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Abstract

We investigate several ways to improve the performance of sparse LU factorization with partial
pivoting, as used to solve unsymmetric linear systems. To perform most of the numerical
computation in dense matrix kernels, we introduce the notion of unsymmetric supernodes. To
better exploit the memory hierarchy, we introduce unsymmetric supernode-panel updates and
two-dimensional data partitioning. To speed up symbolic factorization, we use Gilbert and
Peierls's depth-�rst search with Eisenstat and Liu's symmetric structural reductions. We have
implemented a sparse LU code using all these ideas. We present experiments demonstrating
that it is signi�cantly faster than earlier partial pivoting codes. We also compare performance
with Umfpack, which uses a multifrontal approach; our code is usually faster.
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for column j = 1 to n do

f = A(: ; j);

Symbolic factor: determine which columns of L will update f ;

for each updating column r < j in topological order do

Col-col update: f = f � f(r) � L(: ; r);

end for;

Pivot: interchange f(j) and f(k), where jf(k)j = max jf(j:n)j;

Separate L and U : U(1: j; j) = f(1: j); L(j:n; j) = f(j:n);

Divide: L(: ; j) = L(: ; j)=L(j; j);

Prune symbolic structure based on column j;

end for;

Figure 1: LU factorization with column-column updates.

1 Introduction

The problem of solving sparse symmetric positive de�nite systems of linear equations on sequential

and vector processors is fairly well understood. Normally, the solution process is broken into two

phases:

� First, symbolic factorization to determine the nonzero structure of the Cholesky factor;

� Second, numeric factorization and solution.

Elimination trees [24] and compressed subscripts [30] reduce the time and space for symbolic

factorization to a low-order term. Supernodal [5] and multifrontal [11] elimination allow the use of

dense vector operations for nearly all of the 
oating-point computation, thus reducing the symbolic

overhead in numeric factorization to a low-order term. Overall, the mega
op rates of modern sparse

Cholesky codes are nearly comparable to those of dense solvers [26].

For unsymmetric systems, where pivoting is required to maintain numerical stability, progress

has been less satisfactory. Recent research has concentrated on two basic approaches: submatrix-

based methods and column-based (or row-based) methods. Submatrix methods typically use some

form of Markowitz pivoting, in which each stage's pivot element is chosen from the uneliminated

submatrix by criteria that attempt to balance numerical quality and preservation of sparsity. Recent

submatrix codes include Ma48 from the Harwell subroutine library [10], and Davis and Du�'s

unsymmetric multifrontal code Umfpack [6].

Column methods, by contrast, typically use ordinary partial pivoting.1 The pivot is chosen from

the current column according to numerical considerations alone; the columns may be preordered

before factorization to preserve sparsity. Figure 1 sketches a generic left-looking column LU fac-

torization. Notice that the bulk of the numeric computation occurs in column-column updates, or,

to use Blas terminology [8], in sparse Axpys.

Column methods have the advantage that the preordering for sparsity is completely separate

from the factorization, just as in the symmetric case. However, symbolic factorization cannot be

1Row methods are exactly analogous to column methods, and codes of both sorts exist. We will use column

terminology; those who prefer rows may interchange the terms throughout the paper.
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separated from numeric factorization, because the nonzero structures of the factors depend on the

numerical pivoting choices. Thus column codes must do some symbolic factorization at each stage;

typically this amounts to predicting the structure of each column of the factors immediately before

computing it. (George and Ng [14, 15] described ways to obtain upper bounds on the structure of

the factors based only on the nonzero structure of the original matrix.)

An early example of such a code is Sherman's Nspiv [31] (which is actually a row code).

Gilbert and Peierls [20] showed how to use depth-�rst search and topological ordering to get the

structure of each factor column. This gives a column code that runs in total time proportional to

the number of nonzero 
oating-point operations, unlike the other partial pivoting codes. Eisenstat

and Liu [13] designed a pruning technique to reduce the amount of structural information required

for the symbolic factorization, as we describe further in Section 4. The result was that the time

and space for symbolic factorization were in practice reduced to a low order term.

In view of the success of supernodal techniques for symmetric matrices, it is natural to con-

sider the use of supernodes to enhance the performance of unsymmetric solvers. One di�culty is

that, unlike the symmetric case, supernodal structure cannot be determined in advance but rather

emerges depending on pivoting choices during the factorization.

In this paper, we generalize supernodes to unsymmetric matrices, and we give e�cient algo-

rithms for locating and using unsymmetric supernodes during a column-based LU factorization. We

describe a new code called SuperLU that uses depth-�rst search and symmetric pruning to speed

up symbolic factorization, and uses unsymmetric supernodes to speed up numeric factorization.

The rest of the paper is organized as follows. Section 2 introduces the tools we use: unsymmetric

supernodes, panels, and the column elimination tree. Section 3 describes the supernodal numeric

factorization. Section 4 describes the supernodal symbolic factorization. In Section 5, we present

experimental results: we benchmark our code on several test matrices, we compare its performance

to other column and submatrix codes, and we investigate its cache behavior in some detail. Finally,

Section 6 presents conclusions and open questions.

2 Unsymmetric supernodes

The idea of a supernode is to group together columns with the same nonzero structure, so they

can be treated as a dense matrix for storage and computation. Supernodes were originally used

for (symmetric) sparse Cholesky factorization; the �rst published results are by Ashcraft, Grimes,

Lewis, Peyton, and Simon [5]. In the factorization A = LLT , a supernode is a range (r: s) of

columns of L with the same nonzero structure below the diagonal; that is, L(r: s; r: s) is full lower

triangular and every row of L(s:n; r: s) is either full or zero.2 (Columns of Cholesky supernodes

need not be contiguous, but we will consider only contiguous supernodes.)

Ng and Peyton [26] analyzed the e�ect of supernodes in Cholesky factorization on modern

uniprocessor machines with memory hierarchies and vector or superscalar hardware. All the updates

from columns of a supernode are summed into a dense vector before the sparse update is performed.

This reduces indirect addressing, and allows the inner loops to be unrolled. In e�ect, a sequence

of column-column updates is replaced by a supernode-column update. The sup-col update can be

implemented using a call to a standard dense Blas-2 matrix-vector multiplication kernel. This

idea can be further extended to supernode-supernode updates, which can be implemented using

a Blas-3 dense matrix-matrix kernel. This can reduce memory tra�c by an order of magnitude,

2We use Matlab notation for integer ranges and submatrices: r: s or (r: s) is the vector of integers (r; r+1; : : : ; s).

If I and J are vectors of integers, then A(I;J) is the submatrix of A with rows whose indices are from I and with

columns whose indices are from J . A(:; J) abbreviates A(1 : n; J). nnz(A) denotes the number of nonzeros in A.
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T1 T2 T3 T4

Columns have same structure Rows have same structure Dense

Figure 2: Four possible types of unsymmetric supernodes.

because a supernode in the cache can participate in multiple column updates. Ng and Peyton

reported that a sparse Cholesky algorithm based on sup-sup updates typically runs 2.5 to 4.5 times

as fast as a col-col algorithm. Indeed, supernodes have become a standard tool in sparse Cholesky

factorization [5, 26, 27, 32].

To sum up, supernodes as the source of updates help because:

1. The inner loop (over rows) has no indirect addressing. (Sparse Blas-1 is replaced by dense

Blas-1.)

2. The outer loop (over columns in the supernode) can be unrolled to save memory references.

(Blas-1 is replaced by Blas-2.)

Supernodes as the destination of updates help because:

3. Elements of the source supernode can be reused in multiple columns of the destination super-

node to reduce cache misses. (Blas-2 is replaced by Blas-3.)

Supernodes in sparse Cholesky can be determined during symbolic factorization, before the

numeric factorization begins. However, in sparse LU, the nonzero structure cannot be predicted

before numeric factorization, so we must identify supernodes on the 
y. Furthermore, since the

factors L and U are no longer transposes of each other, we must generalize the de�nition of a

supernode.

2.1 De�nition of unsymmetric supernodes

We considered several possible ways to generalize the symmetric de�nition of supernodes to un-

symmetric factorization. We de�ne F = L + U � I to be the �lled matrix containing both L

and U .

T1. Same row and column structures: A supernode is a range (r: s) of columns of L and rows

of U , such that the diagonal block F (r: s; r: s) is full, and outside that block all the columns

of L in the range have the same structure and all the rows of U in the range have the same

structure. T1 supernodes make it possible to do sup-sup updates, realizing all three bene�ts.
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T1 T2 T3 T4

median 0.236 0.345 0.326 0.006

mean 0.284 0.365 0.342 0.052

Table 1: Fraction of nonzeros not in �rst column of supernode.

T2. Same column structure in L: A supernode is a range (r: s) of columns of L with full triangular

diagonal block and the same structure below the diagonal block. T2 supernodes allow sup-col

updates, realizing the �rst two bene�ts.

T3. Same column structure in L, full diagonal block in U : A supernode is a range (r: s) of columns

of L and U , such that the diagonal block F (r: s; r: s) is full, and below the diagonal block

the columns of L have the same structure. T3 supernodes allow sup-col updates, like T2. In

addition, if the storage for a supernode is laid out as for a two-dimensional array (for Blas-2

or Blas-3 calls), T3 supernodes do not waste any space in the diagonal block of U .

