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Abstract

This paper addresses state minimization problems of different classes of non-deterministic finite
state machines (NDFSM's). We describe a fully implicit algorithm for state minimization of pseudo
non-deterministic FSM's (PNDFSM's). The results of our implementation are reported and shown to be
superiorto a previous explicit formulation. We could solve exactly all but one problem of a published
benchmark, while an explicit program could complete approximately one half of the examples, and in
those cases with longer run times. Then we presenta theoretical solution to the problem of exact state
minimization of general NDFSM's, based on the proposal of generalized compatibles. This gives an
algorithmic frame to explore behaviors contained in a general NDFSM.

1 Introduction

Non-determinism is a valuable tool in the specification of behaviors. It can be used both to capture
conditions that cannot arise in a certain situation (extending the usage of don't care conditions) and to
postponeimplementation choices. In a finite statemachine(FSM) specification, it captures multiple choices
in the behavioreachofwhich could be chosen to be implemented. The most generalform ofnon-determinism
in sequentialbehaviorscan be expressed by means of a non-deterministicFSM (NDFSM). The usual goal
is to explore different behaviors contained within an FSM specification and choose an optimum one with
respect to some cost function, e.g., one with a minimum number of states. In this paper we address the
problem of finding a minimum contained behavior within a stand-alone FSM.

In the case of deterministic FSM's (DFSM's), the most efficient state minimization algorithm has
complexity O (n log n), where n is the number ofstates [6]. An implicit algorithm for computing equivalent
states has been presented in [9]. An exact explicit algorithm for state minimization of incompletely
specified FSM's (ISFSM's) has been proposed in [4], and implemented as a program in [10]. In [8], an
implicit algorithm for exact state minimization of ISFSM's has been described. It is based on new implicit
techniques to generatecompatibles and to solve a binate table. Recently, a more general class of NDFSM's
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(originally proposedby Cemy in [3]) called pseudoNDFSM's (PNDFSM's) has been shown by Watanabe
in [11] to be sufficient to capture the flexibility of an FSM at a node in a network of interacting FSM's.
Extracting out of an NDFSM a behaviorcorresponding to a DFSM with a minimum number of states is an
important synthesis objective, that generalizesthe problem of stateminimization of ISFSM's.

In [12, 2] the problem of extracting a minimum state behavior out of a PNDFSM has been studied
and it has been shown that an exact solution can be obtained by extending the notion of compatibles and
formulating a binate covering problem. The algorithms in [12] use some implicit techniques from [8], and
tackle alsothe more complex problem of selecting a DFSM that canbe correctly implemented in an FSM
network.

Here we present a two-fold contribution: (1) A theoretical solution to the problem of exact state
mimmization of general NDFSM's, based on anewnotion of generalized compatibles. They are sufficient
to explore behaviors contained in a general NDFSM. (2) An implicit algorithm for state mimmization
of PNDFSM's. The results of our implementation are reported and shown to be superior to the explicit
formulation described in [12]. We couldsolveexactly all theproblems ofthebenchmark usedin [11 ](except
twocases, where minimalsolutions notguaranteed tobeminimum were found). Theexplicitprogram could
complete approximately onehalfof theexamples, and in those cases withlonger running times.

It is worth to underline that the first step of exact state minimization is the exploration of all possible
behaviors contained in a NDFSM. For some classes of NDFSM's this can be achieved by computing
compatibles (as classically defined in[4] and then extended in[12,2]). Each closed collectionofcompatibles
is a contained DFSM and vice versa. In the case of state minimization, one wants a minimum cardinality
closed collection of compatibles. But one can replace the requirement of minimum cardinality with any
other desired cost function or property (such as an implementable behavior) and obtain a new problem
of behavior selection. Therefore the exploration of all contained behaviors is a key technology for future
applications in thesynthesis of sequential networks and the capability of doing it efficiently as when using
the proposed implicittechniques is a winning toolto support synthesis algorithms.

The remainder of the paper is organized as follows. Section 2 reviews implicit representations and
manipulations. A taxonomy of different classes of finite state machines is proposed in Section 3 and their
state minimization problem is introduced in Section 4. State minimization of PNDFSM's is discussed
in Section 5, and a fully implicit algorithm for PNDFSM mimmization is presented in Section 6. A
theory for state minimization of NDFSM's is proposed in Section 7, while algorithms are discussed in
Section8. Results on minimizationof PNDFSM's are reported in Section9. Conclusions are summarized
in Section 10.

2 Implicit Representations and Manipulations

We will use the unified implicit framework proposed in [8] l. Implicit techniques are based on the
idea of operating on discrete setsby their characteristic functions represented by binary decision diagrams
(BDD's) [1]. For example, thestate transition relation of an FSM isrepresented by aBDDof itscharacteristic
function.

To perform state mimmization, oneneeds to represent and manipulate efficiently sets of setsof states.
With n states, each subsetof states is represented in positional-set form, usinga setof n Boolean variables,
a; = x\X2... in. The presence of a state s* in the setis denoted by the fact thatvariable Xk takesthevalue
1in thepositional-set, whereas xk takes the value 0 if state s* is notamember of the set. For example, if
n = 6, the setwith asingle state «4 is represented by 000100 whilethe setof states S2«3«5 is represented by

13x(T) (Vx(T)) denotes the existential (universal) quantificationoffunction Tovex variables x; ={• denotes Boolean implication;
<* denotes XNOR; -»denotes NOT.
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A set of sets of states is represented as a set 5 of positional-sets by a BDD characteristic function
Xs • Bn -• B as: xs{x) = 1 if andonlyif thesetof states represented bythe positional-set x is in theset
S. A BDD representing xs(z) will contain minterms, each corresponding to a state set in 5.

Lemma 2.1 Set equality, containment and strict-containment between two positional-sets x and y are
expressed by: (x = y) = n?=i(xk ** yk); (*2y) = Uk=i(Vk =*• **); and(x D y) = (x D y)-(x^ y).

Lemma 2.2 Given two sets ofpositional-sets, complementation, union, intersection, and sharp can be
performed on them as logicaloperations (->,+,*> •"•) ontheircharacteristicfunctions.

3 Taxonomy of Finite State Machines

In this section, we shall first define different classes of finite state machines (FSM's) used in this paper, and
their state minimization problems. Then we shall introduce the two common steps of a state minimization
algorithm: compatible generation and selection.

Definition3.1 A deterministic FSM (DFSM) can be defined as a 6-tuple M = (5, J,0,6\A,r). 5
represents thefinite state space, I represents thefinite input space and O represents the finite output space.
Sis thenextstatefunction defined as 6 :1 x S -* S where n 6 S is thenext state ofpresentstate p € S on
inputi € I if andonly ifn —S(i, p). A is the outputfunction defined as A: / x S -> O where oeO is the
outputofpresent state p € S on input i € / if and only ifo= A(t, p). r € S represents the unique reset
state.

