

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

EXPLICIT AND IMPLICIT ALGORITHMS FOR

BINATE COVERING PROBLEMS

by

Tiziano Villa, Timothy Kam, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M95/108

19 December 1995

"

EXPLICIT AND IMPLICIT ALGORITHMS FOR

BINATE COVERING PROBLEMS

by

Tiziano Villa, Timothy Kam, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M95/108

19 December 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Explicit and Implicit Algorithms for Binate Covering Problems

Tiziano Villa1 Timothy Kam2 Robert K. Brayton1
Alberto L. Sangiovanni-Vincentelli1

department of EECS
University of California at Berkeley

Berkeley, CA 94720

2Intel Development Labs
Intel Corporation

Hillsboro, Oregon 97124-6497

December 19,1995

1 Introduction

At the coreofthe exact solution ofvariouslogic synthesis problemslies often a so-calledcovering step that
requires the choice of a set of elements of minimum cost that cover a set of ground items, under certain
conditions. Prominent among these problems are the covering steps in the Quine-McCluskey procedure
for minimizing logic functions, selection of a minimum numberof encodingcolumns that satisfy a set of
encoding constraints, selectionof a set of encodeable generalized primeimplicants, stateminimizationof
finite statemachines, technology mapping andBooleanrelations. Let us review first how covering problems
are defined formally.

Suppose that a set S = {si,..., sn] is given. The cost of selecting s,- is ct where ct > 0. In a general
formulation also the cost of not selecting s, may be non-negative,but here it will be assumed that the cost
of not selecting an item is strictly zero, unless otherwise stated. By associating a binary variable xt- to s,-,
which is 1 if s, is selected and 0 otherwise, the binatecovering problem (BCP) can be defined as finding
5'C5 that minimizes

n

t=l

subject to the constraint
A(x\,X2,...,Xn) = 1,

where A is a Boolean function, sometimes called the constraint function. The constraint function specifies
a set of subsets of 5 that can be a solution. No structural hypothesis is made on A. Binate refers to the fact
that A isingeneral abinate function !. BCP is theproblem of finding an onset minterm of A that minimizes

'A function is binate if it is not unate. A function f(x\ ,Xit...txn)'i& unateif for every xi, i = 1,..., n, / is either positive
or negative unate in the variable x,. f is said to be positive unate inavariable xt, if for all 2n_1 possible combinations of the
remaining n — 1 variables,

f(xi,X2,. . .,Xi_l,l,r,+i,- ••,Xn) > /(Xi,X2,...,X$-l,0,X,+l,-",Xn).

In other words, changing variable x, from 0 to 1, / doesnot decrease. Similarly, / is saidto be negative unatein a variable x,, if

1

thecost function (i.e., asolution of minimum costof the Boolean equation A(xi, X2> •••>̂ n) = !)•
If A is given in product-of-sums form, finding a satisfying assignment is exactly theproblem SAT, the

prototypical NP-complete problem [20]. In this case it also possible to write A as an array of cubes (that
form amatrix M withcoefficients from the set{0,1,2}). Each variable of A is acolumn and each sum(or
clause) is a rowand the problem can be interpreted as oneof finding a subset C of columns of mimmum
cost, such that for every row r„ either

1. 3j suchthat atJ = 1 and cj € C, or

2. Sj such that atJ = 0 andcj £ C.

Inotherwords, eachclause mustbe satisfied by setting to 1avariable appearing in it in the positive phase or
by setting to 0 avariable appearing in it in thenegative phase. Inaunate covering problem, the coefficients
of A are restricted to the values 1 and 2 and only the first condition must hold. Here we shall consider
the minimum binate covering problem where A is given in product-of-sums form. In this case, the term
covering is fully justifiedbecause one can say thatthe assignment of avariable to 0 or 1covers some rows
that are satisfied by that choice. The product-of-sums A is called covering matrixor coveringtable.

As an example of binatecovering formulation of a well-known logic synthesis problem, consider the
problemof finding the minimum numberof primecompatibles that are a minimum closed coverof a given
FSM. A binate covering problem can be set up, where each column of the table is a prime compatible and
each row is one of the covering or closure clauses of the problem [22]. There areasmany covering clauses as
statesof the originalmachine andeachof them requires that a stateis coveredby selectingany ofthe prime
compatiblesin which it is contained. There are as many closure clauses as prime compatibles and each of
them states that if a given prime compatible is selected, then for each implied class in its corresponding
class set, one of the prime compatiblescontainingit must be chosen too. In the matrix representation, table
entry (i, j) is 1or 0 according to the phase of the literal corresponding to primecompatible j in clause i; if
such a literal is absent, the entry is 2.

A special case of binate covering problemis a unate covering problem,where no literalin the negative
phase is present. Exact two-level minimization [42, 50] can be cast as a unate covering problem. The
columns are the prime implicants, the rows are the mimerms and there is a 1 entry in the matrix when a
prime contains a minterm.

Various techniques have been proposed to solve binate covering problems. A class of them [5,35] are
branch-and-bound techniques that build explicitly the tableof the constraints expressedas product-of-sum
expressions and explore in the worst-case all possible solutions, but avoid the generation of some of the
suboptimal solutions by a clever use of reductionsteps and boundingof searchspace for solutions. We will
refer to these methods as explicit.

A second approach [39] formulates the problem with Binary Decision Diagrams (BDD's) and reduces
to finding a minimum cost assignment to a shortest pathcomputation. In that case the number of variables
of the BDD is the number of columns of the binate table.

Recently, a mixed technique has been proposed in [27]. It is a branch-and-bound algorithm,where the
clauses are represented as a conjunction of BDD's. The usage of BDD's leads to an effective method to
compute a lower bound on the cost of the solution.

Notice that unate covering is a special case ofbinate covering. Therefore techniques for the latter solve
also the former. In the other direction, exact state minimization, a problem naturally formulated as a binate

for all 2n_1 possible combinations of theremaining n —1variables,

f(X\, X2, . . • , X,_l, 0, X,+l, ••• , X„) > f(x\, X2, ••• , X,_l, 1,Xi+i, ••• , Xn).

covering problem, can be reduced to a unate covering problem, after the generation of irredundant prime
closed sets [52]. But there is a catch here: the cost function is not any more additive, so that the reduction
techniques so convenient to solve covering problems,are not anymore applicable as they are.

Existing explicit methods do quite well in solving exactly small and medium-sized examples, but fail
to complete on largerones. The reason is that either they cannotbuild the binate table because the number
of rows andcolumns is too large, or that the branch-and-bound procedure would take too long to complete.
The approach ofbuilding a BDD of the constraint function and computing the shortest path fails when the
number of variables (i.e., columns) is too largebecause a BDD with many thousands of variables usually
cannot be stored in available computing memory.

The crux of the matter, when explicit techniques fail, is that we are representing andmanipulatingsets
that are too large to be exhaustively listed andoperated upon. Fortunately we know of an alternative way to
represent andmanipulate sets: it is by defining the set over an appropriate Boolean space (i.e., encoding the
elements of the set), associating to it a Boolean characteristic function and then representing this function
by a binary decision diagram (BDD) [6,1]. From now on, by BDD of a set we will denote the BDD of the
characteristic function of the set over an appropriate Booleanspace. A BDD [6,1] is a canonicaldirected
acyclic graph that represents logic functions. The items that a BDD can represent are determined by the
numberof pathsof the BDD, while the size of the BDD is determined by the number of nodes of the DAG.
There is no monotonic relation between the size of a BDD and the number of elements that it represents.
It is an experimental fact that often very large sets, that cannot be represented explicitly, have a compact
BDD representation. Set operations areeasily turned into Booleanoperationson the corresponding BDD's.
So we can manipulate sets by a series of BDD operations(Boolean connectives and quantifications) with a
complexity depending on the sizes of the manipulated BDD's and not on the cardinality of the sets that are
represented. One hopes that complex set manipulations of a given application have as counterparts Boolean
propositions that can be represented with compact BDD's. Of course, this is not always the case and it may
happen that an intermediate BDD computation, in a sequence of operations leading to a wanted set, blows
up. The name of the game is a careful analysis of how propositional sentences can be transformed into
logically equivalent ones, that can be computed more easily with BDD manipulations. Special care must be
exercised with quantifications, that bring more danger of BDD explosions. All of this goes often under the
name of implicit representations and computations.

The previous insight has already been tested in a series of applications. Research at Bull [10] and
UC Berkeley [56] produced powerful techniques for implicit enumeration of subsets of states of a Finite
State Machine (FSM). Later work at Bull [12,37,24,18] has shown how implicants, primes and essential
primes of a two-valued or multi-valued function can also be computed implicitly. Reported experiments
show a suite of examples where all primes could be computed, whereas explicit techniques implemented
in ESPRESSO [2] failed to do so. Finally, the fixed-point dominance computation in the covering step of the
Quine-McCluskey procedure has been made implicit in [17,24]. The experiments reported show that the
cyclic core of all logic functions of the espresso benchmark can be successfully computed. For some of
them espresso failed the task.

Last but not the least, it was shown in [31,32] how all prime compatibles of an FSM can be computed
implicitly. In some cases, their number is exponential in the number of states (the largest recorded number
is 21500). Once prime compatibles have been obtained, one must solve abinate covering problem tochoose
a minimum closed cover. Of course, we cannot build and solve explicitly a table of such dimensions (this
would defeat the purpose of computing implicitly prime compatibles in the first place). So it is necessary
to extend implicit techniques to the solution of the binate covering problem. Another application of interest
to us is the selection of a set of encodeable generalized prime implicants (GPI's), as defined in [19,39]. It
is not feasible to generate GPI's and to set up a related covering table by explicit techniques on non-trivial
examples. Using techniques as in [37, 24], GPI's can be generated implicitly. An implicit table solver is

therefore needed there too. We will use mainly the two latter applications to illustrate our techniques, but
onecouldlist ahost ofotherproblems in logicsynthesis where abinate tablesolverwouldplayanimportant
role. Notice that potential applications include unate covering problems, such as selecting the minimum
number ofencoding-dichotomies that satisfy a set ofencoding constraints [51].

We describe animplicit formulation ofthebinate covering problem andpresent animplementation. The
implicitbinate solverhasbeentested for state minimizationof ISFSM's and pseudo NDFSM's [31,32], and
forthe selectionof anencodable set ofGPI's [57]. The reported experiments show thatimplicit techniques
have pushed the frontier of instances where binate covering problems can be solved exactly, resulting in
better optimizations in key steps of sequential logic synthesis.

In the following sections, we will review the known algorithms to solve covering problems and then
we will describe a new branch-and-bound algorithm based on implicit computations. The remainder is
organized as follows. We have defined the minimum cost binate covering problem in this section. In
Section 2, we will compare this problem with 0-1 integer linear programming. Solution of binate covering
usingThelen-Mathony's algorithm is described in Section 3. The classical solution based on a branch-
and-bound scheme will be introduced in Section 4. In Section 5, we will survey the classical reduction
rules usedin explicitalgorithms. Methods to solvebinate covering finding a shortest path in a graph-based
representation of the clauses are found in Section 6. Our implicitbinate covering algorithm is thenoutlined
in Section 7. Section 8 illustrates how reduction techniques can be implicitized. Otherkinds of implicit
table manipulations are introduced in Section 9. Quantifier-free implicittable reductions are discussed in
Section 10. Finally, we shall giveexperimental results inSection 11, for twoapplications: stateminimization
of ISFSM's [22] and selection of generalized prime implicants [19].

2 Relation to 0-1 Integer Linear Programming

There is an intimate relation between 0-1 integerlinear programming (ILP) and binate covering problem
(BCP). For every instance of ILP, there is an instance of BCP with the same feasible set (i.e., satisfying
solutions) and therefore with the same optimum solutions and vice versa. As an example, the integer
inequality constraint

3x\ -2x2 +4x3 > 2,

with 0 < x\, X2, xi < 1 corresponds to the Boolean equality constraint

#l£2+ Z3 = 1>

that can be written in product-of-sums form as:

{X\ +X3)(X2 + X3) = 1.

Given a problem instance, it is not cleara-priori which formulation is better. It is an interesting questionto
characterize the class of problems thatcanbe better formulated and solved with onetechnique orthe other.

As an example of reduction from ILP to BCP, a procedure (taken from [27]) that derives the Boolean
expression corresponding to £"=1 wj.xj > T is shownin Figure 1.
The idea of the recursion relies on the observation that:

1. / = 0 if and onlyif max(I) = S«/,->o w* < T\

2. /= 1if and onlyif min(I) = Y^n<o wi ^ T;

When neither case occurs, the twosubproblems 71 and 7°, obtained by setting thesplitting variable xt- to 1
and 0 respectively, are solved recursively.

LlJo-BDD(I) {
let/be T,%\Wj'Xj>T
if (max (I) <T) return 0
if (min(I) > T) return 1
i = ChooseSplittingVar(I)

fx =LI.to.BDD(Il)
fo = LlJo.BDD(I°)
return / = Xi - fl + xj • f°

Figure 1: Transformation from linearinequalityto Boolean expression.

3 Binate Covering Using Mathony's Algorithm

In [41] Mathony extended an algorithm by Thelen to generate all primeimplicantsof a Boolean function
and he applied it to various problems of two-level logicoptimization, like complementation, expansion and
reduction of implicants and computation of a minimal cover. A common characteristic of these problems
is that finding their solution corresponds to finding only one prime implicant of an appropriate Boolean
function representedin conjunctive form (product-of-sums).

A variant of Thelen-Mathony's algorithm that solves the problem of minimum cost satisfiability was
implemented into sis [35]. Minimum cost satisfiability includes binatecovering as a special case,because
it allows for variables in the negative phaseto have cost > 0, while in usual definitionsof binate covering
one assigns0 cost to variables in the negativephase, and a cost > 0 to variables in the positive phase.

