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Abstract

This set of notes gives several applications of the following paradigm.
The paradigm consists of two complementary parts. The �rst part is
to design a probabilistic algorithm described by a sequence of random
variables so that the analysis is valid assuming limited independence
between the random variables. The second part is the design of a small
probability space for the random variables such that they are somewhat
independent of each other. Thus, the analysis of the algorithm holds
even when the random variables used by the algorithm are generated
according to the small space.
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Section 1: Pairwise Independence

Consider a set of random variables indexed by a set U , i.e., fZi : i 2 Ug,
where Zi 2 T . For �nite t = jT j, a uniform distribution assigns Pr[Zx =
�] = 1=t, for all x 2 U , � 2 T . If this distribution were furthermore
pairwise independent, we would have: for all x 6= y 2 U , for all �; � 2 T ,

Pr[Zx = �;Zy = �] = Pr[Zx = �] � Pr[Zy = �] = 1=t2:

This is not the same as complete independence, as evidenced by the
following set of three pairwise-independent variables (U = f1; 2; 3g, T =
f0; 1g, t = 2):

s Z1 Z2 Z3
00 0 0 0
01 0 1 1
10 1 0 1
11 1 1 0

Each row s can be thought of as a function hs : U ! T . Let S be the
index set for these functions, where in this case S = f0; 1g2. For all
x 6= y 2 U , for all �; � 2 T ,

Pr
s2RS

[hs(x) = � ^ hs(y) = �] = 1=4 = 1=t2

(Notice in particular that Prs2RS [hs(x) = hs(y)] = 1=2 = 1=t.) Any set
of functions satisfying this condition is a 2-universal family of hash func-
tions. De�nitions and explicit constructions of 2-universal hash functions
were �rst given by [36, Carter-Wegman] . The original applications de-
scribed in [36, Carter-Wegman] were straightforward, similar to those
described in the later section on hashing. As these notes indicate, sub-
sequently 2-universal hashing has been applied in surprising ways to a
rich variety of problems.
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Section 2: Constructing Hash Functions

One simpleway to construct a family of hash functions mapping f0; 1gn!
f0; 1gn is to let S = f0; 1gn � f0; 1gn, and then for all s = (a; b) 2 S,
for all x 2 f0; 1gn de�ne hs(x) = ax + b, where the arithmetic opera-
tions are with respect to the �nite �eld GF[2n]. Thus, each hs maps
f0; 1gn! f0; 1gn and S is the index set of the hash functions. For each
s = (a; b) 2 S, we can write:

�
hs(x)
hs(y)

�
=

�
x 1
y 1

��
a

b

�

When x 6= y, the matrix is non-singular, so that for any x; y 2 f0; 1gn,
the pair (hs(x); hs(y)) takes on all 2

2n possible values (as s varies over all
S). Thus if s is chosen uniformly at random from S, then (hs(x); hs(y))
is also uniformly distributed. This property of hash functions is called
2-universal.

We can view S as the set of points in a sample space on the set of random
variables fZx : x 2 f0; 1gng where Zx(s) = hs(x) for all s 2 S. With
respect to the uniform distribution on S, these random variables are
pairwise independent, i.e., for all x 6= y 2 f0; 1gn, for all �; � 2 f0; 1gn

Pr
s2RS

[Zx(s) = �^Zy(s) = �] = Pr
s2RS

[Zx(s) = �]� Pr
s2RS

[Zy(s) = �] = 1=22n:

To obtain a hash function that maps to k < n bits, we can still use S as
the function index family: The value of of the hash function indexed by
s on input x is obtained by computing hs(x) and using the �rst k bits.

The imporant properties of these hash functions are:

� Pairwise independence.

� Succinctness { each function can be described as a 2n-bit string.
Therefore, randomly picking a function index requires only 2n ran-
dom bits.

� The function hs(x) can easily be computed (in LOGSPACE, for
instance) given the function index s and the input x.

In the sequel, unless otherwise speci�ed we are referring to this set of
pairwise independent hash functions and S denotes the set of indices for
the hash family.
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Section 3: Derandomization Applications

Consider, for example, the MAXCUT problem: given a graph G =
(V;E), �nd a two-coloring of the vertices � : V ! f0; 1g so as to max-
imize c(�) = jf(x; y) 2 E : �(x) 6= �(y)gj. We describe a solution to
this problem that is guaranteed to produce a cut where at least half the
edges cross the cut.

If the vertices are colored randomly (0 or 1 with probability 1=2) by
choosing � uniformly from the set of all possible 2jV j colorings, then:

E[c(�)] =
X

(x;y)2E

Pr[�(x) 6= �(y)] =
jEj
2

Thus, there must always be a cut of size at least jEj
2
. Let S be the

index set for the hash family mapping V ! f0; 1g. Since the summation
above only requires the coloring of vertices to be pairwise-independent,

it follows that E[c(hs)] =
jEj
2

when s2RS. Since jSj = jV j2, we can
deterministically try hs for all s 2 S in polynomial time (even in the
parallel complexity class NC), and for at least one s 2 S, hs de�nes a
partition of the nodes where at least jEj

2
edges cross the partition.

This derandomization approach was developed and discussed in general
terms in the series of papers [9, Chor-Goldreich], [26, Luby], [5, Alon-
Babai-Itai]. There, the approach was applied to derandomize algorithms
such as witness sampling, a fast parallel algorithm for �nding a maximal
independent set, and other graph algorithms.
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Section 4: Hashing

Say we are mapping elements N � U into a table T , with t = jT j; n =
jN j. For our hash family mapping U ! T , if we choose s2RS, what is
the expected number of colliding pairs C?

E[C] =
X

x6=y2N

Pr
s2RS

[hs(x) = hs(y)] =

�
n

2

�
� 1
t

For instance, if t = n2, then E[C] � 1
2
(and so the probability that h is

1-to-1 is � 1
2
). If t = n, then E[C] � n

2
.

One application that uses hashing and this observation is a particular
implementation of a dictionary. Consider a model where we �rst insert
a subset of entries N from some universe of possible words U into a
dictionary, and then subsequently we want to be able to look-up possible
words x 2 U to see if they are in N . Deterministic schemes based on
balanced tree data structures do the insertion in time O(n logn) and
subsequent look-ups in time O(logn) each.
Random hashing can speed this up considerably. A straightforward im-
plementation of a dictionary using hashing is to hash U to a table with
O(n2) cells, where each cell can store an element of U , in such a way that
no two entries in N map to the same cell. This scheme takes time O(n)
to store N (assuming the table space does not have to be initialized,
which is unrealistic) and constant time for each look-up.

The following two-level hashing scheme, due to [11, Fredman-Koml�os-
Szemer�edi], also takes time O(n) to construct the dictionary and con-
stant time for each look-up, but the advantage is that it uses only O(n)
cells in total. Let T = f1; : : : ; ng.

(1) Pick s2RS and mapN into T . For each i 2 T , let Ni be the subset
of N mapped to i by hs, and let ni = jNij. Let C =

P
i2T

�
ni
2

�
be

the number of colliding pairs. If C > n then start over at step (1),
else go on to step (2).

(2) For each i 2 T , if ni � 1 then we allocate a table Ti of n
2
i cells, and

let Si denote the index set for the hash family mapping U ! Ti.
Pick si2RSi, and use hsi to mapNi to Ti. If hsi mapsNi 1-to-1 into
Ti then this is a good choice for si, else rechoose si independently
and try again until hsi does describe a 1-to-1 mapping.
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Because E[C] � n=2 in step (1), Pr[C � n] � 1=2, and thus the expected
number of times step (1) is repeated is at most 2. Similarly, in step (2),
for each i 2 T , the expected number of times till the mapping of Ni into
Ti is 1-to-1 is at most 2. Thus, the overall expected time to construct
the dictionary is O(n). The total number of cells used to store N is
D =

P
i2T n

2
i . Noting that D � 2C = jN j = n, and that C � n, it

follows that at most 3n cells are used to store N . Note that we need
to also store s and all si for all i 2 f1; : : : ; ng, but this takes at most
2(n+1) additional cells, since the description of each hash function takes
two cells.

Each �nd operation takes constant time.
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Section 5: RP and BPP

Recall that a language L 2 NP if there is a polynomial time TM M

(where TM denotes a Turing machine) with the following properties. M
has two inputs x and y, where x is the string for which membership in L is
trying to be decided, and y is a potential witness for membership of x in
L. If x 2 f0; 1gn then y 2 f0; 1gr, where r is polynomial in n. The output
of M (x; y) is a single bit. The running time of M (x; y) is polynomial
in kxk. For x 2 f0; 1gn, let Wx = fy 2 f0; 1gr : M (x; y) = 1g. The
machine has the property that for all x 2 f0; 1gn,

x 2 L ) jWxj > 0;
x 62 L ) jWxj = 0:

RP is the class of languages L where membership can be checked with
one-sided error by a randomized, polynomial-time TM. Keeping the
same notation as above, L 2 RP if there is TM M with the following
properties. There is a constant cyes > 0 associated with M . For x 2
f0; 1gn, let Wx = fy 2 f0; 1gr : M (x; y) = 1g. For any A � f0; 1gr, let
�(A) = jAj=2r be the fraction of r-bit strings which are in A. M has the
property that for all x 2 f0; 1gn,

x 2 L ) �(Wx) � cyes;
x 62 L ) �(Wx) = 0:

The way we can decide membership of x 2 f0; 1gn is to choose y2Rf0; 1gr
and decide x 2 L if M (x; y) = 1, i.e., if y 2 Wx, and decide x 62 L if
M (x; y) = 0, i.e., if y 62 Wx. Notice that the decision is always correct
if x 62 L, but the decision is only correct with probability cyes if x 2 L.
On the other hand, when x 2 L, if y 2 Wx then y is a witness to
the fact that x really is in L, i.e., we can have full con�dence in our
decision. The standard way to boost con�dence in the decision is to
choose y1; : : : ; yk2Rf0; 1gr and decide x 2 L if, for any i 2 f1; : : : ; kg,
yi 2 Wx. Then, the probability of making an incorrect decision when
x 2 L is reduced to (1� cyes)

k.

BPP is the class of languages L where membership can be checked with
two-sided error by a randomized, polynomial-time TM. Keeping the
same notation as above, L 2 BPP if there are constants cyes and cno
with cyes > cno, such that for all x 2 f0; 1gn,

x 2 L ) �(Wx) � cyes;
x 62 L ) �(Wx) � cno :

6



We can decide membership in L exactly the same as for RP, but then
there is a chance of making an incorrect decision both in the case when
x 2 L and when x 62 L. The way to boost con�dence in the decision is
similar to that for RP: choose y1; : : : ; yk2Rf0; 1gr and decide x 2 L if
yi 2 Wx for more than k(cno + cyes)=2 of the i 2 f1; : : : ; kg, and decide
x 62 L otherwise.
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Section 6: Complexity of Unique Solutions

NP-hard problems often have many possible solutions. Would it make
it easier if we were assured of a unique solution? Speci�cally, we say
an algorithm A 2 RP unique-solves an NP language L if, for all x, the
output of A is guaranteed to be \no" with high probability if jWxj = 0
and the output of A is guaranteed to be \yes" with high probability if
jWxj = 1. Notice there is no requirement on the output of A if jWxj
is neither 0 nor 1, i.e., A can output anything in this case. Because of
this, A cannot be used directly to decide membership in L. [35, Valiant-
Vazirani] nevertheless show that A can be used indirectly to e�ciently
decide membership in L. More speci�cally, [35, Valiant-Vazirani] show
that if there is an A 2 RP that unique-solves some NP-complete lan-
guage L then RP = NP. The idea behind [35, Valiant-Vazirani] follows.

