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Abstract

In many image processing applications, it is often important to accurately expand
images without loss of clarity. Traditional methods such as bilinear and bicubic spline
interpolation tend to smooth out edge regions and result in blurry images. In this work,
we propose two methods for image interpolation: a multiresolution approach for enhancing
isolated edges, and a texture analysis approach for interpolating non-isolated edges such as
those found in a texture image.

Edges and textures are among the most important features of an image. They have,
however, very different characteristics, suggesting that they should be enhanced using dif
ferent techniques. For edges, we propose a novel and theoretically elegant approach which
extrapolates the high resolution information needed to sharpen the image. This informa
tion is obtained by estimating the wavelet transform of the higher resolution based on the
evolution of wavelet transform extrema across the scales. The motivation for this algorithm
comes from the fact that wavelet transform modulus maxima capture the sharp variations
of a signal, and that their evolution across the scales characterizes the local regularity of
the signal. By identifying three constraints that the higher resolution component needs
to obey, we enhance the reconstructed image through alternating projections onto the sets
defined by these constraints. Results show that the enhanced image is superior to those
interpolated by traditional methods.

For interpolating textures, we have mainly only a theoretical approach, while the prac
tical implementation is being investigated. We propose to decompose texture fields into
deterministic and purely indeterministic components, and interpolate the components sep
arately. The deterministic component is extracted by detecting periodic components using
a Fourier-based method, and its interpolation is done by estimating the trend of the periodic
component and extrapolating to the higher frequencies. The indeterministic component is
modelled as a ARMA process, which is interpolated by finding a higher resolution process
whose subsampled version has similar statistical properties. Preliminary 1-D experiments
show that this method may be a promising approach to pursue.
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Chapter 1

Introduction

Given a digital image, it is often necessary to magnify the details for many image

processing applications. An example of such applications is expanding digital satellite or

medical images, where resolution is limited and, for the magnified details to be useful, it is

essential to achieve expansion without blurring. Furthermore, if it is possible to interpolate

a low resolution image in such a way as to regain the high resolution details of the original

image, then we can compress the image by retaining only its low resolution component

rather than the original high resolution image in its entirety, implying using less memory

or fewer bits.

During the magnification process, it is important to avoid blurring the images so as

to make the enlarged image useful for recognition. Standard methods such as bilinear and

bicubic spline interpolation tend to smooth out the edges since they do not utilize any

information relevant to preserving the edge sharpness. To deblur these processed images,

one could use the commonly used unsharp masking [4] which boosts the high frequency

component. Other methods include modelling the edges, filtering with nonlinear filters to

boost the high frequency components [3], or using a MAP estimator [7].

Edges and textures are among the most important features of an image. They have,

however, very different characteristics. In the intensity domain, edges are characterized by

drastically changing intensity values. On the other hand, textures usually have a periodic

constituent along with some random components. Their different behaviors suggest that

interpolation of edges and textures need to be treated differently.

For edges or isolated singularities, wepropose a wavelet-based method which estimates

the higher resolution information needed to preserve the sharpness of the edges during the



interpolation process. This information is obtained by extrapolating the wavelet transform

of the higher resolution based on the evolution of wavelet transform extrema across the

scales. The motivation for this algorithm comes from the fact that wavelet transform

modulus maxima capture the sharp variations of a signal, and that their evolution across

the scales characterizes the local regularity of the signal [5]. This allows a locally adaptive

scheme which learns about the different singularities and enhances them accordingly. For

implementation reasons, wavelet transform extrema rather than modulus maxima are used,

but this change has mild effects. By identifying three constraints that the higher resolution

component needs to obey, we improve the estimates through alternating projections onto

the sets defined by these constraints. Results show that the enhanced image is superior to

those interpolated by traditional methods.

The wavelet-based approach is appropriate for isolated singularities. Textures, on the

other hand, have a very different flavor and need a different interpolation technique. In

particular, a texture patch is typically very homogeneous over the entire patch such that a

viewer does not see a particular feature which stands out. It can usually be characterized

by ordering many similar looking primitive cells according to some placement rule which

may or may not be deterministic. This feature strongly suggests that texture images be

decomposed into a deterministic and a stochastic (or indeterministic) component: that is,

analyze the texture field with a 2-D analogy of the Wold decomposition [2].

The deterministic component captures the periodicity that is typically encountered

in a texture field, while the indeterministic component can be modelled by a 2-D ARMA

random field. The extraction of these components is similar to the problem of estimating

from a mixed spectra, which is a very difficult problem. For simplicity, a method similar to

that in [2] is adopted for our purpose.

Once the components are estimated, they are each treated separately for the interpo

lation problem, and the results are combined to obtain the final interpolated signal. The

interpolation problem can be viewed as estimating the missing samples, or equivalently,

as extrapolating in the frequency domain beyond the available bandlimited signal. The

higher frequency details of the deterministic component are estimated by assuming that

its frequency response follows some trend which can be identified and extrapolated. The

indeterministic component is extrapolated by finding a higher resolution random process

which yields the same statistical property as the available low resolution random process

when it is subsampled.



The wavelet-based enhancement algorithm for isolated singularities is explained in

Chapter 2, along with some basics of the wavelet transform, and the result is shown in

Section 4.1. The results show that this method does make improvements over conventional

methods.

Chapter 3 presents the texture interpolation scheme. This part is on-going work and

thus is mainly a theoretical approach to the problem. Section 4.2 shows some preliminary

1-D experiments which suggest that it may be a worthwhile approach to pursue.



Chapter 2

Enhancement Algorithm for Edges

Points of sharp variations, or singularities, are among the most meaningful features

of a signal. For images, these points typically correspond to edges, or boundaries between

regions, and it is important to detect these contours for many image enhancement appli

cations. In the case of image interpolation, it is often desirable to magnify an image while

preserving the sharpness of the edges so that the resulting image is pleasing to the eye and

that recognition is not hindered. Linear methods typically generate blurred images because

they do not use information pertaining to retaining the sharpness of the edges, but rather

smooth them out. To obtain a good quality image expansion, we must utilize a method

which adapts to preserve the sharpness of local singularities.

In this work, we propose to use the extrema points of the wavelet transform to detect

and classify sharp variation points. The motivation for using a wavelet-based method

is that singularities can be captured by the modulus maxima or zero-crossing points in

the wavelet transform domain, and it provides a multiscale decomposition of the signal

which allows us to characterize the types of singular points [5]. The basic idea behind our

approach is to use this multiscale information to classify the type of singularity using the

local Lipschitz regularity, and based on this classification estimate the higher resolution

information necessary for preserving the edges. The estimated information is then refined

by identifying convex constraints and using the POCS (projection onto convex sets) method.



2.1 Background and Motivation

We first give the motivation for using the wavelet transform extrema in continuous

time. However, any practical processing has to be done in the discrete time domain, and

the basic theory of the discrete wavelet transform is developed in 2.1.3. For a more in-

depth discussion about wavelets, the reader is referred to [8]. The model for the evolution

of wavelet transforms across the scales is introduced, and the reader is referred to [5] for a

more detailed treatment.

2.1.1 Edge Detector and its Relation to Wavelet Transform

Most traditional edge detectors determine sharp variation points by examining the first

or second derivatives of the signal. This is because inflection points indicate neighborhoods

of signal variation, and inflection points in the signal domain correspond to the extrema

points of the first derivative and to the zero-crossings of the second derivative of the signal.

Furthermore, extrema points of large magnitude in the first derivative (that is, the maxima

pointsof the absolute value of the first derivative, which is called modulus maxima) represent

points of sharp variation, while those of small magnitude imply points of slow transition. In

[5], reconstruction based on wavelet modulus maxima and wavelet zero-crossings yield very

good results. However, the wavelet modulus maxima represention is not a convex set and

the zero-crossings representation is more sensitive to noise. In this work, we use the wavelet

transform extrema representation to extract the singularities because, due to its convexity,

there exists a simple reconstruction algorithm [1].

Define a smoothing function 9(x) which satisfies

lim 6{x) = 0 ,
x—frioo

and
/oo

6{x)dx = 1 .
-oo

We assume that B(x) is differentiate and we introduce a function ij)(x) as the first derivative

of 0(x) :

*<*> = ~dx~ *
We call a wavelet any function whose average is 0. Hence, 9(x) can be considered as a

wavelet since
/•oo

tp(x)dx = 0 ./.