The algorithm relies on anefficientdepth-first multiplication strategy forconverting a conjunctive form
into the sum of all prime implicants. It chooses recursively one literal from every clauseof the function,
applying the following pruning rules at every step:

Rl: a literal a cannot be chosen if the literal a has been chosen;

R2: aliterala cannotbe chosen if it appears atanupperlevel andit hasnot yet been expanded(i.e., chosen)
at that level (becauserule R3 will be appliedto this clausewhen a will be chosen at the upper level);

R3: a clause is not expanded if it contains an already chosen literal (because any choice would generate a
non-prime);

R4: a literal a cannot be chosen if:

• it appears at an upper level,

• it has been expanded at that level, and

• ruleR2 was not appliedin the subtreeofa atthe upperlevel to prunethe literal bthat is currently
being chosen at the upper level (to make surethat its subsuming literalwas expanded).

To restrict the computation to find only a minimum cost prime, a fifth rule is added:

R5: a literal a cannot be chosen if the current partial assignmentwouldcost more than the best reached so
far.

Experiments on a binate covering application in technology mapping [3] have been reported [35], but
no comparison with a traditional binate covering solver is available.

4 A Branch-and-Bound Algorithm for Minimum Cost Binate Covering

We will survey in this section a branch-and-bound solution ofminimum cost binate covering. This technique
has been described in [23, 22,4,5], and implemented in successful computer programs [49,48,54]. The
branch-and-bound solution of minimum binate covering is based on a recursive procedure. A run of the
algorithm can be described by its computation tree. The root of the computation tree is the input of the
problem, an edge represents a call to snunincov, an internal node is a reduced input. A leaf is reached
when a complete solution is found or the search is bounded away. From the root to any internal node there
is a unique path, that is the current path for that node. In the sequel, we will describe in detail the binary
recursion procedure. The presentation will refer to the pseudo-code snunincov, shown at the end of this
subsection.

4.1 Branch-and-Bound as a General Technique

Branch-and-bound constructs a solution of a combinatorial optimization problem by successive partitioning
of the solution space. The branch refers to this partitioning process; the boundrefers to lower bounds that
are used to construct a proof of optimality without exhaustive search. A set of solutions can be represented
by a node in a search tree of solutions, and it is partitioned in mutually exclusive sets. Each subset in the
partition is represented by a child of the original node. In this way, a computation tree is built. An algorithm
that computes a lower bound on the cost of any solution in a given subset allows to stop further searches
from a given node, if the best cost found so far is smaller than the cost of the best solution that can be
obtained from the node (lower bound computed at the node). In this case the node is killed and therefore
none of its children needs to be searched; otherwise it is alive.

If we can show at any point that the best descendant of a node y is at least as good as the best descendant
of node x, then we say that y dominates x, and y can kill x.

Figure 2 shows the classical algorithm [47]. An activeset holds the live nodes at any point. A variable
U is an upper bound on the optimal cost (cost of the best complete solution obtained at any given time).
The branching process needs not produce only two children of a given node, but any finite number.

We will see in the next section that BCP can be solved by the following recursive equation

BCP(Mf) = BestSolution{BCP(MJxt) U{xt}, BCP(Mj-))

where Mj is the binate table that corresponds to a function inproduct-of-sum form /, and BCP(MjXt)
(respectively, BCP(Mj—)) is thesubproblem expressed by thefunction fXi (respectively, fa). BCP(Mj)
returns an onset minterm of / that minimizes the cost function.

The previous equation can potentially generate an exponential number of subproblems, but powerful
dominance and bounding techniques as well as good branching heuristics help in keeping the combinatorial
explosion under control.

4.2 The Binary Recursion Procedure

The inputs to the algorithm are:

branchjandJboundQ {
activeset = original problem

U = oo

currentbest = anything
while (activeset is not empty) {

choose a branching node k € activeset
remove node k from activeset

generate the children of node k: child i = 1,..., n*
and the corresponding lower bounds z-x

for %= 1 to njk {
if (zx >U) kill child i
else if (child i is a complete solution) {

tf = *•
currentbest = child i

else add child i to activeset

}
}

Figure 2: Structure ofbranch-and-bound.

• a covering matrix M;

• a current-path partialsolution select (initially empty);

• a row ofnon-negativeintegers weight, whose i-th element is the cost or weight of the t-th column of
M;

• a lower bound Ibound (initially set to 0), which is amonotonic increasing quantity alongeach pathof
the computation tree equal to the cost of the partial solutionon the currentpath;

• anupperbound ubound (initially set to the sum of weightsof allcolumnsin M), which is the cost of
the best overall complete solution previouslyobtained (a globally monotonicdecreasing quantity).

The output is the best column cover for input M extended from the partial solution select along the
current path, called best current solution, if this solutioncosts less than ubound. An empty solution is
returned if a solution cannot be found which beats ubound or an infeasibility is detected. By infeasibility,
it is meant the case when no satisfying assignmentof the product of clausesexists. Even though the initial
problem in a typical logic synthesis application has usually at least a solution, some subproblems in the
branch and bound tree may be infeasible. When smjnincov is calledwith an empty partial solutionselect
and initial Ibound and ubound, it returns a best global solution.

The algorithm calls first a procedure smseduce that applies to M essential column detection and
dominance reductions. The type of domination operations and the way in which they are applied are the
subject of Section 5. Another more complex reduction criterion (Gimpel's rule) can also be applied (see
Subsection 5.12). These reduction operations delete from M some rows, columns and entries. What is
left after reduction is called a cyclic core. The final goal is to get an empty cyclic core. The value of the
lower bound is updated using amaximal independentset computation (see Subsection4.4). If no bounding
is possible and the reductions do not suffice to solve completely the problem, a partition of the reduced
probleminto disjoint subproblemsis attempted(see Subsection4.3) andeachof them is solved recursively.
When everything fails, binary recursion is performedby choosing a branch column (see Subsection 4.5).
Solutionsto the subproblemsobtained by includingthe chosencolumnin the covering set orby excludingit
from the covering set arecomputed recursively andthe best solutionis kept (the secondrecursion is skipped
if the solution to the first one matches the updated lower bound).
The procedure smjnincov returns when:

•

•

The cost of a partial solution, found by adding essential columns to select, is more than ubound or
infeasibility is detected when applyingthe domination rules (line 1). An empty solutionis returned.

The best current solution is found by applying Gimpel's reduction technique (line 2). Since gim-
peljeduce calls recursively smjnincov, an empty solution could be returned too.

• The updated lowerbound,determined by adding to Ibound the costof the essential primes andof the
maximal independent set, is not less than ubound(line 5). An empty solution is returned.

• There is no cyclic core and we are not in the previous case. The best current solution is found by
updating select with the new essential and unacceptablecolumns Cine 6).

• The best current solution is found by partitioning the problem fline7). The procedure smjnincov is
called recursively on two smaller covering matrices determined by smMockjpartition (line8 and 10).
An empty solution can be returned by either recursive call. If the first call to smjnincov returns an
empty solution, the second one is not invoked(line9). If neither callreturns empty,eachcontributes
its returned value to the current solution.

8

sm.mincov(M,select,weight,Ibound, ubound) {
I* Applyrow dominance, column dominance, and select essentials */ (1)
if (\sm-reduce(M, select, weight, ubound)) return empty-solution
I* Seeif Gimpel's reduction technique applies */ (2)
if (gimpeLreduce(M, select, weight,Ibound, ubound, &best)) return best
/* Find lower bound from hereto final solution by independent set*/ (3)
indep —sm.maximal-independent.set(M', weight)
/* Make surethelowerboundis monotonically increasing */ (4)
Ibound-new = max(cost(select) + cost(indep), Ibound)
I* Bounding based onnobetter solution possible */ (5)
if (Ibound-new > ubound) best = empty-solution
elseif (M is empty) { /* New bestsolution atcurrent level */ (6)

best = solution-dup(select)
} else if (sm.block-partition(M, &M\,&M2) gives non-trivial bi-partitions) { (7)

bestl = sm-mincov(M\, select!, weight, 0, ubound —cost(select)) (8)
I* Add best solutionto the selectedset */ (9)
if (bestl = empty-solution) best = empty-solution
else { (10)

select = select U bestl

best = sm-mincov(M2,select, weight,Ibound-new, ubound)
}

} else { /* Branch oncyclic core and recur */ (11)
branch = select-Column(M,weight, indep)
selectl = solution-dup(select) U branch
let Mbranch be the reduced table assuming branch column is not in solution (12)
bestl = sm-mincov(Mbranch, select,weight,Ibound-new, ubound)
I* Update the upper bound if we found a better solution */ (13)
if (bestl -fi empty-solution) and (ubound > cost(bestl)) ubound = cost(bestl)
I* Do not branch if lower bound matched */ (14)
if (bestl ^ empty.solution) and (cost(bestl) = Ibound-new) return bestl
let Mbranch bethe reduced table assuming branch column not insolution (15)
bestl —sm.mincov(Mbranch, select, weight, Ibound-new, ubound)
best = bestsolution(bestl, bestl)

}
return best

)

Figure 3: Detailed branch-and-bound algorithm.

• A branching column is chosen and smjnincov is called recursively with the branch column in the
covering set Gine 12). If the recursive call of smjnincov returns a non-empty solution that matches
the current lower bound (Iboundjiew), that solution is returned as the current solution Gine 14). If
the cost of the current solution is less than ubound, ubound is updated, i.e., the current solution is also
the best global solution Gine 13).

• As in the previouscase,butsmjnincovis calledrecursively withthebranchcolumnnot in the covering
set (line 15). The best among the solution found in the previous case and the one computed here is
the current solution.

Notice the following facts about the procedure smjnincov.

• Theparameter Ibound is updatedonceGine 4). The reason is thatafterthecomputationof theessential
columnsGine1) and of the independentset Gine 3), the cost of the previouspartial solutionsummed
to the cost of the essential columns and of the independentset is potentiallya sharper lower boundon
any complete solutionobtained from this nodeof the recursion tree. The updated value IboundJiew
is used in the rest of the routine. The lower bound is a monotonically increasing quantity along each
path of the computation tree.

• The parameter ubound is updated once Gine 13). At that point a new complete solution has just
been returned by the recursive call to smjnincov Gine 12) and an updated value of ubound must be
recomputed for the following recursive call of smjnincovGine 15). The reason is that when a new
complete solution is obtained, the current ubound is not any more valid and therefore it must be
updated before it is used again. To be updated, ubound is compared against the cost of the newly
found solution, and the minimum of the two is the new ubound. The upper bound is a monotonically
decreasing quantity throughout the entire computation.

The previous analysis proves that the algorithm finds a minimum cost satisfying assignment to the
problem.

4.3 N-way Partitioning

If the covering matrix M can be partitioned into twodisjointblocks M\ and M2, the covering problem can
be reduced to two independentcoveringsubproblems, and the minimumcoveringfor M is the union of the
minimumcoverings for M\ and M2. Such bi-partition can be foundby puttingin M\ a row and all columns
that have an element in common with the row (i.e., the columns intersecting the row) and recursively all rows
and columnsintersectingany row or columnin Mi. The remaining rowsand columns(i.e., not intersecting
any row or column in Mi) are put in M2. This algorithm can be generalized to find partitions made by N
blocks, as shown in Figure 4.

Theorem 4.1 If a covering matrix M canbepartitioned inton disjoint blocks M\, M2, ...,Mn,the union
oftheminimum coversofM\, M2,..., Mn is theminimum coverofM.

Bi-partitioning is implemented in [48, 54] as follows. When checking for a partition of the problem
Gine 7), the routine smjnincov is called recursively on two independents subproblems Gines 8 and 10), if
theyexist. When solving the smallerof the twosubproblems Gine 8), the initialsolution is empty, the initial
lower bound is set to 0, the initial upper bound is set to the difference betweenthe current ubound and the
cost of the current partial solution. When solving the larger of the two subproblems Gine 10), the initial
solution is the current solution (to which the solutionof the smaller subproblem is added, if it is not empty),
the initial lower bound is set to the current lower bound IboundJiew, the initial upper bound is set to the
current ubound.

10

n.way.partition(M) {
while (there is a row rt not in anypartition) {

put rt in a new partition M*
while (there isa row rj connected toany row inpartition M*) {

put row rj in partitionM*

}
}

}

Figure 4: iV-way partitioning.

Theorem 42 The upperboundset in thesmallersubproblem is correct.

Proof. Letselectbethepartialsolutionalongthecurrentpath. It holdsthat (costof the final solutionalongthe
current path) > (costof solving Mi + cost(select)-rl). If (costofsolving Mi) > (ubound-cost(select)),
then (cost of the final solution along the current path) > (ubound +1), i.e., (cost of the final solution
along the current path) > ubound. This is ruled out by setting the upper bound when solving Mi to
(ubound - cost(select)), since smjnincovreturns a non-empty solutiononly if it can beat the given upper
bound, a

4.4 Maximal Independent Set

The cardinality of a maximum set of pairwise disjoint rows of M (i.e., no 1's in the same column) is a
lower bound on the cardinality of the solution to the covering problem, because a different element must be
selected for each of the independent rows in order to cover them. If the size ofcurrent solution plus the size
of the independent set is greater or equal to the best solution seen so far, the search along this branch can
be terminated because no solution better than the current one can possibly be found. It is also true that the
size of the independent set at the first level of the recursion is a lower bound for the final minimum cover,
so that the search can be terminated if a solution is found of size equal to this lower bound. Since finding
a maximum independent set is an NP-complete problem, in practice an heuristic is used that provides a
weaker lower bound. Notice that even the lower bound provided by solving exactly maximum independent
setisnotsharp. In [9] it is shown anexample of size 0(n2), whose minimal solution has a 0(n) cost, but
whose lower bound by independent set is a constant 1. In practice a lower bound by independent set is poor
when the covering matrix is dense.

