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The degree of synchronization of two nearly-identical response

subsystems with noisy input is characterized through use of two different

measures: the conditional lyapunov exponent and the distribution

exponent. The conditional lyapunov exponent describes the stability of

the subsystem, and the distribution exponentdescribes the probability of

separation of the two subsystems. A simple piecewise linear map

illustrates the continuous nature of synchronization and shows the benefits

and significance of each measure. The conditional lyapunov exponent is

more easily calculated than the distribution exponent, but the distribution

exponent seems more physically descriptive of synchronization. An

important correspondence, that both measures cross through zero at the

same time, is proved.

PACS number: 05.45.+b, 02.50.Ey

I. INTRODUCTION

Pecora and Carroll made widely known the possibility of chaotic synchronization

[1,2,3]. The systems in which one usually observes chaotic synchronization are two

duplicate response subsystems fed with a common chaotic drive signal [4,5,6,7].



Chaotic synchronization occurs when, after an initial transient period, the outputs of the

response subsystems evolvein an identical fashion despite having different initial

conditions. The entire system, drive and response systems, can either be described with

differential equations or mapping equations. In this paper we usemapping equations for

all of ourexamples, which can be described by the following vector equations:

v.+1 = /(v^w,) drive variable

uM = £(v.,m;) rest of the drive system

u/.+J =/2(v£,w|.) response subsystem (1)

xM = /Kvpjc,.) duplicate response subsystem

Synchronization occurs when, for arbitrary initial conditions,

limk-*.•!=o. C2)

The conditional lyapunov multipliers of theresponse subsystem must be less than zero

for synchronization to occur [1]. Using spec to represent the spectrum of eigenvalues [8]

and Dw to represent the Jacobian of a function with respect to the variable w, this

condition can be written:

spec ]]Dw/i(v,w.) <0. (3)

Many researchers have considered applying chaotic synchronization to the

practical realm of secure communication. If areceiver and transmitter are synchronized

and behave chaotically, perhaps information can be sent with a low probability of

intercept [9, 10]. All the studiesof chaotic synchronization and its application have

treated the phenomenon as a binary one, i.e. systems are either synchronized or not

synchronized. In this work we show that synchronization is a continuous phenomena;

systems have a degree of synchronization. By changing a parameter one can make a

response subsystem more synchronized than before. Quantifying the phenomenon of

chaotic synchronization is fundamental to understanding it and using it in applications.



One obvious measure of synchronization is the value of the conditional lyapunov

exponent. We use this measure in the example that we explore; but we also introduce

another measure, the distribution exponent. As its name implies, the distribution

exponent is the characteristic geometric exponent of the probability distribution of the

separation between two nearly identical response subsystems. This measure was

introduced in a paper by Pikovsky [11], and we use many of his ideas here. To a large

extent, this second measure captures the concept of degree of synchronization better than

the conditional lyapunov exponent. Each measure offers different insights, and one or the

other might be more useful in a particular situation. In this paper we study the

correspondence between the two measures.

In this work we study synchronization in response subsystems driven by additive

random noise rather than by deterministic chaotic noise; however the analogy between

the two is obvious. Our simple comparisons through computer simulation between noisy

and chaotic synchronization confirm the analogy by indicating that qualitative findings

discovered about noisy synchronization can be applied to chaotic synchronization.

II. ANALYSIS AND NUMERICAL COMPARISONS

The basic system used for illustration in this paper is two maps with additive

noise

x^=Kxn)+#n' ()
The random processes 6 and i? are almost identical. The two processes differ slightly for

reasons that will become clear as the distribution exponent is explained. These random

processes can be split into a common component £ and an asymmetriccomponent 8

6. = L+*r
I • (5)



The standard deviation of the asymmetric component is assumed to be orders of

magnitude less than the standard deviation of the system variable*. Substituting (5) in

(4) we obtain the system for study in this paper

w^^CwJ+^+t^ (6)
*„♦. =*(*•) +£.-£

Equations (6) can be transformed by introducing the sum and difference variables

(7)sm =

^ + *.
2

r. = H> -x*

The distribution exponent and the analysis leading up to it will only apply for r small. As

ouranalysis proceeds it will becomeobvious why this is nota significant restriction.

