Copyright © 1995, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

REAL-TIME TASK LEVEL SCHEDULING IN
THE POLIS CO-DESIGN ENVIRONMENT

by

Daniel Wayne Engels

Memorandum No. UCB/ERL M95/101

6 December 1995

REAL-TIME TASK LEVEL SCHEDULING IN
THE POLIS CO-DESIGN ENVIRONMENT

by

Daniel Wayne Engels

Memorandum No. UCB/ERL M95/101

6 December 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

Real-Time Task Level Scheduling in the
POLIS Co-Design Environment

by

Daniel Wayne Engels

Master of Science in Electrical Engineering and Computer Science
University of California at Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

The correctness of real-time systems depends on logical correctness as well as cor-
rect timing behavior (temporal correctness). The temporal correctness is largely determined
by the scheduling algorithm used to set the software’s execution ordering.

Creating scheduling algorithms and verifying that they generate a temporally cor-
rect ordering of software executions (a schedule) is a difficult problem, and, in general,
scheduling software such that all timing constraints are met is an A/P-hard problem. In or-
der to handle large complex scheduling problems, it is desirable to automate the generation
and verification of scheduling routines. Methods to automate these tasks are presented in
this paper.

This work is performed in the framework of the PoLis co-design environment which
assists the user in designing small real-time systems using one or more microcontrollers and
automatically generates the operating system and scheduling routines. The scheduling al-
gorithms used in PoLis and their implementation details are presented. Scheduling routines
generated by these algorithms as well as theoretical bounds on their execution times are de-
scribed. In conclusion, it is shown that the experimental times are within the theoretically

expected bounds.

Professor Alberto Sangiovanni-Vincentelli
Dissertation Committee Chair

Real-Time Task Level Scheduling in the
POLIS Co-Design Environment

Copyright 1995

by
Daniel Wayne Engels

To my parents, Keith and Georgia.
They believe.

iii

Contents

List of Figures

List of Tables

1

Introduction

1.1 Introduction v v v i i i e e e e e e e e e e e e e e e
1.1.1 The Main Characteristics of Real-Time Systems

1.2 Predictability in Real-Time Software

1.3 The POLIS Real-Time Design Environment

1.4 Thesis Overview i i i i it i it i e e e e e

Definitions and Problem Analysis

2.1 Introduction

....................................

2.2 Real-Time Task Model oo,
2.3 Real-Time Task Scheduling Algorithms
2.4 Complexity of Task Scheduling in the Real-Time Environment
Round Robin Scheduling

3.1 Introduction i i i i e e e e e e
3.2 Round Robin Scheduling oo oL,
3.3 Advantages of the Round Robin Approach
3.4 Disadvantages and Other Issues of the Round Robin Approach
3.5 Implementation of the Round Robin Approach Within POLIS.

Pre-Run-Time Scheduling
4.1 Introduction

....................................

42 CyclicExecutive e e e
4.3 Pre-Run-Time Scheduling Algorithms
4.4 Sporadic Task Scheduling in Pre-Run-Time Schedules

4.4.1 Servicing Sporadic Taskso oL,

4.4.2 Schedulability Analysis with Sporadic Tasks
4.5 Advantages of the Pre-Run-Time Approach,
4.6 Disadvantages and Other Issues of the Pre-Run-Time Approach

4.7 Implementation of the Pre-Run-Time Approach Within POLIS

iv

vii

viii

N RN

4.7.1 General-Pre-Run-Time Algorithm
4.7.2 Pre-Run-Time Algorithm
5 Static Priority Scheduling
5.1 Introduction i i e e e
5.2 The Rate Monotonic Scheduling Algorithm
5.3 The Deadline Monotonic Scheduling Algorithm
5.4 The Laxity Monotonic Scheduling Algorithm
5.5 Task Synchronization in Static Priority Systems
5.6 Non-Preemptive Static Priority Scheduling
5.7 Sporadic Task Scheduling in Static Priority Systems
5.7.1 The Priority Exchange Algorithm
5.7.2 The Deferrable Server Algorithm
5.7.3 The Sporadic Server Algorithm
5.7.4 Summary of Sporadic Task Handling
5.8 Static Priority Schedulability Analysis
5.8.1 Utilization Based Schedulability Analysis
5.8.2 Synchronous Schedulability Analysis
5.8.3 Asynchronous Schedulability Analysis
5.8.4 Non-preemptive Schedulability Analysis
5.9 Advantages of the Static Priority Approach
5.10 Disadvantages and Other Issues of the Static Priority Approach
5.11 Implementation of the Static Priority Approach Within POLIS
5.11.1 Routines Implemented Within POLIS L
5.11.2 Generated Scheduling Routines
6 Dynamic Priority Scheduling
6.1 Introduction i i it e e
6.2 Dynamic Best Effort Scheduling Algorithms
6.3 Dynamic Planning-Based Scheduling Algorithms
6.4 Task Synchronization in Dynamic Priority Systems S
6.5 Non-Preemptive Dynamic Priority Scheduling
6.6 Sporadic Task Scheduling in Dynamic Priority Systems
6.7 Advantages of the Dynamic Priority Approach
6.8 Disadvantages and Other Issues of the Dynamic Priority Approach
6.9 Implementation of the Dynamic Priority Approach Within POLIS
6.9.1 Routines Implemented Within POLIS
6.9.2 Generated Scheduling Routines
7 Results
7.1 On-Line Scheduling Overhead
7.1.1 Derived Bounds for the On-Line Scheduling Overhead
7.1.2 Average On-Line Scheduling Overhead
7.1.3 Comparison with an Existing Real-Time Operating System

7.2 Synthesized Operating System Memory Requirements

7.2.1 Comparison With Existing Real-Time Operating Systems
8 Conclusions and Future Work
A Scheduling Overhead Data

Bibliography

vi

105
107
109

115

vii

List of Figures

3.1

4.1
4.2
4.3
44

5.1

5.2
5.3

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8

7.9

7.10

Generated Round Robin scheduling routine. 20
Branch and bound pre-run-time algorithm presented by Xu and Parnas. . . 25
General Pre-Run-Time (GPRT) algorithm implemented within PoLis. . . 33
Pre-Run-Time (PRT) algorithm implemented within PoLis. 37
Valid Initial Solution algorithm implemented within PorLis. 38

Audsley et. al.’s algorithm to determine if a synchronous static priority task

set T, isschedulable. o oo 60
Generated non-preemptive static priority scheduling routines. 69
Generated preemptive static priority scheduling routines. 71
Generated non-preemptive dynamic priority scheduling routines. 93
Generated preemptive dynamic priority scheduling routines. 94
Average Round Robin scheduling overhead. 98
Average Pre-Run-Time scheduling overhead. 98
Average Non-Preemptive Static Priority scheduling overhead. 99
Average Preemptive Static Priority scheduling overhead. 99
Average Non-Preemptive Dynamic Priority scheduling overhead. 100
Average Preemptive Dynamic Priority scheduling overhead. 100
Average Preemptive Static Priority scheduling overhead compared with the

maximum possible scheduling overhead. 101
Average Preemptive Dynamic Priority scheduling overhead compared with

the maximum possible scheduling overhead. 102
Comparison of all scheduling implementations as a function of the number

of events in the system for a fixed task setsize. 102

Comparison of all scheduling implementations, except for Pre-Run-Time, as
a function of the number of tasks in the system for a fixed number of events. 103

viii

List of Tables

5.1 Comparison of the PE, DS, and SS sporadic server algorithms. 57

7.1 Range of possible execution cycles for non-interrupt scheduling routines syn-
thesized by Poriswith Ng = number of events in the system and Nt =
number of tasks in thesystem. 0 0. 96

7.2 Range of possible execution cycles for interrupt scheduling routines synthe-
sized by PoLiswith Ng = number of events in the system, N7 = number of tasks in the system

and Priorityr = the priority of the interrupted task, 7. 96
7.3 Execution times for some standard routines in the pSOS+ real-time operating
system for the Intel 486DX2 33MHz processor. 104

7.4 Measured memory requirements (in bytes) of the synthesized PoLisoperating
system utilizing specific scheduling routines for a task set of size three with
eightevents. e e 105
Measured memory requirements (in bytes) of the synthesized PoLisoperating
system utilizing specific scheduling routines for a task set of size fourty-eight

-1

Ut

(48) with eighty (80)events.o 106
7.6 Real-Time Operating Systems’ memory (ROM) requirements. 106
A.1 Average scheduling overhead for the Round Robin scheduling routines. . . . 109
A.2 Average scheduling overhead for the Pre-Run-Time scheduling routines. . . 109
A.3 Average scheduling overhead for the Non-Preemptive Static Priority schedul-
Ingroutines. L e e e e 110
A.4 Average scheduling overhead for the Preemptive Static Priority scheduling
TOULIMES. . . v v v v it e e e it e e e e et e e e e e e e e e e 110
A.5 Average scheduling overhead for the Non-Preemptive Dynamic Priority schedul-
ingroutines. e 111
A.6 Average scheduling overhead for the Preemptive Dynamic Priority scheduling
TOULIMES. . . . v v v vt e e i e 111
A.7 Standard deviation for the average Round Robin scheduling overhead. . . . 112

A.8 Standard deviation for the average Pre-Run-Time scheduling overhead.. . . 112
A.9 Standard deviation for the average Non-Preemptive Static Priority scheduling
overhead.

ix

A.10 Standard deviation for the average Preemptive Static Priority scheduling

overhead. i i i e e e e 113
A.11 Standard deviation for the average Non-Preemptive Dynamic Priority schedul-
ingoverhead. i i 114
A.12 Standard deviation for the average Preemptive Dynamic Priority scheduling
overhead.

Acknowledgements

I am indebted to my research advisor, Professor Alberto Sangiovanni-Vincentelli,
for his encouragement and support throughout the course of this work. I am also indebted
to Professor Robert Brayton for agreeing to take time out of his busy schedule to read this
report.

A large ‘Thank you!’ goes to Gitanjali Swamy and husband Sanjay, who’s gen-
erosity and patience have given me a place to sleep and many useful suggestions on my
writing. I also thank Rajeev Murgai for his couch and suggestions. Isn’t that a Doctorate
in Psychiatry that he has? The most sarcastic comment award goes to Stephen ‘A Loon
A Tick From Minnesota’ Edwards without who’s critiques I would not have realized that I
write like a five year old high on Helium that (or is it ‘which’?) was being passed around
at a McDonalds birthday party.

All members of the CAD-group have been helpful, and I thank them all for the

many informative discussions we have had.

xi

They piled together all the remaining letters and dropped them into the bag. They
shook them up.

“Right,” said Ford, “close your eyes. Pull them out. Come on, come on, come
on.

Arthur closed his eyes and plunged his hand into the towel full of stones. He jiggled
them about, pulled out four and handed them to Ford. Ford laid them along the ground in
the he order he got them.

“W,” said Ford, “H, A, T ... What!”

He blinked.

“I think it’s working!” he said.

Arthur pushed three more at him.

“D, O, Y ... Doy. Oh, perhaps it isn’t working,” said Ford.

“Here’s the next three.”

“0, U, G ... Doyoug ... It’s not making sense I'm afraid.”

Arthur pulled another two from the bag. Ford put them in place.

“E, T, doyouget ... Do you get!" shouted Ford. “ It is working! This is amazing,
it really is working!”

“More here.” Arthur was throwing them out feverishly as fast as he could go.

“[, F,” said Ford, “Y,0, U...M,U,L, T,I, P, L, Y ... What do you get if you
multiply ... S, I, X ...six ... B, Y, by, six by ... what do you get if you multiply six by
...N, I, N, E...six by nine ...” He paused. “Come on, where’s the next one?”

“Er, that’s the lot,” said Arthur, “that’s all there were.”

He sat back, nonplussed.

He rooted around again in the knotted up towel but there were no more letters.

“You mean that’s it?” said Ford.

“That’s it.”

“Six by nine. Forty-two.”

“That’s it. That’s all there is.”

— Douglas Adams, The Restaurant at the End of the Universe.

Chapter 1

Introduction

1.1 Introduction

Real-time systems are those in which the correctness of the system depends not
only on its logical correctness but also on correct timing behavior. Real-time systems
range from a simple microcontroller to a highly complex, distributed system. They are
found everywhere and control much of what we depend on in our everyday lives. Some
of the more familiar real-time systems include the engine control unit in an automobile;
the motion control system controlling robots; the process control systems used in nuclear
power plants; and the air-traffic control systems guiding aircraft throughout the world. All
of these systems depend upon microprocessors and microcontrollers to perform correctly.

Real-time systems are becoming more dependent upon microprocessors and mi-
crocontrollers, collectively referred to as processors. Certain functions are performed on the
processor(s) by executing multiple threads of machine instructions, or tasks. These tasks
compete with one another for limited resources including the processor(s), memory, and I/O
access, and their execution must be scheduled so that each task’s individual resource and
timing requirements are met. If the tasks are not scheduled correctly, timing constraints
may be missed with disastrous results. Thus, scheduling tasks properly is crucial to the

correctness of real-time systems.

1.1.1 The Main Characteristics of Real-Time Systems

Typically, a real-time system is used as a controlling subsystem, with the envi-
ronment as the controlled subsystem. A controlling system interacts with its environment
based on the information from various sensors and inputs. The information presented to
the controlling subsystem must be consistent with the actual state of the environment that
is being controlled; otherwise, the actions of the controlling system can be disastrous. This
makes periodic monitoring of the environment and timely processing of sensed information
a must.

The difficulty of scheduling tasks to perform some or all of the functionality of the
real-time system is dependent upon the characteristics of the system. The main character-

istics that affect task scheduling are discussed below.

Task Timing Characteristics

Tasks that must complete execution shortly after they become ready to execute
(are invoked) have tight timing constraints. These tasks force the operating system to react
quickly and the scheduling algorithm to be fast.

Tight timing constraints also arise when a task’s execution time is a significant
fraction of the time it has to complete execution. For example, consider a task with an
execution time of 8 time units that must complete execution 10 time units after its invo-
cation. The operating system and the scheduling algorithm can take no more than 2 time
units to react to an invocation and begin executing the task. Most real-time systems have
many tasks with tight timing constraints, making it difficult to meet all timing constraints.
In general, the tighter the timing constraints and the more tasks with tight timing con-
straints, the quicker the operating system and the scheduling algorithm must react to a

task invocation.

Strictness of Timing Constraints

The strictness of the timing constraints, either hard or soft, is the value of complet-
ing some task after a timing constraint is missed. For a task with a hard timing constraint,
there is no value in performing the task after the timing constraint is missed. For a task
with a soft timing constraint, there is some diminished value in completing the task after

the timing constraint is missed, so the task should be completed.

Different techniques are used to deal with hard real-time tasks and soft real-time
tasks. Hard real-time tasks are often preallocated and scheduled on the required resources
to guarantee that the timing constraints on such tasks are met 100% of the time. Soft
real-time tasks are often scheduled on the required resources in such a way so as to obtain

good average case performance.

Reliability

The reliability requirements of the system arise when certain tasks, known as
critical tasks, must be guaranteed to meet their timing constraints under all operating
conditions. That is, all critical tasks must be guaranteed to meet their timing constraints
even under the worst-case conditions. Correct timing behavior of critical tasks is often
guaranteed by off-line analysis of the system. Schemes that reserve resources for the critical
tasks may also be used. Note, a task with hard timing constraints is not necessarily a critical
task. For example, if the task that controls the stiffness of the suspension does not meet
a hard timing constraint, the passengers in the vehicle experience a slightly less enjoyable
ride. However, if the task controlling the deployment of the air bags does not meet its hard
timing constraint, the passengers can experience additional injury or even death. The task
controlling the deployment of the air bags is a critical task, whereas the task controlling
the stiffness of the suspension is not a critical task.

The distinction between critical tasks and non-critical tasks with hard timing
constraints is often made to ensure that the most important tasks are executed during
unusual or unexpected situations. For example, during a head-on collision the correct
performance of the suspension is irrelevant, but the correct performance of the air bags can

save lives.

Environment

The environment in which a real-time system operates is often the most influential
factor in the design of the system. In a well-defined environment, such as an automobile
engine, real-time systems are often small and static, and all timing constraints may be
guaranteed a priori. However, if the environment is not well-defined or may change over
time, different techniques must be used to design the system. It is very difficult to generate

a small, static system that will work flexibly in such an environment. Therefore, all timing

constraints may not be guaranteed a priori.

When timing constraints are not guaranteed, the system is not predictable. That
is, it is not known if or when a timing constraint will be violated in the system. Predictability
is a key component of all real-time systems. For example, consider an unpredictable system
controlling the reactor temperature in a nuclear power plant. For years it might work
correctly, but one day it may allow a melt-down. Since the system is not predictable, it is

not known when that day will come.

1.2 Predictability in Real-Time Software

The ability to guarantee the temporal correctness of a real-time system determines
the predictability of the system. That is, the ability to show, demonstrate, or prove that
timing requirements are met subject to any assumptions made is critical to guaranteeing
that a real-time system performs correctly at all times [SR90]. General and reliable tech-
niques do not exist for verifying the predictability of software.

To ensure that timing constraints are predictably adhered to, the schedulability
of the tasks must be verified prior to software execution. This verification is often referred
to as worst-case schedulability analysis, or simply schedulability analysis [HS91, SHH91],
and is an integral part in the development process of predictable real-time software. When
the software is written in a language that supports real-time timing constructs, e.g., Real-
Time Euclid [KS86], the schedulability analysis may be performed on the software directly,
allowing a very low-level analysis of its timing characteristics. However, most real-time
software is written in high-level languages, e.g., C, that do not provide the facilities that
allow the programmer to control the real-time responsiveness of a task!. These languages
consider the real-time details to be non-essential and hide them from the programmer.
Consequently, the performance of software implemented in these languages is sensitive to
the resource allocation protocols used in the operating system and is outside the control of
the programmer.

The restricted access to the timing details of the software forces scheduling and
schedulability analysis to be performed at a level (usually the task level) that does not

analyze the the exact timing details of the software. Task level scheduling is related to the

'It may be argued that languages such as Ada do provide this access; however, the syntax of many of the
‘timing’ commands, such as the delay command in Ada, are more suitable for soft real-time systems than
for hard real-time systems {HS90).

general flow-shop problem? and has been studied extensively in the literature [LL73, DL78,
LW82, CSR86, BSR88, BMR90, Xu93].

The schedulability analysis of the various task level scheduling algorithms, or
scheduling algorithms, depends strongly on the task level real-time system model, or real-
time model, an abstraction containing information on the real-time system characteristics.
A general real-time model consists of a set of tasks, processors, non-processor resources,
communication links, and clocks. Each task is associated with a processor requirement,
i.e., computation time, and non-processor resource requirements, e.g., a shared data bus.
Tasks may communicate with each other, and communication restrictions may be specified
for each task or for groups of tasks. In addition, relationships, e.g., precedence constraints,
may be specified between tasks and between segments of tasks.

Different scheduling algorithms for the same real-time model may require different

schedulability analysis tests. For example, given the following real-time model:
e a single processor,
® NO NON-processor resources,
e all tasks are ready for execution at constant intervals (i.e., all tasks are periodic),
e all tasks must complete execution before they are invoked again,
e constant task execution times,
e no inter-task communication, and
e no operating system or scheduling overhead;

a scheduling algorithm that lays out the entire time-line of execution for the tasks before
the tasks are executed uses an implicit schedulability test. If the tasks so scheduled always
meet their timing constraints, the set of tasks can be successfully scheduled. Explicit
schedulability analysis tests need not be performed. However, a scheduling algorithm that
uses task priorities to determine execution order at run-time must perform an explicit

schedulability analysis test. A utilization based schedulability analysis test may be used for

2The general flow-shop problem can be formulated as follows. Each of n jobs Ji ... Jn has to be processed

on m machines M; ... M, in that order. Job J,, i = 1,...,n, thus consists of a sequence of m operations
Ou,...,0im; O,k corresponds to the processing of Ji on M during an uninterrupted processing time Pix.
Mg, k=1,...,m, can handle at most one job at a time. The objective is to find a processing order on each

Mj. such that the time required to complete all jobs is minimized [LL78].

this scheduling algorithm. If the expected processor utilization is below a threshold, then

the task set is guaranteed to be schedulable.

1.3 The POLIS Real-Time Design Environment

Pous is a hardware/software codesign environment targeted towards reactive (con-
trol dominated) real-time system design [CGJ*94]. These systems are relatively small, real-
time controllers composed of software on one (or few) processor(s) and some semi-custom
hardware components operating in a well-defined environment.

The designer specifies the design in a high-level language language such as Es-
terel [BCGY1] or a high-level graphical language such as State Charts [DH89]. The high-
level description is transformed into the internal representation used by PoLis. The internal
representation of the real-time system is based upon the Codesign Finite State Machine
(CFSM) formalism, an extension of the classical finite state machine. By manipulating
the high-level description, the designer is able to indirectly control the size of the resulting
CFS>Ms.

The basic model is a network of interacting CFSMs that communicate through
a very low-level primitive: events. A CFSM, and possibly the environment in which the
svstem operates, broadcasts events that one or more CFSMs or the environment can detect.

Events directly implement a communication protocol that does not require an
acknowledgement. The receiver waits for the sender to emit the event, but the sender can
proceed immediately after emission. An implicit buffer between the sender and each receiver
saves exactly one event until it is detected or overwritten with another occurrence of the
event. This allows each CFSM to detect an event at most once any time after the event’s
emission and until another event of the same type overwrites it. This approach lends itself
to an efficient hardware implementation with synchronous circuits, as well as a software
implementation using either polling or interrupts to detect events.

Each CFSM in the network is assigned an implementation, either hardware or
software. The hardware synthesis and the software synthesis proceed from the appropri-
ate CFSMs. The hardware is synthesized using the standard logic net list model used by
logic synthesis systems such as sis [SSL*92, SSM*92]. The software is synthesized us-
ing the software graph (s-graph) model, an abstraction of the basic instructions of a very

simple computer model [CGH+94]. In addition, the operating system, including the task

level scheduler, is automatically generated with the interfaces between the hardware, the
software, and the operating system automatically synthesized as well.

Each CFSM implemented in software corresponds to a task in the system. The
tasks synthesized from the CFSMs can have small code sizes with short run times. This
is possible since the designer has control over the size of the CFSMs in the system, and
the size of the CFSM directly affects the synthesized code size and run time. The synthe-
sized operating system may use either a polling-based or an interrupt-based event detection
method, allowing for easy implementation of most scheduling algorithms in the synthesized
operating system.

Validation is used to verify that a synthesized design satisfies its specification. For-
mal verification is used to debug both the specification with respect to high-level properties
and the implementation with respect to lower-level properties. Error traces describing the
reasons for failing to satisfy a desired property are provided to allow the designer to fix
the errors and try alternate solutions. Simulation may also be used to verify the cases that

would be difficult for formal verification techniques to handle.

1.4 Thesis Overview

Real-time systems must predictably produce logically correct results while meet-
ing all timing constraints. PoLis is a design environment which supports the design and
verificatic: of real-time systems, and is capable of supporting many real-time models; thus,
the opei.iny system which is synthesized by PoLis may contain any one of a number of
scheduling algorithms. At the time PoLis synthesizes the operating system, a schedulability
analysis test is performed to verify that the desired scheduling algorithm produces a valid
schedule for the given task set.

The various scheduling algorithms and their associated schedulability analysis tests
supported by PoLis are presented in the following. The related theory behind each of the
scheduling algorithms and the schedulability analysis tests are presented. The details of the

implementation within PoLis are also presented. More specifically,

e Chapter 2 presents the representation of a task used throughout, the main types of

task level schedules, and the complexity analysis for several types of schedules with

different real-time models.

e Chapter 3 deals with the round robin scheduling algorithm. The ideas behind the
round robin algorithm implemented in PoLis and the implementation within PoLis

are presented.

e Chapter 4 deals with pre-run-time scheduling algorithms. The cyclic executive ap-
proach and an algorithmic approach are presented. The pre-run-time algorithms im-

plemented within PoLis are presented.

e Chapter 5 deals with static priority scheduling algorithms. The theory behind the
Rate Monotonic scheduling algorithm, the Deadline Monotonic scheduling algorithm,
and the Laxity Monotonic scheduling algorithm is presented, and the more important
extensions of the theory are discussed. The static priority algorithms implemented

within PoLis are presented.

e Chapter 6 deals with dynamic priority scheduling algorithms. The theory behind the
Earliest Deadline First and the Minimum Laxity First best effort scheduling algo-
rithms are presented, and the more important extensions of the theory are discussed.

The dynamic priority algorithms implemented within PoLis are presented.
e Chapter 7 analyzes the performance of the scheduling algorithms generated by PoLis.

e Chapter 8 summarizes the contributions of this work and presents directions for future

work.

Chapter 2

Definitions and Problem Analysis

2.1 Introduction

The task model is an abstraction containing information on the characteristics of a
task. The information contained in the task model affects the types of scheduling algorithms
and any associated schedulability analysis tests which may be used to schedule all of the
tasks in the system, the task set. For example, a task model which contains information
only upon the rate at which tasks are invoked. i.e. their period, would preclude the use of a
pre-run-time scheduling algorithm (see Chapter 4), but other types of scheduling algorithms
could still be used. Information on the worst case execution times for each task is required
for any schedulability analysis test to be performed.

The general task model used in the sequel is presented with relevant terminology.
The general types of scheduling algorithms are then discussed. Finally, the complexity of

task level scheduling under various real-time models is examined.

2.2 Real-Time Task Model

The task is represented by a task model, an abstraction containing information
on the major task characteristics. This information may be used by the designer for de-
termining which scheduling algorithm to use. The task model is also used by the chosen
scheduling algorithm and its related schedulability analysis tests. The following task model
is general enough for use with most task sets and most scheduling algorithms (with their

associated schedulability analysis tests).

10

A task is a sequential program invoked by a particular event. An event is a stimulus
generated either external or internal to the system executing the tasks at some maximum
frequency. Each task will be executed at a time determined by the scheduling algorithm.

A more formal definition of a task is given below.
Definition 2.2.1 A task T is a 6-tuple (r, ¢, p, d, D, P) where
r: the release time of task T: the time when task T is first invoked.

c: the mazimum computation time of task T: the mazimum time required by task T to

ezecute to completion on a dedicated uniprocessor.

p: the period of task T, where p > c: the minimum interval between successive invocations
of task T.

d: the deadline of task T, where p > d > c: the time after the invocation by which execution

of task T must be completed.
D: the type of deadline of task T: either a soft deadline or a hard deadline.

