stem Keyword Freq

Implementation implementation implementation implement implem 1

of of { {

Extended extended extended extend extend 1
Indexing indexing indexing index index 1

and and { {
Probabilistic probabilistic probabilistic probabilist probabilist 1

Retrieval retrieval retrieval retriev retriev 1

in in { {
POSTGRES postgres postgres postgr postgr 1

Table 1: Example: Tokenize Process

term networks will be stemmed to network. Documents with the words network,
networks, and networking will be considered and retrieved.

Stemming also has an a�ect on the size of the index �le. Combining the common
root terms produces fewer keyword/frequency index records and reduces the size of
the �le. In this implementation the stemmed word is stored in the index and the
unstemmed word is available only in the document itself.

A term can be stemmed when it is inserted or when it is retrieved. This implemen-

tation stems a document term before it is inserted as an index. It also stems the
query string when retrieving documents. Relevance ranking is done on the stemmed
form of the word, so the search terms must be stemmed to match the indexed doc-
ument terms. The processing overhead for stemming terms then occurs primarily at
document insertion time.

Finally, consider the phrase Implementation of Extended Indexed in POSTGRES.
Each of the steps to tokenize this phrase are shown in Table 1. The routine �rst
scans the phrase into words and converts them to lower case. The Stop column shows
that the words of, and, and in are stoplisted and dropped from the process. The
fourth column shows the results of the stemming process. Notice that POSTGRES

has been stemmed to the term \postgr". The stemmer �rst evaluated the �nal 's' as

a plural ending and removed it. Then the stemmer tried to �nd the root of the word
\postgre" and converted this to \postgr". The last two columns show the resulting

six keyword/frequency pairs.

Stemming tends to increase the number of documents returned for a query because

not only the search term itself but other related terms are retrieved. Although we

have not studied the a�ect that stemming has on the precision and recall, we assume

that stemming will have a positive impact on retrieval e�ectiveness.

6

4.2 Index Keywords

A new access method, the fbtree, was created to handle the indexing. The fbtree is

very similar to the regular btree access method with the insert and the search routines

customized to support the new indexing. The fbtree was �rst developed by Aoki [1]

and modi�ed here to incorporate probabilistic retrieval.

The insert routine breaks up the document into \indexable terms" - terms that have

successfully passed the tokenize routine, and inserts one index record for each unique

term in a document. The index records consists of the index term and the frequency

count, the number of times the term occurs in the document. The insert routine is

also responsible for collecting information about the indexed terms and documents.

This data is later used at retrieval time to calculate the rank value of the document

to a query.

In the normal index retrieval process, the index record contains the index key and a
reference to the \real" record. Once the \real" record is determined and retrieved,
the index tuple is no longer needed. In our implementation, however, the index tuple
contains the keyword/frequency values that are essential to the ranking module. The

search routine was modi�ed to return the keyword/frequency pair as well as the
document record itself.

4.3 Update Meta Data

System catalogs are maintained to accumulate information about the number of terms

and documents in the database. The tables are updated as documents are inserted
into the collection. The data is used at retrieval time to calculate the relative relevance
of the document to the query string (see Section 5.3).

There are three categories of meta data:

� Global - for the entire database

{ total number of documents in the database

{ total number of terms in the database

{ total number of unique terms in the database

� Document - for each document

{ number of terms in document

{ number of unique terms in document

� Term - for each term

7

{ number of references

{ number of documents that reference term

There is one Global record for the entire database collection, one Document record for

each document in the database, and one Term record for each term in the database.

The Document and Term tables are indexed for quick retrieval. The Document table

is indexed on document name and the Term table is indexed on term name.

5 Probabilistic Retrieval

Probabilistic retrieval attempts to estimate the probability that a particular document

is relevant to a user's search request. A search request is entered as a natural language

statement. Documents that contain any of the stemmed terms in the query (excluding
stoplisted words) are retrieved and given a relevance ranking value. The documents
are returned to the user ranked in descending order of this probability of relevance.
The relevance value is based on the terms in the search request, in the documents
retrieved, and in the database collection as a whole.