Later we will also make general arguments about the behaviorof r when r grows large.

Since r is assumed to be small the expressions for h(w)and h(x) can be approximated

with a Taylor expansion:

«*0=«*„+*>-«0+A'(0* (8)
h(xn) =Ksn-!f) =h(sn)-h'(sn)±'

Substituting these expressions into equations (6) and adding and subtracting the two

equations gives

'.♦,» *'(*>.+*.• <10>

The sum variable is now decoupled from the difference variable, and the difference

variable depends in a simple way on the sum variable.

A. Sum Equation for a Linear Map

We examine equation (9) first, for linear maps h(s)=ms and different types of

noise £ A simple linear mapping, sn+l =msn, becomes unstable for |m| >1. This also

holds for a linear mapping with additive noise sn+l =msn + <!;„. When \m\ > 1, a particular

noise contribution becomes larger with each iteration, and the variable s will not remain



bounded for long times. Hence we examine the case where |m| <1. Additionally, we

assume that the process is white noise, so that subsequent time steps are independent.

Because the distribution of the sum of two independent random variables is the

convolution of the two distributions, the convolution of the distribution of h(s J with the

distribution of ^ gives the distribution of sn.t. Therefore, if the distribution S of s is to

remain invariant it must satisfy the equation

S(s) =ij5(5-y)Se<fc\ (11)

Where £ is the distribution of £ and m is the slope of the linear map.

The solution of this equation is straightforward if the distribution £ is gaussian.

We then know that S is gaussian, because two gaussian distributions convolved with each

other give another gaussian distribution. An odd mapping, h(x) = -h(-x) and the even

distribution of £ producean even distribution S that has mean zero. Since we know the

form of the distribution is gaussian with mean zero, the variance of the distribution is the

last parameter needed to fully specify the distribution. A self consistency approach can

be used to determine the variance. (This variance analysis applies to any and all

distributions of the additive noise; however the form of the invariant distribution of s will

not be the same as the distribution of £, and will almost surely not be a simple function if

the distribution of £ is not gaussian.) Because the mean of s is zero the varianceand the

second moment are equal, and for (11) to hold the second moment of $„♦/ must equal the

second moment of sn

E(£,) =Etf). (12)

Substituting the linear version of (9) into (12) we have

E«ms+S)2) = E(s2). (13)

Invoke the independence of s and £ to produce

m2E(s2) + E^2) = E(s2). (14)

Solve for E(s2)



EU2) =̂ T- (15)
\-m

Note that the second moment, E(.v2), and thus the variance of the distribution S is

proportional to the variance of the noise distribution £. The variance is singular at m=±l.

Two extremes of the linear map, m=0 and m=l, areeasy to analyze analytically

for any noise distribution. Any map with slope m=0 simply reduces to an identity

between s and ^

Thus at zero slope, s will be distributed exactly identically to the random variable. As the

slope nears 1 the variance of s increases. At slope m=\,sNbecomesa direct sum of N

independent random variables drawn from the process §,

fe' (17)

The variance of this sum diverges as N where N is the numberof terms in the sum. The

central limit theorem states that this sum of independent identically distributed random

variables rescaled by N will approach a normal distribution as N approaches infinity .

Hence for m=0 the distribution is given by the distribution of the random variable itself;

and for m-\ the distribution approachesa gaussian. For intermediate slopes one gets

interesting behavior. As m increases from 0 to 1 the distribution of s changes from the

noise distribution £ to a broad gaussian. In these intermediateregimes fractal

distributions of s can result from discrete distributions of £.

