Transforming for Parallelism Using Symbolic
Summarization

Oliver Joseph Sharp

Report No. UCB//CSD-95-882
May 1995

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Transforming for Parallelism Using Symbolic
Summarization

by

Oliver Joseph Sharp

B.S. (Yale University) 1987
M.S. (University of California at Berkeley) 1991

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in
Computer Science
in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:
Professor Susan L. Graham, Chair
Professor James Demmel

Professor Phillip Colella

1995

Transforming for Parallelism Using Symbolic
Summarization

Copyright 1995

by
Oliver Joseph Sharp

Abstract

Transforming for Parallelism Using Symbolic Summarization
by

Oliver Joseph Sharp
Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Susan L. Graham, Chair

Effective use of parallelism is an important goal of computing research. This dissertation
describes MAGNIFY, an interactive analysis and transformation tool that is part of the
Delirium programming environment. The purpose of the environment is to transform se-
quential FORTRAN programs to execute efficiently on massively parallel distributed memory
architectures.

The main contributions of MAGNIFY are that it provides new and complex par-
allelization strategies that would be prohibitively difficult to implement by hand, and that
it allows the programmer to determine their use. MAGNIFY, selectively guided by the
programmer in an interactive dialog, applies a novel set of code transformations to the
application. The transformations reveal opportunities for concurrency beyond those avail-
able through traditional loop-based optimizations. Normal parallelizing compilers focus on
individual parallel computations, usually expressed in loops, and introduce synchronization
operations after each one. MAGNIFY is able to manage the interactions among parallel
computations to achieve more efficient performance.

MAGNIFY summarizes the data access behavior of sub-computations (such as loop
nests) using symbolic data descriptors. The descriptors contain extensive symbolic and con-
ditional information, providing more accuracy than previously developed summary struc-
tures. Once the code is analyzed, MAGNIFY uses the descriptors to apply transformations
that expose concurrency and pipelining opportunities. The key transformation is split,
which reduces synchronization constraints by sub-dividing computations. MAGNIFY also
applies traditional loop transformations like interchange and loop-invariant code motion.

After the programmer has used MAGNIFY to transform an application, the paral-
lelization strategy is encoded in an intermediate form based on two notations: a coordination
language called Delirium and an annotation language called Dossier. An adaptive run-time
system executes the application, using run-time information to improve the scheduling effi-
ciency. The run-time system incorporates algorithms that allocate processing resources to
concurrently executing sub-computations and choose communication granularity.

MAGNIFY has been used to analyze and transform three production scientific ap-
plications. Performance measurements show that the resulting parallel implementations
are far more efficient than traditional static decomposition strategies on large numbers of
processors.

Contents

List of Figures

List of Tables

Acknowledgements

1 Introduction

2 Overview of the Environment

2.1 MAGNIFY e
2.2 Delirium Compiler and Run-Time System
2.3 Related Work
3 Symbolic Data Descriptors

3.1 Symbolic Expressions
3.2 Memory Model
3.3 Triples e
3.4 Descriptor Operations
3.5 Related Work

3.5.1 Dependence Analysis

3.5.2 Summarization

4 Preparing to Build Descriptors

4.1
4.2
4.3
4.4
4.5

4.6
4.7

CFG Conversion i it
SSA Conversion
Aggregate Propagation,
Alias Breaking
Interprocedural Analysis
4.5.1 The Analysis Framework
4.5.2 Equivalence Classes Defined
4.5.3 Interprocedural Algorithm
Conditional Propagation
Related Work
4.7.1 Interprocedural Analysis
4.7.2 Symbolic Analysis

ii

vi

viii

ix

N O

10
11
14
14
14
16

5 Building the Descriptors

5.1 The Algorithm
5.2 Applying the Algorithm
5.3 Cost of Descriptor Assembly
5.3.1 Union Operations
5.3.2 Interprocedural Analysis
5.3.3 Descriptor Cleaning
6 Program Transformation
6.1 Internal Representation
6.1.1 WEBNodes
6.1.2 WEB Operations,
6.1.3 Transformations and Descriptors
6.2 Traditional Transformations
6.2.1 Associativity and Reduction
6.3 Split-based Transformations
6.3.1 Split
6.3.2 Pipelining
6.4 Related Work
7 Expressing the Decomposition
7.1 Deliriumo,
7.1.1 The Basic Language
7.1.2 Coordination Structures
7.1.3 MAGNIFY Example
7.2 Dossier.
7.2.1 Cost Heuristics
7.2.2 Notation Details
7.2.3 Example With Dossier
73 BackEnd
7.3.1 Delirium Compiler
7.3.2 Rrs, the Run-Time System
7.3.3 Orchestrating Interactions Among Parallel Operations
7.4 Related Work
7.4.1 Functional Languages
7.4.2 Coordination,
7.4.3 Data Annotations
7.4.4 Run-Time System
8 Experimental Results
8.1 Case Study Format
8.2 Case Study 1: PSIRRFAN,
8.2.1 Computational Structure
8.2.2 Transformation

8.2.3 Discussion

8.3 CaseStudy 2: Camille
8.3.1 Computational Structure
8.3.2 Transformation
83.3 Discussion e

84 CaseStudy 3: Amber
8.4.1 Computational Structure
8.4.2 Transformation

8.4.3 Discussion
8.5 Cost of Analysis

9 Conclusion
9.1 Observations . .

Bibliography

.................................

.................................

.................................

100
100
102
105
107
107
107
111
113

116
116
117

118

vi

List of Figures

2.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.2
8.3
8.4

Overview of Delirium Programming Environment 6
Descriptor Grammar 11
Various Code Fragments and their Descriptors 13
A code fragment and its CFG 20
Code fragment and equivalent SSA version 21
Call site classification 26
An example using equivalence classes 29
Code fragment with equivalent guarded CFG 31
Loop Code and its Descriptors 38
Function and its Descriptors 39
Node Types in WEB Representation 45
Source Code for Example 45
WEB Representation for Example 46
Simple Example of Split 51
Enhanced Example of Split 55
Sample Interacting Computations 56
Code After Split 57
Code After Split and Pipeline 58
Basic Delirium Grammar, 64
Use of map_across to Apply Operator Across Range 71
Coordination Structure for Mergesort 72
Parallelization of code fragment using WEB representation 75
Decomposed Version of Example 76
Dossier Grammar 78
Dossier Annotations for Example 80
Levels of Symbolic Complexity in Descriptors 91
Efficiency of PSIRRFAN on a 256 Processor Ncube-2 94
PSIRRFAN Stage 1: WEB Representation 94

PSIRRFAN Stage 2: WEB Representation 96

8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

vil

PSIRRFAN Stage 3: WEB Representation 98
PSIRRFAN Stage 4: Partial WEB Representation 99
Performance of Camille on 64 CPUCM-5 102
Physics Pass Dependences in Camille 104
Camille Pass Dependences With Accumulation Arrays 105
Camille Stage 4: Partial WEB Representation 106
Efficiency of Amber on a 64 processor CM-5 108
Amber Stage 1: WEB Representation 109
Amber Stage 2: WEB Representation 110

Amber Stage 3: WEB Representation 112

viii

List of Tables

3.1
3.2

5.1

8.1
8.2
8.3
8.4

Operations on Expressions, 10
Operations on Descriptors 15
Average quantities used in the cost formulas 40
Computational Passes in Camille Column Physics 101
Computational Passes in Amber Molecular Dynamics 107
Execution Cost of Analysis (inseconds) 113

Breakdown of Cost of Assembling Descriptors 115

ix

Acknowledgements

This research has been sponsored in part by each of the following organizations, and we
gratefully acknowledge their support:

e The Defense Advanced Research Projects Agency (DARPA), under contract DABT63-
92-C-0026. The content of the paper does not necessarily reflect the position or the
policy of the Government and no official endorsement should be inferred.

e The Fannie and John Hertz Foundation. Oliver Sharp was supported by a Hertz
Fellowship during part of his tenure as a graduate student.

e Lawrence-Livermore National Laboratory. This work was performed in part at the

Laboratory under the auspices of the U.S. Department of Energy contract No. W-
7405-ENG-48.

e NASA Ames Research Center, San Diego Supercomputer Center. Both of these orga-
nizations provided access to their parallel computing facilities.

Chapter 1

Introduction

This dissertation describes MAGNIFY, a tool that is part of the Delirium programming
environment. The purpose of the environment is to transform sequential FORTRAN programs
to execute efficiently on massively parallel distributed memory architectures. We have
successfully parallelized several production scientific applications, including GCM, a global
climate model developed at UCLA, PSIRRFAN, an X-ray tomography application from
UC/Berkeley, and AMBER, a molecular dynamics simulation from UCSF.

When parallelizing an application, there are four main tasks:

e Discovering time-consuming operations that can be executed in parallel.
e Transforming the code to reveal additional concurrency.
e Decomposing the program into sub-computations that can be executed independently.

e Choosing an efficient schedule for those sub-computations at run-time.

MAGNIFY is responsible for assisting in the first three tasks.

Existing parallelization systems fall into two categories: fully automatic compilation en-
vironments that perform all optimization without programmer assistance, and interactive
systems that rely on the user to guide transformations. MAGNIFY belongs to the latter cate-
gory; turn-key compilers have been disappointing in the performance that they can provide.
The difference between MAGNIFY and other interactive environments is that it gathers ex-
tensive symbolic information and uses it to apply a new class of higher-level transformation.
Application programmers have used these kinds of optimizations in the past but have been
forced to apply them by hand - a process that is both tedious and error-prone. MAGNIFY
carries out the optimizations automatically.

These new optimizations are based on the split transformation and rely on summarization
analysis. There are two main strategies that are used to identify opportunities for paral-
lelism: dependence analysis [22, 125] and summarization. The focus of dependence analysis
is to analyze the array subscript expressions that appear inside of loops, applying various

tests to determine whether any two iterations can access the same data. Summarization,
on the other hand, seeks to assemble a descriptor that encapsulates all the data that is ref-
erenced by a block of code. Existing systems do use summarization, primarily to examine
interprocedural behavior, but they rely more heavily on dependence analysis because it is
more accurate in identifying independence between loop iterations.

We chose to use summarization in the Delirium environment because it provides exactly
the information needed by MAGNIFY and the run-time system to parallelize an application
efficiently. In order to arrange for a computation to execute in parallel, the system must do
two things:

o Allocate pieces of the computation to different processors.

e Arrange that the data used by each piece is available so that the piece can be executed.

The first task relies on finding opportunities for independent execution and dependence
analysis is able to find more of them than summarization. However, the second task is
equally necessary. If the compiler can identify, at compile time, the data that a computation
will need, it can optimize communication and can control its cost. Otherwise, at run-time
processors must continually request data on demand. That strategy is hopelessly inefficient
on distributed memory machines because of the cost of message transfer between processors.

To achieve highly efficient parallel execution, data must be packaged together and its trans-
fer carefully optimized. As a result, the additional accuracy of dependence analysis would
not be useful to the Delirium environment — MAGNIFY can take little advantage of con-
currency when the data usage cannot be summarized accurately.

The heart of MAGNIFY is the symbolic data descriptor (SDD), a summary of the data that is
used by a block of code. This summary can be computed for any program fragment. Once
two code fragments have been summarized, MAGNIFY can compare their usage of memory
efficiently to identify independence. It can also use the descriptors to transform fragments,
revealing additional opportunities for parallel execution. The process of transforming the
program takes place as a dialog with the programmer; some transformations are applied
automatically and others are done by request.

Once a program is fully transformed and decomposed, MAGNIFY outputs it in an interme-
diate form that relies on two languages: Delirium and Dossier. Delirium is a coordination
language which expresses the relationship among a set of program fragments. Dossier is an
annotation language for describing data transmitted between fragments. Both languages
are described in detail in Chapter 7.

The program is then executed by RTS, a run-time system that incorporates a set of adaptive
algorithms for efficiently scheduling the application on the available processors [83]. The
scheduling decisions depend on data usage summarization; without accurate information,
the run-time system is crippled. On existing distributed memory architectures, where com-
munication latency is relatively high, it is impractical for a computation to acquire data
on demand — it must be provided before the computation begins executing. The run-time
system incorporates data communication overhead in making its scheduling decisions.

The remainder of the dissertation is organized as follows: Chaptér 2 gives an overview of
the Delirium programming environment and describes each of its components. Chapter
3 introduces the symbolic expressions which are used in the descriptors and Chapter 4
describes the various forms of analysis that MAGNIFY performs to prepare for building
descriptors. Chapter 5 presents the algorithms for building descriptors and Chapter 6
demonstrates how they guide the transformation of the code. Chapter 7 examines the
output of MAGNIFY, which feeds into the run-time system. Chapter 8 gives experimental
results for MAGNIFY both in isolation and in combination with the other components of the
environment. Chapter 9 concludes. Where relevant, each chapter ends with a discussion of
related work.

Chapter 2

Overview of the Environment

MAGNIFY is part of the Delirium programming environment, a system that aids the pro-
grammer in transforming a sequential application into an efficient parallel version. The
environment consists of several components, as diagramed in Figure 2.1.

2.1 MAGNIFY

The programmer begins with a FORTRAN program and an optional profile of its execution.
MAGNIFY can often make better optimizations if it is given the execution profile of the
program as reported by the tool gprof [57]. The programmer then runs MAGNIFY, which
summarizes the data usage of the program at various granularities (loop-level, function-level,
etc).

MAGNIFY consists of a sequence of passes. After the code is converted into static single
assignment form (SSA) [41], subsequent passes manage potential aliases, track conditionals,
perform extensive interprocedural analysis, and assign symbolic expressions to as many
scalar values as possible. After the analysis is complete, MAGNIFY can summarize the
data-access behavior for any program fragment of interest. The summary is expressed as
a Symbolic Data Descriptor (SDD) and contains all the data that the code fragment reads
and writes.

Once summarization is complete, MAGNIFY engages the programmer in an interactive di-
alog. Using a series of transformations, the programmer converts the program from its
original sequential form into a parallel implementation. MAGNIFY maintains the current
state of the program in an internal representation called WEB, tracking the effect of each
transformation. The programmer can view the WEB representation and can examine each
block of code that has not yet been parallelized. Where possible, MAGNIFY identifies inde-
pendence between computations and between iterations of loops.

MAGNIFY performs some transformations automatically and carries out others at the behest
of the programmer. In addition to traditional loop-based transformations, MAGNIFY is able

to use its data summary to apply more powerful and systemic modifications based on the
split transformation (discussed in detail in Section 6.3). Because split is not limited to a
single loop nest, MAGNIFY is able to work with the interactions between different loops and
other sub-computations.

MAGNIFY outputs the transformed program in three forms: a set of FORTRAN code frag-
ments (called operators) that perform individual computations, a description of the inter-
action of the fragments (in the coordination language Delirium), and a description of the
data passed between fragments (in the annotation language Dossier).

Operators represent the finest level of computational granularity; the task of the run-time
system (RTS) is to schedule operators on appropriate processors and to route data from one
operator to another as needed. Because MAGNIFY will often be unable to determine the
best granularity at compile-time, operators usually accept arguments which determine their
execution cost. Most commonly, an operator represents the body of a loop and performs
some sub-set of the loop’s iterations. Here is a simple example:

do i

= 1’
Ali] =

n
Afi] + 1
The corresponding operator might look like this:

loop_operator(4,low,high)
real A[low:high]

do i

= low, high
Afi] =

A[i] + 1

The operator is given a range of iterations to compute and a fraction of the array A to work
on. RTs computes values for low and high depending on the current state of the system.
When the amount of parallelism available is high and all the processors are busy RTS can
reduce overhead by performing the original loop with Jjust a few calls to loop_operator.
When processors are idle, RTs will make many calls to the operator, giving each one a few
iterations to perform.

The Delirium code for the program is a framework that defines the dependence relationship
between the operators. Delirium is called a coordination language [53] because it does
not perform computation itself, but merely arranges for the correct execution ordering of
primitive computations that are expressed in another language.

While Delirium provides the dependence information needed for correct program execution,
its variables are untyped and the primitive computations are treated as atomic objects.
RTs requires much more information about data sizes and the execution behavior of the
operators. Hence, the Delirium description is extended with a set of Dossier annotations
that characterize the data being passed between operators and the behavior of the operators
themselves.

Fortran Source Code

|

Magnify

Sequential
Executable

Profiler

Delirium Code
with Dossier
annotations

Fortran Operators

Delirium Compiler

Scheduling Templates

Fortran Compiler

Executable
Operators

Run-Time System

Figure 2.1: Overview of Delirium Programming Environment

2.2 Delirium Compiler and Run-Time System

The Delirium/Dossier description is passed to the Delirium compiler, which converts it into
a series of scheduling templates. These schedules represent pre-defined scheduling strategies
for the program, reducing the number of decisions that must be made at run-time. A
particular schedule may handle the scheduling of a single Delirium statement or of a large
number of them. RTs monitors the state of the system as the templates are executed,
using adaptive algorithms to choose operator granularity and to allocate computation to

the available processors efficiently.

2.3 Related Work

There are a variety of interactive systems that aid the programmer in parallelizing an
application. They can be divided into two main groups, depending on whether they analyze
the sequential code or not.

The systems that do not perform analysis are designed to simplify the task of expressing
a parallel application. The programmer does all the work to decompose the program, but
the system provides a linguistic or graphical mechanism for connecting the decomposed
fragments together.

One of the earliest such systems was Schedule [45]. It provided a procedural way to describe
the dependence relationships between chunks of FORTRAN code. The programmer calls
explicit primitives to build the dependence graph on the fly, and the scheduler begins
executing a code block when its predecessors have reported that they are finished.

Most of the other systems that follow this approach rely on graphical presentation and ma-
nipulation. Poker [95], for example, allows the programmer to use a graphical environment
to connect primitive computations together. While the focus on visual programming is
convenient for simple coordination patterns, it is not suitable for complex interconnections
that are better expressed in a textual notation.

There are a number of other environments that provide this kind of functionality, enhancing
the basic notion with features like a constraint language [112], language independence [24],
or a virtual machine model that performs some automatic mapping to the physical machine
[100].

The more ambitious interactive projects are similar to the Delirium programming envi-
ronment; they perform extensive analysis of a sequential program, and present the results
to the programmer. The programmer can modify and sharpen the results of the analysis
based on contextual knowledge about the program. The system generally provides a set of
restructuring operations that can be applied to the code. However, existing systems have
focused on shared memory machines, relying most heavily on dependence analysis rather
than the summarization used by the Delirium environment.

The ParaScope system [69] is one of the most ambitious restructuring environments. It
grew out of an earlier project that developed a dependence analyzer, PFC [7], and an as-
sociated dependence browser called PTOOL [6]. Parascope supports a variety of views of
the program, displaying dependences graphically and allowing the user to edit them. The
system also has a broad spectrum of loop-based transformations that are applied automat-
ically or at the programmer’s behest. Parascope stores the results of many analysis passes
in a database that can be updated and searched, using incremental analysis to reflect the
changes due to code transformations.

Parafrase-2 [98] also relies on the dependence graph as the medium of communication with
the user. It identifies potential dependences, using interprocedural analysis for more accu-
racy. It does not have as complete a set of interactive transformations as Parascope. The
system is a source-to-source translator; it exploits parallelism for loops that are found to

be independent. The scheduling policy is embedded into the loops by inserting calls to
coordination primitives within them. Parafrase-2 targets shared memory architectures.

The hierarchical dependence graph environment [113] is a graphical interface to a depen-
dence database. The programmer can manually remove dependences that are spurious. The
application can then be decomposed into a hierarchical graph representation (via interac-
tive modification in the dependence browser). The output relies on a run-time system that
schedules the nodes of the graph when they are ready to be executed [122].

Chapter 3

Symbolic Data Descriptors

A symbolic data descriptor (SDD) summarizes the memory access behavior of a block of
code. Before giving a detailed description of the descriptors themselves, we will define the
symbolic expressions that that can appear in them and the underlying memory model.

3.1 Symbolic Expressions

There are a few different kinds of symbolic expressions in MAGNIFY. Arithmetic expressions
are sums; the terms are either integer constants, real constants, or a symbolic variable with
associated integer coefficient. Range expressions describe a contiguous range of values and
take the form [start .. stop, skip]. The endpoints of the range are arithmetic expressions
and skip is an optional integer value. A value expression is either an arithmetic expression
or a range; we chose this representation because the set of value expressions is closed under
addition, subtraction, and multiplication by an integer. Also, various application studies
have demonstrated that subscript expressions are generally limited to linear expressions of
variables.

In addition, MAGNIFY supports symbolic predicates. A predicate is the disjunction of con-
junctions of inequalities. An inequality describes the relationship of two value expressions
with a comparison operator.

Here are some examples of each kind of expression:

arithmetic expressions: 5 2xa+2x*b 2xa+4
range expressions: [1..5] [1..m,2] [a+1.a+ 2]
predicate expressions: a<l1 (a=3)or ((b< 5) and (c=3))

MAGNIFY includes a symbolic engine that provides a set of primitives for manipulating and
evaluating symbolic expressions. For example, every kind of expression has a constructor
that builds it out of primitive elements like integers, floating point values, and individual
symbols. Table 3.1 describes the other operations that are available.

10

Operations on Predicates

or(A,B) return the disjunction of two predicates
and(A,B) return the conjunction of two predicates
not(A) return the negation of a predicate

Operations on Value Expressions

add(A,B) return the sum of two value expressions
subtract(A4,B) return the difference of two value expressions

multiply by_constant(A,c) return the product of a value expression and an inte-
ger or floating point constant

Evaluation Functions for Predicates

implies(A,B) determine whether asserting one predicate implies
that a second is true

are_disjoint A,B determine whether the predicates conflict (i.e. if one
J
hOldS, the other can never be true)

are_identical(A,B) determine whether the predicates are redundant be-
cause they express the same information

Table 3.1: Operations on Expressions

The evaluation functions return one of three values:

e TRUE: the property is proven to be true
e MAYBE: MAGNIFY cannot be certain one way or the other

e FALSE: the property is proven false

3.2 Memory Model

Descriptors rely on a segmented model of memory; the storage that a program can access
consists of a set of disjoint segments. Each segment contains any number of individual
memory blocks, each with a starting location and a length, and memory blocks may overlap

11

descriptor := guard memory _block pattern
guard := predicate_expr ‘:’ | €
pattern = ‘<’ dim_patterns coupled_ezpr >’ | ¢

dim_patterns dim_pattern ¢,’ dim_patterns | €

dim_pattern = start ‘..’ stop skip mask | €
start, stop = arithmetic_expr

mask := ‘/’ predicate_expr | €

skip = ‘" integer | €

coupled_expr = ‘:’ predicate_expr | ¢

Figure 3.1: Descriptor Grammar

each other arbitrarily. MAGNIFY creates a block for each variable and array in the program.
It may also create blocks for parts of arrays or for an entire group of variables, depending on
the behavior of the code. Note that the model does not currently attempt to track dynamic
heap allocation and deallocation.

When a memory block cannot be located precisely, MAGNIFY creates an unresolved memory
block (UMB). A UMB contains a mask that describes which segments it is known not to
inhabit. MAGNIFY uses UMBs to summarize the behavior of a procedure when it doesn’t
know which memory blocks were passed in as arguments.

The reason that MAGNIFY uses the UMB is that even imprecise information is useful. For
example, an unknown argument can be aliased to any global variable or any local variable
outside the function, but it cannot refer to the called procedure’s local variables. The
UMB captures this restriction straight-forwardly. Such a UMB can then be passed through
subsequent call sites along with local variables, and the disjunction will continue to be
recognized.

3.3 Triples

An SDD consists of two sets of triples, one for the areas of memory that are read and one
for those that are written. The read set contains locations which are (or may be) live on
entry to the code being annotated; reads known to be preceded by writes in the write set
are not included.

Each triple describes access to a given block of memory and is represented in the form
(G)B < P >. G is an optional symbolic guard expression; the access represented by the
triple is known not to occur if the guard is proven false. B is the memory block accessed.
P, also optional, describes the pattern of access; if P is not specified, the triple refers to
the entire memory block.

The grammar for a descriptor is given in Figure 3.1. It refers to three terminal symbols:

12

e memory_block — a structure that describes a memory block, as discussed above in
Section 3.2

e predicate_expr — a predicate expression, as defined in Section 3.1

e arithmetic_expr — an arithmetic expression, as defined in Section 3.1

A pattern represents access to a subset of a memory block. When a block corresponds
to an array, there is a pattern expression for each dimension of the array. The pattern
for a particular dimension can be nil, meaning that the entire dimension is accessed, or
it can be a range expression that covers a subset of the values in that dimension. The
dimension pattern can be further restricted by a mask expression, as is shown in more
detail below. The goal in computing the pattern expression and the mask is to express
the most restrictive summary of the dimension values that might be accessed during the
corresponding computation.

In addition to the pattern expression for each dimension, there is an optional predicate to
handle coupled subscripts. Two expressions are coupled if the same variable appears in both
of them. Figure 3.2 shows a few sample code fragments and their equivalent triples.

The fragment in Figure 3.2 (a) is an update to an array element which is conditional on
the value of a boolean masking array called act. The associated descriptor has a guard
expression on the access.

The next fragment, in (b), shows the same expression inside a loop. The descriptor summa-
rizes all the references by replacing the induction variable with its range of values. Note that
the upper end of the range is only available as a symbolic value. Also, the guard expression
has been promoted into a mask. The predicate expression that makes up a mask is allowed
to reference a class of special symbols that are used as placeholders. This example uses the
symbol * as a place-holder for a value in the range; the mask expression indicates that the
J’th element in the range is not accessed if the expression (act[j] = 1) is false.

Figure 3.2 (c) shows a fragment that has a coupled subscript, meaning that the same variable
appears in more than one subscript expression. The weakness of a summary strategy that
handles each array dimension separately is that it cannot directly account for coupling. The
predicate expression uses the generalized placeholder symbol %, to refers to the value of the
k’th subscript. In this example, the expression captures the fact that the value of the first
and second subscripts must always be equal.

The descriptor representation is designed so that any symbolic expression can be safely
eliminated. Guards and masks specify access more precisely; removing them yields a more
conservative descriptor that implies the access will always take place. Pattern expression can
be eliminated and MAGNIFY will make conservative assumptions about the data referenced.

if (act[i] = 1) write: (act[i]=1): A<i>
A[i] = A[i] * 10 read: act < 1 >
l
(actfi]=1): A<i>

(a) Descriptor for Conditional

doi=1,n write: A< l.n/(act[x]=1) >
if (act[i] = 1) z
A[i] = A[i] * 10 read: A< l.n/(act[x]=1) >

enddo act < l..n >
)

(b) Descriptor for Loop

doi=1,n write: A< lon: (%1 = x3) >
Ali,i] = A[i,i] * 10 read: A<lin: (%) = %) >
enddo)

(c) Descriptor with Coupled Subscripts

Figure 3.2: Various Code Fragments and their Descriptors

i3

14

3.4 Descriptor Operations

There are a number of operations that can be applied to descriptors. Table 3.2 summarizes
them. The evaluation functions determine whether properties hold and return TRUE,
MAYBE, or FALSE (see Section 3.1).

3.5 Related Work

This chapter has described Symbolic Data Descriptors, a summarization form. Summa-
rization and dependence analysis are the two primary strategies for parallelizing sequential
code. Although MAGNIFY does not use dependence analysis, its analysis strategy has taken
ideas from that field and therefore this section gives a brief discussion of both dependence
analysis and previously suggested forms of summarization. Further details on dependence
analysis are available elsewhere for the interested reader [22, 125].

3.5.1 Dependence Analysis

A dependence is a relationship between two computations that places constraints on their
execution order. Dependence analysis identifies these constraints, which are then used
to determine whether a particular transformation can be applied without changing the
semantics of the computation.

