

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

REAL-TIME TASK LEVEL SCHEDULING IN

THE POLIS CO-DESIGN ENVIRONMENT

by

Daniel Wayne Engels

Memorandum No. UCB/ERL M95/101

6 December 1995

REAL-TIME TASK LEVEL SCHEDULING IN

THE POLIS CO-DESIGN ENVIRONMENT

by

Daniel Wayne Engels

Memorandum No. UCB/ERL M95/101

6 December 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Real-Time Task Level Scheduling in the

POLIS Co-Design Environment

by

Daniel Wayne Engels

Master of Science in Electrical Engineering and Computer Science

University of California at Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

The correctness of real-time systems depends on logical correctness as well as cor

rect timing behavior (temporal correctness). The temporal correctness is largely determined

by the scheduling algorithm used to set the software's execution ordering.

Creatingscheduling algorithms and verifying that they generate a temporally cor

rect ordering of software executions (a schedule) is a difficult problem, and, in general,

scheduling software such that all timing constraints are met is an NV-h&rd problem. In or

der to handle large complex scheduling problems, it is desirable to automate the generation

and verification of scheduling routines. Methods to automate these tasks are presented in

this paper.

This work is performed in the framework of the Polis co-design environment which

assists the user in designing small real-time systems using one or more microcontrollers and

automatically generates the operating system and scheduling routines. The scheduling al

gorithms used in Polis and their implementation details are presented. Scheduling routines

generated by these algorithms as well as theoretical bounds on their execution times are de

scribed. In conclusion, it is shown that the experimental times are within the theoretically

expected bounds.

Professor Alberto Sangiovanni-Vincentelli
Dissertation Committee Chair

Real-Time Task Level Scheduling in the

POLIS Co-Design Environment

Copyright 1995

by
Daniel Wayne Engels

To my parents, Keith and Georgia.

They believe.

Ill

IV

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Introduction 1
1.1.1 The Main Characteristics of Real-Time Systems 2

1.2 Predictability in Real-Time Software 4
1.3 The POLIS Real-Time Design Environment 6
1.4 Thesis Overview 7

2 Definitions and Problem Analysis 9
2.1 Introduction 9

2.2 Real-Time Task Model 9

2.3 Real-Time Task Scheduling Algorithms 13
2.4 Complexity of Task Scheduling in the Real-Time Environment 15

3 Round Robin Scheduling 17
3.1 Introduction 17
3.2 Round Robin Scheduling 17
3.3 Advantages of the Round Robin Approach 19
3.4 Disadvantages and Other Issues of the Round Robin Approach 19
3.5 Implementation of the Round Robin Approach Within POLIS 19

4 Pre-Run-Time Scheduling 21
4.1 Introduction 21

4.2 Cyclic Executive 22
4.3 Pre-Run-Time Scheduling Algorithms 24
4.4 Sporadic Task Scheduling in Pre-Run-Time Schedules 28

4.4.1 Servicing Sporadic Tasks 28
4.4.2 Schedulability Analysis with Sporadic Tasks 30

4.5 Advantages of the Pre-Run-Time Approach 31
4.6 Disadvantages and Other Issues of the Pre-Run-Time Approach 32
4.7 Implementation of the Pre-Run-Time Approach Within POLIS 34

4.7.1 General-Pre-Run-Time Algorithm 35
4.7.2 Pre-Run-Time Algorithm 36

5 Static Priority Scheduling 41
5.1 Introduction 41
5.2 The Rate Monotonic Scheduling Algorithm 42
5.3 The Deadline Monotonic Scheduling Algorithm 44
5.4 The Laxity Monotonic Scheduling Algorithm 45
5.5 Task Synchronization in Static Priority Systems 47
5.6 Non-Preemptive Static Priority Scheduling 50
5.7 Sporadic Task Scheduling in Static Priority Systems 52

5.7.1 The Priority Exchange Algorithm 52
5.7.2 The Deferrable Server Algorithm 54
5.7.3 The Sporadic Server Algorithm 55
5.7.4 Summary of Sporadic Task Handling 56

5.8 Static Priority Schedulability Analysis 58
5.8.1 Utilization Based Schedulability Analysis 58
5.8.2 Synchronous Schedulability Analysis 58
5.8.3 Asynchronous Schedulability Analysis 61
5.M Non-preemptive Schedulability Analysis 61

5.9 Advantages of the Static Priority Approach 64
5.10 Disadvantages and Other Issues of the Static Priority Approach 65
5.11 Implementation of the Static Priority Approach Within POLIS 67

5.11.1 Routines Implemented Within POLIS 67
5.11.2 Generated Scheduling Routines 69

6 Dynamic Priority Scheduling 73
6.1 Introduction 73
6.2 Dynamic Best Effort Scheduling Algorithms 74
6.3 Dynamic Planning-Based Scheduling Algorithms 76
6.4 Task Synchronization in Dynamic Priority Systems 77
6.5 Non-Preemptive Dynamic Priority Scheduling 82
6.6 Sporadic Task Scheduling in Dynamic Priority Systems 87
6.7 Advantages of the Dynamic Priority Approach 89
6.8 Disadvantages and Other Issues of the Dynamic Priority Approach 90
6.9 Implementation of the Dynamic Priority Approach Within POLIS 91

6.9.1 Routines Implemented Within POLIS 91
6.9.2 Generated Scheduling Routines 91

7 Results 95
7.1 On-Line Scheduling Overhead 95

7.1.1 Derived Bounds for the On-Line Scheduling Overhead 95
7.1.2 Average On-Line Scheduling Overhead 97
7.1.3 Comparison with an Existing Real-Time Operating System 103

7.2 Synthesized Operating System Memory Requirements 105

VI

7.2.1 Comparison With Existing Real-Time Operating Systems 105

8 Conclusions and Future Work 107

A Scheduling Overhead Data 109

Bibliography 115

Vll

List of Figures

3.1 Generated Round Robin scheduling routine 20

4.1 Branch and bound pre-run-time algorithm presented by Xu and Parnas. . . 25
4.2 General Pre-Run-Time (GPRT) algorithm implemented within Polis. . . 35
4.3 Pre-Run-Time (PRT) algorithm implemented within Polis 37
4.4 Valid Initial Solution algorithm implemented within Polis 38

5.1 Audsley et. a/.'s algorithm to determine if a synchronous static priority task
set rn is schedulable 60

5.2 Generated non-preemptive static priority scheduling routines 69
5.3 Generated preemptive static priority scheduling routines 71

6.1 Generated non-preemptive dynamic priority scheduling routines 93
6.2 Generated preemptive dynamic priority scheduling routines 94

7.1 Average Round Robin scheduling overhead 98
7.2 Average Pre-Run-Time scheduling overhead 98
7.3 Average Non-Preemptive Static Priority scheduling overhead 99
7.4 Average Preemptive Static Priority scheduling overhead 99
7.5 Average Non-Preemptive Dynamic Priority scheduling overhead 100
7.6 Average Preemptive Dynamic Priority scheduling overhead 100
7.7 Average Preemptive Static Priority scheduling overhead compared with the

maximum possible scheduling overhead 101
7.8 Average Preemptive Dynamic Priority scheduling overhead compared with

the maximum possible scheduling overhead 102
7.9 Comparison of all scheduling implementations as a function of the number

of events in the system for a fixed task set size 102
7.10 Comparison of all scheduling implementations, except for Pre-Run-Time, as

a function of the number of tasks in the system for a fixed number of events. 103

Vlll

List of Tables

5.1 Comparison of the PE, DS, and SS sporadic server algorithms 57

7.1 Range of possible execution cycles for non-interrupt scheduling routines syn
thesized by PoLiswith Ne = number of events in the system and Nt =
number of tasks in the system 96

7.2 Range of possible execution cycles for interrupt scheduling routines synthe
sized by PoLiswith Ne = number of events in the system, Nj = number of tasks in the system
and PriorityT = the priority of the interrupted task, T 96

7.3 Execution times for some standard routines in the pSOS+ real-time operating
system for the Intel 486DX2 33MHz processor 104

7.4 Measured memory requirements (in bytes) of the synthesized PoLisoperating
system utilizing specific scheduling routines for a task set of size three with
eight events 105

7.5 Measured memory requirements (in bytes) of the synthesized PoLisoperating
system utilizing specific scheduling routines for a task set of size fourty-eight
(48) with eighty (80) events 106

7.6 Real-Time Operating Systems' memory (ROM) requirements 106

A.l Average scheduling overhead for the Round Robin scheduling routines. . . . 109
A.2 Average scheduling overhead for the Pre-Run-Time scheduling routines. . . 109
A.3 Averagescheduling overheadfor the Non-Preemptive Static Priority schedul

ing routines 110
A.4 Average scheduling overhead for the Preemptive Static Priority scheduling

routines 110

A.5 Average scheduling overhead for the Non-Preemptive DynamicPriority schedul
ing routines Ill

A.6 Averageschedulingoverhead for the Preemptive Dynamic Priority scheduling
routines Ill

A.7 Standard deviation for the average Round Robin scheduling overhead. ... 112
A.8 Standard deviation for the average Pre-Run-Time scheduling overhead.... 112
A.9 Standard deviation for the average Non-Preemptive Static Priority scheduling

overhead 113

IX

A.IO Standard deviation for the average Preemptive Static Priority scheduling
overhead 113

A.11 Standard deviation for the average Non-Preemptive Dynamic Priority schedul
ing overhead 114

A.12 Standard deviation for the average Preemptive Dynamic Priority scheduling
overhead 114

Acknowledgements

I am indebted to my research advisor, Professor Alberto Sangiovanni-Vincentelli,

for his encouragement and support throughout the course of this work. I am also indebted

to Professor Robert Brayton for agreeing to take time out of his busy schedule to read this

report.

A large 'Thank you!' goes to Gitanjali Swamy and husband Sanjay, who's gen

erosity and patience have given me a place to sleep and many useful suggestions on my

writing. I also thank Rajeev Murgai for his couch and suggestions. Isn't that a Doctorate

in Psychiatry that he has? The most sarcastic comment award goes to Stephen 'A Loon

A Tick From Minnesota' Edwards without who's critiques I would not have realized that I

write like a five year old high on Helium that (or is it 'which'?) was being passed around

at a McDonalds birthday party.

All members of the CAD-group have been helpful, and I thank them all for the

many informative discussions we have had.

XI

They piled together all the remaining lettersand dropped them into the bag. They

shook them up.

"Right," said Ford, "close your eyes. Pull them out. Come on, come on, come

on.

Arthur closed hiseyes and plunged his hand into the towel full ofstones. He jiggled

them about, pulled out four and handed them to Ford. Ford laid them along the ground in

the he order he got them.

"W," said Ford, "H, A, T ... What!"

He blinked.

"I think it's working!" he said.

Arthur pushed three more at him.

"D, O, Y ... Doy. Oh, perhaps it isn't working," said Ford.

"Here's the next three."

"0, U, G ... Doyoug ... It's not making sense I'm afraid."

Arthur pulled another two from the bag. Ford put them in place.

"E, T, doyouget ... Do you get!" shouted Ford. " It is working! This is amazing,

it really is working!"

"More here." Arthur was throwing them out feverishly as fast as he could go.

"I, F," said Ford, "Y, O, U ... M, U, L, T, I, P, L, Y ... What do you get if you

multiply ... S, I, X ... six ... B, Y, by, six by ... what do you get if you multiply six by

... N, I, N, E ... six by nine ..." He paused. "Come on, where's the next one?"

"Er, that's the lot," said Arthur, "that's all there were."

He sat back, nonplussed.

He rooted around again in the knotted up towel but there were no more letters.

"You mean that's it?" said Ford.

"That's it."

"Six by nine. Forty-two."

"That's it. That's all there is."

Douglas Adams, The Restaurant at the End of the Universe.

Chapter 1

Introduction

1.1 Introduction

Real-time systems are those in which the correctness of the system depends not

only on its logical correctness but also on correct timing behavior. Real-time systems

range from a simple microcontroller to a highly complex, distributed system. They are

found everywhere and control much of what we depend on in our everyday lives. Some

of the more familiar real-time systems include the engine control unit in an automobile;

the motion control system controlling robots; the process control systems used in nuclear

power plants; and the air-traffic control systems guiding aircraft throughout the world. All

of these systems depend upon microprocessors and microcontrollers to perform correctly.

Real-time systems are becoming more dependent upon microprocessors and mi

crocontrollers, collectively referred to as processors. Certain functions are performed on the

processor(s) by executing multiple threads of machine instructions, or tasks. These tasks

compete with one another for limited resources including the processor(s), memory, and I/O

access, and their execution must be scheduled so that each task's individual resource and

timing requirements are met. If the tasks are not scheduled correctly, timing constraints

may be missed with disastrous results. Thus, scheduling tasks properly is crucial to the

correctness of real-time systems.

1.1.1 The Main Characteristics of Real-Time Systems

Typically, a real-time system is used as a controlling subsystem, with the envi

ronment as the controlled subsystem. A controlling system interacts with its environment

based on the information from various sensors and inputs. The information presented to

the controlling subsystem must be consistent with the actual state of the environment that

is being controlled; otherwise, the actions of the controlling system can be disastrous. This

makes periodic monitoring of the environment and timely processing of sensed information

a must.

The difficulty of scheduling tasks to perform some or all of the functionality of the

real-time system is dependent upon the characteristics of the system. The main character

istics that affect task scheduling are discussed below.

Task Timing Characteristics

Tasks that must complete execution shortly after they become ready to execute

(are invoked) have tight timing constraints. These tasks force the operating system to react

quickly and the scheduling algorithm to be fast.

Tight timing constraints also arise when a task's execution time is a significant

fraction of the time it has to complete execution. For example, consider a task with an

execution time of 8 time units that must complete execution 10 time units after its invo

cation. The operating system and the scheduling algorithm can take no more than 2 time

units to react to an invocation and begin executing the task. Most real-time systems have

many tasks with tight timing constraints, making it difficult to meet all timing constraints.

In general, the tighter the timing constraints and the more tasks with tight timing con

straints, the quicker the operating system and the scheduling algorithm must react to a

task invocation.

Strictness of Timing Constraints

The strictness of the timingconstraints, either hard or soft, is the value ofcomplet

ing some task after a timing constraint is missed. Fora task with a hard timing constraint,

there is no value in performing the task after the timing constraint is missed. For a task

with a soft timing constraint, there is some diminished value in completing the task after

the timing constraint is missed, so the task should be completed.

Different techniques are used to deal with hard real-time tasks and soft real-time

tasks. Hard real-time tasks are often preallocated and scheduled on the required resources

to guarantee that the timing constraints on such tasks are met 100% of the time. Soft
real-time tasks are often scheduled on the required resources in such a way so as to obtain

good average case performance.

Reliability

The reliability requirements of the system arise when certain tasks, known as

critical tasks, must be guaranteed to meet their timing constraints under all operating

conditions. That is, all critical tasks must be guaranteed to meet their timing constraints

even under the worst-case conditions. Correct timing behavior of critical tasks is often

guaranteed by off-line analysis ofthesystem. Schemes that reserve resources for the critical
tasks may also be used. Note, a task with hard timing constraints is not necessarily a critical

task. For example, if the task that controls the stiffness of the suspension does not meet

a hard timing constraint, the passengers in the vehicle experience a slightly less enjoyable

ride. However, if the task controlling the deployment of the air bags does not meet its hard

timing constraint, the passengers can experience additional injury or even death. The task

controlling the deployment of the air bags is a critical task, whereas the task controlling

the stiffness of the suspension is not a critical task.

The distinction between critical tasks and non-critical tasks with hard timing

constraints is often made to ensure that the most important tasks are executed during

unusual or unexpected situations. For example, during a head-on collision the correct

performance of the suspension is irrelevant, but the correct performance of the air bagscan

save lives.

Environment

The environment in which a real-time system operates is often the most influential

factor in the design of the system. In a well-defined environment, such as an automobile

engine, real-time systems are often small and static, and all timing constraints may be

guaranteed a priori. However, if the environment is not well-defined or may change over

time, different techniques must be used to design the system. It is very difficult to generate

a small, static system that will work flexibly in such an environment. Therefore, all timing

constraints may not be guaranteed a priori.

When timing constraints are not guaranteed, the system is not predictable. That

is, it is not known if or when a timing constraint will be violated in the system. Predictability

is a key component of all real-time systems. For example, consider an unpredictable system

controlling the reactor temperature in a nuclear power plant. For years it might work

correctly, but one day it may allow a melt-down. Since the system is not predictable, it is

not known when that day will come.

1.2 Predictability in Real-Time Software

The ability to guarantee the temporal correctness of a real-time system determines

the predictability of the system. That is, the ability to show, demonstrate, or prove that

timing requirements are met subject to any assumptions made is critical to guaranteeing

that a real-time system performs correctly at all times [SR90]. General and reliable tech

niques do not exist for verifying the predictability of software.

To ensure that timing constraints are predictably adhered to, the schedulability

of the tasks must be verified prior to software execution. This verification is often referred

to as worst-case schedulability analysis, or simply schedulability analysis [HS91, SHH91],

and is an integral part in the development process of predictable real-time software. When

the software is written in a language that supports real-time timing constructs, e.g., Real-

Time Euclid [KS86], the schedulability analysis may be performed on the software directly,

allowing a very low-level analysis of its timing characteristics. However, most real-time

software is written in high-level languages, e.g., C, that do not provide the facilities that

allow the programmer to control the real-time responsiveness of a task1. These languages

consider the real-time details to be non-essential and hide them from the programmer.

Consequently, the performance of software implemented in these languages is sensitive to

the resource allocation protocols used in the operating system and is outside the control of

the programmer.

The restricted access to the timing details of the software forces scheduling and

schedulability analysis to be performed at a level (usually the task level) that does not

analyze the the exact timing details of the software. Task level scheduling is related to the

Mt may be argued that languages such as Adado provide this access; however, the syntaxof many of the
'timing' commands, such as the delay command in Ada, are more suitable for soft real-time systems than
for hard real-time systems [HS90}.

general flow-shop problem2 and has been studied extensively in the literature [LL73, DL78,

LW82, CSR86, BSR88, BMR90, Xu93].

The schedulability analysis of the various task level scheduling algorithms, or

scheduling algorithms, depends strongly on the task level real-time system model, or real

time model, an abstraction containing information on the real-time system characteristics.

A general real-time model consists of a set of tasks, processors, non-processor resources,

communication links, and clocks. Each task is associated with a processor requirement,

i.e., computation time, and non-processor resource requirements, e.g., a shared data bus.

Tasks may communicate with each other, and communication restrictions may be specified

for each task or for groups of tasks. In addition, relationships, e.g., precedence constraints,

may be specified between tasks and between segments of tasks.

Different scheduling algorithms for the same real-time model may require different

schedulability analysis tests. For example, given the following real-time model:

• a single processor,

• no non-processor resources,

• all tasks are ready for execution at constant intervals (i.e., all tasks are periodic),

• all tasks must complete execution before they are invoked again,

• constant task execution times,

• no inter-task communication, and

• no operating system or scheduling overhead;

a scheduling algorithm that lays out the entire time-line of execution for the tasks before

the tasks are executed uses an implicit schedulability test. If the tasks so scheduled always

meet their timing constraints, the set of tasks can be successfully scheduled. Explicit

schedulability analysis tests need not be performed. However, a scheduling algorithm that

uses task priorities to determine execution order at run-time must perform an explicit

schedulability analysis test. A utilization based schedulability analysis test may be used for

2Thegeneral flow-shop problem can be formulated as follows. Each of n jobs J\ Jn has to be processed
on m machines Mi ... Mm in that order. Job J,, i = 1,..., n, thus consists of a sequence of m operations
On,...,Oim', 0,k corresponds to the processing of J, on M* during an uninterrupted processing time P,*.
A/*, k = 1,..., m, can handle at most one job at a time. The objective is to find a processing order on each
A/* such that the time required to complete all jobs is minimized [LL78].

this scheduling algorithm. If the expected processor utilization is below a threshold, then

the task set is guaranteed to be schedulable.

1.3 The POLIS Real-Time Design Environment

Polis is a hardware/software codesign environment targeted towards reactive (con

trol dominated) real-time system design [CGJ+94]. These systems are relatively small, real

time controllers composed of software on one (or few) processor(s) and some semi-custom

hardware components operating in a well-defined environment.

The designer specifies the design in a high-level language language such as Es-

terel [BCG91] or a high-level graphical language such as State Charts [DH89]. The high-

level description is transformed into the internal representation used by Polis. The internal

representation of the real-time system is based upon the Codesign Finite State Machine

(CFSM) formalism, an extension of the classical finite state machine. By manipulating

the high-level description, the designer is able to indirectly control the size of the resulting

CFSMs.

The basic model is a network of interacting CFSMs that communicate through

a very low-level primitive: events. A CFSM, and possibly the environment in which the

system operates, broadcastsevents that oneor more CFSMs or the environment can detect.

Events directly implement a communication protocol that does not require an

acknowledgement. The receiver waits for the sender to emit the event, but the sender can

proceed immediately after emission. An implicit buffer between the senderand each receiver

saves exactly one event until it is detected or overwritten with another occurrence of the

event. This allows each CFSM to detect an event at most once any time after the event's

emission and until another event of the same type overwrites it. This approach lends itself

to an efficient hardware implementation with synchronous circuits, as well as a software

implementation using either polling or interrupts to detect events.

Each CFSM in the network is assigned an implementation, either hardware or

software. The hardware synthesis and the software synthesis proceed from the appropri

ate CFSMs. The hardware is synthesized using the standard logic net list model used by

logic synthesis systems such as SIS [SSL+92, SSM+92]. The software is synthesized us

ing the software graph (s-graph) model, an abstraction of the basic instructions of a very

simple computer model [CGH+94]. In addition, the operating system, including the task

level scheduler, is automatically generated with the interfaces between the hardware, the

software, and the operating system automatically synthesized as well.

Each CFSM implemented in software corresponds to a task in the system. The

tasks synthesized from the CFSMs can have small code sizes with short run times. This

is possible since the designer has control over the size of the CFSMs in the system, and

the size of the CFSM directly affects the synthesized code size and run time. The synthe

sized operatingsystem may use either a polling-based or an interrupt-based event detection

method, allowing for easy implementation of most scheduling algorithms in the synthesized

operating system.

Validation is used to verify that a synthesized design satisfies its specification. For

mal verification is used to debug both the specification with respect to high-level properties

and the implementation with respect to lower-level properties. Error traces describing the

reasons for failing to satisfy a desired property are provided to allow the designer to fix

the errors and try alternate solutions. Simulation may also be used to verify the cases that

would be difficult for formal verification techniques to handle.

1.4 Thesis Overview

Real-time systems must predictably produce logically correct results while meet

ing all timing constraints. Polis is a design environment which supports the design and

verification of real-time systems, and is capable of supporting many real-time models; thus,

the opci.^'.iij, system which is synthesized by Polis may contain any one of a number of

scheduling algorithms. At the time Polis synthesizes the operating system, a schedulability

analysis test is performed to verify that the desired scheduling algorithm produces a valid

schedule for the given task set.

The various scheduling algorithms and their associated schedulability analysis tests

supported by Polis are presented in the following. The related theory behind each of the

scheduling algorithms and the schedulability analysis tests are presented. The details of the

implementation within Polis are also presented. More specifically,

• Chapter 2 presents the representation of a task used throughout, the main types of

task level schedules, and the complexity analysis for several types of schedules with

different real-time models.

• Chapter 3 deals with the round robin scheduling algorithm. The ideas behind the

round robin algorithm implemented in Polis and the implementation within Polis

are presented.

• Chapter 4 deals with pre-run-time scheduling algorithms. The cyclic executive ap

proach and an algorithmic approach are presented. The pre-run-time algorithms im

plemented within Polis are presented.

• Chapter 5 deals with static priority scheduling algorithms. The theory behind the

Rate Monotonic scheduling algorithm, the Deadline Monotonic scheduling algorithm,

and the Laxity Monotonic scheduling algorithm is presented, and the more important

extensions of the theory are discussed. The static priority algorithms implemented

within Polis are presented.

• Chapter 6 deals with dynamic priority scheduling algorithms. The theory behind the

Earliest Deadline First and the Minimum Laxity First best effort scheduling algo

rithms are presented, and the more important extensions of the theory are discussed.

The dynamic priority algorithms implemented within Polis are presented.

• Chapter 7 analyzes the performance of the scheduling algorithms generated by Polis.

• Chapter 8 summarizes the contributionsof this work and presents directions for future

work.

Chapter 2

Definitions and Problem Analysis

2.1 Introduction

The task model is an abstraction containing information on the characteristics of a

task. The information contained in the task model affects the types of scheduling algorithms

and any associated schedulability analysis tests which may be used to schedule all of the

tasks in the system, the task set. For example, a task model which contains information

only upon the rate at which tasks are invoked, i.e. their period, would preclude the use of a

pre-run-time scheduling algorithm (see Chapter 4), but other typesofscheduling algorithms

could still be used. Information on the worst case execution times for each task is required

for any schedulability analysis test to be performed.

The general task model used in the sequel is presented with relevant terminology.