P: the classification of task T': either periodic, sporadic, or aperiodic.

b

r r+c r+d r+p
r, ¢, p, and d are assumed to be integer values. [|

Three broad classifications of tasks are commonly used [ABRWY1, Jef92, KLR94]:
periodic tasks, sporadic tasks, and aperiodic tasks.

Periodic tasks are invoked at constant intervals, i.e., invoked at a fixed frequency.
In other words, a periodic task is invoked exactly p time units apart. This yields the follow-
ing behavior rules for the invocation and execution of periodic task T, = (rp, ¢p, Pps dpy Dp, Fp).

If t; is the time of the ih invocation of task T, then
1. The first invocation of task T, will occur at time t; = rp.

2. The (i + 1)th invocation of task T}, occurs at time ¢4y = t; + pp.

11

3. The it invocation of task T, may begin execution no earlier than time ¢;.

4. The ith invocation of task T, must complete execution no later than t; 4 d, if its

deadline is to be met.

Sporadic tasks are invoked at random intervals with a minimum time between
successive invocations. Behavior rules for the invocation and execution of sporadic task
T, = (rs, Cs, Ps, ds, Ds, Ps) are similar to those for a periodic task. If ; is the time of the

ith invocation of task Ts, then
1. The first invocation of task T, will occur at time t; = r;.
2. The (i + l)t'h invocation of task T occurs no earlier than time t; 4+ ps.
3. The ith invocation of task Ts may begin execution no earlier than time ¢;.

4. The ith invocation of task Ts must complete execution no later than ¢; + d; if its

deadline is to be met.

A sporadic task acts like a periodic task when it is continually invoked p; time units apart.

Aperiodic tasks are invoked at random intervals with no minimum time between
successive invocations. The arrival patterns for aperiodic tasks may be described by prob-
ability density functions. Aperiodic tasks may have hard deadlines, but the timing re-
quirements are usually stated in terms of satisfying an average response time requirement.
Since it is impossible to guarantee the schedulability of tasks with hard timing constraints
that may be invoked infinitely often at a single instant in time, aperiodic tasks will not be
considered.

The following definitions are related to tasks.

Definition 2.2.2 The response time of an invocation of task T is the time span between
the time when the task is invoked, t;, and the time when the task has just finished executing

(completion time), ty, so (t; —t;) > c.

Definition 2.2.3 The critical instant of a task, T, is an instant at which an invocation of

T will have its largest response time.

Definition 2.2.4 The critical zone of a task, T, is the time interval between the critical

instant and the completion time, t;, of the task.

12

Definition 2.2.5 An overflow occurs at time t if t is the deadline of a task that has not

completed execution.
The following example illustrates these definitions.

Example 2.2.1 Consider the task set containing the following two tasks where T = (r,c,p,d):
T4 = (5,15,30,25) and Tg = (5,15,30,20). Using an earliest deadline first heuristic, i.e.,
allocating the processor to the ready task with the earliest deadline, the following schedule

is obtained for a uniprocessor system. Note that this schedule repeats every 30 time unils.
dg

TA, TB %A

B A

0 5 10 15 20 25 30 35
The response time for T4 is calculated by subtracting the release time of T4 from

the completion time of T4, 35 — 5 = 30. The response time for Tg is 20 — 5 = 15.

Since the above schedule repeats, the mazimum response times for the two tasks
are 30 and 15 for T4 and Tp respectively. These mazimum response times occur at times
t =5,35,65,.... By definition, these are the critical instants for both T4 and Tp.

The critical zone of T4 occurs between time t = 5, the critical instant of T4, and
time t = 35, the completion time of Ty, for a critical zone of 80. The critical zone of Tp
occurs between times t = 5 and t = 20 for a critical zone of 15.

An overflow occurs at time t = 30 since T4 has not completed ezecution by its
deadline.

Note, there is no schedule that would successfully schedule this task set in a unipro-

cessor system. a

Precedence, exclusion, preempt, and before relations are now defined.

Definition 2.2.8 Task T; is said to precede another task T; (T; PRECEDE T; or T; < T})

if T; can only start execution after T; has completed.

Precedence relations may exist between tasks when one task invokes another task or one

task requires information produced by another task.

Definition 2.2.7 TaskT; is said to exclude another task T; (T; ExcLubE T;) if no ezeculion

of T; can occur between the time T; starts its ezecution and the time T; completes.

13

Exclude relations may exist between tasks when some tasks must prevent access by other

tasks to shared resources such as data or I/O devices.

Definition 2.2.8 Task T; is said to preempt another task T; (T; preemPT T}) if the eze-

cution of T; is interrupted by the execution of task T;.

Preempt relations are generally used only in pre-run-time scheduling algorithms, forcing

one task to preempt another.

Definition 2.2.9 A task T; is said to come before another task T; (T; Berore T;) if the

ezecution of T; cannot begin before the execution of T; has begun.

Before relations may exist between tasks when synchronization is required. This relation is

more useful in a multiprocessor environment than in a uniprocessor environment.

2.3 Real-Time Task Scheduling Algorithms

We are interested in the scheduling of sets of tasks that compete for processor and
non-processor resources. Given a set of tasks 7, = {Th, ..., T}, Ti = (ri, ¢, pi, diy Di, F),
a scheduling algorithm specifies at each time ¢ which task, if any, shall execute. If the
scheduling algorithm generates a complete schedule off-line, the resulting schedule is called
a pre-run-time schedule!. Pre-run-time schedules allow for easy schedulability analysis. If
a pre-run-time schedule meeting all timing constraints cannot be generated for the task set,
then the timing constraints cannot be met. Pre-run-time schedules can be efficient due to
a minimal amount of overhead and a guaranteed lack of contention for resources. However,
they do have some drawbacks. Any change in the task set requires that the pre-run-time
schedule be recomputed and tested. Pre-run-time schedules are also not well suited to
handle sporadic tasks. Therefore, they do not offer as good a response time to sporadic
tasks as may be obtained by other methods.

Run-time scheduling algorithms? compute the schedule for the tasks on-line from
the pool of invoked tasks. The run-time scheduler may or may not assume any knowledge

about future invocations of the tasks in the task set.

!Pre-run-time schedules may also be referred to as “of-line schedules” and “static schedules.”
2Run-time schedules may also be referred to as “on-line schedules” and “dynamic schedules.”

14

Run-time schedules are often classified as static priority or dynamic priority. A
static priority scheduling algorithm assigns a fixed priority to each task (and every instance
of that task) prior to the execution of the first task. At each instant, the processor executes
a ready task with the highest priority. A dynamic priority scheduling algorithm allows the
priority of a task to change any time after it is invoked and before it is completed. At
each instant that a task may be executed, each task is assigned a priority based upon some
criteria, and a ready task with the highest priority is allocated the processor.

A second classification of run-time scheduling algorithms is preemptive versus non-
preemptive. A preemptive scheduling algorithm allows the processor to be allocated to a
task that is ready to run before the currently executing task has completed. Thus, the
executing task is preempted by the ready task. Preemptive algorithms provide flexibility
especially when dynamic priority is also employed. However, this flexibility does have a
price. When a task is preempted, its current state must be saved in memory before the
next task can begin execution. This context switch requires an amount of time proportional
to the amount of state information that must be saved.

Preemption must not violate the exclusion relations between tasks. Preemptive
algorithms must prevent high priority tasks from missing deadlines in the presence of lower
priority tasks that require a non-preemptive resource required by the higher priority task.
All of these problems add to the complexity and to the overhead of preemptive algorithms.

Non-preemptive scheduling algorithms are simpler than preemptive algorithms.
They have an implicit exclusion relation between every pair of tasks that execute on the
same processor. Non-preemptive algorithms are simple to implement and easy to analyze,
but they too have some problems. The main problem with non-preemptive scheduling
algorithms is that high priority tasks may miss deadlines due to long running low priority
tasks. It is also possible that a low priority task will miss a deadline in the presence of
higher priority tasks. In general, non-preemptive scheduling algorithms are unable to find a

valid schedule for all task sets that preemptive algorithms are able to find a valid schedule.

Definition 2.3.1 A schedule is considered valid3 if and only if every task in the task set is
always able to meet its deadline when the task is released at its specified release time. If the
release times are not specified, then a schedule is considered valid if and only if every task

in the task set is always able to meet its deadline for all possible release times.

3 Feasible is often used as a synonym for valid in the literature.

15

Definition 2.3.2 A task set is considered schedulable if there ezists a valid schedule for
the task set.

We note that some types of scheduling algorithms will not be able to produce a valid schedule
for a schedulable task set. This is due to the limitations placed on the scheduling algorithm

(e.g., no preemption, no inserted idle time, etc.) and the limitations of the real-time model

used.

2.4 Complexity of Task Scheduling in the Real-Time Envi-

ronment

We are interested in the general problem of producing a valid schedule for a task
set on one or more processors. Ideally, the scheduling algorithm will find a valid schedule
if the task set is schedulable. However, it is not always easy to find a schedule and verify
its validity because most scheduling problems, differentiated by their real-time model, have
been found to belong to the class of A"P-hard problems.

Some of the more interesting scheduling problems for which complexity constraints
have been derived are given below. These include problems for which the comblexity has
been found to belong to the class of A"P-hard problems and those for which the complexity
has been found not to belong to the class of AP-hard problems.

Theorem 2.4.1 ([GI79] [BS89)]) Given a set of tasks, T, with arbitrary ezecution times
and preemption is not allowed, deciding whether T, is schedulable on one processor is NP-

complete.

Theorem 2.4.2 ([JSM91]) Non-preemptive scheduling of periodic tasks when their release
times are specified is N'P-hard. '

Theorem 2.4.3 ([LW82]) Given a set of tasks, T,, with arbitrary release times, arbitrary
deadlines, and allowing arbitrary preemption, deciding whether T, is schedulable on one

processor is N'P-hard.

Theorem 2.4.4 ([LW82]) Given a set of tasks, 7, with arbitrary release times, arbitrary

deadlines, and allowing arbitrary preemption and a priority assignment p, deciding whether
the schedule produced by p is valid is N'P-hard.

16

Theorem 2.4.5 ([LW82]) Given a task set, T, with all tasks having the same release
time, arbitrary deadlines, and allowing arbitrary preemption, deciding whether 7, is schedu-

lable on one processor requires pseudo-polynomial time.

Theorem 2.4.6 ([UN75]) Given a set of tasks, T, each requiring a single time unit for
ezecution, with precedence constraints, producing a valid schedule on m processors is NP-

complete.

It follows from these theorems that the real-time system model affects the com-
plexity of the problem to be solved. In general, real-time task scheduling may be considered
to be a difficult problem with most problem definitions belonging to the class of A"P-hard
problems. Since no polynomial time algorithm exists that finds the optimum schedule,
heuristics are used to find a close to optimum schedule in polynomial or pseudo-polynomial
time.

Fortunately, the task scheduling problem seeks only a valid schedule as a solution.
This has allowed heuristic search algorithms, and even enumerative and branch and bound
algorithms on some task sets, to be successful and fast. The most widely used scheduling

algorithms employ heuristics as their main method of generating a schedule.

17

Chapter 3

Round Robin Scheduling

3.1 Introduction

Non-preemptive Round Robin (RR) schedules are the simplest schedules which
may be constructed. They specify the order in which tasks are checked in determining the
next task to execute. Constructing the RR schedule requires no information on the task
characteristics, and any type of task set (periodic, sporadic, or aperiodic) may be scheduled
using the RR approach. The schedule is executed repeatedly at run-time.

RR schedules are not typically used in real-time applications since it is difficult to
verify their timing predictability. PoLis is capable of generating RR schedules, so they are
discussed here for completeness.

We discuss the round robin approach to scheduling. The advantages and disadvan-
tages of this approach are then examined. Finally, the round robin implementation within

the PoLis co-design environment is discussed.

3.2 Round Robin Scheduling

Round Robin schedules are not true schedules; they do not specify the order of
execution of the tasks. Instead, an RR schedule specifies the order in which tasks are checked
to determine the next task to be executed. Since the exact order of execution of the tasks
is not fixed in an RR schedule, the timing behavior of the task set is not predictable.

In its simplest form, an RR schedule is a list of the tasks in the task set. No

information on the tasks is required to generate the list (a random list is acceptable). No

18

schedulability analysis tests exist for an RR schedule; therefore, simulation must be used
to verify that all tasks meet their respective deadlines.

At run time, the RR schedule is repeatedly traversed until a ready task is found.
The ready task is allocated the processor and run to completion. Once a task has completed
execution, the RR schedule is traversed beginning with the next task in the schedule.

The following example illustrates the RR scheduling approach.

Example 3.2.1 Consider the following periodic tasks (the tasks are represented by the 4-
tuple T = (r,c,p,d)): Ty = (0,1,10,10), T, = (2,2,5,5), and T3 = (1,5,10,10).

One possible RR schedule is: Ty, T2, T3.

This schedule (and every other schedule produced by the round robin approach)
produces the following ezecution ordering (repeated every 10 time units).

r1
T2, d20 o d
r3 ! d3

T,

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A better understanding of the actions of the RR schedule at run-time may be
obtained by examining the actions occurring at a specific time. Consider time unit 8. The
following actions occur at this time (Ty and Ts are not ready to ezecute and T3 is ready lo

ezecute).
e T, completes ezecution.
e The scheduler checks T3 and determines that it is not ready to execute.
e The scheduler checks Ty and determines that it is not ready to erecute.
e The scheduler checks T, and allocates the processor to it.

Notice that T is checked after T, completes ezecution and that Ty (the first task
in the schedule) is checked after T5 (the last task in the schedule).
This is not a valid schedule since task Ty misses its deadline at time 7, but the

task set is schedulable.

19

3.3 Advantages of the Round Robin Approach

The main advantage of the round robin scheduling approach is its simplicity. An
RR schedule is generated without the use of task characteristics, and the run time imple-
mentation requires only to be able to keep its place in the RR schedule and detect and
execute ready tasks.

The RR scheduling approach is able to handle all types of tasks, periodic, sporadic,
and aperiodic. The ability of an RR schedule to generate a valid schedule is verifiable

through simulation.

3.4 Disadvantages and Other Issues of the Round Robin
Approach

The round robin scheduling approach, by its nature, is too simple. Complete sim-
ulation is the only method of verifying that deadlines are met. This may not be practical if
there are a large number of tasks in the system, and worst-case simulation yields pessimistic
results.

The run-time overhead of the RR schedule can be very large. Since the round
robin approach attempts to find a ready task by checking the tasks in a fixed order, it is

possible that all tasks are checked before a ready task is found.

3.5 Implementation of the Round Robin Approach Within
POLIS

The round robin scheduling approach is implemented within the PoLis co-design
environment. The RR schedule is a random listing of the tasks in the system. It is generated
directly from the list of tasks given to the schedule generation routines within PoLis. (The
given list of tasks is the RR schedule.)

No schedulability analysis tests are performed on the generated schedule. The
reason for this is that the execution times for the tasks are assumed to be unknown when
an RR schedule is produced. Without knowledge of the execution times of the tasks it is
impossible to perform a schedulability test.

The generated RR scheduling routine is shown in Figure 3.1.

// main round robin scheduling routine
scheduler()

{
while(1) {
poll_inputs_and_update_input_buffers();
for(task =0; task < NUMBER.TASKS; task++) {
if(is.ready(task)) {

execute(task);

Figure 3.1: Generated Round Robin scheduling routine.

20

21

Chapter 4

Pre-Run-Time Scheduling

4.1 Introduction

Pre-run-time schedules are computed off-line. The schedule specifies the action to
be taken at each instant. Constructing the schedule requires the major characteristics of the
tasks be known in advance!. Pre-run-time scheduling may be used to schedule periodic task
sets by computing a schedule through the time period equal to the least common multiple
of the periods of the tasks. The schedule is then executed repeatedly at run-time. Task sets
containing sporadic tasks may be scheduled by converting the sporadic tasks to equivalent
periodic tasks and then scheduling the resulting periodic task set [Mok83].

Multiple schedules may be generated for a system, corresponding to different op-
erating ‘modes.” This provides additional flexibility for the system, allowing it to adapt to
its environment.

Traditionally, pre-run-time schedules are generated by hand, often using ad hoc
methods. The cyclic executive approach provides a structured framework within which the
designer may use heuristics to construct a valid schedule. This framework limits the solution
space the designer must explore to find a valid schedule, making it easier to construct a
schedule.

Algorithmic approaches have been proposed to automate pre-run-time scheduling.

We discuss the cyclic executive approach and a branch-and-bound pre-run-time algorithm.

'Given a task set m,, for every task T, = (ri, ci, pi, di, Di, P;) € T all components of the task and the
relations between this task and the other tasks in the task set must be known in order to schedule this task
set off-line.

22

The advantages and disadvantages of these approaches are then examined, highlighting the
advantages of the cyclic executive and the algorithmic approaches. Finally, the pre-run-time

implementation within the PoLis co-design environment is discussed.

4.2 Cyclic Executive

The cyclic executive approach is the most widely used and best understood im-
plementation technique for scheduling periodic task sets. A cyclic ezecutive is a control
structure or program that interleaves the execution of several periodic tasks on a single
processor [BS86, BS89]. The interleaving is deterministic, providing predictable timing
behavior for the task set.

A cyclic schedule specifies an interleaving of actions allowing each task to meet
its deadline. The possible actions are complete execution of a task, partial execution of a
task, and processor idle. The cyclic schedule is composed of one or more major schedules
describing the sequence of actions to be performed during a fixed time period, called the
major cycle. The major cycle is equal to the Least Common Multiple of the periods (LCM)
of the tasks. Different major schedules correspond to different modes of operation of the
system.

Major schedules are further divided into minor schedules, or frames. Frame bound-
aries correspond to points at which timing behavior may be enforced, typically via an in-
terrupt from a timer circuit. If the actions of a frame are not completed before the end of
the frame, an error, a frame overrun, has occurred. Typically, all frames are of equal length
requiring a simple periodic timer to enforce timing behavior.

The length of a frame, called the minor cycle when all frames are of equal length,
is restricted by the task set being scheduled. The frame length may be no longer than the
shortest period of all the tasks. Tasks that cannot complete execution within one frame
must be split into two or more sub-tasks, each of which can complete within one frame.
This is equivalent to preempting the task at a predetermined point. There are additional

restrictions on m, the minor cycle:

1. m < d; fori = 1,...,n, allowing for frame overruns to be detected shortly after they

occur.

2. m must be greater than or equal to the computation time of the longest action.

23

3. m must divide the major cycle, M, for timer simplicity.

4. m+(m—ged(m,p;)) < d;Vie {1,...,n} where gcd stands for the greatest common
divisor function; requiring that a complete frame exist between every release time and

its corresponding deadline.

Example 4.2.1 demonstrates how a schedule is generated using the cyclic executive

approach.

Example 4.2.1 Consider the following periodic tasks with the same release time (the tasks
are represented by the abbreviated triple T = (c, p, d)): Ty = (1,10,10), T> = (2,20,20),
T3 = (3,10,10), Ty = (2,10,7).

The major cycle is the LCM of the tasks. The periods are 10, 20, and 10, with an
LCM of 20; therefore, the major cycle is M = 20.

The minor cycle is calculated as follows. Since the shortest period is 10, the possible
minor cycle times are limited to be one of 1,... ,10. Requirement (1) for the minor cycle
time limits the possible times to 1,... ,7. For simplicity, assume all tasks are a single
action. Thus, the longest action is 3 time units. Requirement (2) reduces the possible times
t03,...,7. Requirement (8) reduces the possible times to 4 or 5. Requirement (4) does not
reduce the possibilities further; thus, m =4 or m = 5.

One possible major schedule is shown below for m = 5. The order of actions within

each frame are determined by an earliest deadline first heuristic with ties broken arbitrarily.

r,72,73, 14 ry, 73,74 di.d dl, dg, d3

T, Ty Ty Ty

T I Ty

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Usually, heuristics are used to determine the order of actions within each frame,
but these do not guarantee a valid schedule will be found if one exists. A valid schedule
is usually difficult to find in a complex system. This increases the chance that a human

designer will be unable to find a valid schedule or will erroneously conclude that a schedule

24

is valid. The framework of the cyclic executive does help to reduce the chance of errors in

the generated schedule, but does not preclude the chance for error.

4.3 Pre-Run-Time Scheduling Algorithms

The cyclic executive approach provides a structured framework that facilitates the
generation of a schedule. However, this framework can hinder the generation of a valid
schedule. In particular, the use of frames can prevent a valid schedule from being found.
Frames are an implementation structure used to ensure that deadlines are met at run-time.
If the given release time, computation time, deadline, and period are accurate for all tasks,
frames do not need to be used.

Pre-run-time scheduling algorithms have been presented that generate a valid
schedule without the use of frames [XP90, SG91, Xu93]. Many of these algorithms are
based upon branch and bound techniques. These techniques use a tree-structured search
format and utilize bounding methods to eliminate entire branches of the search tree. These
techniques are amenable to automation and will find a valid schedule if one exists.

Figure 4.1 shows a branch and bound algorithm that generates a schedule in which
the lateness? of all segments is minimized and all precedence and exclusion relations are
satisfied [XP90]. The algorithm was designed to schedule a periodic task set on a single
processor. Each task T; is divided into segments ¢[0);, t[1)i, ..., t[n)i, where ¢[0); is the
first segment and t[n); is the last segment in task T;. The characteristics of each segment,
i.e., release time, computation time, deadline, and period, are determined and the set of
precedence and exclusion relations on the segments are initialized to those on the tasks.

The segments are scheduled through their LCM. The schedule meets all release
time, precedence, and exclusion constraints on the segments. If the minimum lateness of
all possible schedules is greater than zero, then no valid schedule exists for the task set.
Otherwise, a valid schedule is found by the algorithm.

The algorithm is typical of most branch and bound pre-run-time scheduling algo-
rithms in that it generates a search tree with each node containing a complete schedule.
The schedule is generated by an earliest-deadline-first heuristic, and a lower bound on the

lateness of the schedule is computed.

2The lateness of a segment is equal to the difference between its completion time and its deadline. The
lateness of a schedule is equal to the maximum lateness of all segments in the schedule.

25

Branch and Bound Pre-Run-Time Algorithm [XP90]

input: the set of segments to be scheduled, initial PRECEDE and EXCLUDE constraints.

output: the set of segments in scheduled order

1. Compute a schedule for the input set of segments. This schedule is the root node of

the search tree, and is the first ‘parent’ node.

9. Determine the lower bound on the lateness for this schedule.

3. Find the latest segment t[!]; and its lateness. If its lateness equals its lower bound,

then stop (the schedule is optimal). Return this node.

4. Repeat the following steps until either a valid schedule is found or the optimum

schedule is found.

(a)

(b)

(g)

For the parent node, find the sets of segments S;, those segments that may be

preceded by t[l];, and S3, those segments that may be preempted by ¢[1];.

For each segment in S}, s;, create a child node with all constraints of the parent

node plus t[l]; PRECEDE s;.

For each segment in Sy, si. create a child node with all constraints of the parent

node plus t[l}; PREEMPT sj.

Recompute the schedule and the least lower bound on lateness, and find the

latest segment and its lateness for each child node.

If the lateness of one or more child nodes is less than or equal to zero, return the

node with the smallest lateness.

For each child node, if the lateness of the node is less than or equal to the least
lower bound of all unexpanded nodes (nodes without child nodes), then stop (the

schedule is optimal). Return the best solution found.

Select among all unexpanded nodes the node with the least lower bound, in case

of ties, select the node with least lateness. Call this node the parent node.

Figure 4.1: Branch and bound pre-run-time algorithm presented by Xu and Parnas.

26

The solution space is searched by incrementally adding constraints. At each node
in the search tree, two sets of segments are identified, S; and Sy, such that the schedule
found at that node may be improved on if either the latest segment is scheduled before a
segment in Sy; or, the latest segment preempts a segment in Ss.

For each segment in the sets S; and S2, a child node is generated that contains
either an additional PRECEDE or an additional PREEMPT constraint. Thus, the latest segment
in the parent node is either scheduled before a segment in S or preempts a segment in S;
in each of the child nodes. The node with the least lower bound on lateness among all
unexpanded nodes (nodes without child nodes) is always expanded.

New nodes in the search tree are generated until either a valid schedule is found or
the lower bound of all unexpanded nodes is greater than the least lateness of all schedules
generated so far. In the latter case, the schedule with the least lateness is optimal.

The following examples illustrate this algorithm.

Example 4.3.1 Consider the following periodic tasks represented by the abbreviated 4-tuple
T=(r ¢ p, d): Ty =(0,1,10,10), T> = (0,2,20,20), T3 = (0, 3,10,10), Ty = (0,2,10,7).
There are no precedence or exclusion constraints among the tasks. Each task contains only
one segment.

The LCM is M = 20.

The equivalent tasks that will be scheduled over M are calculated as follows. Since
the only parameter that changes between instances of the same task is the release time,
only the release times need to be calculated for the successive invocations of a task. All
invocations with a release time greater than or equal to M are not considered for obvious
reasons.

Starting with task Ty, the first instance of Ty has the given release time, Ty, =
(0,1,10,10). The release time of the second instance of Ty is determined by adding the
period of Ty to the release time of Ty,, Ti, = (10,1,10,10). The third invocation of Ty has
a release time equal to M; thus, Ty,, and all subsequent invocations, are not considered.

Repeating this for the remaining three tasks, we obtain the following tasks: T, =
(0,2,20,20), T3, = (0,3,10,10), T5, = (10,3,10,10), Ty, = (0,2,10,7), Ty, = (10,2,10,7).

An initial schedule is generated for the task set and shown below.

27

T1gs 293 7305 T4 T11,731, T4y d diys dzy, d31
d4° 1,y &3y d41

T.
T. 4 T3
% Tlo T;o : T11

0 1 2 8 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

This is a valid schedule, so the algorithm returns the above schedule. []

Example 4.3.2 Consider the following periodic tasks represented by the abbreviated 4-tuple
T=(rc p d: T =(0,3,54), T» = (0,1,9,10), T3 = (0,2,10,10). There are no
precedence or exclusion constraints among the tasks. Each task contains only one segment.
The LCM is M = 10.
The equivalent tasks that will be scheduled over M are calculated to be: Ty, =
(0,3,5,4), Th, = (5,3,5,4), Tp, = (0,1,10,9), T3, = (0,2, 10,9).