Consider the following language CIRCUIT SAT: Given a circuit C with
an r-bit input, is there a y 2 f0; 1gr such that C(y) = 1? A slightly
more general NP-complete problem, �, is the following: Given a circuit
C with an r-bit input, a function h mapping f0; 1gr to some set of values
T , and a value � 2 T , is there an input y to C such that C(y) = 1 and
h(y) = �?

Theorem : If there is an algorithm A 2 RP which unique-solves �
then RP = NP.

PROOF: We design an algorithm B 2 RP that decides membership in
CIRCUIT SAT based on A. On input a circuit C with an r-bit input,
B works as follows:

� Choose k2Rf1; : : : ; rg.
� Choose s2RS, where S is the index set of the hash family that
maps U = f0; 1gr to T = f0; 1gk+1.
� Choose �2Rf0; 1gk+1.
� Call A(C; hs; �). Give the same answer as A.

Note that ksk = O(r), and so this reduction can be performed in random
polynomial time. If C is not satis�able, then clearly B will respond
\no". If C is satis�able, then for some k 2 f1; : : : ; rg, 2k�1 � N � 2k,
where N is the number of satisfying assignments (witnesses) to C. With
probability 1=r we guessed this k correctly.
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Assume we have the correct k. Previously, we saw that for a table T ,
with jT j = aN , the expected number of colliding pairs E[C] � N=(2a).
In our case, 2 � a � 4. Thus, E[C] � N=4. Hence, with probability
at least 1=2, at most N=2 elements are paired and so at least N=2 table
entries are singletons. Assume this is the case. Since jT j � 4N , Pr[there
is a unique element that maps to �] � 1=8.

Overall, the probability that we pick (hs; �) so that (C; hs; �) has a
unique witness is at least 1=(16r). This can be boosted in the usual way.
We thus have an RP algorithm for an NP-complete problem, implying
RP = NP.
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Section 7: BPP � �2

�2 corresponds to languages L which can be written in the form:

x 2 L () 9z; 8w; qL(x; z; w) = 1

where qL is a polynomial time predicate, and kzk and kwk are polynomial
in kxk.
The following proofs are due to [33, Sipser]. Consider the following class
BPP

0, which is a very strong form BPP: For all L 2 BPP
0, when

x 2 L then jWxj > 2r�1 and when x 62 L then jWxj � 2(r�1)=2. We
can determine if x 2 L for L 2 BPP

0 as follows. Pick a s2RS where
our hash family maps f0; 1gr ! f0; 1gr�1). For the case of x 62 L, the
table T which hs maps to has jT j � jWxj2. We know from our previous
analysis that in such a situation, Pr[hs is 1-to-1] � 1

2 . When x 2 L,
Pr[hs is 1-to-1] = 0 (since the table is too small). Thus, we have a way
of distinguishing the two situations. We can decide if x 62 L by the
following:

x 62 L () 9s 2 S; 8y; y0 2Wx such that y 6= y0;

hs(y) 6= hs(y
0)

This is a �2 form of the complement of L (note that membership in

Wx takes only polynomial time to check). Therefore, BPP0 � �2 and
BPP

0 � �2. We now present the result of [33, Sipser].

Theorem : BPP � �2.

PROOF: Consider the following version BPP
00 of BPP: For all L 2

BPP
00, when x 2 L then jWxj > 1

r
2r and when x 62 L then jWxj � 1

2r2
2r.

Using the usual ampli�cation method, a language L 2 BPP can be
easily reduced to a language L0 2 BPP00, and thus BPP00 is equivalent
to BPP.

We now show how to determine if x 2 L, where L 2 BPP
00. We use

a table of size t = 1
r2
2r. Pick s1; s2; : : : ; sr2RS where our hash family

maps f0; 1gr ! [ 1
r2
2r]). Since we can't get a 1-to-1 mapping for one

particular table, we consider for every witness in Wx whether there is
at least one mapping which isolates the witness. We notice h isolates
y 2Wx i� for all y0 2Wx such that y0 6= y, we have h(y) 6= h(y0).

10



De�ne an event A: for all y 2 Wx, there is an i 2 f1; : : : ; rg such that
for all y0 2Wx such that y0 6= y, hsi(y) 6= hsi(y

0). We show that

x 2 L ) Pr[A] = 0;
x 62 L ) Pr[A] > 0:

Each hsi can isolate at most t elements. Hence, if x 2 L, the number
of witnesses that can be isolated is � tr = 1

r
2r < jWxj, and thus there

must be some witnesses in Wx that are not isolated by any of the r hash
functions, and thus Pr[A] = 0.

What if x 62 L?

� Fix i; y; y0. Pr[hsi(y) = hsi(y
0)] = 1

t
.

� Fix i; y. Pr[9y0 2 Wx; y
0 6= y; hsi(y) = hsi(y

0)] � jWxj
t
� 1

2 .

� Fix y. Pr[8i; 9y0 2 Wx; y
0 6= y; hsi(y) = hsi(y

0)] � 1
2r
.

� Pr[A] = 1�Pr[9y 2Wx; 8i 2 f1; : : : ; rg; 9y0 2Wx; y
0 6= y; hsi (y) =

hsi(y
0)] � 1� jWxj

2r
� 1� 1

2r2
.

� Thus, Pr[A] > 0.

Membership in language L can thus be summarized as:

x 62 L () 9hs1 ; : : : ; hsr ; 8y 2Wx; 9i 2 f1; : : : ; rg;
8y0 2 Wx; y

0 6= y; hsi(y) 6= hsi(y
0)

We've shown BPP = BPP
00 � �4. Notice that the third quanti�er

9i 2 f1; : : : ; rg is of polynomial size. It is possible to eliminate this
quanti�er, and then the surrounding pair of \for all" quanti�ers collapse
together, giving BPP � �2.
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Section 8: AM = IP

[16, Goldwasser-Sipser] show that AM = IP, that is, public coins are as
powerful as private coins in interactive protocols. To illustrate this we
look at the graph non-isomorphism problem: GNI = f(G0; G1) : graphs
G0 and G1 are not isomorphic g. To show that GNI 2 IP, we must
exhibit a prover P and veri�er V such that, for some pair of constants
cyes and cno with cyes > cno:

(1) For all (G0; G1) 2 GNI, P causes V to accept with probability at
least cyes.

(2) For all (G0; G1) 62 GNI, every prover causes V to accept with
probability at most cno.

The coins of V are kept private.

Let G0 and G1 both be graphs on m nodes. The IP protocol proceeds
as follows. V picks a random permutation of m nodes �2RSm and
a random graph index b2Rf0; 1g and sends �(Gb) to P , where �(Gb)
is the graph indexed by b with the nodes in the order speci�ed by �.
P then computes a bit c 2 f0; 1g, which is supposed to be the index
of the graph sent by V , and sends c to V . V accepts i� b = c. If
(G0; G1) 2 GNI, i.e., the graphs are not isomorphic, then P can tell
which graph is sent by V and thus can compute c correctly, so that
Pr[V accepts] = 1 = cyes. If the two graphs are isomorphic then, since
the veri�er sends a random permutation of the graph, the distribution
on graphs received by the prover is the same whether b = 0 or b = 1,
and since b is chosen randomly the prover can answer correctly with
probability 1=2, and thus Pr[V accepts] = 1=2 = cno.

Clearly, this protocol does not work if the coins used by the veri�er to
choose b and � are public.

Now we look at an AM protocol for the same problem. De�ne U to be
the set of all m vertex graphs. De�ne W � U to be the set of all graphs
that V could have sent in the previous protocol, so W = f�(Gb) : � 2
Sm; b 2 f0; 1gg. Now,

G0 � G1 ) jW j = m!;
G0 6� G1 ) jW j = 2(m!):

(This isn't always true, but something with a similar e�ect can be ar-
ranged), so the prover has to try to convince the veri�er that the set W
is big. This is done by mapping the elements of W into a table T of

12



size 4(m!) and looking at the probability that a random entry in T is
�lled. The AM protocol proceeds as follows. V randomly chooses s2RS
and �2Rf1; : : : ; Tg, and send hs and � to P . P computes � 2 Sm and
c 2 f0; 1g and sends to V the graph �(Gc). V accepts i� hs(�(Gc)) = �.

Note that unlike in the IP protocol described above, all the random bits
used by V , i.e., hs and �, are sent to P and are thus public. We want
to show that if G0 is not isomorphic to G1, then there is a fairly decent
chance that the prover P will be able to �nd a graph in W (equivalently,
a permutation � 2 Sm and b 2 f0; 1g) which is mapped to � by the hash
function h. The following calculations apply to mapping a subsetW � U

of size N into a table T of size 2N (we are interested in N = 2(m!)).
Below we show that given an index � 2 f1; : : : ; 2Ng, Pr[at least one
element in the size N set is mapped to �] � 3=8 = cyes. De�ne Ei to be
the event that element i is mapped to the given �. Then by inclusion-
exclusion and using the fact that the hash family is 2-universal, the above
probability is:

Pr[E1[ : : :[EN ] �
NX
i=1

Pr[Ei]�
X
i<j

Pr[Ei\Ej] =
N

2N
�
�
N

2

�
1

4N2
� 3

8

Thus, if x 2 L then Pr[V accepts] � 3=8. If x 62 L, then the subset
W is 1=4 the size of the table, so Pr[V accepts] � 1=4 = cno . The gap
between these probabilities can be boosted in the usual way.
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Section 9: Deterministic Ampli�cation

Let L be a RP language. A randomized TM can decide membership of
x 2 f0; 1gn in L by choosing y2Rf0; 1gr and then checking if y 2Wx. As
mentioned before, we can reduce the error probability of misclassi�cation
by choosing y1; : : : ; yk2Rf0; 1gr, counting the number of these strings
that fall in Wx and basing the decision on the value of this number. If
the yi's are chosen independently, we need kr random bits to achieve an
error probability of 2�O(k). We'd like to use fewer random bits and still
achieve a reduced error probability.

In this application, a pseudo-random generator is a deterministic TM,
G, that takes a random seed s and produces \pseudo-random" bits
G(s) = y1; : : : ; yk, where each string is of length r. The algorithm is
simply to test all k of these strings and to conclude that x 2 L if for any
i 2 f1; : : : ; kg yi 2 Wx and x 62 L otherwise. Notice there is misclas-
si�cation only when x 2 L and fy1; : : : ; ykg � W x. We'll give several
constructions.

Generator Random bits Error

Chor-Goldreich O(r) O(1=k)
Impagliazzo-Zuckerman O(r + k2) 2�O(k)

Nisan O(r lg k) 2�O(k)

AKS r + O(k) 2�O(k)

For the Chor-Goldreich generator we show the result for L 2 BPP. For
all the other generators, we show the result for L 2 RP. For these re-
sults, we assume cyes � 1=2. Thus, the probability of a misclassi�cation

when x 2 L is < 1=2. All of these proofs can be extended to show an
analogous result for L 2 BPP using exactly the same generator.

The results of the following exercise are due to [1, Adleman] and [6,
Bennett-Gill]. These results show there is a polynomial size sample space
that can be used to classify all x 2 f0; 1gn as either being in L or not,
where L 2 RP or L 2 BPP. The crucial property lacking from these
results is that the sample space is not e�ciently constructible. This prop-
erty is the main point of the deterministic ampli�cation constructions
given in the following sections that reduce the number of random bits
needed to �nd a witness with high probability.