Now we define ip3{x) the dilated version of the wavelet function

tf)3(x) = -v>(-),

and we refer to s as the scale. To take a wavelet transform of a signal, we convolve it with

the wavelet function. The wavelet transform of f(x) at scale s and position x is denoted by

Wsf(x), where

Waf(x) = f(x)*4>s(x),

and * is the convolution operator. From the linearity of convolution and differentiation, it

is easy to verify that

dOs{x). d
W, ./(«) =/(«) *(5=^) =s-(f *Bs)(x) , (2.1)

where 0s(x) is defined similarly as ips{x). In words, equation (2.1) says that taking the

wavelet transform of the signal at scale s and at position x is equivalent to taking the

first derivative of the smoothed signal. Hence, if we detect an extremum in the wavelet

transform, we have found an inflection point in f*9s. For an extremum of large magnitude,

or a maximum of |W*/(aO|, it has the physical meaning of being in a region of sharp

transition in the signal domain, while for an extremum of small magnitude, it indicates a

region of slow transition. When the scale s is small, the smoothing function is very much

localized in time, and hence has almost no smoothing, and the detection provides the points

ofvery sharp variations in f(x). On the other hand, when s is large, the smoothing function

has a large spatial support, and the edgedetector yields information of variations on a more

global scale.

From the above discussion we see that the wavelet transform modulus maxima of a

signal allows us to detect the occurrence of singular points. Furthermore, Section 2.1.2

discusses how the evolution of the modulus maxima values corresponding to a singularity

across the scales lets us classify the type of singularity [5]. We propose an enhancement

algorithm in Section 2.2for image expansion that preserves this propertyand thus preserves

the image clarity.

The wavelet transform modulus maxima is not a convex representation and presents

difficulty in reconstruction. In this work, we adopt the use of the wavelet transform ex

trema, which is a convex representation and allows simpler reconstruction [1]. Since most

wavelet transform extrema points are also wavelet transform modulus maxima, this vari-



ation introduces minimal effect on the results. Henceforth we will use the terms wavelet

transform extrema and wavelet transform modulus maxima interchangeably.

2.1.2 Motivation for Extrapolating Information from Low Resolution Com

ponent

From the previous discussion, we see that a sharp variation point induces modulus

maxima in the wavelet transform. Figure 2.1 shows the wavelet transform of a waveform

consisting of a step, an impulse, and their smoothed versions. Each isolated singularity

produces extrema points which propagate across the scales. The way they propagate across

the scales can be characterized by the local Lipschitz regularity, which will be explained in

this section. Hence if we can determine the Lipschitz regularity, this allows us to estimate

the extrema at any scale. The basis for our enhancement method is to use this character

ization to estimate the information at fine scales to preserve the sharpness of edges in the

interpolation process.

Before we state how the evolution is characterized across the scales, let us first define

what a Lipschitz regularity is. Let 0 < a < 1. A function f{x) is uniformly Lipschitz a over

an interval (a, 6) if and only if there exists a constant A* such that for any xo,x\ € (a, b)

|/(z0)-/(xi)|<A>o-*ir •

The uniform Lipschitz regularity (or exponent) of f(x) refers to the supremum ao over all

a for which f(x) is uniform Lipschitz a.

The value of the uniform Lipschitz regularity measures how differentiate and how

smooth the function is in a local neighborhood. For example, if f(x) is differentiate at

x0, then it is of Lipschitz regularity 1. The larger the a, the more regular the function

is. If f(x) is discontinuous but bounded in the neighborhood of a?o, then ao = 0. The

following result states that the Lipschitz regularity can be measured from the evolution

of the absolute values of the wavelet transform across the scales [5]. For convenience, the

regularity is denoted by a instead of ao-

Fact 1 A function f(x) is uniformly Lipschitz a over (a, 6) if and only if there exists a

constant K > 0 such that for all x € (a, 6), the wavelet transform (on the dyadic scales)

satisfies

\W23f(x)\ < K(V)a . (2.2)



Wavelet Transform of f on 3 Scales

Index

Figure 2.1: A synthetic waveform and its wavelet transform, showing the propagation of
extrema points across the scales.

Although the above statement is for Lipschitz regularity a being 0 < a < 1, it can be

extended to tempered distributions such as Dirac functions, which have negative Lipschitz

exponents (in the case ofa Dirac, a = -1). Hence in this work, we do not constrain a to be

in [0,1], but instead allow the range to be [-2,2] (the rationale being that the wavelet trans

form values should not differ by too much between adjacent scales). Given the constants K

and a, equation (2.2) allows us to estimate the wavelet transform magnitude at any scale,

and we show in Section 2.2 how this information is used for resolution enhancement.

2.1.3 Basics of Wavelet Transform

The framework of the wavelet transform modulus maxima and the zero-crossings repre

sentations stems from continuous-time theory. However, any practical implementation must

be in discrete-time and there is a limit on the obtainable resolution. In this section, we

introduce the 1-D and 2-D wavelet transform in discrete-time, which are among the funda

mental tools used in this thesis. The wavelet transform has a filter bank interpretation, and,
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Figure 2.2: The 1-D wavelet transform implemented as a nonsubsampled filter bank. The
wavelet transform is shown in (a) and the inverse wavelet transform in shown in (b).

as will be shown later, this interpretation is essential to the modelling and understanding of

the interpolation problem. The 1-D and 2-D wavelet transforms are introduced, along with

some of their properties. Note that since we will be using the dyadic scales s = 2J, j G Z,

the notation for the wavelet transform Wvf at scale s = 2J will be changed to Wjf for

convenience.

One-Dimensional Wavelet Transform

The one-dimensional discrete-time wavelet transform is characterized by two analysis

filters: a lowpass filter Hq and a highpass filter H\. Let Hq' and h\3' be the filters obtained
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by inserting 2^-1 zeros between the coefficients of H0 and Hi, respectively. The wavelet

transform ofa signal / 6 /2(Z) can be computed through convolution with Hq and Hx3
in the following recursive manner [5]:

Aj_i

Sjf= Sj-1f*H{0j-1), j = l,2,...,J,

where S0f = /, H^ = Hq, h[0) = Hu and the smallest scale has been normalized to
1. (Note that the scaling constant Xj is not usually present. It appears here because

discretization introduces deviation to the estimation of the Lipschitz regularity, and scaling

factors are needed to make the correction. See Section 2.2.2 for more details.) The wavelet

transform consists of the set ofsequences {Sjf, Wjf}\<j<j. Fora fixed J, we use Wj+\f =

Sjf to simplify the notation. Let the wavelet transform operator W denote the linear

operator mapping / to {Wjf}j-\ j+!. The operator W can be implemented by the

octave band nonsubsampled filter bank shown in Figure 2.2(a).

In practice, there are only a finite number N of non-zero samples in a signal /. To

mitigate this border problem, the signal is extended symmetrically as in the case of cosine

transform: that is, we extend the signal f[n],0 < n < N - 1, to length 2N by "flipping" it:

f[n] = /[2A7 - 1 - n], for N < n < 2N. This periodization avoids creating a discontinuity

at the boundaries and the wavelet transform coefficients are also periodic 2N.

For perfect reconstruction to be possible, it is necessary and sufficient that there exists

a synthesis pair Gq{z) and G\{z) which satisfy the perfect reconstruction condition

Ho(z)G0(z) + Hx (z)Gi(z) = 1 . (2.4)

The inverse wavelet transform reconstructs the original signal by progressively adding

finer and finer details onto the coarse residual signal Sjf. It can be calculated recursively:

Sj-1f = \jWjf*G[J-1) +Sjf*G0j-1) ,j = J,J-l,...,l, (2.5)

where G0°* = Go, G^ = Gi. The inverse wavelet transform operator W_1 can be imple
mented as in Figure 2.2(b), which is called a nonsubsampled synthesis octave band filter

bank. (Note again that the Xj constants are needed to offset the scaling in the wavelet

transform equation (2.4).)

The wavelet transform is an overcomplete, or redundant, representation of a function.

For any set of sequences {gj}j=\ j+i, it is not necessarily the wavelet transform ofsome
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function / in l2(Z). It is the wavelet transform ofsome function / € /2(Z) if and only if

W(W-l({9j}j=1 J+1)) = te};=w+i • (2.6)

If the set of sequences {gj}j=i j+i satisfies (2.6), then we say that {gj}j=i j+i belong

to the range ofthe wavelet transform operator W. The operator WW'1 is the projection

operator onto the range of the wavelet transform.

Two-Dimensional Wavelet Transform

A particular class of 2-D wavelets is used here. In particular, we choose separable filters

for the 2-D wavelets, where the 1-D filters Ho. Hi. Go, and Gi are the same as in the case of

the 1-D wavelet transform. We need an additional filter L whose Fourier transform satisfies

l + H0(u)Hi(u>)
L(") = 2 *

The 2-D wavelet transform and inverse wavelet transform can be computed in a recur

sive manner similar to the 1-D case [5], and they can be implemented with the filter banks

shown in Figure 2.3.

2.2 Enhancement Algorithm

2.2.1 Overview

We first develop the problem in one dimension, and then extend it to the two-dimensional

case. The discussion concentrates on magnification by a factor of 2 for simplicity, although

larger magnification can be achieved through iteratively performing the algorithm.

The interpolation problem is modelled as in Figure 2.4. We model the available signal

/ as being obtained from the high resolution signal /o which we wish to recover, by lowpass

filtering followed by downsampling by a factor of 2. Denote by Hq{z) a lowpass filter, and

by Hi{z) a highpass filter such that the two filters, together with a synthesis pair Go(z) and

Gi(z), constitute a perfect reconstruction nonsubsampled filter bank. That is, the filters

satisfy the perfect reconstruction condition (2.4). Note that the filter bank in the model is

arbitrary, but we conjecture that as long as it is reasonable (i.e. a good lowpass/highpass

pair of filters), the result of our algorithm will not depend strongly on the choice of filters.

