Copyright © 1995, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

EXPLICIT AND IMPLICIT ALGORITHMS FOR
BINATE COVERING PROBLEMS

by

Tiziano Villa, Timothy Kam, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M95/108

19 December 1995

EXPLICIT AND IMPLICIT ALGORITHMS FOR
BINATE COVERING PROBLEMS

by

Tiziano Villa, Timothy Kam, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M95/108

19 December 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Explicit and Implicit Algorithms for Binate Covering Problems

Tiziano Villa! Timothy Kam? Robert K. Brayton!
Alberto L. Sangiovanni-Vincentelli'

Department of EECS
University of California at Berkeley
Berkeley, CA 94720

2Intel Development Labs
Intel Corporation
Hillsboro, Oregon 97124-6497

December 19, 1995

1 Introduction

At the core of the exact solution of various logic synthesis problems lies often a so-called covering step that
requires the choice of a set of elements of minimum cost that cover a set of ground items, under certain
conditions. Prominent among these problems are the covering steps in the Quine-McCluskey procedure
for minimizing logic functions, selection of a minimum number of encoding columns that satisfy a set of
encoding constraints, selection of a set of encodeable generalized prime implicants, state minimization of
finite state machines, technology mapping and Boolean relations. Let us review first how covering problems
are defined formally.

Suppose that aset S = {s1,..., s, } is given. The cost of selecting s; is c¢; where ¢; > 0. In a general
formulation also the cost of not selecting s; may be non-negative, but here it will be assumed that the cost
of not selecting an item is strictly zero, unless otherwise stated. By associating a binary variable z; to s;,
which is 1 if s; is selected and O otherwise, the binate covering problem (BCP) can be defined as finding
S’ C S that minimizes .

z CiZq,

i=1
subject to the constraint
A(zy,22,...,2,) =1,

where A is a Boolean function, sometimes called the constraint function. The constraint function specifies
a set of subsets of S that can be a solution. No structural hypothesis is made on A. Binate refers to the fact
that A is in general a binate function !. BCP is the problem of finding an onset minterm of A that minimizes

1A function is binate if it is not unate. A function f(z, 22, ...,y) is unate if for every z;,i = 1,...,n, f is either positive
or negative unate in the variable z;. f is said to be positive unate in a variable z;, if for all 2"~! possible combinations of the
remaining n — 1 variables,

f(xllrzv‘--azi-l’lvx“'lv" "x") Z f(xl,xz,...,z¢_1,0,xi+|,---,xn).

In other words, changing variable z; from 0 to 1, f does not decrease. Similarly, f is said 1o be negative unate in a variable z, if

1

the cost function (i.e., a solution of minimum cost of the Boolean equation A(z1, 22, ...,2,) = 1).

If A is given in product-of-sums form, finding a satisfying assignment is exactly the problem SAT, the
prototypical N P-complete problem [20]. In this case it also possible to write A as an array of cubes (that
form a matrix M with coefficients from the set {0, 1,2}). Each variable of A is a column and each sum (or
clause) is a row and the problem can be interpreted as one of finding a subset C of columns of minimum
cost, such that for every row r;, either

1. 3jsuchthata;; = 1and ¢; € C,or
2. 3jsuchthate;; =0andc; € C.

In other words, each clause must be satisfied by setting to 1 a variable appearing in it in the positive phase or
by setting to 0 a variable appearing in it in the negative phase. In a unate covering problem, the coefficients
of A are restricted to the values 1 and 2 and only the first condition must hold. Here we shall consider
the minimum binate covering problem where A is given in product-of-sums form. In this case, the term
covering is fully justified because one can say that the assignment of a variable to 0 or 1 covers some rows
that are satisfied by that choice. The product-of-sums A is called covering matrix or covering table.

As an example of binate covering formulation of a well-known logic synthesis problem, consider the
problem of finding the minimum number of prime compatibles that are a minimum closed cover of a given
FSM. A binate covering problem can be set up, where each column of the table is a prime compatible and
each row is one of the covering or closure clauses of the problem [22]. There are as many covering clauses as
states of the original machine and each of them requires that a state is covered by selecting any of the prime
compatibles in which it is contained. There are as many closure clauses as prime compatibles and each of
them states that if a given prime compatible is selected, then for each implied class in its corresponding
class set, one of the prime compatibles containing it must be chosen too. In the matrix representation, table
entry (i, 7) is 1 or 0 according to the phase of the literal corresponding to prime compatible j in clause 7; if
such a literal is absent, the entry is 2.

A special case of binate covering problem is a unate covering problem, where no literal in the negative
phase is present. Exact two-level minimization [42, 50] can be cast as a unate covering problem. The
columns are the prime implicants, the rows are the minterms and there is a 1 entry in the matrix when a
prime contains a minterm.

Various techniques have been proposed to solve binate covering problems. A class of them [5, 35] are
branch-and-bound techniques that build explicitly the table of the constraints expressed as product-of-sum
expressions and explore in the worst-case all possible solutions, but avoid the generation of some of the
suboptimal solutions by a clever use of reduction steps and bounding of search space for solutions. We will
refer to these methods as explicit.

A second approach [39] formulates the problem with Binary Decision Diagrams (BDD’s) and reduces
to finding a minimum cost assignment to a shortest path computation. In that case the number of variables
of the BDD is the number of columns of the binate table.

Recently, a mixed technique has been proposed in [27]. It is a branch-and-bound algorithm, where the
clauses are represented as a conjunction of BDD’s. The usage of BDD’s leads to an effective method to
compute a lower bound on the cost of the solution.

Notice that unate covering is a special case of binate covering. Therefore techniques for the latter solve
also the former. In the other direction, exact state minimization, a problem naturally formulated as a binate

for all 2"~ possible combinations of the remaining n — 1 variables,

f(zlyny"~yxi—lyoyzl+ly"'7xﬂ) 2 f(zl11‘21--',xi—lyl,xi-*-l".'1xn)'

covering problem, can be reduced to a unate covering problem, after the generation of irredundant prime
closed sets [S2). But there is a catch here: the cost function is not any more additive, so that the reduction
techniques so convenient to solve covering problems, are not any more applicable as they are.

Existing explicit methods do quite well in solving exactly small and medium-sized examples, but fail
to complete on larger ones. The reason is that either they cannot build the binate table because the number
of rows and columns is too large, or that the branch-and-bound procedure would take too long to complete.
The approach of building a BDD of the constraint function and computing the shortest path fails when the
number of variables (i.e., columns) is too large because a BDD with many thousands of variables usually
cannot be stored in available computing memory.

The crux of the matter, when explicit techniques fail, is that we are representing and manipulating sets
that are too large to be exhaustively listed and operated upon. Fortunately we know of an altemative way to
represent and manipulate sets: it is by defining the set over an appropriate Boolean space (i.e., encoding the
elements of the set), associating to it a Boolean characteristic function and then representing this function
by a binary decision diagram (BDD) [6, 1]. From now on, by BDD of a set we will denote the BDD of the
characteristic function of the set over an appropriate Boolean space. A BDD [6, 1] is a canonical directed
acyclic graph that represents logic functions. The items that a BDD can represent are determined by the
number of paths of the BDD, while the size of the BDD is determined by the number of nodes of the DAG.
There is no monotonic relation between the size of a BDD and the number of elements that it represents.
It is an experimental fact that often very large sets, that cannot be represented explicitly, have a compact
BDD representation. Set operations are easily turned into Boolean operations on the corresponding BDD'’s.
So we can manipulate sets by a series of BDD operations (Boolean connectives and quantifications) with a
complexity depending on the sizes of the manipulated BDD’s and not on the cardinality of the sets that are
represented. One hopes that complex set manipulations of a given application have as counterparts Boolean
propositions that can be represented with compact BDD’s. Of course, this is not always the case and it may
happen that an intermediate BDD computation, in a sequence of operations leading to a wanted set, blows
up. The name of the game is a careful analysis of how propositional sentences can be transformed into
logically equivalent ones, that can be computed more easily with BDD manipulations. Special care must be
exercised with quantifications, that bring more danger of BDD explosions. All of this goes often under the
name of implicit representations and computations.

The previous insight has already been tested in a series of applications. Research at Bull [10] and
UC Berkeley [56] produced powerful techniques for implicit enumeration of subsets of states of a Finite
State Machine (FSM). Later work at Bull [12, 37, 24, 18] has shown how implicants, primes and essential
primes of a two-valued or multi-valued function can also be computed implicitly. Reported experiments
show a suite of examples where all primes could be computed, whereas explicit techniques implemented
in ESPRESSO [2] failed to do so. Finally, the fixed-point dominance computation in the covering step of the
Quine-McCluskey procedure has been made implicit in [17, 24]). The experiments reported show that the
cyclic core of all logic functions of the ESPRESSO benchmark can be successfully computed. For some of
them ESPRESSO failed the task.

Last but not the least, it was shown in [31, 32] how all prime compatibles of an FSM can be computed
implicitly. In some cases, their number is exponential in the number of states (the largest recorded number
is 21590 Once prime compatibles have been obtained, one must solve a binate covering problem to choose
a minimum closed cover. Of course, we cannot build and solve explicitly a table of such dimensions (this
would defeat the purpose of computing implicitly prime compatibles in the first place). So it is necessary
to extend implicit techniques to the solution of the binate covering problem. Another application of interest
to us is the selection of a set of encodeable generalized prime implicants (GPI’s), as defined in [19, 39]. It
is not feasible to generate GPI’s and to set up a related covering table by explicit techniques on non-trivial
examples. Using techniques as in [37, 24], GPI's can be generated implicitly. An implicit table solver is

therefore needed there too. We will use mainly the two latter applications to illustrate our techniques, but
one could list a host of other problems in logic synthesis where a binate table solver would play an important
role. Notice that potential applications include unate covering problems, such as selecting the minimum
number of encoding-dichotomies that satisfy a set of encoding constraints [51].

We describe an implicit formulation of the binate covering problem and present an implementation. The
implicit binate solver has been tested for state minimization of ISFSM’s and pseudo NDFSM'’s [31, 32], and
for the selection of an encodable set of GPI's [57)]. The reported experiments show that implicit techniques
have pushed the frontier of instances where binate covering problems can be solved exactly, resulting in
better optimizations in key steps of sequential logic synthesis.

In the following sections, we will review the known algorithms to solve covering problems and then
we will describe a new branch-and-bound algorithm based on implicit computations. The remainder is
organized as follows. We have defined the minimum cost binate covering problem in this section. In
Section 2, we will compare this problem with 0-1 integer linear programming. Solution of binate covering
using Thelen-Mathony’s algorithm is described in Section 3. The classical solution based on a branch-
and-bound scheme will be introduced in Section 4. In Section 5, we will survey the classical reduction
rules used in explicit algorithms. Methods to solve binate covering finding a shortest path in a graph-based
representation of the clauses are found in Section 6. Our implicit binate covering algorithm is then outlined
in Section 7. Section 8 illustrates how reduction techniques can be implicitized. Other kinds of implicit
table manipulations are introduced in Section 9. Quantifier-free implicit table reductions are discussed in
Section 10. Finally, we shall give experimental results in Section 11, for two applications: state minimization
of ISFSM’s [22] and selection of generalized prime implicants [19].

2 Relation to 0-1 Integer Linear Programming

There is an intimate relation between 0-1 integer linear programming (ILP) and binate covering problem
(BCP). For every instance of ILP, there is an instance of BCP with the same feasible set (i.e., satisfying
solutions) and therefore with the same optimum solutions and vice versa. As an example, the integer
inequality constraint

3z — 223 + 423 2 2,

with 0 < zy, 22, 73 < 1 corresponds to the Boolean equality constraint
T2+ 23 =1,
that can be written in product-of-sums form as:
(z1+23) (T2 + 23) = 1.

Given a problem instance, it is not clear a-priori which formulation is better. It is an interesting question to

characterize the class of problems that can be better formulated and solved with one technique or the other.
As an example of reduction from ILP to BCP, a procedure (taken from [27]) that derives the Boolean

expression corresponding to 37, w;.z; > T is shown in Figure 1.

The idea of the recursion relies on the observation that:

1. f=0ifandonly if maz(I) = 3, 5owi < T}
2. f=1ifandonlyif min(I) =3, owi 2T,

When neither case occurs, the two subproblems 7! and I, obtained by setting the splitting variable z; to 1
and 0 respectively, are solved recursively.

LI to.BDD(I){
let I'be 3 7 wi-z; 2T
if (maz(I) < T) reun 0
if (min(I) 2 T) retum 1
i = ChooseSplittingVar(I)
I'=(Tjgiwj-2; 2T —w)
PP=(Tswj-z;27T)
fi=LI_to_.BDD(I')
fo=LI_to.BDD(I°)
rewm f = z;- f' + ;- f0

Figure 1: Transformation from linear inequality to Boolean expression.

3 Binate Covering Using Mathony’s Algorithm

In [41] Mathony extended an algorithm by Thelen to generate all prime implicants of a Boolean function
and he applied it to various problems of two-level logic optimization, like complementation, expansion and
reduction of implicants and computation of a minimal cover. A common characteristic of these problems
is that finding their solution corresponds to finding only one prime implicant of an appropriate Boolean
function represented in conjunctive form (product-of-sums).

A variant of Thelen-Mathony’s algorithm that solves the problem of minimum cost satisfiability was
implemented into SIS [35]. Minimum cost satisfiability includes binate covering as a special case, because
it allows for variables in the negative phase to have cost > 0, while in usual definitions of binate covering
one assigns O cost to variables in the negative phase, and a cost > 0 to variables in the positive phase.

The algorithm relies on an efficient depth-first multiplication strategy for converting a conjunctive form
into the sum of all prime implicants. It chooses recursively one literal from every clause of the function,
applying the following pruning rules at every step:

R1: aliteral a cannot be chosen if the literal @ has been chosen;

R2: aliteral a cannot be chosen if it appears at an upper level and it has not yet been expanded (i.e., chosen)
at that level (because rule R3 will be applied to this clause when a will be chosen at the upper level);

R3: aclause is not expanded if it contains an already chosen literal (because any choice would generate a
non-prime);

R4: aliteral a cannot be chosen if:

e it appears at an upper level,
e it has been expanded at that level, and

¢ rule R2 was not applied in the subtree of a at the upper level to prune the literal b that is currently
being chosen at the upper level (to make sure that its subsuming literal was expanded).

To restrict the computation to find only a minimum cost prime, a fifth rule is added:

RS5: aliteral a cannot be chosen if the current partial assignment would cost more than the best reached so
far.

Experiments on a binate covering application in technology mapping [3] have been reported [35], but
no comparison with a traditional binate covering solver is available.

4 A Branch-and-Bound Algorithm for Minimum Cost Binate Covering

We will survey in this section a branch-and-bound solution of minimum cost binate covering. This technique
has been described in [23, 22, 4, 5], and implemented in successful computer programs [49, 48, 54]. The
branch-and-bound solution of minimum binate covering is based on a recursive procedure. A run of the
algorithm can be described by its computation tree. The root of the computation tree is the input of the
problem, an edge represents a call to sm_mincov, an intemnal node is a reduced input. A leaf is reached
when a complete solution is found or the search is bounded away. From the root to any internal node there
is a unique path, that is the current path for that node. In the sequel, we will describe in detail the binary

recursion procedure. The presentation will refer to the pseudo-code sm_mincov, shown at the end of this
subsection.