In [49,48,54], the adjacency matrix B of a graph whose nodes correspond to rows in the cover matrix
M is created. In the binate case, only rows are taken into consideration which do not contain any 0 element.
An edge is placed between two nodes if the two rows have an element in common. While B is non-empty,
a row R{ of B is found that is disjoint from a maximum number of rows (i.e., the row of minimum length
in B). The column of minimum weight intersecting R{ is also found. The weight is cumulated in the
independent set cost. All rows having elements in common with R{ are then deleted from B. At the end
of the u>/u7e-iteration a set of pairwise disjoint rows (independent set) and their minimum covering cost is
found. Notice that one could think to the problem in a dual way as finding a maximal clique in a graph with
the same rows as before, and edges between two nodes representing two disjoint rows.

11

In [9] some detailed analysis of independent set computations is made. A quantitative ratio between a
maximal cost independent set and the independent set computedby a greedy algorithmbased on set-packing
is derived. A logarithmic ratio lower bound on unate problems is proved too.

4.5 Selection of a Branching Column

The selection of a good branching column is essential for the efficiencyof the branch and bound algorithm.
Since the time taken by the selection is a significant part of the total, a trade-off must be made between
quality and efficiency.

In [49,48,54], the selection of the branchingvariable is restricted to columns intersectingthe rows of
the independent set, because a unique column must eventually be selected from each row of the maximal
independent set. Among those rows, the selection strategy favors columns with large number of l's and
intersecting many short rows. Short rows are considereddifficult rows and choosing them first favors the
creationof essential columns. More precisely, the columnof highestmerit is chosen. The merit of a given
column is computed as the product of the inverse of the weight of the column multiplied by the sum of
the contributions of all rows intersected in a 1 by the column. The inverseof the contributionof a row is
equal to the numberof all non-2 elements(eachcan contribute in covering the row)minus 1. The inverseis
well-defined,because at this stage each row has at least two-elements (it is not essential).

4.6 New Bounding Criteria

In [16] two new rules to prune the search space have been introduced. We are going to survey them here.
Given a covering problem C that corresponds to a node c of the computation tree, define the following
notation:

• Ci is the subproblem of C generated assuming that a given branching column bis selected;

• Cr is the subproblem of C generated assuming that a given branching column 6 is not selected;

• C.min is the cost of a minimum solution;

• C'.lower is the value of a lower bound on C.min\

• C.path is the cost of the partial solution from the root to node c;

• Cupper is the cost of the best solution found so far.

The algorithmdescribed in Figure 3 guarantees that the invariantC.path + Clower < Cupper is always
true.

Theorem 43 (Left-hand side lower bound). Given a binate covering problem C, supposeto branch on
a unate column b. If

C.path + Ci.lower > Cupper,

then bothC/ and Cr can beprunedand Ci.lower is a strictly better lowerboundfor C

Proof. In Ct it holds (using the hypothesis):

C\.path + Ci.lower —C.path + Cost(b) + Ci.lower > C.path + Ci.lower > Cupper,

so Ci is correctly pruned to keep the invariant Ci.path + Ci.lower < Cupper.

12

Let us see why also Cr can be pruned. First notice that Cr.min > Ci.min, since CT has exactly the
same columns than Ci, but it has more rows to cover (those coveredby choosing bin the solution). Then the
best global solution that can be found by solving Cr exceeds the upper bound, as shown by the following
chain of inequalities (using the hypothesis):

Cr.path + Cr.min = C.path + CT.min > C.path + Ci.min > C.path + Ci.lower > Cupper.

Weshownowthat Ci.lower is a lower boundon Cmin. FromCpath+Cr.min > Cpath+Ci.lower,
it follows Cr.min > Ci.lower; it is also Ci.min > Ci.lower. So it follows(Cost(b) > 0):

Cmin = min(Cost(b) + Ci.min, Cr.min) > min(Cost(b) -f- Ci.lower,Ci.lower) = Ci.lower.

Lastly we show that Ci.lower > Clower. By contradictionif Clower > Ci.lower, then (using the
hypothesis):

C.path + Clower > C.path + Ci.lower > Cupper,

against the invariant C.path + Clower < Cupper, a

The way in which the "old" lower bound and the "new" left-hand side lower bound work together is: if
the current node is a left child and Ibound-new - Cost(b) > ubound then bound computation and return
flag to skip also the right branch ("new" left-hand side lower bound); otherwise if Ibound-new > ubound
then bound computation ("old" lower bound).

Theorem 4.4 (Limit lower bound). Given a binatecovering problem C, let J be an independent set of
the rows, i.e., a set ofunaterows intersecting no common column. LetClower be a lowerboundfrom the
independent set I, i.e., the sum of a minimum cost column for each row in I. Consider the set B of the
columns b thatdo not intersect rows in I and such that b € B only if

C.path + Clower -f Cost(b) > Cupper.

Thenthe columns in B and the rows that intersect themin a 0 can be removedfrom the covering table and
a minimumsolution can still befound.

Proof. If we choose a column 6 in B as a branching column, we obtain a subproblem C\ by assuming that
b is in the solution. / is still an independent set of Ci, because by construction bdoes not intersect rows in
/. So a lower bound for C/ has at least value Clower (but there could be a lower bound by independent set
for Ci larger than Clower), that is

Ci.lower > Clower.

The following chain of implications follows (using the hypothesis):

Ci.path + Ci.min = C.path + Cost(b) + Ci.min > C.path + Cost(b) + Ci.lower

> C.path + Cost(b) + Clower > Cupper,

meaning that the best solution that can be found by solving C\ exceeds the global upper bound. Therefore
we can set to 0 the columns b € B and still get a minimum solution. •

In practice in the common case that all columns have cost 1 if included in a solution, one needs only to
check whether

C.path -f- Clower -f-1 > Cupper,

13

i.e.,

Ibound-new + 1 > Cupper,

in which case all columns that do not intersect rows in the independent set / can be removed, together
withthe rows that they intersect in a 0. Experimental results in [16] on exacttwo-level minimization show
strong gains bythisnew pruning technique, resulting in reductions of thesearch space up tothree orders of
magnitude.

4.7 Symmetric Covering Problems

In [58] symmetric unate covering problems, especially those arising from two-level logic minimization,
are investigated. Given a unate covering problem P whose variables (columns) are (x\,x2,-',xn),
a permutation of (x\,x2,•♦♦,«„) into (7}(xi),T}(x2),--,ri(xn)) is a symmetric permutation of P if
M^i),r)(x2), -",r)(xn)) is a feasible solution of P when (x\,x2, •••,x„) is a feasible solution of P.
Both feasible solutions yield the same value of the objective function. P is said to be symmetric if it has
some symmetric permutations. When a minimal unate covering problem has symmetric permutations, the
Boolean function from which it derives may not be symmetric; vice versa, if a given Boolean function is
symmetric, the minimal covering problem obtained from it is symmetric. In the paper, after a complete
characterization of symmetric permutations, it is shown howto exploit symmetry to speed up the number
of branchings required to certify that a solution is optimal. In particular the preservation of symmetric
permutations under row dominance, column dominance and detection of essential columns is investigated;
procedures are presented such thattheirrepeated application to a problem P with a symmetric permutation
nyields aproblem P', reduced with respect to row dominance, column dominance and detection ofessential
columns, andstill symmetric withrespect to a permutation rjobtained from r\ in a given way.

5 Reduction Techniques

Three fundamental processes constitute the essence of the reduction rules:

1. Selection of a column: a column must be selected if it is the only column that satisfies a required
constraint(Section5.7). A dual statementholdsfor unacceptable columns(Section5.8). Also related
is the case of unnecessary columns (Section 5.9).

2. Elimination ofa column: a column C» can be eliminated, if its elimination does not preclude obtaining
a minimal cover, i.e., if there exists in M another column Cj that satisfies at least all the constraints
satisfied by C, (Section 5.5).

3. Elimination of a row: a row i?t- can be eliminated if there exists in M another row Rj that expresses
the same or a stronger constraint (Section 5.1).

Even though more complex criteria of dominance have been investigated (forinstance, Section 5.12),
theprevious ones arebasic in any table covering solver. Reduction rules have previously been stated forthe
binate covering case [22,23,5,4], andalsofor the unate covering case [42, 50,4]. Here we willpresent
the known reduction rules directly for binate covering and indicate how theysimplify for unatecovering,
when applicable. Foreach of them, we will first define the reduction rule, and then a theorem showing how
that rule is applied. Proofs for the correctness of these reduction rules have been given in [22,23,5,4], and
they will notbe repeated here, except fora few less common ones. We will provide a survey comparing
different related reduction rules used in the literature.

14

sm.reduce(A, solution, weight, ubound) {
do{

apply yd-dominance or a-dominance
find essential columns

find unacceptable columns
if (a column is both essential and unacceptable)

return empty-solution
for each essentialcolumn{

delete each row intersecting the column in a 1
if (a row of length 1 intersects the column in a 0)

return empty-solution
delete column

add column to solution

if (cost of solution > ubound)
return empty-solution

>
for each unacceptable column{

delete each row intersecting the column in a 0
if (a row of length 1 intersects the column in a 1)

return empty-solution
delete column

}
apply row_consensus
apply row_dominance

} while(reductions are applicable)
return solution

}

Figure 5: Flow of reduction rules.

The effectof reductions depends on the orderof their application. Reductions are usuallyattempted in
a givenorder, until nothingchangesany more (i.e., the covering matrixhas been reduced to a cyclic core).
Figure 5 shows how reductions are applied in[49,48,54]2.

5.1 Row Dominance

Definition 5.1 Arow Ridominates 3another row Rj ifRj has allthe I'sandO's ofR{.

*lb& reductions ^-dominance and rowconsensus are onlyin [48] and thereduction by implication isonly in [54].
3This definition of row dominance is

• similar to columndominance (Rule 3) in [22], except that the labels of dominator row, Ri, anddominated row, RJt are
reversed (i.e., reverse definition of dominance),

• similarto column dominance(Rule 3) in [23], except that the labels of dominator row, Ri, and dominatedrow, RJt are
reversed (i.e., reverse definition of dominance),

• equivalentto row dominance(Definition 10) in [S],

15

Theorem 5.1 Ifa row Rj is dominated by another row Ri, Rj can be eliminated without affecting the
solutions to the coveringproblem.

5.1.1 Row Dominance for a Unate Table

Definition 5.2 A row Ri dominates another row Rj ifRj hasall the I's ofRi.

5.2 Row Consensus

Theorem 5.2 IfRidominates Rj, exceptfor a (unique) column Ck where Ri and Rj have different values,
element Mj^ can be eliminatedfrom the matrix M (i.e., the entry in position M,-,* becomes a 1)without
affecting thesolutionsof thecovering problem.

Proof. Suppose that entry Mjtk is1and entry Mi)k is0. The argument is the same ifentry Mjtk is0 and
entry M,-,* is 1. If entry MJ)fc is removed, we are not able tosatisfy row Rj by setting xk to 1. Aproblem
arises if a minimum-cost solution requires xk set to 1,because we could miss the fact that setting xk to 1
satisfies also row Rj. Instead we could obtain an higher-cost solution, by selecting another column inorder
tosatisfy row Rj - Mj> We now show that this isnot the case. Ifaminimum-costsolution requires Xk set
to 1, we muststillsatisfy row Ri thatcannot be satisfied by xk set to 1. Whatever choice willbe made to
satisfy Ri, it will satisfy also Rj - Mjtk (since Rj - Miik has all l's and 0's of Ri) and therefore nomore
cost will beincurred tosatisfy row Rj- M,-,*. The previous argument fails if Rj- Mjyk isempty and there
arecases in which anhigher-cost solution would befound. One could claim thatif Rj - M,-,* is empty, then
Rj has only entry M,,* and therefore Xk isan essential, that istaken care by the essential column detection.
In reality it may happen thatby applying row consensus many times to the same row Rj (using different
rows Ri) at a certain point Rj is emptied. In that case the last application of row consensus is potentially
faulty and should not be done. •

Rowconsensus is applied in [48]. Thiscriterion generalizes theone given in [25].

5.3 Column a-Dominance

Definition 5.3 Acolumn Cj a-dominates 4another column Ck if'

• Cj < Ck,

• Cj hasall the I's of Ck,

• CkhasalltheO'sofCj.

Theorem 53 Let M besatisfiable. Ifa column Ck is a-dominated by another column Cj, there is at least
one minimum cost solution with column Ck eliminated (xk = 0;, together with all the rows in which it has
0's.

• identical to row dominance (Definition 2.11) in [4].

"This definition of column a-dominance is

• anextension to rowo-dominance (Rule 1) in [22], because thelatter doesn'tinclude thecase MitJ —0 andMi,k —0,

• equivalent tofirst halfofRule 4 in [23]: (a)C, has allthe1's of Ck and (bl) Ck has allthe 0's of C,,

• identical to column dominance (Definition 11, Theorem 3) in [5],

• identical to column dominance (Definition 2.12, Theorem 2.4.1) in [4].

16

In [9] column dominance is formulated in a more general way as follows.

Theorem 5.4 Suppose that v andv'areelements of {0,1}. If the clauses satisfied bycolumn Cyset to the
value v are satisfied ata lower cost by setting column Cy> to v', and the clauses satisfied by Cyi setto vf
are alsosatisfiedatzero cost by Cy settov,one can setCy tovand remove the rows that intersect Cy inv,
withoutmissing any optimal solution.