In order to perfectly reconstruct the high resolution signal, we need to know both its

highpass component gs and its lowpass component fs. However, only /, the downsampled
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(b)

Figure 2.3: The 2-D discrete wavelet transform, (a) The wavelet transform, (b) The inverse
wavelet transform.

version of fs, is available. A standard approach to obtaining the high resolution signal /o

would be to interpolate / using, for example, linear or spline interpolation, and possibly

followed by some enhancement algorithm such as highpass filtering to deblur the result. The

enhancement algorithm presented here is based on estimating the high frequency component

gs which is then combined with an estimate of fa, through the synthesis filter bank, to give

a reconstructed version of the high resolution signal.

An initial estimate fs of the low frequency component fs can be obtained by simply

interpolating /, for instance, using linear or splineinterpolation. The first step in estimating

gs is to find its local extrema by analyzing the available data /. It is based on the fact
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that local extrema of the wavelet transform propagate across the scales according to (2.2),

which can be used to extrapolate the wavelet transform extrema of finer scales. That is, by

modelling the evolution of the wavelet transform extrema of / across the scales using (2.2)

and estimating the parameters, we can use this equation to estimate the corresponding

extrema points of g. Note that the wavelet transform of / is the decimated version, by

a factor of 2, of the wavelet transform of /o starting from the second scale (Figure 2.5).

(Remark: This property is not exactly true in the 2-D wavelet transform because the

separable filtering processes the signal in both the horizontal and vertical orientations.

Therefore in the estimation process it is necessary to allow some error tolerances.) Hence,

by examining the extrema of the wavelet transform of /, {Wj/}j=i,...,j+i, the extrema

points of gs = Wifo can be estimated. Since the wavelet transform of /, {Wj/}j=i,...,j+i,

is obtained from subsampling the wavelet transform of /o, {Wjfo}j=2,...,J+2, there is some

ambiguity in the estimation process introduced by the the downsampling operation. More

specifically, the true extrema points of {Wj/o}j=2,...,J+2 may not have been sampled to

obtain {Wj/}j=i,„mj+i, hence there is ambiguity to the extrema values and locations (that

is, the true extrema may be on the immediate left or right of the sampled extrema). In the

implementation section, we will discuss some constraints which allow possible corrections

to this ambiguity. Once the extrema points of gs have been estimated, linear interpolation

is used to obtain an initial estimate of the in-between points.

Signal enhancement is achieved by recognizing that the initial estimates of fs and ga can

be further improved by identifying constraints that they should obey. Furthermore, these

constraints define convex sets and we can utilize the POCS (projection onto convex sets)

method to find a solution existing in the intersection of these sets, called the reconstruction
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Figure 2.5: Showing the equivalence between the wavelet transform of/ and the decimated
version of the wavelet transform of /o starting from the second scale.

set. The POCS method alternatingly projects the signal onto the various convex sets until

it converges to a solution in the reconstruction set (provided that it is nonempty). Figure

2.6 shows pictorially the idea of alternating projection. Any solution in the reconstruction

set is called a consistent reconstruction and it satisfies all the imposed constraints.

The enhancement algorithm alternatingly projects the signal to satisfy three basic

constraints:

1. The waveforms {fs,gs} must be in the subspace V of /2(Z2), where V denotes the

range of the wavelet transform.
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reconstruction set

Figure 2.6: Projection onto convex sets. A signal is alternately projected onto the various
sets until it converges to a point within the intersection.

2. The downsampled version of /s must be equal to /, which is the original signal that

is available.

3. The local extrema of gs should reflect sharp variations in /0, i.e. their values and

locations are determined by singularities in /o-

Let S be the set consisting of signals g € l2(Z2) which satisfy the second constraint, i.e.

g[2n] = f[n], and let E be the set consisting of signals in /2(Z2) which satisfy the third
constraint (To avoid obscuring the broad overview of the algorithm, the exact structure of

a signal in E will be discussed in 2.2.2.) The first two items are hard constraints in that

they follow from the way the problem is modelled in Figure 2.4, while the third constraint

comes from our estimation of how the signal should be at fine scales. Furthermore, the set

E should be defined in a way such that projecting gs onto E improves the clarity of the

reconstructed signal.

To speak of projections, it is more convenient to define the projection operator onto

each convexset. The projection operator of the subspace V, denoted by Py, filters the pair

(fs,gs) by the synthesis filter bank, followed by the analysis filter bank, as shown in Figure

2.7. For this work, we assume that the analysis and synthesis filter banks are perfectly
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Figure 2.7: The projection operator ontothesubspace V, the range ofthe wavelet transform,

reconstructing. The synthesis filters used in the implementation should be selected as

P(z) P(z) '

where

p(z) = ffoMffot*-1) + ffiMffit*"1).

In the case of power complementary analysis filters,

P(z) = HoWHoiz-1) -r Hi{z)Hi{z~l) = 1 ,

which reduces to

G0(z) = Hoiz-1) , Gi(z) = Hiiz-1) .

For a detailed analysis of the projection operator onto V for both 1-D and 2-D signals, the

reader is referred to [1].

The projection operator Ps onto convex set 5 simply assigns values of / to the even

samples of fs.

The subspace V and the convex set 5 are well-defined, but the convex set E depends

on our knowledge of the singularities of /o- In this case, we only have estimated knowledge

and thus we must allow some error tolerances. In Section 2.2.2, we discuss constraining the

set E with varying degrees of leniency on the values and locations of the wavelet transform

extrema, and finding a corresponding projection of gs onto E.

Let {fi°\gs0)} be the initial estimates of fs and gs. The alternating projection consists
of iteratively operating on {fsk\gik)} with PeoPsoPv, so that at the end of the (fc + l)-th
iteration, the estimates of fs and gs are

{/!*«>,}(•+»} = pE(ps(/v({/Jk»,9«*>}))) •
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2.2.2 Implementation Details

Associating Extrema Across the Scales

For the extrapolation scheme, we need to first select important singularities and as

sociate the corresponding extrema across the scales. Since the highest scale contains an

abundance of extrema and is more sensitive to noise, selection of the extrema is done at

the second scale. Due to discretization, the estimated Lipschitz regularity a disagrees from

what it should be for a continuous time signal. Hence, scaling constants are multiplied to

each scale of the wavelet transform, Wjf, and these constants are found empirically so as

to make the discrete time step function have a = 0.

Since we do not compute the wavelet transform on a dense scale but rather on dyadic

scales, only some extrema propagate from scale j to j + 1. To determine which extrema

propagate to the next scale, some ad hoc criteria are used. First, the extrema have to be of

the same sign and must all be maxima (or minima). Secondly, it is reasonable to assume

that the extrema values should not differ by too much from scale to scale (i.e. they are

approximately of the same order of magnitude), so we constrain the regularity a to have

a maximum absolute value of 2. If a exceeds 2, then we have probably made a mistake

in associating the extrema points, and thus, to avoid a really bad estimate, we set a to

0. Furthermore, since the wavelet transform filters are causal, linear phase and FIR, the

extrema corresponding to a singularity are shifted from scale to scale, where the shift can

be determined from the filters. Hence, we look within a reasonable neighborhood in the

next scale to search for the extremum point. Each extremum point is only associated once.

Estimating Lipschitz Parameters

Let us first rewrite (2.2) in discrete-time and explicitly show the dependence of the

local Lipschitz parameters on the different singularities. This results in

Wjf[x^] = Kn(2i)Q»,j = l,...,J, (2.7)

where Wjf is the wavelet transform of the input signal / at scale j, x\}' is the location
of the local extremum at scale j corresponding to the nth singularity, an is the Lipschitz

regularity of / at the singular point, and Kn is a nonzero constant.

Once we have the sequence ofextrema Wjf(x\l ),j = 1,..., J (corresponding to the
nth local singularity) across the scales, we can estimate the parameters an and Kn from
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(2.7). An alternative method is chosen over the minimization ofsquared error because the
LSE method is too costly computationally. A simple way to find these parameters is to

utilize extrema values from the three finest available scales, j = 1,2,3. Experiments show

that it is valid to use only these scales, since the waveforms of larger scales are too smooth

and do not retain many extremapoints, and are thus useless for our purpose. The Lipschitz

regularity an can be estimated by rearranging (2.7) as

a"-l06H wtfi&i )•
We first obtain two initial estimates of q„ by

and then obtain the final estimate of an by

a{n] (1)
"71

If the extrema only propagates across scales j = 1,2, then our estimated regularity is

an = a>X'. The constant Kn is computed from

„ wi/[*i."]
n 2°"

After obtaining the estimates an and A*n, we can compute an initial estimate of the

extrema points of the wavelet transform at scale 0 (that is, the extrema points of the finer

scale gs), which is given by

Wof[xW) = Kn .