There are �ve steps to the ranked retrieval module:

� Tokenize Query String

� Indexed Retrieval of Tuples

� Calculate Rank Value

� Sort Tuples

� Return Tuples

5.1 Query String

The syntax of a probabilistic query is more exible and less complicated than the

syntax used in boolean searches. Consider the query what similarity laws must be

obeyed when constructing aeroelastic models of heated high speed aircraft.

A naive query like:

similarity AND (laws OR law) AND (construct OR constructing) AND

(aeroelastic AND (model OR models) AND (heat OR heated) AND high

AND speed AND aircraft

8

could be constructed, but a document that talked about \supersonic" aircraft and did

not use "high speed" would be excluded, ie { any missing \ANDed" term causes the

entire match to fail. Changing ANDs to ORs would mean that most of the database

would be retrieved, with no indication of better or worse matches.

By contrast, the probabilistic query is entered as it appears in italics above. As a

natural language statement, the format provides an easier interface to enter searches

than does the Boolean format. The query string is processed as a document - keywords

are extracted, stop-listed, stemmed and counted - and the resulting search terms are

connected with impliedORs. Although many documents may satisfy the query, a rank

value is calculated on each document to order them in order of probable relevance.

The syntax also allows easier extension of search strings. For example, although the

current system does not automatically search for synonyms, it is easy for the searcher

to add them to the query string. Also, to emphasize the importance of a term, the

user can enter the term multiple times, increasing the weight given to the query term.

5.2 Indexed Retrieval

Each unique keyword of the query string is used as a key value upon which to retrieve
documents. Any document that has at least one stem in common with the query
string is retrieved and passed to the ranking module. The ranking module determines
whether the document is presented to the user and in what order. The basis of this
decision depends on the minimumrank weight speci�ed in the query and the relevance

of the document to other documents retrieved.

5.3 Calculate Rank Value

The ranking routine determines the probable relevance of a document to a given

query. The goal of the ranking is to derive an initial ordering of documents to be
presented to the user in descending order of relevance. The current ranking scheme

uses a logistic regression method developed by Cooper [2]. The equation calculates

the logodds of the relevance of the document to the query.

logO(RjQ;D) � c0 +
6X

i=1

ciXi

where R is the event that the document D is relevant to the query Q and

9

X1 =
1

M

PM
j=1 log(QAFtj)

the mean of the logged absolute frequency of matching

stemmed terms in the query.

X2 =
p
QL

the square root of the number of stemmed terms in the

query (with stoplist words removed).

X3 =
1

M

PM
j=1 log(DAFtj)

the mean of the logged absolute frequency of the match-

ing stemmed terms in the document.

X4 =
p
DL

the square root of the number of stemmed terms in the

document (with stoplist words removed).

X5 =
1

M

PM
j=1 log(IDFtj)

the mean logged inverse document frequency which is the

ratio of the number of total documents in the collection
to the number of documents with the matching term.

X6 = logM the log of the number of matching stemmed terms.

The coe�cients derived from the study are

c0 = �3:70; c1 = 1:269; c2 = �0:310; c3 = 0:679; c4 = �0:0674; c5 = 0:223; c6 = 2:01:

As is shown above, the equation uses several factors in judging the relevance of a
document to a query. It not only considers the frequency of matching terms between
the document and the query, it also considers the importance of the search term in
the query, the length of the document, and the number of di�erent terms matched.

The importance of a search term in a query can be estimated by counting the number
of times the term is used in the query, by considering the number of terms in the
query itself and by determining the relative frequency of the term in the collection of
documents. The length of the document is taken into account to o�set some of the
advantage that a longer document has over a shorter document. Longer documents

will tend to have more matches than a shorter ones simply because they have more
terms. The equation gives an added weight to documents with more di�erent match-

ing terms. This reduces the event that a document will be judged relevant based on a

few very frequently used matched terms. Together these factors provide a reasonable
judgment of relevance as is shown in the experiments that follow.