T4. Same column structure in L and U : A supernode is a range (r: s) of columns of L and U

with identical structure. (Since the diagonal is nonzero, the diagonal block must be full.)

T4 supernodes allow sup-col updates, and also simplify storage of L and U .

T5. Supernodes of ATA: A supernode is a range (r: s) of columns of L corresponding to a Cholesky

supernode of the symmetric matrix ATA. T5 supernodes are motivated by George and

Ng's observation [14] that (with suitable representations) the structures of L and U in the

unsymmetric factorization PA = LU are contained in the structure of the Cholesky factor

of ATA. In unsymmetric LU, these supernodes themselves are sparse, so we would waste time

and space operating on them. Thus we do not consider them further.

Figure 2 is a schematic of de�nitions T1 through T4.

Supernodes are only useful if they actually occur in practice. The occurrence of symmetric

supernodes is related to the clique structure of the chordal graph of the Cholesky factor, which arises

because of �ll during the factorization. Unsymmetric supernodes seem harder to characterize, but

they also are related to dense submatrices arising from �ll. We measured the supernodes according

to each de�nition for 126 unsymmetric matrices from the Harwell-Boeing sparse matrix library [9]

under various column orderings. Table 1 shows, for each de�nition, the fraction of nonzeros of L

that are not in the �rst column of a supernode; this measures how much row index storage is

saved by using supernodes. Corresponding values for symmetric supernodes for the symmetric

Harwell-Boeing structural analysis problems usually range from about 0.5 to 0.9. Larger numbers

are better, indicating larger supernodes. We reject T4 supernodes as being too rare to make up for

the simplicity of their storage scheme. T1 supernodes allow Blas-3 updates, but as we will see in

Section 3.2 we can get most of their cache advantage with the more common T2 or T3 supernodes

by using sup-panel updates. Thus we conclude that either T2 or T3 is the de�nition of choice. Our

code uses T2, which gives slightly larger supernodes than T3 at a small extra cost in storage.

Figure 3 shows a sample matrix, and the nonzero structure of its factors with no pivoting. Using

de�nition T2, this matrix has four supernodes: f1; 2g, f3g, f4; 5; 6g, and f7; 8; 9; 10g. For example,

in columns 4, 5, and 6 the diagonal blocks of L and U are full, and the columns of L all have

nonzeros in rows 8 and 9. By de�nition T3, the matrix has �ve supernodes: f1; 2g, f3g, f4; 5; 6g,

f7g, and f8; 9; 10g. Column 7 fails to join f8; 9; 10g as a T3 supernode because u78 is zero.
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Figure 3: A sample matrix and its LU factors. Diagonal elements a55 and a88 are zero.

2.2 Storage of supernodes

A standard way to lay out storage for a sparse matrix is a one-dimensional array of nonzero values

in column major order, plus integer arrays giving row numbers and column starting positions. We

use this layout for both L and U , but with a slight modi�cation: we store the entire square diagonal

block of each supernode as part of L, including both the strict lower triangle of values from L and

the upper triangle of values from U . We store this square block as if it were completely full (it is

full in T3 supernodes, but its upper triangle may contain zeros in T2 supernodes). This allows us

to address each supernode as a two-dimensional array in calls to Blas routines. In other words, if

columns (r: s) form a supernode, then all the nonzeros in F (r:n; r: s) are stored as a single dense

two-dimensional array. This also lets us save some storage for row indices: only the indices of

nonzero rows outside the diagonal block need be stored, and the structures of all columns within

a supernode can be described by one set of row indices. This is similar to the e�ect of compressed

subscripts in the symmetric case [30].

We represent the part of U outside the supernodal blocks with a standard sparse structure: the

values are stored by columns, with a companion integer array the same size to store row indices;

another array of n integers indicates the start of each column.

Figure 4 shows the structure of the factors in the example from Figure 3, with sk denoting

a nonzero in the k-th supernode and uk denoting a nonzero in the k-th column of U outside the

supernodal block. Figure 5 shows the storage layout. (We omit the indexing vectors that point to

the beginning of each supernode and the beginning of each column of U .)

2.3 The column elimination tree

Since our de�nition requires the columns of a supernode to be contiguous, we should get larger

supernodes if we bring together columns of L with the same nonzero structure. But the column

ordering is �xed, for sparsity, before numeric factorization; what can we do?

In symmetric Cholesky factorization, the so-called fundamental supernodes can be made con-

tiguous by permuting the matrix (symmetrically) according to a postorder on its elimination tree [4].

This postorder is an example of what Liu calls an equivalent reordering [24], which does not change

the sparsity of the factor. The postordered elimination tree can also be used to locate the super-
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Figure 4: Supernodal structure (by de�nition T2) of the factors of the sample matrix.
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7



nodes before the numeric factorization.

We proceed similarly for the unsymmetric case. Here the appropriate analog of the symmetric

elimination tree is the column elimination tree, or column etree for short. The vertices of this

tree are the integers 1 through n, representing the columns of A. The column etree of A is the

(symmetric) elimination tree of the column intersection graph of A, or equivalently the elimination

tree of ATA provided there is no cancellation in computing ATA. See Gilbert and Ng [19] for

complete de�nitions. The column etree can be computed from A in time almost linear in the

number of nonzeros of A by a variation of an algorithm of Liu [24].

The following theorem says that the column etree represents potential dependencies among

columns in LU factorization, and that (for strong Hall matrices) no stronger information is obtain-

able from the nonzero structure of A. Note that column i updates column j in LU factorization if

and only if uij 6= 0.

Theorem 1 (Column Elimination Tree) [19] Let A be a square, nonsingular, possibly unsym-

metric matrix, and let PA = LU be any factorization of A with pivoting by row interchanges. Let

T be the column elimination tree of A.

1. If vertex i is an ancestor of vertex j in T , then i � j.

2. If lij 6= 0, then vertex i is an ancestor of vertex j in T .

3. If uij 6= 0, then vertex j is an ancestor of vertex i in T .

4. Suppose in addition that A is strong Hall (that is, A cannot be permuted to a nontrivial block

triangular form). If vertex j is the parent of vertex i in T , then there is some choice of values

for the nonzeros of A that makes uij 6= 0 when the factorization PA = LU is computed with

partial pivoting.

Just as a postorder on the symmetric elimination tree brings together symmetric supernodes,

we expect a postorder on the column etree to bring together unsymmetric supernodes. Thus, before

we factor the matrix, we compute its column etree and permute the matrix columns according to

a postorder on the tree. We now show that this does not change the factorization in any essential

way.

Theorem 2 Let A be a matrix with column etree T . Let � be a permutation such that whenever

�(i) is an ancestor of �(j) in T , we have i � j. Let P be the permutation matrix such that

� = P � (1:n)T . Let �A = PAPT .

1. �A = A(�; �).

2. The column etree �T of �A is isomorphic to T ; in particular, relabeling each node i of �T as �(i)

yields T .

3. Suppose in addition that �A has an LU factorization without pivoting, �A = �L �U . Then PT �LP

and PT �UP are respectively unit lower triangular and upper triangular, so A = (PT �LP )(PT �UP )

is also an LU factorization.

Remark: Liu [24] attributes to F. Peters a result similar to part (3) for the symmetric positive

de�nite case, concerning the Cholesky factor and the (usual, symmetric) elimination tree.
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Proof: Part (1) is immediate from the de�nition of P . Part (2) follows from Corollary 6.2 in

Liu [24], with the symmetric structure of the column intersection graph of our matrix A taking

the place of Liu's symmetric matrix A. (Liu exhibits the isomorphism explicitly in the proof of his

Theorem 6.1.)

Nowwe prove part (3). We have a
�(i)�(j) = �aij for all i and j. Write L = PT �LP and U = PT �UP ,

so that l�(i)�(j) = �lij and u�(i)�(j) = �uij . Then A = LU ; we need only show that L and U are

triangular.

Consider a nonzero u�(i)�(j) of U . In the triangular factorization �A = �L �U , element �uij is equal

to u
�(i)�(j) and is therefore nonzero. By part (3) of Theorem 1, then, j is an ancestor of i in �T .

By the isomorphism between �T and T , this implies that �(j) is an ancestor of �(i) in T . Then

it follows from part (1) of Theorem 1 that �(j) � �(i). Thus every nonzero of U is on or above

the diagonal, so U is upper triangular. A similar argument shows that every nonzero of L is on

or below the diagonal, so L is lower triangular. The diagonal elements of L are a permutation of

those of �L, so they are all equal to 1. 2

Since the triangular factors of A are just permutations of the triangular factors of PAPT , they

have the same sparsity. Indeed, they require the same arithmetic to compute; the only possible

di�erence is the order of updates. If addition for updates is commutative and associative, this

implies that with partial pivoting (i; j) is a legal pivot in �A i� (�(i); �(j)) is a legal pivot in

A. In 
oating-point arithmetic, the di�erent order of updates could conceivably change the pivot

sequence. Thus we have the following corollary.

Corollary 1 Let � be a postorder on the column elimination tree of A, let P1 be any permutation

matrix, and let P2 be the permutation matrix with � = P2 � (1:n)
T . If P1AP

T

2 = LU is an LU

factorization, then so is (PT

2 P1)A = (PT

2 LP2)(P
T

2 UP2). In exact arithmetic, the former is an LU

factorization with partial pivoting of APT

2 if and only if the latter is an LU factorization with partial

pivoting of A.