The general types of scheduling algorithms are then discussed. Finally, the complexity of

task level scheduling under various real-time models is examined.

2.2 Real-Time Task Model

The task is represented by a task model, an abstraction containing information

on the major task characteristics. This information may be used by the designer for de

termining which scheduling algorithm to use. The task model is also used by the chosen

scheduling algorithm and its related schedulability analysis tests. The following task model

is general enough for use with most task sets and most scheduling algorithms (with their

associated schedulability analysis tests).

10

A task isasequential program invoked by a particular event. An eventis astimulus

generated either external or internal to the system executing the tasks at some maximum

frequency. Each task will be executed at a time determined by the scheduling algorithm.

A more formal definition of a task is given below.

Definition 2.2.1 A task T is a 6-tuple (r, c, p, d, D, P) where

r: the release time of task T: the time when task T is first invoked.

c: the maximum computation time of task T: the maximum time required by task T to

execute to completion on a dedicated uniprocessor.

p: the period of task T, where p > c: the minimum interval between successive invocations

of task T.

d: the deadline of task T, where p> d>c: the time after the invocation by which execution

of task T must be completed.

D: the type of deadline of task T: either a soft deadline or a hard deadline.

P: the classification of task T: either periodic, sporadic, or aperiodic.

r r + c r + d

r, c, p, and d are assumed to be integer values.

r + p

Three broad classifications of tasks are commonly used [ABRW91, Jef92, KLR94]:

periodic tasks, sporadic tasks, and aperiodic tasks.

Periodic tasks are invoked at constant intervals, i.e., invoked at a fixed frequency.

In other words, a periodic task is invoked exactly p time units apart. This yields the follow

ing behavior rules for the invocation and execution of periodic task Tp = (rp, cp, pp, dp, Dp, Pp).

If t{ is the time of the itn invocation of task Tp, then

1. The first invocation of task Tp will occur at time t\ = rp.

2. The (/ + l)tn invocation of task Tp occurs at time ti+l = U+ pp.

11

3. The itn invocation oftask Tp may begin execution no earlier than time £,-.

4. The t™1 invocation of task Tp must complete execution no later than U+ dp if its

deadline is to be met.

Sporadic tasks are invoked at random intervals with a minimum time between

successive invocations. Behavior rules for the invocation and execution of sporadic task

Ts = (rs, cs, p3, ds, Ds, Ps) are similar to those for a periodic task. If U is the time of the

itn invocation of task Ts, then

1. The first invocation of task Ts will occur at time t\ = r3.

2. The (i + l)tn invocation of task Ts occurs no earlier than time U+ps.

3. The ftn invocation of task Ts may begin execution no earlier than time t{.

4. The ttn invocation of task T3 must complete execution no later than t{ + ds if its

deadline is to be met.

A sporadic task acts like a periodic task when it is continually invoked ps time units apart.

Aperiodic tasks are invoked at random intervals with no minimum time between

successive invocations. The arrival patterns for aperiodic tasks may be described by prob

ability density functions. Aperiodic tasks may have hard deadlines, but the timing re

quirements are usually stated in terms of satisfying an average response time requirement.

Since it is impossible to guarantee the schedulability of tasks with hard timing constraints

that may be invoked infinitely often at a single instant in time, aperiodic tasks will not be

considered.

The following definitions are related to tasks.

Definition 2.2.2 The response time of an invocation of task T is the time span between

the time when the task is invoked, t{, and the time when the task has just finished executing

(completion time), tj, so (tj —t{) > c.

Definition 2.2.3 The critical instant of a task, T, is an instant at which an invocation of

T will have its largest response time.

Definition 2.2.4 The critical zone of a task, T, is the time interval between the critical

instant and the completion time, tj, of the task.

12

Definition 2.2.5 An overflow occurs at time t ift is the deadline of a task that has not

completed execution.

The following example illustrates these definitions.

Example 2.2.1 Consider the task set containing the following two tasks where T = (r,c,p, d).
TA - (5,15,30,25) and TB = (5,15,30,20). Using an earliest deadline first heuristic, i.e.,
allocating the processor to the ready task with the earliest deadline, the following schedule
is obtained for a uniprocessor system. Note that this schedule repeats every 30 time units.

dB

rA,k rB dA

B

0 5 10 15 20 25 30 35

The response time for Ta is calculated by subtracting the release time ofTa from

the completion time ofTA, 35 - 5 = 30. The response time for Tb is 20- 5 = 15.

Since the above schedule repeats, the maximum response times for the two tasks

are 30 and 15for Ta and Tb respectively. These maximum response times occur at times

t = 5,35,65,.... By definition, these are the critical instants for both Ta and Tb-

The critical zone ofTA occurs between time t = 5, the critical instant ofTA, and

time t = 35, the completion time ofTA, for a critical zone of 30. The critical zone ofTs

occurs between times t = 5 and t —20 for a critical zone of 15.

An overflow occurs at time t = 30 since Ta has not completed execution by its

deadline.

Note, there is noschedule that would successfully schedule this task set in a unipro

cessor system. m

Precedence, exclusion, preempt, and before relations are now defined.

Definition 2.2.6 Task Ti is said to precede another task Tj (Ti precede Tj or Ti < Tj)

ifTj can only start execution after Ti has completed.

Precedence relations may exist between tasks when one task invokes another task or one

task requires information produced by another task.

Definition 2.2.7 TaskTi is saidtoexclude another taskTj (Ti exclude Tj) if noexecution

ofTj can occur between the time Ti starts its execution and the time Ti completes.

13

Exclude relations may exist between tasks when some tasks must prevent access by other

tasks to shared resources such as data or I/O devices.

Definition 2.2.8 Task Ti is said to preempt another task Tj (Ti preempt Tj) if the exe

cution ofTj is interrupted by the execution of task Ti.

Preempt relations are generally used only in pre-run-time scheduling algorithms, forcing

one task to preempt another.

Definition 2.2.9 A task Ti is said to come before another task Tj (Ti before Tj) if the

execution ofTj cannot begin before the execution o/T, has begun.

Before relations may exist between tasks when synchronization is required. This relation is

more useful in a multiprocessor environment than in a uniprocessor environment.

2.3 Real-Time Task Scheduling Algorithms

We are interested in the scheduling of sets of tasks that compete for processor and

non-processor resources. Given a set oftasks rn = {7\,.. .,Tn}, Ti = (r,, c,, p,, d,-, A, Pi),
a scheduling algorithm specifies at each time t which task, if any, shall execute. If the

scheduling algorithm generates a complete schedule off-line, the resulting schedule is called

a pre-run-time schedule1. Pre-run-time schedules allow for easy schedulability analysis. If

a pre-run-time schedule meeting all timing constraints cannot be generated for the task set,

then the timing constraints cannot be met. Pre-run-time schedules can be efficient due to

a minimal amount of overhead and a guaranteed lack of contention for resources. However,

they do have some drawbacks. Any change in the task set requires that the pre-run-time

schedule be recomputed and tested. Pre-run-time schedules are also not well suited to

handle sporadic tasks. Therefore, they do not offer as good a response time to sporadic

tasks as may be obtained by other methods.

Run-time scheduling algorithms2 compute the schedule for the tasks on-line from

the pool of invoked tasks. The run-time scheduler may or may not assume any knowledge

about future invocations of the tasks in the task set.

1Pre-run-time schedules may also be referred to as "off-line schedules" and "static schedules."
2Run-time schedules may also be referred to as "on-line schedules" and "dynamic schedules."

14

Run-time schedules are often classified as static priority or dynamic priority. A

static priority scheduling algorithm assigns a fixed priority to each task (and every instance

of that task) prior to the execution of the first task. At each instant, the processor executes

a ready task with the highest priority. A dynamic priority scheduling algorithm allows the

priority of a task to change any time after it is invoked and before it is completed. At

each instant that a task may be executed, each task is assigned a priority based upon some

criteria, and a ready task with the highest priority is allocated the processor.

A second classification of run-time scheduling algorithms is preemptive versus non-

preemptive. A preemptive scheduling algorithm allows the processor to be allocated to a

task that is ready to run before the currently executing task has completed. Thus, the

executing task is preempted by the ready task. Preemptive algorithms provide flexibility
especially when dynamic priority is also employed. However, this flexibility does have a

price. When a task is preempted, its current state must be saved in memory before the

next task can begin execution. This context switch requires an amount of time proportional

to the amount of state information that must be saved.

Preemption must not violate the exclusion relations between tasks. Preemptive

algorithms must prevent high priority tasks from missing deadlines in the presence of lower

priority tasks that require a non-preemptive resource required by the higher priority task.

All of these problems add to the complexity and to the overhead of preemptive algorithms.

Non-preemptive scheduling algorithms are simpler than preemptive algorithms.

They have an implicit exclusion relation between every pair of tasks that execute on the

same processor. Non-preemptive algorithms are simple to implement and easy to analyze,

but they too have some problems. The main problem with non-preemptive scheduling

algorithms is that high priority tasks may miss deadlines due to long running low priority

tasks. It is also possible that a low priority task will miss a deadline in the presence of

higher priority tasks. In general, non-preemptive scheduling algorithms are unable to find a
valid schedule for all task sets that preemptive algorithms are able to find a valid schedule.

Definition 2.3.1 A schedule is considered valid3 if and only if every task in the task set is

always able to meet its deadline when the task is released at its specified release time. If the
release times are not specified, then a schedule is considered valid if and only if every task

in the task set is always able to meet its deadline for all possible release times.

3Feasible is often used as a synonym for valid in the literature.

15

Definition 2.3.2 A task set is considered schedulable if there exists a valid schedule for

the task set.

We note that sometypes ofscheduling algorithms will not be able to produce a valid schedule

for a schedulable task set. This is due to the limitations placed on the scheduling algorithm

(e.g., no preemption, no inserted idle time, etc.) and the limitations ofthe real-time model

used.

2.4 Complexity of Task Scheduling in the Real-Time Envi

ronment

We are interested in the general problem of producing a valid schedule for a task

set on one or more processors. Ideally, the scheduling algorithm will find a valid schedule

if the task set is schedulable. However, it is not always easy to find a schedule and verify

its validity because most scheduling problems, differentiated by their real-time model, have

been found to belong to the class of ArP-hard problems.

Some of the more interesting scheduling problems for which complexity constraints

have been derived are given below. These include problems for which the complexity has
been found to belong to the class of A^P-hard problems and those for which the complexity
has been found not to belong to the class of A/T-hard problems.

Theorem 2.4.1 ([GJ79] [BS89]) Given a set oftasks, rn, with arbitrary execution times
and preemption is not allowed, deciding whether Tn is schedulable on one processor is MV-
complete.

Theorem 2.4.2 ([JSM91]) Non-preemptive scheduling ofperiodic tasks when their release
times are specified is MV-hard.

Theorem 2.4.3 ([LW82]) Given a set oftasks, rn, with arbitrary release times, arbitrary
deadlines, and allowing arbitrary preemption, deciding whether rn is schedulable on one

processor is AfV-hard.

Theorem 2.4.4 ([LW82]) Given a set oftasks, rn, with arbitrary release times, arbitrary
deadlines, and allowing arbitrary preemption and a priority assignment p, deciding whether
the schedule produced by p is valid is AfV-hard.

16

Theorem 2.4.5 ([LW82]) Given a task set, r„, with all tasks having the same release
time, arbitrary deadlines, and allowing arbitrary preemption, deciding whether r„ is schedu
lable on one processor requires pseudo-polynomial time.

Theorem 2.4.6 ([UU75]) Given a set of tasks, r„, each requiring a single time unit for
execution, with precedence constraints, producing a valid schedule on mprocessors is MV-
complete.

It follows from these theorems that the real-time system model affects the com

plexity ofthe problem to besolved. In general, real-time task scheduling may beconsidered

to be a difficult problem with most problem definitions belonging to the class ofAfP-hard

problems. Since no polynomial time algorithm exists that finds the optimum schedule,

heuristics are used to find a close to optimum schedule in polynomial or pseudo-polynomial

time.

Fortunately, the task scheduling problem seeks only a valid schedule as a solution.

This has allowed heuristic search algorithms, and even enumerative and branch and bound

algorithms on some task sets, to be successful and fast. The most widely used scheduling

algorithms employ heuristics as their main method of generating a schedule.

17

Chapter 3

Round Robin Scheduling

3.1 Introduction

Non-preemptive Round Robin (RR) schedules are the simplest schedules which

may be constructed. They specify the order in which tasks are checked in determining the

next task to execute. Constructing the RR schedule requires no information on the task

characteristics, and any type of task set (periodic, sporadic, or aperiodic) may be scheduled

using the RR approach. The schedule is executed repeatedly at run-time.

RR schedules are not typically used in real-time applications since it is difficult to

verify their timing predictability. Polis is capable of generating RR schedules, so they are

discussed here for completeness.

We discuss the round robin approach to scheduling. The advantages and disadvan

tages of this approach are then examined. Finally, the round robin implementation within

the Polis co-design environment is discussed.

3.2 Round Robin Scheduling

Round Robin schedules are not true schedules; they do not specify the order of

execution of the tasks. Instead, an RR schedule specifies the order in which tasks are checked

to determine the next task to be executed. Since the exact order of execution of the tasks

is not fixed in an RR schedule, the timing behavior of the task set is not predictable.

In its simplest form, an RR schedule is a list of the tasks in the task set. No

information on the tasks is required to generate the list (a random list is acceptable). No

18

schedulability analysis tests exist for an RR schedule; therefore, simulation must be used

to verify that all tasks meet their respective deadlines.

At run time, the RR schedule is repeatedly traversed until a ready task is found.

The ready task is allocated the processor and run to completion. Once a task has completed

execution, the RR schedule is traversed beginning with the next task in the schedule.

The following example illustrates the RR scheduling approach.

Example 3.2.1 Consider the following periodic tasks (the tasks are represented by the 4-

tuple T = (r,c,p,d)): Tx = (0,1,10,10), T2 = (2,2,5,5), and T3 = (1,5,10,10).

One possible RR schedule is: T\, T2, T3.

This schedule (and every other schedule produced by the round robin approach)

produces the following execution ordering (repeated every 10 time units).

n , d\

7*3
r20 [20

r2,

T2l

0 8 9 10 11 12 13

A better understanding of the actions of the RR schedule at run-time may be

obtained by examining the actions occurring at a specific time. Consider time unit 8. The

following actions occur at this time (T\ and T3 are not ready to execute and T2 is ready to

execute).

• Ti completes execution.

• The scheduler checks T3 and determines that it is not ready to execute.

• The scheduler checks T\ and determines that it is not ready to execute.

• The scheduler checks T2 and allocates the processor to it.

Notice that T3 is checked after T2 completes execution and that T\ (the first task

in the schedule) is checked after T3 (the last task in the schedule).

This is not a valid schedule since task T2 misses its deadline at time 7, but the

task set is schedulable.

19

3.3 Advantages of the Round Robin Approach

The main advantage of the round robin scheduling approach is its simplicity. An

RR schedule is generated without the use of task characteristics, and the run time imple

mentation requires only to be able to keep its place in the RR schedule and detect and

execute ready tasks.

The RR scheduling approach isable to handle all typesof tasks, periodic, sporadic,

and aperiodic. The ability of an RR schedule to generate a valid schedule is verifiable

through simulation.

3.4 Disadvantages and Other Issues of the Round Robin

Approach

The round robin scheduling approach, by its nature, is too simple. Complete sim

ulation is the only method of verifying that deadlines are met. This may not be practical if

there are a large number of tasks in the system, and worst-case simulation yields pessimistic

results.

The run-time overhead of the RR schedule can be very large. Since the round

robin approach attempts to find a ready task by checking the tasks in a fixed order, it is

possible that all tasks are checked before a ready task is found.

3.5 Implementation of the Round Robin Approach Within

POLIS

The round robin scheduling approach is implemented within the Polis co-design

environment. The RR schedule is a random listing of the tasks in the system. It is generated

directly from the list of tasks given to the schedule generation routines within Polis. (The

given list of tasks is the RR schedule.)

No schedulability analysis tests are performed on the generated schedule. The

reason for this is that the execution times for the tasks are assumed to be unknown when

an RR schedule is produced. Without knowledge of the execution times of the tasks it is

impossible to perform a schedulability test.

The generated RR scheduling routine is shown in Figure 3.1.

// main round robin scheduling routine

scheduler()

{

while(1) {

poll_inputs_and_update_input_buffers();

for(task =0; task < NUMBER-TASKS; task + +) {

if(is_ready(task)) {

execute(task);

}

}

Figure 3.1: Generated Round Robin scheduling routine.

20

21

Chapter 4

Pre-Run-Time Scheduling

4.1 Introduction

Pre-run-time schedules are computed off-line. The schedule specifies the action to

be taken at each instant. Constructing the schedule requires the major characteristics of the

tasks be known in advance1. Pre-run-time scheduling may be used to schedule periodic task

sets by computing a schedule through the time period equal to the least common multiple

of the periods of the tasks. The schedule is then executed repeatedly at run-time. Task sets

containing sporadic tasks may be scheduled by converting the sporadic tasks to equivalent

periodic tasks and then scheduling the resulting periodic task set [Mok83].

Multiple schedules may be generated for a system, corresponding to different op

erating 'modes.' This provides additional flexibility for the system, allowing it to adapt to

its environment.

Traditionally, pre-run-time schedules are generated by hand, often using ad hoc

methods. The cyclic executive approach provides a structured framework within which the

designer may use heuristics to construct a valid schedule. This framework limits the solution

space the designer must explore to find a valid schedule, making it easier to construct a

schedule.

Algorithmic approaches have been proposed to automate pre-run-time scheduling.

We discuss the cyclic executive approach and a branch-and-bound pre-run-time algorithm.

'Given a task set r„, for every task T, = (r,, c,, p,, d,, D,, P.) € r„ all components of the task and the
relations between this task and the other tasks in the task set must be known in order to schedule this task

set ofT-line.

22

The advantages and disadvantages of these approaches are then examined, highlighting the

advantages of the cyclic executive and the algorithmic approaches. Finally, the pre-run-time

implementation within the Polis co-design environment is discussed.

4.2 Cyclic Executive

The cyclic executive approach is the most widely used and best understood im

plementation technique for scheduling periodic task sets. A cyclic executive is a control
structure or program that interleaves the execution of several periodic tasks on a single

processor [BS86, BS89]. The interleaving is deterministic, providing predictable timing

behavior for the task set.

A cyclic schedule specifies an interleaving of actions allowing each task to meet

its deadline. The possible actions are complete execution of a task, partial execution of a

task, and processor idle. The cyclic schedule is composed ofone or more major schedules
describing the sequence of actions to be performed during a fixed time period, called the
major cycle. The major cycle is equal to the Least Common Multiple ofthe periods (LCM)
of the tasks. Different major schedules correspond to different modes of operation of the

system.

Major schedules arefurther divided into minor schedules, orframes. Frame bound

aries correspond to points at which timing behavior may be enforced, typically via an in

terrupt from a timer circuit. If the actions of a frame are not completed before the end of
the frame, an error, a. frame overrun, has occurred. Typically, all frames areofequal length

requiring a simple periodic timer to enforce timing behavior.

The length ofa frame, called the minor cycle when all frames areofequal length,

is restricted by the task set being scheduled. The frame length may be no longer than the

shortest period of all the tasks. Tasks that cannot complete execution within one frame

must be split into two or more sub-tasks, each of which can complete within one frame.

This is equivalent to preempting the task at a predetermined point. There are additional

restrictions on m, the minor cycle:

1. m < di for i = 1,..., n, allowing for frame overruns to be detected shortly after they

occur.

2. m must be greater than or equal to the computation time of the longest action.

23

3. m must divide the major cycle, M, for timer simplicity.

4. m+ (m-gcd(m,p,)) < d; Vi € {1,... , n) where gcdstands for the greatest common

divisor function; requiring that a complete frame exist between every release time and

its corresponding deadline.

Example 4.2.1 demonstrates how a schedule is generated using the cyclic executive

approach.

Example 4.2.1 Consider the following periodic tasks with the same release time (the tasks

are represented by the abbreviated triple T = (c, p, d)): T\ = (1,10,10), T2 = (2,20,20),

T3 = (3,10,10),r4 = (2,10,7).

The major cycle is the LCM of the tasks. The periods are 10, 20, and 10, with an

LCM o/20; therefore, the major cycle is M = 20.

The minor cycle is calculated asfollows. Since the shortest period is 10, the possible

minor cycle times are limited to be one of I,... ,10. Requirement (1) for the minor cycle

time limits the possible times to 1,... ,7. For simplicity, assume all tasks are a single

action. Thus, the longest action is 3 time units. Requirement (2) reduces the possible times

to 3,... ,7. Requirement (3) reduces the possible times to 4 or 5. Requirement (4) does not

reduce the possibilities further; thus, m = 4 or m = 5.

One possible major schedule is shown below for m = 5. The order of actions within

each frame are determined by an earliest deadline first heuristic with ties broken arbitrarily.

i,r2, r$, r4 ri, r3, r4

d4 di,d3
d\,d

d4
2,d3

.

T4 T4

*

T3

'

T3

>

Ti
T2 Ti

:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Usually, heuristics are used to determine the order of actions within each frame,

but these do not guarantee a valid schedule will be found if one exists. A valid schedule

is usually difficult to find in a complex system. This increases the chance that a human

designer will be unable to find a valid schedule or will erroneously conclude that a schedule

24

is valid. The framework of the cyclic executive does help to reduce the chance of errors in

the generated schedule, but does not preclude the chance for error.

4.3 Pre-Run-Time Scheduling Algorithms

The cyclic executive approach provides a structured framework that facilitates the

generation of a schedule. However, this framework can hinder the generation of a valid

schedule. In particular, the use of frames can prevent a valid schedule from being found.

Frames are an implementation structure used to ensure that deadlines are met at run-time.

If the given release time, computation time, deadline, and period are accurate for all tasks,

frames do not need to be used.

Pre-run-time scheduling algorithms have been presented that generate a valid

schedule without the use of frames [XP90, SG91, Xu93]. Many of these algorithms are

based upon branch and bound techniques. These techniques use a tree-structured search

format and utilize bounding methods to eliminate entire branches of the search tree. These

techniques are amenable to automation and will find a valid schedule if one exists.

Figure4.1 shows a branch and bound algorithm that generates a schedule in which

the lateness2 of all segments is minimized and all precedence and exclusion relations are

satisfied [XP90]. The algorithm was designed to schedule a periodic task set on a single

processor. Each task T, is divided into segments t[0]:, f[l],-, ..., t[n]i, where i[0], is the

first segment and t[n]i is the last segment in task Tt. The characteristics of each segment,

i.e., release time, computation time, deadline, and period, are determined and the set of

precedence and exclusion relations on the segments are initialized to those on the tasks.

The segments are scheduled through their LCM. The schedule meets all release

time, precedence, and exclusion constraints on the segments. If the minimum lateness of

all possible schedules is greater than zero, then no valid schedule exists for the task set.

Otherwise, a valid schedule is found by the algorithm.

The algorithm is typical of most branch and bound pre-run-time scheduling algo

rithms in that it generates a search tree with each node containing a complete schedule.

The schedule is generated by an earliest-deadline-first heuristic, and a lower bound on the

lateness of the schedule is computed.

2The lateness of a segment is equal to the difference between its completion time and its deadline. The
lateness of a schedule is equal to the maximum lateness of all segments in the schedule.

25

Branch and Bound Pre-Run-Time Algorithm [XP90]

input: the set ofsegments to be scheduled, initial precede and exclude constraints.

output: the set of segments in scheduled order

1. Compute a schedule for the input set ofsegments. This schedule is the root node of

the search tree, and is the first 'parent' node.

2. Determine the lower bound on the lateness for this schedule.

3. Find the latest segment /[/], and its lateness. If its lateness equals its lower bound,

then stop (the schedule is optimal). Return this node.

4. Repeat the following steps until either a valid schedule is found or the optimum

schedule is found.

(a) For the parent node, find the sets ofsegments Si, those segments that may be

preceded by <[/],-, and S2, those segments that may be preempted by <[/],.

(b) For each segment in Si, Sj, create a child node with all constraints of the parent

node plus *[/], precede sj.

(c) For each segment in S2. s*. create a child node with all constraints of the parent

node plus £[/], preempt s*.

(d) Recompute the schedule and the least lower bound on lateness, and find the

latest segment and its lateness for each child node.

(e) If the lateness ofone or more child nodes is less than or equal to zero, return the

node with the smallest lateness.

(f) For each child node, if the lateness of the node is less than or equal to the least

lower bound of all unexpanded nodes (nodes without child nodes), then stop (the

schedule is optimal). Return the best solution found.

(g) Select among all unexpanded nodes the node with the least lower bound, in case

of ties, select the node with least lateness. Call this node the parent node.

Figure 4.1: Branch and bound pre-run-time algorithm presented by Xu and Parnas.

26

The solution space is searched by incrementally adding constraints. At each node

in the search tree, two sets of segments are identified, Si and S2, such that the schedule

found at that node may be improved on if either the latest segment is scheduled before a

segment in S\; or, the latest segment preempts a segment in S2.