B. Sum Equation for a Piecewise Linear Map

The ideas of self consistency developed in equations (12,13,14,15) can be

extended to some piecewise linear maps by considering a gaussian noise distribution of £

with mean zero. The maps chosen areodd so that the mean of the invariant distribution

remains zero. The maps are also chosen so that the transformation of any gaussian



distribution by the map results in a new distribution with a single maximum. We

approximate the new transformed distribution with a gaussian distribution having the

same variance as the new transformed distribution. Using self consistency ideas, the

variance of the invariant distribution is the same after having applied the map and added

the noise as it was before. Starting from (12) and substituting in (9), we have

E((Ks) + ^)2) = E(s2). (18)

Since s and t;are independent (18) can be transformed to

E(/z(s)2) +E($2)= E(s2). (19)

We determine E(h(s2)) by assuming that s is gaussian distributed with mean zero and

variance E(s2) and compute the variance of the new transformed distribution, h(s). We

check these assumptions by comparing analytic results with computer simulations for a

simple map. Consider the piecewise linear map which is 0 from -1 to 1 and slope 1/2

everywhere else. The noise added to the map has unity variance. Equation (19) solved

on a computer predicts that the variance of the invariant distribution will be 1.04097,

while after a computer simulation of 5xl07 iterations of the map, the variance was

calculated to be 1.041. Figure 1 shows the invariant distribution and the error between

the gaussian distribution with variance calculated using (19) and a distribution estimated

from a computer simulation of 5xl07 iterations.

C. Difference Equation

Equation (10) describes the dynamics of the separation between the two

subsystems. Following the work of Pikovsky [11], we first ignore the difference noise 8

and look at a logarithmic transformation of (10)

z„ =Hr„| (20)

giving

z„.,=z„ +ln|«'W|. (2D



The quantity ln|/i'(sn)| is an instantaneous lyapunov exponent because itdescribes the

change in the separation of two nearby maps over asingle time step. We gather the

instantaneous exponents together in groups of N and average those groups to get what we

call a running average lyapunov exponent

j+N-\

A?=£2>|*'(0|- (22)
«=/

Pikovsky calls these running averages local lyapunov exponents because they are local in

time. The evolution of the difference variable can now be described using running

average lyapunov exponents

**o>n =*« +"<• (23)
We assume that adjacent running average lyapunov exponents, A^- and Asu+])y become

independent of each other as Ngrows large because the correlation between adjacent

running averages decreases as the group size grows. With this assumption their sum

follows central limit theorem behavior. In addition we assume that z and ANi become

independent for large N. In simulations we have found that the correlation decreases

between the two variables as N increases, which justifies this assumption. Therefore the

invariant distribution Z for z satisfies

Zw+1)(z)= ]LN(AN)ZiWi(z-NAs)dA\ (24)

where LN(A^ is the invariant distribution of the running average lyapunov exponents

normalized such that

]LN(AN)dAN =L (25)

The form of Z that satisfies this equation is

Inserting (26) into equation (24) gives an expression for a



em= \LN{AN)ea{l-NfiN)dAN (27)

or

\=\LN{AN)e-aNhNdAN. (28)

If Z/^A*) is known, then a can be calculated. Within these approximations the invariant

distribution for z is exponential in z with parameter a.

To elucidate equation (28) more fully we define

5(a) =]LN{AN)e-aN^dAN. (29)

Remember that 5 depends on LN. Solutions of (28) will be solutions of

5(a) = 1. (30)

Observe that equation (30) has a trivial solution independent of LN by setting a=0 in (29).

This yields

5(0)= \LN{As)dA\ (31)

and by the definition of normalization (25), we obtain

5(0) = 1. (32)

Consider now the second derivative of (29),

d2

d&
S(a) =jN2(A")V(A">f^"dA" (33)

This implies that

because every term in the integral in (33) is positive. We use equations (32) and (34) to

make sketches of S(o) in Fig. 2. The five cases in the figure shows all the possible

relations that the curve S(o) can have to the horizontal line at5=1. The figure shows that



equation (30) has only one or two solutions. Because we expect the physical solution to

depend on LN the trivial solution a=0 is ignored unless the second solution coalesces to

a=0. The second solution (usually a*0) depends on LN and is the physical solution we

seek.