6 Experiments

Retrieval experiments were run on the Cran�eld collection set of 1400 documents and

225 queries. The documents are abstracts of aerodynamic documents and the queries

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Cooper
COS

Figure 1: Average precision and recall.

are natural language queries on this information. Query one, for example, asks what
similarity laws must be obeyed when constructing aeroelastic models of heated high

speed aircraft. Included in the collection is a relevance �le that lists the relevant

documents that should be returned for each of the queries.

The results of the queries were evaluated by calculating the precision, recall, and E
measure values which are further described below. As a basis of comparison, the re-
sults are shown along with the results from a method using Cosine Correlation(COS),
the values of which are given in an analysis of probabilistic models by Croft and
Harper[4].

The recall and precision values are measured using the following equations.

Recall = number of relevant documents retrieved
total number of relevant documents for that query

Precision = number of relevant documents retrieved
total number of documents retrieved

The recall and precision values are shown in Figure 1. The results show that the
Cooper retrieval method performs much better than the COS method at the top
section of the return set. Moreover, the precision values are higher in the Cooper

method at all levels of recall.

The second experiment calculates the E measure which is a weighted combination of

11

E After 10 Docs E After 20 Docs E After 30 Docs

0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

Cooper 0.7053 0.6833 0.6387 0.7864 0.7359 0.6366 0.8333 0.7803 0.6640
COS 0.79 0.77 0.73 0.84 0.80 0.72

Table 2: Average E values.

After 10 Docs After 20 Docs After 30 Docs

Precision 0.2884 0.1913 0.1444

Recall 0.4196 0.5323 0.5865

Table 3: Precision and Recall Values for Cooper Method.

recall and precision with lower E values representing more e�ective retrieval. The E
measure is calculated as

E = 1� 1

�
h

1

Precision

i
+ (1 � �) 1

Recall

where

� =
1

�2 + 1

The parameter � is used to evaluate relative e�ectiveness in terms of recall and
precision. A � value of 1.0 gives recall and precision equal importance. A � value

equal to 0.5 gives twice as much importance to precision and � = 2.0 gives twice as
much importance to recall.

Because the E value is calculated on a result set, the e�ectiveness of ranked retrieval

can be measured by calculating the E measure at di�erent cuto� points within the
result set. Table 2 shows the E values at two cuto� points - 10 documents retrieved

and 30 documents retrieved and at three � values - 0.5, 1.0, and 2.0.

The lowest E values, indicating the most e�ective retrieval, are 0.6366 and 0.6387.

These values are with 20 documents and 10 documents returned, respectively, and
with recall weighted more heavily than precision. The corresponding value after 30

documents, 0.6640, however, shows a sudden drop in e�ectiveness. Table 3 further
shows that the precision values fall at a greater rate than the recall values rise.

12

7 Implementation in POSTGRES

The following sections describe speci�c changes made to three principal modules of

the POSTGRES database system:

Parser: parses the command and outputs either a query tree or query list.

Optimizer/Planner: �nds all execution plans, calculates the cost of each plan, and

selects the cheapest.

Executor: executes the cheapest plan.

7.1 Parser

The parser accepts a command from the user and produces a parsetree that is used
by the optimizer/planner in determining an execution plan. The de�ne index and the
retrieve commands were modi�ed to accommodate the changes for this implementa-
tion. In the following explanation of the commands, an upper-case word is a Postquel
keyword which is a keyword de�ned by the POSTGRES query language. A lower-case

word de�nes a variable name. In most cases, the name attempts to describe the type
of object that it represents. Items in brackets [] are optional items. Items in braces
f g can be repeated.

7.1.1 De�ne index

The de�ne index statement was changed to include the extract function used in the
tokenization process. This function can be the default extract function kwlist extract

or it can be a function de�ned by the user. A user-de�ned function must be de�ned
and registered with the POSTGRES database (see the POSTGRES user manual for
more information about de�ning functions).

DEFINE [ARCHIVE] INDEX index_name

ON classname USING am_name

(attname type_class)

[WHERE qual]

---> [WITH (EXTRACT = extract_func)]

index name is the name of the index assigned by the user. The name is needed to
create and remove and index.