For the filters used in this work, the shift from scale 1 to 2 is about 1-2 positions, we thus

assume that the shift from scale 0 to 1 is negligible. Hence, the estimated extrema values

at scale 0 are assumed to be at the same location as the extrema values at scale 1; i.e.

JO) _ Ji)

Those extrema of the first scale that do not propagate to the coarser scales are simply

assigned to the extrapolated scale using the same values and locations for the initial estimate

of gs.

The parameters are allowed to take values within a confidence interval because the esti

mates may not beexact due to several factors. In particular, errors may beintroduced ifthe
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algorithm identifies incorrectly the propagation of extrema. Also, discretization introduces

errors: recall that the discrete dyadic wavelet transforms are only samples of the continuous

wavelet transform, and thus the true extrema may not have been sampled. Another am

biguity introduced by subsampling comes from the fact that we are using the subsampled

version of the wavelet transform to estimate the original wavelet transform by examining

the extrema values (see Figure 2.5 and its associated discussion). Again, if the extrema are

not sampled then the estimated finer scale extrema is not correct. Furthermore, there are

more errors introduced in the 2-D application when it is treated as separable 1-D problems.

This last point will be discussed later.

A simple ad hoc method for determining confidence intervals is used. For each ex

tremum that is obtained through estimating (2.7), the upper bound is found by locating

the maximum ratio between the extrema values of adjacent scales, and then extrapolating

the maximum value to the Oth scale using this ratio for all scales. More formally, let

7n = max
i<J<J-> WJ+1f[x{nJ+1)] '

Wjf[x{nj)]

then the upper bound is obtained as Wjmax f[x\ima^] -jlmax. The lower bound is obtained
in a similar way by replacing max by min.

Projection Operator onto Convex Set E

One of the constraints on the estimated waveform gs is that its local extrema should

reflect sharp variations in /o- From /, we have some knowledge of what the extrema

values and positions of gs should be. Hence, the set E can be thought of as the set of

waveforms minimizing a specified cost function which penalizes when the extrema values

do not conform to this knowledge. In terms of the extrema values, there are various cost

functions that could be used. We can either (a) constrain gs to retain the initial extrema

estimates throughout the reconstruction, (b) allow the values to be within an interval (the

rationale being that the estimates of the extrema values may not be very reliable), or (c)

have no constraints at all on the values. Approaches (a) and (c) are extreme cases, assigning

either infinite cost for wrong values or no cost at all. The allowed interval of approach (b)

serves as a moderation, and yields better results.
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Since gs is interpolated from the estimateof the subsampled waveform g, the sampling

may be such that we miss the true extremaand obtain instead the adjacent points. Thus for

each extremum of gs, the points immediately next to it are also allowed to be extrema to ac

count for this ambiguity. More specifically, if we initially determine x(n to be an extremum
location of ga induced by the nth singularity, then after the projection of Ps o Py, xn

may not be an extremum point anymore. However, we allow one of {xh - 1,xh. ,xn +1}

to be an extremum point throughout the iterations. If there are one or more maximum

(minimum) points among these three points, then the one with the greatest (least) value

is taken to be the estimated maximum (minimum) point for the nth singularity. If there

are no maximum (minimum) points among them, then we retain the initially estimated

position to be the maximum (minimum) point. The extrema values are then taken to be

the values at these points which we determined to be the extrema.

Points between two adjacent extrema points should have values in the interval bounded

by the extrema values, and, furthermore, there should not be any more extrema among these

in-between points. Hence, once the extrema locations and values of ga are determined, the

points in between neighboring extrema points are modified to obey monotonicity. The

algorithm used in constraining the points to obey monotonicity is a slight modification of

the algorithm described in [1], and it consists of three steps:

1. The value at each extremum location must be in its range of confidence interval.

This simply amounts to clipping each extremum value to be within its corresponding

allowable range.

2. Between adjacent extrema points at xn and xn+i, clip the in-between points to be

between the interval [Ps[in]i^s[^n+i]]-

3. The in-between points must obey monotonicity; that is, there should not be any

extrema points between two neighboring extrema points xn and xn+i- We proceed

from the earlier extremum point at xn and increase the index until we encounter a

point at index k which does not obey monotonicity. Then we assign both gs[k] and

ga[k-1] to the value (gs[k]+ga[k])/2. However, this might destroy the monotonicity of

earlier points in the interval [xn, xn+{\, thus we must look back to ensure monotonicity

by doing the averaging iteratively (This part is the modification from [1]).
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Additional 2-D Considerations

In general, analyzing a 2-D problem by treating the two coordinates independently

is not an optimal approach. However, for computational feasibility, we propose here to

treat the two coordinates separately. For the wavelet transform, the data is filtered by

the separable 2-D filter bank using algorithms proposed by [5] as shown earlier in this

chapter. The wavelet transform generates the row-processed components {Wi,j/}j=i,...,ji

the column-processed components {W2jf}j=i j, and the low frequency residual Sjf.

Each row of the row component (and similarly for the columns of the column component)

of the image is processed as in the 1-D case to estimate the scale 0 information. That is,

for aniVxiV image, the n-th row (column) of {Wijf}j-i j {{W2,jf}j=i j) is use<^ to

estimate the n-th row (column) of the scale 0 row (column) component as in the 1-D case.

The in-between lines are then filled in by linear interpolation (as an initial estimate). All

the estimated rows and columns are then combined to form the initial estimates of the row

and column components of the 0-th scale.

For the alternating projections of the reconstruction scheme, the projection operator

P\- is simply a 2-D inverse wavelet transform followed by a 2-D wavelet transform. The

operator Ps amounts to making the assignment <7s[2ni,2n2] = /[wi,^]. The projection

operator Pe acts on the N available rows of the row component and on the N available

columns of the column component. However, the higher resolution row (column) component

has 2N rows (columns), and we only have constraints for N even rows, not the odd rows.

There is the choice of whether to impose any constraints for the odd rows. We will return

to this issue later in the section and show that better results are generated if we impose

some reasonable constraints on the odd rows.

For two-dimensional applications, we can obtain less noisy estimates by considering,

say, several neighboring rows of the row component and taking a weighted average. In

this work, the two immediately adjacent rows are used. For the i-th row in scale 1 of the

row component, Wi^f, of the wavelet transform, if for each extremum point, there is an

extremum in close vicinity on the adjacent i - 1 and i + 1 -th rows which has the value

of the same order of magnitude, then the estimated parameters of the corresponding point

on the 2?'-th row at scale 0 (i.e. on the 2i-th row of Wi^fo) is smoothed by taking the

weighted average of the parameters from the rows 2(i - l),2i,2(i+ 1), using the weights

[0.25,0.5,0.25]. If only one adjacent row has similar value extremum, then the weighting is
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[0.75,0.25]. Similar processing is done for the column components.

Now we return to the issue of imposing constraints on the odd-numbered lines. By

exploiting the continuity of contours, we can reduce the jaggedness of the edges. Since

an edge or contour of an image is usually continuous and traverses through several rows

and columns, it induces extrema which also traverse several rows of the row components

(or columns of the column components). Hence, for each odd-numbered lines, we give

it a constraint that is similar to its two neighboring lines whose constraints follow from

estimating the available low resolution image. In particular, if two adjacent even-numbered

lines have extrema that are in close proximity (allowed to be within 2 positions) and similar

in value, then they are probably generated by the same curve and thus we impose an

extremum in the in-between line whose location and value are taken as the average of those

of the two neighboring lines. Since within such a small neighborhood, the difference in pixels

is very small, for the sake of simplicity, averaging is used rather than fitting a smoothed

curve across several lines. Results show that imposing constraints on these lines result in

images that are far less jagged than without constraints.
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While the algorithm described in Chapter 2 is an elegant approach to extrapolating

the high resolution information of isolated edges, the theory does not address the treatment

of non-isolated edges. In terms of images, these non-isolated edges may occur in texture

regions. Natural images usually contain various texture patches which, along with their

boundaries, are essential features of the images. Therefore, it is important to understand

and parameterize texture patches so as to achieve good quality image interpolation based

on reconstruction from these parameters.

Let us examine another interpretation to the interpolation problem. Suppose we model

the available low resolution signal as the signal obtained from ideal lowpass filtering a higher

resolution signal followed by downsampling. Then, assuming that no information about the

higher frequency component is available, the interpolation scheme that yields the least mean

squared error is upsampling, followed by passing the resulting signal through a lowpass

filter (see Figure 3.1). Essentially, the higher frequency component is assumed to be zero.

However, it is more reasonable to believe that the original high resolution signal is non-zero

in the upper half of the spectrum, and we could improve the resolution of the interpolated

signal if we could estimate this higher frequency component.