Proof. Setting Cy to v does not leadto a suboptimal solution, because there is another column Cy> that, if
set to v\ covers for less the rows that are left uncovered by setting Cy to v, while setting Cytov covers
already all rowsthat wouldbe left uncovered if one wouldhaveto set Cyto v. a

If negative literalshavenon-zero cost and positiveliteralshavepositivecost, it is exactly the definition of
a-dominance.

5.3.1 Column Dominance for a Unate Table

Definition 5.4 Acolumn Cj dominates another column Ck ifCj hasall the I's ofCk,

5.4 Column ^-Dominance

Definition 5.5 Acolumn C, ^-dominates 5another column Cj if:

• Ci < Cj,

• d hasall theI's of Cj,

• for every row Rp inwhich Cihas a 0, either Cj has a 0 orthere exists a row Rq inwhich Cj has a 0
andCi doesnothave a 0, such that disregarding entries in columns Ci andCj, Rq dominates Rp.

Theorem 5.5 Let M be satisfiable. IfCi ^-dominates Cj, there is at leastoneminimum costsolution with
column Cj eliminated (xj = 0), together with all the rows inwhich ithas0's.

Proof. We must show that given a solution, one can find another solution, of cost lesser or equal, with
columnCj eliminated (xj = 0). There are two cases for the originalsolution: either Xi = 1 and xj = 1 or
Xi = 0 and xj = 1 (if Xj = 0, we aredone). The new solution has a:, = 1 and xj = 0 and coincides for the
rest withthe given solution. The case when x, = 1 and xj = 1 is easy, because column Cj has all 1's of
columnd and thereforeCj is useless.

Consider now the case when x,- = 0 and xj = 1. The clauses with a 0 in column C» are satisfied
by not choosing C, and the clauses with a 1 in column Cj are satisfied by choosing Cj. Each clause
with a 0 in column Cj (and without a 0 in column C,) is satisfied by a proper assignment of a column
different from d and Cj, say Ck. Notice that the hypothesis that column d does not have a 0 in the

5This definition of column /3-dominance is

• strictly strongerthancolumn a-dominance given in S3,

• more generalthan row /3-dominance (Rule 5) in [22], because the latter assumes that the covering table contains only rows
with no or one 0,

• equivalentto secondhalf of Rule 4 in [23]: (a) d has all the 1's of C} and (b2) for every row Rp in which d has a 0,
thereexistsarow Rq in whichC, hasa0, suchthatdisregarding entries in row d andC}% Rp dominates Rq (with reverse
definitionof row dominance),noticing thatby mistake the conditionthat C, does not have a0 in row Rq was omitted,

• not mentioned in [5] and [4].

17

clause is essential here, otherwise this clause would be satisfied already by not choosing C„ without re
sorting to a column Ck. Now consider the assignment with column C,- and without column Cj O, = 1
and xj = 0) and the same remaining assignments as the previous one. It costs no more than the previous
one. We show that it is a solution. In order to do that we must make sure that the 0's covered by C,
and the I's covered by Cj by setting xi —0 and x3\ = 1, are still covered in the new assignment where
xi = 1 and xj = 0. The clauses with a 1 in Q are satisfied by Ct, because d has all I's of Cj. Each
clause, say Rp, with a 0 in column C,- is satisfied too, because there is a corresponding clause, say Rq,
with a 0 in column Cj, and we already noticed that there exists another column, Ck, that satisfies Rq.
But by hypothesis Rq dominates Rp, i.e., Rp has all the I's and 0's of Rq, hencecolumn Ck satisfies also
clause Rp (ifentryMqik = 1(0), thenentryMPik = 1(0)alsoandXk = 1(xk = 0) satisfies bothclauses). •

5.5 Column Dominance

Definition 5.6 A column Ci dominates another column Cj if either d a-dominates Cj or C, ^-dominates

Theorem 5.6 Let M be satisfiable. IfCi dominates Cj, there is at least oneminimum cost solution with
column Cj eliminated (xj = 0), together withall therows inwhich it has0's.

5.6 Column Mutual Dominance

Definition 5.7 Two columns Ciand Cj mutually dominate 6each other if:

• Ci hasa 0 in every rowwhere Cj has a I,

• Cj has a 0 in every rowwhere d has a I.

Theorem 5.7 LetMbesatisfiable. IfCi andCj mutually dominate each other, there isat leastoneminimum
cost solution with columns Ci and Cj eliminated (x^ = xj —0), together with all the rows in which they
have 0's.

In [9] column mutual dominance is formulated in a more general way as follows.

Theorem 5.8 Suppose that v and v' are elements of {0,1}. Suppose that column Cy has minimum cost
when set to v andcolumn Cy> has minimum costwhen set to v'. If the clauses satisfied by setting column
Cyi to v' aresatisfied by setting column Cy to v, andthe clauses satisfied by setting Cy to v aresatisfied by
setting Cyt to v', then one can set Cy to v, Cy> to v' andremove the rows that intersect Cy in v andCy> to
v', withoutmissingany optimal solution.

Proof. Column Cy setto v covers the rows otherwise covered by Cy> setto v* and Cy> setto v'covers the
rows otherwise covered by Cy set to v. Therefore setting Cy to v, Cy> to v' is always better thanany of the
otherthree combinations, given thatCy hasminimum costat v and Cy< has minimum costat v'. o

If negative literals have non-zero cost and positive literals have positive cost, it is exactly the definition of
column mutual dominance.

6This definition of column mutual dominance is

• identical to rule for mutually reducible variables in [S3],

• not mentioned in other papers.

18

5.7 Essential Column

Definition 5.8 Acolumn Cj isan essential column 7ifthere exists a row Ri having a 1 in column Cj and
Ts everywhere else.

Theorem 53 IfCj is anessential column, itmust beselected (xj = l)in every solutions. Column Cj must
thenbe deleted togetherwithall therows in whichit has Vs.

5.7.1 Essential Column for a Unate Table

Definition 5.9 A column is an essentialcolumn if it contains the 1 ofa singleton row.

5.8 Unacceptable Column

Definition 5.10 Acolumn Cj isan unacceptable column 8ifthere exists arow Ri having a0 in column Cj
and Ts everywhere else.

This reduction rule is a dual of the essential column rule.

Theorem 5.10 IfCj is an unacceptable column, itmust beeliminated (xj = 0) inevery solution, together
with all the rows in which it has 0's.

5.9 Unnecessary Column

Definition 5.11 Acolumn ofonly 0'sand Ts isanunnecessary column 9.

Notice that there is no symmetric rule for columns of 1's and 2's. The reason is that selecting a column to
be in the solution has a cost, while eliminating it has no cost.

Theorem 5.11 IfCj is anunnecessary column, itmay beeliminated (xj = 0;, together with all the rows in
which it has 0's.

7This definition of essential column is

• identical to essential row (Rule 2) in [22],

• identical to Rule 1 in [23],

• included in Definition9 in [5]: the row R, in the abovedefinitioncorrespondsto a singleton-1 essentialrow in [5],

• includedin Definition2.10 in [4]: the row R, in the abovedefinitioncorresponds to a singleton-1 essentialrow in [4].

8This definition of unacceptable column is

• identical to that of nonselectionable row in [22],

• identical to Rule 2 in [23],

• includedin Definition9 in [5]: the row R, in the abovedefinition corresponds to a singleton-0 essentialrow in [5],

• includedin Definition 2.10 in [4]: the row R, in the abovedefinition corresponds to a singleton-0 essentialrow in [4].

9This definition of unnecessary column is

• identical to Rule 4 in [22],

• identical to Rule S in [23],

• not mentioned in [S] and [4].

19

5.10 Trial Rule

Theorem 5.12 Ifthere exists in a covering table M a row Ri having a 0 in column Cj,a 1 in column Ck
and Ts in the rest, then apply thefollowing test:

• eliminate Ck together withthe rows in which it has 0's,

• eliminate Cj,which is now an unacceptable column, together with the rows in which ithas 0's,

• continue as long aspossible toeliminate the columns which becomes unacceptable columns.

Ifat least one row ofMhas only Tsat the end ofthis test, then column Ck must be selected (xk = l)10.
Therefore, Ck can be deleted together with allthe columns in which ithas I's n.

5.11 Infeasible Subproblem

Unlike the unate covering problem, the binate covering problem may be infeasible. In particular, an
intermediatecoveringmatrixM may foundto be unsatisfiable by the followingtheorem. Whenaninfeasible
subproblem is found, that branch of the binary recursion is pruned.

Definition 5.12 Acovering problem M is infeasible 12 if there exists a column Cj which is both essential
and unacceptable (implying xj —1 and xj —0).

5.12 Gimpel's Reduction Step

Another heuristic for solving the minimum cover problem has been suggested by Gimpel [21]. Gimpel
proposed a reduction step which simplifiesthe coveringmatrix whenit has a special form. This simplification
is possible without further branching, and hence is useful at each step of the branch and bound algorithm.
In practice, Gimpel's reduction step is applied after reducing the covering matrix to the cyclic core.

Gimpel's reduction can be described in terms of the product-of-sums represented by a covering table.
The product-of-sums is examined to see if any clause has only two literals of the same cost. For example,
assume the expression has the form:

p = R(cx + c2) (ci + Si)... (ci + Sn)(c2+ Ti)... (c2 + Tm)

where c\ and C2 are singlevariables with a cost C, 5,-, i = 1... n and Tj,j = 1... m are sumsof variables
not containing c\ or C2, and R is a product ofsums of variablesnot containing c\ or C2. Because the covering
table is assumedminimal, if there is a clause (c\ + C2), then m > l,n> 1, and noneof Si or Tj is identically
zero.

10It ispossible thata row is leftwith only 2's bya sequenceofreduction steps.
"This reduction rule is

• identical to Rule 6 in [22],

• not mentioned in other papers.

lzThis definition of infeasibility is

• not mentioned in [22] and [23],

• briefly mentioned in [5],

• identical to the unfeasible problem in [4].

20

Notethat withthe expression written in this form, each parenthesized expression corresponds directly
to a single rowin the covering table. By algebraic manipulations, the expression can be re-written as:

p=R(cic1 + clT + c2S)

where 5 = n?=i Si, and T = YlZi T«-
A secondcovering problem is derived from the original covering problem with the following form:

Pi = i?(c2 + 5 + T)
n m

•=1 i=l

The main theorem ofGimpel is:

Theorem 5.13 Let M\ be a minimum coverfor p\. A coverfor p can be derivedfrom M\ accordingto the
rule: if S is covered by M\ then add C2 to M\ to derive a cover of p\ otherwise, add c\ to M\ to derive a
cover of p. The resultingcover is a minimum coverfor p.

A proof can be found in [50], where a more extended discussionis presented.
Gimpel's reduction step was originally stated for covering problems where each column had cost 1.

Robinson and House [26] showed that the reduction remains valid even for weighted covering problems if
the cost of the column c\ equals the cost of the column C2, as it has been presentedhere. Gimpel's rule has
been first proposed in [21] and then implemented in [49]. In [48,54] Gimpel's rule has been extended to
handle the binate case. This extension has been described in [55].

6 Semi-Implicit Solution of Binate Covering

6.1 Binary Decision Diagrams

Basic introductions to binary decision diagrams are found in [6,1].

Definition 6.1 A binary decision diagram (BDD) is a rooted, directed acyclic graph. Each nonterminal
vertex v is labeled by a Boolean variable var(v). Vertex v has two outgoing arcs, childo(v) andchild\(v).
Each terminal vertex u is labeled Oor 1.

Each vertex in a BDD represents a binary input binary output function and all accessible vertices are
roots. The terminal vertices represent the constants (functions) 0 and 1. For each nonterminal vertex v
representing a function F, its child vertex childo(v) represents the function Fy and its other child vertex
child}(v) represents the function Fv. i.e., F = v •Fy + v •Fv.

For a given assignment to the variables, the value yielded by the function is determined by tracing a
decisionpath from the root to a terminal vertex, following the branches indicated by the values assigned to
the variables. The function value is then given by the terminal vertex label.

Definition 62 A BDD is ordered if there is a total order •< over the set of variables such that for every
nonterminal vertex v, var(v) •< var(childo(v)) ifchildo(v) is nonterminal, andvar(v) •< var(child\(v))
ifchild\(v) is nonterminal.

Definition 63 A BDD is reduced if

I. it contains no vertex v suchthat childo(v) = child\ (v), and

21

2. it does not contain two distinct vertices v and v such that the subgraphs rootedat v and v are
isomorphic.

Definition 6.4 A reduced ordered binary decision diagram (ROBDD) is a BDD which is both reduced
and ordered.

Definition 6.5 TheITEoperator returnsfunction G\ iffunction F evaluates true, else it returnsfunction
G2:

ITE(F,GhGo) ={GGl o*eZle
where range(F)={0,I}.

6.2 The Shortest Path Method

In [40] the solution of a binate covering problem was reduced to a shortest path computation on the BDD
representing the clauses. We will present the theorem supporting the reduction.

Suppose that the length (or cost) of a 0-edge of a BDD is 0 and the length of a 1-edge is a positive
constant. A shortest path between two nodes is a path of total minimum length.

Theorem 6.1 Aminimum costassignmentsatisfyinga BooleanformulaT(x\,'-,xn)is given bya shortest
pathfrom the root to the terminalI ofa ROBDD representing T.