For each segment in the sets Si and S2, a child node is generated that contains

either an additional precede or an additional preempt constraint. Thus, the latest segment

in the parent node is either scheduled before a segment in Si or preempts a segment in S2

in each of the child nodes. The node with the least lower bound on lateness among all

unexpanded nodes (nodes without child nodes) is always expanded.

New nodes in the search tree are generated until either a valid schedule is found or

the lower bound of all unexpanded nodes is greater than the least lateness of all schedules

generated so far. In the latter case, the schedule with the least lateness is optimal.

The following examples illustrate this algorithm.

Example 4.3.1 Consider the following periodic tasks represented by the abbreviated 4-tuple

T = {r, c, p, d): Ti = (0,1,10,10), T2 = (0,2,20,20), T3 = (0,3,10,10), T4 = (0,2,10,7).

There are no precedence or exclusion constraints among the tasks. Each task contains only

one segment.

The LCM is M = 20.

The equivalent tasks that will be scheduled over M are calculated as follows. Since

the only parameter that changes between instances of the same task is the release time,

only the release times need to be calculated for the successive invocations of a task. All

invocations with a release time greater than or equal to M are not considered for obvious

reasons.

Starting with task T\, the first instance of T\ has the given release time, Tlo =

(0,1,10,10). The release time of the second instance of T\ is determined by adding the

period ofTi to the release time ofTu, Tu = (10,1,10,10). The third invocation o/2\ has
a release time equal to M; thus, T\7, and all subsequent invocations, are not considered.

Repeating this for the remaining three tasks, we obtain the following tasks: T2o =

(0,2,20,20), T3o = (0,3,10,10), T3l = (10,3,10,10), T4o = (0,2,10,7), T4l = (10,2,10,7).

An initial schedule is generated for the task set and shown below.

27

rio>r2o>r3o>r4o ri^r3l,r4l

l40
d\x,dzx d4.

rfli>^20>^3i

•4o
•3o

lo
Jo

0 i 5 5 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

This is a valid schedule, so the algorithm returns the above schedule. •

Example 4.3.2 Consider the following periodic tasks represented by the abbreviated 4-tuple

T = (r, c, p, d): Ti = (0,3,5,4), T2 = (0,1,9,10), T3 = (0,2,10,10). There are no

precedence or exclusion constraints among the tasks. Each task contains only one segment.

The LCM is M = 10.

The equivalent tasks that will be scheduled over M are calculated to be: T\Q =

(0,3,5,4), T,, = (5,3,5,4), T2o = (0,1,10,9), T3o = (0,2,10,9).

An initial schedule is generated for the equivalent task set and shown below.

d
ri0,r2o,r3o

lo
rh

^ln^20'^3o

io Tn T*«
Po

0 8 9 10

This is not a valid schedule, for task T3o misses its deadline. It is late by two time

units. Therefore, the child nodes in the search tree must be generated. Recall that Sik is the

set of segments that must be preceded by the latest segment at node n*. In this instance, the

latest segment for node n\ is T3q. Since no precedence constraints exist between T3q and any

other segment, all other segments belong to Si, = {ri0, Tin T2o}. Similarly for S2l, the

set of segments that must be preempted by T3q, since no exclusion constraints exist between

T3o and any other segment, S2l = {Ti0, Tij, T2o}.

Arbitrarily starting with set S^, a precede constraint is added between T3o and

Xi0 such that T3o -< T\0. The following schedule results when this constraint is added.

rlo>r20>r3o
i

30

0

du
rli

lo

28

rfln^20^3o

Tu 20

8 9 10

This is not a valid schedule since TiQ is late by one time unit. The next child node

is generated for node n\. Taking the next segment in Si,, T\x, a precedence constraint is
added between T3o and Tu such that T3o -<TU. Recall that since a new child node is being
generated, the precedence constraint between T3o and Tio does not exist for this new child

node. The resulting schedule is shown below.

ri(pr2cpr3o
*io

ri,
di^d2o,d3o

Ti0 TJo
Tu 2o

0 3 5 8 9 10

This is a valid schedule for the task set; therefore, this schedule is returned by the

algorithm.

4.4 Sporadic Task Scheduling in Pre-Run-Time Schedules

4.4.1 Servicing Sporadic Tasks

Thus far, only periodic task sets have been addressed; however, sporadic tasks

are often present in otherwise periodic task sets. The sporadic tasks must be scheduled
correctly with the pre-run-time scheduling approach used. One method of dealing with
sporadic tasks is to consider the sporadic tasks to be periodic tasks with period equal to the
minimum time between invocations. The resulting periodic task set is then scheduled. At

run time, the scheduler executes a sporadic task only if it is ready. The worst case scenario

arises when the sporadic task is invoked just after it is checked by the scheduler; possibly

resulting in a missed deadline. Consequently, this approach may result in unpredictable
timing behavior causing sporadic tasks to miss their deadlines. This is only acceptable if
all sporadic tasks have soft deadlines.

29

An alternative method of handlingsporadic tasks is to establish a server to provide

a private resource for the exclusive use of the sporadic tasks. This approach creates a

periodic server task that is scheduled like other periodic tasks. When the server task is

allocated the processor, it executes any waiting sporadic tasks. The server task does not

allow the total execution time of the sporadic tasks to exceed its maximum execution time.

The server task exits when either no sporadic tasks are ready to execute or the maximum

execution time of the server task is exceeded. In this way, the server task provides a regular

service to sporadic tasks, minimizing the lateness of the sporadic tasks.

A periodic server task does not affect the schedulability of the periodic tasks.

Theorem 4.4.1 A periodic task set that is schedulable by the pre-run-time scheduling ap

proach with a task, Ti, is also schedulable by the pre-run-time scheduling approach ifTi is

replaced by a periodic server task with the same release time, period, deadline, and maximum

computation time.

Proof By contradiction. Assume that in the periodic task set schedulable by the pre-

run-time approach, task T, is replaced by a periodic server task, Tps, with the

same release time, period, deadline, and maximum computation time, but the

resulting task set is not schedulable by the pre-run-time approach.

Consider the pre-run-time schedule generated using the original task set.

Every instance of task T, in this schedule may be replaced with an instance of

the periodic server task Tps with the same task characteristics. This is possible

since there are no restrictions placed upon Tps; thus, Tps may be preempted at

arbitrary points. The resulting schedule, with Ti replaced with Tps, does not

cause any periodic task to miss its deadline. Therefore, the schedule is valid.

Contradiction. •

Furthermore, multiple server tasks may be used to service different, or possibly

the same, sporadic tasks.

The main concern when scheduling hard sporadic tasks with a pre-run-time sched

uler is that the sporadic task will be invoked just after it is tested, either by the scheduler or

the periodic server task. The pre-run-time schedule must handle this case correctly, i.e., the

hard sporadic task must not miss its deadline even when it is invoked just after it is tested.

In order to guarantee that a hard sporadic task does not miss its deadline in the worst case,

30

the hard sporadic task, Ts, must be checked to see if it is ready to execute every ds- cs time

units. A periodic server task may be used for each hard sporadic task. The characteristics

of the server task, Tv, for each hard sporadic task, Ts, aredetermined by the characteristics

ofT..

Mok [Mok83] proposed a method for translating a sporadic taskTs = (rs, cs, pa, ds,

Ds, Ps) into an equivalent periodic task Tp = (rp, cp, pp, dp, Dp, Pp). For this translation,

the following conditions are satisfied: rp = rs, cp = cs, pp = min(rfs - cs+ l,ps), dp = cs,
Dp = Da. This transformation guarantees that a sporadic task will not miss its deadline in

the worst case.

4.4.2 Schedulability Analysis with Sporadic Tasks

When sporadic tasks are scheduled in a pre-run-time schedule, the timing analysis

becomes more complicated. For example, consider the sporadic tasks to be periodic tasks

with period equal to the minimum time between successive invocations. Finding a valid

schedule such that no periodic task ever misses a deadline does not guarantee that a sporadic

task will never miss a deadline.

If Mok's method is used to determine the characteristics of every periodic server

task serving a hard sporadic task, any valid pre-run-time schedule guarantees that no hard

sporadic task will ever miss a deadline. However, if the pre-run-time schedule does not

guarantee all deadlines, then a more exact analysis must be performed to determine if the

schedule is valid. The inconsistency arises from the fact that the maximum utilization

of the periodic server task created using Mok's method (the utilization that the pre-run-

time schedule assumes to be used) is greater than the utilization of the corresponding hard

sporadic task.

The actual processor usage of hard sporadic tasks must be taken into account

when determining the validity ofa schedule. More precisely, in a pre-run-time schedule, the

computation time of a hard sporadic task should becounted exactly once during every time

span equal to its minimum time between successive invocations, corresponding to the worst

case processor utilization during each of these time spans. For example, consider the hard

sporadic task Ts (with rs = 0, cs = 2, and ps = ds = 10) serviced by Mok's periodic server

Ta/. During the time interval 0,... ,10 the computation time attributed to Ts should be

equal to cs even though the computation time of Tm may be more than cs in this interval.

31

During the time interval 1,... , 11 the computation time attributed to Ts should be equal
to cs, and so on. In addition, every other hard task in the task set should meet its deadline

taking into account the actual processor usage characteristics of Ts.
The analysis to determine if all tasks meet their respective deadlines is complex

and computationally expensive, but it must be performed to ensure that all hard tasks

always meet their deadlines.

Using a single periodic server task for each soft sporadic task allows additional

information to be obtained on the schedulability of the task set. All occasions when a soft

sporadic task may miss a deadline or cause a hard task to miss a deadline will be identified.

In addition, the probability that a soft sporadic task misses a deadline can be calculated,

allowing for a more exact analysis of the schedulability of the task set.

4.5 Advantages of the Pre-Run-Time Approach

The main advantage of the pre-run-time scheduling approach is the predictability

of the system's timing behavior, allowing all deadlines to beguaranteed without any explicit

schedulability analysis test.

For satisfying timing constraints in hard real-time systems, predictability of the
system's behavior is the most important concern; pre-run-time scheduling is
often the only practical means of providing predictability in a complex system
[XP931.

When we are presented with accurate worst case timing behavior of the tasks, the timing

predictability of the system is guaranteed even though the exact timing behavior of the

tasks and of the system may not be predictable. Deadlines can be enforced within the

precision of one frame in the cyclic executive approach.

The schedule is easily constructed such that precedence, distance, exclusion, and

resource constraints are met, eliminating the possibility of deadlock and unpredictable de

lays. Thus, no special task synchronization protocols are required.

Pre-run-time schedules may be generated automatically, reducing the possibility

of errors. In addition, branch and bound algorithms will find a valid schedule if one exists.

This is especially important in complex systems where a human may not be able to find a

valid schedule.

32

Multiple schedules may be generated for different modes of operationof the system,

allowing the system to adapt to its environment.

Implementations of pre-run-time schedules are simple and efficient. The schedule3
can be represented by a table of actions that is interpreted by the scheduler at run-time

with the minor cycle timer constructed as a periodic timer. The scheduler requires minimal

run-time resources to follow the schedule and perform context switching.

Sporadic tasks are handled by the pre-run-time scheduling approach using periodic

server tasks.

4.6 Disadvantages and Other Issues of the Pre-Run-Time

Approach

Since the general scheduling problem belongs to the class of jV'P-hard problems,

heuristics are needed to guide the search for a valid schedule. The most relevant heuristic

used in constructing a schedule is derived from a run-time scheduling algorithm. The

heuristic is derived from the earliest deadline first scheduling algorithm [LL73], an optimal

algorithm in the sense that it will always produce a valid schedule if one exists. This is a

dynamic priority preemptive scheduling algorithm where the task allocated the processor

has the earliest deadline of all those tasks that are ready to be allocated the processor. The

relevant heuristic for pre-run-time schedules is that one should try to schedule actions in

earliest deadline order.

Generally, this heuristic is not used in its original form in pre-run-time scheduling

due to its preemptive nature, requiring tasks to allow preemption at arbitrary points rather

than at specific points. In addition, allowing arbitrary preemption would cause the software

and hardware handling the context switches to be more complicated. The net result is that

the context switch would require more time and space than may be acceptable, and task

synchronization and resource management would be more complicated.

The amount of information required to generate a pre-run-time schedule can be

prohibitively large. If the system contains unpredictable tasks, it will be difficult to deter

mine a valid schedule off-line, and any change to the task set will necessitate the generation

of a new schedule. In addition, the determination of some of the required information is

'The major schedule for cyclic executives.

33

very difficult.

The determination of specific points within a task at which it is "safe" to preempt

the task is very difficult. The determination is usually done manually based on natural

"regions" of code, critical sections, or functional units [BS86]. This is especially critical to

the cyclic executive approach where the tasks must be "broken" (if they are to be broken)

before the major schedule may be constructed.

The timing predictability ofsectionsofcode is difficult. Many of the current timing

prediction techniques yield average casetiming. Thosetiming prediction techniques that do

determine worst-case timing are often overly pessimistic due to false paths. Because of the

problems involved in determining the worst-case execution times, the timing predictions are

often inaccurate. The overly pessimistic times cause wasted CPU cycles while the overly

optimistic times may cause frame overruns and are the reason that errors occur.

The relationship between the periods in the task set can cause the major cycle

time to be extremely large. When the periods in the task set are harmonics of one another,

the major cycle is equal to the largest period in the task set. However, when the periods

are not harmonics, the major cycle may be much larger than the largest period in the task

set. This is shown in the following examples.

Example 4.6.1 Given the following set of harmonic periods: 2, 4, 3, 16; the major cycle

is 16. •

Example 4.6.2 Given the following set of non-harmonic periods: 2, 5, 11, 13; the major

cycle is 1430. •

Mode changes can cause difficulties. When the system changes its mode of oper

ation, the currently running task must be terminated in some logical way (which may be

just an abortion). All resources need to be freed, and the state of the system needs to be

set to a known state. The new major schedule must then be started. All of this may ne

cessitate that any mode change require special processing to reinitialize or make consistent

certain variables. Thus, any system that has multiple modes of operation will require a

more complicated run-time scheduler.

Multiple modes of operation also cause additional memory space to be used to

store the additional schedules. This can be critical for memory limited systems that have

relatively large pre-run-time schedules. The multiple pre-run-time schedules required for

each mode of operation may not fit in the available memory.

34

Sporadic tasks are noteasily handled by the pre-run-time scheduling approach. Al

though the periodic server tasks provide a method by which sporadic tasks may be scheduled
and serviced, the resulting schedule is often difficult to analyze and to implement if a peri

odic server services more than one task. In addition, if a periodic server services multiple

tasks, the state ofany running task must be saved and all currently used resources released

when the periodic server exhausts its execution time. This results in a complex periodic

server implementation.

4.7 Implementation of the Pre-Run-Time Approach Within

POLIS

The cyclic executive scheduling approach was developed assuming that a human

would determine the worst-case execution time of the tasks and then manually arrange the

major schedule. Algorithmic approaches are easily automated. Since Pons automatically

determines the worst-case execution time for the various tasks in the system and auto

matically generates a schedule, only an algorithmic pre-run-time approach is implemented

within Pons.

The algorithm presented by Xu and Parnas [XP90] discussed in Section 4.3 is

the basis for the General Pre-Run-Time (GPRT) algorithm implemented within Polis.

The main difference between the algorithm in [XP90] and the GPRT algorithm is that a

taskconsists ofonly one non-preemptible segment, eliminating the need to determine viable

points for preemption. This isessential to keeping thesize ofthe real-time operating system

(of which the scheduler is a key part) generated by Polis small enough to fit within the
tight memory bounds of its target applications. In addition, context switching overhead is

eliminated by this modification.

The following assumptions are made about the tasks scheduled by the GPRT

algorithm.

Al: Preemption is not allowed. The target applications for Polis have a limited amount of
memory and hardware support available. Preemption in the pre-run-time scheduling

approach would tax or exceed the available resources.

A2: All tasks are periodic. Those tasks that are sporadic may be transformed into

periodic tasks by Mok's method. When the schedule is executed the sporadic tasks

35

General Pre-Run-Time Algorithm

input: the network of CFSMs, the set of tasks (CFSMs) to be scheduled rn, the target

output file

output: the table of actions, the table of sporadic tasks, the main schedule loop

1. Generate a periodic server task for each soft task.

2. Convert all hard sporadic tasks into periodic tasks using Mok's method.

3. Determine the Least Common Multiple (LCM) of the periods.

4. Determine all task instances that will occur during the LCM and their appropriate

initial precedence constraints.

5. Consider all instances to be the task set rn that is to be scheduled.

6. Generate the schedule for the task set rn using the PRT algorithm.

7. Generate the table of actions to be performed; writing the result to the output file.

8. Generate the table of sporadic tasks; writing the result to the output file.

9. Generate the main schedule loop that handles sporadic tasks properly; writing the

result to the output file.

Figure 4.2: General Pre-Run-Time (GPRT) algorithm implemented within Polis.

are executed only if they are ready.

A3: All tasks are not independent. Initial precedence constraints may exist between the

tasks, and implicit exclusion constraints exist between all tasks.

The following sections describe the GPRT algorithm.

4.7.1 General-Pre-Run-Time Algorithm

Figure 4.2 shows the GPRT algorithm implemented within Polis. The input to

the GPRT algorithm is the network of connected CFSMs comprising the entire design, a

36

list of tasks (CFSMs) to be scheduled, and the target output file. The output of the GPRT

algorithm is a table listing the sequence of actions to be performed, a table listing the

sporadic tasks in the task set, and the main scheduler loop that determines which action to

perform next; all written to the target output file.

The GPRT algorithm begins by creating a periodic server task for each soft task.

Since preemption is not allowed (by Al), periodic server tasks can handle at most one

task. The characteristics and constraints on the server task are equal to those of the task

it serves. Thus, all soft tasks are assumed to behave like hard periodic tasks for simplicity.

In accordance with A2 all hard sporadic tasks are transformed into periodic tasks

using Mok's method. Initial precedence constraints are determined for the tasks in the task

set by traversing the network of CFSMs in topological order.

All task instances that will occur through the LCM are determined with their

appropriate precedence constraints. The set of all instances of the tasks in the original task

set, rn, comprise a new task set Tn. Task set rn is the input to the Pre-Run-Time (PRT)

algorithm.

The PRT algorithm returns either a valid schedule or the schedule with the least

maximum lateness if a valid schedule does not exist for the task set. From the schedule

returned by the PRT algorithm, a table of actions to be performed by the scheduler is

generated and written to the output file. A table of the sporadic tasks is generated and

written to the output file. Finally, the main scheduler loop is written to the output file.

Note, even if a valid schedule is not found, the optimum schedule returned by

the PRT algorithm is written to the output file. This allows the designer to examine the

optimum schedule to determine what can be modified to obtain a valid schedule.

4.7.2 Pre-Run-Time Algorithm

The PRT algorithm is shown in Figure 4.3. The PRT algorithm takes as input the

set of tasks to be scheduled, the best schedule found thus far, and the maximum lateness

of the best schedule. The output of the PRT algorithm is either a valid schedule or the

optimum schedule.

The PRT algorithm searches for a valid schedule by generating a valid initial

solution, S. A valid initial solution is a schedule such that all release times and precedence

constraints are satisfied. A valid initial solution does not imply a valid schedule.

37

Pre-Run-Time Algorithm

input: the set of tasks tobe scheduled, rn, the best schedule found so far, r,f, the maximum
lateness of the best schedule, M.

output: the best schedule found.

1. Generate a valid initial solution, rn.

2. Find the task, Ti, with the maximum lateness in rn.

3. If the maximum lateness, m, is less than or equal to zero, return rn.

4. If m < M, tb = Tn, M = m.

5. For each task T, € rn ^ T/ do the following.

(a) Add a precede constraint between T/ and T, of rn,Ti < Ti, to obtain rn.

(b) If the precede constraint causes a loop in the precedence graph, then continue.

(c) Compute the lower bound on lateness for all tasks in rn.

(d) Ifthe maximum lower bound on lateness for rn' is greater than M, then continue.
This added constraint will not lead to a solution that is better than the current

best solution found.

(e) Call the PRT algorithm for rn\

(f) If the maximum lateness, m, of the returned schedule, rn, is less than or equal

to zero, then return rn.

(g) Ifm < M, T* = rn\ M= m.

6. Return r,f.

Figure 4.3: Pre-Run-Time (PRT) algorithm implemented within Polis.

38

Valid Initial Solution Algorithm

input: the set of tasks to be scheduled, rn.

output: the set of tasks in valid initial solution order, S.

time = 0

S = emptyset

T = rn

while(T not empty)

if(3Ti€T: r, < time)

Among the set { TJ | Tj E T and

r, < time and

fiTj eT : Tj PRECEDES Ti }

select the task TJ that has the minimum c/,.

Append Ti to S.

T = T-T{.

if(Ti ^NULL)

time = time+ c,.

else

time = time + 1.

return S.

Figure 4.4: Valid Initial Solution algorithm implemented within Polis.

Figure 4.4 shows the algorithm used for determining the valid initial solution of

a task set. The algorithm uses an earliest deadline first heuristic to determine execution

orderingof the tasks. The set of precedence constraints that existson the input task set are

satisfied while the valid initial solution is constructed. A valid initial solution constructed

by this algorithm guarantees that all tasks begin execution after they are released and that

if Tj precedes Ti, then Tj is scheduled before T,-.

If the maximum lateness of the valid initial solution is less than or equal to zero,

then a valid schedule has been found. This schedule is immediately returned. If the max

imum lateness of the valid initial solution is less than the maximum lateness of the best

39

schedule found so far, the best schedule found is set to the current valid initial solution.

In order to search for a valid schedule, the latest task, T/, in the valid initial

solution, S, is constrained to precede the other tasks in the task set. Therefore, for each

task Ti in the task set for which the constraint Ti precede T, does not cause a cycle in the

corresponding constraint graph, a child node is created with this constraint added to the
task set. The child nodes are created by calling the PRT algorithm recursively.

In order to prevent the search for a valid schedule from becoming an exhaustive

search of the solution space, a child node is not generated if it is not possible for that node

to lead to a schedule that is better than the best schedule found thus far. This bounding is

done by using the maximum lower bound on lateness for a given task set to determine when

to stopsearching along a given path. The maximum lower bound on lateness is computed

for each child node prior to generating a valid initial solution. The lower bound on lateness

for each task, T,, is computed as follows.

U - r\ -r Ci - di

where r\ = r,- if there does not exist a task Tj such that theconstraint Tj precede Ti exists;

otherwise, r|-= max(r,-,rj + Cj|Tj precede Tj).
If the maximum lower bound on lateness for a task set is greater than the maximum

lateness of the best schedule found so far, then the child node is not created, since this child

node and all of its successors will not find a schedule that is better than the best schedule

found so far.

If a valid schedule is not found, the best schedule found (the optimum schedule)

is returned.

41

Chapter 5

Static Priority Scheduling

5.1 Introduction

Static priority scheduling algorithms are run-time scheduling algorithms that as

sign a priority to each task off-line. The priority ofa task does not change with time, and
each invocation of a task has the same priority, allowing static priority scheduling algo

rithms to have a low run-time overhead. The scheduling algorithm allocates the processor

to a ready task with the highest priority. For some applications it is possible to implement

the scheduling in hardware by use of a priority-interrupt mechanism, effectively reducing

the scheduling overhead to zero.

Many algorithms have been proposed that determine the static priority of the

tasks in the task set, and comprehensive reviews of these algorithms exist [LSST91]. The

most influential of these algorithms is the Rate Monotonic Scheduling algorithm (RMS), an

optimal fixed priority scheduling algorithm for periodic tasks, presented by Liu and Layland

in 1973 [LL73]. Since then, many generalizations ofthisalgorithm have been presented that
address practical problems that arise in theconstruction ofreal-time systems. These include

the problems of transient overload and stochastic execution times, the scheduling of task

sets containing both periodic and sporadic tasks, and task synchronization.

The Deadline Monotonic Scheduling algorithm (DMS), an optimal fixed priority

scheduling algorithm presented by Leung and Whitehead in 1982 [LW82], is similar in

concept to the RMS algorithm; the theory behind the RMS algorithm is used as the basis

for the DMS theory. The DMS algorithm weakens some fundamental constraints of the

RMS algorithm that allows for easier handling of sporadic tasks in the task set. This is its

42

main advantage over the RMS approach.

The Laxity Monotonic Scheduling algorithm (LMS), an optimalfixed priorityschedul

ing algorithm, follows the theory for RMS and DMS. The LMS algorithm assigns priority

based upon the laxity of the task when it is invoked, identifying critical tasks.

The Liu and Layland theory of RMS and the Leung and Whitehead theory of DMS

are presented, as well as, the proofofoptimality of LMS. The problems of task synchroniza

tion, non-preemptive scheduling, and sporadic task scheduling are then discussed. Finally,

the static priority algorithms that are implemented within the Polis co-design environment

and the generated scheduling routines are discussed.

5.2 The Rate Monotonic Scheduling Algorithm

The RMS algorithm was first presented by Liu and Layland in 1973 [LL73] to solve

the problem of scheduling periodic task sets on a uniprocessor using fixed priorities. Liu

and Layland made several assumptions about the hard-real-time environment:

Al: All tasks are periodic and are ready at the beginning of each period.