Definition 32 A non-deterministic FSM (NDFSM) is defined as a 5-tuple M = (5, /, 0,7\ R) where
5, /, O are definedas above. T is the transitionrelation definedas a characteristicfunction T : I x S x
5 x O -»• B. On an input i, the NDFSM at present state p can transit to a next state n and output o if
and only ifT(iy p, n, 6) = 1 (i.e., (i, p, n, 6) is a transition). There existsone or more transitions for each
combinationofpresent state p and input i. RC S represents the set ofreset states.

The above is the most general definition ofan FSM and it contains, as special cases, different well-known
classes of FSM's. To capture flexibility/don't-cares in the next state n and/or the output o from a state p
underan input i, one can specifyoneormore transitions (i, p, n, o) e T. Weassumethat the state transition
relation T is complete with respect to i and p, i.e., there is always at least one transition from each state on
each input.

An NDFSM is a PNDFSM such that, for each triple (i, p,o)e/x5xO, there is a unique state n
satisfyingT(i, p, ny o) = 1. It is non-deterministic becausefor a giveninput and present state there may be
more than one output; it is called pseudo non-deterministic because transitions carrying different outputs
must goto different next states 2.

Definition33 A pseudo non-deterministic FSM (PNDFSM) is a 6-tuple M = (5,/,0,<J,A,i2). 8 is
the next state function defined as6:IxSxO-+S where each combination of input, present state
and output is mapped to a unique next state. A is the output relation defined by its characteristicfunction
A: IxSxO-^B where each combinationof inputand present state is related to one or more outputs.
RC S represents the set ofreset states.

Since the next state n is unique for a given output o, present state p and input i, it can be given by a next state
function n = 6(i, p, o). Since the output is non-deterministic in general, it is represented by the relation A.

^e underlying finite automaton of aPNDFSM is deterministic.



Definition 3.4 Given afinite setof inputs I andafinite setofoutputs O,a trace between I andO is a pair
ofinput andoutput sequences (<Ji,<r0) where Oi € I*, a0 6 O* and |<7t| = |a0|.

Definition 35 A trace set is a set oftraces.

Definition 3.6 An NDFSM M = (S, /, O, T, R) realizes a trace set between I andOfromstate sq € S,
denoted by C(M\s^) 3, iffor every trace ({t'o, i\, •••,ij}, {oq, o\,..., oj}) in the trace set, there exists a
state sequence si, 52,..., sj+i mc/ifto Vfc : 0 < k < j, T(ik, s*> Sk+\, <>k) = 1.

The trace set realizedby a deterministicFSM with inputs / and outputs O is called a behavior between
the inputs I and the outputs O. A formal definition follows.

Definition 3.7 Given afinite setof inputs I and afinite setofoutputs O,a behaviorbetween I andO is a
trace set, B= {(at,a0) | |at| = \a0\},which satisfies thefollowing conditions:

1. Completeness:
For anarbitrary sequence a, on I, there exists a unique pairinB whose input sequence is equal to

2. Regularity:
There exists aDFSM M = (S,1,0,6, \,s0) such that,foreach ((to,...,*j)»(°i.--->0i)) € B,there
isasequence ofstates s\,S2,..., Sj+i with the property that Sk+\ = 6(ik, sk) and Ok = A(ifc, Sk)for
every k : 0 < k < j.

For each state in a DFSM, each input sequence corresponds to exactly one possibleoutput sequence.
Given a reset state, a DFSM realizes a unique input-output behavior. But given a behavior, there can be
(possibly infinitely) many DFSM's that realize the same behavior. Thus, the mapping between behaviors
and DFSM realizations is a one-to-many relation.

Any otherkinds of FSM's, on the otherhand, can represent a set of behaviors because by different
choices of next states and/or outputs, more than one output sequence can be associated with an input
sequence. Therefore, while a DFSM represents a single behavior, anNDFSM can beviewed asrepresenting
a set of behaviors. Each such behavior within its trace set is called a contained behavior of the NDFSM.
Thus an NDFSM expresses handily flexibility in sequential synthesis. Thechoice of a particular behavior
for implementation is basedon some cost function suchas the numberof states.

4 State Minimization of FSM's

Aspecification represents a setofbehaviors. Thesets associated todifferent specifications can becompared
by means of the notion of behavioral containment.

Definition 4.1 AnNDFSM'sM= (5, /, O, T, #) behaviorallycontainsanotherNDFSMM'= (S',I,0,T',R'),
denoted by C(M) DC(M'), if4for every r' € R', there exists r € Rsuch that the trace setof Mfrom r
contains the trace set of M'from r'. i.e.,

C(M) DC(M') ifand only if Vr' € & 3r GRC(M\r) DC{M'\r>).

3Ifthe NDFSM M is viewedas aNFA A whichalphabet is Z = / x O, thetrace setof M from a state socorresponds to the
language of A from so, andbothwill be denoted by C(M\3Q).

*cf. classical definition for ISFSM minimization.



A criterion in the choice of a behavior is representability by a state transition graph with aminimum
number of states. This gives rise to the problem of state minimization.

Definition 42 Given an NDFSM M = (S,1,0,T,R), the state rmmntization problem istofind aDFSM
M' = (S', I, O, V, R') such that

1. C(M')CC(M),and

2. VM" such that C(M") C C(M), \S'\ < |S"|. 5

min

Such a case is denoted by C(M') C C(M).

The state minimizationproblem defined above is very different from the minimization problem ofnon-
deterministic finiteautomatadescribed in classicalautomatatextbooks [5 ]. Here we requireaminimum state
implementation which is behaviorally contained in the specification,while the classical problem requirean
NDFSM which represents the same set of behaviors as the original NDFSM but has the fewest number of
states.

We aregoing to define next closed covers, since a way to explore all behaviors contained in a PNDFSM
is by finding all closed covers in it.

Definition 43 Given anNDFSM M = {S,I,0,T,R),aset ofstate sets, {c\, (%,..., cn}, is a cover ofM
if6 there exists r € Rand Cj : 1 < j < nsuch that r € cj.

Definition4.4 Given an NDFSM M = (S, I, O, T, R), a set of state sets, K = {c\, ci,..., cn}, is closed
in M iffor every i e I andcj : 1 < j < n, there exists o GO andc* : 1 < k < n such thatfor eachs € cj,
there exists s' 6 c* such thatT(i, s, sf, 6) = 1. i.e.,

ViG/Vcj € KBoe0 3ck e A'Vs € Cj3s' e ckT(i,s,s',o) = 1

Definition 4.5 A set K ofstatesets is calleda closed coverfor M = (S,I,0,T,R)if

1. K is a cover of M , and

2. K is closed in M.

Definition 4.6 Let M = (S,I,0, T,R), and K = {c\,C2,..., c„} be a closed coverforMwhere Cj € 2s
for \<j<n,andM'= (£', /, O, T',R') where S' = {s\, s2,..., sn}.

K is represented by M' iffor every i e I and j : 1 < j < n, there exists k : 1 < k < n and o eO
such that, ifT'(i, Sj, Sk, o) = 1 then Vs € Cj 3s' € Ck T(i, s, s',o) = 1.

Note thatthis definition implies a one-to-one mapping of K onto S'\ in particular, c, -¥ sj for 1 < j < n.
However, many different FSM's can represent a single closed cover.

sGiven asetS, \S\denotes thecardinality of the set
6cf. classical definition for ISFSM minimization.