There are two kinds of dependences: control dependence and data dependence. There is a
control dependence between statement 1 and statement 2 when statement S; determines
whether S; will be executed. For example:

1 if (a = 3) then
2 b = 10
end if

Two statements have a data dependence if they cannot be executed simultaneously due
to conflicting uses of the same variable. There are three types of data dependences: flow
dependence (also called true dependence), anti-dependence, and output dependence. S4 has
a flow dependence on S3, for example, when S3 must be executed first because it writes a
value that is read by Sy.

For example:

3 a
4 d

c*10
2%¥a + c

Dependence analysis on scalar variables is relatively straightforward, but understanding
the behavior of arrays is much more complex — particularly if they are being accessed
within a loop. In straight-line code, each statement is executed at most once, so the three

Operations on Descriptors

make_empty

expr_to_descriptor(F)

guard(D,FE)

union(D;,D,)

intersect(D;,D;)

clean(D, S)

Returns a null descriptor.

Given an expression in FORTRAN, analyzes its behav-
ior and constructs a descriptor that summarizes the
data referenced

Given a descriptor and a symbolic expression, applies
the expression to the contents of the descriptor (using
ranges where possible, guard expressions where not)
and returns the result.

Given two descriptors, combines them. Groups re-
lated triples together when simplification is possible.
Simplifies guard expressions or, when appropriate, re-
moves them.

Given two descriptors, returns the descriptor of the
data touched by both of them. The operation is
performed conservatively, so a null intersection guar-
antees that the two associated code fragments are
independent.

Given a descriptor D and a set of acceptable variables
S, finds every variable in D that is not in the set and
remove it.

Evaluation Functions for Descriptors

interfere(D,,D,)

Given two descriptors, determines whether they in-
clude any of the same data. This operation is an
efficient alternative to testing for a null intersection.

Table 3.2: Operations on Descriptors

15

16

basic types of dependence capture all the possible dependence relationships. In loops, each
statement may be executed many times, and for many transformations it is necessary to
describe dependences that exist between iterations, called loop-carried dependences.

To compute dependence information for loops, the key problem is understanding the use
of arrays; scalar variables are relatively easy to manage. To track array behavior, analysis
must focus on the subscript expressions in each array reference.

Dependence analysis reveals whether two array references can refer to the same element in
different iterations by applying various tests to the subscript expressions. These tests rely
on the fact that the expressions are almost always linear. When dependences are found,
they are described with a direction or distance vector. If the subscript expressions are
too complex to analyze, dependence analysis must assume that the statements are fully
dependent on one another such that no change in execution order is permitted.

There are a large variety of tests, all of which can prove independence in some cases. It
is infeasible to solve the problem directly, even for linear subscript expressions, because
finding dependences is equivalent to the NP-complete problem of finding integer solutions
to systems of linear Diophantine equations [20]. Two general and approximate tests are the
GCD [117] and Banerjee’s inequalities [18].

In addition, there are a large number of ezact tests that exploit some subscript characteris-
tics to determine whether a particular type of dependence exists. One of the less expensive
exact tests is the Single-Index Test [21, 125]. The Delta Test [56] is a more general strategy
that examines some combinations of dimensions. Other tests that are more expensive to
evaluate consider the multiple subscript dimensions simultaneously, such as the A-test [79],
multi-dimensional GCD [18], and the power test [126]. The Omega test [101] uses a linear
programming algorithm to solve the dependence equations. The SUIF compiler project at
Stanford has had success applying a series of exact tests, starting with the cheaper ones [87].
They use a general algorithm (Fourier-Motzkin variable elimination [42]) as a backup. One
advantage of the multiple dimension exact tests is their ability to handle coupled subscript
expressions [56].

3.5.2 Summarization

Summarization is an entirely different strategy; rather than considering the relationship of
various statements, it seeks to describe the data that the code fragment reads and writes.
It is often used in interprocedural analysis, as is discussed in more detail in Section 4.5.
The main disadvantage of summarization is that it is less accurate; dependence analysis
can reveal that a given loop has independent iterations where summarization fails to do so.
However, dependence analysis may find independence without being able to determine the
data that each iteration relies on. While knowing that iterations do not conflict is sufficient
to parallelize on a shared memory machine, a computation obviously cannot be allocated
on a distributed memory machine unless the system can ensure that the data it needs will
be available. The decisions made by the RTs are critically dependent on precise knowledge
about the data being operated on.

17

There are a number of summarization forms which have been discussed in the literature.
The earliest emerged from classic dataflow techniques which sought to classify behavior
across function calls. The analysis involved computing sets of variables that may be read
and written by the callee [23, 39]. The major weakness of this work is that it treats arrays
as scalar values; any modification of an element is treated as a modification to the entire
array. While highly efficient and adequate for many traditional optimizations like common
sub-expression elimination, the analysis is not sufficiently accurate for the purposes of a
system like MAGNIFY.

The rest of the forms concentrate on describing arrays. Like SDD’s, they define the areas
within the array that are read and written. The Symbolic Data Descriptor is similar to
several of these proposals, but it extends them to include conditional information. It also
is more aggressive in its use of symbolic expressions. The split transformation, discussed at
length in Chapter 6, relies heavily on the extensions in the SDD. Chapter 8 analyzes the
cost of computing the additional information and evaluates its usefulness in practice.

Burke and Cytron [27] linearize array references into a one-dimensional form. They describe
array accesses as either a set of these references or in a polynomial that summarizes a
regular pattern. Union operations are efficient, but testing for independence is expensive.
This strategy is also not suitable for symbolic or conditional expressions used in the SDD.

The rest of the strategies define regions bounded by various kinds of expressions. Triolet
et. al. [118] computes linear inequality expressions that bound the area accessed. These
inequalities allow restricted symbolic expressions that include induction variables and other
scalars. There may be an arbitrary number of bounding expressions, allowing complex
shapes to be described. However, the generality exacts a price. The union operation, for
example, involves finding the convex hull of the inequality expressions of the two descriptors
being combined. The SDD does not face this difficulty because it contains a fixed number of
expressions. It also includes conditional information, allowing it in some cases to describe
data access more accurately.

Regular Sections [30] define ranges on each dimension of the array, like an SDD, and allow
a stride expression. Symbolic expressions are in terms of global variables and procedure
arguments; the SDD is more general because it relies on the SSA analysis to incorporate a
wider range of symbolic values. Data Access Descriptors [14] can be thought of as a variant
of regular sections; they use inequalities to define a convex polytope that contains the slice
of the array being accessed.

Finally, atom images [77] bound the regions with linear expressions of induction variables.
Each reference is stored in its own image, forcing independence tests to examine every pair
of images.

Havlak and Kennedy [62] examine many of these representations, arguing that regular sec-
tions are sufficiently general to handle the data patterns that their environment encountered
in practice. Chapter 8 demonstrates why the extensions in the SDD are necessary to support
the split transformation.

18

Chapter 4

Preparing to Build Descriptors

A descriptor encapsulates the data that is accessed by a block of code, focusing in particular
on arrays and the subset of their elements that are read and written. Before the descriptors
can be assembled, the following sequence of passes transform the code into a more useful
form and analyze it:

1. Construct a control flow graph.
Convert the code into static single assignment (SSA) representation.

Propagate scalar values through aggregate assignment.

Break aliases.

oR W

Perform interprocedural analysis.

6. Analyze conditional statements.

The process begins by constructing a control flow graph [2] and converting the code into
static single assignment form (SSA) [41]. SSA has become a popular intermediate form for
compilation because it simplifies many analysis algorithms. The key advantage to SSA is
that it generates a unique name for every scalar value that is computed by the program.
This is extremely useful in assembling descriptors because it allows the unique names to
appear in symbolic expressions without being dependent on the context. An expression like
A > 5 may be variously true and false at different points in the control flow graph, but
Ajo > 5, where Ay is an immutable value, does not suffer from the same ambiguity.

After performing SSA renaming, MAGNIFY traverses the flow graph and attempts to an-
notate each scalar variable with a symbolic expression that represents its value. MAGNIFY
shares the basic idea of propagating symbolic expressions with strategies for performing
partial evaluation [35], but the ultimate intent is different. Partial evaluation seeks to im-
prove the performance of a compiled program by handling some of the computations at

19

compile time. Expressions containing constants are evaluated, and branch expressions are
computed to identify and prune unreachable code.

While MAGNIFY does apply some of these optimizations, such as pruning code, it is primarily
attempting to assign a meaningful expression to every variable that appears in a subscript
expression. The intent is to restrict the set of elements that the subscript can refer to.
In order to assemble an accurate description of array usage, MAGNIFY must aggressively
assign values to scalar variables that are used in the subscript.

In addition to a value for each scalar, MAGNIFY annotates each CFG node with a set of
guard expressions. These guards indicate that the given node is only executed under certain
circumstances — when all the guards are true. When descriptors are built, the guards are
added to that node’s triples and, when possible, promoted into mask expressions.

The next six sections describe each of the steps in preparing for SDD construction. The end
result is an annotated CFG with a symbolic expression for each scalar. When MAGNIFY is
unable to track the value in the scalar, the expression will be nil.

4.1 CFG Conversion

MAGNIFY converts the program into a standard control flow graph[2]. To simplify algo-
rithms that operate on the graphs, MAGNIFY performs code replication if necessary to
assure that the graph is reducible. Each node is annotated with a set of descriptions, one
for each statement in its associated code. Each statement description lists the scalar vari-
ables that are read, the variables that are assigned, and a descriptor containing any array
references. For each assignment, MAGNIFY examines the expression being assigned and con-
struct a symbolic expression for it (which may be nil). The assigned variable is annotated
with that expression.

Figure 4.1 shows a simple procedure and its associated CFG. The flow graph reflects the con-
ditional branching structure; each statement has a summary of its memory access behavior
with respect to both scalars and array elements.

4.2 SSA Conversion

The next step is that the program is converted to SSA, yielding a version that has a
unique name for each scalar value that is computed. The basic process of performing SSA
conversion is somewhat involved and is thoroughly discussed elsewhere [41]. Part of the
conversion process involves the construction of a dominator tree for the control flow graph;
MAGNIFY uses the algorithm developed by Lengauer and Tarjan [75]. The tree is also used
by subsequent passes.

There are two issues that are important in using SSA within MAGNIFY. The first is that,
with one exception, assignments to array elements are ignored. The next section identifies
one loophole in this general rule and the rationale behind it.

a = b[i]
if (x > 5) then
bl[i-1] = a + 5

else
b[i] = b[i] + 1
endif
a=Dbl[i] read: i
update: a

desc: bli..i] (r)

if (x>5) read: X
update:
desc:
bli-1] = a+5 read: i,a bli] = b[i]+! read:
update: update:
desc: bli-1..i-1] (w) desc: bli..i] (r)
bfi..i] (w)

Figure 4.1: A code fragment and its CFG

20

21

a()

common seen y.0=3
y=3 x_ 0=5
X=5 seen_0=7
seen =7 (seen_1,x_1) =b(x_0,y_0)
b(x,y) return(seen_1+x_1)
return(seen+x)
b(i,j)
common seen,unseen
seen =i
unseen = j
i=i+1
original source code SSA version of a()

Figure 4.2: Code fragment and equivalent SSA version

The other special consideration in MAGNIFY is interprocedural analysis. MAGNIFY must
perform some interprocedural analysis during SSA or be forced to make very conservative
assumptions that would greatly reduce accuracy. A second and much more elaborate form
of interprocedural analysis is performed later; it is discussed in detail in section 4.5. For
the purpose of converting the code to SSA, MAGNIFY can use a relatively simple approach.
On first processing a procedure, MAGNIFY annotates the exit node of the CFG with a list
of every modified visible scalar.

A visible scalar is a variable which, when modified, affects program state outside the function
that contains the assignment. There are two ways for a FORTRAN variable to be visible:
either it was passed into the procedure as an argument, or it is a global. Any alias to a
visible variable is also visible.

To perform SSA correctly on a call site, any assignment to a visible scalar by the callee
may need to be reflected in the caller. In our case, there is a corresponding assignment for
every scalar that is passed in as a function argument. MAGNIFY treats the global variables
more selectively, however.

For each assigned variable V' that is visible because it is a global, the caller checks to see
if V is in its name space. Through the mechanism of common blocks, a “global” variable
in one FORTRAN procedure is not necessarily defined in another. Or, a global scalar in
one procedure can be aliased to an element of an array in a different procedure. At a call
site, MAGNIFY adds assignments to globals when there is an equivalent scalar in the caller’s
name space.

Figure 4.2 shows a sample piece of code and the associated SSA representation. It demon-
strates how the assignment to the global unseen is ignored, while the assignment to seen
and to the function parameter x both affect the variable renaming strategy.

Once SSA conversion has been performed, each variable in the program has been renamed
to a unique value. These values may appear freely in symbolic expressions without con-
sideration of the context. This is valuable because it allows a given SDD to be used for
comparison anywhere else in the program without first considering naming scope.

22

4.3 Aggregate Propagation

It is infeasible, in general, to track the contents of every array element in a program.
However, MAGNIFY does perform aggregate propagation to catch certain commonly used
idioms:

doi=1,10
index[i] = a+i
x = index[i] + 1
B[x] = 10

enddo

In this code fragment, the programmer assigns the value a+i to an element in the array
index and then uses that value two lines later. The programmer is using the array element
to transmit a value, rather than creating a new temporary variable. To keep track of the
fact that the variable x has the value a+i, MAGNIFY assigns an SSA name whenever an
array reference uses the same subscript expression as a previous assignment.

The process of assigning reference names is similar to value numbering [36]. Whenever an
array element is assigned a value that can be converted into a symbolic expression, the
array name and its subscript expression are hashed into a table. For each array element
reference, MAGNIFY checks the table to see if there is a match. If so, it creates a reference
name and uses it in the two statements that are now linked together.

In assigning reference names, MAGNIFY begins by ignoring aliases. If there are no aliases,
two array references with identical subscript expressions will have the same value because
those expressions have been SSA converted. Aliasing can invalidate the propagation through
the temporary names in two ways, however, as demonstrated by the following code fragment:

do i=1,10
index[i] = a+i ; S1
Ccfi] = c[i] * i
y = i+l
x = index[i] ; S2
B[x] = 10

enddo

As before, MAGNIFY creates an SSA variable for index[i] and tries to propagate the value
to S2. The first kind of alias that can render the propagation invalid is an array alias — in
this example, if the array C is an alias for index, by the time statement S2 is executed, the
value of index[i] and hence the resulting value of x is no longer equal to a+i. The other
kind of alias that prevents propagation is one that invalidates the subscript expression; if
y and i are two names for the same variable, the assignment to y will change the location
referred to by index[i].

23

4.4 Alias Breaking

SSA creates a unique name for each value computed by a program. However, as was shown
in the previous section, the presence of potential aliases can invalidate some of the SSA
analysis. One solution is to use dataflow analysis to assemble the set of variables which
may be aliased [23, 40]. These techniques have been generalized to consider array subscript
expressions as well [27]. However, the data usage information that is assembled in order to
build an SDD includes all the memory locations that have been modified and is therefore
sufficient for performing alias analysis. Rather than performing redundant and separate
alias analysis, MAGNIFY uses that information to detect potential aliases. By examining
the descriptor for a code fragment, MAGNIFY can determine whether the fragment may
have written over any SSA variables.

The process of handling a procedure begins by assigning a memory block to each argument.
If we are analyzing the procedure for a particular call site, that site may provide a block
for each argument and, if it is a scalar variable, an expression for its value. If no block is
provided for the arguments, MAGNIFY assigns each a UMB.

The algorithm below analyzes the body of the procedure; MAGNIFY traverses the dominator
tree of the CFG keeping track of the set of SSA variables whose values are known to be
valid. When a symbolic expression is encountered, it is discarded if it refers to any invalid
variables. The procedure is called initially with the CFG entry node and an empty set:

invalidate_aliases(NV,legal vars)
for each valid ¢
for each source var V
if V is invalid, mark ¢ invalid
legal_vars = legal_vars U phi’s var)
VS, S a statement in N
if (S is a procedure call)
handle_proc_call(S)
invalidate_descriptor_exprs(legal_vars)
YV € legal_vars
if (V’s memory intersects S’s descriptor)
mark V invalid
if (assignment in S intersects V)
mark V invalid
for each scalar assignment A in S
legal_vars = legal_vars U A
for each rhs
if (rhs_vars - legal_vars) # 0

rhs = NULL
VC,C € Nefg_chitdren
for each ¢

for each source var V

24

if V not in legal_vars
mark ¢ invalid
VD € Ndom_children
invalidate_aliases(D, legal vars)

The algorithm examines every definition of an SSA variable and each descriptor once. De-
scriptors appear at call sites, which generally have at least one SSA variable associated with
them, and at each statement in the program. In practice, the cost of the analysis is well
approximated by the number of SSA variables that have been defined.

4.5 Interprocedural Analysis

Interprocedural analysis is not, strictly speaking, a separate phase; it is intertwined within
alias breaking. However, it is such an important part of the analysis that it requires a
degree of elaboration and merits its own section. Before discussing the actual mechanism
for propagating information through a call site, we give a brief overview that presents a
unifying framework for a spectrum of interprocedural analysis strategies. By casting the
analysis in terms of a general mechanism, MAGNIFY can easily tune its aggressiveness
statically or dynamically.

4.5.1 The Analysis Framework

Interprocedural analysis is a crucial part of memory access summarization. When it en-
counters a call site, MAGNIFY must decide how aggressively to pursue its analysis. The
simplest idea is to ignore interprocedural issues entirely and assume the worst about the
callee’s behavior. Most existing sequential compilers do exactly that, at least as their default
behavior. However, parallelizing systems cannot be so indifferent without missing many or
most of their opportunities to exploit concurrency. Large applications rarely provide suffi-
cient parallelism within the bounds of a single procedure.

The next step up is to examine each procedure once in isolation, constructing a summary
that is used by each caller. Most existing parallelization environments, as well as those
commercial compilers that perform interprocedural analysis at all, use the strategy of a
single summarization. While such a summary is a major improvement over no analysis,
there are many situations where information is lost if a procedure is analyzed without
considering its call sites.

The most aggressive approach is equivalent to inlining the body of every called procedure.
Rather than examining each procedure a single time, the system reanalyzes every procedure
at every call site. The additional accuracy of this exhaustive approach exacts a price: there
is a potentially exponential increase in analysis time. While the cost does rise substantially,
in practice, the threatened combinatorial explosion is unlikely.

There are relatively few published experiments that demonstrate how aggressively interpro-
cedural analysis should be performed. Rather than choosing a single strategy and hard-

25

coding it into the system, MAGNIFY uses a general framework that allows it to tune its
interprocedural analysis easily. The strategy allows the user to adjust the analysis, but also
provides a simple mechanism for MAGNIFY to regulate itself.

The key idea is that MAGNIFY divides the call sites that invoke a given procedure into a set
of equivalence classes. The call sites can either be teztual, as they appear in the program, or
fully resolved. The distinction is necessary because a given call as it appears in the source
code can be reached through different paths in the call graph.

Figure 4.3 shows a short program, its static call graph, and its dynamic call graph. Note
that the single textual call to procedure b within a generates two dynamic invocations with
different arguments. When MAGNIFY refers to a call site, it can either refer directly to the
textual location or use an extended naming mechanism: the fully resolved call site. The
longer version includes information about the path through the call tree that preceded its
invocation.

A fully resolved reference corresponds to a node in the dynamic call graph. The code
fragment in the figure has five of them. MAGNIFY uses a call graph to represent resolved
references, but in this dissertation we depict them textually by enumerating the nodes in
the path from the initial invocation of the program. The path includes the procedure that
is being called as its final node. If one procedure calls another more than once, the textual
description will include a number after the procedure name to disambiguate. If the number
n appears, it corresponds to the n’th reference to the called function in textual order. In
the figure, for example, there are two calls to a in program, so the fully resolved call sites
use the names program‘a‘1 and program‘a‘2 to refer to them respectively.

The equivalence class mechanism allows MAGNIFY to control the aggressiveness of the anal-
ysis. The simplest approach, summarizing each procedure once, corresponds to the con-
struction of a single equivalence class that contains all the call sites. The most aggressive
approach is to place each fully resolved call site into its own class; in other words, every
procedure is reanalyzed for each call site. As a procedure generally invokes others which
must also be reanalyzed, this strategy can be quite costly. In a recursive language, there
must also be additional logic to break cycles.

The call site classification mechanism supports many levels of analysis between these two
extremes — MAGNIFY could choose from a variety of partitioning schemes. For example,
each textual call site could be its own class. Or, sites could be partitioned based on their
characteristics. One natural choice is to partition based on the appearance of constants in
the list of arguments, because constants are easily the most useful piece of information in
sharpening the accuracy of the analysis.

In the case studies that are discussed in Chapter 8, the most aggressive approach proved
to be acceptable in practice. The reported results quantify the added cost of exhaustive
analysis vs. using a single summary per procedure. One design decision acting to reduce the
cost of analysis is that MAGNIFY divides its effort on a given procedure into two phases. The
first phase is call-site invariant and is only performed once regardless of the interprocedural
strategy. The second phase is done for each equivalence class.

static call graph

program program
a(5)
a(6)
b(10)
end

subroutine a(n)
b(n)
return

subroutine b(i)
x[i] = i
return

Textual call sites:

a(5s)
a(6e)
b(10)
b(n)

e

GB) > a(6)

COIP RO

dynamic call graph

The first call in program
The second call in program
The third call in program
The call in function a

Fully resolved call sites:

program‘a‘l
program‘a‘2
program‘b
program‘a‘1‘b
program‘a‘2‘b

The first call in program

The second call in program

The third call in program

The call by the first execution of a
The call by the second execution of a

Figure 4.3: Call site classification

26

27

If the current level of analysis becomes too costly in the future, MAGNIFY can use the
classification mechanism to reduce it. Such a tuning mechanism might also be very useful
in a stand-alone compiler, where the permissible amount of analysis is much lower than in
an interactive tool like MAGNIFY.

4.5.2 Equivalence Classes Defined

In its initial parsing, MAGNIFY examines the call sites to each procedure and divides them
into classes. As was just discussed, the current strategy aggressively assigns each fully
resolved call site to its own equivalence class.

An equivalence class has two components:

e A — the set of textual call sites and/or fully resolved call site instances that belong
to the class

e E' — an argument erpression containing a code for each of the parameters of the call

The latter is a simple pattern that identifies the amount of information to propagate through
the call site. For each parameter, the expression is one of the following:

e 3 — pass all information through
e A — pass only information that is invariant to the context of the callee’s invocation
e ¢ — pass constant (integer, ASCII, or floating point) value ¢

e ¢ — pass nothing

The choice of argument expression reflects the analysis strategy being used. If each proce-
dure is being analyzed once without considering its callers, A is the appropriate summariza-
tion strategy to use for each argument. It only considers information that is available locally
within the procedure. For example, suppose that the following code fragment appears in
an application:

subroutine g(a)
b=2
call f(a,b,5)

An equivalence class containing the call to function £ could be described by the argument
expression (A, A, 5). In that case, MAGNIFY would not pass any information for the first
argument because its value depends on the way that g is called. The value of the second
argument does not, so MAGNIFY would use the value 2 for the second argument. The third
argument will be the constant value 5.

28

By contrast, the current analyzer strategy is to place each fully resolved call site into its
own class and to use X for each parameter in the argument expression. In this example,
only the value passed for the first argument is affected. When it looks at the call site,
MAGNIFY would pass any available information through; if it has a symbolic expression
representing the value of a, that expression would be passed through as an annotation on
the first argument when the procedure f is analyzed based on this particular invocation of
it.

Figure 4.4 shows a larger example that uses a more restricted analysis than MAGNIFY would
apply. The code contains four calls to a procedure proc that have been divided into three
equivalence classes. Each call to proc in the call graph is labeled with its textual name
(one of W, X, Y, or Z) and a number indicating to which of the four equivalence classes it
belongs.

The first class contains the first three calls. The information that will be passed through
those call sites are the constant value (1) for the first argument, context invariant informa-
tion for the second, and nothing for the third. The value for the second argument varies
over the three calls; for call sites W and X, MAGNIFY passes in an annotation indicating
that the argument is less than 1. However, no information is passed through for the second
argument of call Y because its value depends entirely on the procedure argument b. Sim-
ply by looking at the text of pepper and without using any information about its callers,
MAGNIFY does not know anything about the value of b.

All of the previous call sites were allocated textually. The final call site, Z, has two fully
resolved instances (salt‘pepper‘1‘proc‘2 and salt‘pepper‘2‘proc‘2) that have been
separated into two classes. The resolved call site naming mechanism elaborates the path
through the call tree. The number following pepper indicates which of the two calls in
salt that the path represents; the number following proc similarly distinguishes between
the two calls in salt. For the two classes containing the fully resolved call site, all known
information available at the call site is passed through.

Note that although the single textual call has two fully resolved sites based on the fragment
as given, if there were more than one call to salt or other calls to pepper elsewhere in the
program, there would be an additional set of fully resolved call sites to manage.

4.5.3 Interprocedural Algorithm

The following algorithm is used to analyze a call site:

handle_proc_call(S, legal vars)
C = equivalence class of S
if C' ¢ analyzed
numargs = number of args in S
for n = 1l..numargs
argval, = S;rq, x Cg,
argblock, = memory block for S,,,,

procedure salt(a)
pepper(a)
pepper(a*2)

if (a < 1) then

proc(1,a,x+5) ; call site W
proc(l,a,x+7) ; call site X
endif
end

procedure pepper(b)

proc(1,b*2,x) ; call site Y
proc(b*2,b,x-3) ; call site Z
end

Equivalence Classes:

1) A= {W XY} E={1A, ¢}
2) A = {salt‘pepper‘i‘proc‘2} E={% % T}
3) A = {salt‘pepper‘2‘proc‘2} E={% %, 5}

Y-1 i Z-2 Y-1 Z-3

Figure 4.4: An example using equivalence classes

30

T = procedure that is the target of S
Cp = build_descriptor (T, argval, argblock)
VYV € legal vars
if (V’s memory intersects Cp’s descriptor)
mark V invalid

The algorithm begins by examining the site to identify its equivalence class. If an anal-
ysis has already been performed for that class, a descriptor will be available. Otherwise,
MAGNIFY constructs a value and a memory block for each argument. The value is derived
by applying the appropriate field of the class’s argument expression to the call site. The
value S,.g, is the value that MAGNIFY has computed for the n’th argument of the call.
CE, is the n’th element of the argument expression of the class. The application of one
to the other is represented in the algorithm by the operator <. MAGNIFY also assigns a
memory block (if none is known or can be passed, it uses a UMB). When a part of an array
is passed, MAGNIFY constructs a new memory block for the fraction of the original block
that is exposed to the callee.

A common FORTRAN technique causes additional complexity: the language allows the pro-
grammer to alias variables other than the ones actually passed as arguments. For example,
if a series of scalar variables are declared in a common block, a procedure can pass the first
one as an argument that is aliased to an array. The callee can use the array to walk through
all the scalars in the common block and modify them at will. Although this is technically
a violation of the FORTRAN standard, it is often performed in practice.

To handle this case, MAGNIFY examines the incoming memory blocks and identifies the
ones that are smaller than the callee declares them to be. Extended memory blocks are
created, so that the memory behavior of the callee will be properly reflected at the call site.
When the array bounds are expressed symbolically with values known only at execution
time, MAGNIFY assumes conservatively that the memory block may extend across the rest
of the segment.

Once the formal parameters of the procedure are appropriately assigned memory blocks and
values, MAGNIFY analyzes the procedure body. The result is an annotated exit node con-
taining a symbolic value for each visible scalar and for the return value (if any). MAGNIFY
connects these scalar values with the corresponding variables at the call site. Conceptually,
all the scalar assignments in the callee are performed simultaneously, followed by the as-
signment of the return value. By processing in that order, MAGNIFY ensures that aliasing
will be detected and will invalidate symbolic expressions correctly. The callee’s descriptor
is added to the descriptor for the call site. All symbols in the returned expressions and the
returned descriptor are mapped into the caller’s name space. The final result is a descriptor
that describes the memory behavior of the call statement.