A2: The deadline of each task is equal to its period.

A3: Tasksare independent, i.e., no precedence or exclusion constraintsexist between tasks.

A4: The execution time for each task is constant for that task and does not vary with

time.

A5: Every task may be preempted at arbitrary points.

Liu and Layland derived important results under these assumptions.

Theorem 5.2.1 ([LL73]) A critical instant for any task occurs whenever the task is re

quested simultaneously with requests for all higher priority tasks.

The proof of Theorem 5.2.1 follows from the observation that the processing of

a request of any task can only be delayed by requests of a higher-priority task. It can

be shown that the maximum interference due to a higher priority task occurs when the

higher priority task is invoked at the same instant that the task is invoked. This is easily

seen since a higher priority task may be requested multiple times during the period of the

43

task, and each request will preempt the lower priority task unless the lower priority task

has completed execution. Therefore, the maximum interference that a task may experience

occurs when the task is invoked simultaneously with all higher priority tasks.

Theorem 5.2.1 suggests a simple, direct method for determining whether a given

priority assignment will yield a valid schedule. Specifically, if all tasks are able to meet

their respective deadlines when they are invoked at their critical instants, then the priority

assignment produces a valid schedule.

A critical instant for every task occurs at time r if all tasks have the same release

time r. Thus, assuming that all tasks have the same release time, the schedule can be

constructed through maxi<,<„(pt) to verify the validity of the priority assignment.

Theorem 5.2.1 also suggests a priority assignment algorithm. The rule for priority

assignment is to assign priorities to tasks according to their request rates, independent

of their run-times, i.e., assign the highest priority to a task with the shortest period and

the lowest priority to a task with the longest period, ties broken arbitrarily. The priority

assignment maybe performed in 0(n In n) time1. Such a priorityassignment is known as the

rate monotonic priority assignment and is optimal in the sense that no other fixed priority

assignment rule can schedule a task set that cannot be scheduled by the rate monotonic

priority assignment. Liu and Layland were able to prove this optimality.

Theorem 5.2.2 ([LL73]) If a valid priority assignment existsfor some task set, the rate

monotonic priority assignment is validfor that task set.

Liu and Layland went on to determine the least upper bound to processor utiliza

tion, U*n, for periodic task set rn in fixed priority systems. Task sets with utilization above

this bound are not guaranteed that any priority assignment will yield a valid schedule. For

task set rn, the processor utilization is

«=i p*

Note that if UTn > 1, then rn is not schedulable on a single processor by any scheduling

algorithm.

'The priority assignment may be performed by sorting the tasks by period with the resulting sorted task
list corresponding to the priority ordering of the tasks.

44

It is possible for a valid schedule to exist when UTn > U*n2, but the RMS algorithm

is not guaranteed to be able to determine a valid schedule. The least upper bound to

processor utilization is given in the following theorem.

Theorem 5.2.3 ([LL73]) For a set of n tasks with fixed priority order, the least upper

bound to processor utilization is U'n = n(21'n —1).

The sequence of least upper bounds is given by U*x = 1, U*2 = 0.828, ... , U*^ =

In 2 = 0.693. Therefore, any periodic task set is guaranteed to be scheduled by the RMS

algorithm if its processor utilization is no greater than In 2 = 0.693. Section 5.8 discusses

static priority schedulability analysis.

5.3 The Deadline Monotonic Scheduling Algorithm

The DMS algorithm was first presented by Leung and Whitehead in 1982 [LW82].
They make the following assumptions about the hard real-time environment:

Al: All tasks are periodic and are ready at the beginning of each period.

A2: The deadline of each task is less than or equal to its period.

A3: Tasks are independent, i.e., no precedence or exclusion constraints existbetween tasks.

A4: The execution time for each task is constant for that task and does not vary with

time.

A5: Every task is at arbitrary points.

Notice that Leung and Whitehead make the same assumptions about the hard real-time

environment as do Liu and Layland except that the deadlines of the tasks may be less than

or equal to the period instead of strictly equal to the period. Theorem 5.2.1 (the critical

instant for a task) is valid under these assumptions. However, the RMS algorithm is not

optimal under these assumptions. As a result, a different priority assignment rule must be

used to obtain an optimal priority assignment.

The inverse-deadline priority assignment assigns a higher priority to a task with

a smaller deadline, i.e., the priority of a task is inversely proportional to its deadline. The

2For example, a task set containing tasks that are harmonics ofone another may have a utilization of 1
and still be schedulable (see Theorem 5.8.2).

45

inverse-deadline priority assignment reduces to the rate-monotonic priority assignment when

di = pi V T{, 1 < i < n. The inverse-deadline priority assignment may be performed in

0{n In n) time3. Leung and Whitehead proved that such a priority assignment is optimal.

Theorem 5.3.1 ([LW82]) The inverse-deadline priority assignment is an optimal priority

assignment for one processor in the sense that no other priority assignment can schedule a

task set that can not be scheduled by the inverse-deadline priority assignment.

Leung and Whitehead did not provide any schedulability analysis tests for the

DMS approach. However, schedulability analysis based upon critical instants may be used

for the DMS approach. Just as in the RMS approach, if all tasks are able to meet their

respective deadlines when they are invoked at their critical instants, the priority assignment

produces a valid schedule.

Schedulability analysis tests based upon the processor utilization may be used to

guarantee the schedulability of a task set. The processor utilization schedulability analysis

test proposed by Liu and Layland for the RMS approach may be used for the DMS approach.

Theorem 5.2.3 (the least upper bound to processor utilization) is valid for all fixed priority

assignments.

5.4 The Laxity Monotonic Scheduling Algorithm

The LMS algorithm solves the problem of scheduling periodic task sets on a unipro

cessor using fixed priorities. The following assumptions are made about the hard real-time

environment:

Al: All tasks are periodic and are ready at the beginning of each period.

A2: The deadline of each task is less than or equal to its period.

A3: Tasks are independent, i.e., no precedence or exclusion constraints exist between tasks.

A4: The execution time for each task is constant for that task and does not vary with

time.

A5: Every task is preemptable at arbitrary points.

3The priority assignment may be performed by sorting the tasks by deadline with the resulting sorted
task list corresponding to the priority ordering of the tasks.

46

These are the same assumptions that Leung and Whitehead make for the DMS algorithm.

The laxity monotonic priority assignment assigns a higher priority to a task with

a smaller laxity, ties broken in favor of the task with the smaller deadline, where the laxity,

/,-, of task Ti is /, = d, - ct. The laxity monotonic priority assignment may be performed in

0(n\n n) time.

The notion of a critical instant from Theorem 5.2.1 is applicable to the laxity

monotonic priority assignment. Therefore, if every task is able to meets its deadline when

released at its critical instant, then the task set is schedulable. By Theorem 5.2.1, the

schedule produced by a particular priority assignment is valid if and only if the deadline of

the first invocation of each task is met in the schedule when all tasks are invoked at the

same time.

The optimality of the laxity monotonic priority assignment is now proven. Let

pn = (Ti,..., Tk, Tk+i,. ••,Tn) denote a priority assignment for task rn such that the priority

of Ti is higher than the priority of T.+i, VI < i < n- 1. Let pkn = {Tx,..., Tk+i, Tk,..., T„)
denote the priority assignment obtained from pn by interchanging the priority of tasks Tk

and Tjt+i for any 1 < k < n - 1.

Lemma 5.4.1 Let pn = {Tx,..., Tk, Tk+i,..., T„) be a given priority assignment such that
the schedule produced by pn is valid. Iflk > h+i for some Tk,Tk+i 1 < k < n - 1, then the
schedule produced by pn = (Ti,..., Tjt+i, Tk,..., Tn) is also valid.

Proof Let pn be a given priority assignment and let Sn denote the schedule produced
by />„. Suppose lk > h+i for some Tk,Tk+i, 1< k < n- 1, and let S* denote
the schedule produced by the priority assignment pn. We need to show that if

Sn is a valid schedule, then S* is also valid. To do this, all we need to show is

that the deadline of the first request ofeach task is met in S*. It is easy to see
that the response time of the first request of each task Tj,j ^ k,k + 1 is the

same in both 5„ and S£", since the processing of these tasks is not affected by

the priority reordering of Tk and Tfc+i. Moreover, the response time of Tjt+i can

only be smaller in S£ than in Sn, since the processing of Tjt+i in S* is delayed
by one less task than in Sn, namely Tk- Thus our proof is reduced to showing

that the deadline of the first request of Tk is also met in S£.

Since Tk+i meets its deadline in 5n, but has a lower priority than 7*,

C-rCk + Ck+i < dk+i (5.1)

47

=>C + cfc < lk+i (5.2)

where Cis the amountofcomputation done in 5„ by all tasks T,, 1 < i < k-1, in

the interval [0, cfo+i]. By Theorem 5.2.1 we know that the amount ofcomputation

done for all tasks Ti, 1 < i < k - 1, in any interval of length dk+i is at most C.

The following condition is sufficient to guarantee that the deadline of the first

request of Tk is met in S£,

[£jC +* < [£j,*+, (5.3)
The above follows from the observations that the amount of computation

done in S* for all tasks Tt, 1 < i < k - 1, in the interval [0, [lk/h+i\dk+i] is at

most \}k/lk+\\C and that the number of requests made by Tk+\ in the interval

[0, [lk/h+i\dk+i] is at most [h/h+ii- Since 5.2 implies 5.3, it follows that the

deadline of the first request of Tk is met in 5*. •

Theorem 5.4.1 If a validpriority assignment exists for some task set, the laxity monotonic

priority assignment is valid for that task set.

Proof By contradiction, assume that there is a task set, rn, such that the schedule

produced by the priority assignment pn is valid and yet the schedule produced

by the laxity monotonic priority assignment is not valid. pn can be transformed

into the laxity monotonic priority assignment by a sequence of adjacent priority

reorderings. By Lemma 5.4.1 the schedule produced by the laxity monotonic

priority assignment is also valid. Contradiction. •

Schedulability analysis based upon critical instants or simulation may be used to

ensure that the LMS approach yields a valid schedule. If simulation is used, the simulation

must be through the LCM of the tasks.

5.5 Task Synchronization in Static Priority Systems

Thus far, tasks have been assumed to be completely preemptable i.e., no exclusion

constraints exist between segments of the tasks. This is not always a realistic assumption

since it is often the case that tasks contain sections of code that must be executed atomically

48

and/or the tasks utilize non-preemptable resources. When exclusion constraints exist in a

static priority system, it is possible that priority inversionoccurs. Priority inversion occurs

when the execution of a high priority task is blocked by a lower priority task. For example,

consider tasks T\ and T2 (where T\ has a higher priority than T2) that share data. To

maintain the consistency of the shared data, accesses to it must be serialized. If T\ gains

access to the shared data first, the proper priority order is maintained; however, if T2 gains

access to the shared data first, T\ must wait until T2 completes its access of the data. By

blocking T\, T2 has caused a priority inversion to occur.

Exclusion constraints are typically enforced via task synchronization methods such

as semaphores, locks, and monitors. Care must be taken to prevent unbounded priority in

version and deadlock when these methods are employed. To ensure that deadlocks are

prevented and schedulability analysis tests may be performed, a task synchronization pro

tocol must address these problems when it is developed.

A task synchronization protocol that was developed to prevent deadlock and still

allow for schedulability analysis tests was presented by Sha et. al. [SRL90]. The Priority

Ceiling Protocol (PCP) uses the notion ofthe priority ceiling oi a semaphore. Thedefinition

of priority ceiling and priority ceiling protocol are given below.

Definition 5.5.1 ([SRL90]) The priority ceiling of a semaphore is the priority of the
highest priority task that may lock this semaphore. The priority ceiling of a semaphore
Si, denoted C{Si), represents the highest priority that a critical section guarded by 5, can

execute, either by normal or inherited priority.

Definition 5.5.2 (Priority Ceiling Protocol [SRL90])

1. Task T, that has the highest priority among the tasks ready to execute, is assigned

the processor, and let Sm be the semaphore with the highest priority ceiling of all
semaphores currently locked by tasks other than task T. Before task T enters its

critical section, it must first obtain the lock on the semaphore S guarding the shared

data structure. Task T will be blocked and the lock on S will be denied if the priority

of task T is not higher than the priority ceiling of semaphore S*. In this case, task T

is said to be blocked on semaphore S" and to be blocked by the task that holds the lock

on S*. Otherwise, task T will obtain the lock on semaphore S and enter its critical

section. When a task T exits its critical section, the binary semaphore associated with

49

the critical section will be unblocked and the highest priority task, if any, blocked by

task T will be awakened.

2. A task T uses its assigned priority, unless it is in its critical section and blocks higher

priority tasks. If task T blocks higher priority tasks, T inherits Pn, the highest priority
of the tasks blocked by T. When T exits a critical section, it resumes the priority it

had at the point of entry into the critical section. That is, when T exits a critical

section, it resumes its previous priority that may not be its initial priority. Priority

inheritance is transitive. Finally, the operations of priority inheritance and of the

resumption of previous priority must be atomic.

3. A task T, when it does not attempt to enter a critical section, can preempt another task

Ti if its priority is higher than the priority at which task Tl is currently executing.

Under the priority ceiling protocol a high priority task may be blocked by a lower

priority task in one of three situations. First, the high priority task may bedirectly blocked
by the lower priority task. In this case, the high priority task attempts to lock a locked

semaphore. This type of blocking is necessary to ensure the consistency of shared data.

Second, a medium priority task, Tm, may be blocked by a low priority task, T\, that is

executing at the priority of a higher priority task, Tn, that it is blocking. This type of

blocking is necessary to avoid having a high priority task, Tn, being indirectly preempted

by the execution of a medium priority task, Tm. Third, a task may be blocked by the

priority ceiling of a semaphore. This type of blocking is necessary to avoid deadlock and

chained blocking.

Sha et. al. went on to prove many properties about the priority ceiling protocol.

The more important of these properties are given below.

Theorem 5.5.1 ([SRL90]) The priority ceiling protocol prevents deadlocks.

Theorem 5.5.2 ([SRL90]) Under the priority ceiling protocol, a task T can experience

priority inversion for at most the duration of one critical section.

In addition, Sha et. al. were able to develop a schedulability analysis test when

the priority ceiling protocol is used in conjunction with the RMS algorithm. For this test,

Bi, 1 < i < n, is defined to be the longest duration of blocking that can be experienced

50

by task T,. Note, Bn —0 since T„ has the lowest priority and, hence, cannot experience a

priority inversion. Theorem 5.5.3 gives a sufficient condition for the schedulability of a task

set in which PCP is used in task synchronization on a uniprocessor.

Theorem 5.5.3 ([SRL90]) A set ofn periodic tasks with di = pi using the priority ceiling

protocol can be scheduled by the RMS algorithm for all task phasings if

max min
l<t<nO<Kp,

t_

Pi

5.6 Non-Preemptive Static Priority Scheduling

The RMS, DMS, and LMS algorithms assume arbitrary preemption is allowed.

When arbitrary preemption is not allowed, the PCP may be used to ensure the schedulability

of a task set. In the extreme case, no preemption is allowed, and the PCP causes an

unacceptable amount of overhead.

The critical instant for a task set when preemption is not allowed, a non-preemptive

task set, is different from the critical instant for a preemptive task set. The following

theorem formally presents the notion of a critical instant for a non-preemptive task set.

Theorem 5.6.1 A critical instant for any task when preemption is not allowed occurs

whenever the task is requested simultaneously when all higher priority tasks are requested

and the processor is allocated to the lower priority task with the longest computation time.

Proof Let rn = {Ti,... ,T„} denote a set of priority ordered tasks with T„ being the

lowest priority task. Consider the request for task T, at time t\. Let Tj, i < j,

be the lower priority task with the longest computation time. Let Tk be the task

allocated the processor at time t\. The maximum response time corresponds to

the maximal interference due to other tasks.

If Tk equals T,, corresponding to either the processor being idle at time t\

or a task completing execution at time t\ and Ti being the highest priority task

ready to run, then the response time is zero. However, if Tk is not equal to Ti,

then the response time for T, is non-zero. Therefore, the response time can only

be maximal if Tk is not equal to T,\ Furthermore, the maximum interference

experienced by T, due to Tk occurs when Tk is allocated the processor at time

51

Suppose that Tn, h < i, is the first higher priority task requested at

or after time t\. Then, between times t\ and ti + di, Tn is requested at times

t2, t2-rpn, ••• , t2 + xpn. In order for T/, to affect the response time of T,, t2

must be less than or equal to t\ + c*. The interference due to Tn is acn where a

is the number of times Tn is invoked before T, is allocated the processor.

Suppose that Tg, g < i, is the second higher priority task requested

after t\. Then, between times t\ and t\ + di, Tg is requested at times t3, t3 +

P5! ••• i *3 + VPg- 1° order for Tg to affect the response time of T,, *3 must be

less than or equal to t\ + Ck + cn. The interference due to Tg is ficg where (5 is

the number of times Tg is invoked before T, is allocated the processor.

Repeating the argument for all Tm, m = 1...i -1 it can be seen that the

maximum interference due to higher priority tasks is ac\ -\ h6c,_i where the

coefficients to the computation times are dependent upon the number of times

the task is invoked before T, is allocated the processor. Moreover, the maximum

number of invocations of a higher priority task occurs when the higher priority

task is invoked at time t\.

Suppose that 1 < k < i - 1 {Tk corresponds to a higher priority task).

Then ac\ + \- 6c,-i is the maximum response time for T,-. Instead, suppose

that k > i {Tk corresponds to a lower priority task). The response time for T,-

is then Cfc + ac\ + 1- 6c,_i which is greater than ac\ + f- 6c,_i. Thus, Tk

must be a task with a lower priority than Tj. Furthermore, to obtain a maximum

response time, Tk must be Tj. •

As in the preemptive case, if all tasks in a task set are able to meet their deadlines

at their respective critical instants, then the task set is schedulable. Thus, to determine if a

particular priority assignment will yield a valid schedule, the schedule may be constructed

through maxi<t<n(Pt) assuming that all tasks have the same release time r. This is a

pessimistic test since a critical instant may never occur for some tasks due to the phasing

and periods of the tasks.

As in the preemptive case, the RMS, DMS, and LMS algorithms are optimal

algorithms in the sense that they will find a valid priority assignment if one exists for a task

set satisfying their assumptions. The proofs of the optimality in the preemptive case for

these algorithms do not rely upon the preemptive nature of the algorithms. Lemma 5.4.1

52

is valid for the non-preemptive case, and similar Lemmas for both RMS [LL73] and DMS

[LW82] can be used to prove the optimality of these algorithms.

5.7 Sporadic Task Scheduling in Static Priority Systems

Only periodic task sets have been addressedforstatic priority systems to this point.

However, many real-time systems contain sporadic tasks. Most traditional approaches for

handling sporadic tasks are inadequate for guaranteeing that deadlines are met. Two such

approaches are (1) allowing the sporadic tasks to interrupt the periodic tasks and run to

completion, and (2) force the sporadic tasks to background service at a lower priority level

than all of the periodic tasks. In approach (1) it is possible that a periodic task will miss a

deadline. This condition cannot be checked for unless all possible schedules are generated

and checked off-line. In approach (2) servicing of sporadic requests occurs whenever the

processor is idle; thus, it is possible that a sporadic task will miss its deadline, unacceptable

behavior if the sporadic task has a hard deadline.

An alternative to these approaches is to establish a polling server to provide a

private resource for the exclusive use of the sporadic tasks. This approach creates a periodic

task that is scheduled like other periodic tasks. When the polling task is invoked, it services

any pending sporadic requests. However, if no sporadic requests exist, the polling task

suspends itself until its next period, and the time originally allocated for sporadic service

is not preserved but is instead used by periodic tasks. This is an improvement, but is still

rather inflexible in that it offers regular service to a stream of tasks whose demand for that

service is irregular. By modifying the sporadic server to serve the tasks when they are ready,

significant improvements in performance and guaranteed schedulability may be obtained.

5.7.1 The Priority Exchange Algorithm

The Priority Exchange algorithm (PE) [LSS87] provides a method by which spo

radic tasks are serviced in a static priority scheduling environment. The PE algorithm

minimizes sporadic response times without causing periodic tasks to miss their deadlines.

In the PE algorithm, a sporadic server is assigned a high priority. If sporadic tasks are ready

when the server is allocated the processor, the sporadic tasks are executed at the priority of

the server. Once the server time is consumed, no more sporadic tasks may be executed until

the server is invoked and allocated the processor again. If there are no sporadic tasks ready

53

to execute when the sporadic server is allocated the processor, then the sporadic server

exchanges its high priority execution time with the execution time of the highest priority

periodic task that is ready to execute. If there are no periodic or sporadic tasks ready to

execute, the server time is lost. In this way, the sporadic server time is preserved, although

at a lower priority level, allowing the PE algorithm to accumulate deferred run-time across

period boundaries.

The PE algorithm does not adversely affect the schedulability of a task set.

Theorem 5.7.1 ([LSS87]) For a set of schedulable fixed-priority ordered tasks, rn, with

T\ the sporadic server, Ti can trade run-time c\, at priority p\ for run-time c,, at priority

pi, with any underlying periodic task without degrading the schedulability of the underlying

periodic task set, T2, ... , Tn.

The proof follows from the one-to-one trading that at best advances the underlying

periodic task T,-'s execution; thus, guaranteeing its deadline and delaying the service for the

sporadic tasks that are not guaranteed.

Lehoczky et. al. were able to derive a utilization bound below which a task set

that contains the sporadic server task T\ is guaranteed to be schedulable.

Theorem 5.7.2 ([LSS87]) For a set of fixed-priority ordered tasks, r„, scheduled using

the RMS algorithm where T\ has the highest priority, the least upper schedulability bound

as a function of the utilization, U\, of task T\ is

that converges to

Um = Ux + In 2
t/i + 1

as n —> oo.

The above theorem applies not only to the PE algorithm, but also to the more

general polling case. Hard sporadic tasks are not guaranteed to meet their deadlines. They

are only guaranteed to have a low average response time.

54

5.7.2 The Deferrable Server Algorithm

The PE algorithm may be difficult to implement due to the priority exchange

of execution times. A simpler sporadic server implementation may be obtained with the

Deferrable Server algorithm (DS) [LSS87]. The DSalgorithm is similar to the PE algorithm

with the exception that it does not exchange its high priority run-time with that of lower

priority tasks. Thus, the sporadic server execution time is only consumed when there is

a sporadic task ready to execute. Any server execution time left at the end of the server

period is lost. This simplifies the implementation while preserving the bandwidth.

The DS algorithm does not adversely affect the schedulability of a task set; how

ever, the DS algorithm creates a task that does not satisfy one of the assumptions made

by Liu and Layland: namely, requests for the deferrable server task are not necessarily

separated by constant intervals. This is important because the DS algorithm was created

for use with the RMS algorithm. For this reason, two cases must be analyzed to determine

the least upper bound on utilization: (1) the DS task is requested three times during the

period for task Tn, (2) the DS task is requested twice during the period for task Tn. Here,

Tn is the task with the largest period.

For case (1), the least upper bound to utilization is given by the following theorem.

Theorem 5.7.3 ([LSS87]) For a set of n fixed priority ordered tasks rn = {T\, ... ,T„}

with a critical zone length greater than p\ + c\ where T\ is the Deferrable Server task, the

least upper utilization bound as a function of the utilization of task T\, U\, is

U = Ui + (n - 1)

that converges to

Ui + l)

"^Mm) as n —> oo.

This function has a minimum of 0.6518 when U\ = 0.186.

For case (2), the least upper bound to utilization is much worse. The utiliza

tion bound is strongly dependent upon the utilization of the Deferrable Server task. The

following equation gives the utilization bound as a function of U\ [LSS87].

1 - Ui Ui< 0.5

1 Ui Ui> 0.5

55

The least upper bound to utilization in this case is 0.500.

Due to the much lower least upper utilization bound experienced in case (2), the

designer should attempt to avoid thiscase. The designer will need to ensure that the longest

period, pn, is greater than p\ 4- c\ where T\ is the Differable Server task.

5.7.3 The Sporadic Server Algorithm

Although the PE and DS algorithms are able to obtain a low average response

time for sporadic tasks, they are not able to handle hard sporadic tasks. The Sporadic

Server algorithm (SS) [SSL89] improves upon the PE and DS algorithms by drawing upon

the advantages of each.

The SS algorithm creates a high-priority task for servicing sporadic tasks. The

sporadic server'sexecution timeis preserved at its high priority level until a sporadic request

occurs. The SS algorithm differs from the PE and the DS algorithms in the way it replenishes

its server execution time. The sporadic serverexecution time is replenished after some or all

of the execution time is consumed by sporadic task execution; in comparison to periodically

replenishing the server execution time to full capacity as in the PE and DS algorithms. The

rules of execution time replenishment for a sporadic server executing at priority level i are

as follows [SSL89].

1. If the sporadic server has execution time available, the replenishment time, RT, is set

when a task of priority level i or greater begins execution. If, on the other hand, the

sporadic servercapacity has been exhausted, then RTcannot be set until the sporadic

server's available execution time becomes greater than zero and a task of priority level

i or greater is executing. In either case, the value of RT is set equal to the current

time plus the period of the sporadic server task.