5 State Minimization of PNDFSM's

It has been proved in [7] that one can explore all behaviors contained in a PNDFSM by finding all closed
covers of the PNDFSM.

Theorem 5.1 LetM bea PNDFSM andW bea DFSM. C(M') C £ (M) ifandonly if there exists a closed
coverfor M which is represented by M'.

The following theorem, proved in [7], is a companion and anextension ofTheorem 5.1. It proves the
optimality of exact statemimmization algorithms which find minimum closed covers.

inin

Theorem 5.2 Let M be a PNDFSM and M' be a DFSM. C(M') C C(M) if and only if there exists a
minimum closed coverfor M which is represented by M'.

ByTheorem 5.2, the state mimmization problem ofPNDFSM's can bereduced totheproblem of finding
minimum closedcovers. From what established so far, aclosedcovermight containarbitrary setsof states.
Once a minimum closed cover is found, a minimum stateDFSM which represents the closed cover can be
obtained easily, and this final step is traditionally called mapping. A brute force approach to find aminimum
closed cover would be to enumerate sets of state sets, and test each one of them to see if it represents a
closed cover according to Definition 4.3. Then one would pick aclosed cover of minimum cardinality. One
improves on this brute force approach by introducing thenotion of compatibles.

In the previous brute force, each candidate closed cover is asubset of2s where S isthe state space of
the PNDFSM. Actually wedo nothave to consider all subsets of 5, but only those that can be elements of
aclosed cover. The definition of aclosedcoverrequires that it contains subsets only ofthe following types.

Definition 5.1 A setof states is anoutput compatible iffor every input, there is a corresponding output
which can be producedby eachstate in theset.

Lemma 5.1 Every element ofa closed cover 7isan output compatible.

Proof: ByDefinition 4.4, for each set c3-, : 1 < j < nonevery input i € /, there is an output o e O that can
be produced by each state in the set. Therefore cj is an output compatible. •

The following definition says that states within acompatible can potentially be considered as a single
state.

Definition 5.2 Aset of states is a compatible iffor each input sequence, there is a corresponding output
sequence which canbeproduced byeach state in the compatible.

The following lemma is proved in [7].

Lemma 5.2 Every element ofa closedcoveris a compatible.

Because of Lemma 5.2, an exact state minimization algorithm only needs to generate compatibles.
The next step of an exact algorithm after compatible generation is to select a subset of compatibles that
corresponds toaminimized machine. To satisfy behavioral containment, the selectionofcompatibles should
be such that appropriate covering and closure conditions are met. The covering conditions guarantee that
some selected compatible (i.e., some state in the minimized machine) corresponds to a reset state of the
original machine. Theclosure conditions require that for each selected compatible, the compatibles implied
by state transitions should also be selected. The state mimmization problem reduces to one that selects

7Thismorerestrictive lemma is alsotrue: Everyelementof a closedset is anoutputcompatible.



a minimum closed cover of compatibles. Instead of enumerating and testing all subset of compatibles,
the selection is usually solved as a binate covering problem, where covering and closure conditions are
expressed as binate clauses.

Explicit algorithms forexact state mimmization ofPNDFSM's have been proposed by Watanabe etal.
in [12] and by Damiani in [2]. An algorithm for PNDFSM stateminimization is morecomplicated than
one for ISFSM state minimization [8] because the definitionof compatibles and the closure conditions are
morecomplex. In the rest of the section we present the keyelements of an algorithm, withnew results on
the logical representation of closure conditions. They willbe usedin Section 6 to introduce the first fully
implicit algorithm for exact state mimmization of PNDFSM's.

The following example will be used throughout the text for illustrative purposes. Example Mp in
Figure 1 is a PNDFSM because on input 1, state D either outputs 0 and goes to state B, or outputs 1 and
goes to state A.

Figure 1: A PNDFSM, Mp.

5.1 Compatibles

The following theorem, proved in [7], serves as an equivalent, constructive definition of compatibles (cf.
Definition 5.2). The theorem yields an implicit compatible generation procedure given in Section 6.1.

Theorem 53 A set c ofstates is a compatible ifand only iffor each inputi, there exists an outputo such
that

1. each state in c has a transition underinput i and output o, and

2. fromtheset c ofstates, theset d ofnext statesunder i ando is also a compatible.

Example A,B,C, D, AB are the compatibles of Mp of Figure 1. AB is a compatible becauseon input 0,
it loops back to itself, and on input 1, it goes to C which is also a compatible.

5.2 Covering and Closure Conditions

Definition S3 A set ofcompatibles covers the resetstate(s) ifat least one selected compatible containsa
reset state.

Example The coveringcondition for Mp requires either compatible A or compatible AB to be selected. It
can be expressedby the simple clause (pa + pab) where the positiveliteral pa (pab respectively)is true if
and only if compatible A (AB respectively) is selected.

Definition 5.4 A set C ofcompatibles is closed iffor each compatible c e C,for each inputi, there exists
an output o such that

1. each state in c has a transition under inputi and output o, and



2. from theset c ofstates, the set d ofnextstates under i and o is containedin a compatible in C.

The following statement refines Theorem 5.2.

Corollary 5.1 The stateminimizationproblem ofa PNDFSM reduces to theproblem offinding a minimum
set ofcompatibles thatcovers the resetstate(s) and is closed.

Definition 5.5 Assuming a compatible c is selected, the closure conditionfor c,denoted by closure(c), is
a logicformula expressing the requirement thatsome other compatibles beselected according toDefinition
5.4.

Example Consider the closure condition for compatible D. On input 0, D transits to B. For state B to
be in a selected compatible, wemustselect eithercompatible B or AB. Oninput1, D eithertransits to A
with output 1,or transits to B with output 0. We must select a compatible which contains eitherA or B,
i.e., wemustselect eithercompatible Aor B or AB. Thus, the closure condition for D is theconjunction
ofdisjunctions (pb + Pab) •{pa + Pb + Pab)- Similarly, the closure condition for Ais (pb + pab) •(pc).
for B is (pA + Pab) •(Pc)» for C is (pd) • (pb + Pab) and for compatible AB is (pc).

During binate covering, thecovering table should guarantee that for each compatible c,either c is not
selected (i.e., pi is true), or its closure condition closure(c) is satisfied. Inother words, Yc + closure(c).
This expression can be represented as a conjunction of binate clauses as discussed in more detail later.
Example For compatible D, the binate covering table should have clauses expressing pd+ closure(D) =
PD + (pb +Pab) -(pa-\-Pb+Pab) = (pd + Pb +Pab) ' (pd + Pa +PB+Pab), which can besimplified
to (pd + pa + PB + Pab).

5.3 Prime Compatibles

As in the case of ISFMS's, it is sufficientto consider a subset of compatibles,called prime compatibles.

Definition 5.6 Acompatible c' prime dominatesa compatible c iffor each minimum closed cover contain
ingc, the selection with c replaced by c'also corresponds toa minimum closed cover.

Definition 5.7 Acompatible cisa prime compatible ifthere does not exist another compatible d such that
c'primedominates c.