One difficulty exists with the exponential form; it is not normalizable. However

we can impose two cut-offs on this behavior. For large differences the Taylor expansion

in (8) fails; by physical reasoning the separation cannot grow beyond the attractor size,

which is assumed to be bounded in z. At small scales the difference noise, ignored

between (10) and (21), forces separation of the two systems. Figure 3 shows a histogram

of separations taken from computer simulations of a map described later. The horizontal

axis displays separation on the scale z = ln|r|. P(z), the probability density of finding the

system at separation z, is plotted on a vertical logarithmic scale. Exponential behavior in

z will be revealed as a straight line in the figure. The region of interest falls between z=-

12 and z=-7; the straight lines in this region show the region of validity of the above

analysis. Below z=-12, subsystem asymmetry due to the difference noise causes a dip in

probability and destroys the exponential behavior. Above z=-7 the taylor expansion is

not valid and the nonlinear terms bring the two subsystems closer to each other keeping

them within the attractor size.

If the system is more synchronized than not, the distribution exponent will be

negative, and the two systems spend more of their time separated by small distances than

large ones. If the exponent is positive, the probability distribution will be weighted

toward large separations not small ones. The larger the magnitude of the exponent the

stronger the synchronization or desynchronization. One of the three distributions in Fig.

3 is slightly synchronized. The other two curves show that one case is synchronized and

the other is unsynchronized. The distribution exponent a is an excellent continuous

measure of the degree of synchronization; a measure that makes intuitive sense because it

describes the probability of separation. In addition this exponent closely corresponds to

10



the idea of a conditional lyapunov exponent. Pikovsky showed and we will also

demonstrate that when the conditional lyapunov exponent changes sign, the distribution

exponent also changes sign.

Figure 3 exhibits the universal feature of exponential behavior with two cut-offs

that seem to be common to many types of maps. Although the previous analysis of

invariant distributions uses an unproven assumption that the running average lyapunov

exponents A* and the separation z become independent, the analysis seems to apply to

many different types of situations. In addition to the piecewise continuous map treated

here we have observed exponential distribution of separation, for the logistic map, for

maps describing phase locked loops [9], for systems with different noise distributions,

and for systems that are fed not with random white noise but with a signal from a

deterministic chaotic system. The behavior seems to be fairly universal.

D. Piecewise Linear Map

We introduce a simple piecewise linear map to illustrate some of these ideas,

Kx) = <

W+* + 'T"~2 X<~6

m_x -i<x<±. (35)

m+x-^T + ± 6^*

For the map (35) to remain continuous the following relationship must hold

m+=——. (36)

A plot of the map with m.--\ is shown in Fig. 4. We add the white noise £, to the map

mod 1 so that w and x stay within the range -1/2 to 1/2. We also add the asymmetric

white noise 8n which has a variance of order 10"6. The mapping equations for the two

systems are then

w«+1=[^K)+^+Yjmodl
( s\ ' (37)*.+i=[AW+£--^Jmodl

11



We introduce two quantities for future use:

A+ = lnlmj
(38)

X_ - ln|m_|

The synchronization behavior of this map depends mainly on two parameters: the

variance of the common noise and the value of the center slope. The two extremes of

noise variance can be easily determined analytically.

Without noise the map is stable until the center slopem.drops below -1. If

\m\ <1, two identical maps without noise will stay synchronized, both with w=k=0, until

the central fixed point becomes unstable. Any difference between the values of w andx
(8>)

will be entirely due to 8 and from (15) will have a variance of approximately -f—'-j.
1 —m_

When the fixed point goes unstable the whole map goes unstable and the two points

become completely unsynchronized. It is difficult to determine sigma analytically for

this low noise case, but it is clear that if it is defined at all the exponent goes from one

extreme, of synchronization (a«0), to the other(a»0), of unsynchronization, very

rapidly.

If a full unit of noise is added to the map at every iteration, the map is just as

likely to visit any point on the interval -1/2 to 1/2. This is the special case treated by

Pikovsky [11]. At each step the map will land on the two outerpositively sloped regions

with probabilityp*=2/3 and land in the centerregion with probability /?.=l/3. The

lyapunov exponent can be easily determined by using these two probabilities to average

the logarithms of the two slopes:

This full noise forces independence between the current state of the system and any

previous states. Because of this independence, (28) holds exactly for Ll(), and we can

determine sigma analytically. The distribution of the runningaverage for one time step is

Ll(A)=|(5(A-;i+)+i<5(A-;0, (40)

12



where here 8 is the dirac delta function. Putting this into (28) gives an equation for sigma

\ = p+e-aX' +p_e'aX- (41)

which can be solved numerically. Both a and Xcross through zero when m. ~ -0.355.