13

classname is the name of the table that contains the attribute that will be indexed.

am name is the access method that will be used to index the keys. We use the

'fbtree' access method for ranked retrieval.

attname is the name of the attribute that is being indexed.

type class is the name of the operator class that this attribute uses. The text

operator class 'text ops' in this implementation.

qual is a quali�cation clause that can restrict when the column will be indexed.

EXTRACT is the Postquel keyword to indicate the function is to used as the extract

function.

extract func is the name of the extract function to be used with this index. Again
this is either kwlist extract or a user-de�ned function.

Example: define index doc_ind on docs using fbtree (doc text_ops)

with (extract = kwlist_extract)

7.1.2 Retrieve

The retrieve command was changed to include the rank clause. This speci�es which
rank function to use and what query string to evaluate. It also allows the user to
specify a threshold value

RETRIEVE

[(INTO classname [archive_mode] |

PORTAL portal_name |

IPORTAL portal_name)]

[UNIQUE]

([attr_name-1 =] expression-1 {,[attr_name-i =] expression-i})

[FROM from_list]

[WHERE

---> [RANK [rank_function](attr_name = query_string [, minWt])]

[qual]]

[SORT BY attr_name-1 [USING operator]

{, attr_name-j [USING operator] }]

RANK is the Postquel keyword used to introduce the rank clause

14

rank function is the name of the rank function to use. This is an optional �eld. If

no value is given the default rank function is used.

attr name is the attribute name that has an fbtree index.

query string is a string of words on which to search.

minWt speci�es a minimum ranking weight. This is an optional �eld used to specify

a threshold value. Only documents with a rank value greater than or equal to

this value are returned to the user. If not minimum weight is given, the default

value is zero.

Example: retrieve (docs.all) where rank(docs.doc = ``digital library'',1)

7.2 Optimizer/Planner

The optimizer/planner determines how the query will be executed. It �nds all the
possible execution plans for the particular query and determines which one will be

used. In determining the execution plan, the optimizer/planner considers the methods
of scanning through the data - sequential scans, index scans - and methods of joining
tables - hash join, merge join, nested loop. The optimizer then calculates the cost of
each plan and selects the least costly of them.

When a ranked retrieval is requested, the optimizer should select the index scan of

the fbtree index to retrieve the keyword/frequency pairs that have been stored in
the index. The optimizer was changed to recognize that the rank clause contains an
attribute that has an fbtree index and to create a plan based on that index scan. This
plan will generally be the least costly one available because the keyword/frequency
pairs have already been extracted and calculated. Because of this, the cost of the

plan was determined to be zero.

The implementation does not currently account for execution plans other than the

one using the index scan. To consider other plans, the executor would need to be

modi�ed to read each of the documents as they are retrieved in order to calculate the
keyword/frequency pair. The optimizer would also need to be changed to consider a
more accurate cost selectivity algorithm than the one being used.

Upon creating the execution plan, the optimizer creates a \rank" node and attaches
it at the top level of the plan. This node will control the overall execution of the plan

and will perform functions necessary for ranked retrieval. This node is part of the

executor and is described further in the next section.

15

7.3 Executor

The executor carries out the plan that was selected by the optimizer. As mentioned

above in section 7.2, the optimizer creates a \rank" node at the top level and some-

where below it is and index scan on the fbtree index. The rank node is very similar

to POSTGRES's sort node. That is, both of them retrieve tuples (or records) and

store them in a temporary relation. The tuples are then sorted and returned to the

user in sorted order.

The rank node uses a temporary hash table to collect the tuples and keyword/frequency

pairs. Because index keys will often point to the same tuple, the hash table is used

to identify the duplicates and merge the keyword/frequency values. After the tuples

are collected each of them is ranked and stored in a temporary relation that is then

sorted by rank value.