Theorem 5.4 There exists a minimum closedcover made upentirely ofprimecompatibles.

Theabove theorem, proved in [7], justifies thatprime compatibles are sufficient to find aminimum solution.
A sufficientcondition for prime dominanceis givenby the following theorem.

Theorem 5.5 A compatible d prime dominates a compatible c if

1. if(cnR) # 0 then (d n R) ? 0, and

2. the closure conditionfor c implies 8the closure conditionford, and

3. d D c.

'Condition A implies condition B if and only if the satisfaction of condition A automatically guarantees the satisfaction of
condition B. In other words, A is not less restrictive than B.



Proof: Assume by contradiction that d doesnot prime dominate c, i.e., there is a minimum closedcover
containing c which is notany more a closed cover when c is replaced by d (Definition 5.7). We show that
at least one of the above three conditions is false.

Consider any set ofcompatibles C such that C u {c} is a minimum closed cover 9. As C U{c} and
CU{d} have the same cardinality, inorder that CU{d} isnot aminimum closed cover, either (1) CU{d}
does not cover the reset state(s) or(2) C U{d} isnot closed. For case (1), C U{c} is a cover but C U{d}
is not a cover if andonly if (c n R) ^ 0 and (dnR) = 0, i.e., condition 1 of the above theorem is false.
Forcase(2), C U{c}is closedbut C U{d} is notclosed if oneof the twosituations arises: (2a) C satisfies
the closure condition for c but not the closure condition for d. This happens if and only if condition 2 is
false. (2b) c is neededto satisfythe closureconditionfor somecompatible in C, but d doesnot satisfysuch
a condition. This is the case only if d ~fi c, i.e., condition3 above is false. •

The converse of the theorem is not true in general, because condition 3 is a sufficient condition, but not
a necessary condition, for case (2b) above.
Example Compatible AB prime dominates compatible B because all conditions of Theorem 5.5 are met.
Inparticular, closure condition for B implies closure condition for AB because [(pa -\-pab) •(pc)] =*• \pc\
Similarly, AB dominates A. As a result, the prime compatibles are AB, C, D.

5.4 Logical Representation of Closure Conditions

We now construct a set of logical clauses expressing the closure requirement that a next state set d is
contained in at least one selected compatible, as stated in Definition5.4. Since we will generate the set of
primecompatibles, we expressalso with logical clausespart 2 of Theorem 5.5 that refers to the implication
between closure conditions.

5.4.1 Computation of Closure Conditions

The notion of next state sets d is importantfor expressing closureconditionsand testing prime dominance.

Definition5.8 dc,,,0 is the setofnext statesfrom compatible c under input i andoutput o.

Given a triple (c,i,o), the set rfc,,,0 is unique in a PNDFSM. We associate to each dc^0 a clause whose
positive literals are the prime compatibles that contain dc>,,0. This clause will be part of the binate clause
representing theclosure condition for compatible c. Forsimplicity in notation, wedesignate by dc,t)0 both
the set of next states and the clause associated to it. It will be clear from the context which one it is meant.

Example The next state set from D on input0 and output 0, dr>,o,o is B and it corresponds to the clause
(pb + Pab)- dn,i,i is A and it corresponds to theclause (pa + pab)- ^d,i,ois B and it corresponds to the
clause (pb + pab).

For a PNDFSM, a set of compatible states c under an input i may go to different sets of next states
depending on the choice of output o. For at leastone choice of o, the corresponding next state set dc,,,0
must be containedin someselectedcompatible. This is expressed by the disjunctiveclause (or disjunction),
disjunct(c, i), defined as:

disjunct(c, i) = 3o € outputsat c under i, dc,,-,0.

Example disjunct(D, 1) represents the clause (do.i.o+ do,\,i) = (pa +Pb+ Pab)-
For a PNDFSM, the closure condition for a compatible c, denoted by closure(c), has the form of a

conjunctionof disjunctiveclauses. According to Definition 5.4, the conjunctionis over all inputs i, while

9It ispossible that nosuch C exists, and the theorem istrivially true.



the disjunction is over the outputs o such that A(i, s, o) = 1. Given a compatible c, the following product
of disjunctionsmust be satisfied(one disjunctionper input):

closure(c) = Vi € inputs, disjunct(c, i).

In summary, the closure condition for compatible c is fulfilled if and only if for each input i, there is
an outputo suchthat the next state set dCjt|0 from compatible c underinput i andoutput o is contained in
a seleaed compatible. In logical terms, the closure condition for c is fulfilled if and only if the following
product-of-sums is satisfied:

closure(c) = Vi € inputs 3o e outputs at c under i, dc,,)0 (1)

These closure conditions are tested against a certain selection of compatibles.
Example Closure condition for compatible D is closure(D) = (di>,o,o + di>,o,i) • (dD,i,o + <to,u) =
(PB + Pab) • (pa + pb + Pab)-

5.4.2 Implication of Closure Conditions

We construct now thelogical clauses expressing theprime dominance condition ofTheorem 5.5. Part 1and
3 are already expressed as simple logic formulas. Notice that the implication between closure conditions
mentioned in part 2 of Theorem 5.5 translates exactly to logical implication (=*•) between the clauses of
closure, i.e., given compatibles c and d, the closure condition for c implies the closure condition for d if
and only if closure(c) => closure{d). It is notconvenient to test this implication by first evaluating each
closure condition according toEquation 1,because each closure condition is in a product of sums form. We
would liketo express it in terms of set containment between next state sets, building on topof the related
result thatwill beproved inTheorem 5.8. What follows gives such a useful characterization of the formula
closure(c) => closure(d).

Using some fundamental validities of logic, wefirst prove two useful lemmas formanipulating logical
clauses.

Lemma S3 [Vx F(x)] =* [Vx' F'(x')] ifand only if Vx' 3x [F(x) =j> F'(x')].

Proof: [Vx F(x)] => [Vx' F'(x')] iffV*' [Vx F(x) => F'(x')] iffVx' 3x [F(x) =* F'(x')]. •

Lemma 5.4 [3x'F'(x')] =j> [3x F(x)] ifand only if Vx' 3x [F'(x') => F(x)].

Proof: [3xf F((x')] => [3x F(x)] iffVx; [F'(x') =* 3x F(x)]ifTVx' 3x [F'(x') => F(x)]. •

Theorem 5.6 Given compatibles candd, closure(c) => closure(d) iffW3i[disjunct(c, i) =*• disjunct(d, i')].

Proof: Substituting x = i, x' = t', F(x) = disjunct(c, i), F'(x') = disjunct(d, i') into Lemma 5.3, one
gets: Vi disjunct(c, i) => Vi' disjunct(d,i') iffVi' 3i [disjunct(c, i) => disjunct(d, t')]. Theformer is
by definition closure(c) =» closure(d). •

Now that we have expressed implication between closure conditions in terms of implication between
disjunctive clauses, the following theorem gives auseful characterization ofthe formula disjunct(d, i') =>
disjunct(c,i).