This corollary says that an LU code can permute the columns of its input matrix by postorder

on the column etree, and then fold the column permutation into the row permutation on output.

Thus our SuperLU code has the option of returning either four matrices P1, P2, L, and U (with

P1AP
T

2 = LU), or just the three matrices PT

2 P1, P
T

2 LP2, and P
T

2 UP2, which are a row permutation

and two triangular matrices. The advantage of returning all four matrices is that the columns of

each supernode are contiguous in L, which permits the use of a Blas-2 supernodal triangular solve

for the forward-substitution phase of a linear system solver. The supernodes are not contiguous in

PT

2 LP2.

2.4 Relaxed supernodes

We have explored various ways of relaxing the denseness of a supernode. We experimented with both

T2 and T3 supernodes, and found that T2 supernodes (those with only nested column structures

in L) give slightly better performance.

We observe that, for most matrices, the average size of a supernode is only about 2 to 3 columns

(though a few supernodes are much larger). A large percentage of supernodes consist of only a

single column, many of which are leaves of the column etree. Therefore we have devised a scheme

to merge groups of columns at the fringe of the etree into arti�cial supernodes regardless of their

row structures. A parameter r controls the granularity of the merge. Our merge rule is: node i

is merged with its parent node j when the subtree rooted at j has at most r nodes. In practice,
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1. for column j = 1 to n do

2. f = A(: ; j);

3. Symbolic factor: determine which supernodes of L will update f ;

4. Determine whether j belongs to the same supernode as j � 1;

5. for each updating supernode (r: s) < j in topological order do

6. Apply supernode-column update to column j:

7. f(r: s) = L(r: s; r: s)�1 � f(r: s);

8. f(s+ 1:n) = f(s + 1:n)� L(s+ 1:n; r: s) � f(r: s);

9. end for;

10. Pivot: interchange f(j) and f(k), where jf(k)j = max jf(j:n)j;

11. Separate L and U : U(1: j; j) = f(1: j); L(j:n; j) = f(j:n);

12. Divide: L(: ; j) = L(: ; j)=L(j; j);

13. Prune symbolic structure based on column j;

14. end for;

Figure 6: LU factorization with supernode-column updates.

the best values of r are generally between 4 and 8, and yield improvements in running time of 5%

to 15%.

Arti�cial supernodes are a special case of relaxed supernodes, which Ashcraft and Grimes have

used in the context of multifrontal methods for symmetric systems [4]. Ashcraft and Grimes allow

a small number of nonzeros in the structure of any supernode, thus relaxing the condition that

the columns must have strictly nested structures. It would be possible to use this idea in the

unsymmetric code as well, though we have not experimented with it. Relaxed supernodes could

be constructed either on the 
y (by relaxing the nonzero count condition described in Section 4.3

below), or by preprocessing the column etree to identify small subtrees that we would merge into

supernodes.

3 Supernodal numeric factorization

Now we show how to modify the column-column algorithm to use supernode-column updates and

supernode-panel updates. This section describes the numerical computation involved in the up-

dates. Section 4 describes the symbolic factorization that determines which supernodes update

which columns, and also the detection of boundaries between supernodes.

3.1 Supernode-column updates

Figure 6 sketches the supernode-column algorithm. The only di�erence from the column-column

algorithm is that all the updates to a column from a single supernode are done together. Consider

a supernode (r: s) that updates column j. The coe�cients of the updates are the values from a

segment of column j of U , namely U(r: s; j). The nonzero structure of such a segment is particularly

simple: all the nonzeros are contiguous, and follow all the zeros (as proved in Corollary 2 below).

Thus, if k is the index of the �rst nonzero row in U(r: s; j), the updates to column j from supernode

(r: s) come from columns k through s. Since the supernode is stored as a dense matrix, these
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updates can be performed by a dense lower triangular solve (with the matrix L(k: s; k: s)) and a

dense matrix-vector multiplication (with the matrix L(s+1:n; k: s)). As described in Section 4, the

symbolic phase determines the value of k, that is, the position of the �rst nonzero in the segment

U(r: s; j).

The advantages of using supernode-column updates are similar to those in the symmetric

case [26]. E�cient Blas-2 matrix-vector kernels can be used for the triangular solve and matrix-

vector multiply. Furthermore, all the updates from the supernodal columns can be collected in

a dense vector before doing a single scatter into the target vector. This reduces the amount of

indirect addressing.

3.2 Supernode-panel updates

We can improve the supernode-column algorithm further on machines with a memory hierarchy

by changing the data access pattern. The data we are accessing in the inner loop (lines 5{9 of

Figure 6) include the destination column j and all the updating supernodes (r: s) to the left of

column j. Column j is accessed many times, while each supernode (r: s) is used only once. In

practice, the number of nonzero elements in column j is much less than that in the updating

supernodes. Therefore, the access pattern given by this loop provides little opportunity to reuse

cached data. In particular, the same supernode (r: s) may be needed to update both columns j and

j + 1. But when we factor the (j + 1)-st column (in the next iteration of the outer loop), we will

have to fetch supernode (r: s) again from memory, instead of from cache (unless the supernodes are

small compared to the cache).

To exploit memory locality, we factor several columns (sayw of them) at a time in the outer loop,

so that one updating supernode (r: s) can be used to update as many of the w columns as possible.

We refer to these w consecutive columns as a panel, to di�erentiate them from a supernode; the

row structures of these columns may not be correlated in any fashion, and the boundaries between

panels may be di�erent from those between supernodes. The new method requires rewriting the

doubly nested loop as the triple loop shown in Figure 7. This is analogous to loop tiling techniques

used in optimizing compilers to improve cache behavior for two-dimensional arrays with regular

stride. It is also somewhat analogous to the supernode-supernode updates that Ng and Peyton [26],

and Rothberg and Gupta [27] have used in symmetric Cholesky factorization.

The structure of each supernode-column update is the same as in the supernode-column algo-

rithm. For each supernode (r: s) to the left of column j, if ukj 6= 0 for some r � k � s, then

uij 6= 0 for all k � i � s. Therefore, the nonzero structure of the panel of U consists of dense

column segments that are row-wise separated by supernodal boundaries, as in Figure 7. Thus, it is

su�cient for the symbolic factorization algorithm to record only the �rst nonzero position of each

column segment. As detailed in Section 4.4, symbolic factorization is applied to all the columns in

a panel at once, outside the numeric-factorization loop over updating supernodes.

In dense factorization, the entire supernode-panel update in lines 3{7 of Figure 7 would be

implemented as two Blas-3 calls: a dense triangular solve with w right-hand sides, followed by

a dense matrix-matrix multiply. In the sparse case, this is not possible, because the di�erent

supernode-column updates begin at di�erent positions k within the supernode, and the submatrix

U(r: s; j: j+ w � 1) is not dense. Thus the sparse supernode-panel algorithm still calls the level-2

Blas. However, we get the similar cache bene�ts as the level-3 Blas, at the cost of doing the

loop reorganization ourselves. Thus we sometimes call the kernel of this algorithm a \Blas-21
2
"

method.

In the double loop nest (3{7), the ideal circumstance is that all w columns in the panel require
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1. for column j = 1 to n step w do

2. Symbolic factor: determine which supernodes will update any of L(: ; j: j+ w � 1);

3. for each updating supernode (r: s) < j in topological order do

4. for column jj = j to j + w � 1 do

5. Apply supernode-column update to column jj;

6. end for;

7. end for;

8. Inner factorization: apply the sup-col algorithm to the panel;

9. end for;

j:n J

W

j j+w-1

row j

sr

r

s

U

L

L

J J

J J

Figure 7: The supernode-panel algorithm, with column-wise blocking. J = 1: j � 1.
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updates from supernode (r: s). Then this supernode will be used w times before it is forced out of

the cache. There is a trade-o� between the value of w and the size of cache. For this scheme to

work e�ciently, we need to ensure that the nonzeros in the w columns do not cause cache thrashing.

That is, we must keep w small enough that all the data accessed in this doubly nested loop �t in

cache. Otherwise, the cache cross-interference between the source supernode and the destination

panel can o�set the bene�t of the new algorithm.

3.2.1 Outer and inner factorization

At the end of the supernode-panel update (line 7), columns j through j + w � 1 of L and U

have received all their updates from columns to the left of j. We call this the outer factorization.

What remains is to apply updates that come from columns within the panel. This amounts to

forming the LU factorization of the panel itself (in columns (j: j + w � 1), and rows (j:n)). This

inner factorization is performed by the supernode-column algorithm, almost exactly as shown in

Figure 6. The inner factorization includes a columnwise symbolic factorization just as in the

supernode-column algorithm. The inner factorization also includes the supernode identi�cation,

partial pivoting, and symmetric structure reduction for the entire algorithm.

3.2.2 Reducing cache misses by row-wise blocking

Our �rst experiments with the supernode-panel algorithm showed speedups for some medium-sized

problems of around 20{30%. However, the improvement for large matrices was often only a few

percent. We now study the reasons and remedies for this.

To implement loops (3{7) of Figure 7, we �rst expand the nonzeros of the panel columns

of A into an n by w full working array, called the SPA (for sparse accumulator [18]). This allows

random access to the entries of the active panel. A temporary array stores the results of the Blas

operations, and the updates are scattered into the SPA. At the end of panel factorization, the data

in the SPA are copied into storage for L and U . Although increasing the panel size w gives more

opportunity for data reuse, it also increases the size of the active data set that must �t into cache.