2. The amount of execution time to be replenished can be determined when either a

task with a priority level less than i executes or when the sporadic server's available

execution time has been exhausted. The amount to be replenished at RT is equal to

the amount of sporadic server execution time consumed since the last time at which

a task of priority level i or greater began executing after a task of priority level less

than i was executing.

Since a sporadic server task may defer its execution when no sporadic tasks are

ready, it violates a basic assumptions made by the RMS algorithm, once a periodic task is

56

the highest-priority task that is ready to execute, it must execute. If a periodic task defers

its execution when it otherwise could execute immediately, it may be possible that a lower-

priority task will miss its deadline. The SS's replenishment method compensates for any

deferred execution of the sporadic server. This allows it to provide an average response time

that is better than that of the DS algorithm with approximately the same implementation

complexity.

Sprunt, Sha, and Lehoczky were able to prove that a sporadic server that follows

the above replenishment policy does not affect the schedulability of a periodic task set.

Theorem 5.7.4 ([SSL89]) A periodic task set that is schedulable with a task, Ti, is also
schedulable if Ti is replaced by a sporadic server, using the SS algorithm, with the same

period and execution time.

Furthermore, several sporadic server tasks may be defined at different priority levels to

handle different sporadic streams.

The SS algorithm provides a low average response time to sporadic taskswith soft

deadlines. In addition, it is able to guarantee that all hard sporadic tasks meet their dead

lines if their deadlines are greater than their minimum time between successive invocations.

However, when the deadline of a hard sporadic task is less than the minimum time between

invocations, the SS algorithm does not guarantee that all deadlines are met. To ensure

that a hard sporadic task will not miss a deadline the sporadic server is assigned a priority

based upon the deadline of the task that it is to serve. This is equivalent to the deadline

monotonic priority assignment. Note, only a single sporadic server is created for all soft

sporadic tasks while one sporadic server is created for each hard sporadic task.

If preemption is not allowed in thesystem, then the SS algorithm is notguaranteed

to work.

5.7.4 Summary of Sporadic Task Handling

Table 5.1 summarizes the major characteristics of the PE, DS, and SS algorithms.

These algorithms were developed for use with the RMS algorithm as a way to handle soft
sporadic tasks. The SS algorithm is the only one that allows the RMS algorithm to handle

hard sporadic tasks correctly.

All three of the sporadic server algorithms may be used with both the DMS and

LMS algorithms to handle soft sporadic tasks. Hard sporadic tasks are handled by the

PE DS SS

Implementation
Complexity

High Low Medium

Low Average
Response Time
For Soft Tasks

Yes Yes Yes

Handles Hard

Tasks

No No Yes

Server Run Time

Replenishment
Periodic Periodic One Period

After Use

Exchange Run
Time

Yes No No

Preserves Run

Time Across

Period Boundaries

Yes No Yes

Preserves

Bandwidth

Yes Yes Yes

Requires Special
Schedulability
Analysis Test

Yes Yes No

Multiple Servers
Allowed

No No Yes

Table 5.1: Comparison of the PE, DS, and SS sporadic server algorithms.

57

58

DMS and LMS algorithms. When the DMS algorithm is used, sporadic tasks are assigned

a priority based upon their deadline just as the periodic tasks. When the LMS algorithm

is used, sporadic tasks are assigned a priority based upon their laxity just as the periodic

tasks.

5.8 Static Priority Schedulability Analysis

5.8.1 Utilization Based Schedulability Analysis

To guarantee the predictability of a task set scheduled using a static priority

assignment, the schedulability of the task set under the given priority assignment must

be verified. Many utilization based schedulability analysis tests have been developed. Lui

and Layland were the first to present a schedulability analysis test based upon the total

utilization of the task set. The test presented in Theorem 5.2.3 is a sufficient test for

schedulability.

Theorem 5.2.3 was improved upon by Lehoczky [Leh90] to handle the more general

case where the deadline is less than or equal to the period. The more general utilization

bound test is given be the following theorem.

Theorem 5.8.1 ([Leh90]) A periodic task set, rn, with di = Api, 1 < i < n is schedulable

if
\-n srr-i ^((2A)1/"-l) +(l-A) ±<A<1
£!'"•"> o<a<i

This is a sufficient utilization bound, and it may be used for any static priority scheduling

algorithm that allows arbitrary preemption.

A less general utilization bound was derived by Lehoczky et.al. [LSST91] for the

RMS algorithm when the periods of the tasks in the task set are harmonics of one another.

Theorem 5.8.2 ([LSST91]) If a task set rn is scheduled using the RMS algorithm and pj

evenly divides pi for 1 < j < i, then Ti meets all its deadlines if and only ifY?k=i Uk < 1-

If Pj evenly divides pi for allj < i, 1 < i < n, then the task set is schedulable if and only

ifU=iUk<l.

59

5.8.2 Synchronous Schedulability Analysis

Utilization is not the only factor upon which schedulability analysis tests may

be based. Theorem 5.2.1 suggests that for a task T, € rn (where rn is sorted in non-

increasing priority order) to be schedulable, the sum of its computation time and the time

spent waiting while tasks ofhigher priority execute on the processor (the interference time)

must be no more than d,. For a task set where all of the tasks are released at the same time

(a synchronous task set), the above test may be performed in pseudo-polynomial time.

Theorem 5.8.3 ([LW82]) For a synchronous task set there is a pseudo-polynomial time

algorithm to decide whether or not the schedule produced by a particular priority assignment

is valid.

Audsley et. al. [ABRW91] formalized this critical instant test with:

Vi : 1<i<n : -^ +^- <1
di di

where /, is a measure of the interference caused by higher priority tasks:

;-i

'•• = £
i=i pj

The interference is composed of the computation time of all higher priority tasks.

It does not take into account the release times of the tasks, and it includes the computation

time of higher priority tasks that will occur only after rf,. A less pessimistic measure of the

interference is given by:

'-1 r a.
Cj + min I Cj,di —'•• = £

j=i pj

di_
Pj

Pj

This measurement does not include the parts of executions of higher priority tasks that

could not occur before di. However, it is a sufficient but not necessary test.

Audsley et.al. [ABRW91] derived a schedulability analysis test that is both nec

essary and sufficient. This test constructs a schedule such that the exact interleaving of

higher priority task executions is known. Figure 5.1 presents the static priority schedulabil

ity analysis test given in [ABRW91]. This test is valid for synchronous task sets and runs

in pseudo-polynomial time. The value for the interference for this test is defined to be

t'-i

',' = £
j=i

t_

Pj

// Static priority schedulability analysis for a synchronous task set

StaticPrioritySchedAnal() {

foreach Ti {

*= £}=i cj
continue = TRUE

while (continue) {

if (/?/< + Ci/t<\) {

// T{ is schedulable

continue = FALSE

} else {

t = I\ + Ci

}
if {t > di) {

// Ti is not schedulable

EXIT

}

}

}

}

60

Figure 5.1: Audsley et. a/.'s algorithm to determine if a synchronous static priority task
set Tn is schedulable.

61

5.8.3 Asynchronous Schedulability Analysis

Not all task sets are synchronous. Some task sets are asynchronous, i.e., not all

tasks have the same release time. Leung and Whitehead derived the complexity bound for

determining if a priority assignment yields a valid schedule for an asynchronous task set.

Theorem 5.8.4 ([LW82]) Given a task set r„ with arbitrary release times and a priority
assignment p, the problem to decide whether or not the schedule produced by p is valid is

AfV-hard.

Leung and Whitehead were able to extend this theorem to cover the more general case of

scheduling on m > 1 processors.

Lehoczky, Sha, and Ding [LSD89] derived necessary and sufficient conditions for

determining if a static priority assignment yields a valid schedule for an asynchronous task

set. This schedulability analysis test is based on Theorem 5.2.1. The demands made by the

task set as a function of time are considered to determine if a task can meet its deadline.

This is formally stated in the following theorem.

Theorem 5.8.5 ([LSD89]) Let a periodic task set rn be given in priority order and sched
uled by a fixed priority scheduling algorithm using those priorities. Ifdi < pi, then Ti will
meet all its deadlines under all release times if and only if

ECj t
— —

U^l^U, . . t Pj

The entire task set is schedulable under the worst case release time assignment if and only

if
J, r, r /. 1

< 1.max min > —
Ki<nO<t<dt t-f t

J=l

< 1

t_

Pj

5.8.4 Non-preemptive Schedulability Analysis

When preemption is not allowed, simple utilization based schedulability analysis

tests can not be used. Computation time-based tests and simulation-based tests must be

used.

Theorem 5.6.1 suggests a direct, computation time based test to determine whether

a particular priority assignment yields a valid schedule. Intuitively, this test checks that the

processor is not overloaded during the interval from when the task is invoked at its critical
instant until its deadline. Theorem 5.8.6 formally presents this schedulability analysis test.

62

Theorem 5.8.6 A periodic task set, rn, arranged in non-decreasing priority order, that

does not allow preemption is schedulable if

(S)+^(S)+i£ dk

Pj
ft <lVTte,„.

Proof This theorem places a bound on the processor demand that may occur from the

critical instant of a task to the deadline of that task, for every task, Tk, without

that task missing a deadline.

Let task Tk be invoked at time tk, its critical instant. The processor

demand, Djk, in the interval [tk,tk + dk] due to task T* is c^. The processor

demand, £>iower, in the interval [tk, tk + dk] due to the lower priority task with
the largest computation time is maxi <,-<*(<:,'). The processor demand, -^higher'
in the interval [tk,tk + dk] due to the higher priority tasks is bounded by

Dhigller

j=k+l

\dk/pj] is the maximum number of times that each higher priority task may be

invoked during [tk, tk + dk].

The total processor demand during the interval [t^ tk + dk] must be less

than dk if Tk is to meet its deadline. Therefore, assuming worst-case demand

due to all higher priority tasks, the processor demand during [tk,tk + dk] must

satisfy the following equation

cfc+max(ct) + J^
l<t<k Tli

J=k+1

Pj

dk

Pj

c;

cj < dk.

Rearranging this equation by dividing through by dk yields

(SK?&(£K£
dk

Pj i *'•

Thus, if the above equation holds, then Tk is guaranteed to meet its

deadline. Since Tk may be any task, the theorem is proved. •

This is a pessimistic test as it assumes that all tasks are independent and have the same

release time. It also includes the computation time of higher priority tasks that will occur

63

only after dk. Theorem 5.8.7 presents a slightly less pessimistic schedulability analysis test

that does not include the computation time of higher priority tasks that will only occur

after dk.

Theorem 5.8.7 A periodic task set arranged in priority order, rn, that does not allow

preemption is schedulable if

(S)+i?s(3+jl:+1 dk

Pj
£2. +min[^-, 1-
dk \dk

dk

Pj

El
dk

< i v Tk e Tn.

Proof Let task Tk be invoked at time tk, its critical instant. The processor demand

due to task Tk in the interval [tk, tk + dk] is c*. The processor demand do to the

lower priority task with the maximum execution time in the interval [tk,tk-\-dk]

is maxi<i<jb(cj).

The processor demand do to the higher priority tasks in the interval

[tk,tk 4- dk] is calculated as follows. The maximum number of periods that a

higher priority task, Tj, can have during the interval [tk,tk -r dk] is dk/pj. For

each complete period, Tj is completely executed once. The processor demand

due to the complete executions of task Tj is [dk/pj\cj.

For the partial period, the processor demand may or may not be equal to

the computation timeoftaskTj. Ifthedifference {tk-rdk) - {tk-r [dk/Pj]Pj) is less

than Cj, then the processor demand due to task Tj isequal to dk - [dk/Pj\Pj- The
processor demand due to the partial period of task Tj is therefore min(cj, dk -

[dk/Pj\pj)-

To ensure that Tk meets its deadline, the processor demand during [tk, tk+

dk] must satisfy the following equation

Ck + max{ci) + J2
l<t<k -Tj,- J=k+l

dk

Pj
cj + min [cj,dk- dk

Pj
Pj <dk.

Rearranging this equation by dividing through by dk yields

(2)+i?»(S)+.£1 dk

Pj
^- +min ICj, 1- dk

Pj

El
dk

< 1.

Thus, if the above equation holds, then Tk is guaranteed to meet its

deadline. Since Tk may be any task, the theorem is proved. •

This is a sufficient test to determine the validity of a particular priority assignment.

64

5.9 Advantages of the Static Priority Approach

The key advantage of the static priority approach is the simplicity of the imple

mentation. A simple implementation maintains the priority of each task in a table with

the ready list kept in priority order, requiring a minimal amount of code to implement.

Therefore, little ROM space is used, critical for memory limited applications.

The information required to make a priority assignment is typically small, e.g.,

the RMS algorithm only requires the period of the tasks. In addition, the assignment of

priorities is accomplished by a simple sort of the tasks.

The LMS algorithm automatically identifies the most time critical tasks and as

signs them the highest priorities. This is important when the task set contains sporadic

tasks with very tight deadlines.

The schedulability of a task set by the static priority approach may be determined

off-line by the use of utilization-based, critical instant-based, or simulation-based schedula

bility analysis tests. Many of these schedulability analysis tests are easy to compute and

may be performed with accurate worst case execution times, release times, deadlines, and

periods.

Although the worst case schedulability analysis test in Theorem 5.2.3 suggests a

utilization of less than In2 is required for a static priority algorithm to work, a utilization of

approximately 88% can usually be achieved [Leh90]. Critical instant-based and simulation-

based schedulability analysis tests can provide less pessimistic schedulability analysis tests.

Many of the practical problems that arise in actual real-time systems have been

addressed with possible solutions formulated. Task synchronization may be accomplished

by the Priority Ceiling Protocol that guaranteesdeadlock avoidance and provides a schedu

lability analysis test, eliminating the possibility of unpredictable delays at run time. The

Sporadic Server algorithm may be used to schedule both hard and soft sporadic tasks with

out compromising the schedulability of the task set.

In sporadic task sets there is always the possibility for a large number of tasks to

be ready to execute at the same time, t. When the demand for the processor exceeds the

available processor time for an interval starting at time t, we say that a transient overload

occurred at time t. Static priority algorithms provide a way to guarantee that critical tasks

will meet their deadlines during a transient overload. The critical tasks are assigned a high

priority; thus, they will be guaranteed to execute during the transient overload.

65

Both preemptive and non-preemptive static priority approaches may be used. This

allows the static priority approach to be used in a wide variety of environments.

5.10 Disadvantages and Other Issues of the Static Priority

Approach

Static priority-driven schemes are only capable of producing a very limited subset

of the possible schedules for a given task set, severely restricting the capability of priority-

driven schemes to satisfy timing and resource sharing constraints at run time. Therefore,

it is possible that the static priority scheduling approach will not yield a valid schedule

for a schedulable task set. For example, there are situations where, in order to satisfy all

timing constraints, it is necessary to let the processor be idle for a certain interval in time,
even though there are tasks that have arrived and are requesting use of system resources.

This is especially true when preemption is not allowed either because the system does not

allow preemption or because a task is utilizing a non-preemptable resource or executing in

a critical section.

The following example illustrates a case when inserted idle time is theonly method

by which a valid schedule may be obtained.

Example 5.10.1 Consider the following two tasks represented by the 4-tuple, T = (r,c, p, d)
Ti = (1,2,10,9) andT2 = (0,12,20,20).

Scheduling these tasks with a non-preemptive static priority algorithm that does
not use inserted idle time yields the following schedule (repeated every 20 time units).

r2o ri0
lo

rU

d\x, d2o

•20
lo Tu

0 1 10 11 12 14 16 20
Notice that Tx misses its deadline at time 10 even though T\ has a higher priority

than T2 if either RMS, DMS, or LMS is used.

The following valid non-preemptive schedule is obtained with inserted idle time.

^20 rlo
, ,,

0 1

lo
20

lh
ru

10 11

66

d\x, d2o

Tu

15 17 20

Clearly, some cases exist when a static priority scheduler must be able to insert

idle time in order to find a valid schedule. Knowledge of all future invocations of tasks is

required for a run-time scheduler to determine when and how much idle time to insert.

Actual execution orderings of tasks may not adhere to the original priorities of

the tasks due to priority inversion, making it difficult to verify that all timing and resource

constraints will be satisfied. The Priority Ceiling Protocol attempts to deal with this

problem for the special case when all tasks are independent; however, it is not efficient for

the general scheduling problem where precedence constraints often exist.

Due to the static nature of the static priority assignment, the addition of tasks to

the task set may invalidate the given priority assignment, forcing the priority assignments

to be recalculated. Recalculating the priorities requires the system to be halted. Thus,

dynamic systems are not efficiently handled by the static priority scheduling algorithms.

Mode changes are not easily handled by static priority scheduling algorithms; the

same task may have different priorities in different modes of operation. One possible way of

dealing with mode changes is to consider all tasks that will ever be run by the system and

assign a unique priority to each task. Thus, a single table may hold all priorities instead

of one table for each mode. Unfortunately, a task may have different characteristics in

different modes of operation requiring it to have multiple priorities. For example, task T

may have period p& = 10 in mode A and period ps = 5 in mode B. If all other tasks

remain unchanged, a different priority assignment must be calculated for modes A and B.

As has been noted previously, the determination of the worst-case execution time

for a task is difficult due to false paths and loops. Pessimistic estimates of worst-case

execution time will cause the utilization schedulability analysis tests to be even more pes

simistic while optimistic estimates may cause the tests to falsely determine that a task set

is schedulable.

In addition, the timing behavior of such complex run time synchronization mecha

nisms as rendezvous and monitors is often extremely difficult to predict with any certainty.

67

The use of such synchronization mechanisms by individual tasks allows individual tasks to

make important scheduling decisions even though individual tasks do not possess global

information about the system, making it virtually impossible for the scheduler to prevent

deadlocks and guarantee deadlines. In general, deadlock avoidance at run time requires

that the run time synchronization mechanism be conservative, resulting in situations where

a process is blocked by the run timesynchronization mechanism even though it could have

proceeded without causing deadlock.

The static priority theory does not directly address the problem of distance con

straints [HL92]. For example, under the presented static priority algorithms it is possible

that two consecutive invocations of a task are executed consecutively in time. This cor

responds to the first invocation being executed at the end of the period and the second

invocation being executed at the beginning of the period. The opposite is also possible,

the first invocation is executed at the beginning of its period while the second invocation is

executed at the end of its period. This situation arises since the execution of a task in one

period is independent of the execution of the same task in any other period. The only way

to enforce distance constraints in a static priority schedule is to make those tasks that have

distance constraints a high priority, forcing the task to be executed near the beginning of its

period. Unfortunately, if there are multiple tasks with distance constraints, this approach

will not work.

5.11 Implementation of the Static Priority Approach Within

POLIS

5.11.1 Routines Implemented Within POLIS

Within the Polis environment, the RMS, DMS, and LMS algorithms are imple

mented. The assignment of priorities is performed using the standard quick sort routine in

the C libraries. No assumptions are made about the tasks when they are assigned priorities,

allowing the assignment of priorities to be performed in 0{n\n n) time. The designer must

guarantee that the task set satisfies the assumptions made by the algorithm being used.

Sporadic servers are not implemented within Polis due to the large code size re

quired to implement them. Consequently, the characteristics of soft sporadic tasks must

be manipulated by the designer to force them to a low priority. In addition, if hard spo-

68

radic tasks are present, the RMS algorithm should not be used. Only the DMS and LMS

algorithms correctly assign priorities to hard sporadic tasks when sporadic servers are not

used.

Since Polis must be able to handle sporadic task sets, the implemented schedu

lability analysis tests guarantee the schedulability of both periodic and sporadic task sets.

Soft tasks are ignored in the preemptive schedulability analysis tests since they do not af

fect the schedulability of the task set. Soft tasks are not ignored in the non-preemptive

schedulability analysis tests since they affect the schedulability of the task set.

If the task set is completely periodic and preemption is allowed, a utilization based

schedulability analysis test is performed. The utilization based test is from Theorem 5.8.1.

This allows the same utilization based schedulability analysis test to be performed regardless

of which static priority algorithm is used to assign the priorities. In order to determine a

A for the schedulability analysis test, the At- for each task T, € rn is determined. The

smallest A is used in the formula for determining the maximum possible utilization above

which the task set is not guaranteed to be schedulable. This is the worst case behavior,

since the smaller the A, the smaller the utilization bound.

If preemption is not allowed, the schedulability analysis test presented in Theo

rem 5.8.7 is used to determine the schedulability of the task set.

If the utilization based test can not guarantee the schedulability of the periodic

task set, the task set is simulated through the LCM of the task set, allowing for a tighter

check on the schedulability of the task set at the expense of processing time. Thus, it is

unlikely that a periodic task set will be labeled asunschedulable when it is truly schedulable.

The simulation of the task set identifies those tasks that will miss deadlines, as well as, the

time at which they will miss them.

If the task set contains sporadic tasks, then a simple schedulability analysis test

is not possible to guarantee the schedulability of the task set. A complete simulation of

the task set is also not feasible due to the almost infinite number of possible invocation

times of the sporadic tasks. In order to guarantee the schedulability of the task set through

simulation, every possible schedule must be generated.

The schedulability analysis test used to guarantee the schedulability of sporadic

task sets is based upon the critical instant of a task. All tasks are assumed to be inde

pendent with the same release time, and the task set is simulated through maxi<t'<n(Pi)-

The assumptions that all tasks are independent and that the critical instant for each task

// non-preemptive static priority scheduling routine; tasks are arranged

// in order by priority

scheduler()

{

task = 0;

while(i) {

if(task ==0)

poll-inputsjmd_update_input_buffers();

if(is_ready(task)) {

execute(task);

task = 0;

} else {

if((++task) > NUMBER-TASKS) task =0;

}

}

69

Figure 5.2: Generated non-preemptive static priority scheduling routines.

will occur causes this test to be pessimistic, but it guarantees that problem tasks will be

identified.

5.11.2 Generated Scheduling Routines

Polis generates a priority ordered array of tasks, referred to whenever a task of a

given priority is desired.

The non-preemptive static priority scheduling algorithm shown in Figure 5.2 uses

a polling based approach to determine the highest priority ready task. Starting with the

highest priority task and proceeding in priority order, tasks are checked until either a ready

task is found and executed to completion or all tasks have been checked, at which point the

checking begins again with the highest priority task.

Before the highest priority task is checked, all input buffers, the contents of which

indicate whether or not a task is ready to execute, are updated, essentially, polling all input

70

events.

The preemptive static priority scheduling routines shown in Figure 5.3 rely upon

interrupts to perform preemption. The interrupt handling routine is not provided any

information as to which event caused the interrupt; therefore, it updates all input buffers

and, starting with the highest priority task, searches for a ready task.

If the interrupted task is the highest priority task ready to execute, the interrupt

handler returns; otherwise, all ready higher priority tasks are executed before the interrupt

handler returns, allowing nested interrupts.

// main preemptive static priority scheduling routine; tasks are arranged

// in order by priority

scheduler()

{

task = 0;

while(1)

task = check_and_execute_task(task);

current-task = NUMBER-TASKS;

if((++task) > NUMBER-TASKS) task = 0;

}

// checks given task and executes it if it is ready

check_and_execute-task(task)

{

if(is_ready(task)) {

current-task = task;

execute(task);

update_input_buffers();

task = — 1;

}

return task;

}

// interrupt handling routine; updates input buffers and executes

// all higher priority tasks before returning to the interrupted task

interrupt-scheduler()

{
interrupted-task = current-task;

poll_inputs_and_update_input_buff ers ();

task = 0;

while (task < interrupted-task) {

task = check_and_execute-task(task);

task++;

}
current-task = interrupted-task;

return; // return from interrupt

}

Figure 5.3: Generated preemptive static priority scheduling routines.

71

73

Chapter 6

Dynamic Priority Scheduling

6.1 Introduction

Dynamic priority scheduling algorithms are run-time scheduling algorithms that

assign a priority to each task at run time. The priority of a task may change at any time.
The continual reevaluation of task priorities causes dynamic priority scheduling algorithms

to have a high implementation overhead. To minimize the overhead, the priority assignment

is performed only when the priorities of the tasks may change, at the completion of a task
and the invocation of a task. Hardware support may be used to decrease or eliminate the

scheduling overhead. For example, a dedicated co-processor for the dynamic scheduler may

reduce the scheduling overhead to nearly zero [Mok83].

Typical dynamic priority scheduling algorithms do not assume any information

about future invocations of tasks, making it difficult to guarantee the schedulability of

a (possibly varying) task set. Dynamic priority scheduling algorithms that do not per
form any type ofschedulability analysis at run-time are referred to as dynamic best effort
scheduling algorithms. Dynamic priority scheduling algorithms that do perform some type

of schedulability analysis at run-time are referred to as dynamic planning-based scheduling

algorithms.

Dynamic besteffort scheduling algorithms employ a purely priority-driven schedul

ing approach. In a simple approach, at each instant that the priorities of the tasks may
change, every task that is either ready or running is assigned a priority. A task with the

highest priority is allocated the processor. This approach does not perform any type of
schedulability analysis. Therefore, it is not known when a timing constraint will be violated

74

until the constraint is actually violated.