De�nition (P/poly): We say that L 2 P/poly if there is a polynomial
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time TM M (x; y) such that when kxk = n then kyk = r, where r is
polynomial in n, with the following property: For each positive integer
n, there is an \advice string" y 2 f0; 1gr with the property that, for all
x 2 f0; 1gn,

x 2 L ) M (x; y) = 1;
x 62 L ) M (x; y) = 0:

We use the term \advice string" because, given the value of the advice
string y 2 f0; 1gr, it is easy to decide membership in L for all x 2 f0; 1gn.
Note that if it is possible to compute the value of the advice string
y 2 f0; 1gr in nO(1) time, then L 2 P . However, in general it may
not be possible to compute the advice string in nO(1) time. One way
of thinking about a language L 2 P/poly is that membership in L can
be decided in nO(1) time with the aid of a polynomial amount of extra
advice for each input length.

Exercise 1 : Prove that RP � P/poly and BPP � P/poly.
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Section 10: The Chor-Goldreich Generator

We �rst describe the generator due to [9, Chor-Goldreich]. We show how
this generator works for L 2 BPP. We assume that cyes � 3=4 and that
cno � 1=4. Let S be the index set for the hash familymapping f0; 1gr !
f0; 1gr, and let s2RS. We let G(s) = hs(1); : : : ; hs(k); i.e., yi = hs(i).
Then the yi's are uniformly distributed and pairwise independent. The
algorithm concludes that x 2 L if at least k=2 of the strings y1; : : : ; yk
are in Wx and x 62 L otherwise.

Theorem : The probability of misclassifying x 2 f0; 1gn with respect
to membership in L is at most 4=k.

PROOF: De�ne

Zi =

�
1 if yi 2Wx

0 otherwise

The Zi's are also identically distributed and pairwise independent with
mean � = �(Wx) and variance �2 = �(1 � �) � 1=4. Since the variance

of
Pk

i=1Zi is k�
2, it follows (using the Chebyshev inequality) that

Pr

"�����
kX
i=1

Zi � �k

����� > k

4

#
� 16k�2

k2
� 4

k
:
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Section 11: Nisan's Generator

We now describe the generator of [28, Nisan]. Let ` = log k. Let S be
the index set for the hash family mapping f0; 1gr ! f0; 1gr, and let
s1; : : : ; s`2RS. Let G0(y) = y and de�ne inductively for i � 1,

Gi+1(s1; : : : ; si+1; y) = hGi(s1; : : : ; si; y); Gi(s1; : : : ; si; hsi+1(y))i;
where ha; bi denotes the concatenation of strings a and b. For example,
G2(s1; s2; y) = hy; hs1(y); hs2 (y); hs1(hs2(y))i. A more obvious way to
visualize this generator is with a complete binary tree as shown in the
following �gure. A hash function is assigned to each level of this tree.
The root of the tree is assigned the seed value y, and for any node w on
level i � 1 is assigned value vw, where

vw =

�
vparent(w) if w is the left child of parent(w)
hs`�i+1 (vparent(w)) otherwise

h

h h

y

y

(y))y

(y)

(y) (h

s2

h (y)
s1 s2 s1 s2

Notice G`(s1; : : : ; s`; y) is simply the concatenation of the strings on level
` of this tree.

Before proving this generator works we need the following technical
lemma, which is also of independent interest.

Hash Mixing Lemma : Let � = 2�r=3 for some �xed parameter r.
Then for all A;B � f0; 1gr, and for all but an � fraction of s 2 S,
jPry2Rf0;1gr [y 2 A; hs(y) 2 B]� Pry;z2Rf0;1gr [y 2 A; z 2 B]j � �

PROOF: We want to bound the number of s 2 S such that

j Pr
y2Rf0;1gr

[y 2 A; hs(y) 2 B]� �(A)�(B)j � �

This is exactly the number of s 2 S such that

j Pr
y2RA

[hs(y) 2 B]� �(B)j � �=�(A)
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De�ne the indicator random variable

Zhs
y =

�
1 if hs(y) 2 B
0 otherwise

A hash function hs is \bad" if

j
X
y2A

Zhs
y � jAj�(B) j �

�jAj
�(A)

= �2r

By Chebyshev,

Pr
s2RS

2
4jX

y2A

Zhs
y � jAj�(B)j � �2r

3
5 � �(B)jAj

�222r
< �

Theorem : If x 2 L then Pr[G`(s1; : : : ; s`; y) � W x] � �(W x)
2` +(`+

2)� where � = 2�r=3.

PROOF: The �` in the error term handles the hash functions that are
\bad" for the Hash Mixing Lemma. Assume, for the moment, that hs
for all s 2 S satisfy the Hash Mixing Lemma. We show that

Pr
y2Rf0;1gr

[G(s1; : : : ; s`; y) � W x] � �(W x)
2` + 2�

Inductively assume it is true for ` � 1.

Let A = B = fy : G(s1; : : : ; s`�1; y) � W xg. These are the \bad" y, i.e.,
those y for which we decide that x 62 L when in fact x 2 L. Now using
the Hash Mixing Lemma,

Pr[G(s1; : : : ; s`; y) � W x] � Pr[G(s1; : : : ; s`�1; y) � W x]
2 + �

� (�(W x)
2`�1 + 2�)2 + �

� �(W x)
2` + 2�;

where the �rst inequality holds by the Hash Mixing Lemma, and the
second inequality holds by the induction hypothesis.

Each si, i 2 f1; : : : ; `g, had an � chance of being bad for the Hash Mixing
Lemma, and so

Pry2Rf0;1gr[G(s1; : : : ; s`; x) � W x] � �(W x)
2` + `�+ 2�:
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Section 12: The Impagliazzo-Zuckerman Generator

Let ` and k be integer parameters. (A good setting is to make k � ` �p
r). The generator described in [19, Impagliazzo-Zuckerman] produces

k + 1 potential witnesses, each of length r, from only 3r + k` random
bits. Let S be the index set for the hash family mapping f0; 1gr !
f0; 1gr�`. The generator is de�ned by a function G : f0; 1g2r�f0; 1gr�
ff0; 1g`gk �! ff0; 1grgk+1:

G(s; Y1; Z1; : : : ; Zk) 7�! (Y1; Y2; : : : ; Yk+1)

where s2RS, Y12Rf0; 1gr, and Zi2Rf0; 1g`, for 1 � i � k. The Yi's are
de�ned by:

Yi+1 = hhs(Yi); Zii; i = 1; : : :k

Theorem : If x 2 L then,

Pr[G(s; Y1; Z1; : : : ; Zk) � W x] � �(W x)
k+1 + 21�`=2

Several de�nitions and lemmas are needed to prove the theorem. Let P
and Q be two probability distributions on a set A. The L1-distance k �k1
and the L2-distance k � k2 between P and Q are de�ned as

kP �Qk1 =
X
i2A

jPi �Qij

and

kP � Qk2 =
 X
i2A

(Pi �Qi)
2

! 1
2

:

If � denotes the uniform distribution on a set A then a distribution P

on the set A is called �-uniform or �-quasi-random if kP � �k1 � �:

The collision probability c(P ) of a probability distribution on a set A is
de�ned as

c(P ) = Pr
i;j2PA

[i = j] =
X
i2A

P 2
i

The next lemma states a simple condition for when a probability distri-
bution is �-uniform.
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Lemma 1 : If c(P ) � (1 + �2)=jAj then P is �-uniform.

PROOF: By the Cauchy-Schwartz inequality, if v 2 Rn then kvk1 �p
nkvk2. Applying this to P �� yields

kP � �k21 � jAj
X
i2A

(�i � Pi)2 = jAj
 X
i2A

�2
i � 2

X
i2A

�iPi +
X
i2A

P 2
i

!
:

Since � is the uniform distribution
P

i2A�iPi = 1=jAj and Pi2A�2
i =

1=jAj. By assumption
P

i2A P
2
i = c(P ) � (1 + �2)=jAj:

Lemma 2 : Let S be the index set of the hash family that maps U to
T . Let P be the distribution hs; hs(x)i, where s2RS and x2RW � U

and let A = S � T . Then,

c(P ) =
1 + jT j

jW j

jAj :

PROOF: Let s; s02RS and x; x02RW . Then,

c(P ) = Pr[hs; hs(x)i = hs0; hs0(x0)i]
= Pr[s = s0] Pr[hs(x) = hs0(x

0)js = s0]

= Pr[s = s0] Pr[hs(x) = hs(x
0)]

= Pr[s = s0] (Pr[x = x0] + Pr[hs(x) = hs0(x
0)jx 6= x0])

=
1

S
�

1

jW j +
1

jT j
�

=
1

jSkT j
�
1 +

jT j
jW j

�

The following lemma is from [20, Impagliazzo-Levin-Luby].

Leftover-Hash-Lemma : Let S be the index set of the hash family
that maps U to T . For s2RS and x2RW � U , the distribution hs; hs(x)i
is �-uniform, where � =

pjT j=jW j.
PROOF: Apply Lemma 2 and Lemma 1 in sequence.

Proof of Theorem : The proof is by induction on k for a �xed value
of `. Let errork = Pr[G(s; Y1; Z1; : : : ; Zk) �W x] be the error probability
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with respect to k. It is clear that error0 � �(W x). For k � 1,

errork = Pr[Y1 2 W x] Pr[G(s; Y2; Z2; : : : ; Zk) �W xjY1 2W x]

= �(W x) Pr[G(s; Y2; Z2; : : : ; Zk) � W xjY1 2W x];

where Y2 = hhs(Y1); Z1i. Let � = 1=

q
2`�(W x). Then, it follows that

Pr[G(s; Y2; Z2; : : : ; Zk) � W xjY1 2W x]

� Pr[G(s; Ŷ2; Z2; : : : ; Zk) � W x] + �;

where Ŷ22Rf0; 1gr. This is because the distribution hs; hs(Y1)i is �-
uniform by the Leftover-Hash-Lemma, where s2RS and Y12RW x, and
thus

khs; hhs(Y1); Z1i; Z2; : : : ; Zki; hs; Ŷ2; Z2; : : : ; Zkik1 � �;

and this implies that the behavior of G on these two distributions can
di�er by at most �.

The induction hypothesis implies that

Pr[G(s; Ŷ2; Z2; : : : ; Zk) � W x] � �(W x)
k + 21�`=2:

This implies

errork � �(W x)

�
�(W x)

k + 21�`=2 + 1=

q
2`�(W x)

�

� �(W x)
k+1 + 21�`=2;

where the last inequality uses �(W x) � 1=2 and
q
�(W x) � 1.
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Section 13: The Expander Mixing Lemma

Let G = (U;E) be a d-regular undirected graph with n nodes (jU j = n).
The adjacency matrix of G is a symmetric n� n-matrix M with

M (i; j) =
n

0 (i; j) =2 E
1 (i; j) 2 E :

Every such matrix has an orthonormal basis of eigenvectors. Let these
eigenvectors for M be the vectors r0; : : : ; rn�1 2 R

n with the corre-
sponding eigenvalues �0; : : : ; �n�1 2 R. De�ne �i;j = 1 if i = j and
�i;j = 0 if i 6= j. We let � denote multiplication of matrices over the
reals. Whenever a vector is involved in a multiplication, we use the con-
vention that it is a row vector if it is to the left of � and a column vector
if it is to the right of �. Thus, if a and b are equal length vectors then
a � b denotes the inner product of a and b over the reals. We have for all
0 � i; j � n� 1:

ri � rj = �i;j

M � ri = �i ri

Every row of M consists of d ones and n � d zeros. Hence the vector
of ones in all components (denoted �1 2 R

n) is an eigenvector of M
corresponding to the eigenvalue d. Furthermore all eigenvalues are real-
valued and no larger than d. Without loss of generality, we assume
r0 = �1=

p
n and �0 = d. Let

� = max
1�i�n�1

j�ij

denote the second largest eigenvalue, that is the maximum factor by
which a vector orthogonal to r0 is stretched when multiplied by M .