Theorem 5.7 Given compatibles d, candinputs i', i,

disjunct(d, i') => disjunct(c, i) ijfVo' 3o [dc',,-',0' => dc,t>]-
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Proof: Substituting x = o, x' = o', F(x) = dc,t>, F'(x) = dew into Lemma 5.4, one gets: 3d de,v%0' =*
3o dc,i)0 iffW 3o [dc',t>' =$• rfc,t>]. The former is by definition disjunct(d, i') =» disjunct(c, i). •

The following property is key to evaluating implications between logical clauses by set containment.
The latter can beperformed implicitly because dCti>0 is represented as apositional-set inSection 6.2.

Theorem 5.8 Ifthe set ofnext states dc>y>0> 3 the set ofnext state set dCtit0, then clause dew =» clause

Proof: If the set ofnext states dc/,t/,0» 2 the set ofnext states dc,f)0, then each prime compatible that contains
dc',i',o' contains also dc,t> Since each literal inaclause d isaprime compatible that contains the next state
set d, itmeans that the clause dc,i,0 has all the literals of the clause dC',;',<>' and soeach assignment of literals
that satisfies the clause dc*,,»,«>' satisfies also the clause dc,l)0, i.e., clause dc',;',<>' =* clause dC|i|0. •
The converse does not hold, as shown by the following counter-example, let d(d, i', o') be AB with
the corresponding clause (pabce + Pabde), and let d(c, i, o) be AE with the corresponding clause
(PABCE + PABDE + PAEg), then (PABCE + PABDE) => (PABCE + PylBDE + JMEg). but AB 2 ^-

By substitutingTheorem 5.7intoTheorem 5.6and usingTheorem 5.8,we haveexpressed theimplication
between closureconditionsof two compatibles(i.e., part 2 ofTheorem 5.5) in terms of a logic formula on
the next state sets from the two compatibles.

Theorem 5.9 IfVi' 3i Vo' 3o (dc/t,*t0» 3 dc,,,0), then closure(c) =* closure(d).

Proof: By Theorems 5.7,5.6 and 5.8. •

5.4J Simplification ofClosure Conditions

The following two theorems simplify the closure conditions. In our implicit algorithm, they are applied
before the implication between the conditions is computed.

Theorem 5.10 Given a compatible c and inputs i' and i, if disjunct(c,i') =» disjunct(c,i), then
disjunct(c, i) can beomittedfrom the conjunction closure(c) because of the existence ofdisjunct(c, i1).

Proof: If disjunct(c, i1) => disjunct(c, i),the conjunctionof disjunet(c, i') and disjunct(c, i) is simply
disjunct(c, i'). Therefore disjunct(c, i) canbe omitted from the conjunction closure(c). •

Theorem 5.11 A set ofnext states d is notneeded to bepartoftheclause disjunct(c, i), if

1. d isa singleton reset state10, or

2. dC c, or

3. dD d' ifd' is partof disjunct(c, i).

Proof: (1) If the clause disjunct(c, i) contains (the clause correspondingto) d and if d is a singleton reset
state, thenthe coveringconditionimplies disj unct(c, i). (2) If the clausedisjunct (c, i) contains(the clause
corresponding to) d andif d C c, then (the literal corresponding to) c must be in disjunct(c, i), so that if c
is selected then disjunct(c, i) is satisfied. (3) dD d'by Theorem 5.8 means d => d'. The disjunctionof d
and d! is simply d', so d canbe omitted from disjunct(c, i). •
The orderin which the next state sets are pruned in disjunct(c, i) is important, especially if these pruning
rules arcexecuted implicitly (in a sense, simultaneously). Forproperremoval of next state sets, one should
find all the d's that satisfy condition 1 or 2 first and remove them from disjunct(c, i). Then on a separate
step one removes all the d's containing other d' according to condition 3.

'"Condition 1isvalid only if aunique reset state is specified.
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6 Implicit State Minimization Algorithm for PNDFSM's

In this section,we will showhowthe stateminimizationalgorithmdescribedin Section5 can be implicitized.
First, we outline the differences between the state minimization algorithm of PNDFSM's and the state

minimization algorithm for ISFSM's [8]. For the latter, a setof statesis a compatible if andonly if eachpair
of states in it are compatible. This is not true for PNDFSM's and is illustrated by the following counter
example. As a result, the set of compatibles cannot be generated from the set of incompatible pairs as in
[8]. In addition, the computations forclosure conditions as well as prime dominance aremorecomplicated
than those for ISFSM's.

Example Thefollowing PNDFSM has three states A, B, and C, no input and anoutput with three values
{x, y, z). All state pairs are compatibles but the setABC isnot acompatible because they cannot allagree
on an output in one transition.

Figure 2: A PNDFSM which doesn't have a compatible ABC.

6.1 Implicit Generation of Compatibles

As we cannot generate compatibles from incompatible pairs, we have tostart with output compatibles (i.e.,
state sets) ofarbitrary cardinalities. First we compute the transition relation Tdet between sets ofstates,
usingthe implicitprocedure described in Section 8.2.

Given the transition relation T(i,s, s', o) of a PNDFSM M = (5, J, O, T, R), first we compute the
relation T°(i, c, d,o). A4-tuple (i, c, d, o) is in relation T° if and only if the set ofstates c on input i
can transit to another set ofstates c', and produce output o: T°(i, c, d,o) = Vs {[Single(s) •(s C c)] =»
3s' [T(i, s,s', o) •(s' Cd)]} •Vs' {[Single^ •(s' Cc')] => 3s [T(i, s,s',o) •(s Cc)]} •-0(c) •-0(c').

Proposition 6.1 The set Cofcompatibles ofaPNDFSM can befound by thefollowingfixed point compu
tation:

• rQ{i, c,d) = 3oT°(i,c,d, 6),

• Initially all subsets ofstates are compatible: Cq(c) = 1,

• By Theorem 5.3, Tk+\ (i, c, c') = rk(i, c, c*) •Ck(d),
Ck+i(c) = Vi3drk+l(i,c,d).

The iteration can terminate whenforsome j,Cj+\ = Cj, and the greatestfixedpointhas been reached. The
set ofcompatibles is given by C(c) = Cj(c) and the transition relation on the compatibles is r(i,c, d) =
Tj+\(i,c,d)-Cj(c).

6.2 Implicit Generation of Prime Compatibles and Closure Conditions

Inourimplicit framework, we represent each next state setasa positional-set d. The fact that a next state
set d ispart of disjunct(c, i) can be expressed by the transition relation on compatibles, r(i,c, d). The
following computation will prune away next state sets d that are not necessary according toTheorem 5.11,
and the resultis represented by the following relation B.
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Definition 6.1 The 1TE operator returns function G\ ^function F evaluates true, else it returns function

/r£(F,G„G„) =|g ll^l
where range(F)={0,I}.