An initial schedule is generated for the equivalent task set and shown below.

dlo dlud2osd3o

T10: 720173 r1,
Tlo Tll T2° T;So
0 3 o 8§ 9 10

This is not a valid schedule, for task T3, misses its deadline. It is late by two time
units. Therefore, the child nodes in the search tree must be generated. Recall that S, is the
set of segments that must be preceded by the latest segment at node ny. In this instance, the
latest segment for node n, is T3,. Since no precedence constraints exist between T3, and any
other segment, all other segments belong to Sy, = {Th,, T1,, To,}. Similarly for Sz, the
set of segments that must be preempted by T3,, since no ezclusion constraints exist between
T3, and any other segment, S2, = {Ty,, T1,, T2}

Arbitrarily starting with set Sy,, a PRECEDE constraint is added between T3, and

Ty, such that T3, < T\,. The following schedule results when this constraint is added.

28

T191 7293 T3¢ r,
3 3

T3° Tl‘-‘

0 2 5 8§ 9 10

This is not a valid schedule since Ty, is late by one time unit. The nezt child node
is generated for node n,. Taking the nezt segment in Sy,, T1,, a precedence constraint is
added between T3, and Ty, such that T3, < Ty,. Recall that since a new child node is being
generated, the precedence constraint between T3, and Ty, does not ezist for this new child
node:. The resulting schedule is shown below.

dlo dlnd%’ d3o

P10y 7201 T3 ry,

Ty . T2o

Tl 0 T30

0 3 5 8§ 9 10

This is a valid schedule for the task set; therefore, this schedule is returned by the

algorithm. |

4.4 Sporadic Task Scheduling in Pre-Run-Time Schedules

4.4.1 Servicing Sporadic Tasks

Thus far, only periodic task sets have been addressed; however, sporadic tasks
are often present in otherwise periodic task sets. The sporadic tasks must be scheduled
correctly with the pre-run-time scheduling approach used. One method of dealing with
sporadic tasks is to consider the sporadic tasks to be periodic tasks with period equal to the
minimum time between invocations. The resulting periodic task set is then scheduled. At
run time, the scheduler executes a sporadic task only if it is ready. The worst case scenario
arises when the sporadic task is invoked just after it is checked by the scheduler; possibly
resulting in a missed deadline. Consequently, this approach may result in unpredictable
timing behavior causing sporadic tasks to miss their deadlines. This is only acceptable if

all sporadic tasks have soft deadlines.

29

An alternative method of handling sporadic tasks is to establish a server to provide
a private resource for the exclusive use of the sporadic tasks. This approach creates a
periodic server task that is scheduled like other periodic tasks. When the server task is
allocated the processor, it executes any waiting sporadic tasks. The server task does not
allow the total execution time of the sporadic tasks to exceed its maximum execution time.
The server task exits when either no sporadic tasks are ready to execute or the maximum
execution time of the server task is exceeded. In this way, the server task provides a regular
service to sporadic tasks, minimizing the lateness of the sporadic tasks.

A periodic server task does not affect the schedulability of the periodic tasks.

Theorem 4.4.1 A periodic task set that is schedulable by the pre-run-time scheduling ap-
proach with a task, T;, is also schedulable by the pre-run-time scheduling approach if T; is
replaced by a periodic server task with the same release time, period, deadline, and mazimum

computation time.

Proof By contradiction. Assume that in the periodic task set schedulable by the pre-
run-time approach, task T; is replaced by a periodic server task, Tps, with the
same release time, period, deadline, and maximum computation time, but the

resulting task set is not schedulable by the pre-run-time approach.

Consider the pre-run-time schedule generated using the original task set.
Every instance of task T; in this schedule may be replaced with an instance of
the periodic server task T,; with the same task characteristics. This is possible
since there are no restrictions placed upon Tp; thus, Tps may be preempted at
arbitrary points. The resulting schedule, with T; replaced with T,s, does not
cause any periodic task to miss its deadline. Therefore, the schedule is valid.

Contradiction. n

Furthermore, multiple server tasks may be used to service different, or possibly
the same, sporadic tasks.

The main concern when scheduling hard sporadic tasks with a pre-run-time sched-
uler is that the sporadic task will be invoked just after it is tested, either by the scheduler or
the periodic server task. The pre-run-time schedule must handle this case correctly, i.e., the
hard sporadic task must not miss its deadline even when it is invoked just after it is tested.

In order to guarantee that a hard sporadic task does not miss its deadline in the worst case,

30

the hard sporadic task, T, must be checked to see if it is ready to execute every d; —c; time
units. A periodic server task may be used for each hard sporadic task. The characteristics
of the server task, T}, for each hard sporadic task, Ty, are determined by the characteristics
of Ts.

Mok [Mok83] proposed a method for translating a sporadic task Ts = (s, ¢s, Ps, ds,
D, P,) into an equivalent periodic task T, = (rp, ¢p, Pp, dp, Dp, Pp). For this translation,
the following conditions are satisfied: r, = r, ¢; = €5, pp = min(d; — ¢; + 1, Ps)y dp = Cs,
D, = D,. This transformation guarantees that a sporadic task will not miss its deadline in

the worst case.

4.4.2 Schedulability Analysis with Sporadic Tasks

When sporadic tasks are scheduled in a pre-run-time schedule, the timing analysis
becomes more complicated. For example, consider the sporadic tasks to be periodic tasks
with period equal to the minimum time between successive invocations. Finding a valid
schedule such that no periodic task ever misses a deadline does not guarantee that a sporadic
task will never miss a deadline.

If Mok’s method is used to determine the characteristics of every periodic server
task serving a hard sporadic task, any valid pre-run-time schedule guarantees that no hard
sporadic task will ever miss a deadline. However, if the pre-run-time schedule does not
guarantee all deadlines, then a more exact analysis must be performed to determine if the
schedule is valid. The inconsistency arises from the fact that the maximum utilization
of the periodic server task created using Mok’s method (the utilization that the pre-run-
time schedule assumes to be used) is greater than the utilization of the corresponding hard
sporadic task.

The actual processor usage of hard sporadic tasks must be taken into account
when determining the validity of a schedule. More precisely, in a pre-run-time schedule, the
computation time of a hard sporadic task should be counted exactly once during every time
span equal to its minimum time between successive invocations, corresponding to the worst
case processor utilization during each of these time spans. For example, consider the hard
sporadic task T, (with ry = 0, ¢; = 2, and p; = d; = 10) serviced by Mok’s periodic server
Tas. During the time interval 0,... ,10 the computation time attributed to T should be

equal to ¢, even though the computation time of Tas may be more than ¢ in this interval.

31

During the time interval 1,... ,11 the computation time attributed to T should be equal
to cs, and so on. In addition, every other hard task in the task set should meet its deadline
taking into account the actual processor usage characteristics of T.

The analysis to determine if all tasks meet their respective deadlines is complex
and computationally expensive, but it must be performed to ensure that all hard tasks
always meet their deadlines.

Using a single periodic server task for each soft sporadic task allows additional
information to be obtained on the schedulability of the task set. All occasions when a soft
sporadic task may miss a deadline or cause a hard task to miss a deadline will be identified.
In addition, the probability that a soft sporadic task misses a deadline can be calculated,

allowing for a more exact analysis of the schedulability of the task set.

4.5 Advantages of the Pre-Run-Time Approach

The main advantage of the pre-run-time scheduling approach is the predictability
of the system’s timing behavior, allowing all deadlines to be guaranteed without any explicit

schedulability analysis test.

For satisfying timing constraints in hard real-time systems, predictability of the
system’s behavior is the most important concern; pre-run-time scheduling is

often the only practical means of providing predictability in a complex system
[XPg3].

When we are presented with accurate worst case timing behavior of the tasks, the timing
predictability of the system is guaranteed even though the exact timing behavior of the
tasks and of the system may not be predictable. Deadlines can be enforced within the
precision of one frame in the cyclic executive approach.

The schedule is easily constructed such that precedence, distance, exclusion, and
resource constraints are met, eliminating the possibility of deadlock and unpredictable de-
lays. Thus, no special task synchronization protocols are required.

Pre-run-time schedules may be generated automatically, reducing the possibility
of errors. In addition, branch and bound algorithms will find a valid schedule if one exists.
This is especially important in complex systems where a human may not be able to find a

valid schedule.

32

Multiple schedules may be generated for different modes of operation of the system,
allowing the system to adapt to its environment.

Implementations of pre-run-time schedules are simple and efficient. The schedule®
can be represented by a table of actions that is interpreted by the scheduler at run-time
with the minor cycle timer constructed as a periodic timer. The scheduler requires minimal
run-time resources to follow the schedule and perform context switching.

Sporadic tasks are handled by the pre-run-time scheduling approach using periodic

server tasks.

4.6 Disadvantages and Other Issues of the Pre-Run-Time
Approach

Since the general scheduling problem belongs to the class of A'P-hard problems,
heuristics are needed to guide the search for a valid schedule. The most relevant heuristic
used in constructing a schedule is derived from a run-time scheduling algorithm. The
heuristic is derived from the earliest deadline first scheduling algorithm [LL73], an optimal
algorithm in the sense that it will always produce a valid schedule if one exists. This is a
dynamic priority preemptive scheduling algorithm where the task allocated the processor
has the earliest deadline of all those tasks that are ready to be allocated the processor. The
relevant heuristic for pre-run-time schedules is that one should try to schedule actions in
earliest deadline order.

Generally, this heuristic is not used in its original form in pre-run-time scheduling
due to its preemptive nature, requiring tasks to allow preemption at arbitrary points rather
than at specific points. In addition, allowing arbitrary preemption would cause the software
and hardware handling the context switches to be more complicated. The net result is that
the context switch would require more time and space than may be acceptable, and task
synchronization and resource management would be more complicated.

The amount of information required to generate a pre-run-time schedule can be
prohibitively large. If the system contains unpredictable tasks, it will be difficult to deter-
mine a valid schedule off-line, and any change to the task set will necessitate the generation

of a new schedule. In addition, the determination of some of the required information is

3The major schedule for cyclic executives.

33

very difficult.

The determination of specific points within a task at which it is “safe” to preempt
the task is very difficult. The determination is usually done manually based on natural
“regions” of code, critical sections, or functional units [BS86). This is especially critical to
the cyclic executive approach where the tasks must be “broken” (if they are to be broken)
before the major schedule may be constructed.

The timing predictability of sections of code is difficult. Many of the current timing
prediction techniques yield average case timing. Those timing prediction techniques that do
determine worst-case timing are often overly pessimistic due to false paths. Because of the
problems involved in determining the worst-case execution times, the timing predictions are
often inaccurate. The overly pessimistic times cause wasted CPU cycles while the overly
optimistic times may cause frame overruns and are the reason that errors occur.

The relationship between the periods in the task set can cause the major cycle
time to be extremely large. When the periods in the task set are harmonics of one another,
the major cycle is equal to the largest period in the task set. However, when the periods
are not harmonics, the major cycle may be much larger than the largest period in the task

set. This is shown in the following examples.

Example 4.6.1 Given the following set of harmonic periods: 2, 4, 8, 16; the major cycle
s 16. [|

Example 4.6.2 Given the following set of non-harmonic periods: 2, 5, 11, 13; the major
cycle is 1430. [

Mode changes can cause difficulties. When the system changes its mode of oper-
ation, the currently running task must be terminated in some logical way (which may be
just an abortion). All resources need to be freed, and the state of the system needs to be
set to a known state. The new major schedule must then be started. All of this may ne-
cessitate that any mode change require special processing to reinitialize or make consistent
certain variables. Thus, any system that has multiple modes of operation will require a
more complicated run-time scheduler.

Multiple modes of operation also cause additional memory space to be used to
store the additional schedules. This can be critical for memory limited systems that have
relatively large pre-run-time schedules. The multiple pre-run-time schedules required for

each mode of operation may not fit in the available memory.

34

Sporadic tasks are not easily handled by the pre-run-time scheduling approach. Al-
though the periodic server tasks provide a method by which sporadic tasks may be scheduled
and serviced, the resulting schedule is often difficult to analyze and to implement if a peri-
odic server services more than one task. In addition, if a periodic server services multiple
tasks, the state of any running task must be saved and all currently used resources released
when the periodic server exhausts its execution time. This results in a complex periodic

server implementation.

4.7 Implementation of the Pre-Run-Time Approach Within
POLIS

The cyclic executive scheduling approach was developed assuming that a human
would determine the worst-case execution time of the tasks and then manually arrange the
major schedule. Algorithmic approaches are easily automated. Since PoLis automatically
determines the worst-case execution time for the various tasks in the system and auto-
matically generates a schedule, only an algorithmic pre-run-time approach is implemented
within PoLis.

The algorithm presented by Xu and Parnas [XP90] discussed in Section 4.3 is
the basis for the General Pre-Run-Time (GPRT) algorithm implemented within Polis.
The main difference between the algorithm in [XP90] and the GPRT algorithm is that a
task consists of only one non-preemptible segment, eliminating the need to determine viable
points for preemption. This is essential to keeping the size of the real-time operating system
(of which the scheduler is a key part) generated by PoLis small enough to fit within the
tight memory bounds of its target applications. In addition, context switching overhead is
eliminated by this modification.

The following assumptions are made about the tasks scheduled by the GPRT

algorithm.

A1l: Preemption is not allowed. The target applications for PoLis have a limited amount of
memory and hardware support available. Preemption in the pre-run-time scheduling

approach would tax or exceed the available resources.

A2: All tasks are periodic. Those tasks that are sporadic may be transformed into

periodic tasks by Mok’s method. When the schedule is executed the sporadic tasks

35
General Pre-Run-Time Algorithm

input: the network of CFSMs, the set of tasks (CFSMs) to be scheduled 7, the target
output file

output: the table of actions, the table of sporadic tasks, the main schedule loop

1. Generate a periodic server task for each soft task.
2. Convert all hard sporadic tasks into periodic tasks using Mok’s method.
3. Determine the Least Common Multiple (LCM) of the periods.

4. Determine all task instances that will occur during the LCM and their appropriate

initial precedence constraints.
5. Consider all instances to be the task set 7, that is to be scheduled.
6. Generate the schedule for the task set 7} using the PRT algorithm.
7. Generate the table of actions to be performed; writing the result to the output file.
8. Generate the table of sporadic tasks; writing the result to the output file.

9. Generate the main schedule loop that handles sporadic tasks properly; writing the

result to the output file.

Figure 4.2: General Pre-Run-Time (GPRT) algorithm implemented within PoLis.

are executed only if they are ready.

A3: All tasks are not independent. Initial precedence constraints may exist between the

tasks, and implicit exclusion constraints exist between all tasks.

The following sections describe the GPRT algorithm.

4.7.1 General-Pre-Run-Time Algorithm

Figure 4.2 shows the GPRT algorithm implemented within PoLis. The input to
the GPRT algorithm is the network of connected CFSMs comprising the entire design, a

36

list of tasks (CFSMs) to be scheduled, and the target output file. The output of the GPRT
algorithm is a table listing the sequence of actions to be performed, a table listing the
sporadic tasks in the task set, and the main scheduler loop that determines which action to
perform next; all written to the target output file.

The GPRT algorithm begins by creating a periodic server task for each soft task.
Since preemption is not allowed (by A1), periodic server tasks can handle at most one
task. The characteristics and constraints on the server task are equal to those of the task
it serves. Thus, all soft tasks are assumed to behave like hard periodic tasks for simplicity.

In accordance with A2 all hard sporadic tasks are transformed into periodic tasks
using Mok’s method. Initial precedence constraints are determined for the tasks in the task
set by traversing the network of CFSMs in topological order.

All task instances that will occur through the LCM are determined with their
appropriate precedence constraints. The set of all instances of the tasks in the original task
set, T,, comprise a new task set .. Task set 7, is the input to the Pre-Run-Time (PRT)
algorithm.

The PRT algorithm returns either a valid schedule or the schedule with the least
maximum lateness if a valid schedule does not exist for the task set. From the schedule
returned by the PRT algorithm, a table of actions to be performed by the scheduler is
generated and written to the output file. A table of the sporadic tasks is generated and
written to the output file. Finally, the main scheduler loop is written to the output file.

Note, even if a valid schedule is not found, the optimum schedule returned by
the PRT algorithm is written to the output file. This allows the designer to examine the

optimum schedule to determine what can be modified to obtain a valid schedule.

4.7.2 Pre-Run-Time Algorithm

The PRT algorithm is shown in Figure 4.3. The PRT algorithm takes as input the
set of tasks to be scheduled, the best schedule found thus far, and the maximum lateness
of the best schedule. The output of the PRT algorithm is either a valid schedule or the
optimum schedule.

The PRT algorithm searches for a valid schedule by generating a valid initial
solution, S. A valid initial solution is a schedule such that all release times and precedence

constraints are satisfied. A valid initial solution does not imply a valid schedule.

37

Pre-Run-Time Algorithm

input: the set of tasks to be scheduled, 7,,, the best schedule found so far, ‘rf

lateness of the best schedule, M.

, the maximum

output: the best schedule found.

1. Generate a valid initial solution, 7,.

2. Find the task, T}, with the maximum lateness in T;.

3. If the maximum lateness, m, is less than or equal to zero, return 1',".
4. fm<M,tB=r, M=m.

5. For each task T; € 7, # T; do the following.

(a) Add a PRECEDE constraint between T; and T; of T;, T, < T;, to obtain T: .
(b) If the PRECEDE constraint causes a loop in the precedence graph, then continue.
(c) Compute the lower bound on lateness for all tasks in r,':.

(d) If the maximum lower bound on lateness for 7, is greater than M, then continue.
This added constraint will not lead to a solution that is better than the current

best solution found.
(e) Call the PRT algorithm for T..

(f) If the maximum lateness, m, of the returned schedule, 7., is less than or equal

"
to zero, then return 7,,.

@ fm<MtB=r,M=m.

6. Return 72,

Figure 4.3: Pre-Run-Time (PRT) algorithm implemented within PoLis.

38

Valid Initial Solution Algorithm

input: the set of tasks to be scheduled, ,.

output: the set of tasks in valid initial solution order, S.

time =0
S = emptyset
T =Tn

while(7 not empty)
if(AT, €T :r; < time)
Among the set { 7; | T; € T and
r; < time and
AT; € T:T; PRECEDEs T; }
select the task 7; that has the minimum d;.
Append T; to S.
T=T-T;.
if(T; # NULL)
time = time + ¢;.
else
time = time + 1.

return S.

Figure 4.4: Valid Initial Solution algorithm implemented within PoLis.

Figure 4.4 shows the algorithm used for determining the valid initial solution of
a task set. The algorithm uses an earliest deadline first heuristic to determine execution
ordering of the tasks. The set of precedence constraints that exists on the input task set are
satisfied while the valid initial solution is constructed. A valid initial solution constructed
by this algorithm guarantees that all tasks begin execution after they are released and that
if T; pRECEDEs Tj, then Tj is scheduled before T;.

If the maximum lateness of the valid initial solution is less than or equal to zero,
then a valid schedule has been found. This schedule is immediately returned. If the max-

imum lateness of the valid initial solution is less than the maximum lateness of the best

39

schedule found so far, the best schedule found is set to the current valid initial solution.

In order to search for a valid schedule, the latest task, Tj, in the valid initial
solution, 8, is constrained to precede the other tasks in the task set. Therefore, for each
task 7; in the task set for which the constraint T; PRECEDE T; does not cause a cycle in the
corresponding constraint graph, a child node is created with this constraint added to the
task set. The child nodes are created by calling the PRT algorithm recursively.

In order to prevent the search for a valid schedule from becoming an exhaustive
search of the solution space, a child node is not generated if it is not possible for that node
to lead to a schedule that is better than the best schedule found thus far. This bounding is
done by using the maximum lower bound on lateness for a given task set to determine when
to stop searching along a given path. The maximum lower bound on lateness is computed
for each child node prior to generating a valid initial solution. The lower bound on lateness

for each task, T;, is computed as follows.
Li=r;+ci—d;

where r; = r; if there does not exist a task T such that the constraint T; PRECEDE T; exists;
otherwise, r; = max(r;,; + ¢;|T; PRECEDE T;).

If the maximum lower bound on lateness for a task set is greater than the maximum
lateness of the best schedule found so far, then the child node is not created, since this child
node and all of its successors will not find a schedule that is better than the best schedule
found so far.

If a valid schedule is not found, the best schedule found (the optimum schedule)

is returned.

41

Chapter 5

Static Priority Scheduling

5.1 Introduction

Static priority scheduling algorithms are run-time scheduling algorithms that as-
sign a priority to each task off-line. The priority of a task does not change with time, and
each invocation of a task has the same priority, allowing static priority scheduling algo-
rithms to have a low run-time overhead. The scheduling algorithm allocates the processor
to a ready task with the highest priority. For some applications it is possible to implement
the scheduling in hardware by use of a priority-interrupt mechanism, effectively reducing
the scheduling overhead to zero.

Many algorithms have been proposed that determine the static priority of the
tasks in the task set, and comprehensive reviews of these algorithms exist [LSST91]. The
most influential of these algorithms is the Rate Monotonic Scheduling algorithm (RMS), an
optimal fixed priority scheduling algorithm for periodic tasks, presented by Liu and Layland
in 1973 [LL73]. Since then, many generalizations of this algorithm have been presented that
address practical problems that arise in the construction of real-time systems. These include
the problems of transient overload and stochastic execution times, the scheduling of task
sets containing both periodic and sporadic tasks, and task synchronization.

The Deadline Monotonic Scheduling algorithm (DMS), an optimal fixed priority
scheduling algorithm presented by Leung and Whitehead in 1982 [LW82], is similar in
concept to the RMS algorithm; the theory behind the RMS algorithm is used as the basis
for the DMS theory. The DMS algorithm weakens some fundamental constraints of the

RMS algorithm that allows for easier handling of sporadic tasks in the task set. This is its

42

main advantage over the RMS approach.

The Lazity Monotonic Scheduling algorithm (LMS), an optimal fixed priority schedul-
ing algorithm, follows the theory for RMS and DMS. The LMS algorithm assigns priority
based upon the laxity of the task when it is invoked, identifying critical tasks.

The Liu and Layland theory of RMS and the Leung and Whitehead theory of DMS
are presented, as well as, the proof of optimality of LMS. The problems of task synchroniza-
tion, non-preemptive scheduling, and sporadic task scheduling are then discussed. Finally,
the static priority algorithms that are implemented within the PoLis co-design environment

and the generated scheduling routines are discussed.

5.2 The Rate Monotonic Scheduling Algorithm

The RMS algorithm was first presented by Liu and Layland in 1973 [LL73] to solve
the problem of scheduling periodic task sets on a uniprocessor using fixed priorities. Liu

and Layland made several assumptions about the hard-real-time environment:
A1: All tasks are periodic and are ready at the beginning of each period.
A2: The deadline of each task is equal to its period.
A3: Tasks are independent, i.e., no precedence or exclusion constraints exist between tasks.

A4: The execution time for each task is constant for that task and does not vary with

time.
A5: Every task may be preempted at arbitrary points.

Liu and Layland derived important results under these assumptions.

Theorem 5.2.1 ([LL73]) A critical instant for any task occurs whenever the task is re-

quested simultaneously with requests for all higher priority tasks.

The proof of Theorem 5.2.1 follows from the observation that the processing of
a request of any task can only be delayed by requests of a higher-priority task. It can
be shown that the maximum interference due to a higher priority task occurs when the
higher priority task is invoked at the same instant that the task is invoked. This is easily

seen since a higher priority task may be requested multiple times during the period of the

43

task, and each request will preempt the lower priority task unless the lower priority task
has completed execution. Therefore, the maximum interference that a task may experience
occurs when the task is invoked simultaneously with all higher priority tasks.

Theorem 5.2.1 suggests a simple, direct method for determining whether a given
priority assignment will yield a valid schedule. Specifically, if all tasks are able to meet
their respective deadlines when they are invoked at their critical instants, then the priority
assignment produces a valid schedule.

A critical instant for every task occurs at time r if all tasks have the same release
time r. Thus, assuming that all tasks have the same release time, the schedule can be
constructed through max;<i<n(p:) to verify the validity of the priority assignment.

Theorem 5.2.1 also suggests a priority assignment algorithm. The rule for priority
assignment is to assign priorities to tasks according to their request rates, independent
of their run-times, i.e., assign the highest priority to a task with the shortest period and
the lowest priority to a task with the longest period, ties broken arbitrarily. The priority
assignment may be performed in O(nIn n) time!. Such a priority assignment is known as the
rate monotonic priority assignment and is optimal in the sense that no other fixed priority
assignment rule can schedule a task set that cannot be scheduled by the rate monotonic

priority assignment. Liu and Layland were able to prove this optimality.

Theorem 5.2.2 ([LL73]) If a valid priority assignment exists for some task set, the rate

monotonic priority assignment is valid for that task set.

Liu and Layland went on to determine the least upper bound to processor utiliza-
tion, Uy, , for periodic task set 7, in fixed priority systems. Task sets with utilization above
this bound are not guaranteed that any priority assignment will yield a valid schedule. For
task set 7,,, the processor utilization is

Uy, = G
= Pi

Note that if U,, > 1, then 7, is not schedulable on a single processor by any scheduling

algorithm.

The priority assignment may be performed by sorting the tasks by period with the resulting sorted task
list corresponding to the priority ordering of the tasks.

44

It is possible for a valid schedule to exist when U, > Uy 2, but the RMS algorithm
is not guaranteed to be able to determine a valid schedule. The least upper bound to

processor utilization is given in the following theorem.

Theorem 5.2.3 ([LL73]) For a set of n tasks with fized priority order, the least upper

bound to processor utilization is U; = n(21/" - 1).

The sequence of least upper bounds is given by Uy, =1, U;, = 0.828, ... , U7 =
In 2 = 0.693. Therefore, any periodic task set is guaranteed to be scheduled by the RMS
algorithm if its processor utilization is no greater than In 2 = 0.693. Section 5.8 discusses

static priority schedulability analysis.

5.3 The Deadline Monotonic Scheduling Algorithm

The DMS algorithm was first presented by Leung and Whitehead in 1982 [LW82].

They make the following assumptions about the hard real-time environment:
A1: All tasks are periodic and are ready at the beginning of each period.
A2: The deadline of each task is less than or equal to its period.
A3: Tasks are independent, i.e., no precedence or exclusion constraints exist between tasks.

A4: The execution time for each task is constant for that task and does not vary with

time.
A5: Every task is at arbitrary points.

Notice that Leung and Whitehead make the same assumptions about the hard real-time
environment as do Liu and Layland except that the deadlines of the tasks may be less than
or equal to the period instead of strictly equal to the period. Theorem 5.2.1 (the critical
instant for a task) is valid under these assumptions. However, the RMS algorithm is not
optimal under these assumptions. As a result, a different priority assignment rule must be
used to obtain an optimal priority assignment.

The inverse-deadline priority assignment assigns a higher priority to a task with

a smaller deadline, i.e., the priority of a task is inversely proportional to its deadline. The

2For example, a task set containing tasks that are harmonics of one another may have a utilization of 1
and still be schedulable (see Theorem 5.8.2).