Dynamic planning-based scheduling algorithms provide the flexibility of the dy

namic best effort scheduling algorithms with the predictability of schedulability analysis.

In a simple approach, every dynamically arriving task is accepted for execution only if it is

found to be able to meet its deadline. The set of tasks in the system that have not com

pleted execution comprise a schedulable task set, r„, and a newly invoked task is accepted

into the system if and only if the resulting task set, rn+i, is schedulable. This allows for

predictability with respect to individual task arrivals.

The two most popular dynamic best effortscheduling algorithms, Earliest Deadline

First (EDF) and Minimum Laxity First (MLF), are presented. The use of these algorithms

in a dynamic planning based approach is then discussed. The problems of task synchroniza

tion, non-preemptive scheduling, and sporadic task scheduling are discussed. Finally, the

dynamic priority algorithms that are implemented within the Polis co-design environment

are discussed.

6.2 Dynamic Best Effort Scheduling Algorithms

In dynamic best effort scheduling algorithms, a priority value is computed for

each task in the system based on the task's characteristics, and the system schedules tasks

according to their priority. The validity and predictability of the system is determined

by extensive simulations, in conjunction with modifying task characteristics (usually by

recoding the tasks) to adjust priorities, allowing the designers to be confident that the

system will perform correctly under the tested operating conditions.

A commonly used dynamic best effort scheduling algorithm is the Earliest Deadline

First algorithm (EDF), an optimal scheduling algorithm that is guaranteed to find a valid

schedule if the task set is schedulable, presented by Liu and Layland in 1973 [LL73]. The

ready task with the nearest deadline is assigned the highest priority and is allocated the

processor.

Liu and Layland make the same assumptions about the EDF algorithm as they

do about the RMS algorithm.

Al: All tasks are periodic and are ready at the beginning of each period.

A2: The deadline of each task is equal to its period.

75

A3: Tasks are independent, i.e., no precedence or exclusion constraints exist between tasks.

A4: The execution time for each task is constant for that task and does not vary with

time.

A5: Arbitrary preemption is allowed.

Liu and Layland were able to prove the following theorem under these assumptions.

Theorem 6.2.1 ([LL73]) When the EDF scheduling algorithm is used to schedule a set

of periodic tasks on a single processor, there is no processor idle time prior to a missed

deadline.

Liu and Layland used this theorem to determine an upper bound on processor

utilization, below which the EDF algorithm is guaranteed to schedule a periodic task set.

Theorem 6.2.2 ([LL73]) For a given set of n periodic tasks, the EDF scheduling algo

rithm is valid on a uniprocessor if and only if

Thus, so long as the total utilization of the tasks in the task set does not exceed 1 and

arbitrary preemption is allowed, the EDF algorithm is guaranteed to find a valid schedule

on a uniprocessor.

Dertouzos [Der74] was able to prove the optimality of the EDF algorithm on a

single processor for an arbitrary distribution of requests, i.e., the tasks are not necessarily

periodic.

Theorem 6.2.3 ([Der74]) The EDF algorithm is optimal in that if there exists any al

gorithm that can achieve scheduling of a single processor on an arbitrary distribution of
requests, hard deadlines, execution times, and arbitrary preemption is allowed then the EDF

algorithm will also achieve scheduling.

The proof follows from the ability to swap execution times of tasks in a valid

schedule such that the tasks are executed in EDF order without violating the validity of

the schedule.

76

A second commonly useddynamic best effort scheduling algorithm is the Minimum

Laxity First algorithm (MLF) (also known as the Least Laxity First algorithm), an optimal

scheduling algorithm in the same sense as the EDF scheduling algorithm. This algorithm

allocates the processor to the ready task with the minimum laxity, or time that the task

may wait to begin execution before it is guaranteed to miss its deadline. Essentially, the

MLF algorithm attempts to observethe time constraints that are placed upon the beginning

of service (the time by which the task must begin execution) for a task.

Mok [Mok83] proved the optimality of the MLF algorithm.

Theorem 6.2.4 ([Mok83]) The MLF algorithm is optimal in that if there exists any al

gorithm that can achieve scheduling of a single processor on an arbitrary distribution of

requests, hard deadlines, execution times, and arbitrary preemption is allowed then the MLF

algorithm will also achieve scheduling.

Both the EDF and the MLF algorithms have a complexity of either 0{m) or

0(ln m) depending upon the implementation, where m is the number of tasks that are

ready to execute.

Neither the EDF nor the MLF algorithm makes assumptions about future task

invocations. Nor do they perform any type of schedulability analysis test at run time. This

makes them very simple to implement, but it does not provide any guarantees as to the

schedulability of task sets.

6.3 Dynamic Planning-Based Scheduling Algorithms

Dynamic planning-based scheduling algorithms perform a schedulability analysis

test at run-time in conjunction with a dynamic best-effort scheduling algorithm. In this

way these algorithms attempt to guarantee the schedulability of a set of tasks.

The most common type of dynamic planning-based scheduling algorithm is one

in which a schedulability analysis test (often a utilization based test) is performed at each

task invocation on the set of active tasks1 plus the invoked task. If the set of active tasks

plus the invoked task are found to yield a valid schedule, then the invoked task is accepted

into the active set and placed on the ready queue; otherwise, the task is rejected. In this

*A task is considered to be active at time t if it was invoked before t, but has not completed execution
bv t.

77

way, the dynamic planning-based algorithm identifies tasks that will miss their deadline or

will cause other tasks to miss their deadlines.

Complex and exact schedulability analysis tests may be performed, but the execu

tion time of the test limits the viable tests. A utilization based test, e.g., checking that the

utilization of all active tasks plus the utilization of the invoked task is less than 1, used in

conjunction with the EDF algorithm hasa low execution time. However, a simulation-based

test that determines the exact sequenceof executions of the tasks has a large execution time.

In general, the larger the expected maximum processor utilization by the tasks, the smaller

the allowable execution time of the schedulability analysis test.

6.4 Task Synchronization in Dynamic Priority Systems

Thus far tasks have been assumed to be completely preemptable, i.e., no exclusion

constraints exist between segments of the tasks. This is not always a realistic assumption

since it is often the case that tasks contain sections of code that must be executed atomically

and/or the tasks utilize non-preemptive resources. As in static priority systems, priority

inversion may occur in dynamic priority systems when exclusion constraints exist between

segments of tasks. Unfortunately, the PCP cannot be used if tasks do not have fixed

priorities.

A task synchronization protocol based on the PCP is used to prevent deadlocks

and still allow for schedulability analysis tests. The Dynamic Priority Ceiling Proto

col (DPCP) [CL90] uses the notion ofthe dynamic priority ceiling ofa semaphore to prevent

deadlock and chained blocking.

Definition 6.4.1 The dynamic priority ceiling of a semaphore S at time t is defined to

be the dynamic priority of the highest dynamic priority task that currently locks or may

lock S, at that time. The dynamic priority ceiling of a semaphore Si, denoted V{Si){t).

represents the highest dynamic priority that a critical section guarded by S, can execute at

time t, either by normal or inherited priority.

Note, in determining the dynamic priority ceiling of a semaphore, the dynamic

priority of non-active tasks isdetermined and used in determining the dynamic priority ofa

semaphore. For non-active tasks, the characteristics of the earliest possible task invocation

are used to determine the dynamic priority of a task.

78

Definition 6.4.2 (Dynamic Priority Ceiling Protocol [CL90])

1. Task T, which has the highest dynamic priority among the tasks ready to execute, is

allocated the processor. Let S* be the semaphore with the highest dynamic priority
ceiling ofall semaphores currently locked by tasks other than T. Before task T enters
its critical section, it must first obtain the lock on the semaphore S guarding the shared

data structure. TaskT will be blocked and the lock on S will be denied if the dynamic

priority of task T is not higher than the dynamic priority ceiling of semaphore S*.
In this case, task T is said to be blocked on semaphore S* and to be blocked by the

task that holds the lock on Sm. Otherwise, task T will obtain the lock on semaphore

S and enter its critical section. When a task T exits its critical section, the binary

semaphore associated with the critical section will be unlocked and the highest dynamic

priority task, if any, blocked by task T will be awakened.

2. A task T uses its dynamic priority, as determined by the original characteristics of the

task, unless it is in its critical section and blocks a task, Th, with task characteristics,

either initial or inherited, that would make T have a lower dynamic priority than Th-

If task T blocks a task that would normally be assigned a higher dynamic priority than

T, T inherits Th, the set of task characteristics of task Th, either initial or inherited,

that make Th the highest priority task of the tasks blocked by T. This is equivalent to

saying that T inherits the dynamic priority of the task Th, the task with the highest

dynamic priority blocked on S whose dynamic priority is greater than that of task T.

When T exits a criticalsection, it resumes the set of task characteristics that it had at

the point of entry into the critical section. That is, when T exits a critical section, it

resumes its previous task characteristics that may not be its initial task characteristics.

Dynamic priority inheritance is transitive. Finally, the operations of dynamic priority

inheritance and of the resumption of previous dynamic priority must be atomic.

3. A task T, when it does not attempt to enter a critical section, can preempt another

task Tl if its dynamic priority is higher than the dynamic priority at which task Ti

is currently executing.

Aswith the PCP, under the DPCP a high dynamic priority task may be blocked by

a lower dynamic priority task in one ofthreesituations. First, the high dynamic priority task

may be directly blocked by the lower priority task; a high dynamic priority task attempts

79

to lock a locked semaphore. This direct blocking is necessary to ensure the consistency

of shared data. Second, a medium dynamic priority task, Tm, may be blocked by a low

dynamic priority task, T), that is executing at the dynamic priority of a higher dynamic

priority task, Tn* that it is blocking. This indirect blocking is necessary to avoid having a

high dynamic priority task, Tn, being indirectly preempted by the execution of a medium

dynamic priority task, Tm. Third, a high dynamic priority task Th may be blocked when

it attempts to lock on a semaphore and a lower priority task T\ already has the lock on a

semaphore that Th may attempt to lock. This ceiling blocking is necessary to avoid deadlock

and chained blocking.

In order to prove some properties about the DPCP, the following definitions and

notation regarding semaphores and critical sections are made.

A binary semaphore guarding shared data and/or non-preemptive shared resources

is denoted by S. The j tn critical section oftask T, is denoted by s,j. The semaphore that
guards critical section s,j is denoted by Sij. The computation of critical section s,j is

denoted by cStJ.

Critical sections are assumed not to be nested, i.e., for any pair of critical sections

s^ and sik, s{j n sik = 0.

Definition 6.4.3 ([SRL90]) A task Ti is said to be blocked by the critical section Skj of

task Tk if Tk has a lower priority than Ti but Ti has to wait for Tk to exit Skj in order to

continue execution.

Definition 6.4.4 ([SRL90]) A taskTi is said to be blocked by task Tk through semaphore

S, if the critical section $kj blocks Ti and Skj = S.

The schedulability of a task set is dependent upon the amount of blocking that may

be experienced by the tasks in the task set. Since a dynamic priority scheduling algorithm is

being used, it is possible that task T, may be blocked by any task Tj such that di < dj that

may lock a semaphore S that may also be locked by T,-. Let Bij = {sjfcKsjfc can block Ti) A

{flsjm € Bij such that Sjk C Sjm)} denote the set of non-nested critical sections of task Tj

that can block T,. The set Bij contains the longest critical sections of Tj that can block T{.

Note, Bij = Bji. Let B\ —[jjBij denote the set of non-nested critical sections of all tasks

Tj such that di < dj that can ever block T,.

80

Lemma 6.4.1 A task Th can be blocked by a lower dynamic priority task Ti only if Ti is

executing within a critical section sij € Bhi when Th acquires the highest dynamic priority

of all tasks.

Proof By the definition of the dynamic priority ceiling protocol and Bhi, Ti may block
Th only if it holds the semaphore upon which Th is blocked or has its dynamic

priority raised above that ofTh through priority inheritance or holds a semaphore

in Bhi- In any case, the critical section currently being executed by T\ is in Bhi

since Th is the highest dynamic priority task. If Ti is not within a critical section

sij € Bhi, then T/ can be preempted by Th and can never block Th- •

Lemma 6.4.2 ([CL90]) A task can be blocked only before it enters itsfirst critical section.

Lemma 6.4.3 A task Th can be blocked by a lower dynamic priority task T\ only if the

dynamic priority of task Th is no higher than the highest dynamic priority ceiling of all the

semaphores that are locked by all lower dynamic priority tasks when Th becomes the highest

dynamic priority task ready to execute.

Proof Suppose that when Th is invoked, the dynamic priority of task Th is higher than

the highest dynamic priority ceiling of all the semaphores that are currently

locked by all lower dynamic priority tasks. Thus, by definition of the dynamic

priority ceiling of a semaphore, Th does not require any of the semaphores that

are currently locked. Since Th is the highest dynamic priority task ready to

execute, it will execute until either it completes execution or a higher dynamic

priority task Th becomes ready to execute.

If Th executes until completion, it will never be blocked since no task

holds the lock on a semaphore that it requires and no lower dynamic priority

task will execute before it completes. If Th preempts Th and never becomes

blocked, Th can never be blocked since all semaphores that were locked by Th

will be unlocked by Th before Th resumes execution. If Th preempts Th and

then becomes blocked, the blocking task T/ will execute for at most the span

of one critical section at the dynamic priority of Th- After T/ exits its critical

section it reverts to its previous dynamic priority.

If, at the time that Th preempts Th, Th has already entered its first

critical section, then by Lemma6.4.2 Th will not be blocked by any task. If, at the

81

time that Th preempts Th, Th has not entered its first critical section, then until

Th completes its execution, T/, will not be the task with the highest dynamic

priority. Thus, Th will not execute until after Th has completed execution.

During the time between the invocation of Th and the completion of Th a lower

priority task can only unlock a semaphore. This follows from the definition of

dynamic priority ceiling protocol. Thus, no semaphores that may be required

by Th will be locked by a lower priority task, and Th will never be blocked by a

lower priority task. •

Lemma 6.4.4 Under the dynamic priority ceiling protocol a high dynamic priority task Th

can be blocked by a lower dynamic priority task T\ for at most the duration of one critical

section of Bhi regardless of the number of semaphores Th andTi have in common.

Proof By Lemma 6.4.1, for T/ to block T/,, T/ must be currently executing a critical

section sij € Bhi- Once Ti exits s/j. it can be preempted by Th, and Th cannot

be blocked by T/ again. •

Lemma 6.4.5 ([CL90]) The priority inherited by a job cannot be higher than the highest

priority ceiling of those critical sections the job has locked.

Lemma 6.4.6 ([CL90]) At any time, among the semaphores that are currently locked

by tasks with non-inherited dynamic priorities lower than P, at most one semaphore has

dynamic priority ceiling higher than or equal to P.

Theorem 6.4.1 ([CL90]) Chained blocking is impossible using the dynamic priority ceil

ing protocol.

Theorem 6.4.2 ([CL90]) The dynamic priority ceiling protocol prevents deadlocks.

Chen and Lin derived a utilization based schedulability analysis test for the DPCP.

Theorem 6.4.3 ([CL90]) A set of n periodic tasks can be scheduled by EDF using the

dynamic priority ceilingprotocol if the following condition is satisfied:

f£i±*i<i
h pi ~

where Bi is the duration of the longest critical section in B\.

82

6.5 Non-Preemptive Dynamic Priority Scheduling

The problem of scheduling a set of tasks non-preemptively on a single processor

was studied by Jeffay et.al. [JSM91]. Jeffay et.al. were able establish necessary and sufficient

conditions for the non-preemptive scheduling of a task set when the period is equal to the

deadline. The following theorem establishes necessary conditions for the schedulability of a

periodic task set with period equal to deadline.

Theorem 6.5.1 ([JSM91]) Let r„ = {Tu T2, ... , Tn) be a set of periodic tasks with

arbitrary release times sorted in non-decreasing order by deadline. Ifrn is schedulable then

2. Vi, 1 < i < n; VL,pi < L < p,;

^c. +EJiU^K

The first requirement states that the processor cannot be overloaded. In a single

processor system, the sum of the utilization of all the tasks in the task set rn must be less

than or equal to one (assuming there is no scheduling overhead).

The second requirement states that for a set of tasks to be schedulable, the demand

for processor execution time in the interval L must always be less than or equal to the length

of the interval. This is equivalent to saying that the processor may not be overloaded

during any interval L. This requirement appears to be similar to the requirement that

the total utilization of the processor not exceed one, but it can be shown that these two

requirements are not related. It is possible to conceive of both schedulable task sets that

have a processor utilization of one, and unschedulable task sets that have arbitrarily small

processor utilization.

Requirements (1) and (2) from Theorem 6.5.1 are also necessary for scheduling a

sporadic task set non-preemptively.

Corollary 6.5.1 ([JSM91]) If a set of sporadic tasks rn = {Tl7 T2, ... , Tn}, sorted in

non-decreasing order by deadline, is schedulable, then rn satisfies requirements (1) and (2)

from Theorem 6.5.1.

Jeffay et.al. went on to demonstrate the existence of a non-preemptive scheduling

algorithm that is guaranteed to schedule any periodic or sporadic task set that satisfies the

83

necessary conditions. The chosen algorithm is the non-preemptive EDF algorithm. In this

formulation, the EDF algorithm assigns the ready task with the earliest deadline to the

processor (ties broken arbitrarily). Once a task is assigned to the processor, the task is

allowed to run to completion.

The following theorem demonstrates the universality of the non-preemptive EDF

scheduling algorithm for sporadic task sets. That is, if any non-preemptive scheduling algo

rithm schedules a set of sporadic tasks, then the non-preemptive EDF scheduling algorithm

will schedule the same set of tasks as well. To prove universality, it suffices to show that re

quirements (1) and (2) from Theorem 6.5.1 are sufficient to ensure that the non-preemptive

EDF scheduling algorithm schedules any set of sporadic tasks with specified release times.

Theorem 6.5.2 ([JSM91]) Let rn = {Tu T2, ... , Tn} be a set of sporadic tasks sorted

in non-decreasing order by deadline. If rn satisfies requirements (1) and (2) from Theo

rem 6.5.1, then the non-preemptive EDF scheduling algorithm will schedule rn.

The following corollary shows that the non-preemptive EDF scheduling algorithm

is universal for scheduling periodic tasks.

Corollary 6.5.2 ([JSM91]) Let r„ = {Tx, T2, ... , Tn] be a set ofperiodic tasks sorted
in non-decreasing oder by deadline. If rn satisfies requirements (1) and (2) from Theo

rem 6.5.1, then the non-preemptive EDF scheduling algorithm will schedule rn.

It can also be shown that the non-preemptive MLF scheduling algorithm is uni

versal for sporadic and periodic task sets. To prove universality, it suffices to show that

requirements (1)and (2)from Theorem 6.5.1 aresufficient to ensure that the non-preemptive

MLF scheduling algorithm schedules any set of sporadic tasks with specified release times.

For following definition is used for the proof of Theorem 6.5.3.

Definition 6.5.1 The laxity deadline of a task, Ti, is equal to the deadline of the task, di,

minus the computation time of the task, c,\

Theorem 6.5.3 Let rn = {T\, T2, ... , Tn} be a set of sporadic tasks sorted in non-

decreasing order by deadline. If rn satisfies requirements (1) and (2) from Theorem 6.5.1,

then the non-preemptive MLF scheduling algorithm will schedule rn.

84

Proof By contradiction. Assume that rn satisfies conditions (1) and (2) from Theo

rem 6.5.1, and there exists an assignment of release times such that a task misses

a deadline at some point in time when rn is scheduled by the non-preemptive

MLF scheduling algorithm. The proof proceeds by deriving upper bounds on

the processor demand for an interval ending at the time at which a task misses

a laxity deadline.

Let td be the earliest time at which a laxity deadline is missed. r„ can

be partitioned into three disjoint subsets:

Soo = the set of tasks that have an invocation with a

laxity deadline at time td-

«Se = the set of tasks that have an invocation occurring

prior to time td with a laxity deadline after td-

S$ = the set of tasks not in «Soo or «$€•

To bound the processor demand prior to td it suffices to examine only

<Se. Let n, r2, ••• , nt be the invocation times of the tasks in <Se. There are two

cases to consider.

Case 1: None of the invocations of tasks in «S6 occurring at times ri,r2,--- , r^.

are scheduled prior to td.

Let t0 be the end of the last interval prior to td in which the processor was

idle. If the processor has never been idle let to = 0. In the interval [to,td],

the processor demand, DuQjd], is the total computation requirement of the
tasks that are invoked at or after to with laxity deadline at or before time

td- This yields

j=i L Pj .

Since there is no interval during which the processor is idle in the interval

[to, td] and since a task misses a deadline at td, it follows that Ify0,td] >

td -10. Thus,

td - to < £
i=i

td — to

Pj

. v* td —to
-j <]L Ci

J=l Pj

85

which yields the following relation

n a

However, this contradicts the assumption that condition (1) is met.

Case 2: Some of the invocations of tasks in S$ occurring at times ?'i, r2, • • • , r^

are scheduled prior to td.

Let Ti, allocated the processor at time i, < td, be the last task in «Se

scheduled prior to time td. Note that if the processor is ever idle during the

interval [£,-,£<*], then the analysis of Case 1 can be used where ti < to < td.

Therefore, assume that the processor is never idle during the interval [£,-,£4].

Let Tk be a task that misses a laxity deadline at time td. Due to the

choice of T, and the use of the MLF scheduling algorithm, if follows that

ti < td—pk+Ck- It also follows that every task other than task T,- executed in

[ti, td] must have a laxity deadline at or before td due to the MLF algorithm.

Therefore, other than task T,, no task that is scheduled in [ti, td] could have

been invoked at time £,-. If such a task exists, then that task would have

been allocated the processor at time i, and not task T,-.

Two cases arise depending upon the computation time of task T,.

Case 2.1: The computation time of taskTi, c,, is less than the computation

time of task Tk, Ck, c,- < c*.

The relationship between the periods of task T,, /),-, and the period of

task Tk, Pk, is unknown. Because of this, the processor demand during

the interval [ti, td + ck] must be calculated by considering all tasks in

the task set.

In the interval [£,, fd + c/J, the processor demand, £>[*,,<d+Cfc]i is the total

computation requirement of the tasks that are invoked at or after time

ti with a deadline at or before time Td + Ck. This yields

n . V^ td -r Ck - ti
D[ti,td+ck] < I.. —-—

j=i L Pj

Since there is no interval during which the processor is idle in the in

terval [ti,td + Ck] (this is easily seen since the processor is not idle in

86

the interval [U,td] and Tk misses its laxity deadline at time td, i.e., Tk

is not allocated the processor before time td, Tk may be allocated the

processor after td ensuring that there is no idle time in the interval

[ti,td-\-Ck]) and since task T* will miss its deadline at time *</+ c* (this

follows from Tk missing its laxity deadline at time td), it follows that

D[U,td+ck) >td-TCk- U. Thus,

td +ck - U< £ td + Ck - U

Pj

which yields the following relation

n a

. v^ td + Ck - U

i=i Pi

This contradicts the assumption that condition (1) is met.

Case 2.2: The computation time of task Ti, c,, is greater than or equal to

the computation time of task Tk, Ck, ct- > c*.

The period of task T, is larger than the period of task Tk-

Since p, > td + Ck - U only tasks T\ ••• Ti need to be considered in

computing the processor demand during [U,td + cjj, D[t,,td+ck]' Since

the invocation of task T,- that is scheduled at time £,- has a laxity deadline

after time td, all task invocations occurring prior to time ti with laxity

deadlines at or before td must have been completed by time Jt; thus,

they do not contribute to Duidy Since none ofthe invocations oftasks

T\ ••• T,_i that are scheduled in the interval [£,, td + Ck] occurred at or

before time U, the demand due to these tasks during [U,td + Ck] is the

same as the demand during the interval [ti + 1, td + Ck].

These observations, plus the fact that the invocation of task T, sched

uled at time U must be completed before time td, indicate that the

processor demand in [ti,td + Ck] is bounded by

i-l

D[ti,td+ck] ^ c« + H
td + Ck- {U+ 1)

;=1 L PJ

Since there is no idle time in [U,td + Ck] and a task missed a laxity

deadline at td, it follows that D{ttttd+Ck] > td + Ck - ti.

Let L —td-U-r Ck- Substituting L into the above equation yields

L-\
i-i

D[U,U+ck) < Ci + £
j=l Pj

Ci.

Since a task misses its deadline at time td-rCk, D[tittd+ck] > ^d + cfc —*»•

Combining this with the above equation yields

t'-i

L< D[t,M < C+ X
j=i

Since pt > td+ Ck -U = L and f, < td -Pk + c*, £<* + c* - £, > Pk > Pi',

thus L > p\. Therefore, condition (2) is violated. •

6.6 Sporadic Task Scheduling in Dynamic Priority Systems

Only periodic task sets have been addressed for dynamic priority systems to this

point. Due to the existence of sporadic tasks in real-world applications, dynamic priority

scheduling algorithms must be able to correctly handle sporadic tasks.