Because of the homogeneous quality of a typical texture image, we conjecture that

its Fourier transform or power spectrum obey some trend which can be identified. In this

chapter, we propose a method which decomposes the texture field into deterministic and
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(a)

(b)

Figure 3.1: Problem Model, (a) Model the available low resolution signal / as the waveform
obtained from lowpass filtering a higher resolution signal /0 followed by downsampling. (b)
Assuming that we have no information about the higher frequency component, the optimal
interpolation scheme is upsampling followed by lowpass filtering.

indeterministic components, and extrapolates the high frequency content for each compo

nent. The interpolated image is then reconstructed from combining the available signal and

the extrapolated information.

The material presented in this chapter is on-going work and is mainly a theoretical

approach to the problem. Some preliminary results are shown, while more experimental

results are presently being investigated.

3.1 Texture Model

A texture patch is usually composed of primitive cells which resemble each other, and

which have some semi-regular ordering to their relative positions such that the overall

structure looks uniform to a viewer. One extreme of a texture patch would be a purely

deterministic pattern, such as a chess board, where all the primitive cells are exactly the

same and the placement of the cells is done in a predictable way. At the other extreme is a

purely stochastic pattern such as a scene ofgrass lawn, where the entire patch isorganized

by a structure usually modelled as a 2-D Gauss Markov random field. In the intermediate,

the primitive cells are similar but not identical, and the placement ofthe cells is not defined
by a completely predictable rule, but the overall patch still seems to follow some kind of
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ordering on a global scale.

This feature suggests that textures should be decomposed into a deterministic and an

indeterministic component. The decomposition method and terminology presented here

follow closely the work in [2]. The texture field is assumed to be a realization of a 2-D

homogeneous (or stationary) random field. With this assumption, the texture field can

be analyzed using a 2-D extension of the 1-D Wold decomposition for wide-sense station

ary random processes, called a "2-D Wold-like decomposition" in [2]. The texture field is

decomposed into two mutually orthogonal components, namely, the deterministic compo

nent, which makes up the underlying global superstructure, and the purely indeterministic

component, which accounts for the unpredictable variations between the cells. The purely

indeterministic component has a 2-D moving average representation, driven by a white in

novation field. The deterministic component random field can be perfectly predicted from

past samples. Note that the deterministic field is a random field and is deterministic only in

the mean square sense. The deterministic part is further decomposed into two orthogonal

components: the harmonic component and the generalized-evanescent component. Basi

cally, the harmonic component consists of 2-D periodic elements of the global structure,

while the generalized-evanescent component can be thought of as a set of plane waves, each

traveling in a different direction.

3.2 Decomposition of the Homogeneous Random Field

In this section, we introduce the Wold-like decomposition along with several definitions.

Here we merely state the relevant results and refer the reader to a more rigorous treatment

in [2]. Without loss of generality, assume that the 2-D random field {f[n, m]}n,mes is real

and zero-mean.

The random field {f[n, m]}nim€S iscalled a homogeneous random field if E{f2[n, m]} <

oo and rj[k, I] = E{f[n + k,m+ l]f[n, m]}, for all (k, I) € Z2, is independent of n and m.
Let P{uj,v) be the spectral distribution function of {f[n, m]}, defined on the square region

[~f i f] x [—§> ?]• The autocovariance function is then found by

[2*)* J-K/2J-X/2

The corresponding spectral density function (or power spectrum), denoted by p(us,v), is

found by taking the Lebesgue derivative of P{u, v).



26

Now consider the problem of finding thebest "causal" linear estimator f[n, m] of f[n, m]
based on the "past" samples of f[n,m]. In 1-D, the notion of causality is obvious. In 2-D

however, we need to define some kind of ordering. In this work, we choose the totally-

ordered, nonsymmetrical-half-plane (NSHP) support, which is visualized as a scan from

top-to-bottom, column-after-column from left to right. In mathematical terms, the ordering

can be written as

(ij) -< (s,t) <=> (i,j) e {(k,l)\k = s,Kt}u{(k,l)\k < s,-oo < I< 00} . (3.1)

Let f[n, m] bethe minimum-norm linear causal (with respect to the NSHP ordering) es

timator of f[n, m]. Then the prediction error, u[n, m] = f[n, m]-f[n, m], isa wide-sense ho

mogeneous random field, and we call {u[n, m]} the innovation field. IfE{u2[n, m]} = a2 > 0
(that is, the innovation field does not vanish), then the field {f[n,m]} is said to be regu
lar. It is called deterministic if a2 = 0. Note that deterministic here only refers to being

deterministic in the mean squared sense.

The 2-D Wold-like decomposition states that if {f[n, m]} is a 2-D regular homogeneous

random field, then it can be uniquely represented by the orthogonal decomposition

f[n,m] = fd[n. m] + /,[n,m] .

The field fd[n, m] is a deterministic random field. The most general form of /t[n, m] is the

2-D MA representation. Moreover, if the spectral density is strictly positive on the unit

bicircle and analytic in some neighborhood (which is a mild assumption and will be used in

this work), then it can also be represented as a 2-D AR process driven by the white noise

innovation field {u[n, m]}

fi[n,m]= Y, b[k,l]fi[n-k,m-l) + u[n,m] (3.2)
(o,oH(fc,/)

where

Y b2[k,l}< 00.
(o,oh(*,/)

Since the random field {u[n, m]} is a white noise field, the fields {fd[n, m]} and {u[k, I]}

are mutually orthogonal for all (n, ra) and (k,l). A regular field is called purely indeter

ministic if the deterministic component {fd[n, m]} vanishes. Furthermore, the 2-D field

{fi[n, m]} is regular and purely indeterministic.
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The spectral distribution function P{u, v) can then be written uniquely as

P(u,v) = Pd(u,v) + Pi(u,i>) ,

where Pd{u, v) and Pi{u, u) are respectively the spectral distribution function of {fd[n, m]}

and {fi[n, m]}.

Purely Indeterministic Component

From the 2-D AR representation of the purely indeterministic random field {/,[n, m]},

the spectral distribution function P{{u,u) is absolutely continuous. From (3.2),pt(u;, v) has

the form

-2

Pi{u,v) = a: 1- Y, b[k.l]ej^+lu)
(0,0)<(U)

Deterministic Component

The spectral distribution function Pd{oj,u) of the deterministic random field {/f[n, m]}

is singular; that is, it consists of discontinuous jumps and its derivative, the spectral density

Pd{u,v). is nonzero only on a set of Lebesgue measure zero. The deterministic component

{fd[n,m]} can be represented uniquely by the following orthogonal decomposition

fd[n, m] = h[n, m] + g[n, m] .

The spectral density function of {/</[n, m]} consists of discrete points and continuous curves.

For practical purposes, wecan assume that there are only countably many points and curves.

The harmonic component {h[n, m]} can be represented as a sum of sinusoids with

random phase and random amplitude:

h[n, m] = ^{>Ucos27r(7iu;fc + muk) + B/tsin 2n(nwk + mvk)} (3.3)
k

where A^s and B^s are mutually orthogonal random variables and ^{A^} = E{B2} = o\.

The autocorrelation function of {h[n, m]} is

rh[n, m] = y^ a2 cos27r(n<jJic + mi>k) . (3.4)
k

The harmonic component thus contributes discrete points in the power spectrum.
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Before describing the generalized-evanescent component, we need to introduce alterna

tivedefinitions to the NSHP order in (3.1). In particular, we introducea family oftotal-order

and NSHP-support definitions in which the boundary lines of the NSHP definitions are of

rational slope. This is done by rotating the NSHP support in (3.1) and normalizing it so

that the new samples fall on an integer grid. For more details, see [2]. Let O be the set of

all possible total-order and NSHP with rational slope boundary lines, any support o £ O

is called rational nonsymmetrical half-plane (RNSHP). All the aforementioned results hold

for any RNSHP support and the decomposition is unique and invariant to the support def

inition. Furthermore, although different RNSHP definitions result in different innovation

fields, the variance of the innovation fields remains the same.

The generalized evanescent component {^[n.m]} can be thought of as a sum of plane

waves traveling in different directions. In particular, because {f[n, m]} is sampled on a

rectangular grid, we assume that the plane waves travel in directions orthogonal to lines

of rational slopes. The generalized evanescent field {g[n, m]} is a linear combination of a

countable number of mutually orthogonal evanescent fields. A 2-D deterministic random

field {e[n,m]} is called evanescent with respect to a specific total-order and RNSHP if it

spans a Hilbert space identical to the one spanned by the column-to-column innovations

of the deterministic field fd[n] at each coordinate (n, m). The generalized evanescent field

consists of a linear combination of evanescent field each defined with respect to a different

total-order and RNSHP support o € O, i.e.

g[n,m]= Yeo[n,™] •
oeo

The spectral distribution of each evanescent field is separable in the u; and u variables

(which are also defined in their respective total-order and RNSHP support), and it is abso

lutely continuous in one dimension and singular in the orthogonal dimension. The spectral

density function of each evanescentcomponent is a linear combination of 1-Ddelta functions

in the frequency domain:

pe(u, u) = g(u) YlkiH" ~ Vk) + S(v + Vk)} •
k

In the space domain, the evanescent field is of the form

e[n, m] = s[n] Yi^k cos2-nmvk + Dksin 27rm^jt} , (3.5)
k
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where {s[n]} is a purely indeterministic 1-D process with spectral density 2g(u), the coeffi
cients Cfc's and ZVs are mutually orthogonal random variables, and E{Cl) = E{Dl} = jk.
This representation says that the generalized evanescent component g[n, m] is a sum of

waves traveling in directions orthogonal to lines of rational slopes. In the frequency do

main, the spectral density function consists ofa countable sum of 1-D delta functions which

are supported on lines of rational slopes.