45

inverse-deadline priority assignment reduces to the rate-monotonic priority assignment when
d; = p; VT;, 1 < i< n. The inverse-deadline priority assignment may be performed in

O(nlnn) time. Leung and Whitehead proved that such a priority assignment is optimal.

Theorem 5.3.1 ([LW82]) The inverse-deadline priority assignment is an optimal priority
assignment for one processor in the sense that no other priority assignment can schedule a

task set that can not be scheduled by the inverse-deadline priority assignment.

Leung and Whitehead did not provide any schedulability analysis tests for the
DMS approach. However, schedulability analysis based upon critical instants may be used
for the DMS approach. Just as in the RMS approach, if all tasks are able to meet their
respective deadlines when they are invoked at their critical instants, the priority assignment
produces a valid schedule.

Schedulability analysis tests based upon the processor utilization may be used to
guarantee the schedulability of a task set. The processor utilization schedulability analysis
test proposed by Liu and Layland for the RMS approach may be used for the DMS approach.

Theorem 5.2.3 (the least upper bound to processor utilization) is valid for all fixed priority

assignments.

5.4 The Laxity Monotonic Scheduling Algorithm

The LMS algorithm solves the problem of scheduling periodic task sets on a unipro-

cessor using fixed priorities. The following assumptions are made about the hard real-time

environment:
A1: All tasks are periodic and are ready at the beginning of each period.
A2: The deadline of each task is less than or equal to its period.
A3: Tasks are independent, i.e., no precedence or exclusion constraints exist between tasks.

A4: The execution time for each task is constant for that task and does not vary with

time.

AS5: Every task is preemptable at arbitrary points.

3The priority assignment may be performed by sorting the tasks by deadline with the resulting sorted
task list corresponding to the priority ordering of the tasks.

46

These are the same assumptions that Leung and Whitehead make for the DMS algorithm.

The lazity monotonic priority assignment assigns a higher priority to a task with
a smaller laxity, ties broken in favor of the task with the smaller deadline, where the laxity,
l;, of task T; is l; = d; — c;. The laxity monotonic priority assignment may be performed in
O(nlnn) time.

The notion of a critical instant from Theorem 5.2.1 is applicable to the laxity
monotonic priority assignment. Therefore, if every task is able to meets its deadline when
released at its critical instant, then the task set is schedulable. By Theorem 5.2.1, the
schedule produced by a particular priority assignment is valid if and only if the deadline of
the first invocation of each task is met in the schedule when all tasks are invoked at the
same time.

The optimality of the laxity monotonic priority assignment is now proven. Let
pn=(T1y+yTky Tk1,- . ., Tp) denote a priority assignment for task 7, such that the priority
of T; is higher than the priority of T4, V1 < i <n—1. Let k= (T, ,Th1, Thy o, T)
denote the priority assignment obtained from p, by interchanging the priority of tasks T}
and Ty4 forany 1<k <n—1.

Lemma 5.4.1 Let p, = (T1,.-. Tk, Tk41.- .., Tn) be a given priority assignment such that
the schedule produced by p, is valid. If li > lg4y for some Ty, Ty41 1<k <n-—1, then the
schedule produced by pﬁ =(T1,.--yTk41, Tk, - - -, T) is also valid.

Proof Let p, be a given priority assignment and let S, denote the schedule produced
by pn. Suppose l; > Ikt for some Tk, Th41,1 < k< n—1, and let S,’f denocte
the schedule produced by the priority assignment pk. We need to show that if
S, is a valid schedule, then S:ﬁ is also valid. To do this, all we need to show is
that the deadline of the first request of each task is met in SX. It is easy to see
that the response time of the first request of each task Tj,j # k,k + 1 is the
same in both S, and S¥, since the processing of these tasks is not affected by
the priority reordering of T and Ti4+1. Moreover, the response time of Tk can
only be smaller in S,’;’ than in S,, since the processing of Tk4, in S,’;’ is delayed
by one less task than in Sy, namely Tx. Thus our proof is reduced to showing

that the deadline of the first request of T} is also met in S¥.

Since Tk4; meets its deadline in Sy, but has a lower priority than T,

C + ¢k + Ck+1 S dk+1 (51)

47

=>C+e < ln (5.2)

where C is the amount of computation done in Sy, by all tasks T}, 1 < ¢ < k—1,in
the interval [0, dx41]). By Theorem 5.2.1 we know that the amount of computation
done for all tasks T;, 1 < i < k — 1, in any interval of length dj4; is at most C.
The following condition is sufficient to guarantee that the deadline of the first
request of T} is met in S¥,

l l
|_l_k-_| CH+er < |,l_kJ 1. (5.3)
k+1 k+1

The above follows from the observations that the amount of computation
done in Sk for all tasks T;, 1 < i < k — 1, in the interval [0, [li/lx41]dr41] is at
most |lx/lk+1]C and that the number of requests made by Tj; in the interval

[0, |lk/lk+1]dk+1]) is at most |lx/lk41]. Since 5.2 implies 5.3, it follows that the
deadline of the first request of T} is met in S¥. [

Theorem 5.4.1 If a valid priority assignment ezxists for some task set, the lazity monotonic

priority assignment is valid for that task set.

Proof By contradiction, assume that there is a task set, 7,, such that the schedule
produced by the priority assignment p, is valid and yet the schedule produced
by the laxity monotonic priority assignment is not valid. p, can be transformed
into the laxity monotonic priority assignment by a sequence of adjacent priority
reorderings. By Lemma 5.4.1 the schedule produced by the laxity monotonic

priority assignment is also valid. Contradiction. |

Schedulability analysis based upon critical instants or simulation may be used to
ensure that the LMS approach yields a valid schedule. If simulation is used, the simulation
must be through the LCM of the tasks.

5.5 Task Synchronization in Static Priority Systems

Thus far, tasks have been assumed to be completely preemptable i.e., no exclusion
constraints exist between segments of the tasks. This is not always a realistic assumption

since it is often the case that tasks contain sections of code that must be executed atomically

48

and/or the tasks utilize non-preemptable resources. When exclusion constraints exist in a
static priority system, it is possible that priority inversion occurs. Priority inversion occurs
when the execution of a high priority task is blocked by a lower priority task. For example,
consider tasks T) and T, (where T) has a higher priority than T3) that share data. To
maintain the consistency of the shared data, accesses to it must be serialized. If T} gains
access to the shared data first, the proper priority order is maintained; however, if T gains
access to the shared data first, T} must wait until T completes its access of the data. By
blocking T, T; has caused a priority inversion to occur.

Exclusion constraints are typically enforced via task synchronization methods such
as semaphores, locks, and monitors. Care must be taken to prevent unbounded priority in-
version and deadlock when these methods are employed. To ensure that deadlocks are
prevented and schedulability analysis tests may be performed, a task synchronization pro-
tocol must address these problems when it is developed.

A task synchronization protocol that was developed to prevent deadlock and still
allow for schedulability analysis tests was presented by Sha et. al. [SRLS0]. The Priority
Ceiling Protocol (PCP) uses the notion of the priority ceiling of a semaphore. The definition

of priority ceiling and priority ceiling protocol are given below.

Definition 5.5.1 ([SRL90]) The priority ceiling of a semaphore is the priority of the
highest priority task that may lock this semaphore. The priority ceiling of a semaphore
S;, denoted C(S;), represents the highest priority that a critical section guarded by S; can

execute, either by normal or inherited priority.

Definition 5.5.2 (Priority Ceiling Protocol [SRL90])

1. Task T, that has the highest priority among the tasks ready to ezecute, is assigned
the processor, and let S* be the semaphore with the highest priority ceiling of all
semaphores currently locked by tasks other than task T. Before task T enters its
critical section, it must first obtain the lock on the semaphore S guarding the shared
data structure. Task T will be blocked and the lock on S will be denied if the priority
of task T is not higher than the priority ceiling of semaphore S*. In this case, task T
is said to be blocked on semaphore S™ and to be blocked by the task that holds the lock
on S*. Otherwise, task T will obtain the lock on semaphore S and enter its critical

section. When a task T ezits its critical section, the binary semaphore associated with

49

the critical section will be unblocked and the highest priority task, if any, blocked by

task T will be awakened.

2. A task T uses its assigned priority, unless it is in ils critical section and blocks higher
priority tasks. If task T blocks higher priority tasks, T inherits Py, the highest priority
of the tasks blocked by T. When T ezits a critical section, it resumes the priority it
had at the point of entry into the critical section. That is, when T ezits a critical
section, it resumes its previous priority that may not be its initial priority. Priority
inheritance is transitive. Finally, the operations of priority inheritance and of the

resumption of previous priority must be atomic.

3. A task T, when it does not attempt to enter a critical section, can preempt another task

Ty, if its priority is higher than the priority at which task T is currently ezecuting.

Under the priority ceiling protocol a high priority task may be blocked by a lower
priority task in one of three situations. First, the high priority task may be directly blocked
by the lower priority task. In this case, the high priority task attempts to lock a locked
semaphore. This type of blocking is necessary to ensure the consistency of shared data.
Second, a medium priority task, T, may be blocked by a low priority task, T;, that is
executing at the priority of a higher priority task, T, that it is blocking. This type of
blocking is necessary to avoid having a high priority task, T, being indirectly preempted
by the execution of a medium priority task, Trm. Third, a task may be blocked by the
priority ceiling of a semaphore. This type of blocking is necessary to avoid deadlock and
chained blocking. '

Sha et. al. went on to prove many properties about the priority ceiling protocol.

The more important of these properties are given below.
Theorem 5.5.1 ([SRL90]) The priority ceiling protocol prevents deadlocks.

Theorem 5.5.2 ([SRL90]) Under the priority ceiling protocol, a task T can ezperience

priority inversion for at most the duration of one critical section.

In addition, Sha et. al. were able to develop a schedulability analysis test when
the priority ceiling protocol is used in conjunction with the RMS algorithm. For this test,

B;, 1 < i < n, is defined to be the longest duration of blocking that can be experienced

50

by task T;. Note, B, = 0 since T, has the lowest priority and, hence, cannot experience a
priority inversion. Theorem 5.5.3 gives a sufficient condition for the schedulability of a task

set in which PCP is used in task synchronization on a uniprocessor.

Theorem 5.5.3 ([SRLO0]) A set of n periodic tasks with d; = p; using the priority ceiling
protocol can be scheduled by the RMS algorithm for all task phasings if

LINP I B:
max min | S121+2) <.
1<i<n 0<t<py = t P; t

5.6 Non-Preemptive Static Priority Scheduling

The RMS, DMS, and LMS algorithms assume arbitrary preemption is allowed.
When arbitrary preemption is not allowed, the PCP may be used to ensure the schedulability
of a task set. In the extreme case, no preemption is allowed, and the PCP causes an
unacceptable amount of overhead.

The critical instant for a task set when preemption is not allowed, a non-preemptive
task set, is different from the critical instant for a preemptive task set. The following

theorem formally presents the notion of a critical instant for a non-preemptive task set.

Theorem 5.6.1 A critical instant for any task when preemption is not allowed occurs
whenever the task is requested simultaneously when all higher priority tasks are requested

and the processor is allocated to the lower priority task with the longest computation time.

Proof Let 7, = {T},... ,T,} denote a set of priority ordered tasks with T;, being the
lowest priority task. Consider the request for task T; at time ¢;. Let Tj, i < j,
be the lower priority task with the longest computation time. Let Ty be the task
allocated the processor at time ¢;. The maximum response time corresponds to

the maximal interference due to other tasks.

If T equals T;, corresponding to either the processor being idle at time ¢;
or a task completing execution at time ¢; and T; being the highest priority task
ready to run, then the response time is zero. However, if T} is not equal to T;,
then the response time for T; is non-zero. Therefore, the response time can only
be maximal if T} is not equal to T;. Furthermore, the maximum interference
experienced by T; due to Ty occurs when T} is allocated the processor at time
t1.

51

Suppose that Ty, h < i, is the first higher priority task requested at
or after time t;. Then, between times ¢; and t; + d;, T} is requested at times
ta, ta+ph, -+, ta + zpn. In order for T} to affect the response time of T;, ¢2
must be less than or equal to ¢; 4+ cx. The interference due to T} is acp, where o

is the number of times T}, is invoked before T; is allocated the processor.

Suppose that Ty, g < i, is the second higher priority task requested
after t;. Then, between times ¢; and t; + d;, T is requested at times ¢3, 3 +
Pgs *** » t3+ypg. In order for Ty to affect the response time of T;, t3 must be
less than or equal to t; + cx + cx. The interference due to Ty is B¢, where (3 is

the number of times T is invoked before T; is allocated the processor.

Repeating the argument for all T;,, m = 1...¢—1 it can be seen that the
maximum interference due to higher priority tasks is ac; + - - - + bc;—; where the
coefficients to the computation times are dependent upon the number of times
the task is invoked before T; is allocated the processor. Moreover, the maximum
number of invocations of a higher priority task occurs when the higher priority

task is invoked at time ;.

Suppose that 1 < k < i — 1 (T} corresponds to a higher priority task).
Then acy + -+ + be;—; is the maximum response time for T;. Instead, suppose
that & > i (Tx corresponds to a lower priority task). The response time for T;
is then c¢x + acy + -+ - + bc;—y which is greater than acy + -+ -+ be;—;. Thus, Tj
must be a task with a lower priority than T;. Furthermore, to obtain a maximum

response time, T must be Tj. [|

As in the preemptive case, if all tasks in a task set are able to meet their deadlines
at their respective critical instants, then the task set is schedulable. Thus, to determine if a
particular priority assignment will yield a valid schedule, the schedule may be constructed
through max;<i<n(p;) assuming that all tasks have the same release time r. This is a
pessimistic test since a critical instant may never occur for some tasks due to the phasing
and periods of the tasks.

As in the preemptive case, the RMS, DMS, and LMS algorithms are optimal
algorithms in the sense that they will find a valid priority assignment if one exists for a task
set satisfying their assumptions. The proofs of the optimality in the preemptive case for

these algorithms do not rely upon the preemptive nature of the algorithms. Lemma 5.4.1

52

is valid for the non-preemptive case, and similar Lemmas for both RMS [LL73] and DMS
[LW82] can be used to prove the optimality of these algorithms.

5.7 Sporadic Task Scheduling in Static Priority Systems

Only periodic task sets have been addressed for static priority systems to this point.
However, many real-time systems contain sporadic tasks. Most traditional approaches for
handling sporadic tasks are inadequate for guaranteeing that deadlines are met. Two such
approaches are (1) allowing the sporadic tasks to interrupt the periodic tasks and run to
completion, and (2) force the sporadic tasks to background service at a lower priority level
than all of the periodic tasks. In approach (1) it is possible that a periodic task will miss a
deadline. This condition cannot be checked for unless all possible schedules are generated
and checked off-line. In approach (2) servicing of sporadic requests occurs whenever the
processor is idle; thus, it is possible that a sporadic task will miss its deadline, unacceptable
behavior if the sporadic task has a hard deadline.

An alternative to these approaches is to establish a polling server to provide a
private resource for the exclusive use of the sporadic tasks. This approach creates a periodic
task that is scheduled like other periodic tasks. When the polling task is invoked, it services
any pending sporadic requests. However, if no sporadic requests exist, the polling task
suspends itself until its next period, and the time originally allocated for sporadic service
is not preserved but is instead used by periodic tasks. This is an improvement, but is still
rather inflexible in that it offers regular service to a stream of tasks whose demand for that
service is irregular. By modifying the sporadic server to serve the tasks when they are ready,

significant improvements in performance and guaranteed schedulability may be obtained.

5.7.1 The Priority Exchange Algorithm

The Priority Ezchange algorithm (PE) [LSS87] provides a method by which spo-
radic tasks are serviced in a static priority scheduling environment. The PE algorithm
minimizes sporadic response times without causing periodic tasks to miss their deadlines.
In the PE algorithm, a sporadic server is assigned a high priority. If sporadic tasks are ready
when the server is allocated the processor, the sporadic tasks are executed at the priority of
the server. Once the server time is consumed, no more sporadic tasks may be executed until

the server is invoked and allocated the processor again. If there are no sporadic tasks ready

53

to execute when the sporadic server is allocated the processor, then the sporadic server
exchanges its high priority execution time with the execution time of the highest priority
periodic task that is ready to execute. If there are no periodic or sporadic tasks ready to
execute, the server time is lost. In this way, the sporadic server time is preserved, although
at a lower priority level, allowing the PE algorithm to accumulate deferred run-time across
period boundaries.

The PE algorithm does not adversely affect the schedulability of a task set.

Theorem 5.7.1 ([LSS87]) For a set of schedulable fized-priority ordered tasks, ,, with
T, the sporadic server, T) can trade run-time c,, at priority p, for run-time c;, at priority
pi, with any underlying periodic task without degrading the schedulability of the underlying
periodic task set, Ty, ... , Ty.

The proof follows from the one-to-one trading that at best advances the underlying
periodic task T;’s execution; thus, guaranteeing its deadline and delaying the service for the

sporadic tasks that are not guaranteed.
Lehoczky et. al. were able to derive a utilization bound below which a task set

that contains the sporadic server task 7T} is guaranteed to be schedulable.

Theorem 5.7.2 ([LSS87]) For a set of fired-priority ordered tasks, T,, scheduled using
the RMS algorithm where Ty has the highest priority, the least upper schedulability bound

as a function of the utilization, Uy, of task T\ is
U =Us+ (n+1 (2)+’ 1

U'=U;+In

that converges to

2
U +1
as n — 0o.
The above theorem applies not only to the PE algorithm, but also to the more

general polling case. Hard sporadic tasks are not guaranteed to meet their deadlines. They

are only guaranteed to have a low average response time.

54

5.7.2 The Deferrable Server Algorithm

The PE algorithm may be difficult to implement due to the priority exchange
of execution times. A simpler sporadic server implementation may be obtained with the
Deferrable Server algorithm (DS) [LSS87). The DS algorithm is similar to the PE algorithm
with the exception that it does not exchange its high priority run-time with that of lower
priority tasks. Thus, the sporadic server execution time is only consumed when there is
a sporadic task ready to execute. Any server execution time left at the end of the server
period is lost. This simplifies the implementation while preserving the bandwidth.

The DS algorithm does not adversely affect the schedulability of a task set; how-
ever, the DS algorithm creates a task that does not satisfy one of the assumptions made
by Liu and Layland: namely, requests for the deferrable server task are not necessarily
separated by constant intervals. This is important because the DS algorithm was created
for use with the RMS algorithm. For this reason, two cases must be analyzed to determine
the least upper bound on utilization: (1) the DS task is requested three times during the
period for task T}, (2) the DS task is requested twice during the period for task 7). Here,
T, is the task with the largest period.

For case (1), the least upper bound to utilization is given by the following theorem.

Theorem 5.7.3 ([LSS87]) For a set of n fized priority ordered tasks 7, = {Ty, ... ,Tn}
with a critical zone length greater than p, + ¢, where Ty is the Deferrable Server task, the

least upper utilization bound as a function of the utilization of task Ty, Uy, is

Ul-'|-2"_'l'_l
—17 — _
U=U+(n l)[(U1+l) l]

Uy +2
2U, +1

that converges to

U=U1+In()asn—-)oo.

This function has a minimum of 0.6518 when U; = 0.186.
For case (2), the least upper bound to utilization is much worse. The utiliza-
tion bound is strongly dependent upon the utilization of the Deferrable Server task. The

following equation gives the utilization bound as a function of U; [LSS87].

U=

1-U; U;<0.5
Uy U, 205

35

The least upper bound to utilization in this case is 0.500.
Due to the much lower least upper utilization bound experienced in case (2), the
designer should attempt to avoid this case. The designer will need to ensure that the longest

period, p,, is greater than p; + ¢; where T} is the Differable Server task.

5.7.3 The Sporadic Server Algorithm

Although the PE and DS algorithms are able to obtain a low average response
time for sporadic tasks, they are not able to handle hard sporadic tasks. The Sporadic
Server algorithm (SS) [SSL89] improves upon the PE and DS algorithms by drawing upon
the advantages of each.

The SS algorithm creates a high-priority task for servicing sporadic tasks. The
sporadic server’s execution time is preserved at its high priority level until a sporadic request
occurs. The SS algorithm differs from the PE and the DS algorithms in the way it replenishes
its server execution time. The sporadic server execution time is replenished after some or all
of the execution time is consumed by sporadic task execution; in comparison to periodically
replenishing the server execution time to full capacity as in the PE and DS algorithms. The

rules of execution time replenishment for a sporadic server executing at priority level i are
as follows [SSL89].

1. If the sporadic server has execution time available, the replenishment time, RT is set
when a task of priority level i or greater begins execution. If, on the other hand, the
sporadic server capacity has been exhausted, then RT cannot be set until the sporadic
server’s available execution time becomes greater than zero and a task of priority level
i or greater is executing. In either case, the value of RT is set equal to the current

time plus the period of the sporadic server task.

2. The amount of execution time to be replenished can be determined when either a
task with a priority level less than i executes or when the sporadic server’s available
execution time has been exhausted. The amount to be replenished at RT is equal to
the amount of sporadic server execution time consumed since the last time at which
a task of priority level i or greater began executing after a task of priority level less

than 7 was executing.

Since a sporadic server task may defer its execution when no sporadic tasks are

ready, it violates a basic assumptions made by the RMS algorithm, once a periodic task is

56

the highest-priority task that is ready to execute, it must execute. If a periodic task defers
its execution when it otherwise could execute immediately, it may be possible that a lower-
priority task will miss its deadline. The SS’s replenishment method compensates for any
deferred execution of the sporadic server. This allows it to provide an average response time
that is better than that of the DS algorithm with approximately the same implementation
complexity.

Sprunt, Sha, and Lehoczky were able to prove that a sporadic server that follows

the above replenishment policy does not affect the schedulability of a periodic task set.

Theorem 5.7.4 ([SSL89]) A periodic task set that is schedulable with a task, T;, is also
schedulable if T; is replaced by a sporadic server, using the SS algorithm, with the same

period and execution time.

Furthermore, several sporadic server tasks may be defined at different priority levels to
handle different sporadic streams.

The SS algorithm provides a low average response time to sporadic tasks with soft
deadlines. In addition, it is able to guarantee that all hard sporadic tasks meet their dead-
lines if their deadlines are greater than their minimum time between successive invocations.
However, when the deadline of a hard sporadic task is less than the minimum time between
invocations, the SS algorithm does not guarantee that all deadlines are met. To ensure
that a hard sporadic task will not miss a deadline the sporadic server is assigned a priority
based upon the deadline of the task that it is to serve. This is equivalent to the deadline
monotonic priority assignment. Note, only a single sporadic server is created for all soft
sporadic tasks while one sporadic server is created for each hard sporadic task.

If preemption is not allowed in the system, then the SS algorithm is not guaranteed

to work.

5.7.4 Summary of Sporadic Task Handling

Table 5.1 summarizes the major characteristics of the PE, DS, and SS algorithms.
These algorithms were developed for use with the RMS algorithm as a way to handle soft
sporadic tasks. The SS algorithm is the only one that allows the RMS algorithm to handle
hard sporadic tasks correctly.

All three of the sporadic server algorithms may be used with both the DMS and
LMS algorithms to handle soft sporadic tasks. Hard sporadic tasks are handled by the

PE | DS SS
Implementation High Low Medium
Complexity
Low Average
Response Time Yes Yes Yes
For Soft Tasks
Handles Hard No No Yes
Tasks
Server Run Time | Periodic | Periodic | One Period
Replenishment After Use
Exchange Run Yes No No
Time
Preserves Run
Time Across Yes No Yes
Period Boundaries
Preserves Yes Yes Yes
Bandwidth
Requires Special
Schedulability Yes Yes No
Analysis Test
Multiple Servers No No Yes

Allowed

Table 5.1: Comparison of the PE, DS, and SS sporadic server algorithms.

57

58

DMS and LMS algorithms. When the DMS algorithm is used, sporadic tasks are assigned
a priority based upon their deadline just as the periodic tasks. When the LMS algorithm

is used, sporadic tasks are assigned a priority based upon their laxity just as the periodic
tasks.

5.8 Static Priority Schedulability Analysis

5.8.1 Utilization Based Schedulability Analysis

To guarantee the predictability of a task set scheduled using a static priority
assignment, the schedulability of the task set under the given priority assignment must
be verified. Many utilization based schedulability analysis tests have been developed. Lui
and Layland were the first to present a schedulability analysis test based upon the total
utilization of the task set. The test presented in Theorem 5.2.3 is a sufficient test for
schedulability.

Theorem 5.2.3 was improved upon by Lehoczky [Leh90] to handle the more general
case where the deadline is less than or equal to the period. The more general utilization

bound test is given be the following theorem.

Theorem 5.8.1 ([Leh90]) A periodic task set, T, with d; = Ap;, 1 < i < n is schedulable
if
Z Ui<Uy =

=1

{ n((28)/" - 1)+ (1-4) }
0

A
VAN A

IA A
b=t

<
<
This is a sufficient utilization bound, and it may be used for any static priority scheduling
algorithm that allows arbitrary preemption.

A less general utilization bound was derived by Lehoczky et.al. [LSST91] for the

RMS algorithm when the periods of the tasks in the task set are harmonics of one another.

Theorem 5.8.2 ([LSST91)) If a task set 7, is scheduled using the RMS algorithm and p;
evenly divides p; for 1 < j < i, then T; meets all its deadlines if and only if Sio Uk €1
If pj evenly divides p; for all j < i, 1 <i < n, then the task set is schedulable if and only
if k= U < 1

59

5.8.2 Synchronous Schedulability Analysis

Utilization is not the only factor upon which schedulability analysis tests may
be based. Theorem 5.2.1 suggests that for a task T; € 7, (where 7, is sorted in non-
increasing priority order) to be schedulable, the sum of its computation time and the time
spent waiting while tasks of higher priority execute on the processor (the interference time)
must be no more than d;. For a task set where all of the tasks are released at the same time

(a synchronous task set), the above test may be performed in pseudo-polynomial time.

Theorem 5.8.3 ([LW82]) For a synchronous task set there is a pseudo-polynomial time
algorithm to decide whether or not the schedule produced by a particular priority assignment

is valid.

Audsley et. al. [ABRW91] formalized this critical instant test with:
¢ I

—+—<1

d;, d; ~

where I; is a measure of the interference caused by higher priority tasks:

=Y]

j=1 p]

Vi:1<i<n :

The interference is composed of the computation time of all higher priority tasks.
It does not take into account the release times of the tasks, and it includes the computation
time of higher priority tasks that will occur only after d;. A less pessimistic measure of the

interference is given by:

o[- 1)

This measurement does not include the parts of executions of higher priority tasks that
could not occur before d;. However, it is a sufficient but not necessary test.