Multiplication of a vector z 2 Rn with M can easily be expressed using
the eigenvectors and eigenvalues: Setting i = z � ri we have

z =
X

0�i�n�1

iri

and M � z =
X

0�i�n�1

�iiri:

For two sets A;B � U denote the set of (directed) edges from A to B

in G by E(A;B) = f(v; w) 2 U2 : (v; w) 2 Eg. Fixing A and an integer
b, and picking a set B of size b uniformly at random, the expected size
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of E(A;B) is
djAjb
n

. The following lemma states that for any set B the
size of E(A;B) is close to its expectation, where \close" depends on the
value of �.

Expander Mixing Lemma : For all A;B � U it holds that����jE(A;B)j � djAjjBj
n

���� � �
p
jAjjBj � �n:

PROOF: Let �A 2 Rn denote the indicator vector of A, i.e. a \one" is
at the position corresponding to a vertex v 2 A and a \zero" for v =2 A.
�B is the corresponding vector for B. Set

�i = �A � ri
�i = �B � ri

Then �0 = jAj=pn and �0 = jBj=pn, and we have

jE(A;B)j =
X

i2A; j2B

M (i; j)

= �A �M � �B

=

0
@ X

0�i�n�1

�i ri

1
A �

0
@ X

0�j�n�1

�j �j rj

1
A

=
X

0�i�n�1

�i �i �i

=
djAjjBj

n
+

X
1�i�n�1

�i �i �i

=)
����jE(A;B)j � djAjjBj

n

���� � �
X

0�i�n�1

j�i �ij

� � k�k2 k�k2
= � k�Ak2 k�Bk2
= �

p
jAjjBj

Another way to state the Expander Mixing Lemma is that for all A;B �
U ,

jPr
x;s
[x 2 A; es(x) 2 B]� Pr

x;y
[x 2 A; y 2 B]j � �

d
;
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where in the �rst random experiment x is a uniformly chosen node,
s2Rf1; : : : ; dg, and es(x) is the neighbor of x indexed by s, whereas in
the second experiment x and y are two independently and uniformly
chosen nodes. Note the resemblance with the Hash Mixing Lemma,
where es(x) is substituted by hs(x).

There are explicit constructions of symmetric matrices with a small sec-
ond largest eigenvalue �, corresponding to graphs with good expansion
properties. For all integers n0 and d0 there is an explicit construction
of an n node d-regular graph G with n0 � n � 2n0, d0 � d � 2d0 and
� � d9=10. (For example, see either [25, Lubotzky-Phillips-Sarnak] or
[27, Margulis].) For every node x 2 U and integer s 2 f1; : : : ; dg the
s-th neighbor es of x in G can be computed in logarithmic space. (To
simplify the presentation we assume in the sequel that we can construct
expanders for all values of n and d.)
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Section 14: The Karp-Pippenger-Sipser Generator

The [23, Karp-Pippenger-Sipser] generator uses the explicit construction
of expanders: The set f0; 1gr is identi�ed with the nodes of a 2r node k-
regular expander with � � k9=10. The seed to the generator G is a string
z2Rf0; 1gr, and G(z) produces y1; : : : ; yk, which are the k neighbors of
z in the expander graph. Thus, this scheme uses exactly r random bits.

Theorem : If x 2 L then

Pr[fy1; : : : ; ykg � W x] � 2k�1=10:

PROOF: Let A � f0; 1gr be the set of nodes z with the property that
all neighbors of z are in W x. Thus

Pr[fy1; : : : ; ykg � W x] = jAj=2r:

From E(A;Wx) = ; and the Expander Mixing Lemma it follows that

kjAjjWxj
2r

� �2r

=) jAj
2r

� �2r

kjWxj
� 2k�1=10 (since jWxj � 2r�1)
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Section 15: The Ajtai-Koml�os-Szemer�edi Generator

[3, Ajtai-Koml�os-Szemer�edi] show how to simulate a randomized log-

space computation usingO
�
(logn)2

log logn

�
random bits by a deterministic log-

space computation. [10, Cohen-Wigderson] and [31, Nisan-Zuckerman]
observe that the AKS generator can also be used for ampli�cation: Let
n = 2r and identify the set f0; 1gr with the nodes of a d-regular n-node
expander graph G. Set d to some constant value so that � � d=4 can be
achieved. Choose the nodes y1; : : : ; yk as the nodes visited on a random
walk of length k starting at a random node z2Rf0; 1gr. The random
walk is determined by the starting point z and integers ij 2 f1; : : : ; dg
for j 2 f1; : : : ; kg describing which edge to use in j-th step of the walk.
Thus, y1 is the i1-th neighbor of z and, for j � 2, yj is the ij-th neighbor
of yj�1. The number of random bits used is r + k log d = r +O(k).
Theorem : If x 2 L then

Pr[fy1; : : : ; ykg � W x] = 2��(k):

PROOF: To bound the error probability we describe the probability dis-
tribution after subsequent steps of the random walk by an n-dimensional
vector. Let p0 be the vector describing the initial distribution, i.e., the
distribution of z, which is p0(v) = 1=n for all v 2 f0; 1gr. Let M be
the adjacency matrix of G and set M̂ = M=d. Thus, the distribution
after the �rst step, i.e., the distribution of y1, is p1 = M̂ � p0. We are
interested in the probability that all nodes y1; : : : ; yk are contained in
Wx. The probability of y1 2W x is obtained by cancelling out the com-
ponents of p1 corresponding to nodes in Wx and summing up the other
components. Let P

Wx
be the diagonal matrix with ones in the positions

corresponding to elements of W x and zeros elsewhere. Then

Pr[y1 2W x] = kPWx
� M̂ � p0k1

Continuing this process yields

Pr[y1 2W x ^ : : :^ yk 2W x] = k
�
PWx

� M̂
�k
�p0k1: (1)

For any vector z =
P

0�i�n�1 i ri we have

kP
Wx
� M̂ � zk2 � kP

Wx
� M̂ � 0 r0k2

+ kP
Wx
� M̂ �

X
1�i�n�1

i rik2
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Using M̂ � r0 = r0 and replacing P
Wx

by I, we continue the inequalities
as follows:

� kP
Wx
� 0 r0k2 + kM̂ �

X
1�i�n�1

i rik2

�
q
�(W x) k0 r0k2 + k

X
1�i�n�1

�i

d
i rik2

�
q
�(W x) k0 r0k2 + �

d
k

X
1�i�n�1

i rik2

�
�q

�(W x) +
�

d

�
kzk2

(The last inequality is based on the fact that both 0 r0 and
P

1�i�n�1 i ri
are both projections of z.) Applying this inequality to (1) and using
Cauchy-Schwarz we are able to bound the error probability:

Pr[y1 2W x ^ : : :^ yk 2W x] �
p
n k
�
PWx

� M̂
�k
� p0k2

� p
n

�q
�(W x) +

�

d

�k
kp0k2

� p
n
�p

1=2 + 1=4
�k

1=
p
n

= 2��(k):
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Section 16: Limited Independence Probability Spaces

We describe constructions of probability spaces that induce limited in-
dependence on a sequence of random variables. These are extensions of
constructions described in Section 2.

Modulo Prime Space : Let p be a prime number. The sample space
is the set of all pairs S = f(a; b) : a; b 2 Zpg, where Zp = f0; : : : ; p� 1g.
The distribution on the sample points is uniform, i.e., (a; b)2RS. Let �
be an indeterminate and consider the polynomial

pa;b(�) = (a� + b) mod p;

where (a; b) 2 S. For all i 2 Zp, de�ne random variable

Xi(a; b) = pa;b(i):

For brevity, we sometimes use Xi in place of Xi(a; b).

Claim : X0; : : : ; Xp�1 are uniformly distributed in Zp and pairwise
independent.

PROOF: For any pair i; j 2 Zp, i 6= j, and for any pair of values
�; � 2 Zp, there is a unique solution a; b 2 Zp to the pair of equations:

� pa;b(i) = �.

� pa;b(j) = �.

Thus, PrA;B[Xi(A;B) = � ^Xj(A;B) = �] = 1=p2.

Recall the de�nition in Section 1 of pairwise independence. The following
is a generalization of this de�nition.

De�nition (k-wise independence): Let X1; : : : ; Xm be a sequence of
random variables with values in a set N . We say the random variables
are k-wise independent if, for all 1 � i1 < � � � < ik � m and for all
�1; : : : ; �k 2 N ,

Pr[Xi1 = �1 ^ � � � ^Xik = �k] = Pr[Xi1 = �1] � � �Pr[Xik = �k]:

28



Exercise 2 : Let p be a prime number and let m � p. Generalize the
Modulo Prime Space to a probability space where X0; : : : ; Xm�12RZp
are k-wise independent, where the size of the probability space is pk.

The Modulo Prime Space can be generalized as follows. The following
construction is a more detailed description of the one presented in Section
2.

Linear Polynomial Space : Let F be any �nite �eld and consider
the polynomial

pa;b(�) = a� + b

over F , where a; b 2 F . Identify the integers f0; : : : ; jFj� 1g with the
elements of F . The sample space is S = f(a; b) : a; b 2 Fg and the
distribution on S is (a; b)2RS. For all i 2 F , de�ne random variable

Xi(a; b) = pa;b(i);

where i on the left side of the equality is treated as an index and on the
right side of the equality it is the corresponding element of F .
The random variablesX0; : : : ; XjFj�1 are uniformly distributed in F and
pairwise independent. A �eld with nice properties is GF[2n], the Galois
�eld with 2n elements.

Mapping between f0; 1gn and GF[2n] : There is a natural mapping
between f0; 1gn and polynomials in one variable � of degree n � 1 over
GF[2]. Namely, if a 2 f0; 1gn and ha0; : : : ; an�1i are the bits of a then
the corresponding polynomial is

a(�) =

n�1X
i=0

ai�
i:

These polynomials are the �eld elements of GF[2n]. Let a 2 f0; 1gn
and b 2 f0; 1gn and let a(�) and b(�) be the corresponding polynomials.
Computing a+b over GF[2n] consists of computing a�b, where � is vec-
tor addition over GF[2]. Equivalently, computing a+ b over GF[2n] con-
sists of computing a(�) + b(�) over GF[2], i.e., for all i 2 f0; : : : ; n� 1g,
the ith coe�cient of a(�) + b(�) is ai � bi. Computing a � b over GF[2n]
consists of computing a(�) �b(�) mod r(�), where a(�) �b(�) is polynomial
multiplication over GF[2] that results in a polynomial of degree 2n� 2,
and r(�) is a �xed irreducible polynomial of degree n. The zero element
of GF[2n] is the identically zero polynomial with coe�cients ai = 0 for
all i 2 f0; : : : ; n� 1g, and the identity element is the polynomial with
coe�cients a0 = 1 and ai = 0 for all i 2 f1; : : : ; n� 1g.
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In the Modulo Prime Space, X0; : : : ; Xp�1 are pairwise independent and
the size of the space is p2. We describe a way to construct a pairwise
independent probability space for f0; 1g-valued random variables that
has size linear in the number of random variables.