3.3 Extracting Parameters

Before extrapolating the high frequency component, we need to first estimate the pa

rameters of the different components. The estimation problem is related to the 2-D mixed

spectra estimation, which is a very difficult problem. In this work, we follow closely the

simple estimation method proposed in [2], which claims that synthesized texture patches

based on their method of parameter estimation are virtually indistinguishable from the

original.

As suggested in the decomposition, the estimation is done in three stages, in the order

of extracting the harmonic field, the evanescent field, and then the purely indeterministic

random field.

3.3.1 Extracting the Harmonic Component

In practice, we only need to concern ourselves with a finite sum in (3.3) and in (3.4),

thus we let the summation range from k = 1 to k = M, where M denotes the number of

elements in the harmonic component. We assume that we only have one realization of the

random field in the given texture patch. The estimation process needs to solve for three

sets of unknowns: the number M of harmonic components, the values of the harmonic

frequencies uVs and z/fc's, and a particular value for each realization of the A^s and Bfc's.

To simplify the problem, two assumptions are made. The first is that the unknown

frequencies u>fc's and iVs are more than l/N apart in each dimension (for a sample patch of

NxN). Secondly, the spectraldensity function of the purely indeterministic random field is

sufficiently smooth, so that the harmonic component appears as isolated large sharp peaks

in the spectral domain. With these assumptions, a DFT-based spectral estimator can be

used, and, specifically, the periodogram is used. The periodogram for a iV x iV realization
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N-1JV-1

P^") = N2
n=0 m=0
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= i |̂DTFT{y[n,m]}|2 .

The sinusoids of {/i[n,m]} are detected by choosing the frequencies of the largest and

sharpest isolated peaks of the periodogram.

The detection method initially sets the amplitude threshold value to the maximum

value of the periodogram. Then the threshold is gradually lowered, while marking as a

valid sinusoid the sharp peaks which are also maxima points. This procedure is done until

the remaining peaks are too wide to be considered a sinusoid. The number of detected

peaks is the estimate of the number of harmonic components. The coefficient values of the

sinusoids are found by evaluating the DFT of the texture patch at the detected frequency

location.

The spatial domain harmonic component is found by performing inverse DFT on the

detected frequencies and complex amplitudes. The harmonic component is then subtracted

from the texture patch, which should containonly the evanescent and purely indeterministic

components.

3.3.2 Extracting the Evanescent Component

In practice, the spectraldensity function ofthe generalized evanescent field is composed

of a finite sum ofsingular functions supported on straight lines of rational slopes in the 2-D

frequency plane, implying that they arecontinuous on the line and singular in the orthogonal

direction.

To detect the evanescent component, we detect the maxima of the periodogram which

form approximately continuous lines in the frequency plane. In particular, we search for

large peaks of approximately the same magnitude such that the peaks are along onedimen

sion, while exhibiting fast decays in the orthogonal dimension. The evanescent component

is then extracted by processing the signal througha filter which is unity at these frequencies,

and zero otherwise. The magnitude and phase are obtained by evaluating the 2-D DFT at

these frequencies. The evanescent component is then removed from the periodogram, which

subsequently contains only the purely indeterministic component.
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3.3.3 Extracting the Stochastic Component

After removing the deterministic component, the periodogram now contains only the

purely indeterministic component. The parameters of the AR representation in (3.2) are

estimated using a 2-D Levinson-type algorithm byMarzetta [6]. For 1-Dsignals, the param

eters are estimated using the Burg method. To use these methods, one needs to select the

model order. One way to select this is to start from low order and increase the order until

the first few AR coefficients do not change much and the latter coefficients are relatively

small in magnitude.

3.4 Interpolating the Various Components

3.4.1 Interpolating from the Harmonic Component

Once the sinusoids are detected, we can interpolate the harmonic component. We

first proceed with 1-D interpolation. The interpolation problem is basically to find the

missing samples between the available samples. In the frequency domain, this is equivalent

to extending the frequency component of the upsampled signal beyond 7r/2. For example, a

1-Dlength-N periodic square wave function f[n] with period Nq has fundamental frequency

u>o = 2nNo/N and generates spikes at the harmonic frequencies ujo, 3u>o,. •., (2mi + l)u>o»

where (2rai+ l)u;o is the largest frequency smaller than it. When we upsample f[n] to length

2AT, the harmonicfrequencies are shifted tou?i,3u>i,..., (2mi-|-l)u;i whereu>i = 2wNo/{2N).

Furthermore, we expect to have spikes at (2(mi+l)+l)u>i, (2(mi+2)+l)u>i,..., (2m2+l)u>i,

where (2m2 + l)wi is the largest frequency smaller than tt (similarly with the negative

frequencies).

In 1-D, the harmonic frequencies are spaced at periodic spacings, and thus one can

predict where the high frequency harmonics should be. Without loss of generality, let's

order the harmonic frequencies Uk in increasing order. Let's denote the DFT value of the

fc-th harmonic as pk, for k = 1,..., M, and these frequencies correspond to the range in

[-7r,7r]. To interpolate /[n], we need to first upsample it, which renormalizes the harmonic

frequencies pk,k = 1,..., M, to the range [-n/2, n/2]. The problem here is to extrapolate

the values at the high frequency harmonics given the values at the low frequency harmonics

Pk,k = 1,...,M. We propose to model the magnitude of these values with exponential
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decay

pk = abk, k = l,...,M, (3.6)

and estimate the constants a and b to extrapolate pk for k = M + 1,M + 2, Note that

other fitting methods could be used, but the exponential one is chosen for its simplicity.

This extrapolation scheme poses a problem, however, since the phase is not modelled.

To avoid phase extrapolation, we extrapolate the DCT (discrete cosine transform) coeffi

cients instead of the DFT coefficients. Pure sinusoids do not correspond to isolated peaks

in the DCT domain. Empirically, we observe that for a periodic-7V0 signal, the higher

frequency part of the DCT coefficients seems to be periodic-4iV/7vo, witn decreasing mag

nitudes. Hence the higher frequency part of the DCT coefficients are divided into blocks

of 4iV0 and their maximum values are modelled as in (3.6), and entire blocks are used to

extrapolate to fill up the upper spectrum. The fitting of (3.6) could be done using the

least mean square error criterion. For simplicity, a method similar to that in estimating

the Lipschitz regularity in Section 2.2.2 is used. Preliminary results of this extrapolation

method are shown in Chapter 4.

In 2-D, it is more complicated to determine the trend of the harmonic component. It

is conjectured that the harmonic frequencies also have periodic spacings, and thus make

predicting the high frequency component possible. The exact method is presently being

considered.

3.4.2 Interpolating from the Evanescent Component

The evanescent component only applies to the 2-D case. The method of extrapolation

is similar to that of the harmonic component, except with continuous lines rather than with

discrete points. For example, for a grid-like texture (parallel lines to the horizontal and

vertical axes), the periodogram has horizontal and vertical singular functions at periodic

spacings, and this trend can be estimated and extrapolated.

3.4.3 Interpolating from the Indeterministic Component

The indeterministic component is modelled with AR parameters. Because our interpo

lation scheme for an AR process depends on factoring polynomials, we have only considered

the 1-D case so far, since 2-D factorization is a difficult problem. The 2-D AR process

interpolation remains an open question.
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(b)

Figure 3.2: (a) An ARMA process x[n] generated from filtering a white Gaussian noise pro
cess, w[n], with canonical synthesis filter H{z). (b) An ARMA process y[n] with synthesis
filter G(z), which is designed such that y'[n] has the same second-order statistical properties
as x[n].

Interpolating a 1-D ARMA Process

A purely stochastic process is often modelled as an ARMA process, and this is the

framework that we use. Assume without loss of generality that all random processes men

tioned here are zero-mean. The idea in interpolating an ARMA process is as follows.

Suppose x[n] is a real ARMA process. We wish to interpolate the "low resolution" x[n] to

obtain a "higher resolution" ARMA process y[n] such that the subsampled version of y[n],

denoted as y'[n], has the same first- and second-order statistical property as x[n]. More

specifically, Figure 3.2(a) shows x[n] with its canonical synthesis filter H(z) and its generat

ing white noise process w[n] with power a2, and Figure 3.2(b) shows y[n] with its canonical

synthesis filter G(z). Let y'[n] be the subsampled version of y[n], i.e. y'[n] = y[2n]. Given

that we know H(z), we wish to design G(z) such that

ry»[m] = E{y'[n]y'[n - m]} = E{a:[n]x[n - m]} = rx[m] ,

where ry*[m] and rx[m] denote respectively the autocorrelation function of y'[n] and x[n]

(the stationarity of y'[n] will be shown later). There are two questions to be answered.