31

a1

f(a,b)
if (a=1) then
if (b = 2) then (a=1) and (b=2)
A[b] =10
else
b=Db+l (a=1) and (b=2)
a=10
else
a=a+1
return(a)

(a=1) and (b<>2)

Figure 4.5: Code fragment with equivalent guarded CFG

4.6 Conditional Propagation

The goal of conditional propagation is to annotate each CFG node with a set of guards
— conditions that must be true for the node to be executed. Guards are computed in
two steps; the first takes place during the CFG pass (omitted earlier to simplify the dis-
cussion). When each CFG node is annotated with memory usage information, nodes with
more than one child are handled specially. MAGNIFY attempts to derive a symbolic expres-
sion (branch_dom) for each child which, if false, indicates that the child is not executed.
Figure 4.5 shows a code fragment, the corresponding CFG, and the guard expressions.

The second step is to propagate the guard expressions through the CFG. If a guard ex-
pression determines whether a CFG node N is executed, then it also controls execution of
the nodes that N dominates. For each CFG node N, the following algorithm constructs
Nguards, the set of guard expressions for node N. It is initially called on the entry node,
which has an empty guard set:

construct_guard_set(NV)
VD, D € Ngom _children

Dguards = Nguards

if (D € N¢fg_children and D has associated branch_dom)
Dguards = Dgyards U branch_dom
if (Dgyards is inconsistent)

Dyrunes = TRUE, prune_CFG(D)

if (—‘Dpruned)

construct_guard_set(D)

The algorithm uses the control flow graph and its dominator tree to traverse the nodes of
the function. Ngom chilgren 1S the set of N’s children in the dominator tree. Ncfg_children 18
the set of its children in the control flow graph.

MAGNIFY uses its symbolic expression evaluator to merge multiple guards. When the set

32

of guards are mutually inconsistent, the corresponding node is guaranteed not to execute.
MAGNIFY prunes that node out of the CFG along with any nodes that it dominates. Con-
ditional propagation does not currently represent a significant cost as it involves a single
pass over the CFG’s dominator tree.

4.7 Related Work

The preparatory phases of MAGNIFY use a number of existing techniques that have been
cited in the discussion above. The novel aspects of the analysis are the strategy for handling
interprocedural issues and the propagation of symbols; both problems have been studied by
other researchers in a variety of contexts.

4.7.1 Interprocedural Analysis

Every parallelization system of any import has been forced to address the problem of analysis
across procedure boundaries. In most cases, the safe assumption that any procedure call
invalidates most of the current state renders parallelization unworkable.

The simplest strategy for non-recursive programs is to use inlining [3, 110], either selectively
[17] or wholesale. Unfortunately, the potentially exponential increase in the size of the code
limits the usefulness of the strategy. Some studies have shown that the increase of size
in the compiler’s internal representation is not as large as the source code increase [38].
Nevertheless, the great majority of compilers that perform interprocedural analysis do so
through summarization.

The early approaches were designed to allow optimization of a sequence of code containing
procedure calls. The intent was not so much to exploit the behavior of the called procedure
as it was to ensure that a given analysis was not invalidated by side effects. Register
allocation, for example, improves dramatically when the compiler can determine which
values will be overwritten by the called procedure. Otherwise, the only resort is to use a
safe and inefficient strategy of saving any value that may be needed after the call.

The general strategy is to compute a summary of the behavior of a procedure and use
that summary at each call site. The early approaches that were based on dataflow tech-
niques [23, 29, 93] focused on scalar variables. Arrays were treated as a single atomic unit;
modifying any element in the array was equivalent to modifying every element. Such a
strategy is efficient to compute but prevents most parallelization of scientific codes, because
decomposing the arrays is the single most important issue.

As was argued previously, summarization is an effective strategy to support the array de-
composition on a distributed memory parallel machine. Even in compilation environments
that rely most heavily on dependence analysis, summarization has generally been used to
perform interprocedural analysis. A variety of summarization forms have been proposed,
including the Regular Section [30], the Data Access Descriptor [14], the region [118], and
the atom image [78].

33

The regular section represents the data access behavior with a set of patterns drawn from
a lattice of expression types. The patterns consist of the upper and lower bounds of a
range and a value for stride. The expressibility is essentially the same as array notation
in the ANSI Fortran-90 standard [90]. Symbolic expressions can appear if they have been
assigned a code through global value numbering. The symbolic code can be used for the
bounds of an array range or for the stride. Once an expression has been converted into a code
through numbering, no further manipulations are permitted. No conditional information is
represented.

The data access descriptor is similar to regular sections but it uses diagonal constraints to
enclose a convex polytope representing the area of an array that is accessed. The discussion
briefly mentions the possibility of including symbolic values, but does not present algorithms
for incorporating and manipulating them.

Triolet’s regions use a set of linear inequalities to enclose an array region, allowing more
accuracy in capturing triangular array sections. Induction variables are allowed to appear
in the expressions. Other symbols are not included, however. Atom images also use bounds
on the induction variables to capture triangular spaces. Havlak et. al [62] argues that the
increase in accuracy using these approaches instead of regular sections is not necessary for
the transformations in the PFC parallelization environment.

Symbolic Data Descriptors are similar to several of these forms, regular sections in par-
ticular. The SDD is distinguished chiefly by the amount of symbolic information that it
contains. By incorporating conditional information and symbolic expressions that can be
manipulated, MAGNIFY is able to identify additional opportunities to expose concurrency.
While traditional loop-based optimizations are well served by the less detailed representa-
tions, MAGNIFY embodies a new set of transformations based on split that use the additional
symbolic information heavily. The case studies in chapter 8 describe the series of transfor-
mations needed to parallelize three scientific applications. The discussion identifies those
transformation steps that could not have been accomplished using the other summarization
forms.

An alternative to inlining is cloning [37], where a given procedure is specialized into mul-
tiple versions. The call sites that invoked the original procedure are modified to call the
appropriate new version. The reason for the specialization is to take advantage of features
of the call sites — most commonly several call sites pass the same constant value for a given
argument. When the compiler knows that a given argument will always have a particular
value, it can optimize the body of the procedure more effectively. Additionally, there may
be opportunities for parallelization that were not legal in the original form.

The effect of cloning on analysis can be achieved in MAGNIFY by dividing the textual call
sites into one equivalence class per specialized version of the procedure. This strategy yields
the same information at each call site as cloning does, but it does not provide the benefits
of code replication.

34

4.7.2 Symbolic Analysis

Symbolic analysis has been investigated for a variety of purposes. Compiler researchers
have used it on scalar variables to perform partial interpretation, evaluating expressions
at compile-time. The evaluation could then be used, for example, for verification that a
computation is correct [60, 70], test data selection [26], debugging [47], and optimization of
execution time [32]. Clarke et. al present a survey of these applications [34].

One early strategy for assembling symbolic information about a program was to identify
paths of execution through the code and symbolically execute it [35]. The result was a set
of constraints on the program’s variables to verify correctness assertions.

A more abstract group of research projects have investigated the bounds of symbolic arith-
metic and using symbolic values to capture ranges [11, 61].

Symbolic information has also been used by vectorizing and parallelizing compilers, in
addition to the work discussed above for summarization. One of the earliest compilers to
manage symbolic expressions was the Bulldog compiler [46]. It attempts to compute a range
of possible values for scalar variables appearing in a subscript expression. In addition, the
user can refine the statically derived range by asserting simple inequality expressions.

The VATIL vectorizer [80] uses symbolic expression manipulation in attempting to vector-
ize loops. If the classic dependence tests fail to reveal independence, the system applies
additional and more costly ones that incorporate symbolic inequalities.

Haghighat et. al [58] describe the use of symbolic expressions in Parafrase-2, a compilation
environment developed at the University of Illinois. It combines symbolic expressions using
a join function, as opposed to the path-based strategy that was discussed above. MAGNIFY
avoids the need for a separate join operation because the SSA representation handles the
merging of expressions from different incoming control flows. The paper also summarizes
the use of symbolic analysis in other parallelizing compilers.

35

Chapter 5

Building the Descriptors

After the analysis described in the previous chapter, each statement in each CFG node is
annotated with a descriptor that summarizes the data it touches. The descriptor contains
only symbolic expressions that are known to be valid. Also, each CFG node has a guard set
containing symbolic expressions that are known to be true if the node is executed. MAGNIFY
can now construct a descriptor for any code fragment.

5.1 The Algorithm

The function that constructs a descriptor, build_descriptor, takes two arguments: the set
of CFG nodes to describe (S) and the set of SSA variables that can appear as symbols in
the resulting descriptor (V). The return value is a descriptor D that summarizes the data
access behavior of the specified nodes; it is computed by performing a top-down traversal
of the dominator tree. The purpose of the second argument, V| is that it provides a simple
but powerful mechanism to customize the returned descriptor for various uses. We will
demonstrate its use with several examples, after first explaining the basic algorithm.

As build_descriptor proceeds through the dominator tree, it checks each node to see
whether it is a member of S. If so, that node’s statements are traversed and their descriptors
added to D. The statement descriptors are guarded by the accumulated set of guard
expressions that appear on the path through the dominator tree.

Because the descriptors for dominating nodes are encountered first, the descriptor union
algorithm is able to determine whether new entries to the descriptor’s read set are live on
entry. It is important for MAGNIFY to track liveness because the analysis can reduce data
communication requirements at execution time. Before a given code fragment is executed,
every memory location that it reads and that is live on entry must be properly filled in.
Without analysis, MAGNIFY would be forced to make the conservative assumption that all
data is live on entry. By pursuing an aggressive strategy, MAGNIFY is often able to prove
otherwise and hence reduce scheduling overhead. The worst-case is always available as a
fallback when the analysis fails or is inconclusive.

36

The following shows the algorithm for building a descriptor, stated more formally. There
are three arguments:

e S, the set of CFG nodes to summarize
e V, the set of acceptable variables that may appear in the returned descriptor

e N, the root of the CFG dominator tree

The real work is done by a recursive routine called build dirty_descriptor; it takes the
same three arguments plus these two extra ones:

e D, the current descriptor (on first invocation, empty)

e G, the guard expression set (on first invocation, empty)

build_descriptor(S, V, N)
D = build_dirty_descriptor(S, V, N, ¢, ¢)
return(clean_descriptor(D,V))

build_dirty_descriptor(S, V, N, D, G)
if (N has a guard set)
add guard set to G
if (N €5)
VL, L a statement in N
Temp = L’s descriptor, guarded by G
D =DUTemp
VC, C a child of N
D = D U build_descriptor(S, V, C)
return(D)

clean_descriptor(D,V)
Y triples T, T € D
V expressions E, E € T
clean_expression(E,V)

As explained above, build dirty descriptor traverses the dominator flow graph recur-
sively. Each time it finds a node that it has been asked to describe, it accumulates that
node’s descriptors into a summary descriptor. If the node is guarded, the guard is applied to
each new entry as it is added. After the dominator tree traversal is complete, the descriptor
contains a summary of the data access behavior of the set of nodes. However, we call that
descriptor dirty because it may contain symbolic variables that are not in V, the set that
specifies which variables may legally appear in the final returned descriptor.

The last step, then, is to clean the descriptor — i.e, remove the unacceptable variable
references. For each variable v referenced in the descriptor, build_descriptor checks if

37

v is acceptable (i.e. whether v € V). If not, then the symbolic expression containing v
must be eliminated or replaced by an equivalent expression that references only acceptable
variables. clean_expression finds each unacceptable variable and systematically replaces
it with equivalent symbolic expressions until one of two conditions holds: every variable
in the final expression is acceptable, or an unacceptable variable remains that cannot be
replaced. In the first case, the expression is considered clean and remains. In the second,
the expression is illegal and must be removed.

The descriptor is designed so that MAGNIFY can always opt conservatively to remove a
symbolic expression. If a guard or mask is removed, the corresponding memory reference is
assumed to occur unconditionally. If a pattern is removed, the entire range of data in the
given dimension is assumed to be referenced.

5.2 Applying the Algorithm

The algorithm in the previous section has a second argument which specifies the variables
that could appear in the final descriptor. The ability to specify which variables may appear
unresolved allows MAGNIFY to customize the descriptor for its intended use.

The following list contains four typical kinds of descriptors. In each case, it gives the
arguments for build_descriptor to assemble that descriptor properly.

1. Loop Iteration To summarize the data referenced in a given loop iteration, MAGNIFY
invokes build descriptor on the set of CFG nodes that make up the loop body and
includes the induction variable in V, the set of legal variables. By permitting the
induction variables to remain as primitive values, description of the data referenced is
restricted to the behavior of a single loop iteration. Figure 5.1 (a) shows a loop and
(b) shows the descriptor for one of its iterations. Note that the variable i remains
unresolved.

2. Loop Body To summarize the entire loop body, rather than just a single itera-
tion, MAGNIFY again invokes build_descriptor. However, it changes the arguments
slightly by removing the induction variables from V. When clean_descriptor en-
counters any induction variables in the final descriptor, it identifies them as illegal and
attempts to resolve them. Within a loop, the value taken on by an induction vari-
able is the entire range of values in the iteration space, so the result of the cleaning
operation is that the descriptor now summarizes the behavior of the entire loop.

Figure 5.1 (c) shows the result for the previous example; since the variable i may no
longer appear, it is resolved into the induction range 2..n.

3. Function Body A function’s descriptor is based on all the CFG nodes that make it
up. Any variable may appear unresolved. Figure 5.2 (a) shows a function and (b) its
descriptor.

4. Function Side-Effects Often MAGNIFY wishes to know not the data that a function
uses but the effect that a call to that function will have on the global state. The data

38

doi=2,n
A[i] = A[i] + B[i] * ¢
B[i+1] = B[i+1] * c[i-1]

(a) loop code

write: A<t >
B<i+1>

read: A<t>
B<i.i+1>
C<i-1>
c

(b) descriptor for an individual iteration

write: A<2.n>
B<3.n+1>

read: A<2.n>
B<2.n+1>
C<ln-1>
c

(c) descriptor for entire loop body

Figure 5.1: Loop Code and its Descriptors

of interest are global variables, static variables declared within the function, and the
arguments that are passed in. This more specific version of the function’s descriptor
is computed by declaring that local variables (except static ones) may not appear.

Note that the elimination of local variables from global state does depend on the
memory mode. If local variables are stack allocated, as is traditional in Algol-like
languages, eliminating them from the side-effect analysis is correct. The traditional
FORTRAN model, however, states that a given local variable may be allocated statically
to a given memory location. If the compiler follows that convention, more complex
handling of local variables may be necessary to support correct execution.

Figure 5.2 (c) shows the side-effect descriptor of the function given in (a). The local
variables have been removed but common variables and procedure arguments remain.

function sample(A)
common B, n

real sample, A[1:n], B[1:n], c, d
integer n, i

c = 0.
d = 0.

doi=1,n
c =c + A[i] * B[i]
d =d * A[i] * B[i]

sample = c+d
return

(a) function code

write: C
d
i

read: A<l.n>
B<l.n>
n

(b) descriptor for entire function

read: A<l.n>
B<l.n>
n

(c) descriptor for function’s side effects

Figure 5.2: Function and its Descriptors

39

40

reanalyze,,, | the average number of procedure calls analyzed for
each statement

ProcCayg the average time required to analyze a procedure
triplesgyg the average number of triples in a descriptor
€TPT_UNI0N,,y | the time required to compute the union of a descriptor
and an expression

NUM_eTPrs.,y | the number of expressions appearing in a triple

dirty_varg,, the number of dirty variables per descriptor

ops_clean,,, the number of symbolic operations required to clean
a given symbol

0P _COSt 4y the cost of a symbolic operation

Table 5.1: Average quantities used in the cost formulas

5.3 Cost of Descriptor Assembly

The algorithm for assembling descriptors takes a CFG node set S and traverses the domi-
nator tree of the enclosing function once. For each CFG node in S, the algorithm applies
a descriptor union operator to each statement in that node. After the descriptor is fully
assembled, each symbolic expression in it is cleaned.

It is not particularly meaningful to analyze the algorithm on the basis of its worst-case
complexity, because in theory the cost could be astronomical — each operation could be
required to manipulate every variable in the program. In practice, the algorithm cost
remains within reasonable bounds even when aggressive analysis is performed. Furthermore,
the cost of each operation depends heavily on the complexity of the symbolic expressions
that appear and on the frequency of interprocedural analysis. Both are easily controlled
within MAGNIFY because the sub-systems responsible for them include a tuning mechanism
that allows for self-regulation.

More revealing than a complexity analysis, then, is an estimate as to the expected cost
of each operation. The formulas below represent the cost of descriptor assembly based
on a number of averages. Table 5.1 summarizes the averages that are used. The actual
value for each average is likely to vary somewhat between applications, depending in large
measure on programming style, but is expected to remain within a normal range. Chapter 8
measures the value of those averages for several real-world case studies and demonstrates
that the cost of assembly is not prohibitive, even using exhaustive analysis. However, if the
cost does become unacceptably high, that chapter demonstrates that execution time can be
dramatically reduced in exchange for less accurate interprocedural and symbolic analysis.

This formula represents the total cost of one call to build descriptor:

(Z (SL * uniong,g) * (reanalyzeq,, * procm,g)) + clean
SES

where

41

s1, = the number of statements in CFG node s

The expression contains a sum, representing traversal cost, and a second quantity, clean,
that reflects the cost of cleaning the descriptor. The traversal cost has two components: the
cost of performing union operations on descriptors, and the cost of doing interprocedural
analysis. The following sections analyze each of these components.

5.3.1 Union Operations

The basic operation performed by the algorithm is, for each statement in each CFG node in
S, to compute the union of that statement’s descriptor with a running summary descriptor.
The formula for computing the cost of a union is

UNIONGyg = tripleSyyg * €TPr _UNiION Gy, * NUM_eTPTS,,
avg avg avg g

In other words, union,,, is the product of the average number of triples, the average
number of expressions in a triple, and the average cost of performing a union operation on
each expression. These three values are averages and typical values for them are reported
in the results section.

5.3.2 Interprocedural Analysis

The second half of the sum in the overall cost expression describes the cost of interprocedural
analysis. It is the product of the average number of procedures analyzed per statement and
the cost of an analysis. The number of analyses is

reanalyzeq, g = calls,yg * reanalyze, o

The first quantity, calls,,g, is the average number of procedure calls per statement. It is
dependent on the programmer’s style. The second value is the probability that a given call
will need to be reanalyzed and is heavily dependent on the interprocedural analysis strategy
being used. The most aggressive approach, which is the one that MAGNIFY currently uses,
always reanalyzes a procedure whenever it is invoked. In other words, reanalyzey o, = 1.
Using the more common strategy of summarizing each procedure’s behavior once yields a
much lower probability of 1/invoke,,q, where tnvokeg,, is the average number of textual
call sites to each procedure.

The other value controlling the cost of interprocedural analysis is ProcCayy, the average cost
of reanalyzing a procedure. Such an analysis involves, among other things, a recursive call
to build_descriptor. In other words, any change in strategy that reduces the cost of the
overall algorithm yields multiple benefits because it also lowers the cost of the recursive
calls. To quantify the effect, chapter 8 presents the average measured value to handle a
procedure for a variety of applications using more and less aggressive analysis strategies.

42

5.3.3 Descriptor Cleaning

The last operation is to clean the descriptor. The cost is expressed by the following formula:

clean = dirty_var,,g * ops_clean,,g * 0p_costqyg

The three quantities are the number of dirty variables in a descriptor, the number of sym-
bolic operations needed to clean a dirty variable, and the cost for each of those operations.
They are all averages for which the results section gives a range of values measured for
several applications.

43

Chapter 6

Program Transformation

The purpose of code transformation is to take advantage of existing concurrency to sub-
divide the program or to expose additional concurrency. MAGNIFY can use the results of
its analysis to perform a series of traditional loop-based transformations as well as more
ambitious restructuring operations based on the split transformation.

Traditional parallelization operations focus on finding loops whose iterations are indepen-
dent and on finding procedure calls that can be executed in parallel. MAGNIFY takes a
higher level approach, treating a program as a set of interacting sub-computations. The
program is transformed from its original form as a single monolithic computation and is
decomposed into pieces as parallelization proceeds. The programmer directs this trans-
formation by identifying computations that should be divided. MAGNIFY uses descriptors
to carry out the transformations. When MAGNIFY can find sub-computations that are
independent, it performs the division automatically. More aggressive transformations are
performed by the split transform.

6.1 Internal Representation

MAGNIFY maintains the current state of the program in a variety of forms. WEB, a hi-
erarchical graph-based internal representation, is used to capture the program’s evolving
control structure. The WEB consists of a graph and a set of additional variables which are
used to allow nodes to communicate with each other. The scope of the variables is lexical;
a variable that is defined at a given node can be referenced by the node itself and by nodes
that it dominates. The WEB graph is made up of nodes and arcs. The nodes represent
either individual pieces of sequential code or sub-graphs, while arcs represent control flow
dependences.

The original sequential version of the program is represented by a single WEB node; as
the control structure of the program is exposed and transformed, the result is recorded as
a WEB graph. When the program is finally output in executable form, the WEB control
structure is the source of parallelism that RTS manages. Any control structure that is left

44

inside the sequential FORTRAN code is invisible and inaccessible to RTs. However, when the
run-time system manages control, it is also making scheduling decisions and allocating the
computation across processors, so there is a significant level of overhead. It is important to
reveal only the control that is useful for exposing concurrency or simplifying the behavior
of the FORTRAN code. The case studies demonstrate the process in more detail.

6.1.1 WEB Nodes

Figure 6.1 gives a pictorial key to the different kinds of WEB nodes, which will be used in
the case studies in Section 8.1.

The node types are:

e Sequential Operator — The simplest kind of node corresponds to a chunk of sequential
FORTRAN code that is executed when all of the data it needs is available. The node is
annotated with information about its inputs and outputs and with the analysis that
has been performed by previous passes of MAGNIFY.

e Conditional — These nodes execute their associated sub-graph if a given conditional
is true. The advantage to exposing the conditional is that it can be used in further
transformations and RTs can avoid scheduling some code that does not need to be
executed.

e Iteration — Although a piece of sequential code can perform its own iteration, when
the loop is exposed it can be pipelined or individual iterations parallelized. The
iteration node defines one or more induction variables, each with a corresponding
range of values to iterate over, and a sub-graph. The sub-graph either carries out
a single iteration of the loop or any contiguous range of iterations. The sub-graph
initially is a single node, but can become arbitrarily complex if it is to be executed in
parallel. The iteration ranges are executed as a nested loop with the first induction
variable serving as the outer iteration. The remaining variables appear in the order
they are listed, with the rightmost acting as the innermost loop in the nesting.

e Conditional Iteration — Many programs put conditional statements in loops so that
the iteration skips some of the elements in the range. As is discussed in detail in
Section 6.3 on the split transformation, the iterations that are skipped often reveal
additional concurrency. This specialized version of the iteration node contains a mask-
ing expression in it that RTS uses to determine which iterations are to be executed.

e Map — A map node captures the most important source of concurrency in a pro-
gram: loop iterations that can be executed in parallel. The node defines one or more
induction variables and otherwise contains the same elements as the iteration node —
a sub-graph to carry out iterations and a range over which to iterate.

e Conditional Map — The map node has a specialized version which is analogous to the
conditional iteration node. It is useful because it exposes the conditional expression

45

<) <expr> AD\ <expr>
sequential iteration map procedure
? <expr> <) ? <expr> AD\7? <expr>
conditional conditional conditional
iteration map

Figure 6.1: Node Types in WEB Representation

doi=1,n ; initialization
do j=1,n
Ali,jl =0
doi=1,n ; increment
incr = f(total_incr) ; compute increment
do j=1, n ; do increment
Ali,j] = A[i,j] + incr
total_incr = total_incr + incr ; update total increment

output_results(A, total_incr) ; output

Figure 6.2: Source Code for Example

to the run-time system and thus allows it to improve the amount of concurrency and
pipelining.

e Procedure — The procedure node is used whenever a sub-graph is useful even though
there is no enclosing control structure like iteration. This introduces a level of ab-
straction to the graph which can reduce control complexity, simplify the name space
of graph variables, and so forth.

To demonstrate how WEB expresses the control structure of parallel operations, we present
a simple example based on the original source code shown in Figure 6.2.

Figure 6.3 shows a parallel version of the code fragment using WEB to represent the control
structure. The parallel version begins by initializing the elements of A to zero. Because the
computation is inside a map node, it can be carried out in parallel. The range of the node
is the two-dimensional space 1..n, 1..n.

46

AN i=lnj=ln

Alijl=0

incr = f(total_incr)

AN i=ln

Ali,j] = A[i,j] + incr

total_incr = total_incr + incr

clean up

Figure 6.3: WEB Representation for Example

After initialization is complete, the next node is an iteration. It contains three WEB nodes
in a sub-graph that it execute for n iterations, setting the induction variable i accordingly.
During an iteration, each of the three sub-computations are performed in order. The first
computes the increment value based on the value of total_incr. The second increments,
in parallel, the value of each element in the 7’th row of the array. The last operation adds
the increment value to total_incr.

Once all the iterations are complete, the final WEB node, a sequential node, calls an output
routine to report the results of the computation.

6.1.2 WEB Operations

To convert the original single WEB node into a graph that contains the needed control
information, MAGNIFY applies a variety of operations to the evolving WEB representation.
Some of the operations are in response to interaction with the programmer and others are
done automatically. The major ones are:

e Peel Conditional — Given a block of code with a conditional expression that deter-
mines whether it executes, remove the conditional from the code and use a corre-
sponding conditional WEB node instead.

e Peel Iterations — Remove the outer loop of a sequential block of code, exposing it as
a WEB iteration node. When the node is converted into Delirium, the dependences

47

between iterations will be expressed directly. The iterations will be executed sequen-
tially if they depend on one another but otherwise RTS is free to pipeline them for
additional concurrency.

o Parallelize Outer Loop — Remove the outer loop of a sequential block of code, expos-
ing it as a WEB map node. If there is an attached conditional that has been identified
by MAGNIFY, the Conditional Map node provides a more accurate representation.

e Combine Map Nodes — Convert two successive map nodes into a single one that
contains the code from both. The mapping operation in both nodes must be identical.

e Chop — Divide a given sequential node into two pieces, the second of which has a
control dependence on the first. The transformation may require additional variables
to be introduced in order to handle complex control interactions caused by conditionals
and looping constructs.

e Split — Apply the split transformation (discussed in Section 6.3) to a pair of nodes
which currently have a control dependence between them. The result is three nodes,
one of which can be executed independently of the first two. The operation is used to
expose concurrency between operations and to pipeline iterations of a loop.

e Wrap — Replace a sequential node with a procedure node. The procedure node’s
sub-graph contains only the original node.

e Compute Dependence — Modify the dependence relationships among a set WEB nodes
based on the dependence information embodied in their data descriptors. This is used
when a sequential operator has been chopped into pieces that are not sequentially
dependent on one another.

Referring back to the example shown in Figure 6.3, the following set of transformations
convert the original sequential code into its corresponding parallel WEB representation:

Chop code into initialization, increment, and output

Peel iteration from increment

Chop contents of increment into compute, do_increment, and update
Parallelize initialization

Parallelize do_increment

6.1.3 Transformations and Descriptors

Each WEB node is annotated with a summary descriptor. Any FORTRAN source code that is
associated with the node is summarized by descriptors, as discussed in Chapter 5. Descrip-
tors have been assembled for statements, loops, conditionals, basic blocks, and procedures.