The following is a outline of the functions performed by the rank node:

1. Tokenize the query string

2. Retrieve tuples

(a) Set up the next index scan

(b) Retrieve the tuples from the underlying nodes

(c) Collect the tuples in a hash table (to identify duplicate tuple records)

3. Calculate Rank

(a) Read the hash table

(b) Calculate the relevance of the document to the query

(c) Store in a temporary relation

4. Sort the temporary relation by rank value.

5. Retrieve tuples from the sorted relation.

8 Storage Space Issues

The method of storage of a fbtree access method is essentially that of a btree. The

fbtree access method extracts objects from a larger object and inserts them into a
btree. (It also reads objects from the btree and gathers them together.) For each

unique keyword in a document, there is one record in the index btree. The index
record contains the term and the frequency count of the term within the document.

16

Other storage requirements are needed to maintain the information used to calculate

the relevance ranking. This information includes:

� one record to collect summary information for the entire database

� one record for each document in the database

� one record for each unique keyword in the entire database

The object that we index can be a text or an External large object type (LargeObj)

data type. The text type is a regular string and is stored directly into the database.

The External large object is used to represent documents that reside outside of the

database system. External documents are not copied into the database and do bene�t

from the transaction management and concurrency control operations provided within

a database environment. There are some advantages to using external documents,

however. The �le is not copied which saves time and may save storage if the �le
would otherwise be stored in two locations.

Stemming and stoplisting words also reduces storage space requirements. Similar root
terms are combined with stemming to reduce the amount of space used for index �les.
Stoplisting reduces the size by removing the most common words from consideration.

One other storage issue involves main memory usage. An in-memory hash table was
used in three situations - to count the number of occurrences of a token within a
document or string (used for both document indexing and query string processing);
to recognize a duplicate tuple when retrieving; and to store the list of stop words of
the system table to reduce the amount of time needed to stoplist terms. There is
generally no problem in using the main memory hash table, however, it is possible,

although unlikely, that the hash table will grow too large.

9 Other Implementation Issues

The current implementation uses a form of a btree index. There is one entry in the

index for each unique keyword of each document. An alternative method would be
to use a \doclist" approach that would have one entry per unique keyword in the
entire collection. The index would then point to a list of documents that contain the

particular keyword.

The optimizer/planner currently considers only the plan with the fbtree index scan.

Although this will usually be the most e�ective plan, the optimizer and executor

could be changed to consider other plans. When a plan other than the fbtree index
plan is selected, the rank node must read the contents of each document and calculate

17

the keyword/frequency pairs. The optimizer would also need to calculate the cost of

using each plan more accurately.

Also, the implementation does not support deleting and changing documents. Doc-

uments can be deleted but the meta data associated with it is not updated. This

a�ects the global count of the terms within the collection. Changes to documents are

also not recorded in the indexes or in the meta data.

10 Conclusion

This implementation of sub-element indexing and probabilistic retrieval includes spe-

ci�c routines to perform keyword extraction and relevance ranking. Within the

POSTGRES environment, these routines can be user-de�ned allowing us to test and
combine alternative methods. The combination of indexing and ranking routines that
we used - Porter stemming and Cooper ranking - works well on the collection set of
1400 documents (or document excerpts) and performs better than the Cosine Cor-
relation method. We expect that it would also work well on a larger set and would

like to test this hypothesis. We are also interested in evaluating how this method
compares to other ranking strategies. Finally, the indexing scheme can be changed
while keeping the ranking module in place. We can test a di�erent stemming strategy
and the a�ects that it has on the ranking results.

Together the indexing and ranking routines form a specialized retrieval model that can

increase retrieval e�ectiveness in speci�c cases. The specialized model discussed here
concentrates on retrieving full-text documents, another may concentrate on retrieving
pictures. We are interested in investigating ways to combine various indexing and
retrieval methods such as these and evaluating their performance.

18

Acknowledgements

Paul Aoki and Andrew Yu graciously provided expert technical advice

with regard to the POSTGRES database system. Prof. Ray Larson

provided invaluable guidance throughout this project and Prof. Robert

Wilensky added helpful suggestions for writing this paper. This work was

supported in part by the Sequoia 2000 project at the University of Cali-

fornia, a project principally funded by the Digital Equipment Corporation

and by The Environmental Electronic Library project of the NSF under

Grant No. IRI-9411334.

19

References

[1] Aoki, P. \Implementation of Extended Indexes in POSTGRES," SIGIR Forum,

Spring 1991, vol.25, (no.1):2-9.