First, is such a process possible? And if yes, how do we find G(z) ?

Before answering these questions, let's derive the relationship between the various

signals.
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E{y'[n}y'[n - m]} = E{y[2n]y[2n - 2m]}

=£;{E^H2n-fc]2^W2n-2m-/]|
= Y E 9[k]g[l] E{w[2n - k]w[2n -2m- I]} (3.7)

k l S[2m+l-k]

= £<7[2m +/M/]
/

= ry[2m] (3.8)

Note that the expression in (3.7) is simplified by the fact that w[n] is a white noise

process and hence rw[m] = E{w[n]w[n - m]} = S[m]. Equation (3.8) shows that y'[n] is a

wide-sense stationary process and that ry[ra] = r^pm].

To design G{z) such that ry>[m] = rx[m], it is sometimes easier to equate them in the

^-transform domain:

V[m] =ry[2m] =rx[m] & S'y(z) =\(Sy(zl) +Sy(-z±)) =Sx(z) . (3.9)
Now we are ready to answer the two questions. The answer to the first question is

affirmative, since there is always the trivial answer. First note that the power spectrum of

x[n] and y[n] are respectively

Sx(z) = a2H(z)H(z~1),

Sy(z) = a2G(z)G(z~1) .

Let y[n] be generated from the canonical synthesis filter G(z) = y/2H(z2), then it can be

easily verified from (3.9) that the power spectrum of y'[n] is

Sy(z) = y(G(^)GU-5) +G(-^)G(-^5))
= ^{H(z)H(z-l) +H{z)H{z-1))
= a2H(z)H(z~l)

= Sx(z) .

However, this answer is not very interesting because this model gives no correlation between

the odd and even samples. This counteracts the intuition of interpolation, which usually
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utilizes the correlation of the closest neighbors to estimate the missing samples. Hence, we

wish to find a process y[n] which hascorrelation between the odd and even samples.

First, consider interpolating the AR(1) process, where H(z) = 1_a12_1. For this simple
case, it is actually easier to set ry[2m] = rx[m] to find the parameters. It is easy to verify

that for the AR(1) process, the autocorrelation function is

rx[m] =<r2-^-2 . (3.10)
1 — a1

Intuitively, since the AR(1) equation for x[n] is

x[n] = ax[n - 1] + w[n] ,

one expects that y[n] is also related by an AR(1) equation with parameter y/a (provided

that a > 0). Indeed, if

y[n] = y/ay[n - 1] + w[n] ,

then , ,
]m[

ry[m] =a2^- . (3.11)
* 1- a

Note that subsampling ry[m] in (3.11) yields a ry[2m] which is similar to rx[m] in
(3.10), except a difference in the scaling constant. Hence, ^i=y[2n] (or equivalently we
can scale the innovation power) has the same second-order statistics as x[n].

Now consider higher order AR processes. Since the autocorrelation of an AR process is

a sum of exponentials of its poles (i.e. the roots of the denominator of the synthesis filter),

the constraint ry[2m] = rx[m] suggests that y[n] is characterized by a (possibly) mixed AR

and MA process, where the AR process is parameterized by the square roots of the poles

of H{z).

For the case of x[n] being an AR(2) process, a pure AR(2) for y[n] does not yield the

desired ry[2m] because of the scaling coefficients to each of the exponentials. This is where

the study of AR(1) gives insight to the treatment of higher order AR processes. Since we

can scale the AR(1) process to give the desired ry[2m], we can match each of the AR(2)

exponentials separately, as shown in Figure 3.3. That is, let n and r2 be the poles of H{z),

then find 0\ and 02 such that the synthesis filter G{z) for y[n] is of the form

G(z) = ft l—^r +fo- \=r^ ,
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w[n]
1-r.zT1

1

h\-T2Z~l

Figure 3.3: Decomposing an ARMA(2,1) process as a linear combination of two AR(1)
processes.

where ft and ft are chosen such that ry[2m] = rx[m). With this formulation, it suggests

that y[n] is an ARMA(2,1) process. Hence we conclude that to match an AR(2) process

x[n], we need y[n] to be an ARMA(2,1) process.

So how do we calculate the parameters of the ARMA(2,1) process y[n]l The easiest

way is to use the ^-transform in (3.9). Let H{z) and G{z) be, respectively,

1 1
H(z) =

G(z) =

1 - aiz~l - a2Z~2

ci(l + c22:-1)

(l_ri2-l)(l_r22-l) '

l_612-i-62z-2 '

where r\ and r2 are the roots of the denominator of H(z). Using (3.9) and after some

algebra, matching the terms yields several equations of constraints which are used to solve

for 62,6i,c2, and Ci in that order:

b\ = -a2

bj + b2 = ai

-2b2 + 2bic2 - 2bib2c2 - 2b2c\ = 0

c2i{l + b2i + bl + 2bic2-2bib2C2 + cl + b2icl + blcl) = 1

From the above equations, we see that for y[n] to be a real process, there are only certain

allowable range of values for ai and a2 (specifically, a2 < 0). Note that this does not imply

that it is not possible to find y[n] such that ry[2m] = rr[m], but just that it is not possible

if we constrain y[n] to be an ARMA(2,1) process. Also, for valid ai and a2, notice that

there might be several solutions to the coefficients b'{s and cjs because of the freedom to

choose the positive and negative roots.

For higher order AR(p) processes, the procedure is similar. To find the denominator

of G(z) (which is possibly a ARMA(p,p - 1) process), one can factor the denominator of
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H (z) as
LfJ

(l-aW*-»)II(l-<4*)*-,-«4*,«-a).
Jk=l

and match the denominator for each first- and second-order polynomial. The numerator

terms are matched by expanding out (3.9). Again, there are constraints on the a] ns and

the resulting G(z) is not unique.

Reconstruction from Estimated Parameters in 1-D

Once we obtain the parameters of G(z), we can interpolate x[n]. Since we wish to

retain as much as possible the information contained in x[n], we propose to use the scheme

shown in Figure 3.4(a) to interpolate x[n]. Essentially, this scheme adheres to the goal of

the interpolation problem, which may be viewed as estimating the missing odd samples,

but assuming the available samples are correct. In details, this scheme first processes x[n]

with the inverse filter H~1(z) to obtain the innovation w[n]. Then w[n] is interleaved with

an independently generated white Gaussian noise v[n] with the same variance a2, and the

result is filtered with G(z). The even samples of the output of G(z) are then replaced with

the original x[n] to obtain y[n], the final interpolated signal. A more detailed block diagram

of this method is shown in Figure 3.4(b).

From Figure 3.4(b), we can find the equivalent filters relating the inputs x[n] and v[n]

to the output y[n]. To express this relationship in the z-transform domain, we can take the

^-transform of a realization of the random processes x[n] and y[n] to obtain

Y(z) = X(z2)-r\[z-1V(z2)(G(z) +G(-z)) +X(z2)H-\z2)(G(z)-G(-z))]
= X{z2) + z-l[V(z2)Go(z2)+X{z2)H-\z2)Gi(z2)]

= X{z2)[l + z-lH-l{z2)Gi(z2)} + z-lV{z2)Go(z2) , (3.12)

where Gq{z) and Gi(z) are the polyphase components ofG(z) = Go(z2)-\-z~1Gi{z2). From

(3.12), we can find an equivalent interpolation filter to the one in Figure 3.4(b), as shown

in Figure 3.4(c).

3.4.4 Adding the Interpolated Components Together

To obtain the interpolated signal, we add together the individually interpolated com

ponent. The reconstruction of the high resolution signal fo[n,m] is done in the frequency
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yM

Figure 3.4: Interpolating an ARMA process, (a) showsthe global view of the scheme, while
(b) shows the specific details. The diagram in (c) is a simplified equivalent system as the
one in (b).
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domain. We assume that the lower half of the spectrum of fo[n, m] is from the available

signal, but the upper half is to be estimated. The interpolated AR process is added to

the interpolated (time-domain) harmonic component, which is then transformed into the

frequency domain. The upper half of this spectrum is taken to be the estimate of the upper

half of the spectrum of f0[n, m]. The reconstructed signal f0[n, m] is obtained by taking the

inverse Fourier transform, followed by assigning the even samples to the original available

signal.
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Chapter 4

Results

The results of the wavelet-based enhancement algorithm are shown in Section 4.1, and

some preliminary results of the texture interpolation are shown in Section 4.2.

4.1 Experimental Results on Wavelet-Based Enhancement

To obtain a test image, the original 512 x 512 Lena is lowpass filtered, subsampled by

2, and the process is repeated to obtain a low resolution image of 128 x 128, from which
a 64 x 64 subimage is extracted as the available data for all of the interpolation methods.