When the code is transformed, either by modifying the WEB representation or by trans-
forming code within a single node, existing descriptors are often rendered invalid. MAGNIFY

48

identifies the code and the WEB nodes that may have been affected and recomputes their
descriptors. Typically the recomputation is localized, because most transformations are
designed to leave surrounding code unaffected. None of the WEB transformations listed in

Section 6.1.2, for example, affect the descriptors of WEB nodes that are not being directly
modified.

6.2 Traditional Transformations

There are a large number of code transformations that have been developed by the compiler
community; a detailed discussion of them can be found elsewhere [12]. MAGNIFY applies a
variety of standard optimizations automatically and also permits the programmer to invoke
them. The following are among those supported: loop reversal, loop invariant code motion
(36], loop interchange [5], strip-mining [81], unrolling [2], loop fission [92], loop fusion, and
tiling [1].

MAGNIFY summarizes the behavior of the original code with descriptors to determine
whether a given transformation is legal. To perform an exhaustive analysis for loop-invariant
code, for example, MAGNIFY begins by computing the descriptor for each statement in the
loop. The following algorithm then identifies those statements which are invariant:

changed = FALSE
tocheck = set of statements in the loop
LD =|JV, V € set of loop induction variables
repeat
VS, S € tocheck
SD = descriptor for S
if (SDread N SDwr'ite or SDread n LDwrite) or SDwrite N LDwrite N LDread))
LD=LDUSD
tocheck = tocheck — S
changed = TRUE
while (changed = TRUE)

The algorithm iterates until convergence. As it examines the loop, it maintains tocheck, a
set of statements that are currently believed to be invariant, and LD, a descriptor containing
those memory locations that are modified during loop execution. The set initially contains
all the statements that are in the loop and the descriptor contains only the loop induction
variables.

On each iteration, the algorithm examines every member S of tocheck to determine whether
S varies between iterations. That can happen because S uses values that it computed on
a previous iteration — i.e., its read set SD,.,q has a non-nil intersection with its write set
SDyyite- Or, S might interact with the loop variant statements that have already been
identified. If S reads a value computed by a loop variant statement, it is also loop variant.

49

Statements that are identified to be loop variant are removed from the set of invariants
and their descriptors are added to the loop descriptor. When the algorithm converges, the
statements remaining in tocheck are known to be loop invariant.

There are two features of this algorithm to be aware of. The first is that even though a
statement is invariant, moving it may require renaming. The other consideration is that the
algorithm operates at the statement level, so it will not identify arithmetic sub-expressions
that are loop-invariant. This could be addressed by breaking complex statements into their
simpler sub-components or by operating at expression rather than statement level.

A variant of the algorithm applies to user-invoked code motion. MAGNIFY will perform any
requested transformation, but it first attempts to verify legality. It does so by calculating
the descriptor of the code to be moved and the descriptor of the rest of the loop body. If
the descriptor passes the test that the algorithm uses for invariance, the transformation is
known to be legal.

Loop fusion also takes advantage of descriptors to determine legality. MAGNIFY computes
the descriptor of each loop. If they do not interfere and the induction ranges are the same,
the bodies of the loops can be merged.

Loop fission is similar; suppose that the goal is to divide a given loop into two pieces,
dividing the statements of the loop body into two sets A and B. MAGNIFY computes the
descriptors for both A and B over the entire induction range of the loop. If the descriptors
do not interfere, the split is legal.

6.2.1 Associativity and Reduction

One of the complications in transforming scientific computations is that many optimizations
change the order of execution of the floating point operations. Floating point computation is
not associative, however, and in some cases an altered order may be numerically invalid. On
the other hand, if the order may not be altered under any circumstances, many opportunities
for parallel execution will be sacrificed.

MAGNIFY solves the problem by allowing the user to determine whether order is mutable
or inviolate. The default assumption is that order can never be altered, but the user can
specify via declarations in the code that (1) all operations in the program can be assumed
to be associative or (2) operations on a particular variable can be assumed to be associative.

A particularly important special case is a reduction that is computing a running sum or
product. A reduction is an arithmetic operation that updates the value of a variable using a
computation that depends on its previous value. The following code fragment is an example:

total = 0

doi=1,n
total = total + A[i]

50

do j=1, m
total = total + B[j]

The variable total is used to assemble a running sum of the elements of two arrays. Without
modifying the code, MAGNIFY is forced to delay execution of the second loop until the first is
finished. If MAGNIFY is permitted to rename the variables, the two loops could be executed
independently:

totalil
total2

0
0

doi=1,n
totall = totall + A[i]

doj=1, m
total2 = total2 + B[j]

total = totall + totall2

Note, however, that the second code fragment performs the addition operations in a differ-
ent order and hence may not yield the same result. Therefore, MAGNIFY can only rename
reductions by using separate accumulation variables if the user has declared that reordering
is permitted. In the example just given, if the variable total has a reordering declara-
tion, then the renaming is legal. MAGNIFY can similarly rename arrays that are used to
accumulate running sums or products.

6.3 Split-based Transformations

The most powerful transformations that MAGNIFY can apply are based on split. The goal
of the operation is to expose concurrency that is not straight-forwardly accessible from
independent loop iterations.

6.3.1 Split

The split transformation is used when two computations interfere. Figure 6.4 demonstrates
a simple example, the division of H into three parts (assuming that we can treat addition

as an associative operation). Let DG be the descriptor for G and DH be the descriptor for
H.

Then (omitting induction variables):

e DGyrite = { X[a,1..n]}

Original Code:

doi=1,n
Xfa,i] = X[a,i] + Y[i]

doi=1n
doj=1n
sum = sum + X[j,i]

After Split:

doi=1n
Xl[a,i] = X[a,i] + Y[i]

doi=1n
suml = suml + X{[a,i]

T~

G
H
G
do i = l,a-1 and a+l,n
do j = 1n
sum2 = sum2 + X[j.i]
HD

H,

| sum = suml + sum2 l

Figure 6.4: Simple Example of Split

51

52

® DGreoq = { X[a,1..n],Y[1..n]}

® DHypite = { Sum}

e DH,.q = {X[1..n,1..n], sum}

Since DG yyrite N DH,eqq # 0, the two code blocks interfere.

H is flow dependent on G because part of H reads the column of X modified by G. However,
the dependence hides potential concurrency because most of H can be computed simulta-
neously with G only the computation on column a must be deferred until G is done. Note
that we have assumed, for simplicity, that a is known to be between 1 and n. H can be
divided into the piece that must wait for G and the piece that need not; after both parts
have finished, the results are merged together. This is exactly what split does on this ex-
ample, dividing one computation into three parts based on its interactions with a second
computation.

More generally, split takes as input a computation C and a descriptor D of a computation
(usually a predecessor or successor), and attempts to find sub-computations in C that do not
interfere with D. The effect of the transformation is to convert C into three computations:
the dependent sub-computation Cp, the independent sub-computation C, and the merging
sub-computation Cps. Cy contains the sub-computations that do not interfere with the
computation whose descriptor is D and could be separated. Cp holds the rest of C, except
for those sub-computations that rely on values now computed in C;. The remaining sub-
computations, along with any needed post-processing code, are put into Cy.

The split algorithm begins by subdividing C into primitive computations. Primitive com-
putations are the blocks of code that are managed by the transformation; the choice of
primitive computation determines the granularity of the split. We have chosen to consider
basic blocks, function calls, and loops as primitive computations.! Thus in Figure 6.4, code
block G has two primitive computations, a loop and a basic block, whereas block H has
three. Subdividing basic blocks would yield a more aggressive split, at the cost of more
communication overhead and more cleanup code in C)y.

The next step is to categorize each primitive computation into one of three sets based on its
memory usage behavior. In defining the sets, we will say that a computation C (directly)
interferes with a set S if and only if there exists s € S such that C interferes with s. We
will also use the property of transitive interference; C transitively interferes with S if there
exists a sequence of computations I, I, ... I, n > 0, such that C interferes with I, I,,
interferes with .41, and I, interferes with S. We say C transitively interferes with S
using Sz when I through I, are members of Sz. Notice that the property holds when C
directly interferes with S.

'"When profiling information indicates that a block of code is executed infrequently, the system may
choose not to decompose a loop nest into its constituent computations.

53

The three categories of memory usage are:

e Bound — computations that interfere with D.

e Linked — computations that do not interfere with D directly but do transitively
interfere with it.

e Free — computations that do not interfere with D directly or transitively.

The following algorithm takes C, a collection of primitive computations, and assigns each
member to a usage category with respect to a descriptor D:

Bound = MaybeFree = ()
for each c€ C
if enter fere(c, D)
Bound = Bound U {c}
else
MaybeFree = MaybeFree U {c}
Linked = transitive_interfere(MaybeFree, Bound)
Free = MaybeFree

transitive_interfere(/nitial, Target)
Result = @, Testset = Target
while (Testset)
Newbound =)
for each ¢ € Initial
if inter fere(c, Testset)
Initial = Initial — {c}
Result = Result U {c}
Newbound = Newbound U {c}
Testset = Newbound
return Result

The transitive_inter fere procedure is given an initial set Initial and a reference set; it re-
turns a set Result containing the members of Initial that transitively interfere with Target
using Initial. The members of Result are removed from Initial. The procedure iterates
to fixpoint; the number of iterations depends on the interference pattern between sub-
computations. Each iteration looks at every sub-computation that remains in the Initial
set and moves at least one into Result or the algorithm terminates. An upper bound on
execution time is O(n?) inter fere or union computations, where n is the number of sub-
computations in C. In general, n is small because a computation that is worth moving will
be fairly coarse grained.

Applying the algorithm to the computation H and the descriptor DG, all three primitive
computations are in Bound, reflecting the fact that DG rite N\ DHypeqq # 0.

54

As in this case, it is often possible to split the iterations of a loop in Bound into two sets,
one of which interferes with D and one of which does not. It is legal to split iterations when
we have nests of loops that are either independent or computing a reduction; they can be
split by placing a conditional on the induction variable. By looking at the intersection of
the loop descriptor with D, we determine whether a restriction on the induction variable
yields a set of iterations that do not interfere with D.

If a loop is successfully split, we have two sets of loop iterations; one is still in Bound, but
the other is either in Free or in Linked, depending on whether it interferes transitively
with D. In our example, by restricting i so that it never equals a, we are left with a Free
computation. Note that we are computing a reduction, so to split the iterations we must
replicate the reduction variable and do the final reduction step in Hjy.

A simple assignment of sub-computations to output sets could be done based on the three
categories, by putting Free computations into C and all the rest into Cp. However, it is
often important to handle Linked computations more carefully, so the set is sub-divided
further. This involves one final interference property called flow interference, which unlike
interference is not symmetric. A successor computation B has a flow interference from a
predecessor computation A if A,ite N Breag # 0. This is equivalent to the notion of a flow
dependence. Transitive flow interference is analogous to transitive interference. The new
sub-divisions are:

e NeedsBound — Linked computations with a transitive flow interference from Bound.

e GenerateLinked — Linked computations from which Bound or NeedsBound has a
transitive flow interference.

e ReadLinked — Linked computations that do not fall in either the NeedsBound or
GenerateLinked sets.

In Figure 6.5 we show a more complicated example to demonstrate the types of Linked
computations (but do not show transformed code). Suppose we wish to split T with re-
spect to W’s descriptor. For this example, we will consider the named computations to be
indivisible.

E is Free because it does not have any relationship to W; B is Bound because it reads
the values of array X that are written by W. The rest of the sub-computations are
Linked. A generates values of Y that are used by the Bound computation B and hence is
GenerateLinked. C is ReadLinked, because it also needs values from A. D is NeedsBound
because it uses the value of sum computed by the Bound computation B.

Here is the algorithm that assigns each Linked computation to a set:

Unrestricted = Linked

NeedsBound = transitive flow_up(Unrestricted,
Bound)

GenerateLinked = transitive_flow_down(Unrestricted,

35

doi=1n
X[i] =X[i] + i

doi=1n
Y[i] = Uli] + 1

AN

doi=1n doi=1n
sum = sum + X[i] * YI[i] Tl = Y[l + 1

doi=1n
U_sum = U_sum + UI[i]

result = result * sum

Figure 6.5: Enhanced Example of Split

Bound U NeedsBound)
ReadLinked = Unrestricted

The computation of transitive_flow_{up,down} is analogous to transitive_inter fere, ex-
cept that the calls to inter fere are replaced by calls to flow_inter fere. flow_inter fere is
not symmetric, so there are two versions of the transitive routine to check for interference
from the candidate set (down) and from the target set (up).

ReadLinked computations can be moved into the independent set at the cost of additional
replication or movement. From the example, we could move the ReadLinked computation
C into Ty if we are willing to replicate A or to move both B and D into Ths. In general,
to move a ReadLinked computation r into the independent set, every computation s from
which r has a transitive flow interference must also be put in that set.

In our current implementation, we use a heuristic to decide whether moving a member of
ReadLinked is worthwhile. The heuristic goes ahead with the move if both of the following
are true:

e the number of floating point and integer computations in the code that is to be
replicated can be calculated and it is below a threshold

e profiling data shows that the computation is expensive enough to justify moving it

Note that when a sub-computation created by splitting a loop nest is moved, some code
must be added to the merge. If a nesting of independent loops is split, the merge glues the
results together. If a reduction is involved, a temporary scalar or array must be created
and the results stored in it (as was done in Figure 6.4 for the reduction variable sum). As
a final step in merging, the last reduction is performed.

56

integer mask[1..n], col, i, j
float result[l..n], g[1..n,1..n], outputfl..n,1..n]

Data Behavior of Loop:

do col = 1,n where (mask[col] <> 0)
A mask 0000111001]

doi=1n q o,
ral

compute result[i] from
i’th column of q
doi=1Iln
qli,col] = result[i]

M)

AN

/)

write read

doi=1n

do j 1,n
output(j,i] = f(q[j.i])

Figure 6.6: Sample Interacting Computations

6.3.2 Pipelining

In the discussion of the example in Section 7.1.3, three sources of concurrency are described,
the first of which is a simple split. The other two, however, are pipelining transformations
that go beyond split.

To pipeline a loop with split, first the descriptor for one iteration of the loop is computed.
If the induction variable is ¢, D;_;, the descriptor for iteration 7 — 1, is computed. Then the
loop body is split using D;_;; the resulting independent computation does not interfere with
iteration ¢ — 1. As iteration ¢ is computed, the next iteration’s independent computation
can be executed concurrently. By transforming the code, that opportunity is exposed to
the run-time scheduler. If deeper pipelining is desired, the descriptor for iteration 7 — 2 can
be computed, etc.

To give a concrete example, Figure 6.6 shows interaction among sub-computations. It is
a loop whose induction variable col iterates over the columns of a data array q. If the
associated element of the array mask is non-zero, the iteration performs the computation
A. A reads all of q and modifies column col. After the loop is completed, B computes the
array output from g.

Because of the conditional in A, the compiler cannot statically determine an efficient sched-
ule for A. Depending on the values in that array, adaptive techniques may find an efficient
schedule. However, on large numbers of processors efficiency may still be poor if there is
not enough parallelism (i.e. too few mask elements are non-zero) or if the time to process

57

integer mask{l..n], col, i, j

float result[1..n], g[1..n,1..n], output[1..n,1..n]
ouputl[1..n,1..n], output2[l..n,1..n]

—T™ do col = 1,n where (mask[col] <> 0) do i = Ln where (mask[i] = 0)
A doj = ln
doi=1ln outputl[j,i] = f(q[j,i])
compute result{i] from

i'th column of q
doi=1n
qli,col] = result[i}

do i = 1,n where (mask[i] < 0)
doj=1n
output2(j,i] = f(q(j.i])

™~ .

doi=ln
if (mask(i] = 0)
doj=1,n
output(j,i] = outputl(j,i]
else
doj=1n
output(j,i] = output2[j,i]

Figure 6.7: Code After Split

each column varies too widely.

Our approach is to transform the code to expose further concurrency; there are three sources
that our strategy can reveal. The first of these is to divide B into three pieces, B;, Bp, and
By, where By processes the columns of q which are not touched by any of the instances of
A and Bp processes the rest. By merges the results into a single output array. In Figure
6.7, we show the effect of applying this transformation.

The notation is equivalent to
do ... where <expr> do ...
loop body if (<expr>)
loop body

For clarity, we show an explicit merge of the two output arrays in Bps. In practice, merging
can often be handled implicitly by the run-time system during data communication.

The second transformation we can apply is to pipeline one iteration of the col loop with
subsequent iterations. We show the code with this further optimization in Figure 6.8.
The body of the loop has been converted into three computations Ap, Aj, and Ap. Ap
represents the code that is dependent on the previous iteration of the loop; the run-time

58

integer mask[1..n], col, i, j

float result[1..n], q[l1..n,1..n], output[l..n,1..n],
resultl[1..n], outputl[l..n,1..n}, output2[1..n,1..n], prev_val B

do col = I,n where (mask{col] < 0) o i
o i =
AD Al doj=1n B
compute prev_val do i = 1,col-2 and col,n outputljiil = f(qlj.ih)
from column compute resultl[i] from
(col-1) of q i’th column of q

N A,

do j = l,col-2 and col,n A
qlj,col] = resultl(i]
glcol-1,col] = prev_val

1,n where (mask[i] = 0)
= l,n

do i=1,n where (mask(i] < 0)
do j=1n
output2(j.i] = f(qlj.i])

\ .

doi=ln
if (mask[i] = 0)
doj=1n
output(j,i] = outputl(j,i}
else
doj=1n
output(j,i] = output2(j,i]

Figure 6.8: Code After Split and Pipeline

system waits for the previous iteration to complete before scheduling Ap. Aj, on the
other hand, is independent of the previous iteration and can be scheduled concurrently. By
weakening the synchronization constraint between iterations, we are able to pipeline them.

A computes the result vector for all but the missing column of q that comes from the
previous iteration; Ap computes the one missing element into the variable prev_val. Aps
takes the almost complete vector and the missing value and combines them into a single
vector. Again, this kind of merge can often be done implicitly. Note that we use the form
do var=<range> and <range> to denote a discontinuous sequence of values, rather than
duplicating the entire loop for both ranges.

The third transformation which we could perform is to pipeline iterations of A with corre-
sponding iterations of Bp, exposing a further source of concurrency.

The form of pipelining described in these last two transformations is different from loop
pipelining optimizations defined elsewhere. Previous approaches fall into two classes. The
first is software pipelining [73], which seeks to reduce overhead by reorganizing the code.
The transformed loop performs fewer iterations but has a larger body that handles more
than one of the original loop’s iterations at once. This strategy works well in improving
performance of a regular loop nest. The second approach, suggested by Balasundaran

59

and Kennedy [14], uses post and wait primitives to allow more than one loop iteration to
execute concurrently. Since this strategy imposes a fixed synchronization discipline, it does
not admit adaptive scheduling techniques.

6.4 Related Work

There is a wide variety of code transformations that have been investigated by the com-
piler community. MAGNIFY incorporates several of the loop-based transformations like
interchange [5], strip-mining [81], and tiling [1, 52, 74, 124]. There are dozens of other
transformations discussed in the literature [12].

There are also a number of transformations that change the way the loop is scheduled, such
as software pipelining [73], loop unrolling [44], and unroll and jam [28]. These techniques
change the loop structure, perform more than one iteration of a loop at once, or otherwise
alter the code to expose additional instruction level parallelism or reduce the number of
branching instructions executed.

However, the disadvantage to these transforming and scheduling algorithms is that they are
limited to a single loop nest. In order to look beyond one nest, compilers can fuse adjacent
loops [4], coalesce them [96, 97], inline function calls within the loop [4, 16, 110], or push
loop structure through a call site [59, 106]. However, these techniques simply yield a larger
individual loop nest to work on. They cannot address the interactions between logically
separate computations that should remain independent. Split is designed to address this
weakness. It permits more aggressive pipelining and reveals concurrency between sub-
computations.

Because most parallel compilers produce an SPMD program rather than a structure form
that is interpreted by a run-time system, they are tightly restricted in the interactions that
they can usefully exploit. Since MAGNIFY can rely on RTs to handle scheduling issues, its
job is to expose as much concurrency as is practical to exploit.

Although split has the advantage of supporting higher-level transformations than the loop-
based approaches, the added flexibility has a disadvantage. Simply determining a good set
of loop transformations to apply to single loop nest is very difficult, as there are typically
several that are legal and the order in which they are applied can be very important.

The effort to organize the diverse group of transformations into a framework is an ongoing
research problem. One promising strategy is to encode both the characteristics of the code
being transformed and the effect of each transformation; then the compiler can quickly
search the space of possible sets of transformations to find an efficient solution.

A framework that is being actively investigated is based on unimodular matrix theory
(19, 123]. It is applicable to any loop nest whose dependences can be described with a
distance vector; a subset of the loops that require a direction vector can also be handled.
The transformations that a unimodular matrix can describe are interchange, reversal, and
skew.

60

The basic principle is to encode each transformation of the loop in a matrix and apply it
to the dependence vectors of the loop. The effect on the dependence pattern of applying
the transformation can be determined by multiplying the matrix and the vector. The form
of the product vector reveals whether the transformation is valid. To model the effect of
applying a sequence of transformations, the corresponding matrices are simply multiplied.

Sarkar and Thekkath [109] describe a framework for transforming perfect loop nests that
includes unimodular transformations, tiling, coalescing, and parallel loop execution. The
transformations are encoded in an ordered sequence. Rules are provided for mapping the
dependence vectors and loop bounds, and the transformation to the loop body is described
by a template.

Pugh [102] describes a more ambitious (and time-consuming) technique that can transform
imperfectly nested loops and can do most of the transformations possible through a com-
bination of statement reordering, interchange, fusion, skewing, reversal, distribution, and
parallelization. It views the transformation problem as that of finding the best schedule for
a set of operations in a loop nest. A method is given for generating and testing candidate
schedules.

Unfortunately, split offers too much generality to incorporate neatly within such a frame-
work. However, while the frameworks offer some hope on limited parallelism like superscalar
processors, they are far from being able to manage real applications on large numbers of
processors. By relying on some programmer intervention, the Delirium environment is able
to support the efficient execution of production applications on large numbers of processors.
As is demonstrated in Chapter 8, the interaction between computations offers a great deal
of additional concurrency that the more limited approach is not able to address.

61

Chapter 7

Expressing the Decomposition

Once MAGNIFY has finished transforming and decomposing the program, it converts the
WEB representation into a form that RTs, the run-time system, can understand. This
consists of a set of FORTRAN code fragments with tunable granularity, a Delirium framework
that ties the fragments together, and an annotation in Dossier. This chapter describes these
languages and shows how a computation is expressed in them.

MAGNIFY decides which loops to parallelize, but it does not choose a specific granularity. It
outputs a code fragment that is given induction variable bounds as arguments, allowing RTs
to tune the behavior of the code using information about the current state of the system.
The following sections describe Delirium and Dossier in detail, using a running example to
show how they express the parallelization of a code fragment.

7.1 Delirium

The heart of the Delirium programming environment is Delirium itself, a coordination
language. A coordination language does not express the basic computation being performed,
but rather ties together a set of fragments into a coherent whole. It describes how the
fragments relate to each other and the information that they pass amongst themselves.

There are two basic approaches to using a coordination language; one is to scatter calls to
a collaborating library throughout the text of the program, and the other is to express the
framework of the application in the coordination language. Delirium uses the latter strategy
and is therefore an embedding coordination language. This strategy allows Delirium to be
used directly by a programmer and to be the intermediate form that is output by MAGNIFY.
The benefits of embedding coordination languages for the programmer have been argued in
detail elsewhere [85].

MAGNIFY uses Delirium to communicate with the run-time system. Because Delirium
encapsulates the entire structure of the program and its interactions, the Delirium compiler
can convert Delirium into a set of pre-compiled scheduling templates that allow decisions

62

to be made rapidly at execution time. This process is discussed in more detail below and
at much greater depth in Steven Lucco’s PhD dissertation [84].

Delirium is a single-assignment language that directly expresses the coordination strategy
for a group of operators. An operator is a sub-computation expressed in a source language
like C or FORTRAN that performs some operations on its inputs and yields a set of outputs.
Here is a simple program that demonstrates fork/join parallelism:

a_start=init_fn();

PARALLEL_DO
a=convolve(a_start,0);
b=convolve(a_start,1);
c=convolve(a_start,2);
d=convolve(a_start,3);

END PARALLEL_DO

return(term_fn(a,b,c,d));

The PARALLEL DO construct indicates that all the statements in it can be executed simul-
taneously. Otherwise, all code is executed sequentially as in a traditional programming
language. Hence the call to init_fn must complete before any of the calls to convolve.
Similarly, the call to term_fn will not begin until the entire PARALLEL DO construct finishes
execution.

In Delirium one could express this computation as:

let
a_start=init_fn()
a=convolve(a_start,0)
b=convolve(a_start,1)
c=convolve(a_start,2)
d=convolve(a_start,3)
in term_fn(a,b,c,d)

The calls to convolve use the value a_start as an argument and therefore they will not be
executed until the function init_fn has completed execution. The instances of convolve
can be executed in parallel because none of them depend on each other’s return values. The
function term_fn uses the values returned by the calls to convolve and will not be executed
until they are completed.

Because Delirium is a single assignment functional language, a program’s communication
topology can be derived from the data dependences between its operators. This advantage
of single assignment languages is well known [88]; the contribution of Delirium is that it
harnesses this property to create clean expression of coordination, making Delirium suitable

both as a programming language and as an intermediate form for a parallelizing environ-
ment.

63

7.1.1 The Basic Language

One advantage of functional languages is their fundamental simplicity. Only a few constructs
are necessary to provide a rich programming framework. This section describes the basic
structures in Delirium (see Figure 7.1). The language constructs are:

1. atomic values - integers, strings, floats, arrays, functions

2. multiple values — a collection of atomic or multiple values that can be grouped to-
gether, decomposed, and used as return values

3. let bindings — a binding can be a single value, a decomposition of a multiple value
package, or a function definition

conditionals
iteration
mapping
operators

functions

© ® N o o -

function and operator application

A Delirium program consists of a group of functions, one of them called main. Here is a
very simple example:

main()
start_execution(42)

This Delirium program relies on a single FORTRAN operator called start_execution. When
the program is executed, it invokes the operator and gives it one argument, the integer 42.

More interesting Delirium programs typically define a set of functions. A function definition
consists of a name, a formal argument list in parentheses, and a body. The body is an
expression. When the function is applied to a set of argument expressions, each formal
parameter is bound to the value of the corresponding argument and the body of the function
is evaluated. The value returned by the function is the value of the body expression.