Proof. For every path p from the root to the terminal 1 there is a set of associated variable assignments
{x}p that satisfy T. An assignment xp is in {x}p, onlyif variable x, is set to 1(0)when Xi andits 1-edge
(0-edge) appear in p. For any combinationof assignments to the variables that do not appear in p there is
a corresponding complete xp and varying all such combinations one spans allassignments xp e {x}p. The
unique assignment xp € {x}p such that the variables not in p are set to 0 has the property that its cost is
equalto the lengthof pathp. Call it xPm.n. Vice versa given a satisfying assignment x thereis a unique path
p from the the rootto the terminal 1 whose associated set {x}p includes x. The lengthof p is less or equal
to the cost of x.

Given a shortest path p in the ROBDD, consider the corresponding minimum cost assignment xPmin.
Suppose bycontradiction thatthere is another satisfying assignment x' of smaller cost. Consider theunique
path p' such that {x'}p> includes x'. The length ofp' isless orequal tothe cost ofx', but the cost ofx' isless
than the costof xPmin, thatcoincides with thelength of p, and so wefound a pathp' of length strictly less
than the length of p, against the hypothesis that p is a shortest path, o

6.3 The Method Based on a Product of BDD's

In [27,28], a branch-and-bound algorithmfor the binatecoveringproblemexpressed as a productofgeneral
boolean formulas and represented by a conjunction of multiple BDD's is presented. This is in alternative to
the case when the constraints are expressed as a product-of-sums (POS) and represented by a matrix where
each row is a clause and each column is a variable. The attractive feature of a BDD-based algorithm is that
finding the solution only requires computingthe shortestpath to the 1 terminal in the BDD. Since in cases
of practical interest, it happensoften that a singleBDDrepresenting all clausesis too largeto be built, it has
been proposed to representthe constraintsas a productof sub-constraints, each of whichcan be represented
by a BDD.The questionis howto find a minimumsolution,havinga productof BDD's, insteadthan a single
BDD. It is clear that if each subconstraint is a sum-of-products (SOP) clause, the BDD-based formulation

22

is analogous to the one basedon a matrix. This motivatesthe extension to a conjunctionof BDD's of the
reduction and bounding techniques devised to solve a table.

The algorithm assumes that the constraint function is in the form / = n?=i U where each /, is
represented by a BDD Fi. Each /,- or Fi is called a sub-constraint. The conjunction of the Ft is called F.
Under this assumption, BCP amounts to finding an assignment for x\,X2,...,xn that minimizes the cost
function and that satisfies all /t's simultaneously. If n = 1, we have a single BDD and the minimum cost
assignment that satisfies / canbe found by computingthe shortest pathconnecting the rootof / to the ' 1'
leaf. If n > 1 a branch-and-bound algorithm as in the matrix-based case can be devised. Reduction and
bounding techniques are extended as shown next.

A variable Xj is essential for / if and only if /,- < xj, for some i, i = 1,2,..., n. A variable xj is
unacceptable for / ifand only if /,- <x'j, for some i, i=1,2,..., n.

Row dominance is extended to the more general definitionof constraintdominance. Function /, domi
nates function fj if andonly if fj < fi. Constraint dominance reduces to rowdominance if subconstraints
coincide with SOP clauses.

Column dominance is extended to the following definitionofvariabledominance. Variable xt dominates
variable xj if and only if c, <cj and 3xifXj < 3xif'x . Since the constraint / is in the form ofconjunction
of subconstraints, the previous definition cannot be checked directly. However the following sufficient
conditions can be checked efficiently. If either of the following conditions is satisfied

• (fk)X} < (fk)XtX>. for each fk

• (fk)Xj < Uk)x'.x' for each A

where Ci < Cj then xt- dominates xj. As another special case, if (fk)x, < {fk)' for each fk, then any
j

variable art-, (i ^ j) dominates variable xj.
When Xj has cost 0, a more general definition of variable dominance is that variable xt dominates

variable Xj ifand only if and only if3xifXj < 3xif'x or 3xif'x < 3xifXj.
In [27] variable Xi is said to dominate variable xj iff c,- < cj and one of the following conditions is

satisfiedVk e {l,...,n}:

1. [fk)Xj < (fk)XxX.3

2. (fk)Xj = (A)xj/ =(/it),i.e.,/jbdoesnotdependona:j,andthereexistsapsuchthat(/p)a.jXj < (fk)Xi

If subconstraints coincide with SOP clauses, the first condition gives the definition of alpha_dorninance.
If subconstraints coincide with SOP clauses, the first and second condition together give the definition of
beta-dominance.

A lower bound to the cost of satisfying F is given by the sum of the mimmum costs of satisfying
each BDD in a set of BDD's with disjoint supports (an independent set of BDD's). These minimum costs
can be found by computing the shortest paths of those BDD's. If the shortest paths satisfy all the other
sub-constraints, the solution determined by the independent set is optimal and the current recursion node
can be pruned.

A most common variable in the BDD's is chosen as a splitting variable (i.e., a variable whose corre
sponding column in the dependence matrix intersects most rows). This favours the simplification of as
many BDD's as possible, the partitioning of the BDD's in sets with disjoint support and the generation of
larger independent sets. Experiments show that this splitting variable criterion is less effective that the one
(in section 4.5) used for a matrix-based formulation and as a consequence the number of recursion nodes is
greater.

23

We notice that in both approaches presented in this section, the usage of BDD's allows potentially to
handle problems with many clauses (if they have a compact BDD representation),but does not address the
problem of covering matrices with many columns. In such problems, it is unlikely that the BDD can be
built at all, because each column is a variable in the support of the BDD.

It may be worthy ofmention at this point that in [33,34] a more general algorithm to solve integer linear
programming based on edge-valued binary decision diagrams has been presented.

7 Implicit Solution of Binate Covering

mincov(R, C, U) {
(R,C) = Reduce(R,C,U)
if(Terminal ,Case(R, C))

if (cost(R,C) > U) return empty-solution
else U = cost(R, C)\ return solution

L = LowerJBound(R,C)
if(L > U) return .solution
d = Choose.Column(R,C)
S1 = mincov(RCl, Cc%, U)
S° = mincov(Rci, ^Wi U)
return Best.Solution(S] U{ct}, 5°)

}

Figure 6: Implicit branch-and-bound algorithm.

The classical branch-and-bound algorithm [22,23] for minimum-cost binate covering has been described
in previous sections, and implemented by means of efficientcomputer programs (espresso and stamina).
These state-of-the-art binate table solvers represent binate tables efficiently using sparse matrix packages.
But the fact that each non-empty table entry still has to be explicitly represented put a bound on the size
of the tables that can be handled by these binate solvers. For example, one would not expect these binate
solvers tohandle examples requiring over 106 columns (up to21500 columns), reported instate minimization
of FSM's [29]. To keep with our stated objective, the binate table has to be represented implicitly. We do
not represent (even implicitly) the elements of the table, but we make use only of a set of row labels and a
set ofcolumn labels, each represented implicitly as a BDD. They are chosen so that the existence and value
of any table entry can be readily inferred by examining its corresponding row and column labels. In the
sequel, we shall assume that every row has a unit cost.

7.1 Implicit Set Manipulation

In [29] it is presented a full-fledged theory on how to represent and manipulate sets using a BDD-based
representation. It extends the notation used in [37]. An outline is available also in [31]. This theory is
especially useful for applications where sets of sets need to be constructed and manipulated.

Given a ground set G of cardinality less or equal to n, any subset S can be represented in a Boolean
space Bn by a uniqueBooleanfunctionxs : Bn ->• B, whichis called its characteristic function [7], such
that:

Xs(x) = 1 if and only if z in S.

24

hiother words, asubset isrepresented inpositional-setorpositional-cubenotaxion form13, using nBoolean
variables, x = x\X2... xn. The presence of an element Sk in the set is denotedby the fact that variable
xk takesthe value1 in the positional-set, whereas xk takesthevalue0 if element sk is not a memberof the
set. One Boolean variable is needed for each element because the element can either be present or absent
in the set. As an example, for n = 6, the set with a single element S4 is represented by 000100 and the
set S2S3S5 is represented by 011010. The elements si, 54, S6 which are not present correspond to 0's in the
positional-set.

A set of subsets of G can be represented by a Boolean function, whose mintermscorrespond to the
singlesubsets. In other words, a set of sets is represented as a set 5 of positional-sets, by a characteristic
function xs '. Bn -» B as:

Xs(x) = 1 if andonlyif the set represented by the positional-set x is in the set S of sets.

Anyrelation H betweena pairof Boolean variables can alsobe represented by a characteristic function
11: B2 -4 B as:

H(x, 2/) = 1 if and only if x is in relation U to y

1Z can be a one-to-many relation over the two sets in B. These definitions can be extended to any relation
11between n Boolean variables, and can be represented by a characteristic function 11: Bn -> B as:

H(x\, £2,•••>xn) = 1 if andonlyif the n-tuple (x\, X2,..., xn) is in relation 1Z

In this way,useful relationaloperatorson setscanbe derived. OperatorsOpactson two sets of variables
x = x\X2.. .xn and 2/ = 2/12/2 •• -2/n and returns a relation (x Op y) (as a characteristic function) of pairs
of positional-sets. Alternatively, they can also be viewed as constraints imposed on the possible pairs out
of two sets of objects, x and y. For example, given two sets of sets X and Y, the set pairs (x, y) where x
contains y are given by the product of X and Y andthe containment constraint, X(x) -Y(y)-(xDy). We
present a few examplesof these operators. Variations and extensions used later, can be defined in a similar
manner.

Lemma 7.1 The equality relation evaluates true if thetwosets ofobjects represented bypositional-sets x
and y are identical, and can be computedas:

n

(x = y) = JJ xk 4=> yk
k=\

where Xk <& yk = Xk •yk H—•£* •->yk designates theBooleanXNOR operation and -> designatestheBoolean
NOT operation.

Proof. n£=i xk & Vk requires that for every element A;, either both positional-sets x and y containit, or it
is absent from both. Therefore, x and y contains exactly the same set ofelements and thus are equal. •

Lemma 7.2 Thecontainment relation evaluates true if the set ofobjects representedby x contains theset
ofobjects representedby y, and can be computedas:

n

(x 2 2/) = n y* =* Xk
jb=i

where Xk=> yk = ->Xk + ykdesignates the Boolean implicationoperation.

13CalIed also I-hot encoding.

25

Proof. n?=i yk => Xk requires that for all object, if anobjectk is present in y (i.e., yk = 1),it mustalsobe
present in x (xk = 1). Therefore set x contains all the objects in y. o

Similarly one can defineoperationson sets of sets. A few importantexamples follow.

Lemma 73 Given thecharacteristicfunctions xa andxb representing thesets A andB, set operations on
them suchas theunion, intersection, sharp, andcomplementation canbeperformedas logicaloperations
on their characteristicfunctions, as follows:

XAuB = XA + XB

XAnB = XA • XB

XA-B = XA ' ~>XB

Xa = ''XA

Lemma 7.4 The maximal of a set x of subsets is the set containing subsets in x notstrictly contained by
any other subset in x, and can be computedas:

Maximalx(x) = x{x)' fly [(y D x) •x(y)]

Proof. The term 3y [(y D x) •x(y)] is true if and only if there is a positional-set y in x such that x c y.
In such a case, x cannot be in the maximal set by definition, and can be subtracted out. What remains is
exactly the maximal set of subsets in x{x). G

An efficient recursive implementationof the operationmaximal is described in [29],

7.2 Setting of Implicit Solution

A binate covering problem instance canbecharacterized by a 6-tuple (r, c, R,C, 0, l), defined as follows:

• the group of variables for labeling the rows: r

• the group of variables for labeling the columns: c

• the set of row labels: R(r)

• the set of column labels: C(r)

• the 0-entries relation at the intersectionof row r and column c: 0(r, c)

• the 1-entries relation at the intersection of row r and column c: l(r, c)

In other words, the userof our implicit binate solver would first choose an encoding for the rows and
columns. Given a binate table, the user will then supply a set of row labels as a BDD R(r) and a set of
column labels as a BDD C(c), and also the two inference rules in the form of BDD relations, 0(r, c) and
l(r, c), capturing the 0-entries and 1-entries.

The classical branch-and-bound solution of minimum cost binate covering is based on the recursive
procedure as shown in Figure 3. In our implicit formulation, we keep the branch-and-bound scheme
summarized in Figure 6, but we replace the traditional description of the tableas a (sparse) matrix withan
implicit representation, using BDD's for the characteristic functions of the rows andcolumns of the table.
Moreover, we have implicit versions of the manipulations of the binate table required to implement the
branch-and-bound scheme. In the following sections we are going to describe the following:

26

• implicit representation of the covering table,

• implicit reduction,

• implicit branching column selection,

• implicit computation of the lower bound, and

• implicit table partitioning.

At each call of the binatecover routinemincov, the binatetable undergoesa reductionstep Reduceand,
if termination conditions are not met, a branching columnis selected and mincov is called recursively twice,
onceassuming the selected columnc, in thesolution set (onthe table RCi, CCi) andonceout of the solution
set (on the table Re-, Cc-). Some suboptimal solutions are bounded away by computing a lowerbound L
on the currentpartialsolution andcomparing it against anupperboundU (bestsolutionobtained so far). A
goodlower bound is based on the computationof a maximalindependentset.

7.3 Implicit Table Generation

Here we define different ways of specifying the binate covering table in decreasing orderof generality of
the binate covering problem. A tableis defined implicitly by generating BDD-based representations of the
rows and columns and by givingrelations specifying the 1 and 0 entries, giventhe rows and columns. By
imposing restrictions on the way in which rows andcolumns are labeled andentries are defined, one gets
representations with varying degrees of generality. We distinguish between the case of a general binate
covering table (1.) and of a binatecovering table with at most one 0 per row (2.), even thoughthey use
die sametablespecification, because in the second casesomesimplifications of the computations to reduce
implicitly the table will be possible and pointed out in the text. Historically the third (less general) way
wasimplemented first to solveexact stateminimization of ISFSM's [30]. It is applicable to otherproblems
whose covering tablecanbe represented in thesameway, e.g.,theexactformulation of technology mapping
for area minimization [50]. There is a trade-offbetweengeneralityof the representation and efficiency of
the computations: "hard-wiring" the rules thatdefine a tablemayspeedup tablemanipulations, to the price
of more limited applicability.