Audsley et.al. [ABRW91] derived a schedulability analysis test that is both nec-
essary and sufficient. This test constructs a schedule such that the exact interleaving of
higher priority task executions is known. Figure 5.1 presents the static priority schedulabil-
ity analysis test given in [ABRW91]. This test is valid for synchronous task sets and runs
in pseudo-polynomial time. The value for the interference for this test is defined to be

= [i] .

i=1 p]

// Static priority schedulability analysis for a synchronous task set.

StaticPrioritySchedAnal() {
foreach T; {
t=z;=1"'i
continue = TRUE
while (continue) {
if (I[/t+ecift<1) {
// T; is schedulable
continue = FALSE

} else {
t=1I+c

}

if (t>d;) {
// T: is not schedulable
EXIT

}

60

Figure 5.1: Audsley et. al.’s algorithm to determine if a synchronous static priority task

set 7, is schedulable.

61

5.8.3 Asynchronous Schedulability Analysis

Not all task sets are synchronous. Some task sets are asynchronous, i.e., not all
tasks have the same release time. Leung and Whitehead derived the complexity bound for

determining if a priority assignment yields a valid schedule for an asynchronous task set.

Theorem 5.8.4 ([LW82]) Given a task set T, with arbitrary release times and a priority

assignment p, the problem to decide whether or not the schedule produced by p is valid is
NP-hard.

Leung and Whitehead were able to extend this theorem to cover the more general case of
scheduling on m > 1 processors.

Lehoczky, Sha, and Ding [LSD89] derived necessary and sufficient conditions for
determining if a static priority assignment yields a valid schedule for an asynchronous task
set. This schedulability analysis test is based on Theorem 5.2.1. The demands made by the
task set as a function of time are considered to determine if a task can meet its deadline.

This is formally stated in the following theorem.

Theorem 5.8.5 ([LSD89)]) Let a periodic task set T, be given in priority order and sched-
uled by a fized priority scheduling algorithm using those priorities. If d; < pi, then T; will
meet all its deadlines under all release times if and only if
ie [t
min Z b1 [— <1
0<t<d; =1 t P;
The entire task set is schedulable under the worst case release time assignment if and only
if
. : c; |t
| —1<1.
0%, o3, 27 M <1
-]=l
5.8.4 Non-preemptive Schedulability Analysis

When preemption is not allowed, simple utilization based schedulability analysis
tests can not be used. Computation time-based tests and simulation-based tests must be
used.

Theorem 5.6.1 suggests a direct, computation time based test to determine whether
a particular priority assignment yields a valid schedule. Intuitively, this test checks that the
processor is not overloaded during the interval from when the task is invoked at its critical

instant until its deadline. Theorem 5.8.6 formally presents this schedulability analysis test.

62

Theorem 5.8.8 A periodic task set, T,, arranged in non-decreasing priority order, that

does not allow preemption is schedulable if

Ck Ci - di | ¢
+max() k1) <1V Th € .
(dk) 1<i<k \ dg +j=zk;-1 ([Pj] dk) ¢ "

Proof This theorem places a bound on the processor demand that may occur from the
critical instant of a task to the deadline of that task, for every task, Tk, without
that task missing a deadline.

Let task T be invoked at time i, its critical instant. The processor
demand, Dr7,, in the interval [tx,tx + di] due to task T} is cx. The processor
demand, Djgyer» in the interval [k, t + di] due to the lower priority task with
the largest computation time is max;<i<k(c;). The processor demand, Dhigher'

in the interval [tx, s + di) due to the higher priority tasks is bounded by

n dk
Dyigher < E ({— cil.
1gher L\ J

[di/p;] is the maximum number of times that each higher priority task may be
invoked during [tx, tk + di).

The total processor demand during the interval [tx, tx + di] must be less
than dj if T is to meet its deadline. Therefore, assuming worst-case demand
due to all higher priority tasks, the processor demand during [tk, tx + di] must

satisfy the following equation

ek + 12?<xk(c") + Zn: ([ﬂ =.| Cj) < dy.

i=k+1 \| P

Rearranging this equation by dividing through by dj yields

ck ci - di | ¢
— | + max (—) + ool Bl ISR B
(dk) 1‘2i<k dy. j=§-1 ([Pj.l dk)

Thus, if the above equation holds, then T} is guaranteed to meet its

deadline. Since Tx may be any task, the theorem is proved. []

This is a pessimistic test as it assumes that all tasks are independent and have the same

release time. It also includes the computation time of higher priority tasks that will occur

63

only after di. Theorem 5.8.7 presents a slightly less pessimistic schedulability analysis test

that does not include the computation time of higher priority tasks that will only occur
after dg.

Theorem 5.8.7 A periodic task set arranged in priority order, T,, that does not allow
preemption is schedulable if
¢ c; z dy| c; ¢; d ;
(d_i) +1"5‘?<’5: (jk) +j=zk;1 “ "J di +m (E];’ 1- I_P_fJ Z—i)] <1V Ti€ T
Proof Let task 7% be invoked at time tx, its critical instant. The processor demand
due to task T} in the interval [ty ¢i + di] is cx. The processor demand do to the
lower priority task with the maximum execution time in the interval [ti, tx + di]
is max)<ick(ci).
The processor demand do to the higher priority tasks in the interval
[tk,tx + di) is calculated as follows. The maximum number of periods that a
higher priority task, T;, can have during the interval [tx, tx + dy] is di/p;. For
each complete period, T; is completely executed once. The processor demand

due to the complete executions of task Tj is |dr/p;j]c;.

For the partial period, the processor demand may or may not be equal to
the computation time of task T;. If the difference (tx+di) — (tk+|dx/p;j)p;) is less
than c;, then the processor demand due to task T; is equal to dx —|dk/p;]p;. The
processor demand due to the partial period of task T; is therefore min(c;, di —

ldx/pjlpj)-

To ensure that T; meets its deadline, the processor demand during [tk, tx+

di] must satisfy the following equation

ck+ [max (e:) + Z Hd jcj+m1n (cj,dk— [EJ pj)] < dk.
<k j=k1 LLPi pj

Rearranging this equation by dividing through by d; yields

Ck = dj 1 . di P;
Sk 1 |2k B} <1,
(dk) + 1r2=<1~ (dk> +J.=inl H } dy. +min (c]’l |_ij dp)| — !

Thus, if the above equation holds, then T} is guaranteed to meet its

deadline. Since T may be any task, the theorem is proved. [|

This is a sufficient test to determine the validity of a particular priority assignment.

64

5.9 Advantages of the Static Priority Approach

The key advantage of the static priority approach is the simplicity of the imple-
mentation. A simple implementation maintains the priority of each task in a table with
the ready list kept in priority order, requiring a minimal amount of code to implement.
Therefore, little ROM space is used, critical for memory limited applications.

The information required to make a priority assignment is typically small, e.g.,
the RMS algorithm only requires the period of the tasks. In addition, the assignment of
priorities is accomplished by a simple sort of the tasks.

The LMS algorithm automatically identifies the most time critical tasks and as-
signs them the highest priorities. This is important when the task set contains sporadic
tasks with very tight deadlines.

The schedulability of a task set by the static priority approach may be determined
off-line by the use of utilization-based, critical instant-based, or simulation-based schedula-
bility analysis tests. Many of these schedulability analysis tests are easy to compute and
may be performed with accurate worst case execution times, release times, deadlines, and
periods.

Although the worst case schedulability analysis test in Theorem 5.2.3 suggests a
utilization of less than In 2 is required for a static priority algorithm to work, a utilization of
approximately 88% can usually be achieved [Leh90]. Critical instant-based and simulation-
based schedulability analysis tests can provide less pessimistic schedulability analysis tests.

Many of the practical problems that arise in actual real-time systems have been
addressed with possible solutions formulated. Task synchronization may be accomplished
by the Priority Ceiling Protocol that guarantees deadlock avoidance and provides a schedu-
lability analysis test, eliminating the possibility of unpredictable delays at run time. The
Sporadic Server algorithm may be used to schedule both hard and soft sporadic tasks with-
out compromising the schedulability of the task set.

In sporadic task sets there is always the possibility for a large number of tasks to
be ready to execute at the same time, t. When the demand for the processor exceeds the
available processor time for an interval starting at time ¢, we say that a transient overload
occurred at time t. Static priority algorithms provide a way to guarantee that critical tasks
will meet their deadlines during a transient overload. The critical tasks are assigned a high

priority; thus, they will be guaranteed to execute during the transient overload.

65

Both preemptive and non-preemptive static priority approaches may be used. This

allows the static priority approach to be used in a wide variety of environments.

5.10 Disadvantages and Other Issues of the Static Priority
Approach

Static priority-driven schemes are only capable of producing a very limited subset
of the possible schedules for a given task set, severely restricting the capability of priority-
driven schemes to satisfy timing and resource sharing constraints at run time. Therefore,
it is possible that the static priority scheduling approach will not yield a valid schedule
for a schedulable task set. For example, there are situations where, in order to satisfy all
timing constraints, it is necessary to let the processor be idle for a certain interval in time,
even though there are tasks that have arrived and are requesting use of system resources.
This is especially true when preemption is not allowed either because the system does not
allow preemption or because a task is utilizing a non-preemptable resource or executing in
a critical section.

The following example illustrates a case when inserted idle time is the only method

by which a valid schedule may be obtained.

Example 5.10.1 Consider the following two tasks represented by the 4-tuple, T = (r,¢,p,d):
T, = (1,2,10,9) and T, = (0, 12, 20, 20).
Scheduling these tasks with a non-preemptive static priority algorithm that does

not use inserted idle time yields the following schedule (repeated every 20 time units).

dlo dln d20

2 Tlo Ty,

T2° Tlo Tl]

0 1 10 11 12 14 16 20
Notice that T, misses its deadline at time 10 even though T\ has a higher priority

than T, if either RMS, DMS, or LMS is used.

The following valid non-preemptive schedule is obtained with inserted idle time.

66

d11 ’ d2o

Tl 0 T2° Tl 1

0 1 3 10 11 15 17 20
]

Clearly, some cases exist when a static priority scheduler must be able to insert
idle time in order to find a valid schedule. Knowledge of all future invocations of tasks is
required for a run-time scheduler to determine when and how much idle time to insert.

Actual execution orderings of tasks may not adhere to the original priorities of
the tasks due to priority inversion, making it difficult to verify that all timing and resource
constraints will be satisfied. The Priority Ceiling Protocol attempts to deal with this
problem for the special case when all tasks are independent; however, it is not efficient for
the general scheduling problem where precedence constraints often exist.

Due to the static nature of the static priority assignment, the addition of tasks to
the task set may invalidate the given priority assignment, forcing the priority assignments
to be recalculated. Recalculating the priorities requires the system to be halted. Thus,
dynamic systems are not efficiently handled by the static priority scheduling algorithms.

Mode changes are not easily handled by static priority scheduling algorithms; the
same task may have different priorities in different modes of operation. One possible way of
dealing with mode changes is to consider all tasks that will ever be run by the system and
assign a unique priority to each task. Thus, a single table may hold all priorities instead
of one table for each mode. Unfortunately, a task may have different characteristics in
different modes of operation requiring it to have multiple priorities. For example, task T
may have period ps = 10 in mode A and period pg = 5 in mode B. If all other tasks
remain unchanged, a different priority assignment must be calculated for modes A and B.

As has been noted previously, the determination of the worst-case execution time
for a task is difficult due to false paths and loops. Pessimistic estimates of worst-case
execution time will cause the utilization schedulability analysis tests to be even more pes-
simistic while optimistic estimates may cause the tests to falsely determine that a task set
is schedulable.

In addition, the timing behavior of such complex run time synchronization mecha-

nisms as rendezvous and monitors is often extremely difficult to predict with any certainty.

67

The use of such synchronization mechanisms by individual tasks allows individual tasks to
make important scheduling decisions even though individual tasks do not possess global
information about the system, making it virtually impossible for the scheduler to prevent
deadlocks and guarantee deadlines. In general, deadlock avoidance at run time requires
that the run time synchronization mechanism be conservative, resulting in situations where
a process is blocked by the run time synchronization mechanism even though it could have
proceeded without causing deadlock.

The static priority theory does not directly address the problem of distance con-
straints [HL92]. For example, under the presented static priority algorithms it is possible
that two consecutive invocations of a task are executed consecutively in time. This cor-
responds to the first invocation being executed at the end of the period and the second
invocation being executed at the beginning of the period. The opposite is also possible,
the first invocation is executed at the beginning of its period while the second invocation is
executed at the end of its period. This situation arises since the execution of a task in one
period is independent of the execution of the same task in any other period. The only way
to enforce distance constraints in a static priority schedule is to make those tasks that have
distance constraints a high priority, forcing the task to be executed near the beginning of its

period. Unfortunately, if there are multiple tasks with distance constraints, this approach

will not work.

5.11 Implementation of the Static Priority Approach Within
POLIS

5.11.1 Routines Implemented Within POLIS

Within the PoLis environment, the RMS, DMS, and LMS algorithms are imple-
mented. The assignment of priorities is performed using the standard quick sort routine in
the C libraries. No assumptions are made about the tasks when they are assigned priorities,
allowing the assignment of priorities to be performed in O(nln n) time. The designer must
guarantee that the task set satisfies the assumptions made by the algorithm being used.

Sporadic servers are not implemented within PoLis due to the large code size re-
quired to implement them. Consequently, the characteristics of soft sporadic tasks must

be manipulated by the designer to force them to a low priority. In addition, if hard spo-

68

radic tasks are present, the RMS algorithm should not be used. Only the DMS and LMS
algorithms correctly assign priorities to hard sporadic tasks when sporadic servers are not
used.

Since PoLis must be able to handle sporadic task sets, the implemented schedu-
lability analysis tests guarantee the schedulability of both periodic and sporadic task sets.
Soft tasks are ignored in the preemptive schedulability analysis tests since they do not af-
fect the schedulability of the task set. Soft tasks are not ignored in the non-preemptive
schedulability analysis tests since they affect the schedulability of the task set.

If the task set is completely periodic and preemption is allowed, a utilization based
schedulability analysis test is performed. The utilization based test is from Theorem 5.8.1.
This allows the same utilization based schedulability analysis test to be performed regardless
of which static priority algorithm is used to assign the priorities. In order to determine a
A for the schedulability analysis test, the A; for each task T; € 7, is determined. The
smallest A is used in the formula for determining the maximum possible utilization above
which the task set is not guaranteed to be schedulable. This is the worst case behavior,
since the smaller the A, the smaller the utilization bound.

If preemption is not allowed, the schedulability analysis test presented in Theo-
rem 5.8.7 is used to determine the schedulability of the task set.

If the utilization based test can not guarantee the schedulability of the periodic
task set, the task set is simulated through the LCM of the task set, allowing for a tighter
check on the schedulability of the task set at the expense of processing time. Thus, it is
unlikely that a periodic task set will be labeled as unschedulable when it is truly schedulable.
The simulation of the task set identifies those tasks that will miss deadlines, as well as, the
time at which they will miss them.

If the task set contains sporadic tasks, then a simple schedulability analysis test
is not possible to guarantee the schedulability of the task set. A complete simulation of
the task set is also not feasible due to the almost infinite number of possible invocation
times of the sporadic tasks. In order to guarantee the schedulability of the task set through
simulation, every possible schedule must be generated.

The schedulability analysis test used to guarantee the schedulability of sporadic
task sets is based upon the critical instant of a task. All tasks are assumed to be inde-
pendent with the same release time, and the task set is simulated through maxi<i<a(pi)-

The assumptions that all tasks are independent and that the critical instant for each task

69

// non-preemptive static priority scheduling routine; tasks are arranged

// in order by priority

scheduler()

{
task =0;
while(1) {

if(task ==0)

poll_inputs_and update_input_buffers();
if(is_ready(task)) {

execute(task);

task =0;
} else {

if((+4+task) > NUMBER_.TASKS) task =0;

Figure 5.2: Generated non-preemptive static priority scheduling routines.

will occur causes this test to be pessimistic, but it guarantees that problem tasks will be
identified.

5.11.2 Generated Scheduling Routines

PoLls generates a priority ordered array of tasks, referred to whenever a task of a
given priority is desired.

The non-preemptive static priority scheduling algorithm shown in Figure 5.2 uses
a polling based approach to determine the highest priority ready task. Starting with the
highest priority task and proceeding in priority order, tasks are checked until either a ready
task is found and executed to completion or all tasks have been checked, at which point the
checking begins again with the highest priority task.

Before the highest priority task is checked, all input buffers, the contents of which

indicate whether or not a task is ready to execute, are updated, essentially, polling all input

70

events.

The preemptive static priority scheduling routines shown in Figure 5.3 rely upon
interrupts to perform preemption. The interrupt handling routine is not provided any
information as to which event caused the interrupt; therefore, it updates all input buffers
and, starting with the highest priority task, searches for a ready task.

If the interrupted task is the highest priority task ready to execute, the interrupt
handler returns; otherwise, all ready higher priority tasks are executed before the interrupt

handler returns, allowing nested interrupts.

// main preemptive static priority scheduling routine; tasks are arranged

// in order by priority

scheduler()

{
task =0;
while(1)

task = check_and_execute_task(task);
current_task = NUMBER_TASKS;
if((++task) > NUMBER_TASKS) task = 0;

// checks given task and executes it if it is ready
check._and.execute_task(task)
{
if(is_ready(task)) {

current_task = task;

execute(task);

update_input_buffers();

task = -1;

}

return task;

// interrupt handling routine; updates input buffers and executes
// all higher priority tasks before returning to the interrupted task
interrupt_scheduler()
{
interrupted_task = current_task;
poll_inputs_and update_input_buffers();
task = 0;
while(task < interruptedtask) {
task = check.and_execute.task(task);
task++;
}
current_task = interrupted.task;

return; // return from interrupt

Figure 5.3: Generated preemptive static priority scheduling routines.

71

73

Chapter 6
Dynamic Priority Scheduling

6.1 Introduction

Dynamic priority scheduling algorithms are run-time scheduling algorithms that
assign a priority to each task at run time. The priority of a task may change at any time.
The continual reevaluation of task priorities causes dynamic priority scheduling algorithms
to have a high implementation overhead. To minimize the overhead, the priority assignment
is performed only when the priorities of the tasks may change, at the completion of a task
and the invocation of a task. Hardware support may be used to decrease or eliminate the
scheduling overhead. For example, a dedicated co-processor for the dynamic scheduler may
reduce the scheduling overhead to nearly zero [Mok83].

Typical dynamic priority scheduling algorithms do not assume any information
about future invocations of tasks, making it difficult to guarantee the schedulability of
a (possibly varying) task set. Dynamic priority scheduling algorithms that do not per-
form any type of schedulability analysis at run-time are referred to as dynamic best effort
scheduling algorithms. Dynamic priority scheduling algorithms that do perform some type
of schedulability analysis at run-time are referred to as dynamic planning-based scheduling
algorithms.

Dynamic best effort scheduling algorithms employ a purely priority-driven schedul-
ing approach. In a simple approach, at each instant that the priorities of the tasks may
change, every task that is either ready or running is assigned a priority. A task with the
highest priority is allocated the processor. This approach does not perform any type of

schedulability analysis. Therefore, it is not known when a timing constraint will be violated

74

until the constraint is actually violated.

Dynamic planning-based scheduling algorithms provide the flexibility of the dy-
namic best effort scheduling algorithms with the predictability of schedulability analysis.
In a simple approach, every dynamically arriving task is accepted for execution only if it is
found to be able to meet its deadline. The set of tasks in the system that have not com-
pleted execution comprise a schedulable task set, 7, and a newly invoked task is accepted
into the system if and only if the resulting task set, Tn41, is schedulable. This allows for
predictability with respect to individual task arrivals.

The two most popular dynamic best effort scheduling algorithms, Earliest Deadline
First (EDF) and Minimum Lazity First (MLF), are presented. The use of these algorithms
in a dynamic planning based approach is then discussed. The problems of task synchroniza-
tion, non-preemptive scheduling, and sporadic task scheduling are discussed. Finally, the
dynamic priority algorithms that are implemented within the PoLis co-design environment

are discussed.

6.2 Dynamic Best Effort Scheduling Algorithms

In dynamic best effort scheduling algorithms, a priority value is computed for
each task in the system based on the task’s characteristics, and the system schedules tasks
according to their priority. The validity and predictability of the system is determined
by extensive simulations, in conjunction with modifying task characteristics (usually by
recoding the tasks) to adjust priorities, allowing the designers to be confident that the
system will perform correctly under the tested operating conditions.

A commonly used dynamic best effort scheduling algorithm is the Earliest Deadline
First algorithm (EDF), an optimal scheduling algorithm that is guaranteed to find a valid
schedule if the task set is schedulable, presented by Liu and Layland in 1973 [LL73]. The
ready task with the nearest deadline is assigned the highest priority and is allocated the
processor.

Liu and Layland make the same assumptions about the EDF algorithm as they
do about the RMS algorithm.

A1: All tasks are periodic and are ready at the beginning of each period.

A2: The deadline of each task is equal to its period.

75

A3: Tasks are independent, i.e., no precedence or exclusion constraints exist between tasks.

Ad4: The execution time for each task is constant for that task and does not vary with

time.
AS5: Arbitrary preemption is allowed.

Liu and Layland were able to prove the following theorem under these assumptions.

Theorem 6.2.1 ([LL73)) When the EDF scheduling algorithm is used to schedule a set

of periodic tasks on a single processor, there is no processor idle time prior to a missed

deadline.

Liu and Layland used this theorem to determine an upper bound on processor

utilization, below which the EDF algorithm is guaranteed to schedule a periodic task set.

Theorem 6.2.2 ([LL73]) For a given set of n periodic iasks, the EDF scheduling algo-
rithm is valid on a uniprocessor if and only if

S«
1 Pi

Thus, so long as the total utilization of the tasks in the task set does not exceed 1 and
arbitrary preemption is allowed, the EDF algorithm is guaranteed to find a valid schedule
on a uniprocessor.

Dertouzos [Der74] was able to prove the optimality of the EDF algorithm on a
single processor for an arbitrary distribution of requests, i.e., the tasks are not necessarily

periodic.

Theorem 6.2.3 ([Der74]) The EDF algorithm is optimal in that if there ezists any al-
gorithm that can achieve scheduling of a single processor on an arbitrary distribution of
requests, hard deadlines, ezecution times, and arbitrary preemption is allowed then the EDF

algorithm will also achieve scheduling.

The proof follows from the ability to swap execution times of tasks in a valid
schedule such that the tasks are executed in EDF order without violating the validity of
the schedule.

76

A second commonly used dynamic best effort scheduling algorithm is the Minimum
Lazity First algorithm (MLF) (also known as the Least Lazity First algorithm), an optimal
scheduling algorithm in the same sense as the EDF scheduling algorithm. This algorithm
allocates the processor to the ready task with the minimum laxity, or time that the task
may wait to begin execution before it is guaranteed to miss its deadline. Essentially, the
MLF algorithm attempts to observe the time constraints that are placed upon the beginning
of service (the time by which the task must begin execution) for a task.

Mok [Mok83] proved the optimality of the MLF algorithm.

Theorem 6.2.4 ([Mok83]) The MLF algorithm is optimal in that if there ezists any al-
gorithm that can achieve scheduling of a single processor on an arbitrary distribution of
requests, hard deadlines, ezecution times, and arbitrary preemption is allowed then the MLF

algorithm will also achieve scheduling.

Both the EDF and the MLF algorithms have a complexity of either O(m) or
O(In m) depending upon the implementation, where m is the number of tasks that are
ready to execute.

Neither the EDF nor the MLF algorithm makes assumptions about future task
invocations. Nor do they perform any type of schedulability analysis test at run time. This

makes them very simple to implement, but it does not provide any guarantees as to the

schedulability of task sets.

6.3 Dynamic Planning-Based Scheduling Algorithms

Dynamic planning-based scheduling algorithms perform a schedulability analysis
test at run-time in conjunction with a dynamic best-effort scheduling algorithm. In this
way these algorithms attempt to guarantee the schedulability of a set of tasks.

The most common type of dynamic planning-based scheduling algorithm is one
in which a schedulability analysis test (often a utilization based test) is performed at each
task invocation on the set of active tasks! plus the invoked task. If the set of active tasks
plus the invoked task are found to yield a valid schedule, then the invoked task is accepted

into the active set and placed on the ready queue; otherwise, the task is rejected. In this

A task is considered to be active at time ¢t if it was invoked before ¢, but has not completed execution
by t.

77

way, the dynamic planning-based algorithm identifies tasks that will miss their deadline or
will cause other tasks to miss their deadlines.

Complex and exact schedulability analysis tests may be performed, but the execu-
tion time of the test limits the viable tests. A utilization based test, e.g., checking that the
utilization of all active tasks plus the utilization of the invoked task is less than 1, used in
conjunction with the EDF algorithm has a low execution time. However, a simulation-based
test that determines the exact sequence of executions of the tasks has a large execution time.
In general, the larger the expected maximum processor utilization by the tasks, the smaller

the allowable execution time of the schedulability analysis test.

6.4 Task Synchronization in Dynamic Priority Systems

Thus far tasks have been assumed to be completely preemptable, i.e., no exclusion
constraints exist between segments of the tasks. This is not always a realistic assumption
since it is often the case that tasks contain sections of code that must be executed atomically
and/or the tasks utilize non-preemptive resources. As in static priority systems, priority
inversion may occur in dynamic priority systems when exclusion constraints exist between
segments of tasks. Unfortunately, the PCP cannot be used if tasks do not have fixed
priorities.

A task synchronization protocol based on the PCP is used to prevent deadlocks
and still allow for schedulability analysis tests. The Dynamic Priority Ceiling Proto-
col (DPCP) [CL90] uses the notion of the dynamic priority ceiling of a semaphore to prevent
deadlock and chained blocking.

Definition 6.4.1 The dynamic priority ceiling of a semaphore S at time t is defined to
be the dynamic priority of the highest dynamic priority task that currently locks or may
lock S, at that time. The dynamic priority ceiling of a semaphore S;, denoted D(S;)(t).
represents the highest dynamic priority that a critical section guarded by S; can ezecute at

time t, either by normal or inherited priority.

Note, in determining the dynamic priority ceiling of a semaphore, the dynamic
priority of non-active tasks is determined and used in determining the dynamic priority of a
semaphore. For non-active tasks, the characteristics of the earliest possible task invocation

are used to determine the dynamic priority of a task.