Hard sporadic tasks are easily handled by both dynamic best effort scheduling algo

rithms and dynamic planning based scheduling algorithms. Dynamic best effort scheduling

algorithms schedule hard sporadic tasks as if they were hard periodic tasks. Thus, neither

the EDF nor the MLF algorithms needs to be modified to handle sporadic tasks with hard

deadlines. However, the given schedulability analysis tests for these algorithms are unable

to handle sporadic tasks. Specifically, simple utilization based tests do not account for the

possibility of transient overload.

Critical instant-based schedulability analysis tests must be used when sporadic

tasks are present. The following theorem establishes necessary conditions for schedulability

for a task set that contains sporadic tasks.

Theorem 6.6.1 Let rn = {T\,... Tn], arranged in non-decreasing order by deadline, d, be

a set of sporadic and periodic tasks. If rn is schedulable, then

1- £?=i cf} < i.

2. Vi, l<i< n;\/L,dx < L < d;

L>J2 -ck.

L-\

Pj
Ci.

87

88

Proof The contrapositive of the theorem is proven: if a set of tasks rn does not satisfy

condition (1) or condition (2), then there exists a task set, rnr, with specified

release times, generated from rn, that is not schedulable.

The worst case processor utilization of a sporadic task occurs when it

acts like a periodic task.

Consider the set of tasks rnr = {Ti,... ,Tn] where each task has a

specified release time of r = 0. Let t —p\ •p2 •... • pn- In the interval [0, t],
task i must receive (i/p,)c, units of processor time to ensure it does not miss a

deadline in the interval. Therefore, the total processor demand, D, for all tasks

during the interval [0, t] is

j=i Pi

Dividing this equation by t yields

If condition (1) does not hold, then D > t, and hence rnr is not schedulable.

For condition (2), consider the set of tasks rnr = {T\,... ,Tn] where

each task has a specified release time of r = 0. Consider the interval L, where

d\ < L < di. The processor demand, D, in the interval [0,L] is given by

j=i p3

The demand consists of the processor demand due to tasks that will have

a deadline within [0,1]. Note that tasks with deadlines greater than di have no

invocations with deadlines in the interval [0,L], and hence do not contribute to

the processor demand in the interval [0,L].

If condition (2) does not hold, then D > L, and hence rnr is not schedu

lable. •

Dynamic planning based scheduling algorithms handle hard sporadic tasks. The

off-line schedulability analysis tests are the same as for the dynamic best effort scheduling

algorithms. If the dynamic planning based scheduling algorithm uses knowledge about

89

future invocations of a task in deciding schedulability at run-time, then the worst case

processor demand and the worst case task phasings for the sporadic tasks must be assumed.

Soft sporadic tasks may be handled by use of a sporadic server task. Spuri and

Buttazzo [SB94] present five sporadic server algorithms for use with EDF. The Dynamic

Priority Exchange (DPP), Dynamic Sporadic Server (DSS), Total Bandwidth (TB), EDL,

and Improved Priority Exchange (IPE) algorithms minimize the average response times of

the soft sporadic tasks.

6.7 Advantages of the Dynamic Priority Approach

The main advantage of the dynamic priority approach is its ability to obtain a high

processor utilization. When arbitrary preemption is allowed, dynamic priority scheduling

algorithms may obtain a processor utilization of one for any task set satisfying the assump

tions of the scheduling algorithm. Static priority scheduling algorithms may obtain this

utilization only when the periods of the tasks are harmonics.

The major characteristics of the tasks do not need to be known in advance. Only

the information required to determine priorities (and perform a schedulability analysis test

if a dynamic planning based algorithm is used) needs to be known, and this information

may be provided by the task when it is invoked.

Dynamic priority algorithms are flexible. They can adapt to changes in their

environment, requiring no special processing for mode changes or changes in the task set.

Utilization based schedulability analysis tests may be used to determine a priori

whether a task set is schedulable by the dynamic priority approach. These same tests may

also be used by the dynamic planning based approach.

Sporadic tasks are easily handled by the dynamic priority approach. This is im

portant especially when the sporadic tasks have hard deadlines. Sporadic servers may be

used to give soft sporadic tasks a low average response time.

Task synchronization may be accomplished by use of the Dynamic Priority Ceiling

Protocol that guarantees deadlock avoidance and prevents unpredictable delays at run time.

90

6.8 Disadvantages and Other Issues of the Dynamic Prior

ity Approach

In order to obtain a high processor utilization the dynamic priority approach must

be able to handle multiple levels of preemption efficiently. The physical characteristics of

the system can limit the number of nested interrupts that are allowed, e.g., the stack size

and the way it is used can limit the number of nested interrupts. Preemption causes the

scheduler to have a high overhead, due mainly to context switches, and causes unpredictable

delay in task execution.

Dynamic best effort scheduling algorithms have a limited knowledge of the task

characteristics of the active tasks in the system. In addition, they do not have information

on the future invocations of tasks, increasing the chances that a valid schedule will not be

found.

If the scheduler does not have [any knowledge about the major characteristics of
tasks that have not yet arrived in the system] then it is impossible to guarantee
that all timing constraints will be satisfied, because no matter how clever the
scheduling algorithm is, there is always the possibility that a newly arrived task
possesses characteristics that will make that task either miss its own deadline,
or cause other tasks to miss their deadlines. This is true even if the processor
capacity was sufficient for the task at hand. [XP90]

As with the static priority approach, the dynamic priority scheduling approach

sometimes has difficulty handling practical problems. Task synchronization is possible, but

the run time task synchronization mechanism must be conservative to avoid deadlock. This

results in situations where a task is blocked by the run time synchronization mechanism even

though it could have proceeded without causing deadlock, reducing the level of processor

utilization.

The dynamic priority approach does not directly address the problem of distance

constraints. The only possible way to guarantee distance constraints is to give those tasks

with distance constraints a high priority. Since the designer does not have direct control

over the run-time priority of a task, the pertinent task characteristics must be modified to

ensure that distance constraints will be met.

91

6.9 Implementation of the Dynamic Priority Approach Within

POLIS

6.9.1 Routines Implemented Within POLIS

The preemptive and non-preemptive EDF and MLF best-effort scheduling algo

rithms are implemented within Polis. Sporadic servers are not implemented due to their

large code. Consequently, soft sporadic tasks are relegated to background service.

The schedulability of the task set is guaranteed off-line. For purely periodic task

sets, the preemptive implementation uses the utilization-based test presented in Theo

rem 6.2.2. For the non-preemptive implementation, the task set is verified to meet the

conditions in Theorem 6.5.1.

When sporadic tasks are present, all tasks are verified to meet their deadlines when

invoked at their critical instant, assuming all tasks are independent. Any tasks that are not

guaranteed to meet their deadlines are identified, providing useful feedback to the designer.

6.9.2 Generated Scheduling Routines

The deadlines (and computation times for MLF) of all tasks in the system are

stored in a table. A table containing all soft tasks is also present. The scheduling routines

refer to these tables when determining the deadline times and laxities of tasks as well as

identifying soft tasks.

The dynamic schedulers generated by Polis rely upon interrupts to perform cor

rectly. It is only with the use of interrupts that deadline times and laxities may be correctly

determined. Knowing the invocation time of a task is critical to determining its deadline

time and laxity.

For the non-preemptive scheduler shown in Figure 6.1, the interrupt handling

routine identifies all invoked tasks and places them on a ready queue in dynamic priority

order. The main scheduling routine non-preemptively executes the highest priority task on

the ready queue.

For the preemptive scheduler shown in Figure 6.2, the interrupt handling routine

performs all functions of the scheduler. All invoked tasks are identified and placed on a

ready queue. The highest priority task in the ready queue is then executed. The interrupt

routine exits when the highest priority task is the task that was interrupted. This interrupt

92

handling implementation prevents the need for complex context switching software, reducing

the memory requirements of the scheduler.

// main scheduling routine that executes the highest priority task

scheduler()

{

while(1) {

execute(highest_priority_task());

}

}

// interrupt handling routine

interrupt-handler()

{

poll_inputs_and_update_input_buffers();

// find the ready tasks and put them on the ready list

for(task =0; task < NUMBER_TASKS; task+ +) {

if(is_ready(task)) {

if(not_on_ready_list(task)) {

place_on.read_list_in_order(task);

}

}

}
return; // return from interrupt

}

Figure 6.1: Generated non-preemptive dynamic priority scheduling routines.

93

// main scheduling routine that should never execute a task

// it is used as a safety net

scheduler()

{

while(1) {

execute(current-task = highest_priority_task());

current-task = NUMBER-TASKS;

}

}

// interrupt handling routine; all tasks should be executed from

// this routine

interrupt-handler()

{
interrupted_task = current-task;

poll_inputs_and_update_input_buffers();

// find the ready tasks and put them on the ready list

for(task =0; task < NUMBER-TASKS; task -I- 4-) {

if(is_ready(task)) {

if(not_onjready_list(task)) {

place_on_read_list_in_order(task);

}

}

}
place_on_ready_list_in_order(current-task);

while((current-task = highest_priority_task()) != interrupted_task)

execute (current-task);

return; // return from interrupt

Figure 6.2: Generated preemptive dynamic priority scheduling routines.

94

95

Chapter 7

Results

7.1 On-Line Scheduling Overhead

7.1.1 Derived Bounds for the On-Line Scheduling Overhead

Bounds on the execution cycles for each of the generated scheduling algorithms

were determined via hand simulation. The calculated execution times do not take into

account context switching overhead or interrupt latency time, i.e., time to react to an

interrupt. The execution cycles of blocks of code were determined using the cycle time

estimator within Polis. The cycle time estimator calculates the number of cycles required

to execute the given block of code on the Motorola HCll microcontroller with a maximum

error of 20%.

By simulating the code, upper and lower bounds on the number of cycles required

by the scheduler were obtained. Table 7.1 presents the derived bounds for the presented

scheduling algorithms that do not use interrupts, Round Robin, Pre-Run-Time, and Non-

Preemptive Static Priority.

Table 7.2 presents the derived bounds for the presented scheduling algorithms

that use interrupts, Preemptive Static Priority, Non-Preemptive Dynamic Priority, and

Preemptive Dynamic Priority. Upper and lower bounds on the execution cycles of the

interrupt handling routines are also presented.

The cycle timing dependence upon the number of events in the system, Ne, arises

from the method in which events are detected. When the occurrence of an event is checked

for, all events are checked. 135 clock cycles are required to check for the presence of an

Table 7.1

tines synthesized by
number of tasks in the system

Minimum

Execution

(cycles)

Maximum

Execution

(cycles)

Round Robin 80+135*JV£ 80 + 260 * NE + 80 * NT
Pre-Run-Time 70 + 135 * NE 70 + 260 * NE

Non-Preemptive
Static Priority

150+135*iVE 40 + 260 * NE + 160 * NT

96

Range of possible execution cycles for non-interrupt scheduling rou-
iized by Polis with Ne = number of events in the system and Nt =

Minimum

Interrupt

(cycles)

Maximum

Interrupt

(cycles)

Minimum

Execution

(cycles)

Maximum

Execution

(cycles)

Preemptive
Static Priority

360+135*NE 285+135*NE

+75 * Priority^
300+135*iVE

+160 * Nt

150 285 + 135 * NE
+75 * PriorityT

Non-Preemptive
Dynamic Priority
Preemptive
Dynamic Priority

460+135*iVE

265 + 135 * NE
+80 * NT

265 + 135 * NE
+240 * NT

80

80

300 + 135 * NE
+160 * NT

265+135* Afc

+240 * NT

Table 7.2: Range of possible execution cycles for interrupt scheduling rou
tines synthesized by Polis with Ne = number of events in the system, Nt =
number of tasks in the system, and PriorityT = the priority of the interrupted task, T.

97

event, and an additional 125 clock cycles are required to update the appropriate input

buffers if an event is present.

The cycle timing dependences upon the number of tasks in the system, Nt, and the

priority of the interrupted task, Priority^, arise from the order in which tasks are checked

to find the highest priority task that is ready to run. In the worst-case, all tasks must be

checked before the highest priority task that is found.

7.1.2 Average On-Line Scheduling Overhead

The derived bounds for the on-line scheduling overhead allow for a pessimistic

worst-case analysis, guaranteeing the predictability of the system. However, this worst-

case analysis does not provide any insight into what the average scheduling overhead might

be. The average scheduling overhead is of interest since it provides information as to how

pessimistic an estimate the worst-case scheduling overhead is in the typical case.

To determine an average scheduling overhead per executed task, various task sets

consisting of independent periodic tasks were simulated through 100000 cycles (where one

cycle corresponds to a time period equal to the least common multiple of the task peri

ods) for each of the scheduling algorithms. The total execution time of the scheduling

routines was divided by the total number of tasks executed during the simulation to arrive

at the scheduling overhead per executed task {scheduling overhead). This overhead does

not include context switching time or interrupt latency.

Figures 7.1, 7.2, 7.3, 7.4, 7.5, and 7.6 show the observed average scheduling

overhead for the Round Robin, Pre-Run-Time, Non-Preemptive Static Priority, Preemp

tive Static Priority, Non-Preemptive Dynamic Priority, and Preemptive Dynamic Priority

scheduling algorithms respectively. The observed average scheduling overhead is not repre

sentative of all task sets or even all periodic task sets. The observed scheduling overheads

only indicate what the average scheduling overhead might be for a 'typical' task set.

All scheduling algorithms exhibit a strong relation between scheduling overhead

and number of events in the system. This is expected because of the event detection routine

used in all implementations.

Figures 7.7 and 7.8 show the relationship between the average scheduling overhead

and the worst-case scheduling overhead as a function of the number of tasks in the system

for a fixed number of events. As the figures show, the larger the number of tasks in the

*

Round Robin Scheduling • Average Scheduling Overhead per Task Execution

Average Cyetos

4000 -

3SOOI-

Numbor of Tasks

5 Number of Events

Figure 7.1: Average Round Robin scheduling overhead.

Pro-Run-Time Scheduling - Average Overhead per Task Execution

< 1000

Figure 7.2: Average Pre-Run-Time scheduling overhead.

98

Non-Preemptive Static Priority Scheduling • Average Scheduling Overhead per Task Execution

Average

Numbor of Tasks

10

Number of Evonta

Figure 7.3: Average Non-Preemptive Static Priority scheduling overhead.

Preemptive Static Priority Scheduling - Average Scheduling Ovorhoad per Task Execution

Average Cycles
3000 -

Numbor of Tasks

Number of Events

Figure 7.4: Average Preemptive Static Priority scheduling overhead.

99

Non-Proempttvo Dynamic Priority Scheduling • Average Scheduling Overhead per Task Exocution

Average Cycles

3O0O r-

2 BOO

2000

1BOO -

1O0O

fSOO

O

Numbor of Tasks

s Number of Events

Figure 7.5: Average Non-Preemptive Dynamic Priority scheduling overhead.

Preemptive! Dynamic Priority Scheduling - Avorago Scheduling Ovorhoad por Task Exocution

Number of Tasks

15

lO

Number of Events

Figure 7.6: Average Preemptive Dynamic Priority scheduling overhead.

100

Preemptive Static Scheduling Ovorhoad - Max. vs Ave. for B E

Number of Tasks

•Prostatic" t
"preStatlcMax"

101

Figure 7.7: Average Preemptive Static Priority scheduling overhead compared with the
maximum possible scheduling overhead.

system, the more pessimistic the worst-case scheduling overhead is when compared with the

average scheduling overhead. This relationship is evident in all of the scheduling algorithms

except the Pre-Run-Time scheduling algorithm; the Pre-Run-Time scheduling overhead is

independent of the number of tasks in the system.

Figure 7.9 compares the average scheduling overhead for each of the scheduling

algorithms as a function of number of events in the system for a task set size of eight.

Figure 7.10 compares the average scheduling overhead for all scheduling algo

rithms, except for the Pre-Run-Time scheduling algorithm, as a function of the number of

tasks in the system with eight events in the system.

Figures 7.9 and 7.10show that the PRT scheduling implementation has the lowest

average scheduling overhead of all the scheduling algorithms (for eight events, the PRT

scheduling implementation has an average overhead of 1386 cycles). However, it is clear

that the PRT implementation is not optimal. An optimal PRT implementation would have

an almost constant overhead, with fluctuations due only to variations in the number of

tasks dependent upon an input event and the number of input events upon which a task

depends. The current implementation checks all input events, not just the input events the

next task in the schedule depends upon, causing the scheduling overhead to be larger than

it could be.

The Non-Preemptive Static Priority scheduling routines have the largest average

scheduling overhead. The Preemptive Static Priority scheduling routines have a much lower

eooo

56O0

SOOO

45O0

4000

36O0

3000

2SOO

2OO0

1 BOO

Preemptive Dynamic Scheduling Ovorhoad • Max. vs Avo. for 8 Events

- -

'ProDynamlc" '-*—;--'
"ProDynamicMax'is**1-

; _-*''''* ;

^,.

•-**"• r : • 7 -

..^"
.->"""*

8 10
Numbor of Tasks

102

Figure 7.8: Average Preemptive Dynamic Priority scheduling overhead compared with the
maximum possible scheduling overhead.

*

Avorago Scheduling Overhead for Task Sot Sizo of 8

e 8 10 12
Number of Events

"RoofldRobin" -•—
jSProRunTime" -t—

"NoProStatic* -a-
•Prostatic" -•*-

"NoPto«ynamlc" -*•••
roDynamic" -»••

Figure 7.9: Comparison of all scheduling implementations as a function of the number of
events in the system for a fixed task set size.

Avorage Scheduling Overhead with 8 Events

8 10
Numbor of Tasks

"RoundRobin*
"NpProStalic"

..-^BroStatlc"
.SNoRrtiDynamic'

f' ^."ProDynamie"

103

Figure 7.10: Comparison of all scheduling implementations, except for Pre-Run-Time, as a
function of the number of tasks in the system for a fixed number of events.

average scheduling overhead (the second lowest average scheduling overhead); suggesting

that the Non-Preemptive Static Priority average scheduling overhead could be decreased by

using interrupts to detect events instead of polling.

The Non-Preemptive Dynamic Priority scheduling routines have a relatively low

average scheduling overhead; further evidence that the use of interrupts would decrease the

average scheduling overhead for the Non-Preemptive Static Priority scheduling routines.

The Preemptive Dynamic Priority scheduling routines have an expectedly high average

scheduling overhead.

7.1.3 Comparison with an Existing Real-Time Operating System

Many commercial Real-Time Operating Systems (RTOSs) require the designer

to write interrupt routines causing the RTOS to have a variable amount of scheduling

overhead. In these instances, the context switching time, the interrupt latency, and the

maximum execution timings of pertinent, highly optimized, routines are published.

The pSOS+ multitasking operating system from Integrated Systems, Inc. is typical

of many commercial RTOSs. It employs a preemptive static priority scheduler. The designer

is required to develop the interrupt handling routines using the provided operating system

calls.

For the Intel 486DX2 33MHz processor with 256KB of cache, pSOS+ has a

Procedure Execution Time

{fis)
Estimated

Cycles

T.START 8.36 552

T.RESTART 13.00 858

T.SUSPEND 5.80 384

T.RESUME 6.07 400

TJ3ETPRI 7.74 512

TJvlODE 3.15 208

T.SETREG 3.33 220

T.GETREG 3.36 220

LENTER 1.88 124

LRETURN 1.73 114

TIME-GET 3.03 200

104

Table 7.3: Execution times for some standard routines in the pSOS-f real-time operating
system for the Intel 486DX2 33MHz processor.

claimed1 interrupt latency of less than 4.00/zs and a claimed context switching time of

6.27/zs. Table 7.3 shows the claimed execution times, both in p.s and estimated clock cycles,

for some of the operating system calls available to tasks running under pSOS+.

A typical interrupt handling routine might read the contents of some register,

update another register based on the contents of the first register, and then return from

the interrupt. At the least, this interrupt routine would require 554 cycles using pSOS+. If

the interrupt handling routine performs any scheduling activities, such as updating a ready

task list, the total interrupt time would increase further. In addition to this time, the static

priority scheduling routines within pSOS-f- must be executed after the interrupt returns,

further increasing the run-time overhead.

Incomparison, for the preemptive static priority scheduling routines synthesized by

Pons, the interrupt routine identifies the ready tasks in the system and begins execution of

the highest priority task; performing both interrupt handling and scheduling. This requires

a minimum of 495 cycles to perform and increases as the number of events in the system

increases, due to the input event update routine.

1All timing data were obtained from http://www.isi.com/Products/pS0S/386.htnl.

Scheduling
Algorithm

RAM

data bss

ROM

const text

RR 100 78 0 944

PRT 100 78 6 969

NoPreStatic 100 78 6 981

PreStatic 100 78 6 1048

NoPreDynamic 118 84 12 1511

PreDynamic 118 84 12 1665

105

Table 7.4: Measured memory requirements (in bytes) of the synthesized Polis operating
system utilizing specific scheduling routines for a task set of size three with eight events.

7.2 Synthesized Operating System Memory Requirements

The size (in bytes) of the operating system is important to the target application

of Polis, small embedded controllers. These applications typically have a limited amount

of memory for code storage. (Typical embedded systems contain a fixed amount of Read-

Only-Memory (ROM) in which the code for the operating system and the application tasks

is stored.) Therefore, the operating system should be as small as possible to allow for it

and the tasks to fit into the available memory.

The complete operating system synthesized by Polis consistsof the scheduler and

I/O routines. The operating system may contain information, required by the scheduler, on

each task (e.g., task priority, task deadlines, task periods), causing the size of the operating

system to be dependent upon the number of tasks in the system.

Table 7.4 shows the memory requirements of the generated operating system for

a task set size of three with eight events. The larger operating systems in terms of RAM

and ROM usage are those which utilize interrupts.

Table 7.5 shows the memory requirements of the generated operating systems

for the shock absorber controller example described in [CEG+95]. This example contains

fourty-eight (48) tasks and eighty (80) events.

7.2.1 Comparison With Existing Real-Time Operating Systems

Table 7.6 shows the minimum memory (ROM) requirements for variouscommercial

and research RTOSs. All of these RTOSs utilize a static priority scheduling methodology.

Scheduling
Algorithm

RAM

data bss

ROM

const text

RR 4762 1161 488 3380

PRT 4762 1161 584 3405

NoPreStatic 4762 1161 584 3417

PreStatic 4762 1161 584 3484

NoPreDynamic 5050 1167 680 3947

PreDynamic 5050 1167 680 4101

106

Table 7.5: Measured memory requirements (in bytes) of the synthesized Polis operating
system utilizing specific scheduling routines for a task set of size fourty-eight (48) with
eighty (80) events.

Operating System Min Size (kB)

HI68K [TSiH87] 24

REALOS/286 [Shi87] 13.5

Maruti [SdA93] 14

pSOS (Integrated Systems Inc.) 15

RTEMS 3.1.0 (U.S. Military) 11.6

QNX 4.21 (QNX Software Systems) 10

Table 7.6: Real-Time Operating Systems' memory (ROM) requirements.

They contain many features which are not present in the operating systems synthesized by

Polis, e.g., semaphores. The price for these additional features, and the generality required

to allow their use in many different systems, is additional memory usage.

In the shock absorber example above, the synthesized operating system, regardless

of the scheduling method used, is smaller than any of these more general RTOSs. The

application specific nature of the synthesized operating system in Polis allows for the RTOS

to use a minimal amount of memory (ROM) while guaranteeing the schedulability of the

task set; an advantage when the amount of memory in a system is limited.

107

Chapter 8

Conclusions and Future Work

Multiple real-time task level scheduling algorithms and their associated schedula

bility analysis tests have been implemented within the Polis co-design environment. The

theory behind each of these algorithms was presented, and extensions to this theory were

made.

• The Laxity Monotonic static priority scheduling algorithm (LMS) was presented, and

its optimality proven.

• The notion of a critical instant for a non-preemptive static priority scheduling algo

rithm was presented, and its validity proven.

• Two sufficient non-preemptive static priority schedulability analysis tests were devel

oped.

• The optimalityof the non-preemptive dynamic priorityMinimum Laxity First schedul

ing algorithm was proven.

• Necessary conditions for preemptive dynamic priority scheduling of sporadic task sets

were derived.

The generated scheduling routines were found to have a much larger scheduling

overhead than commercial and other research RTOSs due to the event detection mechanism;

however, the generated scheduling routines are considerably smaller in size (measured by

ROM usage) than these RTOSs.

There are many future directions for the run-time schedulers generated by Polis.

These include, but are not limited to, the following.

108

• The generated scheduling routines can be optimized for speed, decreasing the scheduler

overhead. The current routines are simple, and were developed for logical correctness,

ignoring execution time.

• Task synchronization protocols will be added for both the static and dynamic schedul

ing approaches. The use of task synchronization protocols, e.g., semaphores, will in

crease the required ROM usage of the generated routines. The ability to correctly

schedule more complex task sets makes the increased ROM usage acceptable.

• Sporadic servers will be added to minimize the response times of soft tasks.