Inner Product Space : Let ` be a positive integer. The sample space
is S = f0; 1g` and the distribution on sample points is a2RS. For all
i 2 f0; 1g` n f0`g, de�ne random variable

Xi(a) = a� i =

0
@X̀
j=1

aj � ij
1
A mod 2:

(We use � to denote multiplication of matrices over GF[2], where we are
using the convention that a vector to the left of � is considered a row
vector and a vector to the right of � is viewed as a column vector.)

Claim : X1; : : : ; X2`�1 are uniformly distributed and pairwise indepen-
dent.

Exercise 3 : Prove the pairwise independence property for the Inner
Product Space.

Exercise 4 : Let p be a positive integer and let X1; : : : ; Xn2RZp be
a sequence of four-wise independent random variables. De�ne random
variable

Y = minf(Xi �Xj) mod p : 1 � i < j � ng:
Prove there is a constant c > 0 such that for any � � 1

Pr[Y � �p=n2] � c�:

Hint : Let N be the set of n(n � 1)=2 unordered pairs f(i; j) : 1 �
i < j � ng. For �xed �, consider the sequence of f0; 1g-valued random
variables fZe : e 2 Ng, where if e = (i; j) then Ze = 1 if jXi � Xj j �
�p=n2 and Ze = 0 otherwise. Using the �rst two terms of the inclusion-
exclusion formula, show that for any �,

Pr[9e 2 N : Ze = 1] �
X
e2N

Pr[Ze = 1]�
X

e;e02N;e6=e0
Pr[Ze = 1 ^ Ze0 = 1]:
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Section 17: One-Way Functions

In the next couple of sections we introduce one-way functions and pseudo-
random generators, and show how to construct a pseudo-random gen-
erator from a one-way function. The reason for interest in these cryp-
tographic functions and for the reduction from a one-way function to a
pseudo-random generator is that there are a lot of natural examples of
functions that seem to be one-way, and pseudo-random generators are
extremely useful in the design of cryptographic protocols and in deran-
domization of algorithms.

Intuitively, a one-way function is a function that is easy to compute but
hard for any time-bounded adversary to invert on a random input. To
gauge the success of an adversary in breaking a cryptographic function,
we use the following measure.

De�nition (time/success ratio): The time/success ratio of an ad-
versary for breaking a cryptographic function is T (n)=�(n), where T (n)
is the run time of the adversary and �(n) is the success probability of
the adversary with respect to inputs parameterized by n. The de�nition
of the success probability depends on the cryptographic function.

De�nition (one-way function): Let f(x) be a function computable in
time polynomial in kxk. The success probability (inverting probability)
of adversary A for f is

�(n) = Pr
x2Rf0;1gn

[f(A(f(x))) = f(x)]:

Then, f is a S(n)-secure one-way function if every A has time/success
ratio at least S(n).

De�nition (one-way permutation): Exactly the same as the de�ni-
tion of a one-way function, except that kf(x)k = kxk and f as a function
of x 2 f0; 1gn is a permutation.

Examples of Conjectured one-way functions

Here are some natural examples that may eventually be proven to be
one-way functions. Plenty of others can be found in the literature. In
the following, p and q are primes of length n.

Factoring problem : De�ne f(p; q) = pq. It is possible to compute pq
given p and q in nO(1) time. However, there is no known polynomial-time
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function that on input pq can produce p and q on average for randomly
chosen pairs of primes hp; qi
Discrete log problem : Let g be a generator of Z�p , i.e., for all

y 2 Z�p , there is a unique x 2 Zp�1 such that gx = y mod p. Given
p, g and x 2 Zp�1, de�ne f(p; g; x) = hp; g; gx mod pi. It is possible
to compute gx mod p given p, g and x in nO(1) time. The discrete log
function is a permutation as a function of x, i.e., the unique inverse of
f(p; g; x) is hp; g; xi. The values of p and g are not necessarily chosen
randomly. The prime p is selected to have special properties which seem
in practice to make the discrete log function hard to invert. An example
of such a property is that p is selected so that that p� 1 has some fairly
large prime divisors. For a large class of primes p and generators g there
is no known polynomial-time function that on input p, g and gx mod p
can produce x on average for x2RZp�1.
Root extraction problem : Given p, q, e 2 Zp�1 and y 2 Zp, de�ne
f(p; q; e; y) = hpq; e; ye mod pqi. It is possible to compute ye mod pq
given pq, e and y in nO(1) time. To make the inversion problem hard,
it is important that the factorization of the modulus is not part of the
output, because given the factorization an inverse can be found in nO(1)

time. The value of the exponent e is not necessarily chosen randomly.
For example, if e = 2 then the problem is to extract square roots, and
this still seems to be a hard problem on average. There is no known
polynomial-time function that on input pq, e and ye mod pq can produce
an y0 2 Zp such that y0

e
= ye mod pq when p and q are randomly chosen

according to a distribution for which factoring is hard and y2RZp. There
is a strong connection between this problem when e = 2 and the factoring
problem.

Subset sum problem : Let a 2 f0; 1gn and b 2 f0; 1gn�n. Given a

and b, de�ne f(a; b) = hPn
i=1 ai � bi; bi, where ai 2 f0; 1g and bi is an

n-bit integer in this expression and where the sum is over the integers. It
is possible to compute

Pn
i=1 ai � bi given a and b in nO(1) time. However,

there is no known polynomial-time function that on input
Pn

i=1 ai � bi
and b can produce a0 2 f0; 1gn such that

Pn

i=1 a
0
i � bi =

Pn

i=1 ai � bi on
average when a2Rf0; 1gn and b2Rf0; 1gn�n.

Exercise 5 : Let A2Rf0; 1gn and let B2Rf0; 1gn�(n+1). Prove that
the probability

f(A;B) = h
nX
i=1

Ai �Bi; Bi
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has a unique inverse is lower bounded by a constant strictly greater than
zero independent of n. Note that in contrast to the previous de�nition
where kBik = n, here kBik = n+ 1.
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Section 18: Hidden Bit Theorem

The main result of these sections is the construction of a pseudo-random
generator from any one-way permutation. In this section, we present
the main technical content of this reduction, the Hidden Bit Theorem,
which is due to [14, Goldreich-Levin].

There are several technical parts in the reduction from any one-way per-
mutation f to a pseudo-random generator g. Intuitively, the Hidden Bit
Theorem is the part that transforms the one-wayness of f into a bit b
such that: (1) b is completely determined by information that is available
to any adversary; (2) nevertheless b looks random to any appropriately
time-restricted adversary. It is from this bit b that the generator g even-
tually derives its pseudo-randomness. The guarantee from the reduction
is that any successful adversary for distinguishing the output of g from
a truly random string can be converted into an adversary for predicting
b, which in turn can be converted into an adversary for inverting f .

The de�nition of a computationally hidden but statistically meaningful
bit and the realization of its importance as a basic building block for
cryptographic constructions is from [7, Blum-Micali].

The construction of a hidden bit using the inner product bit, the Hidden
Bit Theorem and the Hidden Bit Technical Theorem are all from [14,
Goldreich-Levin]. The simpler proof given here of Hidden Bit Technical
Theorem is due to C. Racko�, R. Venkatesan and L. Levin, inspired by
[4, Alexi-Chor-Goldreich-Schnorr].

De�nition (inner product bit is hidden): Let f(x) be a polynomial-
time computable function. Let x 2 f0; 1gn and z 2 f0; 1gn. Then, the
inner product bit of f(x) is x � z. The success probability (prediction
probability) of adversary A for the inner product bit of f is

�(n) = Pr
x;z2Rf0;1gn

[A(f(x); z) = x� z]� Pr
x;z2Rf0;1gn

[A(f(x); z) 6= x� z]:

Then, the inner product bit of f is a S(n)-secure if every A has time/success
ratio at least S(n).

Hidden Bit Theorem : If f is a one-way function then the inner
product bit of f is hidden. In particular, there is a TM M such that if
A is an adversary with time/success ratio S(n) for predicting the inner
product bit then MA is an adversary with time/success ratio S(n)c for
inverting f for some constant c > 0. (MA denotes M making calls to
the adversary A.)
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PROOF: Suppose there is an adversary A for the inner product bit of
f with success probability �(n) and run time T (n). We describe a TM
M such that MA is an adversary for f as a one-way function.

For x 2 f0; 1gn de�ne

�Ax = Pr
z2Rf0;1gn

[A(f(x); z) = x� z]� Pr[A(f(x); z) 6= (x� z)]:

Let X2Rf0; 1gn. Because, for any x 2 f0; 1gn, j�Ax j � 1 and because
EX [�

A
X ] = �(n), it follows that PrX [�

A
X � �(n)=2] � �(n)=2. The TM M

we describe below has the property that if �Ax � �(n)=2 thenMA on input
f(x) succeeds in producing an x0 such that f(x0) = f(x) with probability
at least 1=2. From this it follows that the inverting probability of MA

for f is at least �(n)=4.

Suppose the input to MA is f(x), where �Ax � �(n)=2. Let S be the
TM described below in the Hidden Bit Technical Theorem (page 36)
and let B(z) = A(f(x); z). The �rst step of MA is to run SB with
input � = �(n)=2. When S makes an oracle query to B with input z,
M runs A on input hf(x); zi and returns the answer B(z) = A(f(x); z)
to S. Because �Ax � �(n)=2, by the Hidden Bit Technical Theorem, x
is in the list L produced by SB with probability at least 1=2. The �nal
step of MA to do the following for all x0 2 L: Compute f(x0) and if
f(x0) = f(x) then output x0.

The success probability of MA for inverting f(X) is at least �(n)=4.
From the Hidden Bit Technical Theorem, it is not hard to see that the
running time of MA is dominated by the running time of S making
queries to A to produce the list L, which is O(n3T (n)=�(n)4), where
T (n) is the running time of A. Thus, the time/success ratio of MA is
O(n3T (n)=�(n)5).

Generalized Inner Product Space

For the proof of the Hidden Bit Technical Theorem we use the following
generalization of the Inner Product Space (page 30).

Generalized Inner Product Space : Let ` = dlog(m+ 1)e. The
sample space is S = f0; 1gn�` and the distribution on sample points is
v2RS. For all j 2 f0; 1g`, de�ne random variable

Tj(v) = v � j:

It can be veri�ed that T1(v); : : : ; Tm(v) are uniformly distributed on
f0; 1gn and pairwise independent.
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Hidden Bit Technical Theorem : Let B(z) be a TM which runs in
time polynomial in n. and for each x 2 f0; 1gn de�ne

�Bx = Pr
z2Rf0;1gn

[B(z) = x� z]� Pr
z2Rf0;1gn

[B(z) 6= x� z]:

There is a TM S such that for any B, SB on input � > 0 produces a list
L � f0; 1gn with the following property: For all x 2 f0; 1gn, if �Bx � �

then x 2 L with probability at least 1=2, where this probability is with
respect to the random bits used by TM SB . The running time of SB is
O(n3T=�4), where T is the running time of B.