When m. is greater than this the two maps become synchronized and their trajectories stay

mostly close to each other despite their random motions and different initial conditions.

As m. drops below -0.355, the evolution of the two maps is such that the trajectories are

more different from each other than similar to each other, i.e. the systems are

unsynchronized. Sigma characterizes the continuous transition between synchronized

and unsynchronized behavior.

The cases of noise variance that range between no noise and a full unit of noise

can be analyzed via (19). We assume that the noise is normally distributed. The gaussian

noise and the simple map used in (37) produce an invariant distribution which is

approximately a mod 1 gaussian. The analysis determining E(g(s¥) must be modified.

Calculating the approximate distribution is analogous to (19) except that determining the

"variance" of a function on a mod 1 interval is different from determining the variance on

the real line, see the appendix.

Once an approximate invariant distribution is known, the lyapunov exponent can

be estimated. The probabilities of being in the center negative sloped region, p.t and the

outer positive sloped region, p+, determine the lyapunov exponent:

X = p+X+ + p_X_. (42)

A contour plot of these lyapunov exponents is shown in Fig. 5a for various values of

center slope m. and noise levels. For comparison the lyapunov exponents determined

through a computer simulation are also displayed in Fig. 5b. The agreement between the

two methods is striking. The transition between synchronized and unsynchronized

evolution of the maps occurs along the curve marked zero. The transition happens in a

continuous fashion and there is no drastic change as the curve is crossed.

13
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E. Dependence between Adjacent Running Averages

Figure 3 came from the evolution of themap (37). The map serves to illustrate

the conceptof sigma, and can alsoelucidate the ideas of the running average lyapunov

exponent A* and the dependence between it and the separation z. The distribution

exponent is much moredifficult to determine analytically than the conditional lyapunov

exponent. Unlike the analysis leading to equation (41), we now need to take account of

the fact that the process A1 is no longer a white noise process, but that A1 depends on the

previous time step. As previously, we average the instantaneous lyapunov exponents

over N time steps to obtain a new random process AN. As N increases the running

average lyapunov exponents AN become less and less dependent on each other. As N

increases in (28) its solution becomes a better and better approximation for sigma.

The distribution of A* can be determined either through numerical simulation or

through mapping of the invariant distribution. It is faster computationally to use

numerical simulations. Figure 6 gives the predictions of the distribution exponent from

(28) for the same amount of common noise and mapping slope but for increasingvalues

of N. It also shows the value of sigma measured from computer simulation (horizontal

line). As N increases the prediction becomescloserand closer to the value measured in

computer simulations, showing that the running averages become more and more

independent of the separation.

A main consequence of the interdependence of instantaneous lyapunov exponents

is a shift in variance. The variance of the running average differs from naive predictions,

ones which just take into account the instantaneous lyapunov distribution but not the

dependence of the instantaneous lyapunov exponent on the previous time step. For map

(37) having a noise level of 0.02089 and a center slope m. = -0.5 the probabilityof having

A1 =X. is 0.685 and the probability of having A1 =X+ is 0.315. A random variable created

from an averageof five samples of that random variable would have a variance of 0.0470.

However the running average, As, has a variance 0.0625. The variance of the running

14



average is larger because once the instantaneous lyapunov exponent has taken on a value,

either X. or A„, it is more likely to take on the same value during the next iteration.

F. Normal Distribution of Running Averages

The distribution of AN for large N approaches a normal distribution, a

consequence of the ergodic theorem [12]. The average of A" for large N should be the

same as A1 and the variance of AN should decrease proportionally to N. Using this form

of a normal distribution in (28) gives

l=ljke~ia*<"MdA. (43)
where the variance v is

t^lim/VvarfA"). (44)

We integrate (43) to obtain

j_ e-Wo+±%{No)2 (45)

Solving for a we find

Ng(±vg-X) = 0 (46)

and ignore the trivial solution a=0 to get

a=2i (47)
V

The variance v is written as a limit to take into account the changes due to dependence

mentioned at the end of the last section. The variance v can be split into two pieces, the

variance of the instantaneous lyapunov exponent and a correction due to the dependency

between time steps. The variance ofthe instantaneous lyapunov exponent is var(A').