4.1 Branch-and-Bound as a General Technique

Branch-and-bound constructs a solution of a combinatorial optimization problem by successive partitioning
of the solution space. The branch refers to this partitioning process; the bound refers to lower bounds that
are used to construct a proof of optimality without exhaustive search. A set of solutions can be represented
by a node in a search tree of solutions, and it is partitioned in mutually exclusive sets. Each subset in the
partition is represented by a child of the original node. In this way, a computation tree is built. An algorithm
that computes a lower bound on the cost of any solution in a given subset allows to stop further searches
from a given node, if the best cost found so far is smaller than the cost of the best solution that can be
obtained from the node (lower bound computed at the node). In this case the node is killed and therefore
none of its children needs to be searched; otherwise it is alive.

If we can show at any point that the best descendant of a node y is at least as good as the best descendant
of node z, then we say that y dominates z, and y can kill z.

Figure 2 shows the classical algorithm [47]. An activeset holds the live nodes at any point. A variable
U is an upper bound on the optimal cost (cost of the best complete solution obtained at any given time).
The branching process needs not produce only two children of a given node, but any finite number.

We will see in the next section that BCP can be solved by the following recursive equation

BCP(Mj) = BestSolution(BCP(My,,) U {z:}, BCP(M/_))

where M is the binate table that corresponds to a function in product-of-sum form f, and BCP(My,)
(respectively, BC' P(M/_)) is the subproblem expressed by the function f, (respectively, fz;). BCP(Mj)
retums an onset minterm of f that minimizes the cost function.

The previous equation can potentially generate an exponential number of subproblems, but powerful
dominance and bounding techniques as well as good branching heuristics help in keeping the combinatorial
explosion under control.

4.2 The Binary Recursion Procedure

The inputs to the algorithm are:

branch_and_bound() {
activeset = original problem
U=
currentbest = anything
while (activeset is not empty) {
choose a branching node k € activeset
remove node & from activeset

generate the children of node k: child: = 1,...

and the corresponding lower bounds 2;
fori=1ton {
if (z; 2 U)kill child ¢
else if (child ¢ is a complete solution) {
U=z
currentbest = child ¢
else add child ¢ to activeset

Figure 2: Structure of branch-and-bound.

e acovering matrix M;
¢ acurrent-path partial solution select (initially empty);

e arow of non-negative integers weight, whose i-th element is the cost or weight of the i-th column of
M;

¢ alower bound /bound (initially set to 0), which is a monotonic increasing quantity along each path of
the computation tree equal to the cost of the partial solution on the current path;

o an upper bound ubound (initially set to the sum of weights of all columns in M), which is the cost of
the best overall complete solution previously obtained (a globally monotonic decreasing quantity).

The output is the best column cover for input M extended from the partial solution select along the
current path, called best current solution, if this solution costs less than ubound. An empty solution is
returned if a solution cannot be found which beats ubound or an infeasibility is detected. By infeasibility,
it is meant the case when no satisfying assignment of the product of clauses exists. Even though the initial
problem in a typical logic synthesis application has usually at least a solution, some subproblems in the
branch and bound tree may be infeasible. When sm_mincov is called with an empty partial solution select
and initial /bound and ubound, it returns a best global solution.

The algorithm calls first a procedure sm._reduce that applies to M essential column detection and
dominance reductions. The type of domination operations and the way in which they are applied are the
subject of Section 5. Another more complex reduction criterion (Gimpel’s rule) can also be applied (see
Subsection 5.12). These reduction operations delete from M some rows, columns and entries. What is
left after reduction is called a cyclic core. The final goal is to get an empty cyclic core. The value of the
lower bound is updated using a maximal independent set computation (see Subsection 4.4). If no bounding
is possible and the reductions do not suffice to solve completely the problem, a partition of the reduced
problem into disjoint subproblems is attempted (see Subsection 4.3) and each of them is solved recursively.
When everything fails, binary recursion is performed by choosing a branch column (see Subsection 4.5).
Solutions to the subproblems obtained by including the chosen column in the covering set or by excluding it
from the covering set are computed recursively and the best solution is kept (the second recursion is skipped
if the solution to the first one matches the updated lower bound).

The procedure sm_mincov retumns when:

o The cost of a partial solution, found by adding essential columns to select, is more than ubound or
infeasibility is detected when applying the domination rules (line 1). An empty solution is returned.

e The best current solution is found by applying Gimpel’s reduction technique (line 2). Since gim-
pel_reduce calls recursively sm_mincov, an empty solution could be retumed too.

o The updated lower bound, determined by adding to lbound the cost of the essential primes and of the
maximal independent set, is not less than ubound (line 5). An empty solution is returned.

o There is no cyclic core and we are not in the previous case. The best current solution is found by
updating select with the new essential and unacceptable columns (line 6).

o The best current solution is found by partitioning the problem (line 7). The procedure sm._mincov is
called recursively on two smaller covering matrices determined by sm_block_partition (line 8 and 10).
An empty solution can be retuned by either recursive call. If the first call to sm.mincov retums an
empty solution, the second one is not invoked (line 9). If neither call returns empty, each contributes
its returned value to the current solution.

sm_mincov(M, select, weight, lbound, ubound) {

/* Apply row dominance, column dominance, and select essentials */ (1)

if (lsm_reduce(M, select, weight, ubound)) return empty_solution

/* See if Gimpel’s reduction technique applies */ V)

if (gimpel_reduce(M, select, weight, lbound, ubound, &best)) return best

/* Find lower bound from here to final solution by independent set */ A3)

indep = sm_mazimal_independent_set (M, weight)

/* Make sure the lower bound is monotonically increasing */ @

lbound_new = maz(cost(select) + cost(indep), lbound)

/* Bounding based on no better solution possible */)

if (lbound_new > ubound) best = empty_solution

else if (M is empty) { /* New best solution at current level */ ©)
best = solution_dup(select)

} else if (sm_block_partition(M, & M,, & M>) gives non-trivial bi-partitions) { @
bestl = sm_mincov(M, selectl, weight,0, ubound — cost(select)) ®)
/* Add best solution to the selected set */ &)
if (best]l = empty_solution) best = empty_solution
else { (10)

select = select U bestl
best = sm_mincov(Ma, select, weight, lbound_new, ubound)

} else { /* Branch on cyclic core and recur */ (11)
branch = select_column(M , weight, indep)
select]l = solution_dup(select) U branch
let Myranch be the reduced table assuming branch column is not in solution 12)
bestl = sm_mincov(Mppanch, select, weight, lbound_new, ubound)
/* Update the upper bound if we found a better solution */ (13)
if (best1 # empty._solution) and (ubound > cost(bestl)) ubound = cost(best1)
/* Do not branch if lower bound matched */ 14)
if (bestl # empty_solution) and (cost(bestl) = lbound_new) return best1
let M;—— be the reduced table assuming branch column not in solution (15)

branch

best2 = sm_mincov(Mgz, select, weight, lbound_new, ubound)

best = best_solution(bestl, best2)

}

return best

Figure 3: Detailed branch-and-bound algorithm.

e A branching column is chosen and sm_mincov is called recursively with the branch column in the
covering set (line 12). If the recursive call of sm_mincov retumns a non-empty solution that matches
the current lower bound (/bound_new), that solution is returned as the current solution (line 14). If
the cost of the current solution is less than ubound, ubound is updated, i.e., the current solution is also
the best global solution (line 13).

e Asinthe previous case, but sm_mincov is called recursively with the branch column not in the covering
set (line 15). The best among the solution found in the previous case and the one computed here is
the current solution.

Notice the following facts about the procedure sm_mincov:

o The parameter lbound is updated once (line 4). The reason is that after the computation of the essential
columns (line 1) and of the independent set (line 3), the cost of the previous partial solution summed
to the cost of the essential columns and of the independent set is potentially a sharper lower bound on
any complete solution obtained from this node of the recursion tree. The updated value lbound_new
is used in the rest of the routine. The lower bound is a monotonically increasing quantity along each
path of the computation tree.

o The parameter ubound is updated once (line 13). At that point a new complete solution has just
been returned by the recursive call to sm_mincov (line 12) and an updated value of ubound must be
recomputed for the following recursive call of sm_mincov (line 15). The reason is that when a new
complete solution is obtained, the current ubound is not any more valid and therefore it must be
updated before it is used again. To be updated, ubound is compared against the cost of the newly
found solution, and the minimum of the two is the new ubound. The upper bound is a monotonically
decreasing quantity throughout the entire computation.

The previous analysis proves that the algorithm finds a minimum cost satisfying assignment to the
problem.

4.3 N-way Partitioning

If the covering matrix M can be partitioned into two disjoint blocks M and M, the covering problem can
be reduced to two independent covering subproblems, and the minimum covering for M is the union of the
minimum coverings for M, and M,. Such bi-partition can be found by putting in M; a row and all columns
that have an element in common with the row (i.e., the columns intersecting the row) and recursively all rows
and columns intersecting any row or column in M;. The remaining rows and columns (i.e., not intersecting
any row or column in M) are put in M. This algorithm can be generalized to find partitions made by N
blocks, as shown in Figure 4.

Theorem 4.1 If a covering matrix M can be partitioned into n disjoint blocks My, My, . . ., My, the union
of the minimum covers of My, My, . . ., M, is the minimum cover of M.

Bi-partitioning is implemented in [48, 54] as follows. When checking for a partition of the problem
(line 7), the routine sm_mincov is called recursively on two independents subproblems (lines 8 and 10), if
they exist. When solving the smaller of the two subproblems (line 8), the initial solution is empty, the initial
lower bound is set to 0, the initial upper bound is set to the difference between the current ubound and the
cost of the current partial solution. When solving the larger of the two subproblems (line 10), the initial
solution is the current solution (to which the solution of the smaller subproblem is added, if it is not empty),
the initial lower bound is set to the current lower bound lbound_new, the initial upper bound is set to the
current ubound.

10

n_way_partition(M) {
while (there is a row r; not in any partition) {
put r; in a new partition M}
while (there is a row r; connected to any row in partition M}) {
put row r; in partition M},
}

}
}

Figure 4: N-way partitioning.

Theorem 4.2 The upper bound set in the smaller subproblem is correct.

Proof. Let select be the partial solution along the current path. It holds that (cost of the final solution along the
current path) > (cost of solving M, + cost(select) +1). If (cost of solving M;) > (ubound — cost(select)),
then (cost of the final solution along the current path) > (ubound + 1), i.e., (cost of the final solution
along the current path) > ubound. This is ruled out by setting the upper bound when solving M, to

(ubound — cost(select)), since sm_mincov retums a non-empty solution only if it can beat the given upper
bound. O

4.4 Maximal Independent Set

The cardinality of a maximum set of pairwise disjoint rows of M (i.e., no 1’s in the same column) is a
lower bound on the cardinality of the solution to the covering problem, because a different element must be
selected for each of the independent rows in order to cover them. If the size of current solution plus the size
of the independent set is greater or equal to the best solution seen so far, the search along this branch can
be terminated because no solution better than the current one can possibly be found. It is also true that the
size of the independent set at the first level of the recursion is a lower bound for the final minimum cover,
so that the search can be terminated if a solution is found of size equal to this lower bound. Since finding
a maximum independent set is an NP-complete problem, in practice an heuristic is used that provides a
weaker lower bound. Notice that even the lower bound provided by solving exactly maximum independent
set is not sharp. In [9] it is shown an example of size O(n?), whose minimal solution has a O(=) cost, but
whose lower bound by independent set is a constant 1. In practice a lower bound by independent set is poor
when the covering matrix is dense.

In [49, 48, 54], the adjacency matrix B of a graph whose nodes correspond to rows in the cover matrix
M is created. In the binate case, only rows are taken into consideration which do not contain any O element.
An edge is placed between two nodes if the two rows have an element in common. While B is non-empty,
arow R; of B is found that is disjoint from a maximum number of rows (i.e., the row of minimum length
in B). The column of minimum weight intersecting R; is also found. The weight is cumulated in the
independent set cost. All rows having elements in common with R; are then deleted from B. At the end
of the while-iteration a set of pairwise disjoint rows (independent set) and their minimum covering cost is
found. Notice that one could think to the problem in a dual way as finding a maximal clique in a graph with
the same rows as before, and edges between two nodes representing two disjoint rows.

11

In [9] some detailed analysis of independent set computations is made. A quantitative ratio between a
maximal cost independent set and the independent set computed by a greedy algorithm based on set-packing
is derived. A logarithmic ratio lower bound on unate problems is proved too.

4.5 Selection of a Branching Column

The selection of a good branching column is essential for the efficiency of the branch and bound algorithm.
Since the time taken by the selection is a significant part of the total, a trade-off must be made between
quality and efficiency.

In [49, 48, 54], the selection of the branching variable is restricted to columns intersecting the rows of
the independent set, because a unique column must eventually be selected from each row of the maximal
independent set. Among those rows, the selection strategy favors columns with large number of 1's and
intersecting many short rows. Short rows are considered difficult rows and choosing them first favors the
creation of essential columns. More precisely, the column of highest merit is chosen. The merit of a given
column is computed as the product of the inverse of the weight of the column multiplied by the sum of
the contributions of all rows intersected in a 1 by the column. The inverse of the contribution of a row is
equal to the number of all non-2 elements (each can contribute in covering the row) minus 1. The inverse is
well-defined, because at this stage each row has at least two-elements (it is not essential).

4.6 New Bounding Criteria

In [16) two new rules to prune the search space have been introduced. We are going to survey them here.
Given a covering problem C that corresponds to a node ¢ of the computation tree, define the following
notation:

e () is the subproblem of C generated assuming that a given branching column b is selected;

e C, is the subproblem of C generated assuming that a given branching column b is not selected;
e C.min is the cost of a minimum solution;

e C.lower is the value of a lower bound on C.min;

e C.path is the cost of the partial solution from the root to nede c;

e C.upper is the cost of the best solution found so far.

The algorithm described in Figure 3 guarantees that the invariant C'.path + C.lower < C.upper is always
true.

Theorem 4.3 (Left-hand side lower bound). Given a binate covering problem C, suppose to branch on
a unate column b. If
C.path + Cj.lower > C.upper,

then both C; and C,. can be pruned and C).lower is a strictly better lower bound for C.

Proof. In C it holds (using the hypothesis):
Ci.path + Ci.lower = C.path + Cost(b) + Ci.lower > C.path + Cj.lower > C.upper,

so C; is correctly pruned to keep the invariant Cj.path + Cj.lower < C.upper.

12

Let us see why also C,. can be pruned. First notice that C,.min > Cj.min, since C, has exactly the
same columns than C;, but it has more rows to cover (those covered by choosing b in the solution). Then the
best global solution that can be found by solving C, exceeds the upper bound, as shown by the following
chain of inequalities (using the hypothesis):

Cr.path + C,.min = C.path + C,.min > C.path + Ci.min > C.path + Ci.lower > C.upper.

We show now that Cj.lower is alower bound on C.min. From C.path+C,.min > C.path+Cl.lower,
it follows C,.min > Cj.lower; it is also C;.min > C;.lower. So it follows (Cost(b) > 0):

C.min = min(Cost(b) + Ci.min, C,..min) > min(Cost(b) + C.lower, Ci.lower) = Cj.lower.