This available image is shown in Figure 4.1(a). The lowpass filter used in obtaining the

test image is a separable 2-D filter, H(wi,u2) = Hi{wi)Hi{u2), where the impulse response
of Hi{u) is [-1,0,9,16,9,0,-1] normalized to #i(0) = 1. Note that this filter is chosen

independently of the filters used in the wavelet transform.

The filters used in the filter bank are similar to those used in [5], and they are derived

from the 1-D quadratic spline wavelet. The difference here is that the filters are normalized

such that H{z = 1) = l,G{z = 1) = 0,H(z = -1) = 0,G(z = -1) = 1. The coefficients of

the filters H0,Hi,G0,Gi, and L are given in Table 4.1.

Due to discretization, the estimated Lipschitz exponent is not the same as what the

continuous-time model predicts. Therefore, scaling constants are multiplied to each scale of

the wavelet transform, Wjf (see equation (2.4)). In particular, these constants are found
empirically such that the extrema values of a step edge are the same across the scales

(corresponding to Lipschitz exponent a = 0). Table 4.2 lists these scaling constants.
Figure 4.1(b) shows a 256 x 256 image ofLena obtained from performing the enhance-



n Ho Hi Go Gi L

-3 -0.03125 0.0078125

-2 0.125 -0.21874 0.0468750

-1 0.125 0.375 -0.68750 0.1171875

0 0.375 0.375 0.5 0.68750 0.6562500

1 0.375 0.125 -0.5 0.21874 0.1171875

2 0.125 0.03125 0.0468750

3 0.0078125

Table 4.1: Coefficients of the quadratic spline FIR filters Hq,Hi,Gq,Gi and L.

j A;
1 1.50

2 1.12

3 1.03

4 1.01

>5 1.00

Table 4.2: Scaling constants for the quadratic spline wavelets.
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ment algorithm iteratively twice on the 64 x 64 test image (i.e. magnifying the 64 x 64

image, and then magnifying the resulting 128 x 128 image again using the algorithm, with a

total of 4x magnification). Convergence occurs rather quickly and the reconstruction after

obtaining the initial estimates or after 1-2 iterations is acceptable. After 5-10 iterations the

image quality is quite good, and the images either do not change discernibly afterwards or

they degrade due to,overshoots. We observe that using regular filters such as the quadratic

spline yields better results (less blocky images) than non-regular filters (such as Haar). The

values of the extrema are allowed to be within a confidence interval during reconstruction.

Because the image data represent intensity values between 0 and 255, the pixel values are

clipped to be within this interval during reconstruction.

We choose several standard methods to compare our method against. Figure 4.1(c)

shows a bicubic spline interpolated image, and Figure 4.1(d) shows the image resulting from

performing twice iteratively the 2x magnification with bicubic spline followed by unsharp

masking. Figure 4.1(e) shows a bilinearly interpolated image, and Figure 4.1(f) shows

the result of performing twice iteratively the 2x magnification with bilinear interpolation
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Figure 4.1: Comparison of various interpolation methods on Lena (All are 4x magnifica
tion), (a) Original low resolution available image (64 x 64). (b) Magnifying Lena 4x using
the 2x interpolation algorithm iteratively (256 x 256 image), (c) Bicubic spline interpola
tion, (d) Bicubic spline followed by unsharp masking.
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Figure 4.1: Comparison (continued), (e) Bilinear interpolation, (f) Bilinear interpolation
followed by unsharp masking.

followed by unsharp masking. The unsharp masking used is the common discrete Laplacian

gradient [4] with A= 1. The images produced by the standard methods are blurrier or have

blockier edges.

For the algorithm variant that does not constrain the signal extrema, ringing effects

tend to occur around the edges. On the other hand, when constraining the values to be the

initial estimates, the resulting image is not very good because the initial estimates are not

very reliable. A direct 4x magnification was also briefly tried, but the result was not as

good as performing two 2x magnifications. This is probably due to the fact that the more

restrictive constraints of 2x magnification narrows the possible solutions, and performing it

iteratively narrows the reconstruction set successively, whereas the direct 4x magnification

has a larger reconstruction set.

A remark should be made on comparing our enhancement method with bilinear inter

polation followed by unsharp masking. The procedure of iteratively upsampling a signal,

performing linear interpolation and unsharp masking does not converge to a regular filter
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index

Figure 4.2: Iterating the process of upsampling by 2, followed by filtering by linear inter
polator and unsharp masking using the discrete Laplacian gradient with A= 1.

when the mask used is the Laplacian gradient with the free parameter A= 1,
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where the origin is taken to be the center. Figure 4.2 shows the 1-D caseof the iterated filter

where the linear interpolation and unsharp masking impulse responses are, respectively,

[.5, 1, .5] and [-.5A, 1 + A, -.5A]. Furthermore, because of the change in sampling

rate, this operation not only accentuates the high frequency components but also other

frequency components from replicates of the original spectrum. Hence, this method may

not be adequate for image interpolation.
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4.2 Preliminary Results on Texture Enhancement

As previously mentioned, the texture enhancement work is mostly theoretical for now,
and only preliminary results have been obtained. In Section 4.2.1, we show a 1-D interpo
lated AR(2) process. Section 4.2.2 shows interpolating a synthetic 1-D "texture-like" signal.
For 2-D interpolation, we have not been able to obtain a satisfactory decomposition ofthe

various components as claimed in [2] and thus do not yet have results.

4.2.1 Interpolating a 1-D AR Process

An experiment was done on a AR(2) process to see how the interpolation described in

Section 4.2.1 performs. An AR(2) process with the canonical synthesis filter

Hiz) = (1 - ,$z-l)(l - .25*"1) =1- .75*-1 +.1252-2 (4J)
is generate by a white Gaussian noise with variance a2 = 1. Then using the interpolation

scheme in Figure 3.4, we interpolate the AR process. As a preliminary experiment, we

assume that H(z) is known, so only the parameters of G{z) has to be calculated. The high

resolution synthesis filter G(z) is

_ .7121 - .162U-1
[Z) " 1- 1.2071*-1 + .35362-2 '

Figure 4.3 shows the comparison between the proposed scheme and linear interpolation.

The result of our scheme shows a lot more fluctuation.

4.2.2 Interpolating a Synthetic 1-D Texture-like Signal

To test out the entire interpolation scheme (i.e., extracting and interpolating the deter

ministic and indeterministic component) in 1-D, a synthetic signal is created. The synthetic

signal consists of a square wave of magnitude ±20 and period 32, with additive AR(2) pro

cess having the same H(z) as in (4.1) and driven by a white Gaussian process with power

a2 —10. First, the sharp peaks in the deterministic component are selected and extrap

olated to the high frequencies. The deterministic component is subtracted to obtain a

residual that should only contain the indeterministic component. We use Burg's method to

estimate the AR(2) parameters of the residual process (for preliminary experiment, we as

sume the order is known to be 2, and thus there was no order selection), which is estimated
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250

Figure 4.3: The result of interpolating an AR(2) process. The solid line is the result using
the proposed scheme, and the dotted line is the linearly interpolated.

to be

H(z) =
1 - .69372"1 + .14772-2 '

and the innovation power is estimated to be 9.71. The high resolution synthesis filter G(z)

is then calculated to be

.7161 - .17412-1

^ " 1- 1.20932"1 +.38432-2 •

The interpolated signal is shown in Figure 4.4 in solid lines, in comparison with linear

interpolation in dotted lines. Figure 4.4(a) shows the entire signal, and Figure 4.4(b) shows
a small segment, where we can see that the proposed method yields sharper edges.
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Comparison of proposed interpolation method with linearinterpolation

100 200 300 400 500 600 700 800 900 1000

-20-

-40
100

Figure 4.4: Comparison of interpolation methods on a synthetic square wave with additive
AR(2) colored noise. The solid line is the proposed method, and the dotted line is linear
interpolation, (a) shows the entire sequence and (b) shows an enlargement of one section.
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Chapter 5

Conclusion and Future Work

This thesis proposed two approaches to the image interpolation problem, aimed toward

two very different features of an image: isolated edges and texture regions. The wavelet-

based enhancement algorithm is an elegant and novel approach which adaptively enhances

edges based on what is available in the low resolution signal. Experiments show that
the enhancement algorithm produces a sharper image than traditional methods. There

are, however, drawbacks. The proposed enhancement method is a much more complex

method than the traditional linear methods. Reconstruction using iterative projections is

also a costly process. Future work would include cutting down on the amount of necessary

computation and finding some simplifications.

The second method is a theoretical proposal on interpolating texture regions. The basic

idea is to decompose a texture field into deterministic and indeterministic components and

interpolate each separately. Preliminary experiments on 1-D synthetic signals show that

the method generates sharper edges than linear interpolation, implying that it may be

a method worthwhile for further experiments. More work is necessary to estimate the

parameters accurately in the 2-D framework.

With these two tools, different regions of an image can be treated differently. The

final comprehensive goal to the interpolation problem would be to segment an image into

edge and texture regions and interpolate them separately before adding them back together,

generating a image that is enhanced in both edge regions and texture areas.
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