1. General binate covering table

• the group of variables for labeling the rows: r

• the group of variables for labeling the columns: c

• the set of row labels: R(r)

• the set of column labels: C(c)

• the 0-entries relation at the intersectionof row r and column c: 0(r, c)

• the 1-entriesrelation at the intersection of row r and column c: l(r, c)

item Binate covering table assumingeach row has at most one 0:

• same as 1. above.

2. Specializedbinate coveringtable for exact state minimizationand similar problems:

• the groupof variables for labeling the rows (eachlabel is a pair): (c, d)

• the group of variables for labeling the columns: p

27

• the set of row labels: R(c, d)

• the set of column labels: C(p)
• the0-entries relation atthe intersection of row (c, d) and column p: 0((c,d),p)= (p = c)
• the 1-entries relation atthe intersection of row (c,d) and columnp: l((c, d),p) = (pD d)

As an example, for the problem of exact stateminimization, C(p) is the set of labels that denote the
primecompatibles p ofanFSM, i.e., p is in setC ifit is the labelofa primecompatiblep. Primecompatibles
aresets of states and they arerepresented using positionalset notation. Forinstance, ifan FSM has 5 states
si,s2,s3,s4,s5 and p = {si, s4} is a compatible, set C is represented with 5 Boolean variables and p
is labeled as 10010. R(c, d) is the relation expressing covering clauses and closure clauses. A covering
clause for a state says that the state must be contained in at least one prime compatible. A binate clause
for a compatible says that if the compatible is chosen in a solution then at least anothercompatible from a
related set must be in that solution, e.g., clause (p+ p\ + pi -\ VPk), meaningthat if p is in a solution,
either one of p\, pi, •• •, Pk must be in that solution. A covering clause yields a unate row, labeled by a c
part thatdenotes anempty set andby a d part thatdenotesa singletonset, requiring a given statebe covered.
Whenever pD d, there is a 1 at the intersectionof the row labeled by d and the column representing prime
compatible p, meaning that the compatible p contains state d. A closureclause yields a binate row, labeled
by a c part that is the label of the unique prime compatible whose corresponding column has a zero at the
intersection with this row (condition p = c), and by a d part that is the label of a compatible such that
there is a 1 at the intersection of this row and any column whose label p is a prime compatible that contains
compatible d. We refer to [31] for a complete treatment of implicit state minimization of incompletely
specified FSM's.

If the covering problem is unate, the 0(r, c) relation is empty. A typical example is exact two-level
minimization where R(r) = R(m), for m labeling minterms,C(c) = C(p), forp labeling primeimplicants
and 1(r, c) = (p D m). The labelof animplicantcanbe constructed by representing eachBoolean variable
in multi-valued notation, for instance encoding 0 as 10,1 as 01 and - as 11. A complete treatment of this
special case can be found in [24, 8]. The more complex case of implicit exact minimization of generalized
prime implicants is described in [57].

In the next section, we will describe how a binate covering table can be manipulated implicitly so as to
solve the minimum cost binate covering problem. BDD formulas of implicit table operationswill be labeled
1,2, or 3, depending on which of the three previous formulations it refers to.

8 Implicit Table Reduction Techniques

Reduction rules aim to the following:

1. Selection ofa column. A column must be selected if it is the only column that satisfies a given row. A
dual statement holds for columns that must not be partof the solution in order to satisfy a given row.

2. Elimination of acolumn. A column c, can be eliminated if its elimination does not precludeobtaining
a minimum cover, i.e., if there is another column cj that satisfies at least all the rows satisfied by c,.

3. Elimination of a row. A row r, can be eliminated if there exists another row rj that expresses the
same or a stronger constraint.

The order of the reductions affects the final result. Reductions are usually attempted in a given order,
until nothing changes any more (i.e., the covering matrix has been reduced to a cyclic core). The reductions
and order implemented in our reduction algorithm are summarized in Figure 7.
In the reduction, there are two cases when no solution is generated:

28

Reduce(R,C,U){
repeat {

CollapseJColumns(C)
ColumnJDominance(R, C)
Sol = Sol U Essential.Columns(R, C)
if (|Sol| > U) return empty-solution
Unacceptable.Columns(R, C)
Unnecessary.Columns(R, C)
if (C does not cover R) return empty.solution
CollapseJiows(R)
RowS)ominance(R, C)

} until (both J?and C unchanged)
return (R, C)

}

Figure 7: Implicit reduction loop.

1. The added cardinality of the set ofessential columns, and of the partial solution computed so far, Sol,
is larger or equal than the upper bound U. In this case, a better solution is known than the one that
can be found from now on and so the current computation branch can be bounded away.

2. After having eliminated essential, unacceptable and unnecessary columns and covered rows, it may
happen that the rest of the rows cannot be covered by the remaining columns. In this case, the current
partial solution cannot be extended to any full solution.

We are going to describe how the reduction operations are performed implicitly using BDD's on the
three table representations described in the previous section.

8.1 Duplicated Columns

It is possible that more than one column (row) label is associated with columns (rows) that coincide element
by element. We need to identify such duplicated columns (rows) and collapse them into a single column
(row). This avoids the problem of columns (rows) dominating each other when performing implicitly
column (row) dominance. The following computations can be seen as finding the equivalence relation of
duplicated columns (rows) and selecting one representative for each equivalence class.

Definition 8.1 Two columnsare duplicates, if on every row, their corresponding table entries are identical.

Theorem 8.1 Duplicated columns can be computedas:

dup.col(c', c) l = Vr {R(r) => [(0(r, c*) <* 0(r, c)) •(i(r, d) & l(r, c))]}
dup.col(c',c) 2= Vr{R(r)=> [-,0(r,c')--,0(r,c)-(l(r,c') <# l(r,c))]}
dup.col(p\p) 3= fld R(p', d)- fid R(p, d) •V<f {[3cR(c, d)] ^ [(p' Dd)<*(pD d)]}

Proof. As discussed at the end of Section 7.3, the first equation computes the duplicated columns relation
for the most general binate table, and the second equation for the binate table with the assumption that there

29

is atmost one 0 in each row,and the third equationis forthe specializedbinate table for stateminimization,
assumingthe columns are prime compatibles p, andthe rows are pairs (c, d).

Forthe column labels c' and c to be in the relation dup.col, the first equation requires the following
conditions to be met for every row label r e R: (1) the entry (r, c) is a 0 if and only if the entry (r, d)
is a 0, (i.e., 0(r, d) & 0(r, c)), and (2) the entry (r, c) is a 1 if and only if the entry (r, d) is a 1, (i.e.,
1(r, d) <& 1(r, c)). Assumingeach row hasatmostone0 for the second equation, condition 2 requires that
the rowlabeled r cannotintersect eithercolumnat a0, (i.e., ->0(r, d) • ->0(r, c)). •

Theorem 8.2 Duplicated columns can be collapsed by:

C(c) ^ = C(c)- fid [C(d) • (d -< c) •dup.col(d, c)]
C(p) 3= C(pyPp'[C(p')'(p,<p)-dup.col(p,,p)}

Proof. This computation picks a representative column label out of a set of columnlabels corresponding
to duplicated columns. A column label c is deleted from C if and only if there is another column label d
which has a smaller binary value than c (denoted by d < c) and both label the same duplicated column.
Here weexploit the fact that any positional-set ccan beinterpreted as abinary number. Therefore, aunique
representative from aset can be selected by picking the one with the smallest binary value. 14 •

8.2 Duplicated Rows

Definition 8.2 Two rows areduplicates if,onevery column, their corresponding tableentries areidentical.

Detection ofduplicated rows, selection of arepresentative row, and table updating are performed by the
following equations as in the case of duplicated columns.

Theorem 8.3 Duplicated rows can be computed as:

dup.row(r',r) !'2 = Vc {C(c) =* [(0(r',c) & 0(r,c)) •(l(r',c) & l(r,c))]}
dup.row(d,d',c,d) 3= (d = c). fip[C(p) •((p Dd') ^(pD d))]

Proof. Similar to the proof for Theorem 8.1. For the row labels r' and r to be in the relation dupjrow, the
first equation requires the following conditions tobemetfor every column label c € C: (1) the entry (r, c)
is a0 if and onlyif theentry (d, c) is a0, (i.e., 0(r', c) & 0(r,c)), and (2) theentry (r, c) is a 1if and only
if the entry (r', c) is a 1, (i.e., l(r', c) «=> l(r, c)). •

Theorem 8.4 Duplicated rows can be collapsed by:

R(r) ** = R(r)- fir' [R(r') •(r' •< r) •dup.row(r', r)]
R(c,d) 3 = R(c, d) • fid, d' [R(d, d') • (d' < d) •dup.row(d, d', c,d)]

Proof. The proof is similarto that for Theorem 8.2,except we are delete all duplicating rows hereexcept
the representative ones. •

From now on, sometimes we will blur the distinction between a column (row) label and the column
(row) itself, but the context should say clearly which one it is meant.

14Alternatively, onecould have usedthecproject BDDoperator introduced in [38] to pickarepresentative column outof each
set of duplicated columns.

30

8.3 Column Dominance

Some columns need not be considered in a binate table, if they are dominated by others. Classically, there
are two notions of column dominance: a-dominance and /9-dominance.

Definition 83 A column d a-dominates another column cifd hasall the I's ofc, andchasall the 0's of
d.

Theorem 8J The a-dominance relationcan be computed as:

a.dom(d, c) l = fir {R(r) •[l(r, c) •-<l(r, d)]+ [0(r, d) •-iO(r, c)]}
ot.dom(d,c) 2= fir {R(r)'[\(r,c)-^l(r,d) + 0(r,d)]}
a.dom(p',p) 3= fic,d[R(c,d)-(pDd)'(p'2d)l fidR(p',d)

Proof. For columnd to a-dominate c, the first equation ensures that there doesn't exists a row r e R such
thateither (1) the table entry (r, c) is a 1 butthetable entry (r,d) is not,or (2) the table entry (r,d) is a 0
but the tableentry (r, c) is not. Assuming eachrowhas at mostone 0, condition2 can be simplified to the
second equationthat tableentry (r, d) is a 0. •

Definition 8.4 A column d /^-dominates another column c if (I) d has all the I's ofc, and (2) for every
rowr' in which d containsa 0, there existsanother row r in which c has a 0 such thatdisregarding entries
in column d, r' has all the I's ofr.

Theorem 8.6 The^-dominancerelationcan be computed by:

p.dom(d, c) !'2 = fid {R(d) •[l(r', c) •-.l(r', d)
+ 0(r', c')- fir [R(r) •0(r, c)- fie" [C(c") • (c" # d) • l(r, c") •-,l(r', c")]]]}

P-dom(p',p) 3= fid' {3d (R(c',d')) •(p Dd') -(p' 2 d')}
. fid' {R(p', d')- fid [R(p, d). fig [C(q) • (q ± p') • (q 2 d) • (q 2 d'))]}}

Proof. According to the definition, the table should not contain a row r' € R if either of the following
two cases is true at that row: (1) table entry at column c is a 1 while entry at column d is not a 1 (i.e.,
l(r', c) •-il(r', c')), or (2) c' hasa 0 in row r' (i.e., 0(r', c7)) but there doesnot exista row r e R suchthat
its column c is a 0 and disregardingentries in column d, row d has all the 1's of row r. Rephrasing the last
partof the condition 2, the expression fid' [C(d') • (c" ^ c') • l(r, c") •-il(r', c")] requires that there is no
column d' 6 C apart from columnd suchthat c" has a 1 in row r, but not in row d. D

The conditions for a-dominance are a strict subset of those for /^-dominance, but a-dominance is easier
to compute implicitly. Either of them can be used as the columndominance relation colAom.

Theorem 8.7 Theset ofdominated columns in a table (R, C) can be computed as:

D(c) l*= C(c).3d[C(c')'(c'^c)-coLdom(c',c)]
D(p) 3= C(p).3p'[C(p').(p'?p)-coLdom(p,,p)]

Proof. A column c e C is dominated if there is another d eC different from c (i.e., d ^ c) which column
dominatesc (i.e., coLdom(d, c)). •

31

Theorem 8.8 The following computations delete a set of columns D(c) from a table (R, C) andall rows
intersecting these columns in a 0.

C(c) >•* = C(c)^D(c)
R(r) i*= R(r)-fic[D(c)-0(r,c)]

C(p) 3= C(p).->D(p)
R(c,d) 3= R(c,d)-->D(c)

Proof. The first computation removes columns in D(c) from the set of columns C(c). The expression
3c [D(c) •0(r, c)]defines all rows r intersecting thecolumns in D in a 0. Theyare deleted from the set of
rows R. •

8.4 Row Dominance

Definition 8.5 A row d dominates another rowrifrhas all theI's and0's of d.

Theorem 8.9 The row dominance relation can be computed by:

row.dom(d, r) l* = fie {C(c) •[l(r', c) •-<l(r, c) + 0(r', c) •-.0(r,c)]}
row.dom(d, d', c,d) 3= fip [C(p) •(p Dd') •(p 2 d)] -[unatejrow(d) + (d = c)\

Proof. For d to dominate r, the equation requires that there is no column c € C such that either (1) the
table entry (d, c) is a 1buttheentry (r,c) is not, or(2) theentry (d, c) is a 0 buttheentry (r, c) is not. D

Theorem 8.10 Givena table (R(r) ,C(c)), theset of unate rowlabels r canbe computed as

unate.row(r)!'2 =fic [C(c) •0(r, c)].