Lastly we show that Cj.lower > C.lower. By contradiction if C.lower > Cj.lower, then (using the
hypothesis):
C.path + C.lower > C.path + Ci.lower > C.upper,

against the invariant C.path + C.lower < C.upper. O

The way in which the "old" lower bound and the "new" left-hand side lower bound work together is: if
the current node is a left child and lbound_new — Cost(b) > ubound then bound computation and return
flag to skip also the right branch ("new" left-hand side lower bound); otherwise if lbound_new > ubound
then bound computation ("old" lower bound).

Theorem 4.4 (Limit lower bound). Given a binate covering problem C, let I be an independent set of
the rows, i.e., a set of unate rows intersecting no common column. Let C.lower be a lower bound from the
independent set 1, i.e., the sum of a minimum cost column for each row in I. Consider the set B of the
columns b that do not intersect rows in I and such that b € B only if

C.path + C.lower + Cost(b) > C.upper.

Then the columns in B and the rows that intersect them in a 0 can be removed from the covering table and
a minimum solution can still be found.

Proof. If we choose a column b in B as a branching column, we obtain a subproblem C; by assuming that
b is in the solution. I is still an independent set of C}, because by construction b does not intersect rows in
I. So a lower bound for C; has at least value C.lower (but there could be a lower bound by independent set
for C; larger than C.lower), that is

Ci.lower > C.lower.

The following chain of implications follows (using the hypothesis):
Ci.path 4+ Cy.min = C.path + Cost(b) + Ci.min > C.path + Cost(b) + C).lower

> C.path + Cost(b) + C.lower > C.upper,

meaning that the best solution that can be found by solving C; exceeds the global upper bound. Therefore
we can set to 0 the columns b € B and still get a minimum solution. O

In practice in the common case that all columns have cost 1 if included in a solution, one needs only to
check whether

C.path + C.lower + 1 > C.upper,

13

ie.,
lbound_new + 1 > C.upper,

in which case all columns that do not intersect rows in the independent set I can be removed, together
with the rows that they intersect in a 0. Experimental results in [16] on exact two-level minimization show
strong gains by this new pruning technique, resulting in reductions of the search space up to three orders of
magnitude.

4.7 Symmetric Covering Problems

In [58] symmetric unate covering problems, especially those arising from two-level logic minimization,
are investigated. Given a unate covering problem P whose variables (columns) are (21, Z2,+"*,Zn),
a permutation of (21,22, -+,Z,) into (n(z1),n(z2),--+,n(zx)) is a symmetric permutation of P if
(n(21),n(z2), -+ -, n(zy,)) is a feasible solution of P when (z1,22,--+,%n) is a feasible solution of P.
Both feasible solutions yield the same value of the objective function. P is said to be symmetric if it has
some symmetric permutations. When a minimal unate covering problem has symmetric permutations, the
Boolean function from which it derives may not be symmetric; vice versa, if a given Boolean function is
symmetric, the minimal covering problem obtained from it is symmetric. In the paper, after a complete
characterization of symmetric permutations, it is shown how to exploit symmetry to speed up the number
of branchings required to certify that a solution is optimal. In particular the preservation of symmetric
permutations under row dominance, column dominance and detection of essential columns is investigated;
procedures are presented such that their repeated application to a problem P with a symmetric permutation
nyields a problem P’, reduced with respect to row dominance, column dominance and detection of essential
columns, and still symmetric with respect to a permutation 7’ obtained from 7 in a given way.

5 Reduction Techniques

Three fundamental processes constitute the essence of the reduction rules:

1. Selection of a column: a column must be selected if it is the only column that satisfies a required
constraint (Section 5.7). A dual statement holds for unacceptable columns (Section 5.8). Also related
is the case of unnecessary columns (Section 5.9).

2. Elimination of a column: a column C; can be eliminated, if its elimination does not preclude obtaining
a minimal cover, i.e., if there exists in M another column Cj that satisfies at least all the constraints
satisfied by C; (Section 5.5).

3. Elimination of a row: a row R; can be eliminated if there exists in M another row R; that expresses
the same or a stronger constraint (Section 5.1).

Even though more complex criteria of dominance have been investigated (for instance, Section 5.12),
the previous ones are basic in any table covering solver. Reduction rules have previously been stated for the
binate covering case [22, 23, 5, 4], and also for the unate covering case [42, 50, 4). Here we will present
the known reduction rules directly for binate covering and indicate how they simplify for unate covering,
when applicable. For each of them, we will first define the reduction rule, and then a theorem showing how
that rule is applied. Proofs for the correctness of these reduction rules have been given in [22, 23, 5, 4], and
they will not be repeated here, except for a few less common ones. We will provide a survey comparing
different related reduction rules used in the literature.

14

sm_reduce(A, solution, weight, ubound) {
do {
apply S-dominance or a-dominance
find essential columns
find unacceptable columns
if (a column is both essential and unacceptable)
return empty_solution
for each essential column {
delete each row intersecting the columnina 1
if (a row of length 1 intersects the column in a 0)
return empty_solution
delete column
add column to solution
if (cost of solution > ubound)
return empty.solution
}
for each unacceptable column {
delete each row intersecting the columnin a 0
if (a row of length 1 intersects the columnin a 1)
return empty_solution
delete column
}
apply row_consensus
apply row_dominance
} while (reductions are applicable)
return solution

Figure 5: Flow of reduction rules.

The effect of reductions depends on the order of their application. Reductions are usually attempted in
a given order, until nothing changes any more (i.e., the covering matrix has been reduced to a cyclic core).
Figure 5 shows how reductions are applied in [49, 48, 54]2.
5.1 Row Dominance

Definition 5.1 A row R; dominates 3 another row R; if R; has all the I's and 0’s of R;.

“The reductions B-dominance and row_consensus are only in (48] and the reduction by implication is only in [54].
3This definition of row dominance is

o similar to column dominance (Rule 3) in [22], except that the labels of dominator row, R;, and dominated row, R,, are
reversed (i.e., reverse definition of dominance),

o similar to column dominance (Rule 3) in [23), except that the labels of dominator row, R;, and dominated row, R,, are
reversed (i.e., reverse definition of dominance),

e equivalent to row dominance (Definition 10) in [5],

15

Theorem 5.1 If a row R; is dominated by another row R;, R; can be eliminated without affecting the
solutions to the covering problem.

5.1.1 Row Dominance for a Unate Table

Definition 5.2 A row R; dominates another row R; if R; has all the I's of R;.

5.2 Row Consensus

Theorem 5.2 If R; dominates R;, except for a (unique) column Cy where R; and R; have different values,
element M;; ;. can be eliminated from the matrix M (i.e., the entry in position M; ;. becomes a 2) without
affecting the solutions of the covering problem.

Proof. Suppose that entry M; is 1 and entry M; x is 0. The argument is the same if entry M ;. is 0 and
entry M; is 1. If entry M; is removed, we are not able to satisfy row R; by setting z, to 1. A problem
arises if a2 minimum-cost solution requires z set to 1, because we could miss the fact that setting z to 1
satisfies also row R;. Instead we could obtain an higher-cost solution, by selecting another column in order
to satisfy row R; — M x. We now show that this is not the case. If a minimum-cost solution requires z set
to 1, we must still satisfy row R; that cannot be satisfied by z set to 1. Whatever choice will be made to
satisfy R;, it will satisfy also R; — M« (since R; — M x has all 1’s and 0’s of R;) and therefore no more
cost will be incurred to satisfy row R; — M x. The previous argument fails if R; — M; x is empty and there
are cases in which an higher-cost solution would be found. One could claim that if R; — M; . is empty, then
R; has only entry M; x and therefore ;. is an essential, that is taken care by the essential column detection.
In reality it may happen that by applying row consensus many times to the same row R; (using different
rows R;) at a certain point R; is emptied. In that case the last application of row consensus is potentially
faulty and should not be done. O

Row consensus is applied in [48]. This criterion generalizes the one given in [25].

5.3 Column o-Dominance

Definition 5.3 A column C; a-dominates 4 another column C,. if:
o ¢c; < cp,
o C; has all the I's of C,
o Cr hasallthe 0's of C;.

Theorem 5.3 Let M be satisfiable. If a column Cy. is a-dominated by another column C;, there is at least

one minimum cost solution with column Cy. eliminated (z). = 0), together with all the rows in which it has
0’s.
e identical to row dominance (Definition 2.11) in [4].

“This definition of column a-dominance is
o an extension to row a-dominance (Rule 1) in [22], because the latter doesn't include the case M;,; = 0 and M; x =0,
o equivalent to first half of Rule 4 in [23): (a) C, has all the 1's of C and (b1) Ci has all the 0's of Cj,

identical to column dominance (Definition 11, Theorem 3) in [S],

o identical to column dominance (Definition 2.12, Theorem 2.4.1) in [4].

16

In [9] column dominance is formulated in a more general way as follows.

Theorem 5.4 Suppose that v and v’ are elements of {0, 1}. If the clauses satisfied by column C, set to the
value v are satisfied at a lower cost by setting column Cyy to v', and the clauses satisfied by Cy set to v
are also satisfied at zero cost by C, set to T, one can set Cyy to U and remove the rows that intersect Cy, in'v,
without missing any optimal solution.

Proof. Setting C,, to ¥ does not lead to a suboptimal solution, because there is another column C, that, if
set to v', covers for less the rows that are left uncovered by setting C,, to ¥, while setting C,, to T covers
already all rows that would be left uncovered if one would have to set Cy to v. O

If negative literals have non-zero cost and positive literals have positive cost, it is exactly the definition of
a-dominance.

5.3.1 Column Dominance for a Unate Table

Definition 5.4 A column C; dominates another column C\. if C; has all the I's of C,

54 Column S-Dominance

Definition 5.5 A column C; 3-dominates > another column C;if:
® ¢ <,
o Cihasallthe I's of C;,

e for every row R, in which C; has a 0, either C; has a 0 or there exists a row R, inwhich C; has a0
and C; does not have a 0, such that disregarding entries in columns C; and C;, R, dominates R,.

Theorem 5.5 Let M be satisfiable. If C; 3-dominates C;, there is at least one minimum cost solution with
column C; eliminated (z; = 0), together with all the rows in which it has 0’s.

Proof. We must show that given a solution, one can find another solution, of cost lesser or equal, with
column C; eliminated (z; = 0). There are two cases for the original solution: eitherz; = 1and z; = 1 or
z; =0and z; = 1 (if 2; = 0, we are done). The new solution has z; = 1 and z; = 0 and coincides for the
rest with the given solution. The case when z; = 1 and z; = 1 is easy, because column C; has all 1’s of
column C; and therefore C; is useless.

Consider now the case when z; = 0 and z; = 1. The clauses with a 0 in column C; are satisfied
by not choosing C; and the clauses with a 1 in column C; are satisfied by choosing C;. Each clause
with a 0 in column C; (and without a 0 in column C;) is satisfied by a proper assignment of a column
different from C; and C;, say Cy. Notice that the hypothesis that column C; does not have a O in the

This definition of column 3-dominance is
e strictly stronger than column a-dominance given in 5.3,

e more general than row 3-dominance (Rule 5) in [22], because the latter assumes that the covering table contains only rows
with no or one 0,

o equivalent to second half of Rule 4 in [23]: (a) C; has all the 1's of C; and (b2) for every row R, in which C; has a 0,
there exists a row R, in which C; has a 0, such that disregarding entries in row C; and C;, R, dominates R, (with reverse
definition of row dominance), noticing that by mistake the condition that C; does not have a 0 in row R, was omitted,

e not mentioned in [5] and [4].

17

clause is essential here, otherwise this clause would be satisfied already by not choosing C;;, without re-
sorting to a column Cy. Now consider the assignment with column C; and without column C; (z; = 1
and z; = 0) and the same remaining assignments as the previous one. It costs no more than the previous
one. We show that it is a solution. In order to do that we must make sure that the 0’s covered by C;
and the 1’s covered by C; by setting z; = 0 and z; = 1, are still covered in the new assignment where
z; = 1 and z; = 0. The clauses with a 1 in C; are satisfied by C;, because C; has all 1’s of C;. Each
clause, say R,, with a 0 in column C; is satisfied too, because there is a corresponding clause, say R,
with a 0 in column Cj, and we already noticed that there exists another column, Ck, that satisfies R,.
But by hypothesis R, dominates R, i.e., R, has all the 1’s and 0’s of R, hence column C} satisfies also
clause R, (ifentry M, ;. = 1(0), thenentry M, = 1(0) also and z; = 1 (z; = 0) satisfies both clauses). O

5.5 Column Dominance

Definition 5.6 A column C; dominates another column C; if either C; a-dominates C; or C; $-dominates
C;.

Theorem 5.6 Let M be satisfiable. If C; dominates C;, there is at least one minimum cost solution with
column C; eliminated (z; = 0), together with all the rows in which it has 0's.

5.6 Column Mutual Dominance
Definition 5.7 Two columns C; and C; mutually dominate S each other if:
o C; hasa0in every rowwhere C; hasa l,

o C; has a0 in every rowwhere C; hasa I.

Theorem 5.7 Let M be satisfiable. If C; and C; mutually dominate each other, there is at least one minimum
cost solution with columns C; and C; eliminated (z; = x; = 0), together with all the rows in which they
have 0’s.

In [9] column mutual dominance is formulated in a more general way as follows.

Theorem 5.8 Suppose that v and v' are elements of {0,1}. Suppose that column Cy has minimum cost
when set to v and column C'y has minimum cost when set to v'. If the clauses satisfied by setting column
Cy to V' are satisfied by setting column C, to v, and the clauses satisfied by setting Cy, to T are satisfied by
setting Cy to V', then one can set Cy to v, Cy to v' and remove the rows that intersect C in v and Cy to
v’, without missing any optimal solution.

Proof. Column C,, set to v covers the rows otherwise covered by Cy set to v’ and Cy set to v’ covers the
rows otherwise covered by C, set to 7. Therefore setting C,, to v, Cy, to v’ is always better than any of the
other three combinations, given that C,, has minimum cost at v and C has minimum cost at v'. O

If negative literals have non-zero cost and positive literals have positive cost, it is exactly the definition of
column mutual dominance.

®This definition of column mutual dominance is
e identical to rule for mutually reducible variables in [53],
e not mentioned in other papers.

18

5.7 Essential Column

Definition 5.8 A column C; is an essential column 7 if there exists a row R; having a 1 in column C; and
2’s everywhere else.

Theorem 5.9 If C; is an essential column, it must be selected (z; = 1) in every solutions. Column C; must
then be deleted together with all the rows in which it has 1s.
5.7.1 Essential Column for a Unate Table

Definition 5.9 A column is an essential column if it contains the 1 of a singleton row.

5.8 Unacceptable Column

Definition 5.10 A column C; is an unacceptable column ® if there exists a row R; having a 0 in column C;
and 2’s everywhere else.

This reduction rule is a dual of the essential column rule.

Theorem 5.10 If C; is an unacceptable column, it must be eliminated (z; = 0) in every solution, together
with all the rows in which it has O’s.

5.9 Unnecessary Column

Definition 5.11 A column of only O's and 2’s is an unnecessary column °.

Notice that there is no symmetric rule for columns of 1’s and 2’s. The reason is that selecting a column to
be in the solution has a cost, while eliminating it has no cost.

Theorem 5.11 If C; is an unnecessary column, it may be eliminated (z; = 0), together with all the rows in
which it has O's.
"This definition of essential column is
o identical to essential row (Rule 2) in [22],
o identical to Rule 1 in [23],
o included in Definition 9 in [5]: the row R; in the above definition corresponds to a singleton-1 essential row in [5],

o included in Definition 2.10 in [4]: the row R; in the above definition corresponds to a singleton-1 essential row in [4].