78

Definition 6.4.2 (Dynamic Priority Ceiling Protocol [CL90])

1. Task T, which has the highest dynamic priority among the tasks ready to ezecute, is
allocated the processor. Let S* be the semaphore with the highest dynamic priority
ceiling of all semaphores currently locked by tasks other than T. Before task T enters
its critical section, it must first obtain the lock on the semaphore S guarding the shared
data structure. Task T will be blocked and the lock on S will be denied if the dynamic
priority of task T is not higher than the dynamic priority ceiling of semaphore S*.
In this case, task T is said to be blocked on semaphore S* and to be blocked by the
task that holds the lock on S=. Otherwise, task T will obtain the lock on semaphore
S and enter its critical section. When a task T ezits its critical section, the binary
semaphore associated with the critical section will be unlocked and the highest dynamic

priority task, if any, blocked by task T will be awakened.

2. A task T uses its dynamic priority, as determined by the original characteristics of the
task, unless it is in its critical section and blocks a task, Ty, with task characteristics,
either initial or inherited, that would make T have a lower dynamic priority than Ty.
If task T blocks a task that would normally be assigned a higher dynamic priority than
T, T inherits Ty, the set of task characteristics of task Ty, either initial or inherited,
that make Ty the highest priority task of the tasks blocked by T. This is equivalent to
saying that T inherits the dynamic priority of the task Ty, the task with the highest
dynamic priority blocked on S whose dynamic priority is greater than that of task T.
When T ezits a critical section, it resumes the set of task characteristics that it had at
the point of entry into the critical section. That is, when T ezits a critical section, it
resumes its previous task characteristics that may not be its initial task characteristics.
Dynamic priority inheritance is transitive. Finally, the operations of dynamic priority

inheritance and of the resumption of previous dynamic priority must be atomic.

3. A task T, when it does not attempt to enter a critical section, can preempt another
task Ty if its dynamic priority is higher than the dynamic priority at which task Ty

is currently erecuting.

As with the PCP, under the DPCP a high dynamic priority task may be blocked by
alower dynamic priority task in one of three situations. First, the high dynamic priority task

may be directly blocked by the lower priority task; a high dynamic priority task attempts

79

to lock a locked semaphore. This direct blocking is necessary to ensure the consistency
of shared data. Second, a medium dynamic priority task, T},, may be blocked by a low
dynamic priority task, T}, that is executing at the dynamic priority of a higher dynamic
priority task, T}. that it is blocking. This indirect blocking is necessary to avoid having a
high dynamic priority task, T}, being indirectly preempted by the execution of a medium
dynamic priority task, Ty,. Third, a high dynamic priority task T, may be blocked when
it attempts to lock on a semaphore and a lower priority task 7} already has the lock on a
semaphore that T;, may attempt to lock. This ceiling blocking is necessary to avoid deadlock
and chained blocking.

In order to prove some properties about the DPCP, the following definitions and
notation regarding semapiores and critical sections are made.

A binary semaphore guarding shared data and/or non-preemptive shared resources
is denoted by S. The j th ¢ritical section of task T; is denoted by s;;. The semaphore that
guards critical section s;; is denoted by S;;. The computation of critical section s;; is
denoted by c;,, .

Critical sections are assumed not to be nested, i.e., for any pair of critical sections

sij and sk, sij N sk = 0.

Definition 6.4.3 ([SRL90]) A task T; is said to be blocked by the critical section si; of
task T} if Ty has a lower priority than T; but T; has to wait for Ty to ezit si; in order to

continue ezecution.

Definition 6.4.4 ([SRL90]) A task T; is said to be blocked by task T} through semaphore
S, if the critical section si; blocks T; and S = S.

The schedulability of a task set is dependent upon the amount of blocking that may
be experienced by the tasks in the task set. Since a dynamic priority scheduling algorithm is
being used, it is possible that task T; may be blocked by any task T; such that d; < d; that
may lock a semaphore S that may also be locked by T;. Let B;; = {s;x|(sjx can block T;)A
(Asjm € Bij such that s C sjm)} denote the set of non-nested critical sections of task T}
that can block T;. The set B;; contains the longest critical sections of T} that can block T;.
Note, B;; = Bj;. Let By = Uj B;; denote the set of non-nested critical sections of all tasks

T; such that d; < d; that can ever block T;.

80

Lemma 6.4.1 A task T; can be blocked by a lower dynamic priority task T only if T; is
ezecuting within a critical section s;; € By when T} acquires the highest dynamic priority
of all tasks.

Proof By the definition of the dynamic priority ceiling protocol and Bxi, Ti may block
Ty, only if it holds the semaphore upon which T}, is blocked or has its dynamic
priority raised above that of T), through priority inheritance or holds a semaphore
in By In any case, the critical section currently being executed by Tj is in B
since T}, is the highest dynamic priority task. If T} is not within a critical section

s1; € B, then Tj can be preempted by Ty and can never block T}. []
Lemma 6.4.2 ([CL90)) A task can be blocked only before it enters its first critical section.

Lemma 6.4.3 A task T, can be blocked by a lower dynamic priority task T; only if the
dynamic priority of task Ty, is no higher than the highest dynamic priority ceiling of all the
semaphores that are locked by all lower dynamic priority tasks when T}, becomes the highest

dynamic priority task ready lo ezecute.

Proof Suppose that when T}, is invoked, the dynamic priority of task T}, is higher than
the highest dynamic priority ceiling of all the semaphores that are currently
locked by all lower dynamic priority tasks. Thus, by definition of the dynamic
priority ceiling of a semaphore, T, does not require any of the semaphores that
are currently locked. Since T is the highest dynamic priority task ready to
execute, it will execute until either it completes execution or a higher dynamic

priority task Ty becomes ready to execute.

If T, executes until completion, it will never be blocked since no task
holds the lock on a semaphore that it requires and no lower dynamic priority
task will execute before it completes. If Ty preempts T, and never becomes
blocked, T}, can never be blocked since all semaphores that were locked by Ty
will be unlocked by Ty before T} resumes execution. If Ty preempts T and
then becomes blocked, the blocking task T; will execute for at most the span
of one critical section at the dynamic priority of Ty. After T; exits its critical

section it reverts to its previous dynamic priority.

If, at the time that Ty preempts Th, T, has already entered its first
critical section, then by Lemma 6.4.2 T}, will not be blocked by any task. If, at the

81

time that Ty preempts Th, T, has not entered its first critical section, then until
Ty completes its execution, T, will not be the task with the highest dynamic
priority. Thus, T, will not execute until after Ty has completed execution.
During the time between the invocation of Ty and the completion of Ty a lower
priority task can only unlock a semaphore. This follows from the definition of
dynamic priority ceiling protocol. Thus, no semaphores that may be required
by T, will be locked by a lower priority task, and T, will never be blocked by a

lower priority task. |

Lemma 6.4.4 Under the dynamic priority ceiling protocol a high dynamic priority task Tj
can be blocked by a lower dynamic priority task T; for at most the duration of one critical

section of By regardless of the number of semaphores Ty, and T; have in common.

Proof By Lemma 6.4.1, for T} to block T, T; must be currently executing a critical
section s;; € Bp. Once T; exits s;;. it can be preempted by T, and T, cannot

be blocked by 7; again. [

Lemma 6.4.5 ([CL90]) The priority inherited by a job cannot be higher than the highest

priority ceiling of those critical sections the job has locked.

Lemma 6.4.6 ([CL90]) At any time, among the semaphores that are currently locked
by tasks with non-inherited dynamic priorities lower than P, at most one semaphore has

dynamic priority ceiling higher than or equal to P.

Theorem 6.4.1 ([CL90]) Chained blocking is impossible using the dynamic priority ceil-

ing protocol.
Theorem 6.4.2 ([CL90]) The dynamic priorily ceiling protocol prevents deadlocks.
Chen and Lin derived a utilization based schedulability analysis test for the DPCP.

Theorem 6.4.3 ([CL90]) A set of n periodic tasks can be scheduled by EDF using the
dynamic priority ceiling protocol if the following condition is satisfied:
n

Zci+Bi <1
i=1 pi

where B; is the duration of the longest critical section in Bj.

82

6.5 Non-Preemptive Dynamic Priority Scheduling

The problem of scheduling a set of tasks non-preemptively on a single processor
was studied by Jeffay et.al. [JSM91]. Jeffay et.al. were able establish necessary and sufficient
conditions for the non-preemptive scheduling of a task set when the period is equal to the
deadline. The following theorem establishes necessary conditions for the schedulability of a

periodic task set with period equal to deadline.

Theorem 6.5.1 ([JSM91]) Let 7, = {T1, T2, ... , Ta} be a set of periodic tasks with

arbitrary release times sorted in non-decreasing order by deadline. If 1, is schedulable then

1. Z?:I %:' S 1.

2.Vi,1<i<n;VL,;y < L < p;;

L>c+¥iz} [LP—-JIJ ¢;.

The first requirement states that the processor cannot be overloaded. In a single
processor system, the sum of the utilization of all the tasks in the task set 7, must be less
than or equal to one (assuming there is no scheduling overhead). _

The second requirement states that for a set of tasks to be schedulable, the demand
for processor execution time in the interval L must always be less than or equal to the length
of the interval. This is equivalent to saying that the processor may not be overloaded
during any interval L. This requirement appears to be similar to the requirement that
the total utilization of the processor not exceed one, but it can be shown that these two
requirements are not related. It is possible to conceive of both schedulable task sets that
have a processor utilization of one, and unschedulable task sets that have arbitrarily small
processor utilization.

Requirements (1) and (2) from Theorem 6.5.1 are also necessary for scheduling a

sporadic task set non-preemptively.

Corollary 6.5.1 ([JSM91)]) If a set of sporadic tasks 7, = {Th, T2, ... , Ty}, sorted in
non-decreasing order by deadline, is schedulable, then T, satisfies requirements (1) and (2)
from Theorem 6.5.1.

Jeffay et.al. went on to demonstrate the existence of a non-preemptive scheduling

algorithm that is guaranteed to schedule any periodic or sporadic task set that satisfies the

83

necessary conditions. The chosen algorithm is the non-preemptive EDF algorithm. In this
formulation, the EDF algorithm assigns the ready task with the earliest deadline to the
processor (ties broken arbitrarily). Once a task is assigned to the processor, the task is
allowed to run to completion.

The following theorem demonstrates the universality of the non-preemptive EDF
scheduling algorithm for sporadic task sets. That is, if any non-preemptive scheduling algo-
rithm schedules a set of sporadic tasks, then the non-preemptive EDF scheduling algorithm
will schedule the same set of tasks as well. To prove universality, it suffices to show that re-
quirements (1) and (2) from Theorem 6.5.1 are sufficient to ensure that the non-preemptive

EDF scheduling algorithm schedules any set of sporadic tasks with specified release times.

Theorem 6.5.2 ([JSM91]) Let 7, = {T1, T2, ... , Tx} be a set of sporadic tasks sorted
in non-decreasing order by deadline. If T, satisfies requirements (1) and (2) from Theo-

rem 6.5.1, then the non-preemptive EDF scheduling algorithm will schedule Ty,.

The following corollary shows that the non-preemptive EDF scheduling algorithm

is universal for scheduling periodic tasks.

Corollary 6.5.2 ([JSM91]) Let 7, = {T1, T, ... , Tn} be a set of periodic tasks sorted
in non-decreasing oder by deadline. If T, satisfies requirements (1) and (2) from Theo-

rem 6.5.1, then the non-preemptive EDF scheduling algorithm will schedule T;,.

It can also be shown that the non-preemptive MLF scheduling algorithm is uni-
versal for sporadic and periodic task sets. To prove universality, it suffices to show that
requirements (1) and (2) from Theorem 6.5.1 are sufficient to ensure that the non-preemptive
MLF scheduling algorithm schedules any set of sporadic tasks with specified release times.

For following definition is used for the proof of Theorem 6.5.3.

Definition 6.5.1 The laxity deadline of a task, T;, is equal to the deadline of the task, d;,

minus the computation time of the task, c;.

Theorem 6.5.3 Let 7, = {Th, T2, ... , Tn} be a set of sporadic tasks sorted in non-
decreasing order by deadline. If T, satisfies requirements (1) and (2) from Theorem 6.5.1,

then the non-preemptive MLF scheduling algorithm will schedule 7,,.

Proof By contradiction. Assume that 7, satisfies conditions (1) and (2) from Theo-
rem 6.5.1, and there exists an assignment of release times such that a task misses
a deadline at some point in time when 7, is scheduled by the non-preemptive
MLF scheduling algorithm. The proof proceeds by deriving upper bounds on
the processor demand for an interval ending at the time at which a task misses

a laxity deadline.

Let t4 be the earliest time at which a laxity deadline is missed. 7, can

be partitioned into three disjoint subsets:

$°° = the set of tasks that have an invocation with a
laxity deadline at time tg4.
Se¢ = the set of tasks that have an invocation occurring
prior to time ty with a laxity deadline after ¢g4.
S3 = the set of tasks not in S or S¢.
To bound the processor demand prior to ¢4 it suffices to examine only
Se. Let ry,ra, -+ , 7 be the invocation times of the tasks in S¢. There are two

cases to consider.

Case 1: None of the invocations of tasks in S¢ occurring at times ry,r2,-++ , Tk

are scheduled prior to tg.

Let tg be the end of the last interval prior to ¢4 in which the processor was
idle. If the processor has never been idle let to = 0. In the interval [to, ta},
the processor demand, Dy, ;. is the total computation requirement of the
tasks that are invoked at or after tg with laxity deadline at or before time
tq. This yields

Dolta—t
D[‘o'fd] < Z l Oj G-

i=1 pJ
Since there is no interval during which the processor is idle in the interval

[to,td] and since a task misses a deadline at tq, it follows that Dy, >
tq — tg. Thus,

p

| tea—to Doty —t
td_to<2l : JCJ'SZ 'OCj
j=1L Pi

=1 Pi

84

which yields the following relation

However, this contradicts the assumption that condition (1) is met.

Case 2: Some of the invocations of tasks in S¢ occurring at times ry,r2,+++ , Tk

are scheduled prior to t4.

Let T;, allocated the processor at time t; < tg, be the last task in S¢
scheduled prior to time t4. Note that if the processor is ever idle during the
interval [t;, 4], then the analysis of Case I can be used where t; < to < t4.
Therefore, assume that the processor is never idle during the interval [¢;, £4).
Let T, be a task that misses a laxity deadline at time t4. Due to the
choice of T; and the use of the MLF scheduling algorithm, if follows that
t; < tg—pr+ck. It also follows that every task other than task 7; executed in
[t:, t4) must have a laxity deadline at or before {4 due to the MLF algorithm.
Therefore, other than task T, no task that is scheduled in [t;, 4] could have
been invoked at time ¢;. If such a task exists, then that task woild have
been allocated the processor at time ¢; and not task 7;.

Two cases arise depending upon the computation time of task 7;.

Case 2.1: The computation time of task T;, ¢;, is less than the computation

time of task Ty, ck, ¢; < cx.

The relationship between the periods of task T3, p;, and the period of
task Tk, pk, is unknown. Because of this, the processor demand during
the interval [t;,t4 4+ cx] must be calculated by considering all tasks in
the task set.

In the interval [¢;, 24+ ck], the processor demand, Dy, 1,4c,), is the total
computation requirement of the tasks that are invoked at or after time
t; with a deadline at or before time T, + c;. This yields

Diitater) < 3 [titck——ttJ Cj.
~ P;
Since there is no interval during which the processor is idle in the in-

terval [t;,tq + cx] (this is easily seen since the processor is not idle in

85

the interval [t;,¢4] and T} misses its laxity deadline at time t4, i.e., Tk
is not allocated the processor before time t4, Ty may be allocated the
processor after t4 ensuring that there is no idle time in the interval
[ti,ta + ck)) and since task T will miss its deadline at time ¢4 + ¢ (this
follows from T missing its laxity deadline at time t;), it follows that

D[t.,td+ck] S>lg+cr— t;. Thus,

n n
t cr —t; tg+cr—1;
td+ck—ti<§ l;ﬁ#Jc"Sg _d__’f_.lcj

= pj i=1 Pj

which yields the following relation

This contradicts the assumption that condition (1) is met.

Case 2.2: The computation time of task T;, c;, is greater than or equal to
the computation time of task Ty, ck, ¢; 2 ck.
The period of task T; is larger than the period of task Tj.
Since p; > tq + cx — t; only tasks T)--- T; need to be considered in
computing the processor demand during [t;,ta + ck), Dy, t44c,]- Since
the invocation of task T; that is scheduled at time ¢; has a laxity deadline
after time ¢4, all task invocations occurring prior to time ¢; with laxity
deadlines at or before t; must have been completed by time t;; thus,
they do not contribute to Dy, ;). Since none of the invocations of tasks
Ty -+ T;_, that are scheduled in the interval [t;, ¢4+ cx] occurred at or
before time t;, the demand due to these tasks during [t;, ¢4 + ck] is the
same as the demand during the interval [t; + 1,tq + c).
These observations, plus the fact that the invocation of task T; sched-
uled at time ¢; must be completed before time ¢4, indicate that the
processor demand in [t;,t4 + cx] is bounded by

i—1
ta+cr—(t;+1
D[lnid+ck] <eat Z l d k Pj()j cj.

i=1

Since there is no idle time in [t;,tq + cx] and a task missed a laxity

deadline at tg4, it follows that D[,'.', atex] > td+ ok — i

Let L =ty — t; + cx. Substituting L into the above equation yields

i-1 L-1
D[‘htd‘*'ck] e+ E l J 5.

i=1 p"

Since a task misses its deadline at time tq+ck, Dy, 2 4¢,] > td +Ck —ti.

Combining this with the above equation yields

S L-1
L<D[tivfdlsci+2l : Jc_,'.
j=1 pj

Since p; > tg+cr—t;=Land t; <ty—pr+cr,tat+ck—ti > pr > p1;
thus L > p,. Therefore, condition (2) is violated. .

6.6 Sporadic Task Scheduling in Dynamic Priority Systems

Only periodic task sets have been addressed for dynamic priority systems to this
point. Due to the existence of sporadic tasks in real-world applications, dynamic priority
scheduling algorithms must be able to correctly handle sporadic tasks.

Hard sporadic tasks are easily handled by both dynamic best effort scheduling algo-
rithms and dynamic planning based scheduling algorithms. Dynamic best effort scheduling
algorithms schedule hard sporadic tasks as if they were hard periodic tasks. Thus, neither
the EDF nor the MLF algorithms needs to be modified to handle sporadic tasks with hard
deadlines. However, the given schedulability analysis tests for these algorithms are unable
to handle sporadic tasks. Specifically, simple utilization based tests do not account for the
possibility of transient overload.

Critical instant-based schedulability analysis tests must be used when sporadic
tasks are present. The following theorem establishes necessary conditions for schedulability

for a task set that contains sporadic tasks.

Theorem 6.6.1 Let 7, = {T},... T,}, arranged in non-decreasing order by deadline, d, be

a set of sporadic and periodic tasks. If T, is schedulable, then
c
1. z;l:l ;i' S 1.

2.Vi,1Li1<n;VL,dy) £ L <L d;

88

Proof The contrapositive of the theorem is proven: if a set of tasks 7, does not satisfy
condition (1) or condition (2), then there exists a task set, ., with specified

release times, generated from 7,, that is not schedulable.

The worst case processor utilization of a sporadic task occurs when it

acts like a periodic task.

Consider the set of tasks 7,, = {T1,... ,Tn} where each task has a
specified release time of r = 0. Let t = p; -p2-...- pn. In the interval [0,¢],
task ¢ must receive (t/p;)c; units of processor time to ensure it does not miss a
deadline in the interval. Therefore, the total processor demand, D, for all tasks

during the interval [0,¢] is
n
t
D= Z —c;.
i=1 p]

Dividing this equation by ¢ yields

kS

J

=

D_gc
t =
If condition (1) does not hold, then D > t, and hence T, is not schedulable.

For condition (2), consider the set of tasks 7, = {Th,... ,Tn} where
each task has a specified release time of r = 0. Consider the interval L, where

d; < L < d;. The processor demand, D, in the interval [0, L] is given by

The demand consists of the processor demand due to tasks that will have
a deadline within [0, L]. Note that tasks with deadlines greater than d; have no
invocations with deadlines in the interval [0, L], and hence do not contribute to

the processor demand in the interval [0, L.

If condition (2) does not hold, then D > L, and hence 7y, is not schedu-
lable. [|

Dynamic planning based scheduling algorithms handle hard sporadic tasks. The
off-line schedulability analysis tests are the same as for the dynamic best effort scheduling

algorithms. If the dynamic planning based scheduling algorithm uses knowledge about

89

future invocations of a task in deciding schedulability at run-time, then the worst case
processor demand and the worst case task phasings for the sporadic tasks must be assumed.

Soft sporadic tasks may be handled by use of a sporadic server task. Spuri and
Buttazzo [SB94] present five sporadic server algorithms for use with EDF. The Dynamic
Priority Exchange (DPP), Dynamic Sporadic Server (DSS), Total Bandwidth (TB), EDL,
and Improved Priority Exchange (IPE) algorithms minimize the average response times of

the soft sporadic tasks.

6.7 Advantages of the Dynamic Priority Approach

The main advantage of the dynamic priority approach is its ability to obtain a high
processor utilization. When arbitrary preemption is allowed, dynamic priority scheduling
algorithms may obtain a processor utilization of one for any task set satisfying the assump-
tions of the scheduling algorithm. Static priority scheduling algorithms may obtain this
utilization only when the periods of the tasks are harmonics.

The major characteristics of the tasks do not need to be known in advance. Only
the information required to determine priorities (and perform a schedulability analysis test
if a dynamic planning based algorithm is used) needs to be known, and this information
may be provided by the task when it is invoked.

Dynamic priority algorithms are flexible. They can adapt to changes in their
environment, requiring no special processing for mode changes or changes in the task set.

Utilization based schedulability analysis tests may be used to determine a priori
whether a task set is schedulable by the dynamic priority approach. These same tests may
also be used by the dynamic planning based approach.

Sporadic tasks are easily handled by the dynamic priority approach. This is im-
portant especially when the sporadic tasks have hard deadlines. Sporadic servers may be
used to give soft sporadic tasks a low average response time.

Task synchronization may be accomplished by use of the Dynamic Priority Ceiling

Protocol that guarantees deadlock avoidance and prevents unpredictable delays at run time.

90

6.8 Disadvantages and Other Issues of the Dynamic Prior-

ity Approach

In order to obtain a high processor utilization the dynamic priority approach must
be able to handle multiple levels of preemption efficiently. The physical characteristics of
the system can limit the number of nested interrupts that are allowed, e.g., the stack size
and the way it is used can limit the number of nested interrupts. Preemption causes the
scheduler to have a high overhead, due mainly to context switches, and causes unpredictable
delay in task execution.

Dynamic best effort scheduling algorithms have a limited knowledge of the task
characteristics of the active tasks in the system. In addition, they do not have information
on the future invocations of tasks, increasing the chances that a valid schedule will not be

found.

If the scheduler does not have [any knowledge about the major characteristics of
tasks that have not yet arrived in the system] then it is impossible to guarantee
that all timing constraints will be satisfied, because no matter how clever the
scheduling algorithm is, there is always the possibility that a newly arrived task
possesses characteristics that will make that task either miss its own deadline,
or cause other tasks to miss their deadlines. This is true even if the processor
capacity was sufficient for the task at hand. [XP90]

As with the static priority approach, the dynamic priority scheduling approach
sometimes has difficulty handling practical problems. Task synchronization is possible, but
the run time task synchronization mechanism must be conservative to avoid deadlock. This
results in situations where a task is blocked by the run time synchronization mechanism even
though it could have proceeded without causing deadlock, reducing the level of processor
utilization.

The dynamic priority approach does not directly address the problem of distance
constraints. The only possible way to guarantee distance constraints is to give those tasks
with distance constraints a high priority. Since the designer does not have direct control
over the run-time priority of a task, the pertinent task characteristics must be modified to

ensure that distance constraints will be met.

91

6.9 Implementation of the Dynamic Priority Approach Within
POLIS

6.9.1 Routines Implemented Within POLIS

The preemptive and non-preemptive EDF and MLF best-effort scheduling algo-
rithms are implemented within PoLis. Sporadic servers are not implemented due to their
large code. Consequently, soft sporadic tasks are relegated to background service.

The schedulability of the task set is guaranteed off-line. For purely periodic task
sets, the preemptive implementation uses the utilization-based test presented in Theo-
rem 6.2.2. For the non-preemptive implementation, the task set is verified to meet the
conditions in Theorem 6.5.1.

When sporadic tasks are present, all tasks are verified to meet their deadlines when
invoked at their critical instant, assuming all tasks are independent. Any tasks that are not

guaranteed to meet their deadlines are identified, providing useful feedback to the designer.

6.9.2 Generated Scheduling Routines

The deadlines (and computation times for MLF) of all tasks in the system are
stored in a table. A table containing all soft tasks is also present. The scheduling routines
refer to these tables when determining the deadline times and laxities of tasks as well as
identifving soft tasks.

The dynamic schedulers generated by PoLis rely upon interrupts to perform cor-
rectly. It is only with the use of interrupts that deadline times and laxities may be correctly
determined. Knowing the invocation time of a task is critical to determining its deadline
time and laxity.

For the non-preemptive scheduler shown in Figure 6.1, the interrupt handling
routine identifies all invoked tasks and places them on a ready queue in dynamic priority
order. The main scheduling routine non-preemptively executes the highest priority task on
the ready queue.

For the preemptive scheduler shown in Figure 6.2, the interrupt handling routine
performs all functions of the scheduler. All invoked tasks are identified and placed on a
ready queue. The highest priority task in the ready queue is then executed. The interrupt

routine exits when the highest priority task is the task that was interrupted. This interrupt

92

handling implementation prevents the need for complex context switching software, reducing

the memory requirements of the scheduler.

// main scheduling routine that executes the highest priority task
scheduler()
{
while(1) {
execute(highest_priority_task());

// interrupt handling routine
interrupt_handler()
{
poll_inputs_and_update_input_buffers();
// £ind the ready tasks and put them on the ready list
for(task =0; task < NUMBER.TASKS; task++) {
if(is_ready(task)) {
if(not_onready.list(task)) {

placeon.read list_inorder(task);

}

return; // return from interrupt

Figure 6.1: Generated non-preemptive dynamic priority scheduling routines.