PROOF: For the proof, we �nd it convenient to consider bits as be-
ing f1;�1g-valued instead of f0; 1g-valued. For b 2 f0; 1g, we let b =
(�1)b 2 f1;�1g.
Fix x 2 f0; 1gn such that �Bx � �. We can write

�Bx = Ez2Rf0;1gn
h
B(z) � x� z

i
:

For all i = 1; : : : ; n, let ei 2 f0; 1gn be the bit string h0i�1; 1; 0n�ii and
let

�i = �Bx � xi:
It follows that

Ez2Rf0;1gn
h
B(z) � x� (ei � z)

i
= �i:

This is because � distributive over � implies that

x� (ei � z) = x� ei � x� z
and because x� ei = xi, and thus

B(z) � x� (ei � z) = B(z) � x� z � xi:
Setting z0 = ei � z it is easy to see that z02Rf0; 1gn when z2Rf0; 1gn
and z = ei � z0. Thus,

Ez02Rf0;1gn
h
B(ei � z0) � x� z0

i
= �i:

The idea is to compute, simultaneously for all i 2 f1; : : : ; ng, a good
approximation Yi of �i. We say that Yi is a good approximation if
jYi � �ij < �. De�ne

bit(Yi) =

�
0 if Yi � 0
1 if Yi < 0
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Because j�ij � �, if Yi is a good approximation then bit(Yi) = xi. Let
m =

�
2n=�2

�
and let T1; : : : ; Tm2Rf0; 1gn be pairwise independent ran-

dom variables. Let

Yi = 1=m �
mX
j=1

B(ei � Tj) � x� Tj :

Then, using the pairwise independence of the random variables and the
fact that, for all j,

E

��
B(ei � Tj) � x� Tj � �i

�2�
� 1;

it follows that
E[(Yi � �i)2] � 1=m:

From Chebychev's inequality it then follows that

Pr [jYi � �ij � �] � E[(Yi � �i)
2]=�2 � 1=(m�2) � 1=(2n):

From this it follows that

Pr [9i 2 f1; : : : ; ng : jYi � �ij � �] � 1=2;

and so
Pr [8i 2 f1; : : : ; ng : jYi � �ij < �] � 1=2: (2)

The only remaining di�culty is how to compute Yi given T1; : : : ; Tm.
Everything is relatively easy to compute, except for the values of x� Tj
for all j 2 f1; : : : ;mg. If T1; : : : ; Tm are chosen in the obvious way, i.e.,
each is chosen independently of all the others, then we need to be able
to compute x� Tj correctly for all j 2 f1; : : : ;mg and there is probably
no feasible way to do this. (Recall that we don't know the value of x.)

Instead, the approach is to take advantage of the fact that the analysis
only requires T1; : : : ; Tm to be pairwise independent.

Let ` = dlog(m + 1)e and let v 2 f0; 1gn�`. Let T1(v); : : : ; Tm(v) be as
described in the Generalized Inner Product Space (page 35), i.e., for all
v 2 f0; 1gn�` and for all j 2 f0; 1g`� 0`, Tj(v) = v � j. As we describe,
this particular construction allows feasible enumeration of all possible
values of x�Tj(v) for all j 2 f1; : : : ;mg without knowing x. Because of
the properties stated above,

x� Tj(v) = x� (v � j) = (x� v) � j:
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Thus, it is easy to compute, for all j 2 f1; : : : ;mg, the value of x�Tj(v)
given x� v. From this we can compute, for all i 2 f1; : : : ; ng,

Yi(v) = 1=m �
mX
j=1

B(ei � Tj(v)) � (x� v) � j:

The key point is that there are only 2` = O(m) possible settings for
x � v, and we try them all. For any x and v there is some � 2 f0; 1g`
such that � = x� v. Let

Yi(�; v) = 1=m �
mX
j=1

B(ei � Tj(v)) � � � j;

i.e., Yi(�; v) is the value obtained when � is substituted for x � v in
the computation of Yi(v). Consider choosing v2Rf0; 1gn�`. Since from
equation (2) above, the probability that Yi(x � v; v) is a good approx-
imation for all i 2 f1; : : : ; ng is at least one-half, it follows that with
probability at least one-half there is at least one � 2 f0; 1g` such that
Yi(�; v) is simultaneously a good approximation for all i 2 f1; : : : ; ng.
For this value of � and for such a v, hbit(Y1(�; v); : : : ; bit(Yn(�; v))i is
equal to x.

Adversary SB on input � > 0 :

m �
2n=�2

�
.

` dlog(m + 1)e.
L  ;.
Choose v2Rf0; 1gn�`.
For all � 2 f0; 1g` do:

For all j = 1; : : : ;m do:

Compute Tj(v) = v � j.

For all i = 1; : : : ; n do:

Compute Yi(�; v) = 1=m �Pm
j=1B(ei � Tj(v)) � � � j:

L  L[ fhbit(Y1(�; v)); : : : ; bit(Yn(�; v))ig.
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From the above analysis, it follows that x 2 L with probability at least
1=2, where this probability is over the random choice of v.

As long as the running time T for computing B is large compared to n
(which it is in our use of the Hidden Bit Technical Theorem to prove the
Hidden Bit Theorem), the running time of SB is O

�
n3T=�4

�
.

The following exercise shows that the inner product bit is special, i.e., it
is certainly not the case that any bit of the input to f is hidden if f is
a one-way function.

Exercise 6 : Describe a one-way permutation f(x) where the �rst bit of
x is not hidden given f(x). Let f(x) be any polynomial-time computable
function. Show that if xi can be predicted with probability greater than
1� 1=(2n) given hf(x); ii when x2Rf0; 1gn and i2Rf1; : : : ; ng then f is
not a one-way function.

The converse of the Hidden Bit Theorem is not true, i.e., there is a
function f where the inner product bit is hidden but f is not a one-way
function. This is the point of the following exercise.

Exercise 7 : Describe a polynomial-time computable function f(x)
which is certainly not a one-way function but for which the inner product
bit is provably 2n-secure.
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Section 19: Pseudo-random Generators

[7, Blum-Micali] introduce the concept of a pseudo-random generator
that is useful for cryptographic (and other) applications, and gave it the
signi�cance it has today by providing the �rst provable construction of
a pseudo-random generator based on the conjectured di�culty of a well-
known and well-studied computational problem. In particular, both the
de�nition of pseudo-random generator based on the next bit test and the
construction of a pseudo-random generator based on the di�culty of the
discrete log problem (page 32) can be found in [7, Blum-Micali].

[37, Yao] introduces the now standard de�nition of a pseudo-random
generator, and shows an equivalence between this de�nition and the
next bit test introduced in [7, Blum-Micali]. The standard de�nition
of a pseudo-random generator introduced by [37, Yao] is based on the
concept of computational indistinguishability introduced previously in
[15, Goldwasser-Micali].

De�nition (pseudo-random generator): Let g(x) be a polynomial-
time computable function where `(n) = kg(x)k, n = kxk, and `(n) > n.
The stretching parameter of g(x) is `(n) � n. The success probability
(distinguishing probability) of adversary A for g is

�(n) = Pr
x2Rf0;1gn

[A(g(x)) = 1]� Pr
z2Rf0;1g`(n)

[A(z) = 1]:

Then, g is a S(n)-secure pseudo-random generator if every A has time/success
ratio at least S(n).

The following exercise shows that an immediate application of the Hid-
den Bit Theorem is the construction of a pseudo-random generator from
a one-way permutation.

Exercise 8 : From the Hidden Bit Theorem, show that if f(x) is a
one-way permutation then g(x; z) = hf(x); z; x� zi is a pseudo-random
generator that stretches by 1 bit. The reduction should describe a TM
M with the property that if A is an adversary for distinguishing g with
time/success ratio S(n) then MA is an adversary for inverting f with
time/success ratio S(n)c for some constant c > 0.

The simple construction of a pseudo-random generator given in the pre-
vious exercise was one of the motivating forces behind the work of [14,
Goldreich-Levin]. The reduction from an arbitrary one-way function to
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a pseudo-random generator can be found in [18, H�astad-Impagliazzo-
Levin-Luby].

We can construct a pseudo-random generator that stretches by an arbi-
trary polynomial amount based on any one-way permutation. Let f(x)
be a one-way permutation . De�ne g(x; z), where kzk = kxk = n, as

g(x; z) = hz; x� z; f(x) � z; f (2)(x) � z; : : : ; f (`(n)�n�1)(x)� zi;

where f (i) is the function f composed with itself i times.

Theorem : If f is a one-way permutation then g is a pseudo-random
generator. In particular, there is a TM M with the property that if A is
an adversary for distinguishing g with time/success ratio S(n) then MA

is an adversary for inverting f with time/success ratio S(n)c for some
constant c > 0.

This theorem is a combination of a theorem due to [13, Goldreich-
Goldwasser-Micali] and the Hidden Bit Theorem (page 34) of [14, Goldreich-
Levin].

Exercise 9 : Prove the above theorem.
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Section 20: #P and Approximate Counting

Recall that a language L 2 NP if there is an associated TM M such
that, for all x 2 f0; 1gn, x 2 L i� jWxj � 1, where Wx = jfy 2 f0; 1gr :
M (x; y) = 1gj. A function f 2 #P if there is an NP language L with
an associated TM M such that, for all x 2 f0; 1gn, f(x) = jWxj. In
words, f(x) is the number of witnesses that show x 2 L. In particular,
note that f(x) = 0 i� x 62 L, and thus it is clear that a polynomial time
algorithm for computing f immediately impliesP = NP. The de�nition
of the complexity class #P, and the realization of its importance, are
due to [34, Valiant]. Examples of f 2 #P are the following:

� If x is the description of a graph then f(x) is the number of perfect
matchings in the graph, else f(x) = 0.

� If x is the description of a graph then f(x) is the number of Hamil-
tonian tours in the graph, else f(x) = 0.

� If x is the description of a DNF boolean formula then f(x) is the
number of truth assignments that satisfy the formula, else f(x) =
0.

� If x is the description of a CNF boolean formula then f(x) is the
number of truth assignments that satisfy the formula, else f(x) =
0.

As there is a notion of completeness forNP, there is an analogous notion
of completeness for #P. Intuitively, if a function f is #P-complete and
if there is a polynomial time algorithm for computing f then there is a
polynomial time algorithm for computing every g 2 #P.
As shown in [34, Valiant], all four examples described above are #P-
complete functions. Most often it is the case that if the language L
is NP-complete then it takes little e�ort to show that the associated
counting problem f is #P-complete, and this is the case for second and
fourth examples. The �rst and third examples are more interesting be-
cause the associated NP-language can be decided in polynomial time.
The proof that the third example is #P-complete is rather straightfor-
ward from the #P-completeness of the fourth example. However, the
#P-completeness of the �rst example is not at all straightforward.

It turns out that many important counting problems are #P-complete,
and unless P = NP there is no hope of �nding polynomial time algo-
rithms for these problems. On the other hand, in practice it is often
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useful to provide a good approximation of the number of solutions. As
before, let �(Wx) = jWxj=2r be the fraction of witnesses for x among all
possible witnesses. There are two potential de�nitions of what a good
estimate means:

(1) Y is an �-good absolute approximation of �(Wx) if

�(Wx) � � � Y � �(Wx) + �:

(2) Y is an �-good relative approximation of �(Wx) if

�(Wx)(1 � �) � Y � �(Wx)(1 + �):

An estimate Y is more useful and meaningful if it is an �-good relative
approximation, especially in the typical case when �(Wx) is small.

In recent years, a body of work has been devoted to �nding fast algo-
rithms to approximate #P-complete functions. Let f be a #P function.
Following [21, Karp-Luby], we say a randomized algorithm A provides
a fully polynomial randomized approximation scheme (abbreviated to
fpras) for f if, for every pair of positive input parameters (�; �), and for
every input x 2 f0; 1gn,

(1) A(x; �; �) is an �-good relative approximation of f(x) with proba-
bility at least 1� �. The probability is with respect to the source
of randomness used by A.

(2) The run time A(x; �; �) is bounded by a polynomial in kxk, 1=� and
log(1=�).