For example, the following Delirium program defines a function and applies that function
to a pair of argument expressions:

main()
the_function(1,-2.3)

the_function(a,b)
compute_something(a,b)

64

e

program ::= function-list
function-list ::= function | macro | function-list function
| function-list macro macro ::= ‘macro’ id args erpr

function ::= id args ezpr
args == ‘C) | ‘C arg-list ‘)’
arg-list ::= arg-list *,” id | id
ezpr = conditional | let-stmt | iteration | mult-value | func-app

| macro-call | prim-expr | mapping
let-stmt ::= ‘let’ bindings ‘in’ ezpr

bindings ::= bindings binding | binding
binding ::= var-binding | mult-var-binding | func-def

var-binding = id ‘=’ ezpr

mult-var-binding ::= ‘<’ var-list >’ ‘=’ ezxpr

func-def ::= id args ‘=’ ezxpr

var-list ::= var-list *,’ id | id

iteration = iterate-while | iterate-range

iterate-while ::= ‘iterate’ ‘{’ iter-bindings ‘}’ ‘while’ ezpr ‘,’ ‘result’ ezpr
iterate-range 1= ‘iterate’ ezpr-range iter-cond ‘{’ iter-bindings ‘}’ ‘result’ ezpr
iter-cond = ‘<’ ezpr >’ | €

iter-bindings ::= iter-bindings iter-binding | iter-binding
iter-binding = id ‘=’ expr ‘,’ expr

mapping = map-across | map-across-where

map-across ::= ‘map_across’ ‘(’ ezpr-list ‘)’

map-across-where ::= ‘map_across_where’ ‘(’ ezpr-list ‘)’
conditional ::= ‘if’ ezpr ‘then’ erpr ‘else’ ezrpr

prim-ezpr = integer | string | id | float | ‘¥’ | array-ref | range
mult-value ::= ‘<’ ezpr-list >’

expr-list ::= expr-list *,’ ezpr | expr

prim-ezpr-list ::= prim-ezpr-list ‘,’ prim-ezpr | prim-ezpr
ezpr-range = ‘C’ expr ‘:’ ezpr ‘)’ func-app ::= id app-args
macro-call ::= id app-args

app-args = ‘C)’ | ‘C app-arg-list)’

app-arg-list ::= app-arg-list *,” expr | expr
array-ref = id ‘[’ prim-ezpr-list ‘1’

range ;= prim-ezpr ‘:’ prim-ezpr

Figure 7.1: Basic Delirium Grammar

65

Functions are first class objects, meaning that they may be passed as arguments, bound
to variables, or returned as values. All of the language constructs listed above are value-
producing expressions and any of them can appear in the body of a function.

If a function application supplies fewer arguments than are expected, according to the
function definition, the application is curried. For example, a function of two arguments
a and b can be applied to a single argument x. The result is a function of one argument
that has the binding of a to x bound within it. When this new function is applied to an
argument y, the result is the same as that of applying the original two-argument function
to x and y at once.

Atoms

The simplest expressions in Delirium are either constants or binding references. Constant
types are integers, strings, floating point numbers, functions, and arrays. Some examples:

an_integer_operator(34)
a_string_operator(‘‘hello’’)
a_float_operator(-345.23)
a_function_operator(f)
an_array_operator(A[1:n])

If a variable appears, the name must be bound in the surrounding environment, using
standard lexical scope rules.

Conditional Expressions

The syntax for the conditional is:
if <expri> then <expr2> else <expr3>

where <exprl> must evaluate to an integer. As in C, a zero value is false and a non-zero
is true.

Multiple Values

Because functional languages eliminate global variables, it is especially useful for them to
allow multiple value return. This is even more true in Delirium, which depends on destruc-
turing operators to divide large data structures into many pieces that can be processed in
parallel. The syntax is simple:

<expl,exp2,exp3 ...>

66

where the comma separated values may be any valid expression. This package can be
passed around as a single value; its components can be separated only within a let binding
as described below.

Let Bindings
The let binding associates identifiers with expressions. Its syntax is:

let
<var> = <value>

in <expression>
A binding can also be used to subdivide a multiple value:

let
<a,b,c> = op_that_yields_multiple_value(12)
<d,e> = ¢

in do_something(a,b,c,d,e)

In this example, the variable ¢ must be a multiple value package or an error will be signaled
at run-time. To manipulate packages, we have provided a set of operators like car, cdr,
cadr, etc. These are simple to write and a different set could be defined quickly by a
Delirium programmer if desired.

The last kind of let binding creates a function, eliminating the need for a “lambda” construct
by making it easy to define functions where they are needed. The syntax is:

let
<name>(<arg>, <arg>, ...) = <body>

in <expression>

Within the expression making up the body of the let, a new function has been defined.
Nested bindings are scoped in standard lexical fashion.

Each of the expressions on the right hand side of the equals sign can refer to any of the
variables or functions bound in that let statement (some dialects of LISP, like SCHEME
[103], call this construct a letrec). For example, this is a legal code fragment:

let a = salt(15)
salt(x) = if imdone(x) then 10
else salt(next_value(x))
in figure_something_out(a)

67

Of course, if imdone and next_value are not correctly written, this expression may not
terminate. A value will be returned if imdone(15) is true or if imdone (exp) is true, where
exp consists of some finite number of next_value applications on to the original value of
15.

Mutually recursive functions are also legal, as in:

let salt(x) = if imdone(x) then x
else pepper(next(x))
pepper(y) = if hesdone(y) then y
else salt(next(y))
in
salt(give_start_value())

Example

The following example is a code fragment taken from an early version of the Delirium
compiler. Its control structure is expressed in Delirium, using only the language constructs
that have been introduced so far. The underlying operators were written in C. A detailed
discussion of that compiler appears elsewhere [111].

main()
let <init_tree,macro_set> = compile()
ops = read_operator_info()
analyzed_tree = analyze(init_tree,ops,macro_set)
in output_tree(analyzed_tree)

tree_walk_update(tree,node_type,tree_op,extra)
let <util,ut2,ut3> = tree_up_chop(tree,node_type,tree_op,extra)
in tree_merge(tree_up_op(uti,node_type,tree_op,extra),
tree_up_op(ut2,node_type,tree_op,extra),
tree_up_op(ut3,node_type,tree_op,extra))

compile()
let <c1,c2,c3> = split_lexemes()
in forge_parse_tree(partial_parse(cl),partial_parse(c2),
partial_parse(c3))

analyze(tree,ops,macro_set)
let marked_tree = tree_walk_update(tree,ANY,mark_extra,ops)
pruned_tree = tree_walk_update(marked_tree,ANY,prune_extra,SAFE)
final_tree = tree_walk_update(pruned_tree,ANY,mark_extra,macro_set)
in tree_walk_update(final_tree,ANY,prune_extra,FINISH)

68

This fragment parses an input file into an internal tree-shaped representation and analyzes
that tree. The function main controls execution, beginning with a call to compile. compile
invokes the operator split_lexemes to read the source code and divide it into three sets of
lexemes. The operator returns the three values in a multiple return value package that is
decomposed by the let statement into independent values.

Each of the lexeme sets is parsed independently and the results are combined into a single
tree by forge parse_tree. The return value of forge parse_tree is a multiple value
package containing two entries — a tree and a set of macros. The package is decomposed
into its component values by the let statement, assigning the tree to init_tree and the set
of macros to macro_set.

The next step is to call another input routine, read operator_info, which opens a file
containing a set of operator descriptions, parses them, and returns a description of them
that is bound to the variable ops. Then analyze is called to analyze the parse tree by
making four updating passes over the parse tree. The result is passed to output_tree.

The updating passes use the function tree_walk update to express a fork-join operation
on the tree. The function accepts four arguments: a tree, a node type, an operator, and an
extra value. It uses an operator called tree_up_chop to divide the tree into three sub-trees.
The operator tree_up_op is invoked on each sub-tree, and its responsibility is to apply the
operator tree_op to each sub-tree. The tree operator is given a sub-tree, the node type to
operate on, and the argument extra. When each operator has finished, the three sub-trees
are merged back together into a single one that serves as the return value for the function.

The fragment has two sources of parallelism in it. Some of the computations, like compile
and read_operator_info, are known to be independent because they do not rely on each
other’s return values. The second opportunity for concurrency is in the tree update function;
the three sub-trees are all handled independently. Because it is a single-assignment language,
the Delirium compiler can quickly identify such opportunities for concurrency by analyzing
the program’s control structure.

In addition to the language constructs described above, there are two others that are used
extensively by MAGNIFY when it decomposes scientific applications.

Iteration

The first is iteration, of which there are two basic types in Delirium. The first iterates until
a particular condition is true and its syntax is as follows:

iterate

{

<iter-variable> = <initial-value-expr>, <update-value-expr>

}

while <expression>, result <expression>

69

Evaluation begins by binding each iteration variable to its initial value. If the conditional
expression is true, each iteration variable is bound to the value of the update expression.
The conditional expression is re-evaluated. The looping ends when the while expression is
false; the final value of the iterate construct is the value of the expression appearing after
result.

The second form is used to express iteration across a range of values (typically a subset of
the elements of an array). This notation, strictly speaking, is redundant because it could be
captured within the more general form. However, the notation allows the Delirium compiler
to perform more sophisticated analysis in identifying opportunities for pipelining.

The syntax is:

iterate (<variable> = <low-expr>:<high-expr>)
Optional: < <cond-expression> >

<iter-variable> = <initial-value-expr>, <update-value-expr>

}

result <expression>

Both <low-expr> and <high-expr> must yield an integer value. The iteration will proceed
by assigning each value in the range to <variable>. If <low-expr> has the larger value, no
iterations are performed. The optional conditional expression limits the set of values in the
range — the expression is evaluated on each potential value and the function application
is only performed if the expression is true. The symbol * may appear in the expression
to represent the element value being evaluated. The Delirium compiler can often take
advantage of the fact that the conditional is exposed in the Delirium code to output better
scheduling templates that improve concurrency and pipelining.

Here is a Delirium code fragment that uses the construct:

iterate (x = 1:n) <mask[*] = 1>
{
computed_val = A, do_iter(computed_val)

}

result computed_val

The fragment iterates from one to n, skipping iterations that do not have a value of one
in the corresponding element of the mask array. The first iteration takes the value A and
applies the function do_iter to it. Subsequent iterations repeatedly apply do_iter to the
result of the previous one. At the end, the final computed value is returned.

70

Mapping

One of the most common sources of parallelism found by MAGNIFY is a computation that
is applied to a range of elements in an array. Delirium supplies two mapping operators
that express this common control structure in a form that can be handled efficiently by the
Delirium compiler. The first is called map_across and has the following syntax:

map.across (<func-expr>, <array>, <low-expr>:<high-expr>, ...)

The first argument to map_across is <func-expr>, which must evaluate to a function. The
second argument is the array that is being used for the computation. The third is the range
of values, where range expressions yield integers. The effect of the construct is to apply the
function to each value in the array that falls within the range. The function that is invoked
must take as its first three parameters: (a) the array being operated on, (b) the lower and
bound of the range of elements to compute, and (c) the upper bound of the range. It may
also be provided with additional values that were supplied to map-across.

The idea behind map_across is that it allows the Delirium compiler and run-time system
to choose the best strategy for dividing a group of independent computations. If there
is abundant parallelism elsewhere, the entire group might be computed sequentially. At
the other extreme, each individual computation could be allocated to a different processor.
The function that is supplied to map_across is prepared to handle any range of iterations,
allowing a broad range of allocation strategies to be used.

Figure 7.2 demonstrates how map_across is used. The function do_iters accepts a range
of values and performs the computation in the original loop over that range. map_across
is given the original range and an operator that can handle sub-ranges; it decides how to
break up the range into intervals. This is one of the most common ways that RTS chooses
granularity.

The second mapping operator is similar to map_across; the only difference is that it includes
a conditional expression indicating that some array elements are to be skipped. Exposing
the conditional to the Delirium compiler allows it to apply various optimization algorithms
that improve efficiency.

The syntax of the construct is:

map_across_where (<func-expr>, <array>, <low-expr>:<high-expr>,
<cond-expr>, ...)

The function will only be mapped to values in the range for which the conditional expression
is true. The special symbol * may appear in the expression to represent the range value
being considered. The following Delirium code fragment is an example:

map_across_where(compute_val,A,1:n,mask[*] = 1,c)

71

do i

=1’
Ali] =

n
Afi] + ¢
(a) The original code

do_iters(A,a,b,c)
doi=a, b
Afi] = A[i] + ¢

(b) The operator for the Delirium version
map_across(do_iters,A,1:n,c)

(c) The Delirium code

Figure 7.2: Use of map_across to Apply Operator Across Range

The function compute_val will be applied to elements one through n in the array A, as long
as the corresponding element in the array called mask is one. The value ¢ will be passed to
compute_val as an extra argument.

Mapping and iteration are often used together to express a computation:

iterate
{
array = A, map_across(handle_elements,array,i:m,c)
convergence = 0, test_converge(array)

}

while (convergence = 0), result array

This fragment repeatedly performs a mapping operation on the array A until the operator
test_converge returns a non-zero value. During each iteration, the handle_elements
operator is applied to the range of array elements from 1 to m. When the computation
converges, the final computed values in the array are returned.

7.1.2 Coordination Structures

In addition to its use as an intermediate form by RTs, Delirium can also serve as a pro-
gramming language for building parallel applications. The basic features of the language
that have been described above are capable of expressing a wide range of parallelization
strategies — including all of the transformations that MAGNIFY performs.

However, certain complex parallel control structures can be handled particularly efficiently
if they are expressed in a specialized form. That was the motivation behind coordination
structures, an enhancement to the basic Delirium language that is well-suited to capturing
data parallel operations.

72

Figure 7.3: Coordination Structure for Mergesort

Coordination structures express a multi-stage pipeline; at each stage in the pipeline, a
function is applied to the data flowing through each member in the collection of data pipes.
Following a function application, the order of items (data pipes) within the coordination
structure may be permuted to create the appropriate data organization for the next stage
of the pipeline.

For example, a useful primitive for many parallel algorithms is binary reduction. A binary
reduction takes NV data items and applies some associative binary operation to successive
pairs, yielding a group of N/2 results. The same operation is performed repeatedly until
there is only one value left. Many algorithms are based on binary reduction, including, for
example, merge sort. The pipeline for merge sort is shown in Figure 7.3 and consists of
log(N) applications of the merge operator. If the original NV values flow into the pipeline
as a vector of pipes, the first step is to divide the pipes into N/2 pairs. Next, the program
applies an instance of the merge operator to each of these pairs in parallel. One pipe flows
out of each merge operator, so the cross section of the pipeline has been reduced to N/2
coordination items. The grouping and function application are done repeatedly, until at
the end only a single pipe flows out of the pipeline and it contains the sorted list.

Coordination structures allow the programmer to create such multi-stage pipelined compu-
tations and treat them as first-class objects in the language. They can be applied to data,
passed as arguments, and composed. These operations permit the Delirium programmer
to achieve very high efficiency on structured data parallel computations. However, coor-
dination structures are not needed to express the parallelization strategies supported by
MAGNIFY and are therefore not discussed further in this dissertation. For the interested
reader, a detailed description is available elsewhere [86].

7.1.3 MAGNIFY Example

We will use the following code fragment to demonstrate how MAGNIFY uses Delirium to
express parallel computations. The variables n and ¢ have been set elsewhere to a value
unknown at compile time and initial values have been assigned to A, B, and total.

integer iter, n, i, j, k
real A[1:n,1:n], B[1:n,1:n], total[1:n], c

do iter =1, n ; "iter" loop
do j=1,n ; nest 1
doi=1,n

i 1
Ali,j] = Ali,3j] + B[i,j] * ¢

dok=1,n ; nest 2
total[k] = totall[k] + B[iter,k]

The outer loop (termed above the iter loop) invokes two loop nests (nest 1 and nest 2)
on each major iteration. Both nest 1 and nest 2 are fully independent within themselves:
in both cases, the different iterations can be executed in parallel because there are no
loop-carried dependences.

The independence of the first loop is clearly demonstrated by examining the descriptor for
the statement in the loop. The descriptor for iteration %, j captures the fact that it only
writes memory location A[z, j]. The intersection of the write set with the descriptor of every
other iteration is null, indicating that the loop is parallel. Similarly the descriptors capture
the independence of the second loop. Because the descriptors are similar to ones shown
earlier in Chapter 3, we do not present them here.

Both loops are also independent of each other. MAGNIFY would detect the lack of conflict
by computing the descriptor for each loop nest and calculating the intersection of each one’s
write set with the other descriptor. Because the result is empty in both cases, the two loops
can be executed in parallel.

However, the iter loop iterations are not independent; both nests 1 and 2 compute values
in one major iteration that are used during the next one. The intersection of the descriptors
for two subsequent iterations reveals that the elements of A and total are modified in the
first and then used in the second.

The most straight-forward way to parallelize the construct is to treat both of the loop nests
separately. If the value of n is significantly larger than the number of processors available,
there is no reason to parallelize the inner loop in nest 1. Instead, the outer loop should
be strip-mined and the strips distributed across the processors. Strip-mining [81] is a very
common optimization, particularly in vectorizing compilers. It divides an iteration range
into fixed sized strips. Here is a transformed version of the outer loop of the first nest after
strip-mining has been applied, using a strip size of 64:

74

do j =1, n, 64
do j1 = j, j+63
doi=1,n
Ali,j1] = A[i,j1] + B[i,j1] * ¢

The proper strip size for a parallel machine depends on the number of processors and the
degree to which they are already occupied with other computations. Nest 2 should also be
strip-mined.

Figure 7.4 demonstrates these parallelization strategies using the WEB representation. The
fragment starts out as a simple sequential block of code. The next step is to peel the outer
loop away from the FORTRAN code and convert the single WEB node into an iteration
node. The second step subdivides the code within the node into two pieces, each containing
one of the loops. The third step takes advantage of the parallelism in each of the two
pieces, peeling the outer loop and converting the node into a map operation. Finally, the
fact that both pieces are independent of one another allows them to be placed next to one
another without any sequential execution constraint. The WEB representation reveals the
opportunity to parallelize each piece and also the two pieces with respect to one another.

Figure 7.5 shows the code that MAGNIFY would produce from the transformed WEB rep-
resentation. It includes both the FORTRAN operators and the Delirium text that ties them
together. The outer iterations of the loop have been captured in a Delirium iterate struc-
ture. Each of the inner loops is expressed as a mapping across the iteration space.

When a parallel loop represented in WEB by a map node is converted into Delirium, Dossier,
and FORTRAN, MAGNIFY outputs them as operators that have tunable granularity. In the
example, each loop in the original code is represented by a procedure that accepts a range
of values. The run-time system determines how long each invocation of the operator will
execute by defining the upper and lower bounds of the range. The values are chosen based
on the execution time of the node and on the current state of the system.

If, for example, the operator has demonstrated (or is annotated to reveal) that it will execute
very few operations per iteration, the run-time system will try to reduce scheduling overhead
by specifying a large range. If the current amount of parallelism available during application
execution is too low to keep all the processors busy, RTs will try to compensate by reducing
the range. The algorithms for controlling the granularity dynamically are briefly introduced
in section 7.3 and described in more detail elsewhere [84].

The Delirium code, because it reflects the dependences between code fragments, exposes
three sources of concurrency. The first and most obvious is the parallelism of each loop due
to the map_across operator. The second is that the two loop nests do not depend on one
another. If there are processors available that are not occupied, RTsS can start computing
the second nest while the first is still executing. The algorithms that RTs uses to accomplish
this strategy are outlined in Section 7.3.

The third opportunity to execute in parallel comes from pipelining subsequent iter loop
iterations. Once nest 1 for iteration iter = X is complete, nest 1 for iteration iter = X +1
can begin immediately even though nest 2 is still being computed. The Delirium compiler

do iter =1,n
doj=1,n
doi=1,n

dok=1,n

I

iter = l:n

doj=1n
doi=1

,n

dok=1,n

J

.

Q iter = l:n

@ j=1m

doi=1,n

D iter=1:n

ﬁ'\\' k=1n

@' j=1m

doi=1,n

Figure 7.4: Parallelization of code fragment using WEB representation

75

76

iterate (iter = 1:n)
vargroupl = <A>, map_across(loopl,1:n,vargroupl,B,c,n)
vargroup2 = <total>, map_across(loop2,1:n,vargroup2,B,iter,n)
result <vargroupl,vargroup2>

(a) Delirium Control Program

subroutine loop1(4,B,c,n,b,t)
integer n,b,t
real A[n,b:t],B[n,b:t],c

do j=b, t
do = n

i 1,

Ali,j] = Ali,j] + B[i,j] * ¢
end

subroutine loop2(total,B,iter,n,b,t)

integer iter,n,b,t
real totall[b:t], B[n,b:t]

do k=D, t
total[k] = totallk] + Bliter,k]

end

(b) FORTRAN operators

Figure 7.5: Decomposed Version of Example

can unroll the iteration statement to expose the pipelining.

7.2 Dossier

While Delirium captures the interactions between sub-computations, it does not give enough
information to generate an efficient scheduling strategy. In the function loopl, A is part
of a (potentially large) array while n is just an integer. RTS should try to avoid moving A
and should certainly not pay attention to the location of n, but the Delirium text does not
provide enough information to make that decision.

The Dossier annotations make it clear that the best choice is almost certainly to replicate
n to every processor at the beginning of the computation and to attempt to perform loopi
iterations on the processor that currently holds the appropriate part of A.

77

In order to help the run-time system, Dossier makes two kinds of information available:

e For each variable that represents a data structure, the structure’s shape and size.

e For each computational operator, a characterization of its execution cost.

As mentioned previously, every WEB node has an associated descriptor that summarizes
its memory usage behavior. When the WEB representation is converted into Delirium,
MAGNIFY uses those descriptors to accomplish the translation.

Each FORTRAN variable referenced by a WEB node is described by a triple in the associ-
ated descriptor. To produce the appropriate Delirium and Dossier, MAGNIFY conceptually
generates a Delirium variable for each FORTRAN variable. A simple optimization reduces
the number of variables: sets of scalars that are passed from one WEB node to another
are grouped together into a package. MAGNIFY uses a straightforward greedy algorithm to
identify the groupings.

Once the Delirium variables have been assigned, MAGNIFY annotates each one with a de-
scription of its size. The description is condensed from the corresponding triple because
triples supply more detail than Dossier can express. Dossier and triple expressions are very
similar but the former are much simpler — the additional accuracy provided by the triple
is discarded during the conversion.

After the descriptors are used to compute the data size annotations, execution cost estimates
are computed by a set of heuristics as discussed in the next section.

7.2.1 Cost Heuristics

In order to help RTs decompose computations, MAGNIFY attempts to annotate operators
with their execution cost. The estimate can either come from profile data, from heuristic
analysis, or from both. If MAGNIFY is provided with one or more gprof [57] profiles for the
application, it uses the data in computing estimates. For each operator, MAGNIFY identifies
any procedures from the original source code that are contained in it. The average and the
variance of the measured execution times for those procedures are used in the cost estimate.

Next, MAGNIFY examines the remaining code in the operator. Using a simplified version of
trace scheduling [49], it identifies the paths that execution can take through the code. Each
node in the CFG is annotated with an estimate of the number of floating point operations
(flops) on the longest path to that node from the entry node. If loop bounds are available,
they are used; if not, loops are assumed to execute between 50 and 100 times with uniform
distribution. The value that annotates the exit node of the computation is used to assign
a cost to the entire operator.

If MAGNIFY did not annotate an operator, RTs forms its own estimate using the amount of
data that the operator references as a guide to its likely execution time. Regardless of the
annotation, when an operator is executed, RTs tracks its execution time and replaces the
heuristically derived estimates with measured values. Hence the efficiency of an application

78

Dossier-description ::= variables funcs

variables ::= wvariables variable | ¢

variable ::= ‘var’ string ‘:’ shapes

shapes ::= shapes ¢,’ shape | €

shape = int ‘words’ | ‘[’ dims ‘]’

dims = dims dim | €

dim = ezpr ‘..’ expr

expr = int | ‘arg’ int offset | ‘var’ string offset
offset ::= sign int | €

sign n= ‘47 | ‘=

funcs = funcs func | €

func = ‘func’ string ‘:’ args retvals ezec-info
args = args ‘arg’ arg | €

arg ::= shapes ‘,’ usage

retvals ::= retvals ‘ret’ retval | €

retval ::= shape

ezec-info ::= wvariance iter-cost

variance = ‘variance’ int | €

iter-cost ::= ‘cost’ iter-category | €

iter-category ::= int ‘flops’ | int ‘usecs’ | int ‘secs’

usage ::= ‘R/0’ | ‘R/W | ‘W/O’

Figure 7.6: Dossier Grammar

will often improve dramatically over the course of its execution, as the initial estimate can
be very inaccurate.

7.2.2 Notation Detalils

When it outputs the control framework of an application in Delirium, MAGNIFY defines a
unique name for every variable identifier. Delirium is a single-assignment language, so each
name can only refer to a single quantity. The Dossier annotations are appended to the
bottom of the Delirium program text, characterizing each of the variables that appeared.
Each computational operator is also described. Figure 7.6 gives the BNF grammar for
Dossier.

The description of a variable is a dimension expression that describes the size and shape of
the data that the variable represents. The expression either gives a fixed number of words,
or it is an array shape declaration. A few examples:

var A : 1 words
var B : [1 .. 10, 1 .. 5]

79

var C : [1 .. var A, 1 .. var A + 1]

Operators are annotated with two categories of information: argument (and return value)
descriptions, and execution behavior. For each argument, the description gives a dimension
expression and a usage category. Usages are one of {R/W,R/O,W/O}, depending on
whether the variable is read and written, only read, or written before being read respectively.
This annotation allows RTS to determine whether replication is permitted; if MAGNIFY
cannot be certain of the variable’s behavior, it is always safe to mark it R/W.

The execution behavior is described by a pair of values; an estimate of the execution time
of the function and an estimate of that time’s variance across calls. It is often impossible
for MAGNIFY to determine either value at compile-time, but it traces paths through the
code and uses information about loop bounds to attempt an estimate. When there are no
conditionals or every path includes the same amount of computation, the variance is known
to be zero. MAGNIFY counts flops and uses profile information to categorize execution cost;
even an inaccurate guess can be a useful starting point for the RTs granularity assignment
algorithms discussed below.

7.2.3 Example With Dossier

Figure 7.7 shows the Dossier annotations for the running example. MAGNIFY would append
the Dossier to the Delirium text given above.

7.3 Back End

After MAGNIFY has finished analyzing, transforming, and decomposing an application, the
back-end of the programming environment is responsible for executing it. The back-end
consists of a Delirium compiler that converts the control structure into scheduling templates
and RTs. A detailed discussion of these components is outside the scope of this dissertation
and can be found elsewhere [84]. The next two sections give a brief overview.

7.3.1 Delirium Compiler

The Delirium compiler takes the coordination structure of a program, expressed in Delirium
and Dossier, and compiles it into a form that is directly manipulable by RTs.

The basic task of the compiler is to produce a series of scheduling templates for each parallel
operation. There are four types of scheduling templates: sequential, static, profile, and
sample. The first of these executes the operation sequentially. The second uses the owner
computes rule on distributed memory machines, and allocates tasks to processors evenly on
shared memory machines.

The latter two use the dynamic scheduling algorithms described below. They differ in how
they gather information about the distribution of task execution times. Profile templates use

func loop1l
arg [1 .. arg 4, arg 5 .. arg 6] R/W
arg [1 .. arg 4, arg 5 .. arg 6] R/O

arg 1 words R/0
arg 1 words R/0
arg 1 words R/0
arg 1 words R/0

variance 0
iter_cost 1 usec

func loop2
arg [arg 5 .. arg 6] R/W
arg [1 .. arg 4, arg 5 .. arg 6] R/O
arg 1 words R/0
arg 1 words R/0
arg 1 words R/0
arg 1 words R/0

variance 0O
iter_cost 1 usec

var vargroupl : [1 .. n, 1 .. n]
var vargroup2 : [1 .. n]

var A : [t ..n, 1 ..n]
var B : [1 ..n,1..n]
var n : 1 words

var iter : 1 words

var c : 1 words

Figure 7.7: Dossier Annotations for Example

81

information gathered from previous runs of the program to estimate execution time mean
and variance [107]. Sample templates begin with a rough estimate of these two quantities
and refine the estimates through run-time sampling of task execution times.

7.3.2 RrTs, the Run-Time System

Rrs performs two primary tasks:

e Choosing an allocation of computations to processors. The decomposed application
consists of a set of primitive sequential operators that are scheduled when the data
they need is available. Before the code can begin executing, that data must be routed
to the processor (unless the target architecture is a shared memory machine, of course).

e Picking the appropriate granularity for those computations that can be tuned. As
has been discussed above, many of the primitive operations are designed to execute a
range of loop iterations. RTS is responsible for choosing how large the range should
be, using information about the current state of the machine.