The dependency correction is expressed through a diffusion coefficient [13]

D 1,<A'A,> ,<A'Aa) ,
2 <(Atf) W)

with v expressed as

15

(48)
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i; =var(A,)2D. (49)

The approximation of a normal distribution is best at the maximum of the

gaussian and deteriorates toward the tails. The further from zero X is, the more the tails

are emphasized in the calculation for sigma. Consequently this approximation holds best

when X is close to zero.

G. Relation between Lyapunov and Distribution Exponents

Figure7 shows a plot of a versus X for three different noise levels. The plot was

generated through computer simulation and each curve is parameterized by m.. Two

features are clear from the plot. First a and Xalways change sign together; the graph

stays in the 1st and 3rd quadrants and always passes through the origin.

This relationship can be proved through use of the properties of 5(a). Recall that

5(0)=1 and from (34) that 5 always has positive curvature. The first derivative of 5 is

— =- fNANLN(AN)e-aNA"dAN. (50)
da _J_

We evaluate (50) at a=0 to obtain

=-JNANLN(AN)dAN. (51)
0

From

X= ~JA"LN(AN)dAN (52)

we have that

= -NA. (53)

dS_
do O=0

d5

do <T=0

A negative lyapunov exponent selects Figs. 2a and 2d as the only possibilities for

the relationship between S(a) and the horizontal line at 1, because through equation (53)

the slope of 5(a) through 0 must be positive. So the second solution, if it exists, must be

less than zero, just like the lyapunov exponent. Similarly, if the lyapunov exponent is

16



positive, the slope must be negative, Figs. 2b and 2e are the only possibilities, and the

second solution must be positive.

The second feature of Fig. 7 is that the transition through the origin happens

abruptly for low noise levels and gradually for large noise levels. The slope of the line at

zero quantifies the rate of transition from synchronized to unsynchronized behavior. It

can be determined analytically from (47). Using expressions for A, A1 and v

X = p+X+ + p_X_, (54)

({Al)2) =pX+p_£. (55)

t> =var(A,)2D =(/(A,)2\-A2J2D =-a-A+)(A-A_)2D (56)
and substituting into (47) gives

-2A
a = . (57)

(A-A+)(A-A )2D

The derivative of (57) with respect to X is

da _2(A2(1 -^^)-X_X. +XX.%t +XX.%)
dX (A-A_)2(A-A+)22D

Evaluating (58) at A=0 yields

_2

a=o~ A_A+2D"
do

dX

(58)

(59)

Table I below shows a comparison between measured values and predicted values of

— . The diffusion coefficient D defined in (48) was calculated using computer
dX x=o

simulations.

17



III. CONCLUSIONS

We have shown that a good way to quantify the degree of synchronization is

through use of the distribution exponent a. This has many connections to an intuitive

idea of synchronization and is also relatively easy to measure. We have explored a

simple piecewise linearmap to examine a and Aand theirrelationship in synchronization

transition regions. We have also observed and explained differences in the transition

between synchronized and unsynchronized behavior for differing levels of noise.
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APPENDIX

All the distributions dealt with in this paperhave zero mean so that their variance

and second moment are completely equivalent. The integral expression for measuring the

second moment over the real line is

SecondMoment(g(jc)) =^x2g(x)dx. (Al)

This is useful in equations (14) and (19) because the sum of variances of two independent

random variables defined on the real line equals the variance of the sum of the same two

random variables. However "second moment" on the circle defined by a truncated

version of equation (Al)

18



y2
SecondMoment(g(jt)) = jx2g(x)dx (A2)

-Yi

does not have the distributive property for the addition of random variables on the circle.