Given a table (R(c, d), C(p)), theset of unaterow labels c can be computed as

unate.row(c) 3=fip [C(p) • (p = c)] —fie C(c).

Theorem 8.11 The set ofrows not dominated by other rows can be computed as:

R(r) J«2 = R(r)- fid [R(r') • (d ^ r) •row.dom(d, r)]
R(c, d) 3= R(c, dy fid, d! {R(d, d!) • [(d, d') ^ (c, d)] •row.dom(d, d', c,d)]}

Proof. The equation expresses that any row r € R, dominated by another different row d e R, is deleted
from the set of rows R(r) in the table. •

32

8.5 Essential Columns

Definition 8.6 A column c isanessential column ifthere isa rowhaving a I incolumn c and2 everywhere
else.

Theorem 8.12 Theset ofessential columns canbe computedby:

ess.col(c) 1= C(c) •3r {R(r) •l(r, c)- fid[C(d) •(d ± c) •(0(r, d) + l(r, d))]}
ess.col(c) 2= C(c) •3r {R(r) •l(r, c) •una*e_rot/;(r). ,3c' [C(d) •(c' # c) •l(r, cO]}
ess.co/(p) 3 = C(p) •3c, d {R(c, d)'(pDd)- unate.roiu(c)- jBj/ [C(p') •(p' ^ p) • (p' 2 d)]}

Proof. For a column c € C to be essential, there must exist a row r e R which (1) contains a 1 in
column c (i.e., l(r, c)), and (2) there is not anotherdifferent column intersecting the row in a 1 or 0 (i.e.,
fid[C(d)-(d?c)-(0(r,d) + l(r,d))]).

Assuming that a row can have at most one 0, a column c € C is essential if and only if there is a row
r e R which(1)containsa 1in columnc (i.e., l(r, c)),and (2)does not containany 0 (i.e., unate.row(r)),
and(3)there is notanother different columnintersecting therow ina 1(i.e., fid [C(d) •(d =fi c) •1(r,c')]). •

Theorem 8.13 Essential columnsmust be in the solution. Each essential column must then be deletedfrom
the table together with all rows where it has I's.

Thefollowing computations add essential columns to the solution, delete themfrom the set ofcolumns
and delete all rows in which they have I's:

solution(c) 1>2 = solution(c) + ess.col(c)
C(c) 1-2= C(c) ^ess.col(c)
R(r) !'2 = R(r)- fie [ess.col(c) • l(r, c)]

solution(p) 3 = solution(p) + ess.col(p)
C(p) 3= C(p) •-yess.col(p)

R(c,d) 3= R(c,d)-->ess-col(c)

Proof. The first two equations move the essential columns from the column set to the solution set. The third
equation deletes from the set of rows R all rows intersecting an essential column c in a 1. •

8.6 Unacceptable Columns

Definition 8.7 A column c is an unacceptable column if there is a row having a 0 in column c and 2
everywhere else.

Theorem 8.14 The set ofunacceptable columns can be computed by:

unacceptable.col(c) 1= C(c) •3r {R(r) •0(r,c)- fid [C(d) •(d ^ c) •0(r,d)]}
•fic'[C(d).l(r,d)]}

unacceptable.col(c) 2= C(c) •3r {R(r) •0(r,c)- fid [C(d) • l(r, c')]}
unacceptable.col(p) 3= C(p) •3d{R(p, d)- fip' [C(p') • (p' 3 d)]}

33

Proof. For column c e C to be unacceptable, there must be a row r e R such that (1) it intersects the
column c at a 0, and (2) there does not exists another column d different from c which intersects that
row r at a 0 (i.e., fid [C(d) • (d ^ c) •0(r, d)]), and (3) no column d intersects that row r in a 1 (i.e.,
fid [C(d) • l(r, d)]). Condition 2 is not needed if we assume thateach rowcontains at mostone 0. •

8.7 Unnecessary Columns

Definition 8.8 A column is an unnecessary column ifit does not have any I in it.

Theorem 8.15 Theset ofunnecessarycolumnscan be computed as:

unnecessary.col(c) 1|2 = C(c)- fir [R(r) •l(r, c)]
unnecessary.col(p) 3= C(p)' fie,d[R(c,d)' (pD d)]

Proof. A column c € C is unnecessary if no row r € R intersectsit in a 1. •

Theorem 8.16 Unacceptable and unnecessary columns should beeliminatedfrom the table, together with
all the rows in which such columns have 0's.

The table (R, C) is updated according to Theorem 8.8 bysetting

D(c) l'2 = unacceptable-col(c) + unnecessary.col(c)
D(p) 3= unacceptable.col(p) + unnecessary.col(p)

Proof. Obvious. •

9 Other Implicit Table Manipulations

To have a fully implicitbinate covering algorithm asdescribed inSection 7, wemustalso compute implicitly
a branching column anda lowerbound. These computations as well as tablepartitioning involve solving a
common subproblem of finding columns in a table which have themaximum number of 1's.

9.1 Selection of Columns with Maximum Number of I's

Given a binary relation F(r, c) as a BDD, the abstracted problem is to find a subset of c's eachof which
relates to the maximum number of r's in F(r, c). An inefficient method is to cofactor F with respect to c
taking each possible values c„ count thenumber of onset minterms of each F(r, c)|c=c., and pickthe c,'s
with the maximum count. Instead our algorithm, Lmax, traverses each node of F exactly once as shown
by the pseudo-code in Figure 8.

Lmax takesa relation F(r, c) andthevariables set r as arguments andreturns the set G of c's which are
related to the maximum numberof r's in F, together with the maximum count. Variables in c are required
to be ordered before variables in r. Startingfromthe rootof BDD F, the algorithmtraversesdownthe graph
by recursively calling Lmaxon its then andelse subgraphs. This recursion stopswhen the top variable v
of F is withinthe variableset r. In this case, the BDDrooted at v corresponds to a cofactorF(r, c)\c=Ci for
some c^ The minterms in its onset are counted and returned as count, which is the number of r's that are
related to c,.

34

Lmax(F,r) {
v —bddJop.var(F)
if (v € r)

return (l,bddjcount.onset(F))
else { /* v is a c variable */

(T,countJT) = Lmax(bddJhen(F),r)
(E, count_E) = Lmax(bdd.else(F),r)
count = max(cowntJT,countJE)
if (countJT = count-E)

G = ITE(v,T,E)
else if (couni = count.T)

G = ITE(v,T,0)
else if (cownt = count.E)

G = ITE(v,0,E)
return (G, cowni)

}
}

Figure 8: Pseudo-code for the Lmax operator.

During the upward traversal of F, we construct a new BDD G in a bottom up fashion, representing
the set of c's with maximum count. The two recursive calls of Lmax return the sets T(c) and E(c) with
maximum counts count J? and count.E for the then andthe else subgraphs. The largerofthe two counts is
returned. If the two counts arethe same, the columns in T and E are mergedby JTE(v, T, E) andreturned.
If count.T is larger, only T is retained as the updated columns of maximum count. And symmetrically
for the other case. To guarantee that each node of BDD F(r, c) is traversed once, the results of Lmax
and bddjcount.onset arememoized in computed tables. Note that Lmax returns a set of c's of maximum
count. If we need only one c, some heuristic can be used to break the ties.

Example 9.1 To understand how Lmax works consider theexplicitbinatetable:

00

01

10

11

00

1

2

2

2

01

2

1

1

1

10

1

1

2

2

11

1

2

1

1

withfour rows andfour columns. The columns thatmaximize the number of I's are the second and the
fourth. If the rows and columns are encoded by 2 Boolean variables each, using the encodings given on
top of each column and to the left of each row, the I entriesof the table are represented implicitly by the
relation F(c, r)15 whose minterms are:

{0000,1000,1100,0101,1001,0110,1110,0111,1111}.

15 r and c are swapped in F sothat minterms are listed in the order of the BDD variables.

35

The BDDrepresenting F isshown inFigure 9. The resultof invoking LmaxonF(r, c) isaBDDrepresenting
the relation G(c) whose minterms are: {01,11}, corresponding to the encodings of the second andfourth
column.

0 1 1

F(r,c)

Figure 9: BDD of F(r, c) to illustratethe routine Lmax.

9.2 Implicit Selection of a Branching Column

Theselection of abranching column is akeyingredientof anefficient branch-and-bound covering algorithm.
A good choice reduces the number of recursive calls, byhelping to discover more quickly a good solution.
We adopt a simplified selection criterion: select a column with a maximum number of 1's. By defining
F'(r,c) = R(r)-C(c) •l(r,c) which evaluates true if and only table entry (r, c)is a 1,ourcolumn selection
problem reduces to one of finding thec related to the maximum number of r's in the relation F'(r,c),and
soit canbe found implicitly by calling Lmax(F', r). Amore refined strategy is to restrict ourselection of
a branching column to columns intersecting rows of a maximal independent set, because a unique column
musteventually be selected from each independent row. A maximal independent set can be computed as
follows.

9.3 Implicit Selection of a Maximal Independent Set of Rows

Usually alowerbound isobtained bycomputing amaximum independent setof theunate rows. Amaximum
independent set of rows is a (maximum) set of rows, no two of which intersect the samecolumn at a 1.
Maximum independent setis anNP-hard problem andanapproximate one(only maximal) canbecomputed
by a greedy algorithm. The strategy is to select short unate rows from thetable, so weconstruct a relation
F"(c, r) = R(r) •unate.row(r) •C(c) •l(r, c). Variables in r are ordered before those in c. The rows with
the minimum numberof 1's in F" can be computed by Lmin(F", c), by replacing in Lmax theexpression

36

max(countJT, countJ!) with min(count.T, count_E). Once ashortest row, shortest(r), isselected, all
rows having 1-elements incommon with shortest(r) are discarded from F"(c, r) by:

F"(c, r) = F"(c, r). fid {3d[shortest(d) •F"(d, d)]. FV, r)}

Another shortest row canthenbeextracted from theremaimng table F"andsoon,untilF"becomes empty.
Themaximum independent setconsists of all shortest(r) so selected.

9.4 Implicit Covering Table Partitioning

If a covering table can bepartitioned into n disjoint blocks, the minimum covering for the original table
is the union of the minimum coverings for the n sub-blocks. Let us define the nonempty-entry relation
01(r,c) = 0(r,c)+ l(r,c). The implicit algorithm inFigure 10 takes atable description interms ofits set
ofrows R(r), its set ofcolumns C(c) and the nonempty-entry relation 01(r,c), partitions it into ndisjoint
sub-blocks, and return them asn pairs of (R{, C{), each corresponding totherows and columns for thet-th
sub-block.

n-way partitioningcan beaccomplished by successive extraction ofdisjointblocks from the table. When
the following iteration reaches a fixed point, (fl*, Ck) corresponds toadisjoint sub-block in (R, C).

Ro(r) = Lmax(R(r) •C(c) •01(r,c), c)
Ck(c) = C(c)-3r{Rk-i(r)'01(r,c)}
Rk(r) = R(r)-3c{Ck(c)-01(r,c)}

This sub-block is extracted from the table (R,C) and theabove iteration is applied again to the remaining
table, untilthe tablebecomes empty. [30] provides a moredetailed explanation.

Given a covering table, a single row Ro(r), which has the maximum number of nonempty entries, is
first picked using LmaxQ. The set of columns C\ (c) intersecting this row at 0 or 1 entries is given by
C(c) •3r [Ro(r) •0l(r, c)] (we want c € C such that there is a row r € Ro which intersects c at a 0 or
1). Next we find the set of rows R\ intersecting the columns in C\ via nonempty entries, by a similar
computation R(r) •3c [C\ (c) •0l(r, c)]. Then we can extract all the rows ifeM which intersects C\ (c),
and so on. This pairof computations is iteratively applied within the repeat loop in Figure 10until no
new connected row or column can be found (i.e., Rk = Rk-\). Effectively, starting from a row, we have
extracted a disjoint block (Rl,C1) from the table, which will later bereturned. The remaining table after
bi-partition simply contains the rows R- Rl and the columns C- Cl. Ifthe remaining table is not empty,
we will extract another partition (R2, C2) by passing through the outer while loop a second time. If the
original table contains n disjoint blocks, the algorithm is guaranteed to return exactiy the n sub-blocks by
passingthrough the outer while loop n times.

10 Quantifier-Free Table Reductions

The implicitcomputations presented tomanipulate abinate table are valid afortiori when thetable isunate.
In thelatter case, however, more specialized algorithms canbe designed to better exploit the features of the
problem. Historically speaking, animplicitizationofcovering problems has been accomplished first forthe
case of unate tables generated in theminimization of two-level logic functions. A long list of papers has
been produced onthesubject [24,12,37,14,13,11,15,17,18,8]. Here wewill outline some key points.

Given a Boolean function /, consider the problem of finding a minimum two-level cover. A classical
exact algorithm by Quine and McCluskey reduces it to a unate covering problem where the rows of the
table are mintermsand the columnsof the table are primes of the function. There is a 1 at the intersection

37

n.way.partition(R(r), C(c), 01(r, c)) {
w = 0

while (R not empty) {
jfc = 0

Ro(r) = Lmax(i2(r) •C(c) •01(r, c))
repeat {

k = k-rl

Ck(c) = C(c).3r{Rk-i(r).0l(r,c)}
Rk(r) = R(r)'3c{Ck(c)-01(r,c)}

}w\il(Rk = Rk-i)
Rn = Rk
Cn = Ck
R = R — Rk

c = c-ck
n = n + 1

}
return {(iJ'.C): 0 < i < n - 1}

}

Figure 10: Implicit n-way partitioningof a covering table.

of a row and column, if the prime associated to the column contains the minterm associated to the row. A
routine that solves explicitly a unate table is available in the program espresso. In that implementationan
improvement has been introduced,namely there is only one row for each set of minterms that are covered
by the sameset of primes. In otherwords,the tableis constructed in such away that thereare no equalrows
in it.