8This definition of unacceptable column is
o identical to that of nonselectionable row in [22],
o identical to Rule 2 in [23],
e included in Definition 9 in [5): the row R; in the above definition corresponds to a singleton-0 essential row in [5],
o included in Definition 2.10 in [4]: the row R; in the above definition corresponds to a singleton-0 essential row in [4].

9This definition of unnecessary column is
o identical to Rule 4 in [22],
o identical to Rule 5 in [23],
¢ not mentioned in 5] and (4).

19

5.10 Trial Rule

Theorem 5.12 If there exists in a covering table M a row R; having a 0 in column C;, a 1 in column Cj,
and 2’s in the rest, then apply the following test:

o celiminate C}. together with the rows in which it has 0’s,
e eliminate C;, which is now an unacceptable column, together with the rows in which it has 0’s,
e continue as long as possible to eliminate the columns which becomes unacceptable columns.

If at least one row of M has only 2’s at the end of this test, then column C) must be selected (z = 1)o,
Therefore, C can be deleted together with all the columns in which it has 1's 1.

5.11 Infeasible Subproblem

Unlike the unate covering problem, the binate covering problem may be infeasible. In particular, an
intermediate covering matrix M may found to be unsatisfiable by the following theorem. When an infeasible
subproblem is found, that branch of the binary recursion is pruned.

Definition 5.12 A covering problem M is infeasible 12 if there exists a column C; which is both essential
and unacceptable (implying z; = 1 and z; = 0).

5.12 Gimpel’s Reduction Step

Another heuristic for solving the minimum cover problem has been suggested by Gimpel [21]. Gimpel
proposed a reduction step which simplifies the covering matrix when it has a special form. This simplification
is possible without further branching, and hence is useful at each step of the branch and bound algorithm.
In practice, Gimpel’s reduction step is applied after reducing the covering matrix to the cyclic core.

Gimpel'’s reduction can be described in terms of the product-of-sums represented by a covering table.
The product-of-sums is examined to see if any clause has only two literals of the same cost. For example,
assume the expression has the form:

p=Rla+a)a+S)...(c0+Su)(c2+Th)...(c2+ Twm)

where ¢; and c; are single variables withacost C, S;,i=1...nand T},j = 1...m are sums of variables
not containing ¢ or ¢z, and R is a product of sums of variables not containing c; or c;. Because the covering
table is assumed minimal, if there is a clause (c; +¢2), thenm > 1, » > 1, and none of S; or T} is identically
zero.

1911 is possible that a row is left with only 2’s by a sequence of reduction steps.
"This reduction rule is

o identical to Rule 6 in [22],

¢ not mentioned in other papers.
12This definition of infeasibility is
e not mentioned in [22] and [23],

o briefly mentioned in [5]),
¢ identical to the unfeasible problem in [4].

20

Note that with the expression written in this form, each parenthesized expression corresponds directly
to a single row in the covering table. By algebraic manipulations, the expression can be re-written as:

p=R(aa+aT+aS)

where S = [[%, Si,and T = [, T..
A second covering problem is derived from the original covering problem with the following form:

= Re+S+7T)
= R[[[I(c2+Si+Tj)

=1 3=1
The main theorem of Gimpel is:

Theorem 5.13 Let M, be a minimum cover for py. A cover for p can be derived from M according to the
rule: if S is covered by M then add c; to M to derive a cover of p; otherwise, add ¢, to M to derive a
cover of p. The resulting cover is a minimum cover for p.

A proof can be found in [50], where a more extended discussion is presented.

Gimpel’s reduction step was originally stated for covering problems where each column had cost 1.
Robinson and House [26] showed that the reduction remains valid even for weighted covering problems if
the cost of the column ¢; equals the cost of the column ¢y, as it has been presented here. Gimpel’s rule has
been first proposed in [21] and then implemented in (49]. In [48, 54] Gimpel’s rule has been extended to
handle the binate case. This extension has been described in [55].

6 Semi-Implicit Solution of Binate Covering

6.1 Binary Decision Diagrams
Basic introductions to binary decision diagrams are found in [6, 1}.

Definition 6.1 A binary decision diagram (BDD) is a rooted, directed acyclic graph. Each nonterminal
vertex v is labeled by a Boolean variable var(v). Vertex v has two outgoing arcs, childy(v) and child (v).
Each terminal vertex u is labeled 0 or 1.

Each vertex in a BDD represents a binary input binary output function and all accessible vertices are
roots. The terminal vertices represent the constants (functions) 0 and 1. For each nonterminal vertex v
representing a function F, its child vertex childp(v) represents the function F5 and its other child vertex
child) (v) represents the function F,. ie, F=7-Fg+v-F,.

For a given assignment to the variables, the value yielded by the function is determined by tracing a
decision path from the root to a terminal vertex, following the branches indicated by the values assigned to
the variables. The function value is then given by the terminal vertex label.

Definition 6.2 A BDD is ordered if there is a total order < over the set of variables such that for every
nonterminal vertex v, var(v) < var(childyg(v)) if childo(v) is nonterminal, and var(v) < var(child;(v))
if childy(v) is nonterminal.

Definition 6.3 A BDD is reduced if

1. it contains no vertex v such that childp(v) = child(v), and

21

2. it does not contain two distinct vertices v and v' such that the subgraphs rooted at v and v are
isomorphic.

Definition 6.4 A reduced ordered binary decision diagram (ROBDD) is a BDD which is both reduced
and ordered.

Definition 6.5 The ITE operator returns function G, if function F evaluates true, else it returns function
Gz.‘
G, ifF=1

ITE(F,G;,Gy) = { Go otherwise

where range(F)={0,1}.

6.2 The Shortest Path Method

In [40] the solution of a binate covering problem was reduced to a shortest path computation on the BDD
representing the clauses. We will present the theorem supporting the reduction.

Suppose that the length (or cost) of a 0-edge of a BDD is 0 and the length of a 1-edge is a positive
constant. A shortest path between two nodes is a path of total minimum length.

Theorem 6.1 A minimum cost assignment satisfying a Boolean formulaT (z,,- - -, z,) is given by a shortest
path from the root to the terminal 1 of a ROBDD representing T'.

Proof. For every path p from the root to the terminal 1 there is a set of associated variable assignments
{x}, that satisfy T. An assignment x,, is in {x},, only if variable z; is set to 1(0) when z; and its 1-edge
(0-edge) appear in p. For any combination of assignments to the variables that do not appear in p there is
a corresponding complete x,, and varying all such combinations one spans all assignments x, € {x},. The
unique assignment x,, € {x}, such that the variables not in p are set to 0 has the property that its cost is
equal to the length of path p. Callitx, . . Vice versa given a satisfying assignment x there is a unique path
p from the the root to the terminal 1 whose associated set {x}, includes x. The length of p is less or equal
to the cost of x.

Given a shortest path p in the ROBDD, consider the corresponding minimum cost assignment X,,.....
Suppose by contradiction that there is another satisfying assignment x’ of smaller cost. Consider the unique
path p’ such that {x'} includes x’. The length of p’ is less or equal to the cost of x’, but the cost of x’ is less
than the cost of x,,_,, ., that coincides with the length of p, and so we found a path p’ of length strictly less
than the length of p, against the hypothesis that p is a shortest path. O

6.3 The Method Based on a Product of BDD’s

In {27, 28], a branch-and-bound algorithm for the binate covering problem expressed as a product of general
boolean formulas and represented by a conjunction of multiple BDD’s is presented. This is in alternative to
the case when the constraints are expressed as a product-of-sums (POS) and represented by a matrix where
each row is a clause and each column is a variable. The attractive feature of a BDD-based algorithm is that
finding the solution only requires computing the shortest path to the 1 terminal in the BDD. Since in cases
of practical interest, it happens often that a single BDD representing all clauses is too large to be built, it has
been proposed to represent the constraints as a product of sub-constraints, each of which can be represented
by a BDD. The question is how to find a minimum solution, having a product of BDD’s, instead than a single
BDD. It is clear that if each subconstraint is a sum-of-products (SOP) clause, the BDD-based formulation

22

is analogous to the one based on a matrix. This motivates the extension to a conjunction of BDD’s of the
reduction and bounding techniques devised to solve a table.

The algorithm assumes that the constraint function is in the form f = []}., f; where each f; is
represented by a BDD F;. Each f; or F; is called a sub-constraint. The conjunction of the F; is called F.
Under this assumption, BCP amounts to finding an assignment for z, 22, . . ., Z, that minimizes the cost
function and that satisfies all f;’s simultaneously. If » = 1, we have a single BDD and the minimum cost
assignment that satisfies f can be found by computing the shortest path connecting the root of f to the '1°
leaf. If n > 1 a branch-and-bound algorithm as in the matrix-based case can be devised. Reduction and
bounding techniques are extended as shown next.

A variable z; is essential for f if and only if f; < z;, for some ¢, ¢ = 1,2,...,n. A variable z; is

unacceptable for f if and only if f; < z’, for some ¢, i= 1,2,...,n.

Row dominance is extended to the nJlore general definition of constraint dominance. Function f; domi-
nates function f; if and only if f; < f;. Constraint dominance reduces to row dominance if subconstraints
coincide with SOP clauses.

Column dominance is extended to the following definition of variable dominance. Variable z; dominates
variable z; if and only if ¢; < ¢; and 3z; f;, < 3z, f, - Since the constraint f is in the form of conjunction
of subconstraints, the previous definition cannot be checked directly. However the following sufficient
conditions can be checked efficiently. If either of the following conditions is satisfied

® (fe)z; < (fi),,, foreach fi
° (fk).r, < (fk)z:z; for each fk

where ¢; < c; then z; dominates z;. As another special case, if (fx)z, < (fix), for each fi, then any
b

variable z;, (# j) dominates variable z;.

When z; has cost 0, a more general definition of variable dominance is that variable z; dominates
variable z; if and only if and only if 3z; f;, < 3z, f, or 3zif;, < 3zife,.

In [27] variable z; is said to dominate variable z; iff c; < c¢; and one of the following conditions is
satisfied Yk € {1,...,n}:

L (f¥)z, < (fk)r,.,,;
2. (f¥)z, = (fi)zy = (fi)sie., fi doesnot depend on z, and there exists a psuch that (f) 7, < (fi)=;

If subconstraints coincide with SOP clauses, the first condition gives the definition of alpha_dominance.
If subconstraints coincide with SOP clauses, the first and second condition together give the definition of
beta_dominance.

A lower bound to the cost of satisfying F' is given by the sum of the minimum costs of satisfying
each BDD in a set of BDD’s with disjoint supports (an independent set of BDD’s). These minimum costs
can be found by computing the shortest paths of those BDD’s. If the shortest paths satisfy all the other
sub-constraints, the solution determined by the independent set is optimal and the current recursion node
can be pruned.

A most common variable in the BDD’s is chosen as a splitting variable (i.e., a variable whose corre-
sponding column in the dependence matrix intersects most rows). This favours the simplification of as
many BDD’s as possible, the partitioning of the BDD’s in sets with disjoint support and the generation of
larger independent sets. Experiments show that this splitting variable criterion is less effective that the one
(in section 4.5) used for a matrix-based formulation and as a consequence the number of recursion nodes is
greater.

23

We notice that in both approaches presented in this section, the usage of BDD'’s allows potentially to
handle problems with many clauses (if they have a compact BDD representation), but does not address the
problem of covering matrices with many columns. In such problems, it is unlikely that the BDD can be
built at all, because each column is a variable in the support of the BDD.

It may be worthy of mention at this point that in [33, 34] a more general algorithm to solve integer linear
programming based on edge-valued binary decision diagrams has been presented.

7 Implicit Solution of Binate Covering

mincov(R,C,U) {

(R,C) = Reduce(R,C,U)

if (Terminal Case(R,C))
if (cost(R,C) > U) return empty_solution
else U = cost(R, C); return solution

L = Lower_Bound(R,C)

if (L > U) return _solution

¢; = Choose_Column(R, C)

S! = mincov(R,,,C.,,U)

S = mincov(Rz, Cs, U)

retumn Best_Solution(S' U {c;}, S°)

Figure 6: Implicit branch-and-bound algorithm.

The classical branch-and-bound algorithm [22, 23] for minimum-cost binate covering has been described
in previous sections, and implemented by means of efficient computer programs (ESPRESSO and STAMINA).
These state-of-the-art binate table solvers represent binate tables efficiently using sparse matrix packages.
But the fact that each non-empty table entry still has to be explicitly represented put a bound on the size
of the tables that can be handled by these binate solvers. For example, one would not expect these binate
solvers to handle examples requiring over 10° columns (up to 2!5% columns), reported in state minimization
of FSM’s [29]. To keep with our stated objective, the binate table has to be represented implicitly. We do
not represent (even implicitly) the elements of the table, but we make use only of a set of row labels and a
set of column labels, each represented implicitly as a BDD. They are chosen so that the existence and value
of any table entry can be readily inferred by examining its corresponding row and column labels. In the
sequel, we shall assume that every row has a unit cost.

7.1 Implicit Set Manipulation

In [29] it is presented a full-fledged theory on how to represent and manipulate sets using a BDD-based
representation. It extends the notation used in [37]). An outline is available also in [31]. This theory is
especially useful for applications where sets of sets need to be constructed and manipulated.

Given a ground set G of cardinality less or equal to n, any subset S can be represented in a Boolean
space B™ by a unique Boolean function xs : B® — B, which is called its characteristic function [7], such
that:

xs(z) =1 ifandonly if z in S.

24

In other words, a subset is represented in positional-set or positional-cubenotation form !, using n Boolean
variables, ¢ = z123...z,. The presence of an element s, in the set is denoted by the fact that variable
z, takes the value 1 in the positional-set, whereas z; takes the value 0 if element s, is not a member of the
set. One Boolean variable is needed for each element because the element can either be present or absent
in the set. As an example, for n = 6, the set with a single element s, is represented by 000100 and the
set 578385 is represented by 011010. The elements sy, s4, S¢ which are not present correspond to 0’s in the
positional-set.

A set of subsets of G can be represented by a Boolean function, whose minterms correspond to the
single subsets. In other words, a set of sets is represented as a set .S of positional-sets, by a characteristic
function xs : B™ — B as:

xs(z) = 1 if and only if the set represented by the positional-set z is in the set S of sets.

Any relation R between a pair of Boolean variables can also be represented by a characteristic function
R:B? = Bas:
R(z,y) =1 ifand only if z isin relation R to y
R can be a one-to-many relation over the two sets in B. These definitions can be extended to any relation
R between n Boolean variables, and can be represented by a characteristic function R : B" — B as:

R(zy,22,...,%,) = 1 if and only if the n-tuple (2, 22, ..., Z,) is in relation R

In this way, useful relational operators on sets can be derived. Operators Op acts on two sets of variables
T =1122...2, and y = Y132 . . . y» and retums a relation (z Op y) (as a characteristic function) of pairs
of positional-sets. Alternatively, they can also be viewed as constraints imposed on the possible pairs out
of two sets of objects, r and y. For example, given two sets of sets X and Y, the set pairs (z, y) where =
contains y are given by the product of X and Y and the containment constraint, X (z) - Y (y) - (z 2 y). We
present a few examples of these operators. Variations and extensions used later, can be defined in a similar
manner.