[2] Cooper, Wm.S., Chen, A, and Gey, F.C. \Experiments in the Probabilistic Re-

trieval of Full Text Documents," Text Retrieval Conference (TREC-3) Draft

Conference Papers, Gaithersburg, MD : National Institute of Standards and

Technology.

[3] Cooper, Wm. S., Gey, F. C., and Chen, A. \Probabilistic Retrieval in the TIP-

STER Collections: An Application of Staged Logistic Regression," Proceedings of

the 15th ACM-SIGIR Conference on Research and Development in Information

Retrieval, Copenhagen, Denmark, June 1992.

[4] Croft, W.B, and Harper,D.J. \Using Probabilistic Models of Document Retrieval
without Relevance Information," Journal of Documentation, 35,285-295.

[5] Frakes, W.B. and Baeza-Yates, R. \Stemming Algorithms," Information Re-

trieval: Data Structures and Algorithms, C-8 (pp. 131-160), Englewood Cli�s,
New Jersey: Prentice Hall.

[6] Larson, R. \Design and Development of a Network-Based Electronic Library"
Navigating the Networks: Proceedings of the ASIS Midyear Meeting, Portland,
Oregon, May 21-25, 1994 (pp. 95-114). Medford, NJ: Learned Information, Inc.,

1994.

[7] Larson, R. \Evaluation of Advanced Retrieval Techniques in an Experimental

Online Catalog" JASIS: Journal of the Americal Society for Information Science,
January 1992.

[8] Lynch, C. and Stonebraker, M. \Extended User-De�ned Indexing with Appli-

cation to Textual Databases" Proceedings of the 14th VLDB Conference, Los

Angeles, CA, August 1988.

[9] Rowe, L. and Stonebraker, M. \The Design of POSTGRES" Proceedings of the

1986 ACM-SIGMOD Conference on Management of Data, Washington, DC,

June 1986.

[10] Stonebraker, M. \Inclusion of New Types in Relational Data Base Systems" Pro-
ceedings of 2nd IEEE Data Engineering Conference, Los Angeles, CA, February

1986.

[11] Stonebraker, M, Anton, J. and Hanson, E. \Extending a Data Base System with

Procedures"

20

[12] Stonebraker, M. and Olson, M. \Large Object Support in POSTGRES" Pro-

ceedings of 9th International Conference on Data Engineering, Vienna, Austria,

April 1993.

21

Appendix A - POSTGRES System Changes

10.1 System Catalog Tables Added

pg rank contains meta data over entire collection.

pg docs contains meta data per document.

pg kw contains meta data per term.

pg stoplist contains stopwords, words excluded from indexing.

Routines to support new system catalog tables:

catalog/pg_stoplist.c

catalog/pg_rank.c

catalog/pg_docs.c

catalog/pg_kw.c

10.2 Nodes

Node structures are created for the planner and the executor. A rank node was created
in execnodes.h and plannodes.h and the indexpath node was changed in relation.h.

10.3 Optimizer/Planner

The optimizer/planner was changed to create and rank node and to set up an index

path. Changes were made to several �les, the most notable changes are in orindxpath.c
and allpaths.c.

10.4 Executor

Most of the changes to the executor can be found in the �le n rank.c. This �le contains

routines to create and execute the \Rank" node.

10.5 Access Method

The fbtree access method routines are located in POSTGRES/src/backend/access/fbtree.
Most of the di�erences between the btree and fbtree access methods can be found in

the �le fbtree.c.

22

10.6 Ranking & Tokenize

The ranking and tokenizing routines are located in POSTGRES/src/backend/access/index-

fbtree.

rank.c has actual ranking equation.

extract.c has default extract routine.

stem.c contains a version of the Porter stemming algorithm.

10.7 Example

define index kwind on pg_kw using btree (kw text_ops) \g

define index docsind on pg_docs using btree (docId int4_ops) \g

create docs (docId = int4, doc = text) \g

define index docs_ind on docs using fbtree (doc text_ops) with (extract = kwlist_extr

23