The supernode-panel update loop accesses the following data:

� the nonzeros in the updating supernode L(r:n; r: s).

� the SPA data structure, consisting of an n by w full array and a temporary store of size n.

By instrumenting the code, we found that the working sets of large matrices are much larger than

the cache size. Hence, cache thrashing limits performance.

We experimented with a scheme suggested by Rothberg [28], in which the SPA has only as many

rows as the number of nonzero rows in the panel (as predicted by symbolic factorization), and an

extra indirection array of size n is used to address the SPA. Unfortunately, the cost incurred by

double indirection is not negligible, and this scheme was not as e�ective as the two-dimensional

blocking method we now describe.

We implemented a row-wise blocking scheme on top of the column-wise blocking in the supernode-

panel update. The 2-D blocking adds another level of looping between the two loops in lines 3 and 4

of Figure 7. This partitions the supernodes (and the SPA structure) into block rows. Then each

block row of the updating supernode is used for up to w partial matrix-vector multiplies, which

are pushed all the way through into the SPA before the next block row of the supernode is ac-

cessed. The active data set accessed in the inner loops is thus much smaller than in the 1-D scheme.

The 2-D blocking algorithm is organized as in Figure 8. The key performance gains come from
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1. for j = 1 to n step w do

2. � � �

3. for each updating supernode (r: s) < j in topological order do

4. Apply triangular solves to A(r: s; j: j+ w � 1) using L(r: s; r: s);

5. for each row block B in L(s+ 1:n; r: s) do

6. for jj = j to j + w � 1 do

7. Multiply B � U(r: s; jj), and scatter into SPA(: ; jj);

8. end for;

9. end for;

10. end for;

11. � � �

12 end for;

Figure 8: The supernode-panel algorithm, with 2-D blocking.

the loops (5{9), where each row block is reused as much as possible before the next row block is

brought into the cache. The innermost loop is still a dense-matrix vector multiply, performed by a

Blas-2 kernel.

3.2.3 Combining 1-D and 2-D blocking

The 2-D blocking works well when the rectangular supernodal matrix L(r:n; r: s) is large in both

dimensions. If all of L(r:n; r: s) can �t into cache, then the row-wise blocking gives no bene�t,

but still incurs overhead for setting up loop variables, skipping the empty loop body, and so on.

This overhead can be nearly 10% for some of the sparser problems in our test suite. Thus we have

devised a hybrid update algorithm that uses either the 1-D or 2-D partitioning scheme, depending

on the size of each updating supernode. The decision is made at run-time, as shown in Figure 9.

The overhead is limited to the test at line 4 of Figure 9. It turns out that this hybrid scheme works

better than either 1-D or 2-D codes for many problems. Therefore, this is the algorithm that we

use in the performance analysis in Section 5. In Section 5.5.3 we will discuss in more detail what

we mean by \large" in the test on line 4.

4 Symbolic factorization

Symbolic factorization is the process that determines the nonzero structure of the triangular factors

L and U from the nonzero structure of the matrix A. This in turn determines which columns of L

update each column j of the factors (namely, those columns r for which urj 6= 0), and also which

columns of L can be combined into supernodes.

Without numeric pivoting, the complete symbolic factorization can be performed before any

numeric factorization. Partial pivoting, however, requires that the numeric and symbolic factor-

izations be interleaved. The supernode-column algorithm performs symbolic factorization for each

column just before it is computed, as described in Section 4.1. The supernode-panel algorithm

performs symbolic factorization for an entire panel at once, as described in Section 4.4.
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1. for j = 1 to n step w do

2. � � �

3. for each updating supernode (r: s) < j in topological order do

4. if (r: s) is large then /* use 2-D blocking */

5. Apply triangular solves to A(r: s; j: j+ w � 1) using L(r: s; r: s);

6. for each row block B in L(s+ 1:n; r: s) do

7. for jj = j to j + w � 1 do

8. Multiply B �U(r: s; jj), and scatter into SPA(: ; jj);

9. end for;

10. end for;

11. else /* use 1-D blocking */

12. for jj = j to j + w � 1 do

13. Apply triangular solve to A(r: s; jj);

14. Multiply L(s+ 1:n; r: s) �U(r: s; jj), and scatter into SPA(: ; jj);

15. end for;

16. end if;

17. end for;

18. � � �

19. end for;

Figure 9: The supernode-panel algorithm, with both 1-D and 2-D blocking.

4.1 Column depth-�rst search

From the numeric factorization algorithm, it is clear that the structure of column F (: ; j) depends

on the structure of column A(: ; j) of the original matrix and on the structure of L(: ; J), where

J = 1: j�1. Indeed, F (: ; j) has the same structure as the solution vector for the following triangular

system [20]:

@
@
@
@
@
@
@
@
@
@

L(: ; J) I

F (: ; j) = A(: ; j)

A straightforward way to compute the structure of F (: ; j) from the structures of L(: ; J) and

A(: ; j) is to simulate the numerical computation. A less expensive way is to use the following

characterization in terms of paths in the directed graph of L(: ; J).

For any matrixM , the notation i
M
! j means that there is an edge from i to j in the directed

graph of M , that is, mij 6= 0. The notation i
M
=) j means that there is a directed path from i to j

in the directed graph of M . Such a path may have length zero; that is, i
M
=) i always holds.

Theorem 3 [16] fij is nonzero (equivalently, i
F
! j) if and only if i

L(:;J)
=) k

A
! j for some k � i.
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This result implies that the symbolic factorization of column j can be obtained as follows.

Consider the nonzeros in A(: ; j) as a subset of the vertices of the directed graph G = G(L(: ; J)T),

which is the reverse of the directed graph of L(: ; J). The nonzero positions of F (: ; j) are then given

by the vertices reachable by paths from this set in G. We use the graph of LT here because of the

convention that edges are directed from rows to columns. Since L is actually stored by columns,

our data structure gives precisely the adjacency information for G. Therefore, we can determine

the structure of column j of L and U by traversing G from the set of starting nodes given by the

structure of A(: ; j).

The traversal of G determines the structure of U(: ; j), which in turn determines the columns

of L that will participate in updates to column j in the numerical factorization. These updates

must be applied in an order consistent with a topological ordering of G. We use depth-�rst search to

perform the traversal, which makes it possible to generate a topological order (speci�cally, reverse

postorder) on the nonzeros of U(: ; j) as they are located [20].

Another consequence of the path theorem is the following corollary. It says that if we divide

each column of U into segments, one per supernode, then within each segment the column of U

just consists of a consecutive sequence of nonzeros. Thus we need only keep track of the position

of the �rst nonzero in each segment.

Corollary 2 Let (r: s) be a supernode (of either type T2 or T3) in the factorization PA = LU .

Suppose ukj is nonzero for some j with r � k � s. Then uij 6= 0 for all i with k � i � s.

Proof: Let k � i � s. Since ukj 6= 0, we have k
L(:;J)
=)

A
�! j by Theorem 3. Now lik is in the

diagonal block of the supernode, and hence is nonzero. Thus i
L(:;J)
�! k, so i

L(:;J)
=)

A
�! j, whence uij

is nonzero by Theorem 3. 2

4.2 Pruning the symbolic structure

We can speed up the depth-�rst search traversals by using a reduced graph in place of G, the

reverse of the graph of L(: ; J). We have explored this idea in a series of papers [12, 13, 17]. Any

graph H can be substituted for G, provided that i
H
=) j if and only if i

G
=) j. The traversals are

more e�cient if H has fewer edges; but any gain in e�ciency must be traded o� against the cost

of computing H .

An extreme choice of H is the elimination dag [17], which is the transitive reduction of G, or

the minimal subgraph of G that preserves paths. However, the elimination dag is expensive to

compute. The symmetric reduction [12] is a subgraph that has (in general) fewer edges than G but

more edges than the elimination dag, and that is much less expensive to compute. The symmetric

reduction takes advantage of symmetry in the structure of the �lled matrix F ; if F is completely

symmetric, it is just the symmetric elimination tree. The symmetric reduction of L(: ; J) is obtained

by removing all nonzeros lrs for which ltsust 6= 0 for some t < min(r; j). Eisenstat and Liu [13] give

an e�cient method to compute the symmetric reduction during symbolic factorization, and demon-

strate experimentally that it signi�cantly reduces the total factorization time with an algorithm

that does column-column updates.

Our supernodal code uses symmetric reduction to speed up its symbolic factorization. The

example in Figure 10 illustrates symmetric reduction in the presence of supernodes. We use S to

represent the supernodal structure of L(: ; J)T , and R to represent the symmetric reduction of S. It

is this R that we use in our code. Note that the edges of the graph of R are directed from columns

of L to rows of L.
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Figure 10: Supernodal and symmetrically reduced structures.
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Figure 11: One step of symbolic factorization in the reduced structure.

In the �gure, the small dot \�" indicates an entry in S that was pruned from R by symmetric

reduction. The (8; 2) entry was pruned due to the symmetric nonzero pair (6; 2) and (2; 6). The

�gure shows the current state of the reduced structure based on the �rst seven columns of the �lled

matrix.

It is instructive to follow this example through one more column to see how symbolic factoriza-

tion is carried out in the reduced supernodal structure. Consider the symbolic step for column 8.