Lemma 7.1 The equality relation evaluates true if the two sets of objects represented by positional-sets =
and y are identical, and can be computed as:

n
(z=y)=][z w
k=1

where T < yr = Tk - Yi + -z - —Yx designates the Boolean XNOR operation and — designates the Boolean
NOT operation.

Proof. []i-; zx < y requires that for every element k, either both positional-sets z and y contain it, or it
is absent from both. Therefore, z and y contains exactly the same set of elements and thus are equal. O

Lemma 7.2 The containment relation evaluates true if the set of objects represented by x contains the set
of objects represented by y, and can be computed as:

n
(z2y)=J]we= 2
k=1

where zi = yr = i + yi designates the Boolean implication operation.
3Called also 1-hot encoding.

25

Proof. [Ti=; yx = = requires that for all object, if an object k is present in y (i.., yx = 1), it must also be
present in z (zx = 1). Therefore set z contains all the objectsin y. O
Similarly one can define operations on sets of sets. A few important examples follow.

Lemma 7.3 Given the characteristic functions x 4 and x g representing the sets A and B, set operations on
them such as the union, intersection, sharp, and complementation can be performed as logical operations
on their characteristic functions, as follows:

XAuB = Xa+XB

XAnB = XA XB
XA-B = XA*'TXB
Xz = XA

Lemma 7.4 The maximal of a set x of subsets is the set containing subsets in x not strictly contained by
any other subset in x, and can be computed as:
Mazimalz(x) = x(z)- Ay [(y D =) - x(v)]

Proof. The term 3y [(y D z) - x(y)] is true if and only if there is a positional-set y in x such that z C y.
In such a case, z cannot be in the maximal set by definition, and can be subtracted out. What remains is
exactly the maximal set of subsets in x(z). O

An efficient recursive implementation of the operation maximal is described in [29].

7.2 Setting of Implicit Solution
A binate covering problem instance can be characterized by a 6-tuple (r, ¢, R, C, 0, 1), defined as follows:
e the group of variables for labeling the rows: r
o the group of variables for labeling the columns: ¢
e the set of row labels: R(r)
o the set of column labels: C(r)
o the O-entries relation at the intersection of row r and column ¢: 0(r, c)
e the 1-entries relation at the intersection of row r and column ¢: 1(r, c)

In other words, the user of our implicit binate solver would first choose an encoding for the rows and
columns. Given a binate table, the user will then supply a set of row labels as a BDD R(r) and a set of
column labels as a BDD C(c), and also the two inference rules in the form of BDD relations, 0(r, c) and
1(r, ¢), capturing the O-entries and 1-entries.

The classical branch-and-bound solution of minimum cost binate covering is based on the recursive
procedure as shown in Figure 3. In our implicit formulation, we keep the branch-and-bound scheme
summarized in Figure 6, but we replace the traditional description of the table as a (sparse) matrix with an
implicit representation, using BDD’s for the characteristic functions of the rows and columns of the table.
Moreover, we have implicit versions of the manipulations of the binate table required to implement the
branch-and-bound scheme. In the following sections we are going to describe the following:

26

¢ implicit representation of the covering table,
o implicit reduction,

¢ implicit branching column selection,

e implicit computation of the lower bound, and
e implicit table partitioning.

At each call of the binate cover routine mincov, the binate table undergoes a reduction step Reduce and,
if termination conditions are not met, a branching column is selected and mincov is called recursively twice,
once assuming the selected column ¢; in the solution set (on the table R, C.;) and once out of the solution
set (on the table Rz, Cz). Some suboptimal solutions are bounded away by computing a lower bound L
on the current partial solution and comparing it against an upper bound U (best solution obtained so far). A
good lower bound is based on the computation of a maximal independent set.

7.3 Implicit Table Generation

Here we define different ways of specifying the binate covering table in decreasing order of generality of
the binate covering problem. A table is defined implicitly by generating BDD-based representations of the
rows and columns and by giving relations specifying the 1 and 0 entries, given the rows and columns. By
imposing restrictions on the way in which rows and columns are labeled and entries are defined, one gets
representations with varying degrees of generality. We distinguish between the case of a general binate
covering table (1.) and of a binate covering table with at most one O per row (2.), even though they use
the same table specification, because in the second case some simplifications of the computations to reduce
implicitly the table will be possible and pointed out in the text. Historically the third (less general) way
was implemented first to solve exact state minimization of ISFSM’s [30). It is applicable to other problems
whose covering table can be represented in the same way, e.g., the exact formulation of technology mapping
for area minimization [50). There is a trade-off between generality of the representation and efficiency of
the computations: "hard-wiring" the rules that define a table may speed up table manipulations, to the price
of more limited applicability.

1. General binate covering table

o the group of variables for labeling the rows: r

o the group of variables for labeling the columns: ¢

o the set of row labels: R(r)

o the set of column labels: C(c)

o the O-entries relation at the intersection of row r and column ¢: 0(r, c)
o the 1-entries relation at the intersection of row r and column ¢: 1(r, ¢)

item Binate covering table assuming each row has at most one 0:
e same as 1. above.
2. Specialized binate covering table for exact state minimization and similar problems:

e the group of variables for labeling the rows (each label is a pair): (c, d)
e the group of variables for labeling the columns: p

27

o the set of row labels: R(c, d)

o the set of column labels: C(p)

o the O-entries relation at the intersection of row (c, d) and column p: 0((c,d),p) = (p=1¢)
e the 1-entries relation at the intersection of row (c, d) and column p: 1((c,d),p) = (p 2 d)

As an example, for the problem of exact state minimization, C(p) is the set of labels that denote the
prime compatibles p of an FSM, i.e., pis in set C if it is the 1abel of a prime compatible p. Prime compatibles
are sets of states and they are represented using positional set notation. For instance, if an FSM has 5 states
sl,s2,s3,s4,s5 and p = {sl, s4} is a compatible, set C is represented with 5 Boolean variables and p
is labeled as 10010. R(c,d) is the relation expressing covering clauses and closure clauses. A covering
clause for a state says that the state must be contained in at least one prime compatible. A binate clause
for a compatible says that if the compatible is chosen in a solution then at least another compatible from a
related set must be in that solution, e.g., clause (p+ p1 + p2 + - * - + px), meaning that if p is in a solution,
either one of py, p2, - - -, pxr must be in that solution. A covering clause yields a unate row, labeled by a ¢
part that denotes an empty set and by a d part that denotes a singleton set, requiring a given state be covered.
Whenever p D d, there is a 1 at the intersection of the row labeled by d and the column representing prime
compatible p, meaning that the compatible p contains state d. A closure clause yields a binate row, labeled
by a c part that is the label of the unique prime compatible whose corresponding column has a zero at the
intersection with this row (condition p = c¢), and by a d part that is the label of a compatible such that
there is a 1 at the intersection of this row and any column whose label p is a prime compatible that contains
compatible d. We refer to [31] for a complete treatment of implicit state minimization of incompletely
specified FSM’s.

If the covering problem is unate, the O(r, c) relation is empty. A typical example is exact two-level
minimization where R(r) = R(m), for m labeling minterms, C(c) = C(p), for p labeling prime implicants
and 1(r, c) = (p 2 m). The label of an implicant can be constructed by representing each Boolean variable
in multi-valued notation, for instance encoding O as 10, 1 as 01 and — as 11. A complete treatment of this
special case can be found in [24, 8]. The more complex case of implicit exact minimization of generalized
prime implicants is described in [57].

In the next section, we will describe how a binate covering table can be manipulated implicitly so as to
solve the minimum cost binate covering problem. BDD formulas of implicit table operations will be labeled
1, 2, or 3, depending on which of the three previous formulations it refers to.

8 Implicit Table Reduction Techniques

Reduction rules aim to the following:

1. Selection of a column. A column must be selected if it is the only column that satisfies a given row. A
dual statement holds for columns that must not be part of the solution in order to satisfy a given row.

2. Elimination of a column. A column c; can be eliminated if its elimination does not preclude obtaining
a minimum cover, i.e., if there is another column c; that satisfies at least all the rows satisfied by c;.

3. Elimination of a row. A row r; can be eliminated if there exists another row r; that expresses the
same Or a stronger constraint.

The order of the reductions affects the final result. Reductions are usually attempted in a given order,
until nothing changes any more (i.e., the covering matrix has been reduced to a cyclic core). The reductions
and order implemented in our reduction algorithm are summarized in Figure 7.

In the reduction, there are two cases when no solution is generated:

28

Reduce(R,C,U) {
repeat {
Collapse_Columns(C)
Column_Dominance(R,C)
Sol = Sol U Essential_Columns(R,C)
if (|Sol| > U) return empty_solution
Unacceptable_Columns(R,C)
Unnecessary_Columns(R,C)
if (C does not cover R) retumn empty_solution
Collapse_Rows(R)
Row_Dominance(R,C)
} until (both R and C unchanged)
retum (R, C)
}

Figure 7: Implicit reduction loop.

1. The added cardinality of the set of essential columns, and of the partial solution computed so far, Sol,
is larger or equal than the upper bound U. In this case, a better solution is known than the one that
can be found from now on and so the current computation branch can be bounded away.

2. After having eliminated essential, unacceptable and unnecessary columns and covered rows, it may
happen that the rest of the rows cannot be covered by the remaining columns. In this case, the current
partial solution cannot be extended to any full solution.

We are going to describe how the reduction operations are performed implicitly using BDD’s on the
three table representations described in the previous section.
8.1 Duplicated Columns

It is possible that more than one column (row) label is associated with columns (rows) that coincide element
by element. We need to identify such duplicated columns (rows) and collapse them into a single column
(row). This avoids the problem of columns (rows) dominating each other when performing implicitly
column (row) dominance. The following computations can be seen as finding the equivalence relation of
duplicated columns (rows) and selecting one representative for each equivalence class.

Definition 8.1 Two columns are duplicates, if on every row, their corresponding table entries are identical.
Theorem 8.1 Duplicated columns can be computed as:

dup_col(c,c) '= Vr{R(r) = [(0(r,¢) & 0(r,c))- (1(r,¢) & 1(r,)]}
dup.col(c’,c) 2= Vr{R(r) = [-0(r,c)-=0(r,c)- (1(r,¢) & 1(r,)]}
dup_col(p',p) *= AdR(p',d)- Bd R(p,d)-Vd {[3c R(c,d)] = [(p' 2 d) & (p 2 d)]}

Proof. As discussed at the end of Section 7.3, the first equation computes the duplicated columns relation
for the most general binate table, and the second equation for the binate table with the assumption that there

29

is at most one 0 in each row, and the third equation is for the specialized binate table for state minimization,
assuming the columns are prime compatibles p, and the rows are pairs (c, d).

For the column labels ¢’ and c to be in the relation dup.col, the first equation requires the following
conditions to be met for every row label r € R: (1) the entry (r,c) is a O if and only if the entry (r,¢)
isao, (ie, 0(r,c) & 0(r,c)), and (2) the entry (r,c) is a 1 if and only if the entry (r,c/) is a 1, (i.e.,
1(r,) & 1(r, c)). Assuming each row has at most one 0 for the second equation, condition 2 requires that
the row labeled r cannot intersect either column at a 0, (i.e., =0(r, ¢) - =0(r, ¢)). O

Theorem 8.2 Duplicated columns can be collapsed by:

Cc) 2= C(c) A [C(c) - (¢ < ¢) - dupcol(c,c)]

Cp) 3= C(p) B [C()- (' <) dupcol(p,p)]
Proof. This computation picks a representative column label out of a set of column labels corresponding
to duplicated columns. A column label c is deleted from C if and only if there is another column label ¢/
which has a smaller binary value than ¢ (denoted by ¢’ < ¢) and both label the same duplicated column.

Here we exploit the fact that any positional-set ¢ can be interpreted as a binary number. Therefore, a unique
representative from a set can be selected by picking the one with the smallest binary value. 140

8.2 Duplicated Rows
Definition 8.2 Two rows are duplicates if, on every column, their corresponding table entries are identical.

Detection of duplicated rows, selection of a representative row, and table updating are performed by the
following equations as in the case of duplicated columns.

Theorem 8.3 Duplicated rows can be computed as:
dup.row(r',r) 2= Ve {C(c) = [(0(+',c) ¢ O(r, c)) - (1(r', ¢) & 1(r,)]}
duprow(c,d',e,d) *= (d'=c) Ap[C(p) - ((p2d) ¢ (p2d))]
Proof. Similar to the proof for Theorem 8.1. For the row labels ' and r to be in the relation dup_row, the
first equation requires the following conditions to be met for every column label ¢ € C: (1) the entry (r, c)

is a 0if and only if the entry (r/, c) is a0, (i.e., 0(r', ¢) & 0(r, ¢)), and (2) the entry (r,c)is a 1 if and only
if the entry (r',c)isa 1, (i.e., 1(r',¢) & 1(r,c)). O

Theorem 8.4 Duplicated rows can be collapsed by:
R(r) Y= R(r) Ar'[R() - (r' < 1) dup-row(r’,r)]
R(c,d) 3= R(c,d)- Ac,d'[R(c,d) - (d' < d)-duprow(c,dc,d)]

Proof. The proof is similar to that for Theorem 8.2, except we are delete all duplicating rows here except
the representative ones. O

From now on, sometimes we will blur the distinction between a column (row) label and the column
(row) itself, but the context should say clearly which one it is meant.

14 Alternatively, one could have used the cproject BDD operator introduced in [38] to pick a representative column out of each
set of duplicated columns.

30

8.3 Column Dominance

Some columns need not be considered in a binate table, if they are dominated by others. Classically, there
are two notions of column dominance: a-dominance and -dominance.

Definition 8.3 A column ¢’ a-dominates another column c if ¢ has all the I's of ¢, and c has all the 0's of
c.

Theorem 8.5 The a-dominance relation can be computed as:

adom(c’,c) '= Ar{R(r)-[L(r,c)--1(r,")] + [0(r,c) - 2O(r, c)]}

adom(c’,c) 2= PAr{R(r)-[1(r,c)-~1(r,c) +0(r,)]}

a.dom(p',p) *= Bc,d[R(c,d)-(p24d) (¢’ 2 d)]- AdR(p',d)
Proof. For column ¢’ to a-dominate c, the first equation ensures that there doesn’t exists a row r € R such
that either (1) the table entry (r, c) is a 1 but the table entry (r, ¢’) is not, or (2) the table entry (r,c’)isa 0

but the table entry (r, c) is not. Assuming each row has at most one 0, condition 2 can be simplified to the
second equation that table entry (r,c’)isa0. O

Definition 8.4 A column ¢’ 3-dominates another column c if (1) ¢’ has all the I's of ¢, and (2) for every

row r' inwhich ¢’ contains a 0, there exists another row r in which c has a 0 such that disregarding entries
incolumn ¢, r' has all the I's of r.

Theorem 8.6 The 3-dominance relation can be computed by:

B-dom(c’,c) 2= Ar' {R() [1(+',c)- —.1(r’)
+0(r',¢')- Br[R(r) - 0(r,c)- Ac" [C(c") - (¢" # ') - 1(r, ") - =1(r', ") 1}
Bdom(p',p) *= Pd' {3 (R(c\d))- (p 2d)-(p' 2 d)}
- Bd'{R(p,d')- Ad[R(p,d)- Bg[C(a) (¢ #P)) - (¢24d) (g2 d)]]}}

Proof. According to the definition, the table should not contain a row ' € R if either of the following
two cases is true at that row: (1) table entry at column c is a 1 while entry at column ¢’ is not a 1 (i.e.,
1(r',¢) - -1(r', '), or (2) ¢ has a 0 in row 1/ (i.e., O(r’, ¢)) but there does not exist a row r € R such that
its column c is a 0 and disregarding entries in column ¢/, row ' has all the 1’s of row r. Rephrasing the last
part of the condition 2, the expression Ac” [C(c”) - (¢" # ') - 1(r, ") - ~1(r', ¢"")] requires that there is no
column ¢” € C apart from column ¢’ such that ¢ has a 1 in row r, but not in row r/. O

The conditions for a-dominance are a strict subset of those for S-dominance, but a-dominance is easier
to compute implicitly. Either of them can be used as the column dominance relation col_dom.