Theorem 6.1 The disjunctive conditions can becomputed by thefollowing relation B:

A(c,i,d) = ITE(3d{T(i,c,d)-[R(d) + (dCc)]},<l>(d),T(i,c1d))

B(c, i, d) = Minimald(A(c, i, d))

Proof: The first equation corresponds to conditions 1 and 2 of Theorem 5.11. Given acompatible c and an
input i, ifthere exists a d which is anextstate set from cunder i such that R(d) + (d C c) is true, then the
disjunct(c, i) is setto theempty set0(d), else wekeep the original d in therelation r(i, c,d). The second
equation tests condition 3 and prunes all the d's that are not minimal (i.e., containing some other d' that is
part of disjunct(c, i)). •

In summary r(i, c, d) represents thesetof disjunctive clauses, while B(c, i, d) represents the pruned set
of disjunctiveclauses: d is in the relation B with (c, i) if and only if d is partof the disjunctiveclause for c
under i after pruning.

The following theorem computes the set of disjunctiveclausesaccording to Theorems 5.7 and 5.8, that
are used to express the closure conditions. Then the set of prime compatibles is computed according to
Theorem 5.5.

Theorem6.2 If D(d,i',c,i) = Vd' {B(c',i',d') => 3d [B(c,i,d) -(d' D d)]}, then disjunct(d,i') =>
disjunct(c, i).

Theset ofprime compatiblescan be computed by:

PC(c) = C(c)- fld{C(d) •[3s(R(s) •(s C c)) =* 3s' (R(s') •(s' C c'))]•Vi'3i (D(c,i, d, i')) -(c'Dc)}.

Proof: To evaluate disjunct(d, i') => disjunct(c, i), by Theorems 5.7 and 5.8, it is sufficient to check:
Vo' € outputs at d underi' 3o € outputs at c under i [dew 2 dCfii0].

In other words, we want to check that for allnext state sets d' from compatible d on input i' (on some
outputo'), thereexists anext state set d from compatible con input i (on some outputo) suchthat d' contains
d. This corresponds to the condition

Vd' {£(c', i', d!) =* 3d [£(c,i, d) • (d' Dd)]}.

Therefore D is a sufficient condition for disjunct(d, i') =* disjunct(c, i).
The second equationdefines PC(c) as the set of non-dominatedprimes. The right sub-formula within

{} expresses the threeconditions in Theorem 5.5. A positional-set c has a non-empty intersection with the
set of reset states R if and only if thereexists a resetstate 3s R(s) such that sCc. Condition 1 is satisfied,
because 3s (R{s) • (s C c)) =$• 3s' (R(s') • (s' C d)) makes sure that (d n R) ^ 0 if (c n R) ^ 0. By
Theorem5.6, condition2 ofTheorem5.5 is checked by Vi' 3i D(d, i', c, i) according to the first part ofthis
theorem. Condition (3) is simply (d 3 c). •

The following theorem computes the pruned set of disjunctive clauses according to Theorems 5.10
and 6.2. This set will be used in the next subsection to set up the binate rows of the covering table.
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Theorem 63 The pairs of compatibles c and inputs i involved in non-trivial disjunctive clauses are ex
pressed by thefollowing relation:

E(c, i) =fii' [(i ^ %') •D(c, i', c, i)]+ fii' [(i' -< i) •D(c, %', c, i) •D(c, i, c, i')].

Andthe corresponding pruned set ofdisjunctive clauses is given by relation: I(c, i, d) = B(c, i, d) •
PC(c)-E(c,i)-^b(d).

Proof: Given acompatible c,Theorem 5.10states thatifdisjunct(c, i1) ^ disjunct(c, i) thendisjunct(c,i)
can be omitted from closure(c). And disjunct(c, i') => disjunct(c, i) if the two pairs are in relation
D(c, i',c, i), according toTheorem 6.2. Thefirst term fli' [(i ^ i') •D(c, i',c, i)]deletes allpairs (c,i) such
thatthere is an input i' where (i' / i) such thatdisjunct(c, i') =* disjunct(c,i). Butthiswould eliminate
two many (c, i) pairs because it is possible that (i' / i), and moreover disjunct(c, i7) ^ disjunct(c, i)
and disjunct(c, i) => disjunct(c, i') are both true. Such pairs are defined by [D(c, i', c, i) •D(c, i, c, i7)].
Insuch acase, we must choose and retain exactly one ofthe two, inparticular we add back thepair(c, i) in
which i has the smallestbinary interpretation, by the last termof the firstequation.

For the second equation, the pruned setof disjunctive clauses contains the clauses in B(c,i, d), con
strained to have compatibles c thatare primes in PC(c), and pairs (c, i) given by relation E. Also, triples
with empty set d arevacuously trueclauses, and thus are pruned away. •

6.3 Implicit Binate Table Covering

Selection ofprime compatibles is performed bytheimplicit binate covering solver in [8]. Inparticular, we
use the binate table solver which assumes each row has at most one 0. lb use the solver, one has to specify
fourBDD's: twocharacteristic functions Col and Row representing a setof column labels anda setof row
labels respectively; and two binary relations 1and 0,one relating columns and rows that intersect at a 1in
the table, and another relatingcolumns and rowsthat intersectat a 0.

Similar to the case forISFSM's, each prime compatible corresponds to a single column labeled p in the
covering table. Sothe setofcolumn labels, Col(p), is given by: Col(p) = PC(p).

Each row canbelabeled bya pair (c,i) because each binate clause originates from theclosure condition
fora compatible c € PC under an input i. And the covering condition for a reset state is expressed by a
single unate clause, towhich we assign a row label (c, i) = (0,0). c is chosen tobethe empty setto avoid
conflicts with the labels of the binate rows, while the choice of i = 0 is arbitrary. The set of row labels,
Row(c, i), is given by a binate part and a unate part:

Row{c, i) = 3d I{c, i, d) + 0(c) •0(i).

Eachbinate clause associated witha compatible candan input i expresses thecondition that forat least
oneoutput o, thenext state setmust becontained in a selected compatible d. Thecorresponding next state
relation is/(c, i, d).

Next, let us consider the tableentries relations l(c, i, p) and 0(c, i, p). If (c, i) labels a binate row, the
expression 3d [(p D d) •I(c, i, d)] evaluates totrue if and only if the table entry is a 1attheintersection of
therow labeled (c, i) and thecolumn labeled p, i.e., therow can besatisfied if next state setd is contained
in selected compatible p. There is anentry 0 atcolumn p if (p = c), i.e., the row canalso besatisfied bynot
selecting a column labeled c.

The row labeled by (0,0) represents thedisjunction of compatibles p each of which contains at leasta
reset state R(s). On such a row, a table entry is a 1ifand only if3s [0(c) •0(i) •R(s) •(s C p)].

As a summary, the inference rules for table entries given a row (c, i) and a column pare: 0(c, i, p) =
(P = c),
l(c, i,p) S 3d [(p Dd) •/(c, i,d)] + 3s [0(c) •0(i) •R(s) •(s Cp)\
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7 State Minimization of NDFSM's

Is it possible to apply the classical procedure based on computing compatibles to NDFSM's of the most
general kind, i.e., that arenot PNDFSM's ? The answer is: yes, the notions of compatibles and selection
of a minimum subset carry through to NDFSM's; but, no, that procedure is not guaranteed to produce a
behaviorwitha minimumnumberof states. TheremayexistDFSM'sbehaviorally containedin an NDFSM
that do not correspond to a closed cover.