Suppose a28 and a38 are nonzero. The other nonzeros in column 8 of the factor are generated by

paths in the reduced supernodal structure (we just show one possible path for each nonzero):

8
A
T

! 2
R
! 6;

8
A
T

! 3
R
! 8;

8
A
T

! 2
R
! 6

R
! 9;

8
A
T

! 3
R
! 10;
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Figure 11 shows the reduced supernodal structure before and after column 8. In column 8 of A,

the original nonzeros are shown as \�" and the �ll nonzeros are shown as \�". Once the structure

of column 8 of U is known, more symmetric reduction is possible. The entry l10;3 is pruned due to

the symmetric nonzeros in l83 and u38. Also, l96 is pruned by l86 and u68. Figure 11 shows the new

structure.

The supernodal symbolic factorization relies on the path characterization in Theorem 3 and on

the path-preserving property of symmetric reduction. In e�ect, we use the modi�ed path condition

i
A
T

!
R
=) j

on the symmetrically-reduced supernodal structure R of L(: ; J)T .

4.3 Detecting supernodes

Since supernodes consist of contiguous columns of L, we can decide at the end of each symbolic

factorization step whether the new column j belongs to the same supernode as column j � 1.

For T2 supernodes, the test is straightforward. During symbolic factorization, we test whether

L(: ; j) � L(: ; j � 1) (where the containment applies to the set of nonzero indices). At the end of

the symbolic factorization step, we test whether nnz(L(: ; j)) = nnz(L(: ; j � 1)) � 1. Column j

joins column j � 1's supernode if and only if both tests are passed.

T3 supernodes also require the diagonal block of U to be full. To check this, it su�ces to check

whether the single element urj is nonzero, where r is the �rst column index of the supernode. This

follows from Corollary 2: urj 6= 0 implies that uij 6= 0 for all r � i � j. Indeed, we can even

omit the test L(: ; j) � L(: ; j � 1) for T3 supernodes. If urj 6= 0, then uj�1;j 6= 0, which means

that column j � 1 updates column j, which implies L(: ; j)� L(: ; j� 1). Thus we have proved the

following.

Theorem 4 Suppose a T3 supernode begins with column r and extends at least through column j�1.

Column j belongs to this supernode if and only if urj 6= 0 and nnz(L(: ; j)) = nnz(L(: ; j � 1))� 1.

For either T2 or T3 supernodes, it is straightforward to implement the relaxed versions discussed

in Section 2.4. Also, since the main bene�ts of supernodes come when they �t into the cache, we

impose a maximum size for a supernode.

4.4 Panel depth-�rst search

The supernode-panel algorithm consists of an outer factorization (applying updates from super-

nodes to the active panel) and an inner factorization (applying supernode-column updates within

the active panel). Each has its own symbolic factorization. The outer symbolic factorization hap-

pens once per panel, and determines two things: (1) a single column structure, which is the union

of the structures of the panel columns, and (2) which supernodes update each column of the panel,

and in what order. This is the information that the supernode-panel update loop in Figure 7 needs.

The inner symbolic factorization happens once for each column of the panel, interleaved column

by column with the inner numeric factorization. In addition to determining the nonzero structure

of the active column and which supernodes within the panel will update the active column, the

inner symbolic factorization is also responsible for forming supernodes (that is, for deciding whether

the active column will start a new supernode) and for symmetric structural pruning. The inner

symbolic factorization is, therefore, exactly the supernode-column symbolic factorization described

above.
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Figure 12: The supernodal directed graph corresponding to L(1: 7; 1: 7)T .

The outer symbolic factorization must determine the structures of columns j to j + w� 1, i.e.,

the structure of the whole panel, and also a topological order for U(1: j; j: j+w� 1) en masse. To

this end, we developed an e�cient panel depth-�rst search scheme, which is a slight modi�cation

of the column DFS. The panel depth-�rst search algorithm maintains a single postorder DFS list

for all w columns of the panel. Let us call this the PO list, which is initially empty. The algorithm

invokes the column depth-search procedure for each column from j to j + w � 1. In the column

DFS, each time the search backtracks from a vertex, that vertex is appended to the PO list. In

the panel DFS, however, the vertex is appended to the PO list only if it is not already on the list.

This gives a single list that includes every position that is nonzero in any panel column, just once;

and the entire list is in (reverse) topological order. Thus the order of updates speci�ed by the list

is acceptable for each of the w individual panel columns.

We illustrate the idea in Figure 12, using the sample matrix from Figure 11 and a panel of width

two. The �rst seven columns have been factored, and the current panel consists of columns 8 and 9.

In the panel, nonzeros of A are shown as \�" and �ll in F is shown as \�". The depth-�rst search

for column 8 starts from vertices 2 and 3. After that search is �nished, the panel postorder list is

PO = (6; 2; 3). Now the depth-�rst search for column 9 starts from vertices 6 and 7 (not 4, since 6 is

the representative vertex for the supernode containing column 4). This DFS only appends 7 to the

PO list, because 6 is already on the list. Thus, the �nal list for this panel is PO = (6; 2; 3; 7). The

postorder list of column 8 is (6; 2; 3) and the postorder list of column 9 is (6; 7), which are simply

two sublists of the panel PO list. The topological order is the reverse of PO, or (7; 3; 2; 6). In the

loop of line 3 of Figure 7, we follow this topological order to schedule the updating supernodes and

perform numeric updates to columns of the panel.

5 Evaluation

In this section, we apply our algorithms to practical matrices from various sources. We will compare

the performance of SuperLU, our supernode-panel code, with its predecessors, and with other

approaches to sparse LU factorization.
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Matrix Name s Rows Nonzeros Nonzeros/row
1 Memplus .983 17758 99147 5.6
2 Gemat11 .002 4929 33185 6.7
3 Rdist1 .062 4134 9408 2.3
4 Mcfe .709 765 24382 31.8
5 Sherman5 .780 3312 20793 6.3
6 Lnsp3937 .869 3937 25407 6.5
7 Lns3937 .869 3937 25407 6.5
8 Sherman3 1.000 5005 20033 4.0
9 Jpwh991 .947 991 6027 6.1
10 Orani678 .073 2529 90158 35.6
11 Orsreg1 1.000 2205 14133 6.4
12 Saylr4 1.000 3564 22316 6.3
13 Shyy161 .769 76480 329762 4.3
14 Venkat01 1.000 62424 1717792 27.5
15 Goodwin .642 7320 324772 44.4
16 Inaccura 1.000 16146 1015156 62.9
17 Dense1000 1.000 1000 1000000 1000
18 Raefsky3 1.000 21200 1488768 70.2
19 Wang3 1.000 26064 177168 6.8
20 Raefsky4 1.000 19779 1316789 66.6
21 Vavasis3 .001 41092 1683902 41.0

Table 2: Benchmark matrices. Structural symmetry s is de�ned to be the fraction of the nonzeros

matched by nonzeros in symmetric locations. None of the matrices are numerically symmetric.

5.1 Experimental setup

Table 2 lists 21 matrices with some characteristics of their nonzero structures. The matrices are

sorted in increasing order of flops=nnz(F ), the ratio of the number of 
oating point operations to

the number of nonzeros nnz(F ) in the factored matrix F = U + L � I . The reason for this order

will be described in more detail in section 5.5. Some of the matrices are from the Harwell-Boeing

collection [9]. Most of the larger matrices are from the ftp site maintained by Tim Davis of the

University of Florida.3 Those matrices are as follows. Goodwin is a �nite element matrix in

a nonlinear solver for a 
uid mechanics problem, provided by Ralph Goodwin of the University

of Illinois at Urbana-Champaign. Memplus is a circuit simulation matrix from Steve Hamm of

Motorola. Inaccura, Raefsky3/4, and Venkat01 were provided by Horst Simon of Silicon

Graphics. Raefsky3 is from a 
uid structure interaction turbulence problem. Raefsky4 is from

a buckling problem for a container model. Venkat01 comes from an implicit 2-D Euler solver for

an unstructured grid in a 
ow simulation. Wang3 is from solving a coupled nonlinear PDE system

in a 3-D (30� 30� 30 uniform mesh) semiconductor device simulation, as provided by Song Wang

of the University of New South Wales, Sydney. Shyy161 is derived from a direct, fully-coupled

method for solving the Navier-Stokes equations for viscous 
ow calculations, provided by Wei Shyy

of the University of Florida. Vavasis3 is an unsymmetric augmented matrix for a 2-D PDE with

highly varying coe�cients [33]. Dense1000 is a dense 1000� 1000 matrix.