Theorem 8.7 The set of dominated columns in a table (R, C') can be computed as:
D(c) Y= C(c)-3c[C(c") - (¢' # c) - col_dom(c',)]
D(p) *= C(p)-3[C(F) (v # p) - col-dom(p', p)]

Proof. A column c € C is dominated if there is another ¢’ € C different from ¢ (i.e., ¢’ # ¢) which column
dominates c (i.e., col_dom(c, ¢)). O

31

Theorem 8.8 The following computations delete a set of columns D(c) from a table (R, C) and all rows
intersecting these columns in a 0.

Cle) = C(c)--D(c)
R(r) 2= R(r)- Bc[D(c)-0(r,c)]

C() *= C(p)--D(p)
R(c,d) 3= R(c,d)--D(c)

Proof. The first computation removes columns in D(c) from the set of columns C(c). The expression
Jc [D(c) - 0(r, c)] defines all rows r intersecting the columns in D in a 0. They are deleted from the set of
rows R. O

8.4 Row Dominance

Definition 8.5 A row r’ dominates another row r if r has all the I's and 0’s of r'.
Theorem 8.9 The row dominance relation can be computed by:

row.dom(r',r) 2= Ac{C(c)-[1(r',¢) =1(r,c) +0(r',c) - =0(r,)]}
rowdom(c,d',c,d) *= Bp[C(p)-(p2d)-(p 2 d)]-[unate_row(c) + (' = ¢)]

Proof. For r’ to dominate r, the equation requires that there is no column ¢ € C such that either (1) the
table entry (', c) is a 1 but the entry (r, ¢) is not, or (2) the entry (r’, ¢) is a O but the entry (r, c)isnot. O

Theorem 8.10 Given a table (R(r), C(c)), the set of unate row labels r can be computed as
unate_row(r) '* = Ac [C(c) - O(r,)}
Given a table (R(c, d),C(p)), the set of unate row labels c can be computed as
unate-row(c)* = Bp [C(p) - (p = ¢)] = Be C(0).
Theorem 8.11 The set of rows not dominated by other rows can be computed as:

R(r) 2= R(r) A [R(r)- (r' #1) rowdom(r,r)]
R(c,d) 3= R(c,d) Bd,d {R(c,d")-[(c',d) # (¢c,d)]- row_dom(c,d',c,d)]}

Proof. The equation expresses that any row r € R, dominated by another different row r' € R, is deleted
from the set of rows R(r) in the table. O

32

8.5 Essential Columns

Definition 8.6 A column c is an essential column if there is a row having a 1 in column c and 2 everywhere
else.

Theorem 8.12 The set of essential columns can be computed by:

ess.col(e) 1= C(c)-3r {R()- 1(r,0)- BIIC(E) - (¢ #) - (0(r,€) + 1(r,)}
ess_col(c) 2= C(c)-3Ir {R(r)- 1(r,c)- unate_row(r)- Ac' [C(c) - (¢' # ¢) - 1(r,)]}
esscol(p) 3= C(p)-3c,d{R(c,d)- (p 2 d)- unate-row(c)- Ap' [C(¢')- (' #p) - (o' 2 d)]}

Proof. For a column ¢ € C to be essential, there must exist a row r € R which (1) contains a 1 in
column c (i.e., 1(r, ¢)), and (2) there is not another different column intersecting the rowin a 1 or O (i.e.,
A [C(c) - (¢ #) - (0(r, &) + 1(r,).

Assuming that a row can have at most one 0, a column ¢ € C is essential if and only if there is a row
r € R which (1) contains a 1 in column ¢ (i.e., 1(r, ¢)), and (2) does not contain any 0 (i.e., unate_row(r)),
and (3) there is not another different column intersecting the rowina 1 (i.e., Ac' [C(¢')-(¢' # ¢)-1(r,¢)]). D

Theorem 8.13 Essential columns must be in the solution. Each essential column must then be deleted from
the table together with all rows where it has 1's.

The following computations add essential columns to the solution, delete them from the set of columns
and delete all rows in which they have I's:

solution(c) '? = solution(c) + ess_col(c)
C(c) '?= C(c)-—ess-col(c)
R(r) '?= R(r)- Ac|ess-col(c)- 1(r,c)]
solution(p) 3= solution(p) + ess.col(p)
Clp) *= C(p)-ess-col(p)
R(c,d) 3= R(c,d)-—ess_col(c)

Proof. The first two equations move the essential columns from the column set to the solution set. The third
equation deletes from the set of rows R all rows intersecting an essential columncina 1. O

8.6 Unacceptable Columns

Definition 8.7 A column c is an unacceptable column if there is a row having a 0 in column c and 2
everywhere else.

Theorem 8.14 The set of unacceptable columns can be computed by:

unacceptable_col(c) '= C(c)-3r {R(r)-0(r,c)- Ac [C(c)) - (' # ¢) -0(r,)]}
- B [C(c) - 1(r,)]}

unacceptable_col(c) 2= C(c)-3r {R(r)-0(r,c)- Ac' [C(c') - 1(r,]}

unacceptable_col(p) *= C(p)-3d {R(p,d)- Bp' [C(¥)- (¢’ 2 d)]}

33

Proof. For column ¢ € C to be unacceptable, there must be a row r € R such that (1) it intersects the
column c at a 0, and (2) there does not exists another column ¢’ different from ¢ which intersects that
rowrata0 (e, Ad [C(): (¢ # ¢)-0(r,))), and (3) no column ¢ intersects that row rina 1 (i.e.,
Ac [C(c) - 1(r, ¢)]). Condition 2 is not needed if we assume that each row contains at most one 0. O

8.7 Unnecessary Columns

Definition 8.8 A column is an unnecessary column if it does not have any 1 in it.
Theorem 8.15 The set of unnecessary columns can be computed as:

unnecessary.col(c) 1?2 = C(c)- Ar[R(r)1(r,¢)]
unnecessary-col(p) 3= C(p): Ac,d[R(c,d)- (p 2 d)]

Proof. A column ¢ € C is unnecessary if no row r € Rintersectsitina 1. O

Theorem 8.16 Unacceptable and unnecessary columns should be eliminated from the table, together with
all the rows in which such columns have 0’s.
The table (R, C) is updated according to Theorem 8.8 by setting

D(c) '? = unacceptable_col(c) + unnecessary_col(c)
D(p) 3= wunacceptable_col(p) + unnecessary_col(p)

Proof. Obvious. O

9 Other Implicit Table Manipulations

To have a fully implicit binate covering algorithm as described in Section 7, we must also compute implicitly
a branching column and a lower bound. These computations as well as table partitioning involve solving a
common subproblem of finding columns in a table which have the maximum number of 1’s.

9.1 Selection of Columns with Maximum Number of 1’s

Given a binary relation F(r,c) as a BDD, the abstracted problem is to find a subset of ¢’s each of which
relates to the maximum number of r’s in F(r, ¢). An inefficient method is to cofactor F' with respect to ¢
taking each possible values c;, count the number of onset minterms of each F(r,c)|c=;, and pick the ¢;’s
with the maximum count. Instead our algorithm, Lmaz, traverses each node of F’ exactly once as shown
by the pseudo-code in Figure 8.

Lmaz takes a relation F'(r, ¢) and the variables set r as arguments and retums the set G of ¢’s which are
related to the maximum number of r’s in F, together with the maximum count. Variables in c are required
to be ordered before variables in r. Starting from the root of BDD F', the algorithm traverses down the graph
by recursively calling Lmaz on its then and else subgraphs. This recursion stops when the top variable v
of F is within the variable set r. In this case, the BDD rooted at v corresponds to a cofactor F(r, ¢)|c=; for
some c;. The minterms in its onset are counted and returned as count, which is the number of r’s that are
related to c;.

34

Lmaz(F,r) {
v = bdd_top_var(F)
if(ver)
return (1, bdd_count_onset(F))
else { /* vis a c variable */
(T, count.T) = Lmaz(bdd_then(F),r)
(E, count_F) = Lmaz(bdd_else(F),r)
count = maz(count.T, count_FE)
if (count T = count_F)
G=ITE(v,T,E)
else if (count = count_.T)
G=1ITE(v,T,0)
else if (count = count_FE)
G =ITE(v,0,E)
retumn (G, count)

Figure 8: Pseudo-code for the Lmax operator.

During the upward traversal of F, we construct a new BDD G in a bottom up fashion, representing
the set of ¢’s with maximum count. The two recursive calls of Lmaz return the sets T'(c) and E'(c) with
maximum counts count_T and count_FE for the then and the el se subgraphs. The larger of the two counts is
returned. If the two counts are the same, the columnsin T" and F are merged by ITE(v, T, E') and returned.
If count_T is larger, only T is retained as the updated columns of maximum count. And symmetrically
for the other case. To guarantee that each node of BDD F'(r,c) is traversed once, the results of Lmaz
and bdd_count_onset are memoized in computed tables. Note that Lmaz returns a set of ¢’s of maximum
count. If we need only one ¢, some heuristic can be used to break the ties.

Example 9.1 To understand how Lmax works consider the explicit binate table:

00 01 10 11
00 1 2 1 1
01 2 1 1 2
10 2 1 2 1
11 2 1 2 1

with four rows and four columns. The columns that maximize the number of 1's are the second and the
Sfourth. If the rows and columns are encoded by 2 Boolean variables each, using the encodings given on
top of each column and to the left of each row, the 1 entries of the table are represented implicitly by the
relation F(c, r) 13 whose minterms are:

{0000, 1000, 1100,0101, 1001,0110,1110,0111,1111}.

15y and ¢ are swapped in F so that minterms are listed in the order of the BDD variables.

35

The BDD representing F is shown in Figure 9. The result of invoking Lmax on F(r, c) is a BDD representing

the relation G(c) whose minterms are: {01, 11}, corresponding to the encodings of the second and fourth
column.

Figure 9: BDD of F(r, c) to illustrate the routine Lmaz.

9.2 Implicit Selection of a Branching Column

The selection of a branching column is a key ingredient of an efficient branch-and-bound covering algorithm.
A good choice reduces the number of recursive calls, by helping to discover more quickly a good solution.
We adopt a simplified selection criterion: select a column with a maximum number of 1°s. By defining
F'(r,¢) = R(r) - C(c) - 1(r, ¢) which evaluates true if and only table entry (r, ¢) is a 1, our column selection
problem reduces to one of finding the c related to the maximum number of r’s in the relation F'(r,), and
so it can be found implicitly by calling Lmaz(F', 7). A more refined strategy is to restrict our selection of
a branching column to columns intersecting rows of a maximal independent set, because a unique column

must eventually be selected from each independent row. A maximal independent set can be computed as
follows.

9.3 Implicit Selection of a Maximal Independent Set of Rows

Usually alower bound is obtained by computing a maximum independent set of the unate rows. A maximum
independent set of rows is a (maximum) set of rows, no two of which intersect the same column at a 1.
Maximum independent set is an NP-hard problem and an approximate one (only maximal) can be computed
by a greedy algorithm. The strategy is to select short unate rows from the table, so we construct a relation
F"(c,r) = R(r) - unate_.row(r) - C(c) - 1(r, ¢). Variables in r are ordered before those in c. The rows with
the minimum number of 1°s in F” can be computed by Lmin(F”, c), by replacing in L'maz the expression

36

maz(count T, count_E) with min(count_T, count_E). Once a shortest row, shortest(r), is selected, all
rows having 1-elements in common with shortest(r) are discarded from F*(c, r) by:

F"(c,r) = F"(c,r). Ac' {3r' [shortest(r') - F"(c,r")] - F"(c,7)}

Another shortest row can then be extracted from the remaining table F* and so on, until F” becomes empty.
The maximum independent set consists of all shortest(r) so selected.

9.4 Implicit Covering Table Partitioning

If a covering table can be partitioned into n disjoint blocks, the minimum covering for the original table
is the union of the minimum coverings for the n sub-blocks. Let us define the nonempty-entry relation
01(r, ¢) = 0(r, ¢) + 1(r, ¢). The implicit algorithm in Figure 10 takes a table description in terms of its set
of rows R(r), its set of columns C'(c) and the nonempty-entry relation 01(r, ¢), partitions it into » disjoint
sub-blocks, and return them as = pairs of (R, C*), each corresponding to the rows and columns for the i-th
sub-block.

n-way partitioning can be accomplished by successive extraction of disjoint blocks from the table. When
the following iteration reaches a fixed point, (Ry, Cx) corresponds to a disjoint sub-block in (R, C).

Ro(r) = Lmaz(R(r)-C(c)-01(r,c), ¢)

Ck(c) C(c) - 3r {Rg-1(r) - 01(r,)}
Ri(r) = R(r)-3Ic{Ck(c)-01(r,c)}

This sub-block is extracted from the table (R, C) and the above iteration is applied again to the remaining
table, until the table becomes empty. [30] provides a more detailed explanation.

Given a covering table, a single row Ro(r), which has the maximum number of nonempty entries, is
first picked using Lmaz(). The set of columns C) (c) intersecting this row at 0 or 1 entries is given by
C(c) - 3r [Ro(r) - 01(r,c)] (we want ¢ € C such that there is a row r € Rp which intersects cat a 0 or
1). Next we find the set of rows R; intersecting the columns in C via nonempty entries, by a similar
computation R(r) - 3¢ [C)(c) - 01(r, c)]. Then we can extract all the rows Rp(r) which intersects C(c),
and so on. This pair of computations is iteratively applied within the repeat loop in Figure 10 until no
new connected row or column can be found (i.e., Rx = Ri-1). Effectively, starting from a row, we have
extracted a disjoint block (R!,C"!) from the table, which will later be returned. The remaining table after
bi-partition simply contains the rows R — R! and the columns C — C'. If the remaining table is not empty,
we will extract another partition (R2,C?) by passing through the outer while loop a second time. If the
original table contains n disjoint blocks, the algorithm is guaranteed to return exactly the n sub-blocks by
passing through the outer while loop n times.

10 Quantifier-Free Table Reductions

The implicit computations presented to manipulate a binate table are valid a fortiori when the table is unate.
In the latter case, however, more specialized algorithms can be designed to better exploit the features of the
problem. Historically speaking, an implicitization of covering problems has been accomplished first for the
case of unate tables generated in the minimization of two-level logic functions. A long list of papers has
been produced on the subject [24, 12, 37, 14, 13, 11, 15, 17, 18, 8]. Here we will outline some key points.