(c) Ma

Figure 3: A counter example, a) the NDFSM M, b) the minimum state DFSM contained in M, c) one
DFSM contained in M found using compatibles.

Example Given the NDFSM M in Figure 3a, the minimum state DFSM M\ (in Figure 3b) contained
in M cannot be found using compatibles alone. According to Definition 5.2, states B and C are not
compatible (and any state set containing B and C cannot be a closed set). Any minimized machine Mi
obtained bycompatible-based algorithms has atleast four states (e.g., Figure 3c). Suppose that after exiting
non-deterministically from state A intostates B and C, onechooses 0/0,1/1 as theiroutgoing transitions,
as shown in Figure 3b. In this way B and C can be "merged" together as one state. This merged state
is compatible with state D. This merging possibility is not explored bycompatibility. The minimum state
DFSM Mi, whose behavior is contained in the original NDFSM, has only two states.

7.1 Generalized Compatibles

We generalize thenotion ofa compatible (Definition 5.2) which isa setofstates, toone that is a setofstate
sets. Each individualstate set containsstates that can be mergedbecause they can be non-deterministically
reached from a reset state. The state set can be considered a new merged state in a reduced machine
which on each input, has a transition copied from a state in the set. If the original FSM does not have
non-deterministic transitions,each such state set will be a singletonand each generalizedcompatibleis just
a classical compatible.

Definition 7.1 A set of state sets is a generalized compatible iffor each input sequence, there is a
corresponding output sequence which can be produced by at least one state from each state set in the
generalized compatible.

A generalized compatible can be viewed as a collection of compatible merged states. Each state set
within a generalized compatible corresponds to a merged state. The trace set from a merged state is the
union of the tracesets from statesin thecorresponding stateset. The traceset associated witha generalized
compatible is the intersection of trace sets from allmerged states of the generalized compatible.
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Example {A}, {B}, {C}, {D}, {E}, {F}, {BC}, {BC,D} are generalized compatibles. Some trace sets and
corresponding transitions of {BC,D} are: {B,D} ^ {D,D}; {C,D} -^ {D,D}; {B,D} ^ {D,D} ^
{D,D}; {B,D} ^ {D,D} 'A {D,D}; {C,D} A {D,D} ^ {D,D}; {C,D} -^ {D,D} A {D,D};...

thmrPNDFSM-compatible The following theorem, analogous toTheorem 5.3, shows a recursive char
acterization ofgeneralized compatibles that expresses the compatibility ofasetofstate sets interms ofthe
compatibilities of its sets of next state sets.

Theorem7.1 AsetK ofstate sets isa generalized compatible ifand only if,for each input i, there exists
an output o such that

1. for each state set in K, itssetof transitions under input i and output o is non-empty, and

2. from the set K of state sets, the set K' of sets of next states under i and o is also a generalized
compatible.

7.2 Generalized Covering and Closure Conditions

The problem of state minimization of NDFSM's can be reduced to one of selecting a minimum subset of
generalized compatibles. The selection must satisfy the following covering and closure conditions.

Definition 12 Asetofgeneralizedcompatibles covers theresetstate(s)ifitcontainsat leastonegeneralized
compatible c such that the set ofreset states contains at least one state set in c (i.e., at least one ofits state
sets is made up entirely ofreset states).

We require that an element in a selected generalized compatible behaves like a reset state but an element is
now a set of states to be merged. To make sure that whatever transition we choose for the merged state, it
will still correspond to a transition from a reset state, we require that its corresponding state set be made up
entirely of reset states.
Example Only generalizedcompatible {A} covers the reset state.

The closure condition of a classical compatible requires that the set of next states from the compatible
be contained in another selected compatible. We now extend this notion of containment to sets of state sets
for generalized compatibles.

Definition 13 Aset K ofstatesets contains another set K' ofstatesets iffor eachstateset S' in K', there
is state set S in K such that S' contains S.

The trace set of a set of state sets is the intersection of the trace sets of the state sets, and the trace set of a
state set is the union of the trace sets from the states in the set. If K contain K' accordingto Definition7.3,
then the trace set of K contains the trace set of K'. For the trace set of K to contain the trace set of K', we

require set containmentbe in the form VS' € K' 3S € K such that S' C S.

Definition 7.4 A set Qofgeneralized compatiblesis closed iffor each generalized compatibleK € Q,for
each input i, there exists an output o such that

1. for each state set in K, its set of transitionsunderinput i and outputo is non-empty, and

2. from theset K ofstatesets, theset K' ofsets ofnextstatesunder i ando is containedina generalized
compatibleofQ.
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Example Theset of generalized compatibles Q= {{A}, {BC, D}} is closed. Theclosure condition for
{A} requires thegeneralized compatible {A} together with either {BC} or {BC,D}. In thelanguage of
clauses it is: (pA) • (pbc + Pbc,d)- Note that themerged state {BC} describes both thechoice of going
from {A} to {B} under input/output pair 1/0, than the one ofgoing from {A} to {C} under input/output
pair1/0. Theclosure condition for{BC, D} is (pd+Pbc,d)- These closure conditions aresatisfied bythe
selection Q.

8 Algorithms for State Minimization of NDFSM's

8.1 Exact Algorithms for State Minimization

Onthe basisof the theory outlined in Section 7 onecandevise algorithms to compute generalized compat
ibles. We do not know yet how to design an implicit algorithm along the linesof what donefor ISFSM's
and PNDFSM's. The main difficulty is to find a compact representation for sets of generalized compati
bles. Given thatgeneralized compatibles are already sets of sets of states, there is one more level of set
construction complexity than for state minimization of ISFSM's or PNDFSM's. If such a representation
exists, Theorem 7.1 gives a constructive definition of generalized compatible, andthe covering andclosure
conditions in Section 7.2 can be solved as a binate covering problem.

As an alternative, suggested in [11], one can convert any NDFSM to a PNDFSM by an implicit
determinization step as described below in Section 8.2 and then apply to the PNDFSM our implicit (or
any) state minimization algorithm. It goes without saying thatsubset construction mayintroduce a blow-up
in the numberof original states, hurting the efficiency of PNDFSM minimization. It is an open problem
whether a betterprocedure canbedevised, or instead thisexponential blow-up is intrinsic to theproblem of
minimizing NDFSM's. It mustalso bestressed thatwedonothave yetgood sources ofgeneral NDFSM's in
sequential synthesis, while thework in [11 ]hasshown thepivotal importance ofPNDFSM's inthesynthesis
of interconnected FSM's.

8.2 Implicit Subset Construction

Given thetransition relation T(i, s, s', o)ofanNDFSM M = (S, I,0,T,R), first wecompute thetransition
relation Tdei (i, c, d,o) ofthe determinized PNDFSM Mdet. A4-tuple (i, c, d,o) isinrelation Tdet ifand
onlyif the set of states c on inputi can transit to another setof states c', andsimultaneously produce output
o. Tdet(i,c,d,o) = Vs {[Single(s) • (s C c)] =* 3s' [T(i,s,s',o) • (s' C c')]} •Vs' {[Single(s') •(s' C
d)] =» 3s [T(i, s, s', o) • (s C c)]}•-.0(c) •-«0(c').