Let us say that A is a weak fpras if requirement (1) in the above de�nition
is changed to say that A(x) is an �-good absolute approximation instead
of an �-good relative approximation. Based on the standard sampling
algorithm described below, it is easy to see there is a weak fpras for every
f 2 #P. On the other hand, a fpras for the CNF counting problem
immediately implies RP = NP.

In the following sections, we develop a fpras for the DNF counting prob-
lem and for a related problem. The following simple and standard sam-
pling algorithm at a very high level provides the general outline for the
algorithms for both problems. Suppose we have a �nite (but large) uni-
verse U of known size jU j, and our goal is to estimate the size of some
set G � U of unknown size. A trial of the algorithm for estimating jGj
consists of the following two steps:
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(1) Choose s2RU .
(2) See if s 2 G.

Let b be an easily computable upper bound on jU j=jGj. The algorithm
performs N = 4b ln(2=�)=�2 independent trials, and the output Y is the
fraction of these N trials where an element of G is chosen, multiplied
by jU j. A standard analysis using an inequality due to Bernstein [32,
Renyi] shows that for � < 1,

Pr[jGj(1� �) � Y � jGj(1 + �)] � 1� �: (3)

(See for example [22, Karp-Luby-Madras] for a proof.)

The key points about the sampling algorithm are the following:

(a) The universe U should be de�ned in such a way that jU j is easy to
compute.

(b) Steps (1) and (2) of the trial can be performed e�ciently.

(c) jGj is known a priori to be a signi�cant fraction of jU j, i.e. b is
polynomially bounded.
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Section 21: DNF Counting

Let y = hy1; : : : ; yri be a collection of r-boolean variables and let F
be a boolean formula in disjunctive normal form (DNF formula); i.e,
F = c1 _ c2 _ � � � _ cm, where ci = zi1 ^ � � � ^ zi`i for some set of literals

fzi1 ; : : : ; zi`ig � fy1; : : : yr; �y1; : : : ; �yrg:

For a truth assignment a 2 f0; 1gr to y, let M (F; a) = 1 if a satis�es F ,
and let M (F; a) = 0 otherwise. Let f(F ) = jfa 2 f0; 1gr : M (F; a) =
1gj. It is clear that f 2 #P, and, as mentioned before, f is #P-complete.
We describe below a fpras algorithm for f due to [21, Karp-Luby], [22,
Karp-Luby-Madras].

A naive approach to approximate f(F ) is the following. Let the sample
space be the set f0; 1gr of all possible truth assignments. Choose several
random truth assignments, and estimate f(F ) by the fraction of these
truth assignments that satisfy F . The problem with this approach is that
ifF is satis�ed by an exponentially small percentage of truth assignments
then this approach requires an exponential number of samples.

Instead, we design the following sample space. Let Ci be the set of truth
assignments that satisfy clause ci. Let

U = f(i; a) : i 2 f1; : : : ;mg ^ a 2 Cig

and let G � U be de�ned by

G = f(i; a) 2 U : there is no j < i such that (j; a) 2 Ug:

Notice that jU j = P
i2f1;:::;mg jCij, and jCij = 2r�`i , and thus jU j is

easy to compute. Note also that jGj = f(F ), because for each truth
assignment a that satis�es F there is a unique smallest index i such that
a 2 Ci. Furthermore,

jU j
jGj �

P
i2f1;:::;mg jCij

maxi2f1;:::;mg jCij � m:

Therefore, from Equation 3 of the previous section, we can approximate
f(F ) with N = 4m

�2
log(1

�
) trials. In each trial we will

1. Choose index i 2 f1; : : : ;mg with probability jCij=jU j. This requires
time O(logm) time (with some preprocessing, we leave as an easy
exercise what preprocessing to do to achieve this time bound.)
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2. Choose a2RCi. This step takes O(r) time.

3. See if (i; a) 2 G. This can be done in the obvious way in time O(rm).

4. The value produced by the trial is jU j if (i; a) 2 G, and 0 otherwise.

The overall estimate is the average of the values produced by the N trials.
By Equation 3, this is guaranteed to be an �-good relative estimate
of f(F ) with probability at least 1 � �. The overall running time is

O( rm2

�2
log(1

�
)).
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Section 22: GF[2] Polynomial Counting

Let y = hy1; : : : ; yri be a collection of r variables over GF[2] and let
F be a polynomial over GF[2] with respect to the variables y, i.e., i.e,
F = t1 � t2 � � � � � tm, where term ti = yi1 � � � � � yi`i for some subset
fyi1 ; : : : ; yi`i g of y. For an assignment a 2 f0; 1gr to y, let M (F; a) = 1
if a is a zero of F , i.e., a satis�es an even number of the m terms of F ,
and M (F; a) = 0 otherwise. Let f(F ) = jfa 2 f0; 1gr : M (F; a) = 1gj.
It is #P-complete to compute f . The following fpras for approximating
f is due to [24, Karpinski-Luby]

We design two di�erent fpras algorithms A0 and A1; A0 is used in the
case when F does not contain the constant term 1 and A1 is used in the
case when F contains the term 1. Note that the term 1 corresponds to
the product of the empty set of variables, and is satis�ed by all assign-
ments to y. The analyses of the two algorithms are very similar. The
running time of A0 is O(rm2 ln(1=�)=�2) and the running time of A1 is
O(rm3 ln(1=�)=�2).

We �rst describe algorithm A0. Let U be the set f0; 1gr of all assign-
ments to y, and let Heven be the set of all assignments that satisfy an
even number of terms. A trial of the algorithm consists of choosing an
assignment a2Rf0; 1gr and testing if a 2 Heven. The outcome of a trial
is jU j = 2r if a 2 Heven and the outcome is 0 otherwise. The output of
the algorithm is the average of the outcomes of all the trials.

The most time consuming part of the trial is to test if a 2 Heven, and this
takes time O(rm). The corollary on page 49 shows that jU j=jHevenj �
m + 1, and thus N = 4(m + 1) ln(2=�)=�2 trials su�ce. Thus, the total
running time of A0 is O(rm2 ln(2=�)=�2).

We now describe algorithm A1. The outline of the algorithm is bor-
rowed from the DNF approximation algorithm described in the previous
section. We provide a self-contained description of the algorithm. Let
F be the input polynomial with the constant term 1 discarded. Thus,
the problem is to approximate the number of assignments that satisfy
an odd number of terms of F . For all i = 1; : : : ;m, let Ti be the set
of assignments that make term ti evaluate to 1. Analogous to the DNF
algorithm, let

U = f(i; a) : i 2 f1; : : : ;mg ^ a 2 Tig

and let G � U be de�ned by

G = f(i; a) 2 U : there is no j < i such that (j; a) 2 Ug:
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Let Godd � G be de�ned by

Godd = f(i; a) 2 G : jfj 2 f1; : : : ;mg : j 2 Tigjmod 2 = 1g;
i.e., (i; a) is in Godd if it is in G and if a makes an odd number of terms
evaluate to 1. The key point is that jGoddj is the quantity we want to
approximate. One trial of the algorithm consists of choosing (i; a)2RU
and then testing if (i; a) 2 Godd: if yes then the value produced by the
trial is jU j, else the value is 0.
We now verify that the criteria (a), (b) and (c) described on page 44 are
satis�ed. The computation of jU j and the method for choosing (i; a)2RU
is analogous to the method for the DNF approximation algorithm de-
scribed in the previous section. The most time consuming part of the
trial is to test if (i; a) 2 Godd, and this takes O(rm) time.

The �nal portion of the analysis is to show that jU j=jGoddj is not too
large. As described in the previous section, jU j=jGj � m. The theorem
given below shows that jGj=jGoddj � m. It follows that jU j=jGoddj �
m2, and thus from Equation 3 it follows that N = 4m2 ln(2=�)=�2 trials
su�ce. Thus, the total running time of A1 is O(rm3 ln(2=�)=�2).

Theorem : Let F be a multivariate polynomial over GF[2] with no
duplicate terms and m terms in total. Let H be the set of assignments
to the variables that satisfy at least one term, and let Hodd be the set
of assignments that satisfy an odd number of terms. Then,

jHj=jHoddj � m:

PROOF: The basic idea of the proof is to de�ne a function h : H !
Hodd in such a way that the mapping is at most m-to-1, i.e. for each
a 2 Hodd, jh�1(a)j � m. From this the theorem follows.

The mapping h is de�ned as follows. For each a 2 H, choose any term ti
that is satis�ed by a such that there is no term tj which is satis�ed and
which contains all the variables in ti. It is always possible to choose such
a term because F does not contain two identical terms. Without loss of
generality, let this be term t1 and let S = fy1; : : : ; ykg be the variables
in t1 (all of these variables are equal to 1 in a). For any S0 � S, let
a(S0) be the assignment obtained from a by changing the values of all
variables in S � S0 from 1 to 0.

Claim : There is at least one S0 � S such that a(S0) satis�es an odd
number of terms of F .

Proof of of Claim : For each S0 � S, let p(S0) be the parity of the
number of terms that are satis�ed by assignment a(S0) and let q(S0) be
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; f1g f2g f3g f1,2g f1,3g f2,3g f1,2,3g

; 1 0 0 0 0 0 0 0
f1g 1 1 0 0 0 0 0 0
f2g 1 0 1 0 0 0 0 0
f3g 1 0 0 1 0 0 0 0
f1,2g 1 1 1 0 1 0 0 0
f1,3g 1 1 0 1 0 1 0 0
f2,3g 1 0 1 1 0 0 1 0
f1,2,3g 1 1 1 1 1 1 1 1

Figure 1: The matrix R for k = 3

the parity of the number of terms ti such that ti \ S = S0. By the way
term t1 is chosen, t1 is the only term ti that satis�es ti \ S = S, and
thus q(S) = 1. We can view p(�) and q(�) as column vectors of length 2k

with entries from GF[2], where the �rst entry corresponds to S0 = ; and
the last entry corresponds to S0 = S. Then, it can be veri�ed that there
is a 2k � 2k lower triangular matrix R over GF[2] with main diagonal 1
such that R � q(�) = p(�). In particular, row S0 in R has a 1 in column
S00 if and only if S00 � S0. (See Figure 1.)

Because R is invertible over GF[2] and because q(�) 6� 0, it follows that
for at least one S0 � S, p(S0) = 1. For this S0, a(S0) satis�es an odd
number of terms. This complete the proof of the claim.

We now complete the proof of the theorem. To de�ne h(a), we arbitrarily
choose any S0 such that a(S0) satis�es an odd number of terms and let
h(a) = a(S0). Finally, we argue that for each b 2 Hodd there are at
most m distinct assignments a 2 H such that h(a) = b. This is because
each such a is either equal to b, or is obtained by taking one of the terms
not satis�ed by b (there are at most m � 1, since b must satisfy an odd
number and thus at least one term) and setting the values of all variables
in this term to 1.

Note that the theorem holds even in the case when F contains the con-
stant term 1. This fact is used in the proof of the following corollary.

Corollary : Let F be a multivariate polynomial over GF[2] with no
duplicate terms, no occurence of the constant term 1 and m terms in
total. Let U be the set of all assignments to the variables, and let Heven

be the set of assignments that satisfy an even number of terms. Then,
jU j=jHevenj � m + 1.
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PROOF: Let �F = F � 1. Then, �Hodd = Heven. Because F does not
contain the term 1, �F contains m+1 terms in total, no duplicate terms,
and every assignment satis�es the constant 1 term, and thus �H = U . By
the above theorem, jU j=jHevenj = j �Hj=j �Hoddj � m+ 1.