In this paper, we do not address the performance of preordering for sparsity. Matrices 1, 14 and

19 were symmetrically permuted by Matlab's symmetric minimum degree ordering on A+AT . For

3ftp.cis.u
.edu, in pub/umfpack/matrices
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IBM RS/6000-590
Fraction of time Fraction of 
ops

Matrix nnz(F ) nnz(F )
nnz(A) #
ops (106) Seconds Mflops in numeric in Dgemv

1 140388 1.4 1.8 0.59 2.98 19% 78%
2 93370 2.8 1.6 0.27 5.97 34% 81%
3 338624 36.0 12.9 0.98 13.04 41% 85%
4 118717 4.8 11.7 0.44 24.91 58% 95%
5 281876 13.6 30.4 0.94 32.30 55% 92%
6 534229 21.0 59.6 2.01 28.77 55% 95%
7 559043 22.0 66.4 2.19 30.04 55% 96%
8 433376 21.6 61.7 1.41 44.41 51% 87%
9 161334 26.7 23.5 0.62 37.34 56% 94%
10 623806 6.9 103.9 4.47 22.97 63% 97%
11 453112 32.1 76.6 1.46 52.81 57% 89%
12 774310 34.7 144.7 2.78 51.67 56% 90%
13 7635773 23.2 1578.5 28.89 54.58 52% 91%
14 12785320 7.4 2730.9 40.06 66.62 59% 92%
15 3109585 9.6 665.6 12.66 51.75 65% 92%
16 10016266 9.9 4126.1 68.65 60.17 62% 97%
17 1000000 1.0 666.7 5.74 116.06 70% 95%
18 17631651 11.8 12128.7 112.27 109.03 74% 96%
19 13287108 74.9 14559.4 116.94 124.50 78% 98%
20 26714111 20.3 31307.1 257.88 120.47 79% 98%
21 49687658 29.5 89865.1 789.65 113.81 80% 98%

Table 3: Performance of SuperLU on an IBM RS/6000-590.

all other matrices, the columns were permuted by Matlab's minimum degree ordering of ATA [18].

We performed the numerical experiments on an IBM RS/6000-590. The CPU clock rate is

66.5 MHz. The processor has two branch units, two �xed-point units, and two 
oating-point units,

which can all operate in parallel if there are no dependencies. In particular, each FPU can perform

two operations (a multiply and an add or subtract) at every cycle. Thus, the peak 
oating-point

performance is 266 Mflops. The data cache is of size 256 KB with 256-byte lines, and is 4-way

set-associative with LRU replacement policy. There is a separate 32 KB instruction cache. The

size of the main memory is 768 MB. The SuperLU algorithm is implemented in C; we use the AIX

xlc compiler with -O3 optimization.

5.2 Performance of the code

Table 3 presents the performance of the SuperLU code on this system. All 
oating point compu-

tations are in double precision.

In the inner loops of our sparse code, we call the two dense Blas-2 routines Dtrsv (triangular

solve) and Dgemv (matrix-vector multiply) provided in the IBM ESSL library [23], whose Blas-

3 matrix-matrix multiply routine (Dgemm) achieves about 250 Mflops when dimension of the

matrix is larger than 60 [1]. In our sparse algorithm, we �nd that Dgemv typically accounts

for more than 80% of the 
oating-point operations. As shown in the last column of Table 3,

this percentage is higher than 95% for many matrices. Our measurements reveal that for typical

dimensions arising from the benchmark matrices,Dgemv achieves roughly 235Mflops if the data
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IBM RS/6000-590
GP GP-Mod SupCol-F SupCol-C SuperLU

Matrix xlf -O3 xlf -O3 xlf -O3 xlc -O3 xlc -O3
1 1.00 1.48 1.18 1.05 .68
2 1.00 1.69 1.23 1.29 1.00
3 1.00 2.75 2.60 2.24 1.94
4 1.00 3.44 4.31 3.52 3.52
5 1.00 3.43 5.04 4.57 4.23
6 1.00 3.39 4.21 3.86 3.54
7 1.00 3.39 4.29 3.85 3.55
8 1.00 3.54 6.19 5.99 5.27
9 1.00 3.61 4.71 4.21 4.48
10 1.00 3.55 3.88 2.98 3.10
11 1.00 3.64 5.98 5.86 5.98
12 1.00 3.67 6.39 5.99 6.30
13 1.00 3.65 6.71 6.46 5.67
14 1.00 3.86 8.49 8.33 8.87
15 1.00 3.84 6.91 6.46 7.16
16 1.00 4.17 7.55 7.24 7.94
17 1.00 4.21 10.22 9.78 14.54
18 1.00 4.30 11.70 11.54 14.00
19 1.00 4.34 12.32 12.23 15.75
20 1.00 4.35 12.18 11.89 15.39
21 1.00 4.79 13.11 13.12 15.63

Geometric
Mean 1.00 3.46 5.56 5.19 5.29

Table 4: Speedups achieved by each enhancement over the GP column-column code, on the RS/6000.

are from cache. If the data are fetched from main memory, this rate can drop by a factor of 2 or 3.

The Blas speed is clearly an upper bound on the overall factorization rate. However, because

symbolic manipulation usually takes a nontrivial amount of time, this bound could be much higher

than the actual sparse code performance. Table 3 also presents the percentage of the total execution

time spent in numeric computation. For matrices 1 and 2, the program spent less than 35% of its

time in the numeric part. Compared to the others, these two matrices are sparser, have less �ll, and

have smaller supernodes, so our supernodal techniques are less applicable. Matrix 2 is also highly

unsymmetric, which makes the symmetric structural reduction technique less e�ective. However,

it is important to note that the execution times for these two matrices are small.

For larger and denser matrices such as 17{21, we achieve between 110 and 125 Mflops, which

is about half of the machine peak. These matrices take much longer to factor, which could be a

serious bottleneck in an iterative simulation process. Our techniques are successful in reducing the

solution times for this type of problem.

For a dense 1000 � 1000 matrix, our code achieves 116 Mflops. This compares with 168

Mflops reported in the Lapack manual [2] on a matrix of this size, and 236 Mflops reported in

the online Linpack benchmark �les [25].
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Sparc 20
GP GP-Mod SupCol-F SupCol-C SuperLU

Matrix f77 -O3 f77 -O3 f77 -O3 cc -xO3 cc -xO3
1 1.00 1.19 .98 1.25 .75
2 1.00 1.32 1.26 1.71 1.09
3 1.00 1.64 1.75 1.65 1.58
4 1.00 1.80 2.36 2.16 2.32
5 1.00 1.82 2.74 2.74 2.81
6 1.00 1.82 2.49 2.36 2.33
7 1.00 1.84 2.58 2.47 2.27
8 1.00 1.90 3.11 3.19 3.09
9 1.00 1.85 2.41 2.39 2.58
10 1.00 1.86 2.08 1.78 1.81
11 1.00 1.89 3.02 3.09 3.20
12 1.00 1.95 3.03 3.09 3.32
13 1.00 2.08 3.48 3.47 3.55
15 1.00 1.89 3.05 3.02 3.91
17 1.00 1.96 3.56 3.13 4.89

Geometric
Mean 1.00 1.77 2.38 2.40 2.39

Table 5: Speedups achieved by each enhancement over the GP column-column code, on a Sparc 20. The
CPU is rated at 60.0 MHz, and there is a 1 MB external cache. This system does not provide a Blas library,
so we use our own C Blas routines. Some large problems could not be tested because of physical memory
constraints.

5.3 Comparison with previous row or column LU algorithms

In this section, we compare the performance of SuperLU with several of its predecessors, including

the partial pivoting code by Gilbert and Peierls [20] (referred to as GP), Eisenstat and Liu's

improved GP code that incorporates symmetric reduction [13] (referred to as GP-Mod), and

two versions of our supernode-column code (referred to as SupCol-F and SupCol-C). GP,

GP-Mod, and SupCol-F are written in Fortran; SupCol-C and SuperLU are written in C. We

translated SupCol-F literally into C to produce SupCol-C; no changes in algorithms or data

structures were made. SupCol-F, SupCol-C and SuperLU use ESSL Blas. (Matlab contains

a C implementation of GP [18], which we did not test here.)

Tables 4 through 6 present the speedups achieved by various enhancements over the originalGP

column-column code on high-end workstations from three vendors. Thus, for example, a speedup

of 2 means that the running time was half that of GP. The numbers in the last row of each

table are obtained by averaging the speedups in the corresponding column. We make the following

observations about the results on the IBM RS/6000:

� Symmetric structure pruning (GP-Mod) is very e�ective in reducing the graph search time.

This signi�cantly decreases the symbolic time in the GP code. It achieves speedup in all

problems.

� Supernodes (SupCol) restrict the search to the supernodal graph, and allow the numeric

kernels to employ dense Blas-2 operations. The e�ects are not as dramatic as the pruning

technique. For some matrices, such as 1{3, the results are not as good as GP-Mod. This is
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DEC Alpha
GP GP-Mod SupCol-F SupCol-C SuperLU

Matrix f77 -O2 f77 -O2 f77 -O2 cc -O2 cc -O2
1 1.00 1.19 .96 .98 .55
2 1.00 1.31 1.10 1.10 .78
3 1.00 1.65 1.76 1.37 1.27
4 1.00 1.90 2.20 2.12 2.09
5 1.00 1.81 2.60 2.63 2.79
6 1.00 1.84 2.38 2.25 2.35
7 1.00 1.81 2.32 2.24 2.33
8 1.00 1.84 2.33 3.23 3.54
9 1.00 1.92 2.65 2.46 2.79
10 1.00 1.80 2.05 1.61 1.85
11 1.00 1.82 3.04 3.09 2.64
12 1.00 1.78 3.15 3.13 4.19
13 1.00 1.80 3.33 3.43 3.84
15 1.00 1.77 2.84 2.82 4.19
17 1.00 1.83 4.47 3.60 6.45

Geometric
Mean 1.00 1.72 2.38 2.24 2.40

Table 6: Speedups achieved by each enhancement over the GP column-column code, on a DEC Alpha. The
CPU is rated at 200 MHz, and there is a 512 KB external cache. We use the Blas routines from DEC's
DXML library. Some large problems could not be tested because of physical memory constraints.

because the supernodes are often small, especially for sparser problems.