The heart of the run-time system is a set of metrics that track the current state of the
machine and a set of algorithms that schedule computations and tune granularity based on
those metrics. The following description is a brief summarization of the algorithms; they
are discussed in detail elsewhere [83, 84].

One consequence of using Delirium as an intermediate form is that MAGNIFY fixes the
minimum grain size of the computation. The set of non-re-entrant operators determines
the minimum units of scheduling. Henceforth, we’ll call these indivisible scheduling units
tasks.

While the minimum grain size of the computation is fixed by the front end analysis tool, the
Delirium compiler and run-time system retain crucial flexibility in determining the grain
size at which a data parallel operation is scheduled. A previous paper [83], develops a quan-
titative relationship between total available parallelism, optimal grain size, and execution
time variance of a parallel operation. The relationship is applied to the problem of choosing
grain sizes for parallel operations, demonstrating that adaptive scheduling is often both
necessary and sufficient for efficient execution of irregular parallel operations.

This section and the next demonstrate that interactions among parallel operations, both
regular and irregular, can also benefit from adaptive strategies.

7.3.3 Orchestrating Interactions Among Parallel Operations

Consider a run-time scenario in which the transformed parallel operations 4 and B; from
Figure 6.8 are executing simultaneously. A begins executing first and has partially com-
pleted when B begins executing. RTS must decide how many processors to reallocate. If
we change the example so that all processors must synchronize upon completion of A and

82

By, an ideal processor allocation would minimize the expected finishing time of these two
parallel operations.

The expected finishing time of a parallel operation is a function of the number of tasks that
make up the operation (N), the number of processors cooperating to execute the operation
(p), the variance in task execution times, and the overhead of scheduling [72, 83]. Thus,
approximating the ideal processor allocation requires information available only at run-time.

For this reason, we extended adaptive algorithms developed for single irregular parallel oper-
ations to manage interactions among multiple, simultaneously executing parallel operations.
There are three main extensions. First, we developed a method for improving the accuracy
of estimated finishing times that works for a wide range of scheduling algorithms. Second,
we applied this method to the run-time processor allocation problem, using an iterative al-
gorithm to equalize finishing time estimates. Finally, we combined finishing time estimates
with run-time communication cost estimates to choose communication granularity for pairs
of pipelined parallel operations.

Individual Parallel Operations

To provide a basis for describing these extensions, we review in this section our adaptive run-
time algorithms for executing single parallel operations on distributed memory machines.!

We use a probabilistic algorithm called TAPER to select the grain-sizes at which tasks are
scheduled. The run-time system samples task execution times to compute their statistical
mean (p) and variance (02). It uses this information to reduce overhead by scheduling large
chunks (groups of tasks) at the beginning of a parallel operation and successively smaller
chunks as the computation proceeds. If we define a scheduling event as the moment when
a processor finishes executing a chunk, then for each scheduling event ¢, TAPER computes
K;, the number of tasks in the i** chunk.

RTs does additional sampling of task costs to build a cost function, which estimates task
execution times as a function of iteration number within the parallel operation. We use the
cost function to scale a chunk size K; by s = py/p.. In this expression, p, is the global
mean execution time and p. is the mean for the tasks in the current chunk.

Regular parallel operations execute according to the “owner-computes” rule [64]. To execute
irregular parallel operations, we begin with some original data decomposition and assign
tasks to processors according to the owner-computes rule. During execution, as RTs gains
information about the work distribution, it refines the data decomposition.

In the distributed TAPER algorithm the p processors are logically connected as a binary
tree with p leaves. Some of the processors act as both leaves and internal nodes of the
tree. All processors start in epoch 0. When a processor begins executing a chunk it sends
its current epoch value (called a token) to its parent, which passes the token to its parent
(possibly combining messages from both children). When the root receives p tokens from
the same epoch, it increments the global epoch value and broadcasts a message through

' The shared memory algorithm is described in [83].

83

the tree to all processors. The message tells the processors to increment their epoch value
and may also tell some processors to transfer a chunk of tasks and their associated data to
another processor.

Processors compete for the p chunks of each epoch. If processor a can get two tokens of value
¢ to the root before processor b can send one token of value ¢, then the root will re-assign
processor b’s chunk of size K; to processor a. Processor b is then forced to re-interpret the
chunk it is currently executing as belonging to some later epoch (and thus containing fewer
tasks). If most of the actual task cost is on a few processors, this scheme will degenerate
into the centralized TAPER algorithm. If task costs are independent, we expect most tasks
to remain on the processor owning them at the beginning of the parallel operation; thus,
the algorithm reduces task transfer costs and maintains communication locality.

Interacting Parallel Operations

Now, we return to our run-time scenario in which the parallel operations A and Bj are
executing concurrently. When B begins executing, the run-time system must reallocate
some of the p processors executing A. To accomplish this, RTS uses the following iterative
algorithm:

epstlon = 5%

pl=p/2, p2 =p—pl, count =0

eA = finish_estimate(A, pl), eB = finish_estimate(B, p2)
while ((count < maz_count) and (leA — eB| > epsilon))

if (eA > eB)
pl = pl + p2/2
p2=p-pl
else
p2 =p2+ pl/2
pl=p—p2

eA = finish_estimate(A4, p1)
eB = finish_estimate(B, p2)
count = count + 1

We limit the number of iterations to control the amount of overhead imposed. In practice,
using a maz_count of four has been sufficient.

In estimating finishing time, RTS uses the expression:

finish = setup + compute + lag + comm + sched (7.1)

setup is the maximum of the time to contract the data required by A onto p; processors and
the time to expand the data required by Bj onto p, processors. compute is the expected
mean time to perform a portion of the computation: Npu/p’ (where p’ = p; for A and
p' = p for By). lag is the expected maximum finishing time to perform a portion of the

84

computation; it is related to the distribution of task execution times for the computation
(p,0) [83]. comm represents the communication overhead of executing the given parallel
operation on p’ processors.

To estimate comm at run-time, we use an algorithm like that suggested by Sarkar and
Hennessy [108]. It expresses the computation being performed as a graph and computes
a weighted sum of graph edges that cross processor boundaries. The Delirium compiler
uses a similar graph-based representation; rather than perform the computation statically,
however, the compiler generates code blocks that perform the estimate given run-time pa-
rameters such as N and p'.

Finally, we must estimate the scheduling overhead (sched). To do so, we need to predict,
at run-time, the number of chunks that will be scheduled for the parallel operation (hence
the number of epochs in the distributed algorithm given above). The method for predicting
this parameter is discussed elsewhere [83]. By balancing the estimated finishing times of
A and By, the run-time system uses the extra concurrency from Bj to compensate for A’s
irregular execution behavior.

7.4 Related Work

7.4.1 Functional Languages

The basic structure of Delirium is similar to strict functional languages like VAL [88] and
SISAL [89]. The distinguishing features of Delirium are the use of widely available con-
ventional languages to specify primitive computational operations, the use of coordination
structures to express data parallelism, special support for parallel mapping computations,
and the Dossier annotations that provide additional information about the data values being
referenced. The run-time systems that have been developed for strict functional languages
do not support the tunable granularity and multiple scheduling policies of the Delirium
run-time system.

Other functional languages rely on lazy evaluation to express parallel operations. Lazy
evaluation means that a computation is not performed until it is needed. Because it is
difficult to implement efficiently, languages that support lazy evaluation often restrict it
to a particular type of aggregate structure. The programmer describes the procedure for
constructing each element in the structure; when an element has been computed, it can be
used by a subsequent computation even though the entire structure is not yet completed.

For example, the language ParALFL [65] has strict arrays and lazy lists. Id [10, 94] has a lazy
aggregate called an I-structure. The language Haskell [66] supports lazy arrays called array
comprehensions [8]. Lazy aggregates can be a flexible means of expressing computation, but
the more restricted constructs in Delirium can be compiled much more efficiently because
they express the control structure explicitly.

85

7.4.2 Coordination

There are a number of other notations that allow programmers to coordinate the behavior
of sub-computations written in conventional languages. The simplest strategy is to call a
library of routines from within a sequential program. The two common types of libraries
are message passing packages and shared memory packages. The former are provided with
every distributed memory machine; the MPI standard [120] is an effort to standardize
them. Other examples include PVM [115] and Express [50]. Message passing libraries
allow the program to send data between processors and query certain aspects of the system
state. Some of them provide more advanced features like asynchronous I/0, barriers, task
migration support.

In the shared memory programming model, all the processors use the same common memory
locations. Higher-level coordination is done with locking (mutual exclusion) primitives
embedded in a host language. On shared memory multi-processors such as the Sequent
Symmetry, this model directly reflects the underlying architecture, and is a good low-level
environment for programming [48]. Shared memory can also be simulated on distributed
memory machines, but the strategy has a substantial and often unacceptable overhead.

Linda [54, 53] is a set of primitives that provides access to a shared associative tuple-
space. This space is accessed through read, insert, and remove operations. Tuple space
is shared by the processors and serves as the medium of communication between them.
The primitive operations request a tuple matching a given pattern, and the associative
mechanism performs a lookup. If there are many tuples that match, a random one is
selected.

Schedule [45] provides primitives that allow the programmer to build a dataflow graph
operationally. The sub-computations are connected by queues; the system will execute
a sub-computation when a value is available on each queue that it has specified as an
input. The programmer is responsible for decomposing the computation and specifying its
coordination requirements. Schedule provides graphical tools for examining the execution
behavior of the application.

Ada [119] provides some coordination features as language primitives. The coordination
model is based on task rendezvous. The relative merits of this model are discussed in detail
elsewhere [13]. Like the languages discussed above, one can think of Ada as containing an
embedded notation for expressing operations in its coordination model.

Object-oriented systems such as Emerald [25], Amber [31], and Sloop (82] use abstract data
types to encapsulate shared data. That is, a particular call on an abstract data type can
only directly modify local data for the called instance of that type. This encapsulation
has the additional benefit that one can improve performance by explicitly moving object
instances about the network of processors [68]. Sloop, Emerald and Amber all provide an
embedded primitive for specifying object locality.

Delirium is distinguished from all of these approaches by encapsulating the parallel control
structure of the application in a textually separate form. The advantage of this strategy
is that it allows a run-time system to analyze and manipulate just the coordination of

86

the application. A notation that is scattered throughout a sequential application either
eliminates the need for a run-time system or severely restricts its ability to make scheduling
decisions adaptively.

Like Delirium, the PCN [51] programming environment uses a separate coordination text
that is executed by a run-time system. PCN relies on a logic-based notation rather than a
functional one, and includes primitives in the language to support the notion of a virtual
topology. The program can give hints to the run-time system about scheduling by declaring
a mapping of computation to the topology.

7.4.3 Data Annotations

The idea behind Dossier is to summarize the shape and behavior of data passing between
sub-computations. No other systems use this information to make scheduling decisions
adaptively, so there is relatively little related work. There are a few kinds of annotations
about data usage, but they focus on side-effects rather than shape.

Jade [105] provides a set of annotations added to sequential programs that divides the text
into sub-computations and describes the data the pieces will require while executing. A
sub-computation is scheduled when the data that it needs is available; the Jade annotations
define tags which are generated and consumed as their associated data is available and in
use. The tags stand in for the data they are associated with but do not describe its shape.
The goal of Jade is to permit correct execution in a shared memory environment. It does
not provide data shape information, which is used in the Delirium environment to improve
efficiency on distributed memory architectures.

Another kind of annotation is used by the fluent languages [55] to allow imperative code
to be mixed in with functional code. The annotations describe the side-effects that an
imperative function will cause, so that it can be called from within a functional language
without violating the semantic restrictions of referential transparency. Again, the purpose
of the annotations is correctness.

7.4.4 Run-Time System

Rrs, the Delirium run-time system, contains a number of novel features that allow it to
target large numbers of processors efficiently. There are many other run-time systems that
support parallel execution, with dramatic variations in the amount of control they have
over program execution and the depth of their understanding of the program semantics.

When a run-time system is aware of the semantics of the programming language, it often is
serving essentially as a language interpreter. Delirium falls into this category, although for
efficiency many scheduling and policy decisions are made by the Delirium compiler rather
than by RTs.

The PARTY run-time system [91], designed to support the high level language Crystal
[33], also adjusts computational behavior based on the behavior of the application. It

87

converts the program into a directed acyclic graph, where each node represents a primitive

computation. The focus of the system is on aggregation and mapping to balance processor
load.

A more restrictive interpretive strategy is to have the run-time system enforce simple con-
straints that are explicitly declared by the program. The run-time system is still acting
as an interpreter, in a limited sense, but it has little flexibility to alter the behavior of the
application based on the current execution state. Granularity is fixed and aggregation is not
supported. The systems that adopted this approach often supplied a graphical environment
for connecting blocks of code and declaring their relationships. Two examples are Poker
[95] and Schedule [45] (discussed above).

Another strategy is to use software support to give programs on a distributed-memory
system the illusion that they share a common uniform memory space. There are several
examples, including Kali [71], Ivy [76], and the Wisconsin Wind Tunnel [104]. All of them
suffer from substantial overhead, although they are able to reduce it by relying on program-
mer or compiler support to reduce the frequency of remote references. Various specialized
forms of hardware support can also be exploited to allow local references to occur at native
speed.

The Delirium programming environment does not follow this strategy; although it begins
with programs that are written for a single memory, all such assumptions are removed during
the conversion to parallel form. In the output of MAGNIFY each piece of code expresses
all its data requirements explicitly; the run-time system handles the movement of data to
allow code to execute, but all the requirements are expressed. The advantage of a system
like Kali is that code can be parallelized that is less thoroughly analyzed. Where static
analysis was unable to accurately determine data requirements, the missing data can be
made available at run-time by the data transport model. However, there is a high price in
overhead to be paid for that safety net.

TAPER, the iteration scheduling algorithm used by RTs, has a number of predecessors.
Several research projects have investigated how to schedule iterations of a loop on a shared
memory machine. Although the developers of these algorithms generally insert code directly
into the executable so that each loop schedules itself, the same ideas work within the context
of a run-time system that makes dynamic scheduling decisions.

The simplest algorithm is self scheduling [116], where processors request a new iteration
when they are free. The process continues until all the iterations have been executed. To

reduce scheduling overhead, each request can yield a group of iterations rather than a single
one [72].

Tapering algorithms change the number of iterations that are allocated as the computation
progresses. Guided self-scheduling [99] and factoring [67] consider the number of tasks
remaining when choosing an allocation block size. These algorithms perform very well
when the time required to execute each iteration is similar, but TAPER’s more sophisticated
model of execution yields better performance when variance is an important factor.

RTs also uses some techniques developed for static scheduling systems. Sarkar and Hen-

88

nessy, for example, use execution time estimates and a critical path algorithm to partition
parallel programs statically [108]. The run-time system determines the minimum accept-
able grain size using a similar strategy, balancing communication cost against execution
time estimates.

89

Chapter 8

Experimental Results

This chapter analyzes the behavior of MAGNIFY, both in isolation and as a piece of the Delir-
lum programming environment. The first set of results consists of three case studies that
demonstrate how MAGNIFY transforms an application for efficient parallel execution. The
second set measures the cost of MAGNIFY’s analysis using both the case study applications
and some sample programs taken from the SPEC benchmark set [43].

The case studies that are presented here were chosen from a set of scientific applications
that we have parallelized with the Delirium programming environment. We chose to focus
on these programs because they are typical of a wide range of applications, both in the
computations that they perform and in the transformations necessary to achieve highly
efficient execution. The codes perform standard computations such as integration, Fourier
transform, and nearest-neighbor calculations that incrementally update grid point values.

In each case, a straightforward parallelization strategy based on static decomposition of
the parallel operations performed fairly well on a few processors but quickly arrived at a
performance ceiling where adding additional nodes did not yield further improvement. The
great majority of existing parallel applications are implemented by hand and do not go
beyond such relatively simple decomposition strategies. Arrays are allocated statically to
processors using a regular layout strategy. The application generally synchronizes after each
parallel operation.

We were able to achieve significant additional speedup by using the Delirium program-
ming environment to implement more complex parallel control strategies. The two most
important optimizations were to expose additional concurrency using split and to combine
inexpensive parallel operations for improved efficiency. Such techniques are not widely
used in parallel applications because the code becomes extremely difficult to understand.
The control structure of the program is obscured by a large number of message passing
operations that are scattered throughout the program. To take advantage of prefetching
and to interleave communication and computation, transfer statements must be moved to
unrelated areas of the program. The resulting code is extremely difficult to debug and
unpleasant to maintain.

90

MAGNIFY allows the programmer to avoid the task of implementing such transformations
by hand while still achieving very good efficiency on many processors. The key is that
the system can combine parallel operations and can divide them using split, allowing it to
go beyond concurrency within an individual loop nest to address the interactions among
parallel operations.

8.1 Case Study Format

To demonstrate how MAGNIFY parallelizes applications, the next three sections present
case studies. Each study examines an application, beginning with a description of what the
program does and its computational structure. Then the study traces the transformation
of the application in stages from the original sequential form to a highly efficient parallel
implementation. A performance graph is given showing the efficiency of each stage of the
program using different numbers of processors.

Each stage in the evolution of the code is the result of applying a series of transformations to
the previous stage. These transformations can either be applied to the code itself or to the
WEB representation of the application. The code transformations are discussed throughout
Chapter 6 and the specific WEB operations are listed in Section 6.1.2.

The case studies describe how the transformations address the performance bottlenecks.
For each stage, we have listed the transformations and give a key that characterizes the
analysis necessary to apply them. The following is an example:

Transformation Uses
Chop application into analysis and output
Parallelize analysis ES, FI

Every application begins as a single WEB sequential operator. The first transformation
above divides that operator into two, using the “chop” WEB operation. The fact that
there are no symbols to the right of the transformation shows that MAGNIFY did not
use symbolic, conditional, or interprocedural analysis to carry out the operation. The
next transformation, however, converts the second WEB node into a map node. In order
to do that, MAGNIFY must first discover whether the operation is concurrent and then
modify it to be handled by multiple processors. In doing so, as is shown by the two code
symbols, MAGNIFY manipulated descriptors that contained extended symbolic information
and required full-scale interprocedural analysis.

Here are the code symbols that may appear next to a transformations and an explanation
of their significance:

91

€ write: A < 1..10 >
read: A < 11..20 >

S write: A < 7.1 >
read: A<1..j>

ES write: A<i.z4+1>
read: A<l.n+m+2>

CS write: A < 2x14 5.k >
read: A<l.a+b+c+1>

Figure 8.1: Levels of Symbolic Complexity in Descriptors

S Used the symbolic engine. The transformation relied on the
fact that descriptors can contain references to induction vari-
ables in order to carry out the transformation.

ES Used extended symbolic information. The transformation re-
quired the presence of simple expressions.

CS Used complex symbolic information. The transformation re-
quired the presence of complex expressions.

C Used conditional information. The transformation relied on
guards and/or masks in the descriptors.

1 Used interprocedural analysis. The transformation uses sum-
mary information for a called procedure.

FI Used full interprocedural analysis. The transformation relied

on the reanalysis of procedures at every call site.

The first three symbols characterize the level of symbolic complexity that was needed.
Figure 8.1 shows a set of SDD’s that demonstrate the different levels.

If none of the symbol codes appear, MAGNIFY carried out the transformation with SDD’s
that did not contain any expressions with symbol references in them. If a loop was involved,
for example, its iteration bounds must be constant values that are known to MAGNIFY. If
the symbol S appears, MAGNIFY did use symbols. However, only loop induction variables
appeared in an SDD and they were not part of an arithmetic expression. In the exam-
ple shown in Figure 8.1, both ¢ and j are induction variables. ES indicates that simple

92

expressions were used. An expression is considered to be simple if every symbol has a
constant multiplier of one and there are no more than two symbols plus an integer offset.
Any expression that is not simple is complez; C'S indicates that complex expressions were
necessary.

The next symbol, C, appears if conditional information was needed to perform the trans-
formation. Conditionals can appear either as guard expressions or as masks.

Finally, the last two symbols reflect the complexity of interprocedural analysis that was
required. If neither is present, MAGNIFY would have been able to apply the transformation
without propagating any information through a call site. I appears when MAGNIFY could
have computed a single summary descriptor for each procedure and used that summary at
every call site. F'I indicates that the more aggressive strategy was necessary — reanalyzing
the called procedure at each call site.

8.2 Case Study 1: PSIRRFAN

The first example is an x-ray tomography application called PSIRRFAN [63] which was
developed at UC/Berkeley. The basic goal of tomography is to take a set of measurements
computed by passing a beam through an object at all angles and constructing an image of
the interior (in either two or three dimensions). The beam generator is placed on one side
of the object and an array of detectors on the other side measures the strength of the signal
that penetrates.

The core tomography algorithms generally require that a reading be made through an
object at evenly spaced angles. However, some objects cannot be examined from every
angle, causing gaps in the data that is needed to assemble the image. For example, if
the goal is to find cracks caused by earthquakes in freeway supports, the support may be
embedded in a hill and hence the beam generator and detectors cannot be positioned at
certain angles. The resulting information has gaps in it and is said to be limited-angle data.

In order to continue using algorithms that require full data to be available, one solution
is to use PSIRRFAN, a limited-angle reconstruction algorithm. It computes values for the
missing data so that an image can be constructed normally.

8.2.1 Computational Structure

The PSIRRFAN application consists of two major computations: an iterative reconstruction
algorithm that fills in computed values for the missing data, and a backprojection algorithm
that produces a two-dimensional image from the completed data set. The computationally
intensive subset of the application is approximately 1500 lines of FORTRAN code.

Here is a structural decomposition of the program:

Reconstruction (iterate until convergence)

93

initialization
outer reconstruction integral (for missing data columns)
initialization
inner reconstruction integral
Fourier filter
data update

Backprojection

Each pass through the reconstruction algorithm updates the data values that were missing
in the original data set. The reconstruction iterations continue until those values have
converged. Both of the integrals in the reconstruction phase can be executed in parallel, as
can the Fourier filtering step. Backprojection is a fully parallelizable operation consisting
of three nested loops that traverse the data set to compute an image.

8.2.2 Transformation

This section describes the transformation of PSIRRFAN from its original sequential imple-
mentation to an efficient parallel version. There are four parallel versions of the code, each
more efficient than the last on large numbers of processors.

Figure 8.2 shows the performance of each stage on a 256 processor Ncube Systems Ncube-2,
reconstructing the cross-section of a freeway embankment column that was embedded into
a hillside. The column contains steel reinforcement bars and some cracks caused by an
earthquake. A 30 degree arc was obstructed by the hill. The detector array contained 256
detectors and the assembly was positioned at 512 evenly spaced angles around the column
(except where there was an obstruction). The resolution of the resulting cross-sectional
image was 1024 by 1024 pixels. The speedup measurements recorded in the graph compare
the parallel version of the program to the original sequential implementation.

Stage 1: Simple Parallelization

The first step takes advantage of the most accessible sources of concurrency in PSIRRFAN.
The object is to parallelize both the backprojection computation and the outer reconstruc-
tion integral. In order to do so, the computations to be parallelized must be separated into
their own WEB nodes.

The application, which begins as a single WEB sequential operator node (see Section 6.1.1),
is divided into two sequential nodes representing reconstruction and backprojection respec-
tively. The next operation is to peel the iterations of the reconstruction node, converting
it into an iteration node. Next, the contents of that node are subdivided into one node for
initialization and another for the outer integral. Then, both backprojection and the outer
integral node can be converted into map nodes to reflect the fact that they can be executed
concurrently.

200

stage 4
180
160
140 —
120
100 - stage 3
80 + stage 2
N /
e

Speedup over Sequential Version

40

20 4 stage 1

0 50 100 150 200 250 300
Number of Processors

Figure 8.2: Efficiency of PSIRRFAN on a 256 Processor Ncube-2

9

reconstruction

init
AN

outer integral

AN

backprojection

Figure 8.3: PSIRRFAN Stage 1: WEB Representation

95

The following table lists the transformations for this stage. Figure 8.3 shows the resulting
WEB representation.

Transformation Uses
Chop application into reconstruction and backprojection
Peel the iterations of the reconstruction node ES, I

Chop reconstruction to expose initialization and the outer | I
reconstruction integral
Parallelize backprojection S, T

Parallelize outer reconstruction integral ES,C, 1

Stage 2: Improve Inner Parallelization

Stage one reveals a significant amount of parallelism, as is shown in Figure 8.2, but the
efficiency drops off substantially with larger numbers of processors. The problem is caused
by the limited parallelism available in the reconstruction algorithm. The expensive compu-
tations are caused by the columns of data that are missing; they appear in an unpredictably
irregular pattern in the data set and there are not enough of them to keep many processors
busy.

The second stage improves performance by exposing additional parallelism. Rather than
scheduling the body of the outer integral as a single computation, it is divided into its
component sub-computations. Then the inner integral and the Fourier filtering step are
parallelized. Figure 8.4 shows the modified WEB representation.

Transformation Uses
Chop outer reconstruction integral to expose initialization | I
code, inner reconstruction integral, Fourier filtering, and

update
Parallelize inner reconstruction integral CS, FI
Parallelize Fourier filter ES, I

Stage 3: Pipeline Backprojection

While performance has been noticeably improved in stage two, the reconstruction step still
limits the amount of concurrency. The third stage takes advantage of the relationship of
reconstruction and backprojection to alleviate the problem. Most of the data needed by the
backprojection algorithm is available before any reconstruction is performed, because only
a small fraction is missing when the application starts execution.

The solution is to use the split transformation to expose additional concurrency. By divid-
ing the backprojection step into one part that can begin immediately and one part that
must wait for reconstruction, MAGNIFY reveals a great deal of additional concurrency. RTs
can use the available backprojection work to make up for limited concurrency during re-
construction, thus using the processors more efficiently. Before backprojection can be split,
though, its loops must be interchanged to match the reconstruction operation more exactly.

9

reconstruction

nit

Y

outer integral

AN

inner
v
AN

filter

Figure 8.4: PSIRRFAN Stage 2: WEB Representation

AN

backprojection

96

97

Figure 8.5 shows the WEB after stage three.

Transformation Uses
Interchange backprojection to expose parallel loop that | ES
matches the iteration structure of the reconstruction integral
Split backproject to divide iterations of backprojection into | E'S, I
those that depend on reconstruction and those that do not
Parallelize both sets of backprojection iterations S, 1

Stage 4: Pipeline PSIRRFAN Iterations

The final step exposes some additional concurrency during reconstruction. The reconstruc-
tion phase, just like backprojection, performs most of its computation on data that was
available from the beginning of execution. While iteration ¢ of the reconstruction algorithm
is still executing, there are some parts of the next iteration (i + 1) that RTS can begin
executing.

In order to introduce pipelining, MAGNIFY must split the reconstruction iteration to isolate
the computation that is independent of previous iterations. The split operation is applied to
the iteration body, using the descriptor for the next iteration as the basis of the division. The
result is an iteration node that has two separate streams of execution in it, one that depends
on the previous iteration and one that does not. The computation in the two streams is fed
into a combining node. Figure 8.6 shows the corresponding WEB representation.

Transformation Uses
Split reconstruction iteration based on subsequent iterations | CS, C, FI
Split initialization code CS, I
Split outer reconstruction integral CS, I

8.2.3 Discussion

The strategy in the first stage would be a natural one to use in parallelizing PSIRRFAN by
hand. Particularly if the programmer uses a static allocation of computation to processors,
the code to manage the parallel control structure is not too complex. The message passing
statements are localized to a small fraction of the application and are relatively easy to
understand. However, the synchronization that occurs between every parallel operation
and the badly balanced load of the outer integral limits performance.