Given a Boolean function f, consider the problem of finding a minimum two-level cover. A classical
exact algorithm by Quine and McCluskey reduces it to a unate covering problem where the rows of the
table are minterms and the columns of the table are primes of the function. There is a 1 at the intersection

37

n_way-partition(R(r),C(c),01(r, c)) {
n=0
while (R not empty) {
k=0
Ro(r) = Lmaz(R(r) - C(c) - 01(r, ¢))
repeat {
k=k+1
Ck(c) = C(c) - 3r {Ri-1(r) - 01(r,)}
Ri(r) = R(r) - 3¢ {Ck(c) - 01(r,)}
} until (R = Ri—1)
R = R
C" = Cy
R=R- Ry
C=C-C;
n=n+1
} o
return {(R',C*):0<i<n-1}

}

Figure 10: Implicit n-way partitioning of a covering table.

of a row and column, if the prime associated to the column contains the minterm associated to the row. A
routine that solves explicitly a unate table is available in the program ESPRESSO. In that implementation an
improvement has been introduced, namely there is only one row for each set of minterms that are covered
by the same set of primes. In other words, the table is constructed in such a way that there are no equal rows
init.

This problem can be implicitized as a special case of the scheme presented in the binate case. Basically
one assigns labels to primes and minterms in such a way that there is a 1 at the intersection of a column and
a row if and only if the corresponding prime label contains the corresponding minterm label. What is new
here is that in this special case the computation to reduce a unate table can be made quantifier-free, i.e., one
can define recursive computations that work directly on binary decision graphs representations and build the
graphs representing the reduced sets of column and row labels, without quantifications. To achieve the same
goal with quantified computations one may incur more easily in the danger of trying to build intermediate
graphs too large to be stored in memory. This is considered a winning technique that accounts for part of
the success of the application. We will illustrate the point made in the case of row dominance, referring
to [8] for a complete treatment.

We remind that a literal is a propositional variable z;, or its negation Tx. P, is the set of products that
can be built from the set of variables {z,...,z,}. The subset relation C is a partial order on the set F,.
P is maximal if and only if there do not exist two products p and p’ of P such that p C p. A product p is
an implicant of a Boolean function f if and only if p C {z € {0,1}" | f(z) # 0}. A product pis a prime
implicant of f if and only if it is a maximal element of the set of implicants of f with respect to C. Any
subset P of P, can be partitioned in the following way:

P =P, U ({Z5} x Bx) U ({2} X Pz,)

38

where P, is the set of products of P where neither the variable z nor Z; occurs; Eg; (respectively Pr,) is
the set of products of P where T (zx) occurs, after dropping Zx ().

A Boolean space to represent all products can be obtained by a number of variables double with respect
to the number of input variables of f. It is the metaproduct representation in the literature by researchers at
Bull and the extended space in the literature by researchers at UCB. The basic idea is to encode the presence
of zj, or T or both (i.e., neither literal appears explicitly in the product) with two bits. The table covering
problem can now be described by the triple < Q, P, C>, where Q is the set of minterms of f, P is the set
of primes of f and C describes the table building relation.

A unate table is reduced by applying row and column dominance and detection of essential primes.
Consider row dominance, a row R’ dominates another row R if and only if R has all the 1's of R'. In the
terminology of < Q, P, C>, if ¢ is the label of R and ¢’ is the label of R’, this translates into:

Definition 10.1 ¢ <o ¢’ & (Vp€ P (¢ C p) = (¢ € p)).

Moreover, if there are rows that intersect exactly the same set of columns, i.e., are equivalent, one should
compute this equivalence relation and then replace each equivalence class with one representative (sometimes
called c-projection operation [36]). Row dominance should then be applied to these representatives only.

Instead of using such a projection and then applying the definition of dominance relation, one can define
a row transposing function that maps the rows on objects whose manipulation can be done more efficiently.
The maximal elements of the transposed objects are the dominating rows.

The basic idea is that each row of a covering table corresponds to a cube, called signature cube, that is
the intersection of the primes covering the minterm associated to the row. This was noticed first in [45]. A
rigorous theory and an efficient algorithm were presented in [43]. The steps of the algorithm follow:

1. Compute the signature cube of the each cube of an arbitrary initial cover and make irredundant the
resulting cover.

2. Since for each cube of an arbitrary irredundant cover of signature cubes there is some essential
signature cube contained by it, obtain the irredundant cover of essential signature cubes (called
minimum canonical cover).

3. For each cube of the minimum canonical cover, generate the set of primes containing it (the essential
signature set).

4. Solve the resulting unate covering problem as usual.

The resulting unate covering problem is exactly what one could get by applying row domination to the
minterms/primes table.

One can define a row transposing function 7o : Q — P, based on the idea of signature cubes.

Definition 10.1 7¢(q) = Nypepiocy) P-

In other words, each element of 7g(Q) is obtained by an element g of (), by intersecting all elements of P
that cover g. The following theorem relates row dominance to the row transposing function.

Theorem 10.1 The function 7q is such that ¢ <q ¢' & 79(q) C T0(q').

Given a set covering problem (Q, P, C), the function maezc 7o(Q) computes the maximal elements of the
set 79 (Q), i.e., the dominating rows.

Since the range 7q is P, the computation of 7g can be easily transposed to the case of the extended
space or metaproducts representation. The most obvious implementation would use quantified Boolean

39

MazTauQ(Q, P, k) {
ifQ=00rQ=0{
if P = {1} return {1}
KO = Subset(Qz, Bry)
K1 = Subset(Qx,, Pr,)
KO = Q1 U (Qz; \ KO) U (Qx, \ K1)
R= MazTauQ(K, P, ,k+1)
RO = MazTauQ(KO, P, UPRs),k+1)
Rl = MazTauQ(K1,P, UPFR,,),k+1)
retum RU
{Zx} x Subset(RO, R))U
{zr} x Subset(R1, R))U

Figure 11: Recursive computation of maz¢ 7¢(Q)

formulas, but in practice they tend to produce huge intermediate ROBDD’s. A quantifier free recursive
computation of maz ¢ 79 (Q) has given better experimental results.

We present now a pseudo-code description from [17] of MazTau@(Q, P, k), a quantifier-free recursive
procedure that compute mazc7g(Q). It uses two auxiliary functions Supset(P,Q) = {p € P | 3q €
Qp 2 g, and Subset(P,Q) = {p€ P |3 € Qp C q}.

Theorem 10.2 MazTauQ(Q, P,1) computes mazc1q(Q).

Proof. The terminal cases are easy. Consider a variable z. One can divide the set P in three subsets: Pr,,
the products of P in which z occurs, P, the products of P in which T occurs and Py, the products of
P in which neither z nor T, occurs. Similarly, one can divide the set Q in three subsets: Q,, the products
of @Q in which z occurs, Qz, the products of @ in which Zf, occurs and @1, the products of Q in which
neither . nor Tj occurs.

The products of Qz; can be contained by products of P or by products of Py,. The products of Q,
can be contained by products of Py, or by products of of P;,. The products of Q1 can be contained only
by products of P, . K0 has the products of Qz; contained by products of Ps;. K'1 has the products of Q,
contained by products of P;,. K has the products of (), , the products of Qz; that are not contained by
products of P and the products of (), that are not contained by products of Pr,.

Also the set MazTauQ(Q, P, 1) can be divided in three subsets: the set of products in which z; occurs,
the set of products in which T occurs and the set of products of P in which neither z nor Zx occurs. The
last set is given by R, thatis MazTauQ(K, P,,,k + 1). Indeed in R the second argument is F;,, the set
of products of P where neither z. nor Ty occurs. The first argument is K that includes the products of @
where z, nor Tk occurs and so can be contained only by products of P, , and the products of) where either
zx or T occurs but they are not covered by Py, or Pz and so they can be covered only by P;,. The second
set is obtained from RO, that is MazTauQ(KO, P, U P, k + 1), by the following modification. In the
first argument of RO there are the products of) where Zj occurs, which are contained by the products of
P in the second argument. A product in R0 must be multiplied by {Zx} because for sure each ¢ € KO0 is
contained by a product of P, and by definition of 7o (g) one must intersect all the products that contain g.
But before multiplying by {Z;} we must subtract from RO the products contained in R (Subset(RO, R)),
because if a product 0 of RO is contained by a product = of R (or is equal to) it means that there are ¢ € K
and g0 € K0 such that 7g(g) 2 7o (g0) (because r contains r0 and rQ is multiplied by {Zx}) and we want

40

to keep only 7o (g) because we are computing mazc 7q. Instead if a product of R is contained by a product
of RO, the fact that the product of R0 must be multiplied by {Zx} makes the two products not comparable.
Therefore {zx} X (RO \ Subset(R0, R)) is the set of products of MazTauQ(Q, P, 1) in which Zj occurs.
Replacing verbatim {Zj} with z, the same reasoning applies for the addition coming from R1, from which
the first set is obtained. O

After the set Q' = mazc7o(Q) has been computed, the problem < Q, P, C> transforms to < @', P, R’ >,
where ¢’R'pif and only if ¢ = 7g(¢) and ¢ C p. R’ =G, since ¢ C pif and only if 7g(¢) C p. Therefore
the new covering problem is < Q’, P, C>.

A similar development allows to compute column dominance by finding the maximal elements of a set
to which columns are mapped by a column transposing function. We refer for details to [17].

In [18] it is stated that the usage of Zero-Suppressed BDD’s by Minato [44] instead of ROBDD’s [6]
resulted in more efficient implicit representations of the computations of the problem.

11 Experimental Results of Binate Covering

We implemented a specialized solver where the table is specified as in variant 3. of Section 7.3 (Specialized
binate covering table for exact state minimization and similar problems) and we applied it to the problem of
exact state minimization of incompletely specified FSM’s (ISFSM’s) [31].

We implemented also a more general solver that does not rely on a hard-wired rule to determine O and
1 entries, but instead works with relations 0(r, ¢) and 0(r,) for O entries and 1 entries. It corresponds to
variant 2. of Section 7.3 (Binate covering table assuming each row has at most one 0). The difference
between variant 1. and 2. is not in the specification of the table, but in the computations for table reduction
that can be simplified in the latter case. We applied it to the problem of exact state minimization of
pseudo-deterministic FSM’s [32]. The same binate solver was applied also to the problem of selection of
generalized prime implicants [57].

In this section we report results of two applications of the previous implicit binate covering algorithms.
We will concentrate on the experimental performance of binate covering, referring to the original papers for
a full-fledged description of the specific applications.

11.1 State Minimization of ISFSM’s

Here we provide data for a subset of them, sufficient to characterize the capabilities of our prototype program.
Comparisons of our program ISM are made with STAMINA. The binate covering step of STAMINA was run
with no row consensus, because row consensus has not been implemented in our implicit binate solver. Our
implicit binate program does not feature Gimpel’s reduction rule, that was instead invoked in the version
of STAMINA used for comparison. This might sometimes favour STAMINA, but for simplicity we will not
elaborate further on this effect. Missing from our package is also table partitioning. All run times are
reported in CPU seconds on a DECstation 5000/260 with 440 Mb of memory.
The following explanations refer to the tables of results:

o Under table size we provide the dimensions of the original binate table and of its cyclic core, i.e., the
dimensions of the table obtained when the first cycle of reductions converges.

e # mincov is the number of recursive calls of the binate cover routine.
e o and [mean, respectively, o and 8 dominance.

e Data are reported with a in front, when only the first solution was computed.

41

o Data are reported with a t in front, when only the first table reduction was performed.

e # cover is the cardinality of a minimum cost solution (when only the first solution has been computed,
itis the cardinality of the first solution).

e CPU time refers only to the binate covering algorithm. It does not include the time to find the prime
compatibles.

11.1.1 Minimizing Small and Medium Examples

With the exception of ex2, ex3, ex5, ex7, the examples from the MCNC and asynchronous benchmarks do
not require prime compatibles for exact state minimization and yield simple covering problems!6. Table 1
reports those few non-trivial examples. They were all run to full completion, with the exception of ex2. In
the case of ex2, we stopped both programs at the first solution.

table size (rows x columns) # mincov # cover CPU time (sec)

FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA
reduction a reduction a Bl a B o B al B8 a B8 a B
ex2 | 4418x1366 | 3425x1352 | *6 | *14 [*6 | *4 | *10 | *12 | *10 | *9 | *58 | *293 | *116 | *91
ex2 | 4418x1366 | 3425x1352 | *6 | *14 | *6 | 286 | *10 | *12 | *10 | 5 | *58 | *293 | *116 | 2100
ex3 243 x91 151x 84 201 | 37|91} 39 4 4 4| 4] 78 33 0 0
ex5 81x38 47x31 16 6110 6 3 3 3|1 3 4 3 0 0
ex7 137 x 57 62x44 38| 31|37 6 3 3 31 3 8 12 0 0

Table 1: Examples from the MCNC benchmark.

These experiments suggest that

o the number of recursive calls of the binate cover routine (# mincov) of ISM and STAMINA is roughly
comparable, showing that our implicit branching selection routine is satisfactory. This is an important
indication, because selecting a good branching column is a more difficult task in the implicit frame.

e the running times are better for STAMINA except in the largest example, ex2, where ISM is slightly
faster than STAMINA. This is to be expected because when the size of the table is small the implicit
approach has no special advantage, but it starts to pay off scaling up the instances. Moreover, our
implicit reduction computations have not yet been fully optimized.

11.1.2 Minimizing Constructed Examples

Table 2 presents a few randomly generated FSM’s. They generate giant binate tables. The experiments
show that ISM is capable of reducing those table and of producing a minimum solution or at least a solution.
This is beyond reach of an explicit technique and substantiates the claim that implicit techniques advance
decisively the size of instances that can be solved exactly.

11.1.3 Minimizing FSM’s from Learning I/O Sequences

Examples in Table 2 demonstrate dramatically the capability of implicit techniques to build and solve
huge binate covering problems on suites of contrived examples. Do similar cases arise in real synthesis

15Moreover, in the case of the asynchronous benchmark a more appropriate formulation of state minimization requires all
compatibles and a different set-up of the covering problem.

42

table size (rows x columns) # mincov # cover ~CPU time (sec)
FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction alp Bl a|B]|a B a B8 «a B
ex2.271 95323 x 96382 0x0 1]1 -1 212 - - 1 55 | fails | fails
ex2.285 1x 121500 0x0 111 -1 2]12]) - - 0 0 | fails | fails
ex2.304 | 1053189 x 264079 | 1052007x264079 | 2 | - -1 2] - - - | 463 | fails | fails | fails
ex2423 | 637916x 160494 | 636777x 160494 | *2 | - -1*3] -1 - - | #341 | fails | fails | fails
ex2.680 | 757755x 192803 | 756940 x 192803 2| - -1 2) -1 - - | 833 | fails | fails | fails

Table 2: Random FSM’s.

applications? The examples reported in Table 3 answer in the affirmative the question. They are the from
the suite of FSM’s described in [46]. It is not possible to build and solve these binate tables with explicit
techniques. Instead we can manipulate them with our implicit binate solver and find a solution. In the
example fourr.40, only the first table reduction was performed.

table size (rows x columns) # mincov # cover CPU time (sec)
FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA
reduction a reduction a Bl a B a Bl a J¢] a B8 a B
threer.20 6977 x 3936 6974 x 3936 *| *6 [*5 | *3] *5| *5 | *6 | *6 *13 *26 | *1996 | *677
threer.25 35690x 17372 34707 x 17016 *3 | *6 - -] *5| *6 - - *69 | *192 fails | fails
threer.30 68007 x 33064 64311x 32614 *j | %9 - -] *8 | *8 - - | *526 | *770 fails | fails
threer.35 | 177124 x 82776 165967 x 82038 | *8 | *9 - - | *12 | *10 - - | *2296 | *2908 fails | fails
threer.40 | 1209783 x 529420 | 1148715 x 526753 | *8 - - - | *12 - - - | *6787 fails fails | fails
fourr.16 6060 x 3266 5235x 3162 *2] *3 [*3 | *3 | ¥3 | *3 | ¥4 | ¥4 *6 *23 | *1641 | *513
fourr.16 6060 x 3266 5235x 3162 *2 1623 [*3 1377 *3 3| *4 3 *6 | 9194 | *1641 | 1459
fourr.20 26905 x 12762 26904 x 12762 | *4 - - * | *4 - - *31 *68 fails | fails
fourr.30 | 1396435 x 542608 | 1385809x 542132 | *2 | *5 - -1 *| *5 - - | *1230 | *1279 fails | fails
fourr40 | 6.783e9x 2.388e9 | 6.783e9x 2.388¢9 | 11 - - - 1- - - - 1723 fails fails | fails

Table 3: Leaming I/O sequences benchmark.