109

Appendix A

Scheduling Overhead Data

Number of Events
Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 317 514 712 909 1106 1305 1502 1699 1898 2093 2293 2488 2687 2886 3084

2 356 554 752 949 1147 1345 1541 1737 1939 2133 2329 2531 2727 2924 3121

3 397 595 792 989 1187 1385 1582 1779 1980 2174 2372 2568 2770 2965 3162

4 437 634 831 1029 1227 1425 1622 1820 2018 2213 2411 2609 2810 3003 3202

5 477 674 872 1068 1267 1464 1661 1860 2058 2254 2453 2646 2846 3046 3240

6 517 715 911 1111 1307 1502 1703 1901 2096 2295 2493 2688 2889 3083 3284

7 557 754 953 1151 1346 1546 1742 1940 2137 2336 2532 2729 2926 3126 3317

8 596 795 993 1190 1389 1585 1782 1977 2176 2374 2572 2771 2966 3165 3363

9 637 834 1032 1231 1427 1624 1821 2020 2218 2413 2611 2810 3010 3202 3400

10 676 875 1072 1270 1468 1665 1862 2059 2259 2455 2654 2849 3046 3242 3443

11 715 916 1112 1310 1508 1705 1902 2102 2297 2494 2692 2891 3088 3280 3484

12 758 955 1151 1351 1549 1744 1943 2140 2337 2536 2732 2930 3128 3321 3519

13 799 996 1192 1390 1588 1785 1986 2182 2374 2575 2775 2966 3167 3364 3565

14 836 1034 1231 1430 1628 1823 2022 2220 2415 2615 2814 3011 3204 3403 3601

15 876 1076 1274 1471 1666 1865 2061 2259 2456 2659 2854 3048 3243 3445 3643

Table A.l: Average scheduling overhead for the Round Robin scheduling routines.

Number of Events
12 3 4 5 6 7 8 9 10 11 12 13 14 15

311 464 618 772 926 1079 1233 1386 1541 1696 1847 2000 2156 2308 2463

Table A.2: Average scheduling overhead for the Pre-Run-Time scheduling routines.

110

Number of Events

Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 357 555 751 950 1147 1344 1543 1740 1937 2135 2331 2529 2726 2927 3121

2 450 648 845 1042 1239 1437 1636 1833 2029 2227 2426 2623 2820 3020 3215

3 577 775 973 1170 1366 1565 1761 1959 2157 2354 2554 2751 2944 3144 3341

4 670 868 1065 1262 1459 1656 1853 2051 2251 2448 2643 2842 3037 3235 3435

5 797 995 1191 1389 1587 1785 1981 2179 2375 2575 2772 2970 3165 3364 3561

6 891 1086 1284 1480 1677 1875 2075 2271 2469 2667 2866 3057 3257 3454 3657

7 1015 1214 1412 1610 1807 2002 2200 2402 2597 2795 2993 3187 3388 3580 3781

8 1108 1303 1504 1696 1899 2096 2289 2491 2689 2887 3085 3284 3479 3676 3873

9 1238 1433 1631 1828 2026 2228 2424 2621 2816 3013 3215 3413 3608 3803 3998

10 1325 1526 1721 1921 2117 2318 2513 2711 2909 3104 3304 3498 3700 3897 4093

11 1457 1653 1854 2046 2244 2444 2642 2841 3036 3235 3428 3633 3824 4024 4219

12 1546 1744 1942 2140 2340 2534 2731 2931 3131 3324 3525 3718 3915 4115 4312

13 1680 1875 2071 2272 2468 2665 2860 3057 3256 3452 3652 3845 4053 4245 4440

14 1766 1969 2161 2361 2559 2752 2952 3151 3347 3550 3742 3941 4141 4336 4535

15 1898 2093 2293 2485 2681 2887 3078 3277 3478 3678 3870 4075 4268 4459 4662

Table A.3: Average scheduling overhead for the Non-Preemptive Static Priority scheduling
routines.

Number of Events
Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 495 630 765 900 1035 1170 1305 1440 1575 1710 1845 1980 2115 2250 2385

2 509 644 779 915 1050 1184 1319 1455 1590 1725 1860 1995 2130 2265 2399

3 528 663 798 933 1069 1203 1338 1473 1608 1743 1878 2013 2148 2283 2418

4 554 689 825 959 1095 1229 1364 1499 1635 1769 1904 2039 2175 2310 2444

5 575 710 845 980 1114 1250 1384 1519 1655 1790 1924 2059 2195 2330 2465

6 603 739 874 1009 1144 1279 1413 1548 1684 1819 1954 2090 2224 2359 2494

7 625 759 894 1029 1164 1300 1434 1568 1704 1840 1974 2109 2244 2380 2514

8 654 790 924 1060 1194 1330 1466 1599 1735 1869 2004 2139 2274 2410 2544

9 675 810 945 1080 1215 1349 1484 1619 1755 1889 2025 2159 2294 2431 2565

10 706 841 977 1110 1246 1381 1516 1651 1786 1921 2056 2192 2326 2460 2596

11 727 861 995 1133 1267 1402 1534 1671 1806 1941 2076 2210 2346 2480 2616

12 758 893 1028 1162 1298 1433 1569 1702 1837 1973 2106 2243 2377 2512 2647

13 776 913 1048 1181 1317 1453 1589 1723 1858 1994 2127 2263 2396 2533 2666

14 809 942 1081 1214 1348 1486 1620 1755 1891 2023 2159 2294 2429 2564 2698

15 829 966 1099 1236 1372 1504 1640 1773 1910 2045 2180 2313 2449 2586 2719

Table A.4: Average scheduling overhead for the Preemptive Static Priority scheduling
routines.

Ill

Number of Events
Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 595 730 865 1000 1135 1270 1405 1540 1675 1810 1945 2080 2215 2350 2485

2 611 745 880 1016 1151 1285 1420 1556 1690 1826 1961 2096 2230 2366 2500

3 630 765 900 1036 1171 1306 1441 1575 1710 1845 1980 2115 2251 2386 2521

4 674 809 944 1079 1214 1349 1484 1619 1755 1890 2025 2159 2295 2430 2564

5 693 828 963 1098 1233 1369 1503 1638 1774 1907 2043 2178 2315 2449 2584

6 745 880 1016 1151 1286 1420 1556 1690 1826 1960 2096 2231 2366 2501 2634

7 764 897 1032 1168 1302 1439 1573 1706 1844 1980 2113 2247 2383 2517 2654

8 818 955 1090 1225 1357 1496 1630 1763 1897 2033 2168 2301 2438 2574 2709

9 835 971 1105 1241 1376 1508 1644 1778 1914 2050 2184 2318 2454 2591 2724

10 896 1028 1164 1299 1431 1567 1703 1838 1972 2108 2242 2377 2514 2647 2784

11 908 1041 1176 1315 1451 1583 1718 1852 1988 2121 2258 2390 2529 2662 2799

12 967 1101 1237 1372 1508 1644 1778 1912 2045 2182 2316 2454 2586 2722 2857

13 982 1118 1253 1386 1522 1657 1792 1928 2061 2198 2334 2466 2601 2737 2872

14 1043 1176 1312 1449 1579 1720 1856 1985 2125 2254 2392 2528 2664 2794 2933

15 1057 1193 1327 1463 1598 1730 1868 2000 2138 2273 2410 2535 2675 2815 2946

Table A.5: Average scheduling overhead for the Non-Preemptive Dynamic Priority schedul
ing routines.

Number of Events
Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 640 775 910 1045 1180 1315 1450 1585 1720 1855 1990 2125 2260 2395 2530

2 736 870 1005 1141 1276 1410 1545 1681 1815 1951 2086 2221 2355 2491 2625

3 835 970 1105 1241 1376 1511 1646 1780 1915 2050 2185 2320 2456 2591 2726

4 959 1094 1229 1364 1499 1634 1769 1904 2040 2175 2310 2444 2580 2715 2849

5 1058 1193 1328 1463 1598 1734 1868 2003 2139 2272 2408 2543 2680 2814 2949

6 1190 1325 1461 1596 1731 1865 2001 2135 2271 2405 2541 2676 2811 2946 3079

7 1289 1422 1557 1693 1827 1964 2098 2231 2369 2505 2638 2772 2908 3042 3179

8 1423 1560 1695 1830 1962 2101 2235 2368 2502 2638 2773 2906 3043 3179 3314

9 1520 1656 1790 1926 2061 2193 2329 2463 2599 2735 2869 3003 3139 3276 3409

10 1661 1793 1929 2064 2196 2332 2468 2603 2737 2873 3007 3142 3279 3412 3549

11 1753 1886 2021 2160 2296 2428 2563 2697 2833 2966 3103 3235 3374 3507 3644

12 1892 2026 2162 2297 2433 2569 2703 2837 2970 3107 3241 3379 3511 3647 3782

13 1987 2123 2258 2391 2527 2662 2797 2933 3066 3203 3339 3471 3606 3742 3877

14 2128 2261 2397 2534 2664 2805 2941 3070 3210 3339 3477 3613 3749 3879 4018

15 2222 2358 2492 2628 2763 2895 3033 3165 3303 3438 3575 3700 3840 3980 4111

Table A.6: Average scheduling overhead for the Preemptive Dynamic Priority scheduling
routines.

112

Number of Events
Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 74 109 145 181 217 252 290 326 360 395 434 469 509 541 576

2 91 122 154 188 223 261 295 331 364 400 436 471 509 542 576

3 108 134 167 199 229 267 300 336 369 405 442 474 512 545 585

4 128 152 181 209 242 273 308 343 377 409 446 481 515 548 584

5 149 170 195 224 253 287 317 351 383 416 455 491 522 554 588

6 170 188 213 236 265 298 326 360 393 428 464 493 524 558 598

7 192 210 230 254 282 312 338 372 402 436 463 503 541 572 607

8 216 229 248 272 296 325 353 384 412 444 479 512 544 576 611

9 239 253 271 289 310 339 363 400 427 452 487 518 551 589 622

10 261 271 289 309 330 356 382 408 436 469 498 532 558 597 628

11 283 296 314 327 347 374 397 425 452 481 509 540 580 607 642

12 306 316 331 348 369 389 417 441 469 494 528 548 582 613 650

13 327 335 350 368 389 408 438 454 485 509 539 563 597 625 660

14 350 359 369 389 404 425 452 469 498 525 551 584 607 638 670

15 373 384 394 412 425 450 468 488 512 537 564 599 624 654 686

Table A.7: Standard deviation for the average Round Robin scheduling overhead.

Number of Events
12 3 4 5 6 7 8 9 10 11 12 13 14 lb

45 55 81 110 143 178 211 250 280 318 341 388 419 448 489

Table A.8: Standard deviation for the average Pre-Run-Time scheduling overhead.

113

Number of Events
Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 92 123 156 190 224 258 295 330 365 401 436 472 511 547 577

2 134 158 184 212 246 279 310 344 379 414 447 484 514 554 587

3 180 196 217 245 273 303 330 367 396 426 460 498 531 565 605

4 223 238 253 278 301 329 356 389 419 446 478 514 547 580 615

5 271 285 298 317 338 363 390 419 441 472 501 540 569 604 634

6 315 328 340 358 376 396 421 447 474 502 531 556 593 622 655

7 365 377 385 404 423 441 460 484 507 533 557 593 617 650 689

8 408 417 434 443 452 476 496 521 543 565 593 619 645 673 713

9 462 468 480 486 501 522 535 563 575 607 627 649 687 706 732

10 509 508 523 534 541 565 575 595 623 638 658 684 709 732 766

11 557 564 564 581 598 608 631 645 660 681 705 724 749 777 795

12 605 609 616 628 638 642 663 677 699 721 742 764 784 809 834

13 655 663 663 667 693 708 705 727 745 754 792 792 825 845 869

14 700 701 707 717 730 741 760 766 775 801 822 844 857 888 897

15 750 758 754 766 777 780 800 806 821 837 862 877 891 918 948

Table A.9: Standard deviation for the average Non-Preemptive Static Priority scheduling
overhead.

Number of Events

Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2

2 22 22 22 22 22 21 22 22 22 22 22 22 22 22 23

3 43 43 42 43 41 43 42 42 42 42 42 42 42 42 42

4 63 64 64 64 62 64 64 64 63 64 63 64 63 63 64

5 83 83 82 83 83 84 85 82 84 83 84 83 83 83 83

6 104 105 105 106 107 105 102 103 104 104 106 105 104 105 105

7 123 124 123 125 124 123 125 123 125 126 123 127 123 124 125

8 143 145 147 145 145 145 146 148 147 146 148 145 146 144 147

9 165 164 166 165 162 165 163 164 165 166 162 164 166 164 163

10 185 182 188 187 183 187 185 188 188 185 185 186 185 186 188

11 207 207 205 206 204 204 207 207 203 205 203 206 208 207 207

12 228 226 228 226 231 226 228 227 226 227 228 230 226 228 228

13 248 250 244 244 248 246 245 246 245 242 247 245 245 247 245

14 270 267 269 272 269 269 269 269 264 267 268 268 268 270 268

15 285 288 283 286 287 284 290 286 285 285 286 287 286 287 290

Table A.10: Standard deviation for the average Preemptive Static Priority scheduling
overhead.

114

Number of Events

Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 2 2 3 3 2 2 3 3 2 4 2 3 3

2 23 23 24 23 24 23 23 24 24 24 23 23 24 24 24

3 46 46 44 46 44 45 44 45 45 45 45 45 45 45 45

4 68 68 68 68 66 68 68 69 67 68 67 68 67 67 68

5 89 89 87 89 88 89 91 87 89 89 90 88 89 88 89

6 111 112 112 113 114 112 109 110 111 111 113 112 111 113 112

7 131 132 132 133 133 131 133 131 133 134 132 135 131 132 133

8 153 154 157 155 154 155 155 158 157 155 158 155 156 154 157

9 176 175 178 176 173 176 174 175 176 177 173 175 177 175 174

10 198 195 201 200 196 200 197 200 201 197 198 199 198 198 201

11 220 221 218 220 218 218 220 221 216 219 216 220 222 221 220

12 243 242 243 242 247 241 243 242 241 249 243 245 241 244 245

13 264 267 261 260 261 263 261 263 261 253 263 262 261 263 260

14 288 285 287 290 288 287 287 287 282 282 286 286 285 288 286

15 304 307 302 306 304 303 309 305 304 305 305 306 305 306 308

Table A. 11: Standard deviation for the average Non-Preemptive Dynamic Priority schedul
ing overhead.

Number of Events
Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 6 7 7 6 7 7 6 6 7 7 5 8 5 8 7

2 47 47 48 47 48 46 47 48 48 48 47 47 47 48 49

3 92 91 89 91 88 91 89 91 91 90 90 91 90 91 90

4 136 136 136 137 132 136 136 138 135 137 135 137 135 135 137

5 178 178 175 178 177 179 182 175 179 178 180 177 178 177 178

6 222 224 224 226 228 225 219 221 223 223 226 225 223 226 224

7 263 265 264 267 266 263 266 263 266 269 264 271 263 265 266

8 306 309 314 310 309 311 311 317 314 311 317 310 312 309 315

9 353 350 356 352 346 352 349 351 353 355 347 350 355 351 348

10 396 390 402 400 392 400 395 401 402 395 396 398 396 397 402

11 441 442 437 441 436 436 441 443 433 438 433 440 445 442 441

12 487 484 487 484 494 482 486 485 483 484 486 491 482 488 486

13 529 534 522 521 530 526 523 526 523 518 527 524 522 527 524

14 577 571 575 581 574 575 574 575 564 571 572 573 571 577 573

15 609 615 604 612 612 607 619 611 609 609 611 612 610 612 618

Table A.12: Standard deviation for the average Preemptive Dynamic Priority scheduling
overhead.

115

Bibliography

[ABRW91] N.C. Audsley, A. Burns, M.F. Rishardson, and A.J. Wellings. Hard real-time

scheduling: The deadline-monotonic approach. In Real Time Programming:

Proceedings of the IFAC/IFIP Workshop, pages 127 - 132. Pergamon Press,

June 1991.

[BCG91] G. Berry, P. Corunne, and B. Gonthier. The synchronous approach to reactive

and real-time systems. In IEEE Proceedings, September 1991.

[BMR90] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively schedul
ing hard-real-time sporadic tasks on one processor. In Proceedings of the IEEE
Real-Time Systems Symposium, pages 182 - 190. IEEE Computer Society Press,

December 1990.

[BS86] Theodore P. Baker and Gregory M. Scallon. An architecture for real-time soft
ware systems. IEEE Software, pages 50 - 58, May 1986.

[BS89] T.P. Baker and A. Shaw. The cyclic executive model and Ada. Real-Time

Systems, 1(1):7 - 25, June 1989.

[BSR88] Sara R. Biyabani, John A. Stankovic, and Krithi Ramamritham. The integra
tion of deadline and criticalness in hard real-time scheduling. In Proceedings

of the IEEE Real-Time Systems Symposium, pages 152 - 160. IEEE Computer

Society Press, December 1988.

[CEG+95] M. Chiodo, D. Engels, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, K. Suzuki,
and A. Sangiovanni-Vincentelli. A case study in computer-aided codesign of

embedded controllers, to appear, 1995.

116

[CGH+94] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, A. Sangiovanni-
Vincentelli, E. Sentovich, and K. Suzuki. Synthesis of Software Programs for
Embedded Control Applications. Technical Report UCB/ERL M94/87, ERL,

Univ. of California, Berkeley, CA 94720, November 1994.

[CGJ+94] M. Chiodo, P. Giusto, A. Jurecska, H. Hsieh, A. Sangiovanni-Vincentelli, and
L. Lavagno. Hardware-software codesign of embedded systems. IEEE Micro,

14(4):26-36, August 1994.

[CL90] Min-Ih Chen and Kwei-Jay Lin. Dynamic priority ceilings: A concurrency
control protocol for real-time systems. The Journal of Real-Time Systems,

2:325 - 346, 1990.

[CSR86] Shengchang Cheng, John A. Stankovic, and Krithivasan Ramamritham. Dy
namic scheduling of groups of tasks with precedence constraints in distributed

hard real-time systems. In Proceedings of the IEEE Real-Time Systems Sympo

sium, pages 166 - 174. IEEE Computer Society Press, December 1986.

[Der74] Michael L. Dertouzos. Control robotics: The procedural control of physical
processors. In Proceedings of the IFIP Congress, pages 807 - 813, 1974.

[DH89] D. Druzinski and D. Hare. Using statecharts for hardware description and
synthesis. IEEE Transactions on Computer-Aided Design, 8(7), July 1989.

[DL78] Sudarshan K. Dhall and C.L. Liu. On a real-time scheduling problem. Opera

tions Research, 26(1):127 - 140, January 1978.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[HL92] Ching-Chih Han and Kwei-Jay Lin. Scheduling distance-constrained real-time
tasks. In Proceedings of the IEEE Real-Time Systems Symposium, pages 300 -

308. IEEE Computer Society Press, December 1992.

[HS90] Wolfgang A. Halang and Alexander D. Stoyenko. Comparative evaluation of

high-level real-time programming languages. The Journal of Real-Time Sys

tems, 2:365 - 383, 1990.

117

[HS91] Wolfgang A. Halangand Alexander D. Stoyenko. Constructing Predictable Real-

Time Systems. Kluwer Academic Publisher, 1991.

[Jef92] Kevin Jeffay. Scheduling sporadic tasks with shared resources in hard-real-time

systems. In Proceedings of the IEEE Real-Time Systems Symposium, pages 89

- 99. IEEE Computer Society Press, December 1992.

[JSM91] Kevin Jeffay, Donald F. Stanat, and Charles U. Martel. On non-preemptive

scheduling of periodic and sporadic tasks. In Proceedings of the IEEE Real-

Time Systems Symposium, pages 129 - 139. IEEE Computer Society Press,

December 1991.

[KLR94] Mark H. Klein, John P. Lehoczky, and Ragunathan Rajkumar. Rate-monotonic

analysis for real-time industrial computing. Computer, 27(1):24 - 33, January

1994.

[KS86] Eugene Kligerman and Alexander D. Stoyenko. Real-time Euclid: A language
for reliable real-time systems. IEEE Transactions on Software Engineering,

SE-12(9):941-949, September 1986.

[Leh90] John P. Lehoczky. Fixed priority scheduling ofperiodic task sets with arbitrary
deadlines. In Proceedings of the IEEE Real-Time Systems Symposium, pages

201 - 209. IEEE Computer Society Press, December 1990.

[LL73] C.L. Liu and James W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the Association for Computing

Machinery, 20(1):46 - 61, January 1973.

[LL78] B.J. Lageweg and J.K. Lenstra. Ageneral bounding scheme for the permutation
flow-shop problem. Operations Research, 26(1):53 - 67, January 1978.

[LSD89] John Lehoczky, Lui Sha, and Ye Ding. The rate monotonic scheduling algorithm:
Exact characterization and average case behavior. In Proceedings of the IEEE

Real-Time Systems Symposium, pages 166 - 171. IEEE Computer Society Press,

December 1989.

[LSS87] John P. Lehoczky, Lui Sha, and Jay K. Strosnider. Enhanced aperiodic respon
siveness in hard real-time environments. In Proceedings of the IEEE Real-Time

118

Systems Symposium, pages 261 - 270. IEEE Computer Society Press, December

1987.

[LSST91] John P. Lehoczky, Lui Sha, J.K. Strosnider, and Hide Tokuda. Fixed priority
scheduling theory for hard real-time systems. In Andre M. van Tilborg and
Gary M. Koob, editors, Foundations of Real-Time Computing: Scheduling and
Resource Management, chapter 1, pages 1 - 30. Kluwer Academic Publishers,

1991.

[LW82] Joseph Y.-T. Leung and Jennifer Whitehead. On thecomplexity offixed-priority

scheduling of periodic, real-time tasks. Performance Evaluation, 2(4):237- 250,

December 1982.

[Mok83] A. K. Mok. Fundamental Design Problems ofDistributed Systems for the Hard-
Real-Time Environment. PhD thesis, Dept. of Electrical Engineering and Com

puter Science, The Massachusetts Institute ofTechnology, Cambridge,MA,May

1983.

[SB94] Marco Spuri and Giorgio Buttazzo. Scheduling aperiodic tasks in dynamic

priority systems. Technical Report ARTS Lab 94-06, Scuola Superiore Di Studi

Universitari E Di Perfezionamento S. Anna, April 1994.

[SdA93] M. Saksena, J. da Silva, and A.K. Agrawala. Design and implementation of

maruti-ii. Technical Report UMD CS-TR-3181, UMICA TR-93-122, University

of Maryland, 1993.

[SG91] Terry Shepard and J.A. Martin Gagne. A pre-run-time scheduling algorithm

for hard real-time systems. In IEEE Transactions on Software Engineering,

volume 17, pages 669 - 677. IEEE Computer Society Press, July 1991.

[SHH91] Alexander D. Stoyenko, Carl Hamacher, and Richard C. Holt. Analyzing hard-

real-time programs for guaranteed schedulability. In IEEE Transactions on

Software Engineering, volume 17, pages 737 - 750. IEEE Computer Society

Press, August 1991.

119

[Shi87] Akira Shimohara. REALOS/286: An implementation of ITRON/MMU on

80286. In TRON Project 1987 (Proceedings of the Third TRON Project Sym

posium), pages 45-56. Springer-Verlog, 1987.

[SR90] John A. Stankovic and Krithi Ramamritham. What is predictability for real

time systems? The Journal of Real-Time Systems, 2:247 - 254, 1990.

[SRL90] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: An

approach to real-time synchronization. IEEE Transactions on Computers,

39(9):1175 - 1185, September 1990.

[SSL89] Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic task scheduling for

hard-real-time systems. The Journal of Real-Time Systems, 1(1):27 - 60, June

1989.

[SSL+92] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,

H. Savoj, P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.

SIS: A System for Sequential Circuit Synthesis. Technical Report UCB/ERL

M92/41, ERL, Univ. of California, Berkeley, CA 94720, May 1992.

[SSM+92] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. L.

Sangiovanni-Vincentelli. Sequential Circuit Design Using Synthesis and Opti

mization. In ICCD, pages 328-333, Oct 1992.

[TSiH87] Hiroshi Takeyama, Tsuyoshi Shimizu, and Ken ichi Horikoshi. The HI series

of operating systems of the ITRON architecture. In TRON Project 1987 (Pro

ceedings of the Third TRON Project Symposium), pages 57-71. Springer-Verlog,

1987.

[U1175] J.D. Ullman. NP-complete scheduling problems. Journal of Computer and

System Sciences, 10(3):384-393, June 1975.

[XP90] Jia Xu and David Lorge Parnas. Scheduling processes with release times, dead

lines, precedence, and exclusion relations. In IEEE Transactions on Software

Engineering, volume 16, pages 360 - 369. IEEE Computer Society Press, March

1990.

120

[XP93] Jia Xu and David Lorge Parnas. On satisfying timing constraints in hard-real
time systems. In IEEE Transactions on Software Engineering, volume 19, pages

70 - 84. IEEE Computer Society Press, January 1993.

[Xu93] Jia Xu. Multiprocessor scheduling of processes with release times, deadlines,
precedence, and exclusion relations. In IEEE Transactions on Software Engi

neering, volume 19, pages 139 - 154. IEEE Computer Society Press, February

1993.

	Copyright notice 1995
	ERL-95-101