Stage two shows a marked improvement in performance because it exposes a significantly
larger amount of parallelism within each iteration of the outer integral. However, creating
the equivalent control strategy by hand is a difficult task. The scheduling choices that
allocate inner integral iterations are greatly affected by the parallelism available from the
outer integral. Unless the programmer chooses to implement a complex global scheduling
strategy like the one in RTS, the improvement from the additional parallelism can easily be
swamped by scheduling overhead.

AN

backprojection
(unmodified data)

)

reconstruction

init

AN

outer integral

AN

mrler
AN

filter

A

backprojection
(modified data)

combine

]

Figure 8.5: PSIRRFAN Stage 3: WEB Representation

98

)

reconstruction

init

init

AN missing

@ ? present

outer integral

AN

mrier
AN

filter

outer integral

AN

inner
v
AN

filter

combine

Figure 8.6: PSIRRFAN Stage 4: Partial WEB Representation

99

100

In order to achieve the efficiency of stages three and four by hand, the program would be
rendered unrecognizable. The code must manage the complexity of multiple heterogeneous
computations, allocating computations and choosing granularity based on the current state
of the system. As the computation evolves, data must shift from one cluster of processors
to another.

In order to allow RTs to perform these operations automatically, the code must be modified
to expose all the potential forms of concurrency. The best performance was only achieved
once split transformations had been applied repeatedly; as the transformation keys demon-
strate, a great deal of symbolic information is needed to apply them. RTs is also dependent
on the data sizes provided by Dossier to assess the communication cost implied by a schedul-
ing decision.

8.3 Case Study 2: Camille

The second study examines Camille, a version of the UCLA Global Climate Model [9].
The UCLA simulation has been used as the basis for many climate modeling experiments.
One of these projects was undertaken by researchers at the Lawrence-Livermore National
Laboratory; they created Camille by starting from the base UCLA code and substantially
rewriting it.

8.3.1 Computational Structure

The central data structure used by the UCLA model is a three-dimensional grid representing
the atmosphere of the planet. The earth’s surface is sub-divided into a two dimensional
grid; the atmosphere above each of the grid squares is divided into a series of levels that
start at the ground and extend upwards. The collection of levels for a given grid square
is called a column. Using this three-dimensional structure, the atmosphere is divided into
parcels, each of which is characterized by a set of quantities such as its temperature and its
precipitation level.

This case study examines the part of Camille that models the physical interactions within
a given column. Column physics makes up most of the computationally intensive work
performed by the program and the code that implements it is approximately 7000 lines
of FORTRAN. The reason we chose to work with only a piece of the full application is
that Camille has been parallelized by adding calls to process control and message pass-
ing routines. The analysis performed by MAGNIFY is designed for sequential application
programs.

The column physics is implemented in a sequence of passes. Table 8.1 lists each pass and
summarizes its function. The next four sections describe how we incrementally parallelized
these computations using MAGNIFY and RTs. Figure 8.7 compares the performance of each
version on a 64 processor CM-5.

101

Name Purpose

pressure | compute pressure in millibars at different altitudes in the model

eventemp | calculate the potential temperature at the even numbered levels using the
value at the odd levels

gpotentl | compute the geopotential function ¢ for each level

uclainit | initialize arrays that are used in the subsequent passes

clouds compute quantities characterizing cloudiness such as instability and hypo-
thetical pressure at the bottom of the cloud base

cumulusi | calculate the effect on potential temperature, specific humidity, and velocity
based on cumulus cloud interaction

moistadj | adjust potential temperature and specific humidity due to moist convection

1sp calculate the effect of large scale precipitation on potential temperature and
specific humidity

shortwav | calculate short wave radiation heating flux

longwave | compute effect of long wave (infrared) radiation in the atmosphere

pbl account for the effect of surface turbulence fluxes on the planetary boundary
layer (PBL)

cumulus? | calculate the effect of cumulus mass flux on velocity

photchem | compute ozone production

groundt | determine ground values, including temperature (based on surface radiative
fluxes) and precipitation

fluxrate | compute flux rate based on values that were calculated in all the previous

passes

Table 8.1: Computational Passes in Camille Column Physics

102

60
stage 4
50
[
£
>E 40 + stage 3
k
<
Fl
g 30 stage 2
w)
stage 1
5 20
i
10 4
0 T T T T T T T T
0 10 20 30 40 50 60 70 80 %0

Number of Processors

Figure 8.7: Performance of Camille on 64 CPU CM-5

8.3.2 Transformation
Stage 1: Parallelizing the Passes

We begin with the simple strategy of parallelizing each pass independently across the two-
dimensional grid structure covering the earth’s surface. Because columns interact with their
immediate neighbors, it is advantageous, when possible, to allocate adjacent columns to the
same processor.

As an initial strategy, therefore, we use a regular decomposition to allocate column iterations
to processors. We chose a tiled decomposition, meaning that the two dimensional space of
columns is divided into contiguous blocks and each processor is given a block to compute.
After each pass is completed, the processors synchronize, waiting for the others to finish
before starting the next pass. The allocation of columns to processors is not changed
between passes.

RTs normally uses the more aggressive scheduling strategies described in Section 7.4.4, but
MAGNIFY allows the programmer to specify that a regular decomposition strategy like tiling
be used, to support performance comparisons.

The WEB representation of this strategy is simply a linear chain of map nodes, each of
which computes one of the passes.

Transformation Uses
Chop the single WEB node representing the entire column
computation into its fifteen component passes
Parallelize each pass ES, I

103

Stage 2: Scheduling for Irregularity

The performance of stage one is shown above in Table 8.1. The speedup quickly reaches
its limits as the number of processors increases. After analyzing the parallel behavior, we
found that two problems limit efficiency:

e Some passes have irregular behavior, where the amount of time required to handle
a given column depends on the value of the data. For example, the amount of pre-
cipitation determines the type of cloud computation that is performed. In very dry
areas, such as a large desert, many neighboring columns may have similar cloud com-
putation behavior. Using a regular decomposition strategy like tiling, one processor
can have dramatically more or less work than another because it receives a cluster of
similarly behaving columns. The irregular execution pattern complicates the problem
of balancing load across the processors of the machine.

e Some of the passes do not require much computation; either RTs must use relatively
few processors to execute them or the scheduling overhead becomes problematic. The
gpotentl pass is an example.

In stage two, we address the first problem. The solution is to move from a regular tiled
decomposition strategy to TAPER and the more advanced scheduling algorithms embodied
in Rrs(see Section 7.3.3 for a detailed discussion of them). As shown in Figure 8.7, the
change in scheduling strategy yields a distinct improvement in performance.

There are no WEB transformations needed for this stage; the only change was to remove
the scheduling declaration that restricted RTs to use a regular decomposition strategy. RTs
employs TAPER and its normal scheduling algorithms.

Stage 3: Decoupling Independent Passes

Although stage two improves performance, the second limitation on performance still re-
mains: some stages do not perform sufficient amounts of computation to keep many proces-
sors efficiently at work. Stages three and four improve the situation by exposing additional
concurrency.

The first step is to relax the constraint that the system synchronize globally after each
physics pass. The passes do not all depend on the one that precedes them; Figure 8.8 shows
how the passes depend on each other. By applying the WEB operation that computes the
dependency relationship of a group of nodes, the parallelism is exposed.

As described in Section 6.2.1, if the user allows it, MAGNIFY can rename reductions using
accumulation arrays so that they do not prevent parallelization of otherwise independent
computations. Many of the dependences shown in the figure are caused by reductions;
several of the passes, for example, update the value of the array deltat by adding a value
to each element of it. If such reductive updates are stored in temporary arrays and the sum
computed later, a good deal of additional parallelism is available.

104

pressure

SN

eventemp uclainit
|
gpotentl
\
clouds
RN
cumulusl photchem
l
moistadj
|
Isp
7N
shortwav groundt
l
longwav
|
pbl
|
cumulus2

\

Figure 8.8: Physics Pass Dependences in Camille

fluxrate

Figure 8.9 shows the modified dependence structure that results when the accumulation
arrays are handled with temporaries. For Camille, we have specified to MAGNIFY that the
reduction conversion is acceptable.

The WEB representation for this stage is essentially identical to the dependency graphs
shown in the figures and hence is not shown here; each pass is a map node that executes
its computation in parallel. The additional concurrency yields a substantial improvement
in performance.

Transformation Uses
| Compute dependences among component nodes | ES, I |

Stage 4: Pipelining Successive Passes

The final stage exposes further concurrency by using pipelining between physics passes.
When two passes depend on one another, typically the dependence is caused by the fact
that one pass needs array values computed during the corresponding iteration of a previous
one.

For example, the cumulus2 pass that takes place after pbl uses values of the entrain array
that are computed in pbl. Once a given column has been processed by pbl, there is no
reason why that same column’s cumulus2 computation cannot start immediately without
waiting for pbl to finish the rest of the columns. Similar pipelining opportunities exist
between other passes, such as moistadj, 1sp, and groundt. By applying transformations

105

pressure

N\

eventcmp uclainit
gpotentl \ photchem
clouds
\
cumulus l shortwav longwav
monstadj \ /
lsp cumulus2

groundt
fluxrate

Figure 8.9: Camille Pass Dependences With Accumulation Arrays

to expose these pipelining opportunities, MAGNIFY can reveal enough parallelism for the
run-time system to improve execution efficiency.

Rather than giving the full WEB representation for the application, Figure 8.10 shows the
WEB representation for the interaction between moistadj, 1sp, and groundt. They have
been combined into a single mapping that contains a series of sequential operations. RTS
can choose how much of each column to compute before scheduling another. The effect is to
allow each scheduling decision to yield more computation, reducing overhead and improving
efficiency.

Transformation Uses
Combine map nodes for cumulusi and longwav S, I
Combine map nodes for cumulus2 and pbl ES,C, I
Interchange loop in gpotentl to match mapping in eventemp | ES
Combine map nodes for eventemp and gpotentl S
Combine map nodes for moistadj and lsp S, 1,C
Combine map node just constructed with groundt ES, I

8.3.3 Discussion

The scientists at Livermore who developed Camille use a parallelization strategy similar
to the one in the first stage. They synchronize after each parallel operation is complete
and choose a blocking factor that is a compromise between load balance and scheduling

106

AN
moistadj

Isp
groundt

Figure 8.10: Camille Stage 4: Partial WEB Representation

overhead. The decision was a reasonable one to make, given that they wish to maintain
portability across different architectures and to ensure that the program is easy to maintain
and modify.

However, as the graph in Figure 8.2 demonstrates, a straightforward parallelization limits
the performance as the number of processors increases. Stage two moves to a dynamic
scheduling algorithm, improving the efficiency noticeably. Implementing such an algorithm
manually would require a significant but not prohibitive coding effort.

Stage three, and particularly stage four, would require a major reorganization of the program
to eliminate synchronization and introduce complex scheduling algorithms. Although the
conceptual difference between stage two and three is not large, the coding complexity is
disproportionately high. The programmer is forced to abandon the idea of a single thread
of control that contains some parallel operations in it. Unfortunately, sequential languages
like FORTRAN rely heavily on the sequential model and major changes to the code are
needed to manage parallel threads.

The major difference between stage three and four is that the latter combines parallel op-
erations. Computations like eventemp can be difficult to parallelize efficiently even though
they offer abundant concurrency. The problem is that they are not doing much computa-
tion, so the overhead of scheduling the parallel jobs dominates the overall execution time.
By combining inexpensive parallel operations, MAGNIFY can construct an operation that is
easy to parallelize out of several that are individually difficult.

Depending on the application, we have found that the two most valuable optimizations
are combining low-cost parallel computations and using split to pipeline computations
that would otherwise be executed sequentially. Both rely on the concurrency exposed by
MAGNIFY, its ability to reorganize the relationship of sub-computations, and the dynamic
scheduling algorithms in RTS.

107

Name Purpose

shiag | prepare for dynamics computation by translating the location of all molecules
into the periodic box

ekcmr | calculate the total kinetic energy of the center of mass of the sub-molecules
force | apply various force models to the atoms to account for angle energy, dihedral
energy, and position constraint energy

scale | reset box parameters and scale them based on new atom positions

1sqfit | perform least squares fit on total energy

cenmas | calculate the translational and rotational kinetic energies and velocities

Table 8.2: Computational Passes in Amber Molecular Dynamics

8.4 Case Study 3: Amber

Amber [121] is a molecular dynamics modeling program. It simulates the position of atoms
within a molecule by calculating their interactions with one another. It can be used either
with small molecules or with polymers. The application is a family of utilities that create
data sets, display them, perform various modeling simulations, and present the results in
a readable form. This case study describes the parallelization of the molecular dynamics
modeling utility program. It consists of approximately 7000 lines of FORTRAN code.

8.4.1 Computational Structure

The modeling program consists of three main parts:

e initialization — data is read from files and various initial values for quantities like
velocity and bond parameters are computed.

e molecular dynamics computation — the heart of the application. It proceeds for a
specified number of iterations, calculating the forces on the various component atoms
of the molecule and updating their position accordingly. The computation, which
integrates Newtonian equations of motion, consists of a set of passes that are described
in Table 8.2.

e clean up — output the results to a set of files.

8.4.2 Transformation

The following three stages demonstrate increasingly more efficient parallel implementations
of the application. Figure 8.11 shows the efficiency of each stage in computing the structure
of a 554 atom hexamer complex. The code was running on a 64 processor CM-5 machine.

60

50 stage 3
2
£ u
K]
k=
2
g 30
wv
g stage 2
-3
% 20 stage 1
-
0

10

0 T T T T T T T T

0 10 20 30 40 50 60 70 80 9%

Figure 8.11: Efficiency of Amber on a 64 processor CM-5

Stage 1: Simple Parallelization

108

As usual, the first step in parallelizing Amber is to divide it into sub-computations, identify
the ones that can execute in parallel, and convert their corresponding WEB nodes into
map nodes. The initialization and clean up code is computationally insignificant; efficient
parallelization depends on managing the molecular dynamics passes.

Unlike Camille, the passes do not all parallelize well. In particular, 1sqfit uses a sequential
computation. cenmas performs one set of calculations that parallelize well (calculating
energy and velocity values for each atom) and one set that sequentially assembles global
averages. In this stage, we continue to execute cenmas sequentially. The most expensive

pass by a wide margin is force and it parallelizes well.

The following table lists the transformations for this stage. Figure 8.12 shows the resulting

WEB representation.

Transformation Uses
Chop application into initialization code, dynamics compu-
tation, and clean up
Peel iteration from dynamics computation, converting it into | S, I
an iteration node
Chop dynamics into component passes I
Parallelize shiag CS, 1
Parallelize ekcmr ES, C, 1
Parallelize force CS, FI

Parallelize scale

ES, I

109

init

dynamics

clean ué

Figure 8.12: Amber Stage 1: WEB Representation

110

9
dynamics
shiag
ekemr

force

cenmas
(parallel)

cenmas
(serial)

Figure 8.13: Amber Stage 2: WEB Representation

Stage 2: Improve Dynamics Parallelization

As is shown by the performance graph in Figure 8.11, the stage one parallelization runs
into a bottleneck after more than 10 processors are used. The problem is the limited
parallelization at the end of the dynamics computation, where both 1sqfit and cenmas
are being computed sequentially. In addition, there is a limited amount of work in shiag,
causing high overhead during its computation.

In stage two, cenmas is divided into its sequential and parallel components. Also, shiag is
combined with ekcmr to ensure that each scheduling event yields a larger computation and
hence scheduling overhead is reduced.

The following table lists the transformations for this stage. Figure 8.13 shows the WEB
representation of the modified dynamics computation.

111

Transformation Uses
Chop cenmas into its component parts
Parallelize the first half of cenmas ES, I
Combine map nodes for shiag and ekcmr CS, 1

Stage 3: Pipeline Dynamics Iterations

Although stage two has better performance than stage one, efficiency still is constrained by
the parallelism limitations. Stage three achieves a further improvement by taking advantage
of an additional source of concurrency: pipelining the dynamics iterations.

Pipelining is useful because the initial computation of an iteration largely depends on the
values computed by force in the previous one. The results from 1sqfit and cenmas are not
used in the next iteration until force begins. Therefore, the combined shiag and ekcmr
computation for iteration ¢ + 1 can begin as soon as iteration i’s force has completed.

In order to pipeline the loop, the shiag/ekcmr operation must be split against the descriptor
for the previous loop iteration. When MAGNIFY outputs the Delirium for the pipelined loop,
one of the pieces of the split computation will be independent of the data computed during
the previous iteration. As a result, RTs is able to use the additional concurrency when a
single dynamics iteration does not provide enough to keep the processors efficiently busy.

The following table lists the transformations for this stage. Figure 8.14 shows the WEB
representation of the pipelined dynamics computation. The dashed line from force back
to the conditional map operation is a visual indication of the data dependence between
iterations. It is not present in the actual WEB representation used by MAGNIFY because
the descriptors encode the dependence information implicitly.

Transformation Uses
Split the combined shiag/ekcmd node CS, 1
Peel conditional from each of the split nodes to convert them | CS, I
into conditional map nodes

8.4.3 Discussion

As in the previous two case studies, the first stage uses a variation of the strategy that most
programmers would use in parallelizing Amber by hand. It performs fairly well on small
numbers of processors but reaches a maximum speedup of approximately 20.

The next stage is also not difficult to implement manually and would not require extensive
changes to the code. However, it does not provide much of an improvement in performance.

The real increase in efficiency comes from stage three, which applies the split transformation
to pipeline the major iterations of the simulation. This modification moves entirely away
from one thread of control and requires complex scheduling decision to choose granularity
and migrate data between processors dynamically. The changes to the application in stage
three are systemic and rely heavily on complex expressions in the summary information

combine l

9
dynamics
AN AN
shiag shiag
ekcmr ekcmr

AN

force

AN

scale

Isqfit

AN

cenmas
(parallel)

cenmas
(serial)

Figure 8.14: Amber Stage 3: WEB Representation

112

113

nasa7 hydro2d psirrfan | amber
full/complex 4.6 28.2 31.6 83.1
full/simple 3.0 17.6 12.0 40.6
summarize/simple | 3.0 10.0 6.2 18.0
none/simple 1.6 3.6 2.6 4.8

Table 8.3: Execution Cost of Analysis (in seconds)

available from the descriptor.

The graph in Figure 8.11 demonstrates that the added concurrency has a dramatic effect
on performance.

8.5 Cost of Analysis

This section measures the cost of executing MAGNIFY to demonstrate that its algorithms
are not prohibitively expensive to use. The process of transforming an application using
MAGNIFY consists of a series of steps, but the most time consuming by far is the initial
annotation of an application with its memory usage descriptors.

As the application is modified, some reanalysis is usually necessary after each transforma-
tion, but it is always less time-consuming than the initial pass. In practice, we find that
the time is usually negligible (no more than a few seconds); the longest reanalysis we have
encountered executed for approximately one-fifth as long as the original summarization.

Consequently, this section focuses entirely on the cost of the initial analysis pass. The first
set of results, shown in Table 8.3, were run on a SPARCstation 10 from Sun Microsystems
[114]. They measure the amount of time that MAGNIFY requires to analyze four different
applications completely. The analysis involves the construction of an SDD for every program
construct of interest — every loop, conditional construct, basic block, and procedure.

We chose these four programs to demonstrate a range of execution times:

e nasa7 — a program from the SPEC92 suite that contains the NAS Kernel benchmarks

hydro2d — also from SPEC92, an astrophysics simulation based on the hydrodynam-
ical Navier Stokes equations

psirrfan — from the first case study

amber — from the third case study

The simplest is nasa7; it is fairly short and has a simple control structure. Amber is the
most expensive program to analyze in our application test suite.

114

The leftmost column in the table indicates the level of interprocedural and symbolic analysis:

o full — reanalyze every procedure for each call site
e summarize — analyze each procedure once and use that summary at each call site
e none — perform no interprocedural analysis

e simple — use only simple symbolic expressions, as explained in the introduction to
the case studies (Section 8.1).

e complex — allow arbitrarily complex symbolic expressions

In the worst case shown here, the total time for a full analysis was a bit more than one
minute and hence is easily acceptable for an interactive environment. In fact, given that
the analysis is performed once and can have a substantial impact on the efficiency of the
resulting parallel implementation, in most cases a programmer should be willing to wait
for a much longer period of time. However, the cost might become burdensome for larger
applications. If so, we have demonstrated two simple strategies that substantially reduce
the analysis time at the price of reduced accuracy.

The first is to restrict analysis to simpler symbolic expressions. As was shown in the case
studies, in practice most transformations can be applied without the full complexity. The
code C'S next to a transformation step indicates otherwise, and appears relatively infre-
quently. However, some of the optimizations that were used to achieve peak performance
would not be possible with simple expressions.

The second option is to reduce the aggressiveness of the interprocedural analysis. Choosing
to do none at all permits very fast analysis, but prevents almost any interesting transfor-
mation — few complex scientific computations are expressed entirely within the boundaries
of one procedure. Moving to summarization is significantly more time consuming, but still
much less so than the full analysis.

The difference in cost between summarization and full interprocedural analysis is largely
determined by programming style. For the examples shown in Table 8.3 and for other codes
that we have examined, full/complex analysis costs between two and ten times as much as
summarize/simple.

If the call tree structure is uncomplicated, where there are one or a few paths to most leaf
procedures, full interprocedural analysis is not much more costly than using a summary.
The nasa7 program is an extreme example, because it does not have any procedure calls
at all except for one main routine that invokes the various kernels. Adding interprocedural
analysis costs a small amount and there is no difference between full and summary analysis
because every procedure has exactly one call site. Amber, on the other hand, is extensively
divided into procedures, so the effect is more noticeable.

Table 8.4 provides a detailed evaluation of the execution time required to build the descrip-
tors. Section 5.3 analyzed the cost of assembling symbolic descriptors in terms of a set of
average quantities (they are listed in Table 5.1 on page 40). The table in Table 8.4 gives

115

full/complex full/simple summarize/simple
hydro [psirr | amber || hydro | psirr l amber || hydro l psirr l amber
reanalyzeqyg .03 12 1 .03 12 1 .02 .09 .07
ProCayg .15s .6s .38s s 255 | .19s .06s 12s | .08s
triplesayg 5.2 8.1 5.7 5.2 8.1 5.7 5.2 7.0 5.7
eTPr_uniongyg || 7Tms 10ms | 8ms 5ms 4ms | 2ms 3ms 3ms | 2ms
numM_erprsqayg || 10.2 17.4 | 10.0 4.5 3.0 3.2 4.0 2.9 3.1
dirty_varayg 2.1 4.1 2.2 9 1.6 .8 7 1.0 .8
ops_cleang,g 2.9 6.1 4.0 2.1 2.7 9 1.1 2.4 1.0
0p-COStayg .6ms 9ms | .7ms .3ms .Sms | .2ms .2ms .bms | .2ms

Table 8.4: Breakdown of Cost of Assembling Descriptors

a value for each of those quantities under different circumstances. Some of the values are
unitless numbers; triples,,q, for example, is the average number of triples in a descriptor.
Where the value represents elapsed time, it is followed by “ms” for milliseconds or “s” for
seconds.

There are three sets of numbers: one for full analysis with complex expressions, one for full
analysis with simple expressions, and one for summary analysis with simple expressions. In
each set, the value of the average is given for the hydro2d SPEC benchmark, for PSIRRFAN,
and for Amber. We presented results earlier for the SPEC program nasa?7, to show the effect
of an unrealistically simple computational structure, but a detailed breakdown is not useful
and is not shown.

As the table demonstrates, the introduction of full analysis has its most concentrated ef-
fect on the average procedure analysis cost (procs,g). The other numbers are more sensi-
tive to the complexity of the symbolic analysis. In particular, the number of expressions
(num_exprqa,g) rises sharply because it is more often the case that an expression in the
source code has a corresponding representation. The time required to compute the union
of an expression and a descriptor (ezpr_union,,y) similarly increases. There are more dirty
variables in a computed descriptor and more operations are required to clean them. Each
symbolic operation also becomes more expensive.

116

Chapter 9

Conclusion

This dissertation describes MAGNIFY, a tool that embodies a new analysis and transforma-
tion strategy to assist programmers in parallelizing scientific applications. The key advan-
tage over existing systems is that MAGNIFY does not restrict itself to individual loop nests
with a forced synchronization step after each one. Instead, MAGNIFY is selectively guided
by the programmer in applying transformations that manage the interactions among the
major sub-computations in the application.

The most important contribution of MAGNIFY is that it allows programmers to employ
new and more powerful complex parallelization strategies that are prohibitively difficult
to implement by hand. A program that incorporates the scheduling mechanisms provided
by the run-time system bears little resemblance to its original form. Using MAGNIFY, the
programmer continues to work from the original source code and can manipulate the control
structure at a higher level. The tedious and error-prone modifications to the code are carried
out automatically.

The novel set of transformations applied by MAGNIFY relies on an accurate summary of
the memory access behavior of the application. This summary is provided by the symbolic
data descriptor, which incorporates extensive symbolic and conditional information.

Once it has revealed opportunities for concurrency and for tuning the granularity of the
application as it executes, MAGNIFY expresses the control structure in an intermediate
form used by the adaptive run-time system to make efficient scheduling decisions. We have
demonstrated that the system is effective on a number of real applications.

9.1 Observations

In building and working with MAGNIFY, we have come to three conclusions about the paral-
lelization of array-based scientific applications. The first is that there is useful information
available within an application that current techniques ignore but that is practical to un-
earth. By pursuing aggressive symbolic analysis, we have presented a strategy that discovers

117

opportunities for parallelism hidden from traditional analysis algorithms. Although sym-
bolic analysis is expensive, we have shown that it is easily practical within an interactive
system.

The second observation is that loop-level parallelism is necessary but often insufficient for
achieving very high efficiency on large numbers of processors. While it is appropriate that
automatic parallelization environments focus a great deal of attention on loops, the interac-
tions between loop nests often contain additional sources of concurrency. The case studies
demonstrate that considering only individual computations yields restricted parallelism.
In order to maintain efficiency as the number of processors is increased, it is essential to
manage the interactions among those computations as well.

Finally, MAGNIFY demonstrates that high-level restructuring transformations can be ap-
plied automatically under programmer guidance and achieve very high efficiency on large
numbers of processors. We are convinced that such techniques are necessary to exploit mas-
sively parallel machines. For many widely used application domains, individual operations
will not provide enough concurrency to use such machines efficiently.

9.2 Future Directions

There are a number of avenues of exploration that could improve both MAGNIFY and the
Delirium environment in general. One interesting possibility is to rely more heavily on user
assertions. The system could support both absolute declarations and guesses; the former
would be automatically verifiable and the latter might be used for conditional specialization
of operators. If a programmer guess about the value of a variable is found to be correct,
perhaps a more efficient parallel operation could be used instead of the one that only relies
on statically known information.

Another avenue to explore is the use of a transformation framework. Frameworks are
being actively investigated in the parallel compiler community. The idea is to develop
a systematic descriptive form that encodes many of the commonly used transformations.
Then the optimizer can efficiently search the space of transformations that can be applied
to the program, considering the effect of application order as it does so. Although the
split-based transformations are not suitable for inclusion in such a framework, MAGNIFY
could use the two strategies in tandem.

In addition, the Delirium programming environment would benefit greatly from a better
user interface. Other interactive parallel programming systems like Parafrase-2[98] and
Parascope[15] provide a graphical code browsing environment. A similar addition would
represent a major improvement in the usability of the system.

118

Bibliography

[1] Walid Abu-Sufah, David J. Kuck, and D. Lawrie. “On the Performance Enhance-
ment of Paging Systems through Program Analysis and Transformations,”. IFEE
Transactions on Computers, C-30(5):341-356, May 1981.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, Massachussetts, 1986.

[3] F. E. Allen, J. L. Carter, W. H. Harrison, P. G. Loewner, R. P. Tapscott, L. H.
Trevillyan, and M. N. Wegman. “The Experimental Compiling Systems Project,”.
Technical report, IBM Thomas J. Watson Research Center, August 1977.