The bound given in the theorem is optimal. To see this, let m be a
power of two and let F =

Q
i=1;:::;logm(1 � yi)

Q
j=logm;:::;r yj . When

F is viewed as a polynomial over GF[2] and expanded out the number
of terms is m. When viewed over GF[2], F = 1 has a unique solution,
whereas when viewed as a DNF formula,F has m satisfying assignments.

The bound given in the above corollary is also optimal. To see this,
consider F = 1�Qi=1;:::;r(1�yi). When F is viewed as a polynomial over
GF[2] and expanded out the 1 term is cancelled and the total number
of terms is m = 2r � 1. When viewed over GF[2], F = 0 has a unique
solution, and thus jU j=jHevenj = 2r = m + 1.
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Section 23: Bounded Depth Circuit Counting

Recall that in Sections 9{15 we introduced ways to reduce the amount of
randomness when amplifying the probability of correctly deciding mem-
bership of x with respect to an RP or BPP language L. However, the
number of random bits needed was still at least the number to choose a
single potential witness at random, i.e., at least r bits. In this section, we
show how to deterministically decide membership for a BPP language
L where the NP TMM associated with L is restricted to be expressible
as a constant depth unbounded fan-in circuit. While this restriction on
M may seem to be severe at �rst glance (and it is), such a machine M
is nevertheless powerful enough to express a rich class of #P-complete
problems. For example, for the DNF counting problem described in Sec-
tion 21, the associated TMM can be expressed as a depth 2 unbounded
fan-in circuit.

De�nition (Cdn): Let Cdn be the set of all circuits with n boolean input
variables z = hz1; : : : ; zni of depth d. A circuit C 2 Cdn consists of
^-gates and _-gates, where each gate is allowed unbounded fan-in. C

consists of d levels of gates, where all gates at a given level are the same
type. All the gates at level 1 have as inputs any mixture of variables and
their negations. For all i 2 f2; : : : ; dg, all gates at level i receive their
inputs from the gates at level i � 1. There is a single gate at level d,
and either its value or the negation of its value is considered to be the
output C(z) 2 f0; 1g of C.
For x 2 f0; 1gn, x�x = �i2f1;:::;ngxi is the parity of the number of ones
in x.

De�nition (predicting the parity of its inputs): For any circuit
C 2 Cdn, let pC be the prediction probability of C for the parity of its

input, i.e.,
pC = Pr

z2Rf0;1gn
[C(z) = z � z]� 1=2:

Let TC be the total number of gates in C. The time/success ratio of C
for predicting the parity of its inputs is SC = TC=pC.

The following lower bound theorem is a culmination of a number of
papers, i.e., [12, Furst-Saxe-Sipser], [2, Ajtai], [38, Yao1], [8, Cai], [17,
H�astad].

Parity Theorem : There is a constant � > 0 such that for any C 2 Cdn,
the time/success ratio SC of C satis�es SC � 2n

�=d

:
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Let L 2 BPP and let M be the TM associated with L with associated
constants cyes and cno. Suppose that the computation of M (x; y) for a
�xed value of x 2 f0; 1gn as a function of y 2 f0; 1gr can be expressed
as a circuit C 2 Cdr . Let g : f0; 1g`! f0; 1gr be a function.
De�nition (distinguishing probability of C for g): For a circuit
C 2 Cdr , we let �C be the distinguishing probability of C for g (analogous
to the de�nition of a pseudo-random generator (page 40)), i.e.,

�C = j Pr
s2Rf0;1g`

[C(g(s)) = 1]� Pr
y2Rf0;1gr

[C(y) = 1]j:

Let TC be the total number of gates in C. The time/success ratio of C
for distinguishing g is SC = TC=�C .

The key to the constructions of [29, Nisan], [30, Nisan-Wigderson] is to
design g in such a way that the following properties hold:

� The length ` of the input to g is much shorter than the length r of
its output.

� The time to compute g(s) 2 f0; 1gr given s 2 f0; 1g` is polynomial
in r.

� The distinguishing probability �C of C for g satis�es

�C < (cyes � cno)=2:

Given these properties, to decide membership of x 2 L is easy: Simply
run C(g(s)) for all s 2 f0; 1g`, and then decide x 2 L i� the fraction
of these inputs on which C produces the value 1 is at least (cyes +
cno)=2. It is not hard to verify that membership of x in L is always
decided correctly. The run time for this procedure is 2` times the time
for computing g on inputs of length ` (in the construction below, this

takes time that is almost linear in the length r of the output of g) plus
the time for computing C on inputs of length r.

Note that we can view g as generating a distribution on the r-bit input
to C consisting of only 2` sample points that appears pseudo-random to
C. If it were possible to set ` = c log(r) for some constant c > 0 then
membership of x in L could be decided in polynomial time. If this value
of ` were achievable for C 2 Crr then this would imply that BPP = P.
(Contrast this with the results of Exercise 1 on page 15).

We now describe the generator g of [29, Nisan], [30, Nisan-Wigderson].
Set

` = log(r)c(d+1);
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where c > 0 is a parameter that can be thought of as constant. Let
t1; : : : ; tr � f1; : : : ; `g be sets that satisfy the following two properties:

(1) For all i 2 f1; : : : ; rg, jtij =
p
`.

(2) For all i; j 2 f1; : : : ; rg, i 6= j, jti \ tj j � log(r).

We leave as Exercise 10 the e�cient construction of the sets t1; : : : ; tr
with these two properties. For all s 2 f0; 1g`, for each i 2 f1; : : : ; rg,
de�ne function bi(s) = �j2tisj , i.e., bi(s) is the parity of the number of
ones in the bits of s indexed by ti. Finally, let

g(s) = hb1(s); : : : ; br(s)i:

The following theorem is due to [28, Nisan], [30, Nisan-Wigderson].

Theorem : Let q(r) = 2log(r)
c�=2

=r3. For all C 2 Cdr , the time/success
ratio SC of C for distinguishing g satis�es SC � q(r).

PROOF: Suppose that C 2 Cdr has size TC and distinguishing proba-
bility �C that satis�es TC=�C < q(r). We show this implies there is a
circuit C0 2 Cd+1p

`
such that the size TC0 of C

0 is at most r2 + TC and

such that the prediction probability pC0 of C
0 for the parity of its inputs

is at least �C=r. From this it follows that the time/success ratio

TC0=pC0 � r3 � TC=�C < 2(
p
`)

�
d+1

;

and by the Parity Theorem, such a circuit C0 with
p
` inputs of depth

d+ 1 cannot exist. Thus, it must be the case that SC � q(r).

The circuit C0 will be derived from C and g based on the properties of
the generator g. We �rst use a hybrid argument �rst used by [37, Yao]
that has become standard. Let s2Rf0; 1g` and y2Rf0; 1gr. Consider the
following sequence of r + 1 distributions on r-bit strings:

0th distribution: hb1(s); : : : ; br(s)i.
ith distribution: hy1; : : : ; yi; bi+1(s); : : : ; br(s)i.
rth distribution: hy1; : : : ; yri.

Let Ri 2 f0; 1gr be the random variable distributed according to the ith

distribution, and let pi = PrRi [C(Ri) = 1]. Note that R0 = g(s) and
Rr = y, and thus

�C = jPr
R0

[C(R0) = 1]� Pr
Rr

[C(Rr) = 1]j = jp0 � pr j:
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Assume without loss of generality that p0�pr is positive. It follows from
the triangle inequality that there is some i 2 f1; : : : ; rg such that

�i = pi�1 � pi � �C=r:

Fix such an i. Note that Ri�1 and Ri both depend only on s and on
y1; : : : ; yi, and that the only di�erence between Ri�1 and Ri is that the
ith bit of Ri�1 is bi(s) and the ith bit of Ri is yi.

Without loss of generality, let ti = f1; : : : ;
p
`g, i.e., bi(s) depends on

the �rst
p
` bits of s. Let s0 = hs1; : : : ; sp`i. By an averaging argument,

there is a setting of values for y1; : : : ; yi and sp`+1; : : : ; s` such that
the distinguishing probability of C for Ri�1 and Ri remains at least �i
conditional on these �xed values for y1; : : : ; yi and sp`+1; : : : ; s`. Note
that in the conditional distributions both Ri�1 and Ri both depend only
on s0.

Let F 0(s0; a) be the function of s0 which can be thought of as computing
C where the �rst i � 1 inputs bits are set to the values for y1; : : : ; yi�1
�xed above, the ith input is set to a 2 f0; 1g, and the remaining r � i

input bits are computed as b0i+1(s
0); : : : ; b0r(s

0), where b0j(s
0) is the value

of bj(s
0; sp

`+1; : : : ; s`) when sp
`+1; : : : ; s` are �xed as described above.

The above analysis shows that

�i = Pr
s02Rf0;1g

p
`

[F 0(s0; s0 � s0) = 1]� Pr
s02Rf0;1g

p
`

[F 0(s0; yi) = 1]:

There are two cases to consider, i.e., when yi = 1 or yi = 0. We assume
that yi = 1, as the case when yi = 0 is similar. We leave it as an exercise
to prove that in this case the prediction probability pF 0 of F

0(s0; 1) for the
parity of its inputs is at least �i � �C=r. The intuition is that F 0(s0; a)
is more biased towards producing a 1 when a = s0� s0 then when a = 1,
and thus if F 0(s0; 1) produces a 1 it is more likely that s0 � s0 = 1 then
0, whereas if F 0(s0; 1) = 0 then it is more likely that s0 � s0 = 0 then 1.

We now show that F 0(s0; yi) can be computed by a small circuit C0(s0) of
depth d+1. Note that since for all j 2 fi+ 1; : : : ; rg, jtj\ tij � log(r), it
follows that b0j(s

0) depends on at most log(r) bits of s0. Furthermore, any
function of k-bits can be expressed as either a DNF or CNF circuit with
at most 2k gates at the �rst level. Suppose without loss of generality
that the �rst level of gates of C are ^-gates. Then, we can express b0j(s

0)
as a DNF circuit Cj with at most r _-gates at the �rst level and a single
^-gate at the second level. We can then merge Cj into the circuit C by
feeding all the values of the _-gates of Cj directly into the ^-gates at
the �rst level of C that the jth input of C originally fed into. In the end,
we get a circuit C0(s0) with

p
` inputs which computes F 0(s0; yi), where
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the depth of C0 is d + 1 and the number of gates TC0 in C0 is at most
TC + r(r � i) � TC + r2.

Corollary : Let L be a language in BPP. Suppose for all x 2 f0; 1gn
the associated TMM (x; y) as a function of y 2 f0; 1gr can be expressed
as a circuit C 2 Cdr for some �xed positive integer d, where the number
of gates TC in C is at most rc for some �xed positive value c. Then,
membership of x in L can be decided by a deterministic computation in

time 2log(r)
O(1)

.

Note that the above corollary applies to derandomize at least partially
the randomized approximation algorithm for DNF counting described in
Section 21. However, the Parity Theorem does not help at all directly
in derandomizing the randomized approximation algorithm for GF[2]
Polynomial Counting described in Section 23, because such a polynomial
can easily compute the parity of the number of ones in its input.

Exercise 10 : Describe an algorithm that on input positive integers r,
` and s with s � `, produces r sets t1; : : : ; tr � f1; : : : ; `g such that

� For all i 2 f1; : : : ; rg, jtij = s.

� For all i; j 2 f1; : : : ; rg, j 6= i,

jtj \ tij � log

�
rs(1 + s

`
)s

`

�
:

The run time of the algorithm should be polynomial in r and `. Note
that when s =

p
` and ` � 8 then jtj \ tij � log(r).

Exercise 11 : Finish the proof of the above theorem by showing how
the distinguishing probability can be converted into prediction probabil-
ity.
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