� Supernode-panel updates (SuperLU) reduce the cache miss rate and exploit dense substruc-

tures in the factor F . For problems without much structure, the gain is often o�set by various

overheads. However, the bene�ts become evident for larger or denser problems.

� The Fortran compiler produces slightly faster code than the C compiler (for SupCol) on

both the IBM and DEC machines. The di�erence is about 5% to 15% for small problems,

and is less for large problems where most of the time is spent in Blas routines. We have

seen smaller runtime di�erences between the codes generated by the SunOS 5.4 Fortran and

C compilers on the Sun Sparc 20.

Matrix 10 is an exception: the Fortran code is about 25% faster on the IBM RS/6000, 17%

faster on the Sun Sparc 20, and 27% faster on the DEC Alpha.

As more and more sophisticated techniques are introduced, the overhead cost of the code is also

increased to some extent. This overhead can show up prominently in small problems. For example,

on the IBM RS/6000, GP-Mod works better than any of the subsequent codes for problems 1{3.

5.4 Comparison with other approaches to LU factorization

In this section we compare our supernode-panel algorithm with other popular algorithms to solve

the unsymmetric linear system Ax = b, using the matrices from our benchmark suite. The right-

hand side vector b is constructed so that the solution is xi = 1 + i=n.

24



1 3 5 7 9 11 13 15 17 19 21
10−1

100

101

Matrix number

(a) time(UMF) / time(LU)

1 3 5 7 9 11 13 15 17 19 21
10−1

100

101

Matrix number

(b) fill(UMF) / fill(LU)

1 3 5 7 9 11 13 15 17 19 21
10−1

100

101

Matrix number

(c) mem(UMF) / mem(LU)

1 3 5 7 9 11 13 15 17 19 21
10−10

10−5

100

105

1010

1015

Matrix number

(d) condition number and error

Figure 13: Comparison of SuperLU algorithm with unsymmetric multifrontal algorithm imple-

mented in Umfpack on an IBM RS/6000-590, with Blas routines from the ESSL library. In (d),

we plot the estimated condition number �1(A) labeled with \x", err(Umfpack)=(�1(A) � �) la-

beled with \o", and err(SuperLU)=(�1(A) � �) labeled with \+". These plots do not show Matrix

8 and 13, because their condition numbers are larger than 1=�.
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In particular, we consider the unsymmetric multifrontal algorithm implemented in Umfpack

version 1.0 [7]. Umfpack is implemented in Fortran, so we use the AIX xlf compiler with -O3

optimization, and link with the IBM ESSL library for Blas calls. We use the parameter settings

for Umfpack suggested by its authors [6].

Figure 13 compares several aspects of the two implementations. We plot the ratio of each

individual measure from Umfpack to that of our SuperLU code. The memory requirement only

counts the amount of memory actually used, excluding any external fragmentation.

Neither code is always faster than the other. For six problems, Umfpack is faster than

SuperLU, by at most a factor of two. For the rest of problems, SuperLU is faster than Umfpack.

For seven out of the 21 matrices, SuperLU runs more than twice as fast as Umfpack.

Figure 13(d) compares the solution accuracy and stability of the two approaches, without using

iterative re�nement. SuperLU consistently delivers more accurate solutions, because Umfpack

uses a threshold pivoting strategy to trade o� stability and sparsity. In particular, for stable

algorithms we expect the normalized error to be

kx� ~xk1

k~xk1
�

1

�1(A) � �
= �(1) :

But very frequently, this error from Umfpack is much larger than �(1). For Matrix 19, the

backward error is as large as 105 �. To mitigate the instability, we experimented with working-

precision iterative re�nement in Umfpack, and found that in many cases one iteration can reduce

the backward error to a level comparable to that of SuperLU. The re�nement process normally

takes less than 2% of the factorization time. We recommend that Umfpack incorporate this

inexpensive technique to guarantee backward stability. The iteration can be terminated when the

scaled residual k~rk1=kAk1k~xk1 is acceptable, say less than machine precision �.

In our SuperLU software, equilibration and re�nement are options for the user. We compute

the componentwise relative backward error ! = maxi(j~rji=(jAjj~xj + jbj)i), and stop re�ning when

! � � or ! does not decrease by at least a factor of two. See Arioli, Demmel, and Du� [3] for

details. In practice, most of the test matrices take only one or two re�nement steps to meet this

criterion.

The time for SuperLU does not include the time to reorder the columns. Umfpack is less

sensitive to the initial column ordering, because it dynamically permutes the columns for spar-

sity. Surprisingly, Figure 13(b) seems to suggest that for large matrices the dynamic �ll-reducing

approach used in Umfpack is less e�ective than the minimum degree ordering algorithms.

5.5 Understanding cache behavior and parameters

In this subsection, we analyze the behavior of SuperLU in detail. We wish to understand when

our algorithm is signi�cantly faster than other algorithms. We would like performance-predicting

variable(s) that depend on \intrinsic" properties of the problem, such as the sparsity structure,

rather than algorithmic details and machine characteristics. We begin by analyzing the speedups

of our enhanced codes over the base GP implementation. Figures 14, 15 and 16 depict the speedups

and the characteristics of the matrices, with panel size w = 8.

5.5.1 How much cache reuse can we expect?

As discussed in Section 3.2, the supernode-panel algorithm gets its primary gains from improved

data locality, by reusing a cached supernode several times. To understand how much cache reuse
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Figure 14: Speedups of each enhancement over GP code, on the RS/6000

we can hope for, we computed two statistics: ops-per-nz and ops-per-ref . After de�ning these

statistics carefully, we discuss which more successfully measures reuse.

Ops-per-nz is simply calculated as #flops=nnz(F ), the total number of 
oating point operations

per nonzero in the �lled matrix F . If there were perfect cache behavior, i.e., one cache miss per

data item (ignoring the e�ect of cache line size), then ops-per-nz would exactly measure the amount

of work per cache miss. In reality, ops-per-nz is an upper bound on the reuse. Note that ops-per-nz

depends only on the fact that we are performing Gaussian elimination with partial pivoting, not on

algorithmic or machine details. Ops-per-nz is a natural measure of potential data reuse, because it

has long been used to distinguish among the di�erent levels of Blas.

In contrast, ops-per-ref provides a lower bound on cache reuse, and does depend on the details of

the SuperLU algorithm. Ops-per-ref looks at each supernode-panel update separately, and assumes

that all the associated data is outside the cache before beginning the update. This pessimistic

assumption limits the potential reuse to twice the panel size, 2w.

Now we de�ne ops-per-ref more carefully. Consider a single update from supernode (r: s)

to panel (j: j + w � 1). Depending on the panel's nonzero structure, each entry in the updating

supernode is used to update from 0 to w panel columns. Thus each entry in the updating supernode

participates in between 0 and 2w 
oating point operations during a sup-panel update. We assume

that the supernode entry is brought into cache from main memory exactly once for the entire sup-

panel update, if it is used at all. Thus, during a single sup-panel update, each entry accessed in

the updating supernode accounts for between 2 and 2w operations per reference. The ops-per-ref

statistic is the average of this number over all entries in all sup-panel updates. It measures how

many times the average supernode entry is used each time it is brought into cache from main

memory. Ops-per-ref ranges from 2 to 2w, with larger values indicating better cache use. If there is

little correlation between the row structures of the columns in each panel, ops-per-ref will be small;

if there is perfect correlation, as in a dense matrix, it will be close to 2w.
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Figure 15: Some characteristics of the matrices.
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Figure 16: Some intrinsic properties of the matrices.
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Now we describe how we compute the average ops-per-ref for the entire factorization. For each

updating supernode (r: s) and each panel (j: j + w � 1) (see Figure 7), de�ne

ksmin = min
j�jj<j+w;r�i�s

fijA(i; jj) 6= 0g:

Then nnz(L(r:n; ksmin: s)) entries of the supernode are referenced in the sup-panel update. The

dense triangular solve in column jj of the update takes (s � ks + 1)(s � ks) 
ops, where ks =

minr�i�sfijA(i; jj) 6= 0g. The matrix-vector multiply uses 2(s � ks + 1)nnz(L(s + 1:n; s)) 
ops.

We count both additions and multiplications. For all panel updates, we sum the memory reference

counts and the 
op counts, then divide the second sum by the �rst to arrive at an average ops-per-

ref.

Now we compare the predictive powers of ops-per-nz (Figure 15 (a)) and ops-per-ref (Fig-

ure 15 (b)) in predicting speedup (Figure 14). The superiority of ops-per-nz is evident; it is much

more strongly correlated with the speedup of SuperLU than ops-per-ref . This is good news, be-

cause ops-per-nz measures the best case reuse, and ops-per-ref the worst case. But neither statistic

captures all the variation in the performance. In future work, we hope to use a hardware monitor

to measure the exact cache reuse rate. (This data could also be obtained from a simulator, but the

matrices we are interested in are much too large for a simulator to be viable.)

5.5.2 How large are the supernodes?

The supernode size determines the size of the matrix to be passed to matrix-vector multiply and

other Blas-2 routines in our algorithm. Figure 16(a) shows the average number of columns in

the supernodes of the matrices, after amalgamating the relaxed supernodes at the bottom of the

column etree. The average size is usually quite small.