[4] Frances E. Allen and John Cocke. “A Catalogue of Optimizing Transformations,”. In
R. Rustin, editor, Design and Optimization of Compilers, pages 1-30. Prentice-Hall,
Englewood Cliffs, New Jersey, 1971.

[5] John Randy Allen and Ken Kennedy. “Automatic Loop Interchange,”. In Proceedings
of the SIGPLAN Symposium on Compiler Construction, pages 233-246, Montreal,
Quebec, June 1984. ACM Press, New York, New York.

[6] Randy Allen, Donn Baumgartner, Ken Kennedy, and Allen Porterfield. “PTOOL: A
Semi-Automatic Parallel Programming Assistant,”. In K. Hwang, S. M. Jacobs, and
E. E. Swartzlander, editors, Proceedings of the International Conference on Parallel
Processing (ICPP), pages 164-170, St. Charles, Illinois, August 1986. IEEE Computer
Society Press, Washington, D.C.

[7] Randy Allen and Ken Kennedy. “Automatic Translation of FORTRAN Programs
to Vector Form,”. ACM Transactions on Programming Languages and Systems,
9(4):491-542, October 1987.

(8] Steven Anderson and Paul Hudak. “Compilation of Haskell Array Comprehensions for
Scientific Computing,”. In Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 137-149, White Plains, New
York, June 1990. ACM Press, New York, New York.

[9] A. Arakawa and V. R. Lamb. “Computation Design of the UCLA General Circulation
Model,”. Methods in Computational Physics, 17:173-265, 1977.

119

[10] Arvind and Kim P. Gostelow. “An Asynchronous Programming Language and Com-
puting Machine,”. Technical Report TR114a, Department of Information and Com-
puter Science, University of California, Irvine, December 1978.

[11] N.S. Asaithambi, Shen Zuhe, and R.E. Moore. “On Computing the Range of Values,”.
Computing, 28:225-237, 1982.

(12] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. “Compiler Transforma-
tions for High-Performance Computing,”. ACM Computing Surveys, 26(4):345-420,
December 1994.

(13] Henri Bal, Jennifer Steiner, and Andrew Tanenbaum. “Programming Languages for
Distributed Computing Systems,”. ACM Computing Surveys, 21(3):261-322, Septem-
ber 1989.

[14] Vasanth Balasundaram. “A Mechanism for Keeping Useful Internal Information in
Parallel Programming Tools: the Data Access Descriptor,”. Journal of Parallel and
Distributed Computing, 9(2):154-170, June 1990.

[15] Vasanth Balasundaram, Ken Kennedy, Ulrich Kremer, Kathryn McKinley, and Jaspal
Subhlok. “The ParaScope Editor: An Interactive Parallel Programming Tool,”. In
Proceedings of Supercomputing ’89, pages 540-550, Reno, Nevada, November 1989.
ACM Press, New York, New York.

[16] J. E. Ball. “Predicting the Effects of Optimization on a Procedure Body,”. In Proceed-
ings of the SIGPLAN Symposium on Compiler Construction, pages 214-220, Denver,
Colorado, August 1979. ACM Press, New York, New York.

(17] J. E. Ball. Program Improvement by the Selective Integration of Procedure Calls. PhD
thesis, University of Rochester, 1982.

(18] Uptal Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Pub-
lishers, Boston, Massachussetts, 1988.

[19] Uptal Banerjee. “Unimodular Transformations of Double Loops,”. In Alexandru
Nicolau, editor, Advances in Languages and Compilers for Parallel Processing, Re-
search Monographs in Parallel and Distributed Computing, chapter 10. MIT Press,
Cambridge, Massachussetts, 1991.

[20] Uptal Banerjee, S. C. Chen, D. J. Kuck, and R. A. Towle. “Time and Parallel
Processor Bounds for FORTRAN-Like Loops,”. IEEE Transactions on Computers,
C-28(9):660-670, September 1979.

[21] Utpal Banerjee. Speedup of Ordinary Programs. PhD thesis, Computer Science De-
partment, University of Illinois at Urbana-Champaign, October 1979. Technical Re-
port 79-989.

[22] Utpal Banerjee. “An Introduction to a Formal Theory of Dependence Analysis,”.
Journal of Supercomputing, 2(2):133-149, October 1988.

[23]

[24]

30]

31]

32]

120

John P. Banning. “An Efficient Way to Find the Side-Effects of Procedure Calls
and the Aliases of Variables,”. In Conference Record of the Sizth ACM Symposium
on Principles of Programming Languages (POPL), pages 29-41, San Antonio, Texas,
January 1979. ACM Press, New York, New York.

Thomas Bemmerl. “An Integrated and Portable Tool Environment for Parallel Com-
puters,”. In F. A. Briggs, editor, Proceedings of the International Conference on
Parallel Processing (ICPP), volume II, pages 50-53, University Park, Pennsylvania,
August 1988. Pennsylvania State University Press.

A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. “Distribution and Ab-
stract Types in Emerald,”. IEEE Transactions on Software Engineering, 13(1):65-76,
January 1987.

R. S. Boyer, B. Elspas, and K. N. Levitt. “SELECT — A Formal System for Testing
and Debugging Programs by Symbolic Execution,”. In Proceedings of the International
Conference on Reliable Software, pages 234-244, April 1975.

Michael Burke and Ron Cytron. “Interprocedural Dependence Analysis and Paral-
lelization,”. In Proceedings of the SIGPLAN Symposium on Compiler Construction,
pages 162-175, Palo Alto, California, June 1986. ACM Press, New York, New York.
Extended version available as IBM Thomas J. Watson Research Center Technical
ReportRC 11794.

D. Callahan, J. Cocke, and K. Kennedy. “Estimating interlock and improving balance
for pipelined architectures,”. Journal of Parallel and Distributed Computing, 5(4):334-
358, August 1988.

David Callahan, Keith Cooper, Ken Kennedy, and Linda Torczon. “Interprocedural
Constant Propagation,”. In Proceedings of the SIGPLAN Symposium on Compiler
Construction, pages 152-161, Palo Alto, California, June 1986. ACM Press, New
York, New York.

David Callahan and Ken Kennedy. “Analysis of Interprocedural Side-Effects in a
Parallel Programming Environment,”. Journal of Parallel and Distributed Computing,
5(5):517-550, October 1988.

Jeffery S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and
Richard J. Littlefield. “The Amber System: Parallel Programming on a Network
of Multiprocessors,”. In Proceedings of the Twelfth Symposium on Operating Systems
Principles (SOSP), pages 147-158, Litchfield Park, Arizona, December 1989. ACM
Press, New York, New York.

Thomas E. Cheatham, Glenn H. Holloway, and Judy A. Townley. “Symbolic Evalu-
ation and the Analysis of Programs,”. IEEE Transactions on Software Engineering,
SE-5(4):402-417, July 1979.

121

[33] Marina Chen. “A Parallel Language and Its Compilation to Multiprocessor Machines
or VLSIL,”. In Conference Record of the Thirteenth ACM Symposium on Principles
of Programming Languages (POPL), pages 131-139, St. Petersburg Beach, Florida,
January 1986. ACM Press, New York, New York.

[34] Lori Clarke and Debra Richardson. “Applications of Symbolic Evaluation,”. The
Journal of Systems and Software, 5:15-35, 1985.

[35] Lori A. Clarke. “A System to Generate Test Data and Symbolically Execute Pro-
grams,”. IEEE Transactions on Software Engineering, SE-2(3), September 1976.

[36] John Cocke and Jacob T. Schwartz. Programming Languages and Their Compilers
(Preliminary Notes). Courant Institute of Mathematical Sciences, New York Univer-
sity, New York, New York, second revised edition, April 1970.

[37] K. D. Cooper, M. W. Hall, and K. Kennedy. “Procedure cloning,”. In Proceedings
of the International Conference on Computer Languages, pages 96-105, Oakland,
California, April 1992. IEEE Computer Society Press, Los Alamitos, California.

(38] K. D. Cooper, M. W. Hall, and L. Torczon. “An experiment with inline substitution,”.
Software ~ Practice and Ezperience, 21(6):581-601, June 1991.

[39] Keith D. Cooper and Ken Kennedy. “Efficient Computation of Flow Insensitive In-
terprocedural Summary Information,”. In Proceedings of the SIGPLAN Symposium
on Compiler Construction, pages 247-258, Montreal, Quebec, June 1984. ACM Press,
New York, New York.

[40] Keith D. Cooper and Ken Kennedy. “Fast Interprocedural Alias Analysis,”. In Con-
ference Record of the Sixteenth ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 49-59, Austin, Texas, January 1989. ACM Press, New York,
New York.

[41] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. “Efficiently Computing Static Single Assignment Form and the Control De-

pendence Graph,”. ACM Transactions on Programming Languages and Systems,
13(4):451-490, October 1991.

[42] G. B. Dantzig and B. C. Eaves. “Fourier-Motzkin Elimination and its Dual with
Application to Integer Programming,”. In B. Dordrecht Roy, editor, Combinatorial

Programming: Methods and Applications, pages 93-102, Versailles, France, September
1974.

[43] K. M. Dixit. “New CPU Benchmarks from SPEC,”. In Digest of Papers, Spring
COMPCON 1992, Thirty-Seventh IEEE Computer Society International Conference,
pages 305-310, San Francisco, California, February 1992. IEEE Computer Society
Press, Los Alamitos, California.

[44] Jack Dongarra and A. R. Hind. “Unrolling loops in FORTRAN,”. Software — Practice
and Ezperience, 9(3):219-226, March 1979.

122

[45] Jack J. Dongarra and Danny C. Sorenson. “SCHEDULE: Tools for Developing and
Analyzing Parallel FORTRAN Programs,”. Technical Report 86, Argonne National
Laboratory, November 1986.

[46] John R. Ellis. Bulldog: A Compiler for VLIW Architectures. ACM Doctoral Disser-
tation Award. MIT Press, Cambridge, Massachussetts, 1986. Based on the author’s
Ph.D. thesis at Yale University, 1984.

[47] R. E. Fairley. “An Experimental Program-Testing Facility,”. IEEFE Transactions on
Software Engineering, SE-1:350-357, December 1975.

(48] Gary Fielland. “The Balance Multiprocessor System,”. IEEE Micro, 1(8):57-69,
February 1988.

[49] Joseph A. Fisher, John R. Ellis, John C. Ruttenberg, and Alexandru Nicolau. “Par-
allel Processing: A Smart Compiler and a Dumb Machine,”. In Proceedings of the
SIGPLAN Symposium on Compiler Construction, pages 37-47, Montreal, Quebec,
June 1984. ACM Press, New York, New York.

[50] J. Flower and A. Kolawa. “Express is Not Just a Message Passing System: Current
and Future Directions in Express,”. Parallel Computing, 20(4):597-614, April 1994.

[51] Ian Foster, Robert Olson, and Steven Tuecke. “Productive Parallel Programming:
The PCN Approach,”. Scientific Programming, 1:51-66, 1992.

[52] Dennis Gannon, William Jalby, and Kyle Gallivan. “Strategies for Cache and Local
Memory Management by Global Program Transformation,”. Journal of Parallel and
Distributed Computing, 5(5):587-616, October 1988.

[53] D. Gelernter and N. Carriero. “Coordination languages and their significance,”. Com-
munications of the ACM, 35(2):97-107, February 1992.

[54] David Gelernter. “Parallel Programming in Linda,”. In Proceedings of the Interna-
tional Conference on Parallel Processing, pages 255-263, August 1985.

[55] David K. Gifford and John M. Lucassen. “Integrating Functional and Imperative
Programming,”. In Proceedings of the 1986 ACM Conference on LISP and Functional
Programming, pages 28-38, Cambridge, Massachussetts, August 1986. ACM Press,
New York, New York.

[56] Gina Goff, Ken Kennedy, and Chau-Wen Tseng. “Practical Dependence Testing,”.
In Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 15-29, Toronto, Ontario, June 1991. ACM Press, New
York, New York.

[57] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. “An Execution
Profiler for Modular Programs,”. Software-Practice & Ezperience, 13:671-685, August
1983.

(58]

(63]

[64]

[65]

123

M. Haghighat and C. Polychronopoulos. “Symbolic program analysis and optimiza-
tion for parallelizing compilers,”. In U. Banerjee, D. Gelernter, A. Nicolau, and D. A.
Padua, editors, Proceedings of the Fifth International Workshop on Languages and
Compilers for Parallel Computing, volume 757 of Lecture Notes in Computer Sci-
ence, pages 538-562, New Haven, Connecticut, August 1992. Springer-Verlag, Berlin,
Germany.

M. W. Hall, K. Kennedy, and K. S. McKinley. “Interprocedural transformations
for parallel code generation,”. In Proceedings of Supercomputing ’91, pages 424—
434, Albuquerque, New Mexico, November 1991. IEEE Computer Society Press, Los
Alamitos, California.

S. L. Hantler and J. C. King. “An Introduction to Proving the Correctness of Pro-
grams,”. ACM Computing Surveys, 8:331-353, September 1976.

William Harrison. “Compiler Analysis of the Value Ranges for Variables,”. IEEE
Transactions on Software Engineering, SE-3(3):243-250, May 1977.

P. Havlak and K. Kennedy. “Experience with interprocedural analysis of array side
effects,”. In Proceedings of Supercomputing ’90, pages 952-961, New York, New York,
November 1990. IEEE Computer Society Press, Los Alamitos, California.

Kaarlo Heiskanen. Tomography with Limited Data in Fan Beam Geometry. PhD
thesis, University of California, Berkeley, February 1990.

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. “Compiler Optimizations
for FORTRAN D on MIMD Distributed Memory Machines,”. In Proceedings of Su-
percomputing ’91, pages 86-100, Albuquerque, New Mexico, November 1991. IEEE
Computer Society Press, Los Alamitos, California.

Paul Hudak and Lauren Smith. “Para-functional Programming: A Paradigm for
Programming Multiprocessor Systems,”. In Conference Record of the Thirteenth ACM
Symposium on Principles of Programming Languages (POPL), pages 243-254, St.
Petersburg Beach, Florida, January 1986. ACM Press, New York, New York.

Paul Hudak and P. Wadler. “Report on the Programming Language Haskell,”. Tech-
nical Report YALU/DCS/RR666, Computer Science Department, Yale University,
November 1988.

Susan Hummel, Edith Schonberg, and Lawrence Flynn. “Factoring: A Practical and
Robust Method for Scheduling Parallel Loops,”. In Proceedings of Supercomputing 91,
pages 610-619, Albuquerque, New Mexico, November 1991. IEEE Computer Society
Press, Los Alamitos, California.

Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. “Fine-Grained Mobil-
ity in the Emerald System,”. ACM Transactions on Computer Systems, 6(1):109-133,
1988.

124

[69] K. Kennedy, K. S. McKinley, and C.-W. Tseng. “Analysis and transformation in
an interactive parallel programming tool,”. Concurrency: Practice and Ezperience,
5(7):575-602, October 1993.

[70] James King. “Symbolic Execution and Program Testing,”. Communications of the
ACM, 19(7):385-394, July 1976.

[71] C. Koelbel and P. Mehrotra. “Programming data parallel algorithms on distributed
memory machines using Kali,”. In Proceedings of the ACM International Conference
on Supercomputing, pages 414-423, Cologne, Germany, June 1991. ACM Press, New
York, New York.

[72] C. Kruskal and A. Weiss. “Allocating Independent Subtasks on Parallel Processors,”.
IEEFE Transactions on Software Engineering, SE-11, October 1985.

[73] Monica S. Lam. “Software Pipelining: An Effective Scheduling Technique for VLIW
Machines,”. In Proceedings of the SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 318-328, Atlanta, Georgia, June 1988.
ACM Press, New York, New York.

[74] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. “The Cache Performance
and Optimization of Blocked Algorithms,”. In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, pages 63-74, Santa Clara, California, April 1991. ACM Press, New York, New
York.

[75] Thomas Lengauer and Robert Endre Tarjan. “A Fast Algorithm for Finding Domina-
tors in a Flowgraph,”. ACM Transactions on Programming Languages and Systems,
1(1):121-141, July 1979.

[76] K. Li and P. Hudak. “Memory Coherence in Shared Virtual Memory Systems,”.
In Proceedings of the Fifth Annual ACM Symposium on Principles of Distributed
Computing, pages 229-239, 1986.

[77] Zhiyuan Li and Pen-Chung Yew. “Interprocedural Analysis for Parallel Comput-
ing,”. In F. A. Briggs, editor, Proceedings of the International Conference on Parallel
Processing (ICPP), volume 2, pages 221-228, University Park, Pennsylvania, August
1988. Pennsylvania State University Press.

[78] Zhiyuan Li and Pen-Chung Yew. “Program Parallelization with Interprocedural Anal-
ysis,”. Journal of Supercomputing, 2(2):225-244, October 1988.

[79] Zhiyuan Li, Pen-Chung Yew, and C. Zhu. “Data Dependence Analysis on Multi-
Dimensional Array References,”. IEEE Transactions on Parallel and Distributed Sys-
tems, 1(1):26-34, January 1990.

[80] A. Lichnewsky and F. Thomasset. “Introducing Symbolic Problem Solving Techniques
in the Dependence Testing Phases of a Vectorizer,”. In Proceedings of the ACM

125

International Conference on Supercomputing, pages 396—406, St. Malo, France, July
1988. ACM Press, New York, New York.

(81] David B. Loveman. “Program Improvement by Source-to-Source Transformation,”.
Journal of the ACM, 1(24):121-145, January 1977.

[82] Steven Lucco. “Parallel Programming in a Virtual Object Space,”. In Proceedings
of the 1987 ACM Conference on Object Oriented Programming Systems, Languages,
and Applications (OOPSLA), Orlando, Florida, October 1987. ACM Press, New York,
New York.

[83] Steven Lucco. “A Dynamic Scheduling Method for Irregular Parallel Programs,”.
In Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 200-211, San Francisco, California, June 1992. ACM
Press, New York, New York.

[84] Steven Lucco. Adaptive Parallel Programs. PhD thesis, Computer Science Division,
University of California, Berkeley, 1994.

[85] Steven Lucco and Oliver Sharp. “Delirium: An Embedding Coordination Language,”.
In Proceedings of Supercomputing 90, pages 515-524, New York, New York, November
1990. IEEE Computer Society Press, Los Alamitos, California.

[86] Steven Lucco and Oliver Sharp. “Parallel Programming With Coordination Struc-
tures,”. In Conference Record of the Eighteenth ACM Symposium on Principles of
Programming Languages (POPL), Orlando, Florida, January 1991. ACM Press, New
York, New York.

[87] D. E. Maydan, J. L. Hennessy, and M. S. Lam. “Efficient and Exact Data Dependence
Analysis,”. In Proceedings of the SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 1-14, Toronto, Ontario, June 1991. ACM
Press, New York, New York.

[88] James R. McGraw. “The VAL Language: Description and Analysis,”. ACM Trans-
actions on Programming Languages and Systems, 4(1):44-82, January 1982.

[89] James R. McGraw. “SISAL: Streams and Iteration in a Single Assignment Language,”.
Technical Report M-146, Lawrence Livermore National Laboratory, March 1985.

[90] Michael Metcalf and John Reid. FORTRAN 90 Ezplained. Oxford University Press,
New York, 1992.

[91] Ravi Mirchandaney, Joel H. Saltz, Roger M. Smith, David M. Nicol, and Kay Crowley.
“Principles of Runtime Support for Parallel Processors,”. In Proceedings of the ACM

International Conference on Supercomputing, pages 140-152, St. Malo, France, July
1988. ACM Press, New York, New York.

(92] Y. Muraoka. Parallelism Ezposure and Ezploitation in Programs. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, February 1971. Technical Report 71-424.

126

[93] Eugene W. Myers. “A Precise Interprocedural Data Flow Algorithm,”. In Confer-
ence Record of the Eighth ACM Symposium on Principles of Programming Languages
(POPL), pages 219-230, Williamsburg, Virginia, January 1981. ACM Press, New
York, New York.

[94] Rishiyur S. Nikhil. “ID Reference Manual, version 88.0,”. Technical Report 284,
Laboratory for Computer Science, Massachussets Institute of Technology, 1988.

[95] David Notkin, Lawrence Snyder, David Socha, Mary L. Bailey, Bruce Forstall, Kevin
Gates, Ray Greenlaw, William G. Griswold, Thomas J. Holman, Richard Korry,
Gemimi Lasswell, Robert Mitchell, and Philip A. Nelson. “Experiences with Poker,”.
In Proceedings of the ACM/SIGPLAN PPEALS Symposium on Parallel Program-
ming: Ezperience with Applications, Languages, and Systems, pages 10-20, New
Haven, Connecticut, September 1988. ACM Press, New York, New York.

[96] Constantine D. Polychronopoulos. “Loop Coalescing: A Compiler Transformation for
Parallel Machines,”. In Sartaj K. Sahni, editor, Proceedings of the International Con-
ference on Parallel Processing (ICPP), pages 235-242, University Park, Pennsylvania,
August 1987. Pennsylvania State University Press.

[97] Constantine D. Polychronopoulos. Parallel Programming and Compilers. Kluwer
Academic Publishers, Boston, Massachussetts, 1988.

(98] Constantine D. Polychronopoulos, Milind Girkar, Mohammad Reza Haghighat,
Chia Ling Lee, Bruce Leung, and Dale Schouten. “Parafrase-2: An Environment for
Parallelizing, Partitioning, Synchronizing, and Scheduling Programs on Multiproces-
sors,”. In Proceedings of the International Conference on Parallel Processing (ICPP),
volume II, pages 39-48, University Park, Pennsylvania, August 1989. Pennsylvania
State University Press.

[99] Constantine D. Polychronopoulos and David J. Kuck. “Guided Self-Scheduling: A
Practical Scheduling Scheme for Parallel Supercomputers,”. IEEFE Transactions on
Computers, C-36(12):1425-1439, December 1987.

[100] Terrence W. Pratt. “The Pisces 2 Parallel Programming Environment,”. In Sar-
taj K. Sahni, editor, Proceedings of the International Conference on Parallel Process-
ing (ICPP), pages 439-445, University Park, Pennsylvania, August 1987. Pennsylva-
nia State University Press.

[101] W. Pugh. “A practical algorithm for exact array dependence analysis,”. Communi-
cations of the ACM, 35(8):102-115, August 1992.

[102] William Pugh. “Uniform Techniques for Loop Optimization,”. In Proceedings of the
ACM International Conference on Supercomputing, Cologne, Germany, June 1991.
ACM Press, New York, New York.

[103] Jonathan Rees, William Clinger, et al. “Revised® Report on the Algorithmic Language
SCHEME,”. SIGPLAN Notices, 21(12):37-79, December 1986.

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

127

S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis, and D. A. Wood.
“The Wisconsin Wind Tunnel: virtual prototyping of parallel computers,”. In 1993
ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems,
pages 48-60, Santa Clara, CA, May 1993.

Martin C. Rinard, Daniel J. Scales, and Monica S. Lam. “Jade: A High-Level
Machine-Independent Language for Parallel Programming,”. Computer, 26(6):28-38,
June 1993.

Gary Sabot and Skef Wholey. “CMAX: A FORTRAN Translator for the Connection
Machine System,”. In Proceedings of the ACM International Conference on Super-
computing, Tokyo, Japan, July 1993. ACM Press, New York, New York.

Vivek Sarkar. “Determining Average Program Execution Times and Their Variance,”.
In Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 298-312, Portland, Oregon, June 1989. ACM Press,
New York, New York.

Vivek Sarkar and John Hennessy. “Partitioning Parallel Programs for Macro
Dataflow,”. In Proceedings of the 1986 ACM Conference on LISP and Functional
Programming, pages 202-211, Cambridge, Massachussetts, August 1986. ACM Press,
New York, New York.

Vivek Sarkar and Radhika Thekkath. “A General Framework for Iteration-Reordering
Transformations,”. In Proceedings of the SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 175-187, San Francisco, California,
June 1992. ACM Press, New York, New York.

R. W. Scheifler. “An Analysis of Inline Substitution for a Structured Programming
Language,”. Communications of the ACM, 20(9):647-654, September 1977.

Oliver Sharp. “Pythia: A Parallel Compiler for Delirium,”. Master’s thesis, Computer
Science Division, University of California, Berkeley, 1991.

S. Sobek, M. Azam, and J. C. Browne. “Architectural and Language Independent
Parallel Programming: A Feasibility Demonstration,”. In F. A. Briggs, editor, Pro-
ceedings of the International Conference on Parallel Processing (ICPP), volume II,
pages 80-83, University Park, Pennsylvania, August 1988. Pennsylvania State Uni-
versity Press.

K. Sridharan, M. McShea, C. Denton, B. Eventoff, J. C. Browne, P. Newton, M. Ellis,
D. Grosshard, T. Wise, and D. Clemmer. “An Environment for Parallel Structuring
of FORTRAN Programs,”. In Proceedings of the International Conference on Parallel
Processing (ICPP), volume II, pages 98-106, University Park, Pennsylvania, August
1989. Pennsylvania State University Press.

Sun Microsystems. SPARC Architecture Manual, Version 8, 1991. Part No. 800-1399-
08.

128

[115] V. S. Sunderam. “PVM: A Framework for Parallel Distributed Computing,”. Con-
currency: Practice and Ezperience, 2(4):315-339, December 1990.

[116] Peiyi Tang and Pen-Chung Yew. “Dynamic Processor Self-Scheduling for General
Parallel Nested Loops,”. IEEE Transactions on Computers, C-39(7):919-929, July
1990.

[117] Ross A. Towle. Control and Data Dependence for Program Transformations. PhD
thesis, Computer Science Department, University of Illinois at Urbana-Champaign,
March 1976. Technical Report 76-788.

[118] Remi Triolet, Francois Irigoin, and Paul Feautrier. “Direct Parallelization of Call
Statements,”. In Proceedings of the SIGPLAN Symposium on Compiler Construction,
pages 176-185, Palo Alto, California, June 1986. ACM Press, New York, New York.

[119] United States Department of Defense. Reference Manual for the Ada Programming
Language, ANSI/MIL-STD-1815-1983 edition, February 1983.

[120] D. W. Walker. “The Design of a Standard Message Passing Interface for Distributed
Memory Concurrent Computers,”. Parallel Computing, 20(4):657-673, April 1994.

[121] P. K. Weiner and P. A. Kollman. “AMBER: Assisted model building with energy re-
finement. A general program for modeling molecules and their interactions,”. Journal
of Computational Chemistry, 2(3):287-303, Fall 1981.

[122] M. Weiss, C. R. Morgan, P. Belmont, and Z. Fang. “Dynamic Scheduling and Memory
Management for Parallel Programs,”. In F. A. Briggs, editor, Proceedings of the
International Conference on Parallel Processing (ICPP), pages 161-165, University
Park, Pennsylvania, August 1988. Pennsylvania State University Press.

[123] Michael E. Wolf and Monica S. Lam. “A Loop Transformation Theory and an Al-
gorithm to Maximize Parallelism,”. IEEE Transactions on Parallel and Distributed
Systems, 2(4):452-471, October 1991.

[124] Michael J. Wolfe. “More Iteration Space Tiling,”. In Proceedings of Supercomputing
’89, pages 655-664, Reno, Nevada, November 1989. ACM Press, New York, New York.

[125] Michael J. Wolfe. Optimizing Supercompilers for Supercomputers. Research Mono-
graphs in Parallel and Distributed Computing. MIT Press, Cambridge, Massachus-
setts, October 1989. Based on the author’s Ph.D. thesis at the University of Illinois
at Urbana-Champaign, 1982.

[126] Michael J. Wolfe and C. Tseng. “The Power Test for Data Dependence,”. IEEE
Transactions on Parallel and Distributed Systems, 3(5):591-601, September 1992.