93

// main scheduling routine that should never execute a task
// it is used as a safety net
scheduler()
{
while(1) {
execute(current_task = highest_priority_task());
current_task = NUMBER_TASKS;

// interrupt handling routine; all tasks should be executed from
// this routine
interrupt_handler()
{
interrupted_task = current_task;

poll_inputs_and_update_input_buffers();

// £ind the ready tasks and put them on the ready list
for(task =0; task < NUMBER_TASKS; task++) {
if(is_ready(task)) {
if(not_on.readylist(task)) {

place.on read list_in order(task);

}

place_on ready.list_in_order(current.task);
while((current_task = highest priority.task()) != interruptedtask)
execute(current_task);

return; // return from interrupt

Figure 6.2: Generated preemptive dynamic priority scheduling routines.

94

95

Chapter 7

Results

7.1 On-Line Scheduling Overhead

7.1.1 Derived Bounds for the On-Line Scheduling Overhead

Bounds on the execution cycles for each of the generated scheduling algorithms
were determined via hand simulation. The calculated execution times do not take into
account context switching overhead or interrupt latency time, i.e., time to react to an
interrupt. The execution cycles of blocks of code were determined using the cycle time
estimator within PoLis. The cycle time estimator calculates the number of cycles required
to execute the given block of code on the Motorola HC11 microcontroller with a maximum
error of 20%.

By simulating the code, upper and lower bounds on the number of cycles required
by the scheduler were obtained. Table 7.1 presents the derived bounds for the presented
scheduling algorithms that do not use interrupts, Round Robin, Pre-Run-Time, and Non-
Preemptive Static Priority.

Table 7.2 presents the derived bounds for the presented scheduling algorithms
that use interrupts, Preemptive Static Priority, Non-Preemptive Dynamic Priority, and
Preemptive Dynamic Priority. Upper and lower bounds on the execution cycles of the
interrupt handling routines are also presented.

The cycle timing dependence upon the number of events in the system, Ng, arises
from the method in which events are detected. When the occurrence of an event is checked

for, all events are checked. 135 clock cycles are required to check for the presence of an

Table 7.1:

Minimum Maximum
Execution Execution
(cycles) (cycles)

Round Robin

80+ 135 Ng | 80+ 260 Ng+ 80% Nt

Pre-Run-Time

70+ 135 * Ng

70+ 260+ Ng

Non-Preemptive
Static Priority

150 + 135 Ng | 40 + 260 * Ng + 160 * Nt

96

Range of possible execution cycles for non-interrupt scheduling rou-
tines synthesized by PoLis with Ng = number of events in the system and Nt

number of tasks in the system.

Minimum Maximum Minimum Maximum
Interrupt Interrupt Execution Execution
(cycles) (cycles) (cycles) (cycles)

Preemptive 360+ 135« Ng | 285+ 135 % Ng 150 2854 135 % Ng
Static Priority +75 % Priorityp +75 * Priorityr
Non-Preemptive | 460+ 135 % Ng | 300 + 135 * Ng 80 300+ 135 Ng

Dynamic Priority +160 * Nt 4160 x Nt
Preemptive 265+ 135 Ng | 265+ 135% Ng 80 265+ 135+ Ng

Dynamic Priority 480 x Nt +240 * N1 +240 * N1

Table 7.2: Range of possible execution cycles for interrupt scheduling
tines synthesized by Pouis with Ng = number of events in the system, Nt

rou-

number of tasks in the system, and Priorityy = the priority of the interrupted task, 7.

97

event, and an additional 125 clock cycles are required to update the appropriate input
buffers if an event is present.

The cycle timing dependences upon the number of tasks in the system, N7, and the
priority of the interrupted task, Priorityp, arise from the order in which tasks are checked
to find the highest priority task that is ready to run. In the worst-case, all tasks must be

checked before the highest priority task that is found.

7.1.2 Average On-Line Scheduling Overhead

The derived bounds for the on-line scheduling overhead allow for a pessimistic
worst-case analysis, guaranteeing the predictability of the system. However, this worst-
case analysis does not provide any insight into what the average scheduling overhead might
be. The average scheduling overhead is of interest since it provides information as to how
pessimistic an estimate the worst-case scheduling overhead is in the typical case.

To determine an average scheduling overhead per executed task, various task sets
consisting of independent periodic tasks were simulated through 100000 cycles (where one
cycle corresponds to a time period equal to the least common multiple of the task peri-
ods) for each of the scheduling algorithms. The total execution time of the scheduling
routines was divided by the total number of tasks executed during the simulation to arrive
at the scheduling overhead per executed task (scheduling overhead). This overhead does
not include context switching time or interrupt latency.

Figures 7.1, 7.2, 7.3, 7.4, 7.5, and 7.6 show the observed average scheduling
overhead for the Round Robin, Pre-Run-Time, Non-Preemptive Static Priority, Preemp-
tive Static Priority, Non-Preemptive Dynamic Priority, and Preemptive Dynamic Priority
scheduling algorithms respectively. The observed average scheduling overhead is not repre-
sentative of all task sets or even all periodic task sets. The observed scheduling overheads
only indicate what the average scheduling overhead might be for a ‘typical’ task set.

All scheduling algorithms exhibit a strong relation between scheduling overhead
and number of events in the system. This is expected because of the event detection routine
used in all implementations.

Figures 7.7 and 7.8 show the relationship between the average scheduling overhead
and the worst-case scheduling overhead as a function of the number of tasks in the system

for a fixed number of events. As the figures show, the larger the number of tasks in the

Averago Cydes

98

Round Robin Schoduling - Avorage Scheduling Overhoed per Task Exacution

Averago Cydos
4000 -~
3500
3000
2500
2000
1500
1000

15

10
Number of Evants

Numbor of Taska

18 °

Figure 7.1: Average Round Robin scheduling overhead.

Pro-Run-Time Schaduling - Average Overhead per Task Execution
2500 v T T T T T

1800 e

o M M N . " " .

8
Number of Events

Figure 7.2: Average Pre-Run-Time scheduling overhead.

Non-Proeemptive Static Priority Schoduling - Avarage Schoduling Ovarhoad per Task Exocution

Average Cycles

L S I A]

16

10
Number of Evonts
Numbor of Tasks 1

15 °

Figure 7.3: Average Non-Preemptive Static Priority scheduling overhead.

Preomptive Statc Priority Scheduling - Averaga Schoduling Overhoad par Task Exccution

Avcrage Cycioa
3000 -
2500
2000
1500
1000
500
]

16

10
Number of Events
Number of Tasks '©

Figure 7.4: Average Preemptive Static Priority scheduling overhead.

99

100

Non-Proemptivo Dynamic Priority Schoduling - Averago Scheduling Overhead per Task Exocution

15

o - 10
T Numbar of Events
Numbar of Tasks 19

Figure 7.5: Average Non-Preemptive Dynamic Priority scheduling overhead.

Preamptiva Dynamic Priority Schaduling - Averago Scheduling Overhoad por Task Exocution

18

o T “10
Numbar of Events

Number of Taska

15 o

Figure 7.6: Average Preemptive Dynamic Priority scheduling overhead.

101

Preamptive Static Schoduling Overhoad - Max. va Ave. for 8 E
T T

2600 v T Y
: *PreStatic” | -e—
"PreStal ax" —--
| -
2400 | / v
/,’-
2200 bt g e .

1600

1400

N
10 12 14

Numbor of Taska

Figure 7.7: Average Preemptive Static Priority scheduling overhead compared with the
maximum possible scheduling overhead.

system, the more pessimistic the worst-case scheduling overhead is when compared with the
average scheduling overhead. This relationship is evident in all of the scheduling algorithms
except the Pre-Run-Time scheduling algorithm; the Pre-Run-Time scheduling overhead is
independent of the number of tasks in the system.

Figure 7.9 compares the average scheduling overhead for each of the scheduling
algorithms as a function of number of events in the system for a task set size of eight.

Figure 7.10 compares the average scheduling overhead for all scheduling algo-
rithms, except for the Pre-Run-Time scheduling algorithm, as a function of the number of
tasks in the system with eight events in the system.

Figures 7.9 and 7.10 show that the PRT scheduling implementation has the lowest
average scheduling overhead of all the scheduling algorithms (for eight events, the PRT
scheduling implementation has an average overhead of 1386 cycles). However, it is clear
that the PRT implementation is not optimal. An optimal PRT implementation would have
an almost constant overhead, with fluctuations due only to variations in the number of
tasks dependent upon an input event and the number of input events upon which a task
depends. The current implementation checks all input events, not just the input events the
next task in the schedule depends upon, causing the scheduling overhead to be larger than
it could be.

The Non-Preemptive Static Priority scheduling routines have the largest average

scheduling overhead. The Preemptive Static Priority scheduling routines have a much lower

Figure 7.8: Average Preemptive Dynamic Priority scheduling

102

s § B EE

1800

Precemptive Dynamic Scheduling Ovorhaad - Max. va Avo. for B Eventa
T T T T Y
: : *PraDynamic’ i ~e—_-
“PraDynamicMax" <
- .. ot
H o !
P B
e i . ol fn e <
> A :
. A :
t el ?
. Pos

ek :

maximum possible scheduling overhead.

Average Cydas

8 10
Numbeor of Tasks

Avarago Schoduling Overhead for Taak Sot Sizo of 8
Y

14

overhead compared with the

:

?

n i N

8 10
Numbar of Evanta

12 14

106

18

Figure 7.9: Comparison of all scheduling implementations as a function of the number of
events in the system for a fixed task set size.

103

Avarage Schoduling Overhoad with 8 Events
T T T T

3400 Y T
g
ro! A,
3200 | ~“BroStatic™ -o--
,.fN‘di amic” e
v raDynamic® -a---
3000 | i -
v
e
2800 [el 4
é 2600 |- o
® 2400 [-
5 2200 |- -
2000 |- r
1800 - -
1600 | o 4
‘4” .. A A Il 1
[} 2 4 e 8 10 12 14 18 18
Numbor of Taska

Figure 7.10: Comparison of all scheduling implementations, except for Pre-Run-Time, as a
function of the number of tasks in the system for a fixed number of events.

average scheduling overhead (the second lowest average scheduling overhead); suggesting
that the Non-Preemptive Static Priority average scheduling overhead could be decreased by
using interrupts to detect events instead of polling.

The Non-Preemptive Dynamic Priority scheduling routines have a relatively low
average scheduling overhead; further evidence that the use of interrupts would decrease the
average scheduling overhead for the Non-Preemptive Static Priority scheduling routines.
The Preemptive Dynamic Priority scheduling routines have an expectedly high average

scheduling overhead.

7.1.3 Comparison with an Existing Real-Time Operating System

Many commercial Real-Time Operating Systems (RTOSs) require the designer
to write interrupt routines causing the RTOS to have a variable amount of scheduling
overhead. In these instances, the context switching time, the interrupt latency, and the
maximum execution timings of pertinent, highly optimized, routines are published.

The pSOS+ multitasking operating system from Integrated Systems, Inc. is typical
of many commercial RTOSs. It employs a preemptive static priority scheduler. The designer
is required to develop the interrupt handling routines using the provided operating system

calls.

For the Intel 486DX2 33MHz processor with 256KB of cache, pSOS+ has a

104

Procedure Execution Time | Estimated
(us) Cycles
T.START 8.36 552
T_.RESTART 13.00 858
T_SUSPEND 5.80 384
T_RESUME 6.07 400
TSETPRI 7.74 512
T-MODE 3.15 208
TSETREG 3.33 220
T_-GETREG 3.36 220
I_.ENTER 1.88 124
I.RETURN 1.73 114
TIME.GET 3.03 200

Table 7.3: Execution times for some standard routines in the pSOS+ real-time operating
system for the Intel 486DX2 33MHz processor.

claimed! interrupt latency of less than 4.00us and a claimed context switching time of
6.27us. Table 7.3 shows the claimed execution times, both in us and estimated clock cycles,
for some of the operating system calls available to tasks running under pSOS+.

A typical interrupt handling routine might read the contents of some register,
update another register based on the contents of the first register, and then return from
the interrupt. At the least, this interrupt routine would require 554 cycles using pSOS+. If
the interrupt handling routine performs any scheduling activities, such as updating a ready
task list, the total interrupt time would increase further. In addition to this time, the static
priority scheduling routines within pSOS+ must be executed after the interrupt returns,
further increasing the run-time overhead.

In comparison, for the preemptive static priority scheduling routines synthesized by
PoLis, the interrupt routine identifies the ready tasks in the system and begins execution of
the highest priority task; performing both interrupt handling and scheduling. This requires
a minimum of 495 cycles to perform and increases as the number of events in the system

increases, due to the input event update routine.

' All timing data were obtained from http://wwv.isi.com/Products/pS0S/386.html.

105

Scheduling RAM ROM

Algorithm data bss | const text
RR 100 | 78 0 944
PRT 100 | 78 6 969
NoPreStatic 100 | 78 6 981
PreStatic 100 | 78 6 1048
NoPreDynamic | 118 | 84 12 | 1511
PreDynamic 118 | 84 12 | 1665

Table 7.4: Measured memory requirements (in bytes) of the synthesized PoLis operating
system utilizing specific scheduling routines for a task set of size three with eight events.

7.2 Synthesized Operating System Memory Requirements

The size (in bytes) of the operating system is important to the target application
of PoLis, small embedded controllers. These applications typically have a limited amount
of memory for code storage. (Typical embedded systems contain a fixed amount of Read-
Only-Memory (ROM) in which the code for the operating system and the application tasks
is stored.) Therefore, the operating system should be as small as possible to allow for it
and the tasks to fit into the available memory.

The complete operating system synthesized by PoLis consists of the scheduler and
I/0 routines. The operating system may contain information, required by the scheduler, on
each task (e.g., task priority, task deadlines, task periods), causing the size of the operating
system to be dependent upon the number of tasks in the system.

Table 7.4 shows the memory requirements of the generated operating system for
a task set size of three with eight events. The larger operating systems in terms of RAM
and ROM usage are those which utilize interrupts.

Table 7.5 shows the memory requirements of the generated operating systems
for the shock absorber controller example described in [CEG*95]. This example contains
fourty-eight (48) tasks and eighty (80) events.

7.2.1 Comparison With Existing Real-Time Operating Systems

Table 7.6 shows the minimum memory (ROM) requirements for various commercial

and research RTOSs. All of these RTOSs utilize a static priority scheduling methodology.

106

Scheduling RAM ROM

Algorithm data bss | const text
RR 4762 | 1161 | 488 | 3380
PRT 4762 | 1161 | 584 | 3405
NoPreStatic 4762 | 1161 | 584 | 3417
PreStatic 4762 | 1161 | 584 | 3484
NoPreDynamic | 5050 | 1167 | 680 | 3947
PreDynamic 5050 | 1167 | 680 | 4101

Table 7.5: Measured memory requirements (in bytes) of the synthesized PoLis operating
system utilizing specific scheduling routines for a task set of size fourty-eight (48) with
eighty (80) events.

| Operating System | Min Size (kB) |
HI68K [TSiH87] 24
REALOS/286 [Shi87] 13.5
Maruti [SdA93] 14
pSOS (Integrated Systems Inc.) 15
RTEMS 3.1.0 (U.S. Military) 11.6
QNX 4.21 (QNX Software Systems) 10

Table 7.6: Real-Time Operating Systems’ memory (ROM) requirements.

They contain many features which are not present in the operating systems synthesized by
PoLis, e.g., semaphores. The price for these additional features, and the generality required
to allow their use in many different systems, is additional memory usage.

In the shock absorber example above, the synthesized operating system, regardless
of the scheduling method used, is smaller than any of these more general RTOSs. The
application specific nature of the synthesized operating system in PoLis allows for the RTOS
to use a minimal amount of memory (ROM) while guaranteeing the schedulability of the

task set; an advantage when the amount of memory in a system is limited.

107

Chapter 8

Conclusions and Future Work

Multiple real-time task level scheduling algorithms and their associated schedula-
bility analysis tests have been implemented within the PoLis co-design environment. The
theory behind each of these algorithms was presented, and extensions to this theory were

made.

e The Laxity Monotonic static priority scheduling algorithm (LMS) was presented, and
its optimality proven.

e The notion of a critical instant for a non-preemptive static priority scheduling algo-

rithm was presented, and its validity proven.

e Two sufficient non-preemptive static priority schedulability analysis tests were devel-

oped.

e The optimality of the non-preemptive dynamic priority Minimum Laxity First schedul-

ing algorithm was proven.

e Necessary conditions for preemptive dynamic priority scheduling of sporadic task sets

were derived.

The generated scheduling routines were found to have a much larger scheduling
overhead than commercial and other research RTOSs due to the event detection mechanism;
however, the generated scheduling routines are considerably smaller in size (measured by
ROM usage) than these RTOSs.

There are many future directions for the run-time schedulers generated by PoLis.

These include, but are not limited to, the following.

108

e The generated scheduling routines can be optimized for speed, decreasing the scheduler
overhead. The current routines are simple, and were developed for logical correctness,

ignoring execution time.

o Task synchronization protocols will be added for both the static and dynamic schedul-
ing approaches. The use of task synchronization protocols, e.g., semaphores, will in-
crease the required ROM usage of the generated routines. The ability to correctly

schedule more complex task sets makes the increased ROM usage acceptable.

o Sporadic servers will be added to minimize the response times of soft tasks.

109

Appendix A

Scheduling Overhead Data

Number of Events

Tasks || 1 | 2] 3 | 4 | 5 | 6 | 7 | 8 | o [10 [11 | 12] 18] 14 | 15

1 317 | 514 | 712 | 909 | 1106 | 1305 | 1502 | 1699 | 1898 | 2093 | 2293 | 2488 | 2687 | 2886 | 3084

2 356 | 554 | 752 | 949 | 1147 | 1345 | 1541 | 1737 | 1939 | 2133 | 2329 | 2531 | 2727 | 2924 | 3121
3 307 | 595 | 792 | 989 | 1187 | 1385 | 1582 | 1779 | 1980 | 2174 | 2372 | 2568 | 2770 | 2965 | 3162
4 137 | 634 | 831 | 1029 | 1227 | 1425 | 1622 | 1820 | 2018 | 2213 | 2411 | 2609 | 2810 | 3003 | 3202
5 477 | 674 | 872 | 1068 | 1267 | 1464 | 1661 | 1860 | 2058 | 2254 | 2453 | 2646 | 2846 | 3046 | 3240
6 517 | 715 | 911 | 1111 | 1307 | 1502 | 1703 | 1901 | 2096 | 2295 | 2493 | 2688 | 2889 | 3083 | 3284
7 557 | 754 | 953 | 1151 | 1346 | 1546 | 1742 | 1940 | 2137 | 2336 | 2532 | 2729 | 2926 | 3126 | 3317
8 506 | 795 | 993 | 1190 | 1389 | 1585 | 1782 | 1977 | 2176 | 2374 | 2572 | 2771 | 2966 | 3165 | 3363

9 637 | 834 | 1032 | 1231 | 1427 | 1624 | 1821 | 2020 | 2218 | 2413 | 2611 | 2810 | 3010 | 3202 | 3400

10 676 | 875 | 1072 | 1270 | 1468 | 1665 | 1862 | 2059 | 2259 | 2455 | 2654 | 2849 | 3046 | 3242 | 3443

11 715 [916 | 1112 | 1310 | 1508 | 1705 | 1902 | 2102 | 2297 | 2494 | 2692 | 2891 | 3088 | 3280 | 3484

12 758 | 955 | 1151 | 1351 | 1549 | 1744 | 1943 | 2140 | 2337 | 2536 | 2732 | 2930 | 3128 | 3321 | 3519

13 799 | 996 | 1192 | 1390 | 1588 | 1785 | 1986 | 2182 | 2374 | 2575 | 2775 | 2966 | 3167 | 3364 | 3565

14 836 | 1034 | 1231 | 1430 | 1628 | 1823 | 2022 [2220 | 2415 | 2615 [2814 | 3011 | 3204 | 3403 | 3601

15 876 | 1076 | 1274 | 1471 | 1666 | 1865 | 2061 [2259 | 2456 | 2659 [2854 | 3048 | 3243 | 3445 | 3643

Table A.1: Average scheduling overhead for the Round Robin scheduling routines.

Number of Events
1|2|3|4|5|6[7[8|9|10|11|12|13|14|15
[311 7464 618] 772 [926 | 1079 | 1233 | 1386 | 1541 | 1696 | 1847 | 2000 | 2156 | 2308 | 2463 |

Table A.2: Average scheduling overhead for the Pre-Run-Time scheduling routines.

110

Number of Events

Tasks 1 | 2 | 3 | 4 | 5 | 6] 7 | 8 [9 [10] 11] 12] 13 [14 | 15
1 357 | 555 | 751 | 950 | 1147 | 1344 | 1543 | 1740 | 1937 | 2135 9331 [2529 [2726 | 2927 | 3121
2 450 | 648 | 845 | 1042 | 1239 | 1437 | 1636 | 1833 | 2029 | 2227 | 2426 | 2623 | 2820 | 3020 | 3215
3 577 775 973 | 1170 | 1366 | 1565 | 1761 | 1959 | 2157 | 2354 | 2554 | 2751 | 2944 | 3144 | 3341
4 670 | 868 | 1065 | 1262 | 1459 | 1656 | 1853 | 2051 | 2251 | 2448 | 2643 | 2842 | 3037 | 3235 [3435
5 797 | 995 | 1191 | 1389 | 1587 | 1785 | 1981 | 2179 | 2375 | 2575 | 2772 | 2970 | 3165 | 3364 | 3561
6 801 | 1086 | 1284 | 1480 | 1677 | 1875 | 2075 | 2271 | 2469 | 2667 | 2866 | 3057 | 3257 | 3454 | 3657
7 1015 | 1214 | 1412 [1610 | 1807 | 2002 | 2200 | 2402 | 2597 | 2795 | 2993 | 3187 | 3388 | 3580 | 3781
8 1108 | 1303 | 1504 | 1696 | 1899 | 2096 | 2289 | 2491 | 2689 | 2887 | 3085 | 3284 | 3479 | 3676 | 3873
9 1238 | 1433 | 1631 | 1828 | 2026 | 2228 | 2424 | 2621 | 2816 | 3013 | 3215 | 3413 | 3608 | 3803 | 3998
10 1325 | 1526 | 1721 | 1921 | 2117 | 2318 | 2513 | 2711 | 2909 | 3104 | 3304 | 3498 | 3700 | 3897 | 4093
11 1457 | 1653 | 1854 | 2046 | 2244 | 2444 | 2642 | 2841 | 3036 | 3235 | 3428 | 3633 | 3824 | 4024 | 4219
12 1546 | 1744 | 1942 | 2140 | 2340 | 2534 | 2731 | 2931 | 3131 | 3324 | 3525 | 3718 | 3915 | 4115 | 4312
13 1680 | 1875 | 2071 | 2272 | 2468 | 2665 | 2860 | 3057 | 3256 | 3452 | 3652 | 3845 | 4053 | 4245 | 4440
14 1766 | 1969 | 2161 | 2361 | 2559 | 2752 | 2952 | 3151 | 3347 | 3550 | 3742 | 3941 | 4141 | 4336 | 4535
15 1898 | 2093 | 2293 | 2485 | 2681 | 2887 | 3078 | 3277 | 3478 | 3678 | 3870 | 4075 | 4268 | 4459 | 4662

Table A.3: Average scheduling overhead for the Non-Preemptive Static Priority scheduling
routines.
Number of Events

Tasks || 1 | 2 | 3 | 4 | 6 | 6 | 7 | 8 | 9 [10 | 11 | 12 | 18 | 14 [15
1 " 405 | 630 | 765 | 900 | 1035 [1170 | 1305 | 1440 | 1575 | 1710 | 1845 | 1980 | 2115 | 2250 | 2385
2 " 500 | 644 | 779 | 915 | 1050 | 1184 | 1319 | 1455 | 1590 | 1725 | 1860 | 1995 | 2130 | 2265 | 2399
3 “ 528 | 663 | 798 | 933 | 1069 | 1203 | 1338 | 1473 | 1608 | 1743 | 1878 | 2013 | 2148 | 2283 | 2418
4 554 | 689 | 825 959 | 1095 | 1229 | 1364 | 1499 | 1635 | 1769 | 1904 | 2039 | 2175 | 2310 | 2444
5 575 | 710 | 845 | 980 | 1114 | 1250 | 1384 [1519 | 1655 | 1790 | 1924 | 2059 | 2195 | 2330 | 2465
6 603 | 739 | 874 | 1009 | 1144 | 1279 | 1413 | 1548 | 1684 | 1819 | 1954 | 2090 | 2224 | 2359 | 2494
7 625 | 750 | 894 | 1029 | 1164 | 1300 | 1434 | 1568 | 1704 | 1840 | 1974 | 2109 | 2244 | 2380 | 2514
8 654 | 790 | 924 | 1060 | 1194 | 1330 | 1466 | 1599 [1735 | 1869 | 2004 | 2139 | 2274 | 2410 | 2544
9 675 | 810] 945 | 1080 | 1215 | 1349 | 1484 | 1619 | 1755 | 1889 | 2025 | 2159 | 2294 | 2431 | 2565
10 706 | 841 | 977 | 1110 | 1246 | 1381 [1516 | 1651 | 1786 | 1921 | 2056 | 2192 | 2326 | 2460 | 2596
11 727 1 861 | 995 | 1133 | 1267 | 1402 | 1534 | 1671 | 1806 | 1941 | 2076 | 2210 | 2346 | 2480 | 2616
12 758 | 893 | 1028 | 1162 | 1298 | 1433 [1569 | 1702 | 1837 | 1973 | 2106 | 2243 | 2377 | 2512 | 2647
13 776 | 913 | 1048 | 1181 | 1317 | 1453 | 1589 [1723 | 1858 | 1994 | 2127 | 2263 | 2396 | 2533 | 2666
14 809 | 942 | 1081 | 1214 | 1348 | 1486 [1620 | 1755 | 1891 | 2023 | 2159 | 2294 | 2429 | 2564 | 2698
15 820 | 966 | 1099 | 1236 | 1372 | 1504 | 1640 | 1773 | 1910 | 2045 | 2180 | 2313 | 2449 | 2586 | 2719

Table A.4: Average scheduling overhead for the Preemptive Static Priority scheduling
routines.