For this situation it is more useful to determine the second moment from the second

derivative evaluated at the zero of the fourier transform of a function

SecondMoment(^U)) =jx2g(x)dx =-•£? je-ia*g(x)dx d±
dto

G(co) _. (A3)
oj=0

Our definition for "second moment" on a circle will be analogous to this. Determine the

fourier series for a function on a circle and estimate the second derivative of the series at

the origin in Fourier space from a number of elements in the series. The analogy is

illustrated in Fig. Al where we show a function defined in real space and its fourier

transform and a function defined in periodic space and its fourier series.

A good account of estimates for the second derivative can be found in [14]. We

use the seven point formula:

Var() ~ 360 Jf_3 + 360 X-2 + 360 *-l + "360"-*0 + 360 *1 + 360 X2 "*" 360 X2' (A4)

This definition works well producing accurate results as shown in Fig. 5.

19



Table I Comparison of the values of
do

dX
measured through computer

A=0

simulations and predicted from equation (59) for a various common noise variances. The

diffusion coefficient was calculated through computer simulations.

do do

Noise Diffusion
dX A = 0 dX A=0

variance coefficient Prediction Simulations

Large Noise 0.069773 1.269 3.64 3.53

Medium Noise 0.020895 1.415 7.27 7.08

Low Noise 0.002315 1.452 40.7 36.8
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FIGURE CAPTIONS

FIG. la. Invariant distribution of a piecewise linear map h(x) with additive noise. The

map is 0 from x=-\ to*=1 and has slope 1/2 everywhere else. The noise is white noise

gaussianly distributed with unity variance. The computer simulation and the self

consistent prediction are indistinguishable from each other.

FIG. lb. The error between a distribution estimated from a computer simulation of this

map and a gaussian distribution with variance calculated using equation (19). The

simulation was run through 50,000,000 iterations and sorted into overlapping bins of

width *=0.6.

FIG. 2. Five different possible cases for the shape of the curve S(o) given in (29).

Solutions to (30) appear as intersections between the curve and the line a=l are also

plotted. In (a), (b), and (c) there is only one solution to (30) and the physical solution has

gone to minus infinity, infinity, and zero respectively; (d) and (e) each show two

solutions to (30); the physical solution in (d) is negative while the physical solution in (e)

is positive.

FIG. 3. P(z), the probability density, is plotted on a logarithmic scale versus the

separation z = ln|r|. {P(z)dz is the probability of finding the two systems described by the

mapping (37) between the range of separations z and z+dz) The common noise is

gaussianly distributed. The difference noise is gaussianly distributed with variance 106.

There are three different maps shown. The synchronized map has center slope -0.1 and

common noise variance 0.0698. The map that is barely synchronized has center slope

-0.951 and common noise variance 0.00231. The unsynchronized map has center slope

-0.5 and common noise variance 0.0698.
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FIG. 4. A plot of the function h in (35) with m=-\ and m.=2.

FIG. 5. Two contour plots of conditional lyapunov exponent in the parameter space of

noise variance £, and center slope m. of the piecewise linear map. The noise is gaussianly

distributed with a variance indicated on the vertical scale. The contour lines are spaced

every 0.25. Plot (a) comes from analysis; plot (b), from simulation.

FIG. 6. Plot of the prediction for sigma produced by the distribution of A" for increasing

N. The measurements were taken at a large noise level with a gaussian variance of 0.069

and a center slope of the piecewise linear map of -0.1.

FIG 7. Plot of the distribution exponent versus the lyapunov exponent for three different

noise levels. The large, medium, and low noise levels used had variances of 0.0698,

0.0209, and 0.002315 respectively.

FIG. Ala. Plot of the real line hat function. It is non zero only from -1/4 to 1/4 and is

defined over the whole real line.

FIG. Alb. Plot of the hat function in fourier space, —. It is defined over the real

line and its second derivative at zero is equal to the variance of the hat function

d2 fSin(f)1

FIG. Ale. Plot of the periodic hat function. Again the function is non zero from -1/4 to

1/4, but now it is only defined from -1/2 to 1/2.

FIG. Aid. Plot of the periodic hat function in fourier space, —^-. It isonly defined
"4

over the integers, and the estimate of the second derivative at n=0 is defined to be the

variance of this periodic function.
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