11.1.4 Minimizing FSM’s from Synthesis of Interacting FSM’s

Prime compatibles are required only for the state minimization of : fsm1 and i fsm2. For i fsm1, ISM can
find a first solution faster than STAMINA using a-dominance. But as the table sizes are not very big, the run

times ISM take are usually longer than those for STAMINA.

table size (rows x columns) # mincov # cover CPU time (sec)
FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA
reduction a reduction alp al|l B al|l B al B o J¢] a B
ifsml | 17663x8925 | 16764x8820 | *4 | 2 | *10 | 3 | *14 | 14 [*15 | 14 | *388 | 864 | *17582 | 805
ifsml | 17663 x8925 | 16764x8829 | *4 | 2 | 24| 3| *14 | 14| 14 | 14 | *388 | 864 | 40817 | 805
ifsm2 { 1505x 774 1368 x 672 4131 41|44 9(9 9] 9] 136 | 230 49 3

Table 4: Examples from synthesis of interactive FSM’s.

43

11.2 Selection of Generalized Prime Implicants

Tables 5 and 6 report the results of running our program ISA to select a minimal encodeable cover of
generalized prime implicants (GPI's). GPI’s are an extension of the concept of prime implicants to the
case of multi-valued input and multi-valued output Boolean functions. An encodeable selection of GPI's
translates into a two-valued implementation of the same size. Details can be found in [19, 57]. For these
experiments ISA has been run with option —m, that computes a subset of the GPI's, to generate smaller
tables. The tables provide the following information:

o Under the column "table size" we provide the dimensions of the original table and of its cyclic core,
i.e., the dimensions of the table obtained when the first cycle of reductions converges.

o The column "mincov calls" is the number of recursive calls of the implicit table solver.
o The column "table sol." is the cardinality of the cover of GPI’s retumed by the table solver.

¢ The column "CPU time table red." gives the time for the binate table solver. The time to compute the
prime compatibles is not included.

The part of ISA that computes an encodeable cover of GPI's and gets the codes by a second call to an implicit
table solver is not reported here.

Out of the examples in Table 5, IsA fails to complete the first table reduction of slave because of timeout
at 18000 seconds, during collapse columns. Ouf of the examples in Table 6, ISA fails to complete some
of them, again due to timeout or no more memory in the collapse column step of the first table reduction.
FSM’s cse, dk512, keyb, ex2, maincont, pkheader, markl were run on a DEC 7000 Model 610 AXP with
1Gb of memory. There is no program against which to compare.

We underline that the covering problems faced to select covers of GPI's, even though they are unate, are
often harder than those encountered to select covers of prime implicants in the ESPRESSO benchmark [24, 8],
a reason being the larger variable support of the BDD representations of columns and rows. To be able to
solve the examples of the previous tables, the package described in [31] had to be further optimized and
inadequacies still remain to be addressed.

References

(1] K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD package. In The Proceedings
of the Design Automation Conference, pages 40-45, June 1990.

[2] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization Algorithms
for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[3] R. Brayton, A. Sangiovanni-Vincentelli, and G. Hachtel. Multi-level logic synthesis. The Proceedings
of the IEEE, february 1990.

[4] R. Brayton, A. Sangiovanni-Vincentelli, G. Hachtel, and R. Rudell. Multi-level logic synthesis.
Unpublished book, 1992.

[5] R. Brayton and F. Somenzi. An exact minimizer for Boolean relations. In The Proceedings of the
International Conference on Computer-Aided Design, pages 316-319, November 1989.

[6] R. Bryant. Graph based algorithm for Boolean function manipulation. In /EEE Transactions on
Computers, pages C-35(8):667-691, 1986.

44

table size (row x col) mincov | table | CPU time (sec.)
FSM beforered. | afterred. | calls | sol. table red.
bbara 187 x 4124 98 x 35 9] 8 329
bbtas 28 x 107 9x6 3 4 3
beecount 153x 176 0x0 1 6 44
chanstb 169216 x 525 0x0 1 11 1218
cpab 208896 x 1892 | 683x 73 4 8 7774
dk14 157 x 199 0x0 1 17 129
dk1s 88 x 68 0x0 1 14 9
dk17 64 x 164 0x0 1 9 46
dk27 20x 71 0x0 1 4 5
dol2 20x 113 19x25 2 2 8
es 23x45 0x0 1 5 1
ex3 42 x 495 0x0 1 5 563
ex5 50 x 301 0x0 1 3 139
ex6 908 x 423 0x0 1 22 645
ex7 48 x 583 0x0 1 4 106
fstate 5360 x 1605 11x11 2 8 12770
leoncino 21x22 0x0 1 5 0
lion 25x29 0x0 1 4 0
lion9 42x 175 0x0 1 2 10
mc 96x71 0x0 1 7 5
ofsync 300x 97 48 x 24 18 12 69
opus 914 x 2830 0x0 1 14 704
s8 40 x 206 0x0 1 1 8
scud 2966 x 2533 0x0 1 57 15633
shiftreg 24 x 89 8x6 5 3 6
slave 2207744 x 16845 | -(@) - - timeout
tav 100 x 81 4x4 5 10 10
test 8x5 0x0 1 3 0
virmach 4992 x 144 0x0 1 16 778

(¢) timeout 18000 in collapse columns

Table 5: Selection of a minimal encodeable GPI cover

45

table size (row x col) mincov | table | CPU time (sec.)
FSM beforered. | afterred. | calls | sol. table red.
bbsse 3480 x 34727 -(a) - - timeout
cf 30208 x 102781 - - - -
cse 2588 x 21798 0x0 1| 23 6534
dk512 43x 1777 0x0 1 6 4150
ex2 86 x 38410 0x0 1 3 830
exd 1072 x 26759 0x0 1| 10 803
keyb 2666 x 361240 0x0 1 8 1706
kirkman | 100252 x 1081088 | -(2) - - timeout
maincont | 67586 x 245784 0x0 1 4 115
mark1 1936 x 50258 5x5 3 7 1313
modulo12 24 x 9039 24x 36 17 2 50
pkheader 140288 x 29099 0x0 1 19 5850
ricks 31232 x 16561 14x 14 18| 27 3301
sl 15336 x 586240 -(4) - . .
sla 5120 x 586240 -0 - - -
saucier 18496 x 7106239 0x0 1 15 6802
tma 2028 x 287558 -() - - .
train11 43 x 583 0x0 1 2 177

(2) timeout 18000 in collapse columns
(6) out-of-memory in collapse columns

Table 6: Selection of a minimal encodeable GPI cover

46

[7] E. Cerny. Characteristic functions in multivalued logic systems. Digital Processes, vol. 6:167-174,
June 1980.

[8] O. Coudert. Two-level logic minimization: an overview. Integration, 17-2:97-140, October 1994.
[9] O. Coudert. On solving binate covering problems. Manuscript, May 1995.

(10] O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using functional Boolean
vectors. IFIP Conference, November 1989.

[11] O. Coudert, H.Fraisse, and J.C. Madre. Towards a symbolic logic minimization algorithm. In The
Proceedings of the VLSI Design 1993 Conference, pages 329-334, January 1993.

[12] O. Coudert and J.C. Madre. Implicit and incremental computation of prime and essential prime
implicants of Boolean functions. In The Proceedings of the Design Automation Conference, pages
36-39, June 1992.

[13] O. Coudert and J.C. Madre. A new implicit graph based prime and essential prime computation
technique. In Proceedings of the International Symposium on Information Sciences, pages 124-131,
July 1992.

[14] O.Coudert and J.C. Madre. A new method to compute prime and essential prime implicants of boolean
functions. In Advanced Research in VLSI and Parallel Systems, pages 113-128. The MIT Press, T.
Knight and J. Savage Editors, March 1992.

[15] O. Coudert and J.C. Madre. A new viewpoint on two-level logic minimization. Bull Research Report
N. 92026, November 1992.

[16] O. Coudert and J.C. Madre. New ideas for solving covering problems. In The Proceedings of the
Design Automation Conference, pages 641-646, June 1995.

[17] O. Coudert, J.C. Madre, and H.Fraisse. A new viewpoint on two-level logic minimization. In The
Proceedings of the Design Automation Conference, pages 625-630, June 1993.

[18] O. Couden, J.C. Madre, H.Fraisse, and H. Touati. Implicit prime cover computation: an overview. In
The Proceedings of the SASIMI Conference, pages 413-422, 1993.

[19] S. Devadas and R. Newton. Exact algorithms for output encoding, state assignment and four-level
Boolean minimization. /EEE Transactions on Computer-Aided Design, pages 13-27, January 1991.

[20] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. W. H. Freeman and Company, 1979.

[21] J. Gimpel. A reduction technique for prime implicant tables. /RE Transactions on Electronic Comput-
ers, EC-14:535-541, August 1965.

[22] A. Grasselli and F. Luccio. A method for minimizing the number of intemnal states in incompletely

specified sequential networks. IRE Transactions on Electronic Computers, EC-14(3):350-359, June
1965.

[23] A. Grasselli and F. Luccio. Some covering problems in switching theory. In Networks and Switching
Theory, pages 536-557. Academic Press, New York, 1968.

47

[24] G.Swamy, R.Brayton, and PMcGeer. A fully implicit Quine-McCluskey procedure using BDD’s.
Tech. Report No. UCB/ERL M92/127,1992,

[25] R. W. House and D.W. Stevens. A new rule for reducing cc tables. JEEE Transactions on Computers,
C-19:1108-1111, November 1970.

[26] S. Robinson III and R. House. Gimpel's reduction technique extended to the covering problem with
costs. IRE Transactions on Electronic Computers, EC-16:509-514, August 1967.

[27] S.-W. Jeong and F. Somenzi. A new algorithm for 0-1 programming based on binary decision
diagrams. In Proceedings of ISKIT-92, International symposium on logic synthesis and microprocessor
architecture, lizuka, Japan, pages 177-184, July 1992.

[28] S.-W. Jeong and F. Somenzi. A new algorithm for the binate covering problem and its application
to the minimization of boolean relations. In The Proceedings of the International Conference on
Computer-Aided Design, November 1992.

[29] T. Kam. State Minimization of Finite State Machines using Implicit Techniques. PhD thesis, U.C.
Berkeley, Electronics Research Laboratory, University of California at Berkeley, May 1995.

[30] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit algorithm for exact
state minimization. Tech. Report No. UCB/ERL M93/79, November 1993.

[31] T.Kam,T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit algorithm for exact state
minimization. In The Proceedings of the Design Automation Conference, pages 684—690, June 1994.

[32] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Implicit state minimization of non-
deterministic fsm’s. In The Proceedings of the International Conference on Computer Design, October
1995.

[33] Y.-T. Lai, M. Pedram, and S.B.K. Vrudhula. FGILP: An integer linear program solver based on
function graphs. In The Proceedings of the International Conference on Computer-Aided Design,
pages 685-689, November 1993.

[34] Y.-T.Lai, M. Pedram, and S.B.K. Vrudhula. EVBDD-based algorithms for integer linear programming,
spectral transformation, and function decomposition. /EEE Transactions on Computer-Aided Design,
pages CAD-13(8):959-975, August 1994.

[35] L. Lavagno. Heuristic and exact methods for binate covering. EE290Is Report, May 1989.

[36] B. Lin. Synthesis of VLSI designs with symbolic techniques. Tech. Report No. UCB/ERL M91/105,
November 1991.

[37] B.Lin, O. Coudert, and J.C. Madre. Symbolic prime generation for multiple-valued functions. In The
Proceedings of the Design Automation Conference, pages 40-44, June 1992.

[38] B.Linand A.R. Newton. Implicit manipulation of equivalence classes using binary decision diagrams.
In The Proceedings of the International Conference on Computer Design, pages 81-85, September
1991.

[39] B.Lin and F. Somenzi. Minimization of symbolic relations. In The Proceedings of the International
Conference on Computer-Aided Design, November 1990.

48

[40] B.Lin and F. Somenzi. Minimization of symbolic relations. In The Proceedings of the International
Conference on Computer-Aided Design, November 1990.

[41] H.-J. Mathony. Universal logic design algorithm and its application to the synthesis of two-level
switching circuits. JEE Proceedings, pages 171-177, May 1989.

[42) E. McCluskey. Minimization of Boolean functions. Bell Laboratories Technical Journal, November
1956.

[43] P.McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni- Vincenetelli. Espresso-signature: a new exact
minimizer for logic functions. /EEE Transactions on VLSI Systems, pages 432-440, December 1993.

[44) S.Minato. Zero-suppressed BDD's for set manipulation in combinatorial problems. In The Proceedings
of the Design Automation Conference, pages 272-277, June 1993.

[45] L. Nguyen, M. Perkowski, and N. Goldstein. Palmini - fast boolean minimizer for personal computers.
In The Proceedings of the Design Automation Conference, pages 615-621, July 1987.

[46] Arlindo L. Oliveira and Stephen A. Edwards. Inference of state machines from examples of behavior.
Technical report, UCB/ERL Technical Report M95/12, Berkeley, CA, 1995.

[47] C. H. Papadimitriou, J.D. Ullman, and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice Hall, 1982.

{48]) J.-K. Rho and F. Somenzi. Stamina. Computer Program, 1991.
[49] R. Rudell. Espresso. Computer Program, 1987.
[50] R. Rudell. Logic synthesis for VLSI design. Tech. Report No. UCB/ERL M89/49, April 1989.

[51] A.Saldanha, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A uniform framework for satisfying

input and output encoding constraints. The Proceedings of the Design Automation Conference, June
1991.

[52] S.C. De Sarkar, A.K. Basu, and A K. Choudhury. Simplification of incompletely specified flow tables
with the help of prime closed sets. IEEE Transactions on Computers, pages 953-956, October 1969.

[53] M. Servit and J. Zamazal. Exact approaches to binate covering problem. Manuscript, October 1992.
[54] E Somenzi. Cookie. Computer Program, 1989.

[55] E Somenzi. Gimpel’s reduction technique extended to the binate covering problem. Unpublished
manuscript, 1989.

[56] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni- Vincentelli. Implicit state enumeration
of finite state machines using BDD’s. The Proceedings of the International Conference on Computer-
Aided Design, pages 130-133, November 1990.

[57) T. Villa. Encoding Problems in Logic Synthesis. PhD thesis, University of California, Berkeley, May
1995.

[58] Ming Huei Young and S. Muroga. Symmetric minimal covering problem and minimal PLA’s with
symmetric variables. /EEE Transactions on Computers, C-34:523-541, June 1985.

49

	Copyright notice 1995
	ERL-95-108