More important than average size is the distribution of supernode sizes. In sparse Gaussian

elimination, more �ll tends to occur in the later stages. Usually there is a large percentage of small

supernodes corresponding to the fringe of the column etree, even after amalgamation. Larger super-

nodes appear at the higher levels of the tree. In Figure 17 we plot the histograms of the supernode

size for four matrices chosen to exhibit a wide range of behavior. Matrix 1 has 16378 supernodes,

all but one of which have less than 12 columns; the single large supernode, with 115 columns, is the

dense submatrix at the bottom right corner of F . Matrix 15 has more supernodes distributed over

a wider spectrum; it has 13 supernodes with 54 to 59 columns. This matrix gives greater speedups

over the non-supernodal codes.

Figure 16 also plots three other properties of each matrix: structural symmetry, dimension, and

density. None of them have any signi�cant correlation with the performance. The e�ectiveness of

symmetric reduction depends on F being structurally symmetric, which depends on the choice of

pivots. So, structural symmetry of A does not gives any useful information.

We note that the speedups achieved by the dense 1000� 1000 problem (matrix 17) show the

best performance gains, because this matrix has large supernodes and exhibits ideal data reuse. It

achieves speedups of 49% to 79% on the three platforms. The gains for any sparse matrix should

be smaller than this.

5.5.3 Blocking parameters

In our hybrid blocking algorithm (Figure 9), we need to select appropriate values for the parameters

that describe the two-dimensional data blocking: panel width w, maximum supernode size t, and

row block size b. The key considerations are that the active data we access in the inner loop (the
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(b) Matrix 2: 4929 rows, 2002 supernodes
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(c) Matrix 3: 4134 rows, 2099 supernodes
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(d) Matrix 15: 7320 rows, 893 supernodes
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Figure 17: Distribution of supernode size for four matrices. The number at the bottom of each

bar is the smallest supernode size in that bin. The mark \o" at the bottom of a bin indicates zero

occurrences. Arti�cial supernodes of granularity r = 4 are used (see Section 2.4).
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Figure 18: (a) Contour plot of Dgemv performance. (b) Contour plot of working set in 2-D algorithm.

working set) should �t into the cache, and that the matrices presented to the Blas-2 routineDgemv

should be the sizes and shapes for which that routine is optimized. Here we describe in detail the

methodology we used to choose parameters for the IBM RS/6000.

� Dgemv optimization. As indicated in the last column of Table 3, the majority of the


oating-point operations are in the matrix-vector multiply. The dimensions (m;n) of the

matrices in calls to Dgemv vary greatly depending on the supernode dimensions. Very often,

the supernode is a tall and skinny matrix, that is,m� n. We measured the Dgemv Mflops

rate for various m and n, and present a contour plot in the (m;n) plane in Figure 18(a).

Each contour represents a constant Mflops rate. The dashed curve represents mn = 32K

double 
oats, or a cache capacity of 256 KB. In the optimum region, we achieve more than

200 Mflops; outside this region, performance drops either because the matrices exceed the

cache capacity, or because the column dimension n is too small.

� Working set. By studying the data access pattern in the inner loop of the 2-D algorithm,

lines (7{9) in Figure 9, we �nd that the working set size is the following function of w, t,

and b, as shown in Figure 19:

WS = b� t| {z }
row block from supernode

+ (t+ b)� w| {z }
vectors in matrix-vector multiply

+ b� w| {z }
part of SPA structure

:

In Figure 18(b), we �x two w values, and plot the contour lines for WS = 32K in the

(t; b) plane. If the point (t; b) is below the contour curve, then the working set can �t in a

cache of 32K double 
oats, or 256 kilobytes.

Based on this analysis, we use the following rules to set the parameters.
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Figure 19: Parameters of the working set in the 2-D algorithm.

First we choose w, the width of the panel in columns. Larger panels mean more reuse of cached

data in the outer factorization, but also mean that the inner factorization (by the sup-col algorithm)

must be applied to larger matrices. We �nd empirically that the best choice for w is between 8

and 16. Performance tends to degrade for larger w.

Next we choose b, the number of rows per block, and t, the maximum number of columns in

a supernode. Recall that b and t are upper bounds on the row and column dimensions of the call

to Dgemv. We choose t = 120 and b � 200, which guarantees that the working set �ts in cache

(per Figure 18(b)), and that we can hope to be near the optimum region of Dgemv performance

(per Figure 18(a)).

Recall that b is relevant only when we use row-wise blocking, that is, when the test \if (r: s) is

large" succeeds at line 4 of Figure 9. This implies that the 2-D scheme adds overhead only if the

updating supernode is small. In the actual code, the test for a large supernode is

if ncol > 40 and nrow > b then the supernode is large,

where nrow is the number of dense rows below the diagonal block of the supernode, ncol is the

number of actual dense columns of the supernode updating the panel. In practice, this choice

usually gives the best performance.

The best choice of the parameters w, t, and b depends on the machine architecture and on the

Blas implementation, but it is largely independent of the matrix structure. Thus we do not expect

each user of SuperLU to choose values for these parameters. Instead, our library code provides an

inquiry function that returns the parameter values, much in the spirit of the Lapack environment

routine Ilaenv. The machine-independent defaults will often give satisfactory performance. The

methodology we have described here for the RS/6000 can serve as a guide for users who want to

modify the inquiry function to give optimal performance for particular computer systems.

6 Remarks

6.1 The rest of the package

In addition to the LU factorization kernel described in this paper, we have developed a suite of

supporting routines to solve linear systems. The complete SuperLU package includes condition

number estimation, iterative re�nement of solutions, and componentwise error bounds for the

re�ned solutions. These are all based on the dense matrix routines in Lapack [2]. In addition,
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SuperLU includes a Matlab mex-�le interface, so that our factor and solve routines can be called

as alternatives to those built into Matlab.

6.2 E�ect of the matrix on performance

The supernodal approach reduces both symbolic and numeric computation time. But unsymmet-

ric supernodes tend to be smaller than supernodes in symmetric matrices. The supernode-panel

method is most e�ective for large problems with enough dense submatrices to use dense block

operations and exploit data locality. In this regard, the dense 1000� 1000 example illustrates the

largest possible gains. Dense blocks are necessary for top performance in all modern factorization

algorithms, whether left-looking, right-looking, multifrontal, or any other style.

Our goal has been to develop sparse LU software that works well for problems with a wide

range of characteristics. It is harder to achieve high 
op rates on problems that are very sparse

and have no structure to exploit; it is easier on problems that are denser or become so during

elimination. Fortunately, the \hard" matrices by this de�nition generally take many fewer 
oating

point operations than the \easy" ones, and hence take much less time to factor. Our combination

of 1-D and 2-D blocking techniques gives a good performance compromise for all the problems we

have studied, and with particularly good performance on the largest problems.

6.3 E�ect of the computer system on performance

We have studied several characteristics of the computing platform that can a�ect the overall perfor-

mance, including the Blas-2 speed and the cache size. Based on these factors, we can systematically

make a good choice of the blocking parameters in the code so as to maximize the speed of the nu-

meric kernel. Although we have empirical evidence only for the IBM RS/6000, we expect this

methodology to be applicable to other systems (and Blas implementations) as well.

6.4 Possible enhancements

We are considering several possible enhancements to the SuperLU code. One is to switch to

a dense LU code at a late stage of the factorization. It would be di�cult to implement this in

a supernode-column code, because that code is strictly left-looking, and only one column of the

matrix is factored at a time. However, this would be much easier in the supernode-panel code. At

the time we decide to switch, we simply treat the rest of the matrix columns (say d of them) as one

panel, and perform the panel update to A(1:n; n�d+1:n). (One might want to split this panel up

for better cache behavior.) Then the reduced matrix at the bottom right corner can be factored by

calling an e�cient dense code, for example, from Lapack [2]. The dense code does not spend time

on symbolic structure prediction and pruning, thus streamlining the numeric computation. We

believe that, for large problems, the �nal dense submatrix will be big enough to make the switch

bene�cial. For example, for a 2-D k � k square grid problem ordered by nested dissection, the

dimension of the �nal dense submatrix is 3
2
k � 3

2
k; for a 3-D k � k � k cubic grid, it is 3

2
k2 � 3

2
k2,

if pivots come from the diagonal.

To enhance SuperLU's performance on small problems, it would be possible to make a choice

at runtime whether to use supernode-panel, supernode-column, or column-column updates. The

choice would depend on the size of the matrix A and the expected properties of its supernodes; it

might be based on an e�cient symbolic computation of the density and supernode distribution of

the Cholesky factor of ATA [21].
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Could we make supernode-panel panel updates more e�ective by improving the similarity be-

tween the row structures of the columns in a panel? We believe this could be accomplished with a

more sophisticated column permutation strategy. We could partition the nodes of the column etree

into connected subtrees, grouping together nodes that have common descendants (and therefore

the potential for updates from the same supernodes). Then the overall column order would be a

two-level postorder, �rst within the subtrees (panels) and then among them. Again, it might be

possible to use information about the Cholesky supernodes of ATA to guide this grouping.

We are also developing a parallel sparse LU algorithm based on SuperLU. In this context, we

target large problems, especially those too big to be solved on a uniprocessor system. Therefore,

we plan to parallelize the 2-D blocked supernode-panel algorithm, which has very good asymptotic

behavior for large problems. The 2-D block-oriented layout has been shown to scale well for parallel

sparse Cholesky factorization [22, 29].
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