Given a 4-tuple (i, c, d, o), the first clause on the right sideof theabove equation requires that for each
singleton state s (Single(s) = 1)contained in c, there is a next state s' according to T which is contained
in c'. As a result, the next state set of c is a subset of c'. With also the second clause, the 4-tuples in the
relation will be such that d is exactly the next state set of c on input i and output o. Finally, we eliminate
all 4-tuples expressing the fact that the emptystate set can transitto the emptyset underany input/output
combination.

The powerof the above computation is that we have effectively determinized the NDFSM M into the
PNDFSM Mdet = (25, /, O,Tdet, rdet) where the new reset state isthe setofreset states in M. Compared
with explicit subset construction, no iteration nor state graph traversal is needed.

8.3 An Heuristic Algorithm for State Minimization

Exact minimization of NDFSM's requires generation of the generalized compatibles. If we restrict our
attention only to the classical compatibles, the algorithm given in Section5 for exact state minimization of
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PNDFSM's will still serve as a heuristic algorithmforNDFSM minimization. This is becausethe algorithm
chooses only from a subset of the generalized compatibles, namely the classical compatibles. For the
NDFSM M in Figure 3, such a heuristic algorithm cannot find the 2-stateminimum machine Mi but will
only find the 4-statemachine Mi. However, theheuristicalgorithm is guaranteed to find atleastone solution
made up entirely of classicalcompatibles, becausethe original NDFSM is such a candidate solution. The
hope is that most non-determinismexpressed in anNDFSM is pseudonon-deterministic in nature, and as a
result, the heuristic can find near optimum solutions most of the time.

9 Experimental Results

We have implemented an implicit algorithm for exact state mimmization of PNDFSM's in a program
called ism2, a sequel to ism [8]. Prime compatibles and the binate table are generated according to the
algorithmdescribed above; then aminimum coverofthe tableis foundby the implicit binatecoveringsolver
described in [8]. We perform and report experiments onthecompletesetofexamples obtained by Watanabe
in [11 ]. Each PNDFSM is an E-machinederived from an arbitrary connectionof two completely specified
deterministic FSM's, M\ and M2, from the MCNC benchmark. The productmachine M = M\ x M2 is
used as the specification. The E-machine which containsall permissiblebehaviorsat M\ is derived using
the procedure in [11]. Our problem is to find a minimum state machine behaviorally contained in the
E-machine.

Watanabe's minimizer, pnd_reduce, does not compute prime compatibles but finds all compatibles
instead. In its exactmode, compatible selection is performed by anexplicitbinatetable solveravailable in
the logic synthesis package sis. In its heuristic mode, it finds instead a Mooremachine in the E-machine,
by 'expand' and 'reduce' operations [11] on a closed coverof compatibles. As the heuristic looks only to
Moore solutions,it is understandable that it will give aworse solutionthanthe minimum contained machine
if the latter is not Moore. Also the run times might not be directly comparable. They are reported in the
table for completeness.

Table 1 summarizes the results of PNDFSM minimization. Foreach PNDFSM, we report the numberof
statesin the originalPNDFSM, the numberof statesin aheuristicMoore solutionobtainedby pnd_reduce,
the number of states in a minimum contained FSM, the size of the binate table for pnd.reduce and for
ism2, and the overall run time for state minimization for pnd.reduce (in both heuristic and exact modes)
and ISM2. All run times are reported in CPUseconds on a DECstation 5000/260with 440 Mb of memory.
Forallexperiments, timeout is set at 10000seconds of CPU time, and spaceout at440Mb of memory.

Out of the 30 examples, pndjreduce in exact mode failed to complete on 8 examples because of
timeouts, and failed on 4 examples because of spaceout. It can handle all PNDFSM's with less than
16 states. pnd_reduce in heuristic mode has a timeout on one example, and spaceout on three. Note
that some Moore solutions found heuristically are far from the optimum contained ones, although the
heuristic solutions may be close to the minimum Moore solutions. Our program ISM2 can handle more
examples than pnd.reduce and only failed to find an exact solutionon 2 examplesbecause of timeouts.
In those two cases, ISM2 did succeed in computing the prime compatibles as well as buildingthe binate
covering table. Furthermore, for the examplepm41, it found a solutionwith 9 states after4844 seconds
(whereas pnd_reduce heuristic took 4011 seconds to find a 19-stateMoore solution). For pm50, it found
a first solution with 4 states in 150 seconds, and the minimum one with 3 states in 7309 seconds, while
optimalitywasconcluded in49181 seconds afterthecompletebranch-and-bound treewassearched (whereas
pndjieduce heuristic can only find a Moore solution with 13 states). It is encouraging to note that our
implicitexactalgorithm hasrun times atleast comparable to the heuristic one in pnd_reduce, and in some
cases, it is much faster.

Note that many exact minimum solutions had only one state, i.e., the solutionis pure combinational
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logic. Such is a Mealy machine unless the logic is a constant. It is believable that the minimum Moore
behavioris much largerin general as indicatedpossiblyby the resultsof pnd_reduce.

Note also that each compatible results in a column of the binate table by pnd_reduce in exact mode
whereas ism2 has one column for each prime compatible. The fact that most examples have very few
prime compatibles showsthe effectiveness of ourprime compatibles computation forPNDFSM minimiza
tion. Even in these cases, stateminimizationmay not be trivial because compatiblegeneration and prime
dominance may take a long time, e.g., pm04 and s3pl.

10 Conclusions

In this paper, we have presented both theoretical and practical contributions to the problem of exploring
contained behaviors and selecting one with a minimum number of states for classes of NDFSM's. In
particular, we have contributed the following: (1) A fully implicit algorithm for exact stateminimization
of PNDFSM's. The results of our implementation are reported and shown to be superior to the explicit
formulation described in [12]. We could solve exactly all the problems of the benchmark used in [11]
(except one case, where a minimal solution not guaranteed to be the minimum was found). The explicit
program could complete approximately one half of the examples, and in those cases with longer running
times. (2) A theoretical solution to the problem of exact statemimmization of general NDFSM's, based
on the proposal of generalized compatibles. This gives an algorithmic foundation for exploringbehaviors
contained in a general NDFSM.

We are currentlyworking on the problem of selecting out of a PNDFSM a minimum DFSM that canbe
implemented in an interconnection of two FSM's and we will present soon our results.

It is worth to underline that the first step of exact state mimmization is the exploration of all possible
behaviors contained in a NDFSM. For some classes of NDFSM's this can be achieved by computing
compatibles(asclassicallydefinedin [4] andthenextendedin [12,2]). Eachclosedcollectionofcompatibles
is a contained DFSM and vice versa. In the case of state minimization one wants a closed collection of

compatibles of minimum cardinality. But one can replace the requirement of minimum cardinality with
anyotherdesired cost functionor property (such asan implementable behavior) andobtain a new behavior
selection problem. Therefore the exploration of all contained behaviors is a key technology for future
applications in the synthesis of sequential networks. Implicit techniques are a winning tool to support
sequential synthesis algorithms.
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