111

Number of Events

Tasks 1 [2 [3T 475 T 6T 7] 8T 9 [10] 11] 1213] 14]15
1 595 [730 | 865 | 1000 | 1135 | 1270 | 1405 | 1540 | 1675 | 1810 [1945 | 2080 | 2215 | 2350 | 2485
2 611 | 745 | 880 | 1016 | 1151 | 1285 | 1420 | 1556 | 1690 | 1826 | 1961 | 2096 | 2230 | 2366 | 2500
3 630 | 765 | 900 | 1036 | 1171 | 1306 | 1441 | 1575 | 1710 | 1845 | 1980 | 2115 | 2251 | 2386 | 2521
4 674 | 809 | 944 | 1079 | 1214 | 1349 | 1484 | 1619 | 1755 | 1890 | 2025 | 2159 | 2295 | 2430 | 2564
5 693 | 828 | 963 | 1098 | 1233 | 1369 | 1503 | 1638 | 1774 | 1907 | 2043 | 2178 | 2315 | 2449 | 2584
6 745 | 880 [1016 | 1151 | 1286 | 1420 | 1556 | 1690 | 1826 | 1960 | 2096 | 2231 | 2366 [2501 | 2634
7 764 | 897 [1032 | 1168 | 1302 | 1439 | 1573 | 1706 | 1844 | 1980 | 2113 | 2247 | 2383 | 25617 | 2654
8 818 | 955 | 1090 | 1225 | 1357 | 1496 | 1630 | 1763 | 1897 | 2033 | 2168 | 2301 | 2438 | 2574 | 2709
9 835 | 971 | 1105 | 1241 | 1376 | 1508 | 1644 [1778 | 1914 | 2050 | 2184 | 2318 | 2454 | 2591 | 2724
10 896 | 1028 | 1164 | 1299 | 1431 | 1567 | 1703 | 1838 | 1972 | 2108 | 2242 | 2377 | 2514 | 2647 | 2784
11 908 | 1041 [1176 | 1315 [1451 | 1583 | 1718 | 1852 | 1988 | 2121 | 2258 | 2390 | 2529 | 2662 | 2799
12 967 | 1101 | 1237 | 1372 | 1508 | 1644 | 1778 | 1912 | 2045 | 2182 | 2316 | 2454 | 2586 | 2722 | 2857
13 982 | 1118 | 1253 | 1386 | 1522 | 1657 | 1792 | 1928 | 2061 | 2198 | 2334 | 2466 | 2601 | 2737 | 2872
14 1043 | 1176 | 1312 | 1449 | 1579 | 1720 | 1856 | 1985 | 2125 | 2254 | 2392 | 2528 | 2664 | 2794 | 2933
15 1057 | 1193 | 1327 | 1463 | 1598 | 1730 | 1868 | 2000 | 2138 | 2273 | 2410 | 2535 | 2675 | 2815 | 2946

Table A.5: Average scheduling overhead for the Non-Preemptive Dynamic Priority schedul-
ing routines.
Number of Events

Tasks 1 | 2] 3] 4 [5 [6] 7 [8 9 J10 11 [12]13 1] 14715
1 640 | 775 | 910 [1045 | 1180 | 1315 [1450 | 1585 | 1720 | 1855 | 1990 | 2125 | 2260 | 2395 | 2530
2 736 | 870 | 1005 [1141 | 1276 | 1410 | 1545 | 1681 | 1815 | 1951 | 2086 | 2221 | 2355 | 2491 | 2625
3 835 | 970 | 1105 | 1241 | 1376 | 1511 | 1646 | 1780 | 1915 [2050 | 2185 | 2320 | 2456 | 2591 | 2726
4 959 | 1094 | 1229 | 1364 | 1499 | 1634 | 1769 | 1904 | 2040 | 2175 | 2310 | 2444 | 2580 | 2715 | 2849
b) 1058 | 1193 | 1328 | 1463 | 1598 | 1734 | 1868 | 2003 | 2139 | 2272 | 2408 | 2543 | 2680 | 2814 | 2949
6 1190 | 1325 | 1461 | 1596 | 1731 | 1865 | 2001 | 2135 [2271 | 2405 | 2541 | 2676 | 2811 | 2946 [3079
7 1289 [1422 | 1557 [1693 | 1827 | 1964 | 2098 | 2231 | 2369 | 2505 | 2638 | 2772 | 2908 | 3042 | 3179
8 1423 [1560 | 1695 | 1830 | 1962 | 2101 | 2235 | 2368 | 2502 | 2638 | 2773 | 2906 | 3043 | 3179 | 3314
9 1520 | 1656 | 1790 | 1926 | 2061 | 2193 | 2329 | 2463 | 2599 | 2735 | 2869 | 3003 | 3139 | 3276 | 3409
10 1661 | 1793 | 1929 | 2064 | 2196 | 2332 | 2468 | 2603 | 2737 | 2873 | 3007 | 3142 [3279 | 3412 | 3549
11 1753 | 1886 | 2021 | 2160 | 2296 | 2428 | 2563 | 2697 | 2833 | 2966 | 3103 | 3235 | 3374 | 3507 | 3644
12 1892 | 2026 | 2162 | 2297 | 2433 | 2569 | 2703 | 2837 | 2970 | 3107 | 3241 [3379 | 3511 | 3647 | 3782
13 1987 | 2123 | 2258 | 2391 | 2527 | 2662 | 2797 | 2933 | 3066 | 3203 | 3339 | 3471 | 3606 | 3742 | 3877
14 2128 1 2261 | 2397 | 2534 | 2664 | 2805 | 2941 | 3070 | 3210 | 3339 | 3477 | 3613 | 3749 | 3879 | 4018
15 2222 | 2358 | 2492 | 2628 | 2763 | 2895 | 3033 | 3165 | 3303 | 3438 | 3575 | 3700 | 3840 | 3980 { 4111

Table A.6: Average scheduling overhead for the Preemptive Dynamic Priority scheduling
routines.

112

Number of Events
Tasks || 1 | 2 | 3 | 4 | 5] 6 [7 8] 9]10]1 [12 13] 14] 15
1 74 | 100 | 145 | 181 | 217 | 252 [290 | 326 | 360 | 395 | 434 | 469 | 509 | 541 | 576
2 01 | 122 | 154 | 188 | 223 | 261 | 295 | 331 | 364 | 400 | 436 | 471 | 509 | 542 | 576
3 108 | 134 | 167 | 199 | 229 | 267 | 300 | 336 | 369 | 405 | 442 | 474 | 512 | 545 | 585
4 128 | 152 | 181 | 209 | 242 [273 | 308 | 343 | 377 | 409 | 446 | 481 | 515 | 548 | 584
5 149 | 170 | 195 | 224 | 253 | 287 | 317 | 351 | 383 | 416 | 455 | 491 | 522 | 554 | 588
6 170 | 188 | 213 | 236 | 265 | 298 | 326 | 360 | 393 | 428 | 464 [493 | 524 | 558 | 598
7 102 | 210 | 230 | 254 | 282 | 312 | 338 | 372 | 402 | 436 | 463 | 503 | 541 | 572 | 607
8 216 | 220 | 248 | 272 | 296 | 325 | 353 | 384 [412 | 444 | 479 [512 | 544 | 576 | 611
9 239 | 253 | 271 [289 | 310 | 339 | 363 | 400 | 427 | 452 | 487 | 518 [551 | 589 | 622
10 261 | 271 | 289 | 309 | 330 | 356 | 382 | 408 | 436 | 469 | 498 | 532 | 558 | 597 | 628
11 283 | 296 | 314 | 327 | 347 | 374 | 397 | 425 | 452 | 481 | 509 | 540 [580 | 607 | 642
12 306 | 316 | 331 | 348 | 369 | 389 | 417 | 441 | 469 | 494 | 528 | 548 | 582 | 613 | 650
13 327 | 335 | 350 | 368 | 389 | 408 | 438 | 454 | 485 | 509 | 539 | 563 | 597 | 625 | 660
14 350 | 359 | 369 | 389 | 404 | 425 | 452 | 469 | 498 | 525 | 551 | 584 | 607 | 638 | 670
15 373 | 384 | 394 | 412 | 425 | 450 | 468 | 488 | 512 | 537 | 564 | 599 | 624 | 654 | 686

Table A.7: Standard deviation for the average Round Robin scheduling overhead.

Number of Events

TT2[3] 45678 [9 [W0][U]I12]I3]14]I5

[45] 55 81] 110] 143 | 178 | 211 | 250 | 280 | 318 | 341 | 388 | 419 | 448 [489]

Table A.8: Standard deviation for the average Pre-Run-Time scheduling overhead.

113

Number of Events

Tasks | 1 | 2 | 3] 4 | 65 | 6 | 7 | 8 [9 10 11]12]13] 14] 15

1 92 | 123 | 156 | 190 | 224 | 258 | 295 | 330 | 365 | 401 | 436 | 472 | 511 | 547 | 577
2 134 | 158 | 184 | 212 | 246 | 279 [310 | 344 [379 | 414 | 447 | 484 | 514 | 554 | 587
3 180 | 196 [217 | 245 | 273 | 303 | 330 | 367 | 396 | 426 | 460 | 498 [531 | 565 | 605
4 223 | 238 [253 | 278 | 301 | 329 | 356 | 389 | 419 | 446 | 478 | 514 | 547 | 580 | 615
5 2711 285 | 298 | 317 | 338 | 363 | 390 | 419 | 441 | 472 | 501 | 540 [569 | 604 | 634
6 315 | 328 | 340 | 358 | 376 | 396 | 421 | 447 | 474 | 502 | 531 | 556 | 593 | 622 | 655
7 365 | 377 | 385 | 404 | 423 | 441 | 460 | 484 | 507 | 533 | 557 | 593 | 617 | 650 | 689
8 408 | 417 | 434 | 443 | 452 | 476 | 496 | 521 | 543 | 565 | 593 | 619 | 645 | 673 | 713
9 462 | 468 | 480 | 486 | 501 | 522 | 535 | 563 | 575 | 607 | 627 | 649 | 687 | 706 | 732
10 509 [508 | 523 | 534 | 541 | 565 | 575 | 595 | 623 | 638 | 658 [684 | 709 | 732 | 766
11 557 | 564 | 564 | 581 | 598 | 608 | 631 | 645 | 660 | 681 | 705 | 724 | 749 | 777 | 795
12 605 | 609 | 616 | 628 | 638 | 642 | 663 | 677 | 699 | 721 | 742 | 764 | 784 | 809 | 834
13 655 | 663 | 663 | 667 | 693 | 708 | 705 | 727 | 745 | 754 | 792 | 792 | 825 | 845 | 869
14 700 [701 [707 | 717 [730 | 741 | 760 | 766 | 775 | 801 | 822 | 844 | 857 | 888 | 897
15 750 | 758 [754 | 766 | 777 | 780 | 800 | 806 | 821 | 837 | 862 | 877 | 891 | 918 | 948

Table A.9: Standard deviation

overhead.

for the average Non-Preemptive Static Priority scheduling

Number of Events

Tasks || 1 | 2 | 3 | 4 | 5 [6 | 7 | 8 [9 [1011 [12]13[14]15
1 2 22 22T 2TJ2]2]1r[2]2(2]2; j2]?2
2 22 | 22 | 22 | 22 | 22 [21 [22 [22 [22 {22 | 22 [22 | 22 [22 | 23
3 43 | 43 | 42 | 43 | 41 | 43 | 42 [42 | 42 [42 | 42 | 42 | 42 | 42 | 42
4 63 | 64 | 64 | 64 | 62 | 64 | 64 | 64 | 63 | 64 | 63 | 64 | 63 | 63 | 64
5 83 | 83 | 82 | 83 | 83 | 84 | 85 [82 | 84 | 83 | 84 | 83 | 83 | 83 | 83
6 104 [105 | 105 | 106 | 107 | 105 | 102 | 103 | 104 | 104 | 106 | 105 | 104 | 105 | 105
7 123 | 124 [123 | 125 [124 [123 [125 [123 [125 | 126 | 123 | 127 [123 | 124 | 125
8 143 | 145 | 147 | 145 | 145 | 145 | 146 | 148 | 147 | 146 | 148 | 145 | 146 | 144 | 147
9 165 | 164 | 166 | 165 | 162 | 165 | 163 | 164 | 165 | 166 | 162 | 164 | 166 | 164 | 163
10 || 185 | 182 | 188 | 187 | 183 [187 [185 | 188 | 188 | 185 | 185 [186 | 185 | 186 | 188
11 || 207 | 207 | 205 | 206 | 204 | 204 [207 [207 [203 | 205 | 203 | 206 | 208 | 207 | 207
12 || 228 | 226 | 228 | 226 | 231 | 226 | 228 | 227 | 226 [227 | 228 | 230 | 226 | 228 | 228
13 || 248 | 250 | 244 | 244 | 248 | 246 | 245 | 246 | 245 [242 | 247 | 245 | 245 [247 | 245
14 || 270 | 267 | 269 | 272 | 269 | 269 | 269 | 269 | 264 | 267 | 268 | 268 | 268 | 270 | 268
15 || 285 | 288 | 283 | 286 | 287 [284 [290 | 286 | 285 | 285 | 286 | 287 | 286 | 287 | 290

Table A.10: Standard deviation for the average Preemptive Static Priority scheduling

overhead.

114

Number of Events

Tasks | 1 | 2 | 3 | 4 [5 [6 | 7 [8[9 J1o]n]i2]13]14 [15
1 21 3] 21 2 332721733 2]41[2]3]3
2 23 | 23 | 24 | 23 | 24 | 23 | 23 | 24 | 24 | 24 | 23 [23 | 24 | 24 | 24
3 46 | 46 | 44 | 46 | 44 | 45 | 44 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45
4 68 | 68 | 68 | 68 | 66 | 68 | 68 | 69 | 67 | 68 | 67 | 68 | 67 | 67 | 68
5 80 [89 | 87 | 80 | 88 | 89 | 91 | 87 | 89 [89 [90 | 88 | 89 | 88 | 89
6 111 | 112 | 112 [113 | 114 | 112 [109 | 110 | 111 [111 | 113|112 | 111 | 113 | 112
7 131 | 132 | 132 | 133 | 133 | 131 | 133 | 131 | 133 | 134 | 132 | 135 [131 | 132 | 133
8 153 | 154 | 157 | 155 | 154 | 155 | 155 | 158 | 157 | 155 | 158 | 155 [156 | 154 | 157
9 176 | 175 | 178 | 176 | 173 | 176 | 174 | 175 | 176 | 177 | 173 | 175 | 177 | 175 | 174
10 || 198 | 195 | 201 | 200 | 196 | 200 | 197 | 200 | 201 | 197 | 198 [199 | 198 | 198 [201
11 || 220 | 221 | 218 | 220 | 218 | 218 | 220 | 221 | 216 | 219 | 216 | 220 | 222 | 221 | 220
12 || 243 | 242 | 243 | 242 | 247 | 241 | 243 | 242 | 241 | 249 | 243 [245 [241 | 244 | 245
13 || 264 | 267 | 261 | 260 | 261 | 263 | 261 | 263 | 261 | 253 | 263 | 262 | 261 | 263 [260
14 || 288 | 285 | 287 | 290 | 288 | 287 | 287 | 287 | 282 | 282 | 286 | 286 | 285 | 288 | 286
15 || 304 | 307 | 302 | 306 | 304 | 303 | 309 | 305 | 304 | 305 | 305 | 306 | 305 | 306 | 308

Table A.11: Standard deviation for the average Non-Preemptive Dynamic Priority schedul-

ing overhead.

Number of Events

Tasks 1 [2134756789 [1wf]11]12]13]147]15
1 6 7 7 6 7 7 6 6 7 7 5 8 5 8 7
2 47 | 47 | 48 | 47 | 48 | 46 | 47 | 48 | 48 | 48 | 47 | 47 | 47 | 48 | 49
3 92 | 91 [8 | 91 | 88 [91 | 8 | 91 | 91 [90 | 90 | 91 | 90 | 91 [90
4 136 | 136] 136 | 137 | 132 | 136 | 136 | 138 | 135 [137 | 135 | 137 | 135 | 135 | 137
5 178 | 178 | 175 | 178 | 177 | 179 | 182 | 175 | 179 | 178 | 180 | 177 | 178 | 177 | 178
6 222 1224 | 224 | 226 | 228 [225 | 219 | 221 | 223 | 223 | 226 | 225 | 223 | 226 | 224
7 263 | 265 | 264 | 267 | 266 | 263 | 266 | 263 | 266 | 269 | 264 | 271 | 263 | 265 | 266
8 306 | 309 | 314 | 310 | 309 | 311 | 311 | 317 [314 | 311 | 317 | 310 | 312 | 309 | 315
9 353 | 350 | 356 | 352 | 346 | 352 | 349 | 351 | 353 | 355 | 347 | 350 | 355 | 351 | 348
10 396 | 390 | 402 | 400 | 392 | 400 | 395 | 401 | 402 | 395 | 396 | 398 | 396 | 397 | 402
11 441 | 442 | 437 | 441 | 436 | 436 | 441 | 443 | 433 | 438 | 433 | 440 | 445 | 442 | 441
12 487 | 484 | 487 | 484 | 494 | 482 | 486 | 485 | 483 | 484 | 486 | 491 | 482 | 488 | 486
13 529 | 534 | 522 | 521 | 530 | 526 | 523 | 526 | 523 | 518 | 527 | 524 | 522 | 527 | 524
14 577 [571 [575 [581 | 574 | 575 | 574 | 575 | 564 | 571 | 572 | 573 | 571 | 577 | 573
15 609 | 615 | 604 | 612 | 612 [607 | 619 | 611 | 609 | 609 | 611 | 612 | 610 [612 | 618

Table A.12: Standard deviation for the average Preemptive Dynamic Priority scheduling
overhead.

115

Bibliography

[ABRW91] N.C. Audsley, A. Burns, M.F. Rishardson, and A.J. Wellings. Hard real-time

[BCGI1]

[BMR90]

[BS86)

[BS89]

[BSR8S]

[CEG*95]

scheduling: The deadline-monotonic approach. In Real Time Programming:
Proceedings of the IFAC/IFIP Workshop, pages 127 — 132. Pergamon Press,
June 1991.

G. Berry, P. Corunne, and B. Gonthier. The synchronous approach to reactive

and real-time systems. In IEEE Proceedings, September 1991.

Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively schedul-
ing hard-real-time sporadic tasks on one processor. In Proceedings of the IEEE
Real-Time Systems Symposium, pages 182 - 190. IEEE Computer Society Press,
December 1990.

Theodore P. Baker and Gregory M. Scallon. An architecture for real-time soft-
ware systems. IEEE Software, pages 50 - 58, May 1986.

T.P. Baker and A. Shaw. The cyclic executive model and Ada. Real-Time
Systems, 1(1):7 — 25, June 1989.

Sara R. Biyabani, John A. Stankovic, and Krithi Ramamritham. The integra-
tion of deadline and criticalness in hard real-time scheduling. In Proceedings
of the IEEE Real-Time Systems Symposium, pages 152 — 160. IEEE Computer
Society Press, December 1988.

M. Chiodo, D. Engels, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, K. Suzuki,
and A. Sangiovanni-Vincentelli. A case study in computer-aided codesign of

embedded controllers. to appear, 1995.

116

[CGHt94]) M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, A. Sangiovanni-

[CGI+94]

[CL90]

[CSR86]

[Der74]

[DHS9]

[DL78]

[GI79]

[HL92]

[HS90]

Vincentelli, E. Sentovich, and K. Suzuki. Synthesis of Software Programs for
Embedded Control Applications. Technical Report UCB/ERL M94/87, ERL,
Univ. of California, Berkeley, CA 94720, November 1994.

M. Chiodo, P. Giusto, A. Jurecska, H. Hsieh, A. Sangiovanni-Vincentelli, and
L. Lavagno. Hardware-software codesign of embedded systems. IEEE Micro,
14(4):26 - 36, August 1994.

Min-Ih Chen and Kwei-Jay Lin. Dynamic priority ceilings: A concurrency
control protocol for real-time systems. The Journal of Real-Time Systems,
2:325 - 346, 1990.

Shengchang Cheng, John A. Stankovic, and Krithivasan Ramamritham. Dy-
namic scheduling of groups of tasks with precedence constraints in distributed
hard real-time systems. In Proceedings of the IEEE Real-Time Systems Sympo-
sium, pages 166 - 174. IEEE Computer Society Press, December 1986.

Michael L. Dertouzos. Control robotics: The procedural control of physical

processors. In Proceedings of the IFIP Congress, pages 807 — 813, 1974.

D. Druzinski and D. Hare. Using statecharts for hardware description and

synthesis. IEEE Transactions on Computer-Aided Design, 8(7), July 1989.

Sudarshan K. Dhall and C.L. Liu. On a real-time scheduling problem. Opera-
tions Research, 26(1):127 - 140, January 1978.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

Ching-Chih Han and Kwei-Jay Lin. Scheduling distance-constrained real-time
tasks. In Proceedings of the IEEE Real-Time Systems Symposium, pages 300 —
308. IEEE Computer Society Press, December 1992.

Wolfgang A. Halang and Alexander D. Stoyenko. Comparative evaluation of
high-level real-time programming languages. The Journal of Real-Time Sys-
tems, 2:365 — 383, 1990.

[HS91]

[Jef92]

[3SM91]

[KLR94]

[KS86]

[Leh90]

[LL73]

[LL78]

[LSD89]

[LSS87)

117

Wolfgang A. Halang and Alexander D. Stoyenko. Constructing Predictable Real-
Time Systems. Kluwer Academic Publisher, 1991.

Kevin Jeffay. Scheduling sporadic tasks with shared resources in hard-real-time
systems. In Proceedings of the IEEE Real-Time Systems Symposium, pages 89
- 99. IEEE Computer Society Press, December 1992,

Kevin Jeffay, Donald F. Stanat, and Charles U. Martel. On non-preemptive
scheduling of periodic and sporadic tasks. In Proceedings of the IEEE Real-
Time Systems Symposium, pages 129 — 139. IEEE Computer Society Press,
December 1991.

Mark H. Klein, John P. Lehoczky, and Ragunathan Rajkumar. Rate-monotonic
analysis for real-time industrial computing. Computer, 27(1):24 — 33, January
1994.

Eugene Kligerman and Alexander D. Stoyenko. Real-time Euclid: A language
for reliable real-time systems. IEEE Transactions on Software Engineering,
SE-12(9):941-949, September 1986.

John P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In Proceedings of the IEEE Real-Time Systems Symposium, pages
201 - 209. IEEE Computer Society Press, December 1990.

C.L. Liu and James W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the Association for Compuling
Machinery, 20(1):46 — 61, January 1973.

B.J. Lageweg and J.K. Lenstra. A general bounding scheme for the permutation

flow-shop problem. Operations Research, 26(1):53 - 67, January 1978.

John Lehoczky, Lui Sha, and Ye Ding. The rate monotonic scheduling algorithm:
Exact characterization and average case behavior. In Proceedings of the IEEE
Real-Time Systems Symposium, pages 166 — 171. IEEE Computer Society Press,
December 1989.

John P. Lehoczky, Lui Sha, and Jay K. Strosnider. Enhanced aperiodic respon-

siveness in hard real-time environments. In Proceedings of the IEEE Real-Time

[LSST91]

[LWS82]

[Mok83]

[SBY4]

[SdA93]

[SG91]

[SHH91]

118

Systems Symposium, pages 261 — 270. IEEE Computer Society Press, December
1987.

John P. Lehoczky, Lui Sha, J.K. Strosnider, and Hide Tokuda. Fixed priority
scheduling theory for hard real-time systems. In André M. van Tilborg and
Gary M. Koob, editors, Foundations of Real-Time Computing: Scheduling and
Resource Management, chapter 1, pages 1 — 30. Kluwer Academic Publishers,
1991.

Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of fixed-priority
scheduling of periodic, real-time tasks. Performance Evaluation, 2(4):237 - 250,
December 1982.

A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard-
Real-Time Environment. PhD thesis, Dept. of Electrical Engineering and Com-

puter Science, The Massachusetts Institute of Technology, Cambridge, MA, May
1983.

Marco Spuri and Giorgio Buttazzo. Scheduling aperiodic tasks in dynamic
priority systems. Technical Report ARTS Lab 94-06, Scuola Superiore Di Studi
Universitari E Di Perfezionamento S. Anna, April 1994.

M. Saksena, J. da Silva, and A.K. Agrawala. Design and implementation of
maruti-ii. Technical Report UMD CS-TR-3181, UMICA TR-93-122, University
of Maryland, 1993.

Terry Shepard and J.A. Martin Gagné. A pre-run-time scheduling algorithm
for hard real-time systems. In IEEE Transactions on Software Engineering,

volume 17, pages 669 — 677. IEEE Computer Society Press, July 1991.

Alexander D. Stoyenko, Carl Hamacher, and Richard C. Holt. Analyzing hard-
real-time programs for guaranteed schedulability. In IEEE Transactions on
Software Engineering, volume 17, pages 737 - 750. IEEE Computer Society
Press, August 1991.

[Shi87)

[SR90]

[SRL0]

[SSL8Y]

[SSL+92]

[SSM*92]

[TSiH87)

[UN75]

[XP90]

119

Akira Shimohara. REALOS/286: An implementation of ITRON/MMU on
80286. In TRON Project 1987 (Proceedings of the Third TRON Project Sym-
posium), pages 45-56. Springer-Verlog, 1987.

John A. Stankovic and Krithi Ramamritham. What is predictability for real-
time systems? The Journal of Real-Time Systems, 2:247 — 254, 1990.

L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. IEEE Transactions on Computers,
39(9):1175 - 1185, September 1990.

Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic task scheduling for
hard-real-time systems. The Journal of Real-Time Systems, 1(1):27 - 60, June
1989.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
SIS: A System for Sequential Circuit Synthesis. Technical Report UCB/ERL
M92/41, ERL, Univ. of California, Berkeley, CA 94720, May 1992.

E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Sequential Circuit Design Using Synthesis and Opti-
mization. In ICCD, pages 328-333, Oct 1992.

Hiroshi Takeyama, Tsuyoshi Shimizu, and Ken ichi Horikoshi. The HI series
of operating systems of the ITRON architecture. In TRON Project 1987 (Pro-
ceedings of the Third TRON Project Symposium), pages 57-71. Springer-Verlog,
1987.

J.D. Ullman. NP-complete scheduling problems. Journal of Computer and
System Sciences, 10(3):384-393, June 1975.

Jia Xu and David Lorge Parnas. Scheduling processes with release times, dead-
lines, precedence, and exclusion relations. In IEEE Transactions on Software
Engineering, volume 16, pages 360 — 369. IEEE Computer Society Press, March
1990.

[XP93]

[Xu93]

120

Jia Xu and David Lorge Parnas. On satisfying timing constraints in hard-real-
time systems. In IEEE Transactions on Software Engineering, volume 19, pages

70 — 84. IEEE Computer Society Press, January 1993.

Jia Xu. Multiprocessor scheduling of processes with release times, deadlines,
precedence, and exclusion relations. In IEEE Transactions on Software Engi-

neering, volume 19, pages 139 - 154. IEEE Computer Society Press, February
1993.

	Copyright notice 1995
	ERL-95-101