This problemcanbe implicitized as a special caseof the scheme presented in the binatecase. Basically
one assignslabelsto primesandminterms in sucha way thatthereis a 1 atthe intersection of acolumn and
a row if andonly if the corresponding primelabel contains the corresponding minterm label. What is new
hereis that in this special case the computation to reduce aunatetablecanbe made quantifier-free, i.e., one
candefinerecursive computations thatworkdirectly on binary decision graphs representations and buildthe
graphs representing the reduced setsofcolumn androwlabels, withoutquantifications. To achieve the same
goal with quantified computations one may incurmoreeasily in the danger of trying to build intermediate
graphs too large to be stored in memory. This is considered a winning technique thataccounts for part of
the success of the application. We will illustrate the pointmade in the caseof row dominance, referring
to [8] for a complete treatment.

We remind that a literal is a propositional variable x* or its negation x~k~. Pn is the set of productsthat
canbe built from the set of variables {x\,..., xn}. The subset relation C is a partial order on the set Pn.
P is maximal if and only if there do not exist two products p and p' of P suchthatp c p'. A product p is
animplicant of a Boolean function / if and only if p C {x e {0, l}n | f(x) ^ 0}. A product p is a prime
implicantof / if and only if it is a maximal element of the set of implicantsof / with respect to C. Any
subset P of Pn can be partitioned in the following way:

P = P\k U ({xk} x /^) U ({xk} x PXk)

38

where P\k is thesetof products of P where neither thevariable Xk norxj; occurs; P^ (respectively PXk) is
the set of products of P where xjt (xk) occurs, after dropping x~k (xk).

A Booleanspace to representall productscan be obtainedby a numberof variablesdouble with respect
to the numberof input variablesof /. It is the metaproduct representation in the literature by researchers at
Bullandthe extendedspacein the literatureby researchers at UCB. The basic idea is to encodethe presence
of Xk or X* or both (i.e., neither literal appears explicitly in the product) with two bits. The table covering
problem can now be described by the triple < Q, P, C>, where Q is the set of minterms of /, P is the set
of primes of / and C describes the table building relation.

A unate table is reduced by applying row and column dominance and detection of essential primes.
Consider rowdominance, a row R' dominates another row R if andonly if R has all the 1's of R'. In the
terminology of < Q, P, C>, if q is the label of R and q' is the label of R', this translatesinto:

Definition 10.1 q <q a* <* (Vp € P (a1 C p) =* (q C p)).

Moreover, if there are rows that intersect exactly the same set of columns, i.e., are equivalent, one should
computethisequivalence relation andthenreplaceeachequivalence classwithonerepresentative (sometimes
called c-projection operation [36]). Row dominanceshouldthen be applied to these representatives only.

Insteadof usingsucha projectionandthenapplying thedefinition of dominance relation, onecan define
a rowtransposing function that maps the rows on objects whosemanipulation can be done more efficiently.
The maximal elements of the transposed objects are the dominating rows.

The basic idea is that each row of a coveringtable corresponds to a cube, called signature cube, that is
the intersectionof the primes coveringthe mintermassociated to the row. This was noticed first in [45]. A
rigorous theory and an efficientalgorithm were presentedin [43]. The steps of the algorithm follow:

1. Compute the signature cube of the each cube of an arbitrary initial cover and make irredundant the
resulting cover.

2. Since for each cube of an arbitrary irredundant cover of signature cubes there is some essential
signature cube contained by it, obtain the irredundant cover of essential signature cubes (called
minimum canonical cover).

3. For each cube of the minimum canonical cover, generate the set of primes containing it (the essential
signature set).

4. Solve the resulting unate covering problem as usual.

The resulting unate covering problem is exactly what one could get by applying row domination to the
minterms/primes table.

One can define a row transposingfunction tq : Q —> Pn basedon the idea of signature cubes.

Definition 10.1 rQ(q) = f){PeP\qcP}P'

In otherwords, each element of tq(Q) is obtained by an element qof Q, by intersecting all elements of P
that cover q. The following theorem relates row dominance to the row transposing function.

Theorem 10.1 Thefunction tq is such that q<q q' <& tq(q) C TQ(q').

Given a setcovering problem (Q,P, C), thefunction maxgTQ(Q) computes the maximal elements of the
set tq(Q), i.e., the dominating rows.

Since the range tq is Pn, the computation of tq can be easily transposed to the case of the extended
space or metaproducts representation. The most obvious implementation would use quantified Boolean

39

MaxTauQ(Q,P,k){
ifQ = 0orQ = 0{
ifP = {l} return {1}
KO=Subset(QXk,I^k)
Kl = Subset(QXk,PXk)
KO = Qik U (Q^\ KO) U (QXk \ Kl)
R= MaxTauQ(K,Pik,k+l)
RD = MaxTauQ(KO, Pu U/%•), k+ 1)
Rl = MaxTawQ(Kl, Plfc UPXk),k + 1)
return flu

{xjk} x Subset(RO, R))U
{xk} x Subset(Rl,R.))U

}

Figure 11: Recursive computation of maxgtq(Q)

formulas, but in practice they tend to produce huge intermediate ROBDD's. A quantifier free recursive
computation of maxgTQ(Q) hasgiven better experimental results.

We presentnowa pseudo-code description from [17] of MaxTauQ(Q, P,k),&quantifier-free recursive
procedure that compute maxgTQ(Q). It uses two auxiliary functions Supset(P,Q) = {p e P \3q €
Qp D q, and Subset(P, Q) = {p e P \3q 6QpC q).

Theorem 10.2 MaxTauQ(Q,P, 1) computes maxcTQ(Q).

Proof. The terminal cases are easy. Consider a variablex^ One can divide the set P in three subsets: PXk,
the products of P in which Xk occurs, P^, the products of P in whichxl occurs and P\k, the products of
P in whichneither xknor x~k occurs. Similarly, onecan dividethe set Q in three subsets: QXk, the products
of Q in which Xk occurs, Q-^, the products of Q in which xj occurs andQ\k, the products of Q in which
neither x* nor xl occurs.

The products of Q-^can be contained by products of P^ or by products of P\k. The products of QXk
can be contained by products of PXk or by products of of P\k. The products of Q\k can be contained only
byproducts of Pik. KO hastheproducts of <2x* contained byproducts of F^. KI hastheproducts of QXk
contained by products of PXk. K has the products of Q\k, the products of Q-^ that are not contained by
products of Pxt and the products of QXk that are not contained by products of PXk.

Also the set MaxTauQ(Q, P, 1)can be dividedin threesubsets: the set of products in which x* occurs,
the set of products in which xjt occurs and the set of productsof P in which neither x* nor xjb occurs. The
last set is givenby R, that is MaxTauQ(K, P\k,k + 1). Indeed in R the second argument is P\k, the set
of products of P where neither x* nor xj occurs. The first argument is K that includesthe products of Q
whereXfc nor xjtoccursandso can be contained onlybyproducts of P\k, andthe products of Q whereeither
Xk or xjt occurs but they are not coveredby PXk or P^ and so they can be coveredonly by P\k. The second
set is obtained from RO, that is MaxTauQ(I<0, Pik U Pzj, k + 1), by the followingmodification. In the
first argument of RO there are the products of Q where xl occurs, which are contained by the products of
P in the second argument. A productin RO mustbe multiplied by {xjt} becausefor sure each q e KO is
contained by a product of Pzj, andby definition of tq (q) onemustintersect all theproducts thatcontain q.
But before multiplying by {x£} we mustsubtract from RO the products contained in R (Subset(RO, R)),
becauseif a product rOof RO is containedby a product r of R (or is equal to) it means that there are q € A*
and qO e KO such thattq (q) D tq (q0) (because r contains rO and rO ismultiplied by{xi}) and we want

40

tokeep only tq(q) because we are computing maxgtq. Instead if aproduct of R iscontained byaproduct
of RO, the fact that the product of RO mustbe multiplied by {x~k } makes the twoproducts not comparable.
Therefore {xk} x (RO \ Subset(RO, R)) is thesetofproducts of MaxTauQ(Q, P, 1) in which xjt occurs.
Replacing verbatim {xjt} withx*,thesamereasoning applies fortheaddition coming from Rl, from which
the first set is obtained. •

After the setQ' = maxcjQ (Q) has been computed, the problem < Q, P, C> transforms to < Q', P,R' >,
where q'R'p if and only if q' = tq (q) and q c p. R'=C, since q C p if and onlyif tq (q) C p. Therefore
the new covering problem is < Q', P, C>.

A similardevelopment allows to compute column dominance by finding the maximal elements of a set
to which columns are mapped by a column transposingfunction. We refer for details to [17].

In [18] it is stated that the usage of Zero-Suppressed BDD's by Minato [44] instead of ROBDD's [6]
resulted in more efficient implicit representations of the computations of the problem.

11 Experimental Results of Binate Covering

We implemented a specialized solverwherethe tableis specified as in variant3. of Section7.3 (Specialized
binatecoveringtable for exact state minimizationand similarproblems)and we applied it to the problemof
exact state minimization of incompletely specified FSM's (ISFSM's) [31].

Weimplementedalso a more general solver that does not rely on a hard-wired rule to determine 0 and
1 entries, but instead works with relations 0(r, c) and 0(r, c) for 0 entries and 1 entries. It corresponds to
variant 2. of Section 7.3 (Binate covering table assuming each row has at most one 0). The difference
betweenvariant 1. and 2. is not in the specification of the table, but in the computationsfor table reduction
that can be simplified in the latter case. We applied it to the problem of exact state minimization of
pseudo-deterministic FSM's [32]. The same binate solverwas applied also to the problem of selection of
generalized prime implicants [57].

In this section we report results of two applications of the previousimplicit binate covering algorithms.
Wewill concentrate on the experimentalperformanceof binatecovering, referring to the original papers for
a full-fledged description of the specific applications.

11.1 State Minimization of ISFSM's

Here we provide data for a subset ofthem, sufficientto characterizethe capabilities ofourprototype program.
Comparisons ofour program ism are made with stamina. The binate covering step of stamina was run

with no row consensus, because row consensus has not been implemented in our implicit binate solver. Our
implicit binate program does not feature Gimpel's reduction rule, that was instead invoked in the version
of stamina used for comparison. This might sometimes favour stamina, but for simplicity we will not
elaborate further on this effect. Missing from our package is also table partitioning. All run times are
reported in CPU seconds on a DECstation 5000/260 with 440 Mb of memory.
The following explanations refer to the tables of results:

• Under table size we provide the dimensions of the original binate table and of its cyclic core, i.e., the
dimensions of the table obtained when the first cycle of reductions converges.

• # mincov is the number of recursive calls of the binate cover routine.

• a and 0 mean, respectively, a and 0 dominance.

• Data are reported with a * in front, when only the first solution was computed.

41

• Data are reported with a f in front, when only the first table reduction was performed.

• # cover is the cardinalityof a minimumcost solution(whenonly the firstsolutionhas been computed,
it is the cardinality of the first solution).

• CPU time refers only to the binate covering algorithm. It does not include the time to find the prime
compatibles.

11.1.1 Minimizing Small and Medium Examples

Withthe exception of ex2, ex3, ex5, ex7, the examples from the MCNC and asynchronous benchmarks do
not require prime compatibles for exact state minimization and yield simple covering problems16. Table 1
reports those few non-trivial examples. They wereall run to full completion, with the exception of ex2. In
the case of ex2, we stopped both programs at the first solution.

table size (rows x columns) # mincov #cover CPU time (sec)

FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction a 0 a 0 a 0 a 0 a 0 a 0
ex2 4418x1366 3425x1352 *6 *14 *6 *4 ♦10 *12 *10 *9 *58 *293 •116 *91

ex2 4418x1366 3425 x1352 *6 *14 *6 286 *10 ♦12 *10 5 ♦58 ♦293 *116 2100

ex3 243x91 151x84 201 37 91 39 4 4 4 4 78 33 0 0

exS 81x38 47x31 16 6 10 6 3 3 3 3 4 3 0 0

ex7 137x57 62x44 38 31 37 6 3 3 3 3 8 12 0 0

Table 1: Examples from the MCNC benchmark.

These experiments suggest that

• the number of recursive calls of the binate cover routine (# mincov) of ism and stamina is roughly
comparable, showing thatour implicitbranching selection routine is satisfactory. This is an important
indication,because selecting a good branchingcolumnis a more difficult task in the implicit frame.

• the running times are better for stamina except in the largest example, ex2, where ism is slightly
faster than stamina. This is to be expected because whenthe size of the table is small the implicit
approach has no special advantage, but it starts to pay off scaling up the instances. Moreover, our
implicit reduction computations have not yet been fully optimized.

11.1.2 Minimizing Constructed Examples

Table 2 presents a few randomly generated FSM's. They generate giant binate tables. The experiments
show thatismis capable of reducing thosetableandof producing a minimum solution or at least a solution.
This is beyond reach of an explicit technique and substantiates the claim that implicit techniques advance
decisively the size of instances that can be solved exactly.

11.1J Minimizing FSM's from Learning I/O Sequences

Examples in Table 2 demonstrate dramatically the capability of implicit techniques to build and solve
huge binate covering problems on suites of contrived examples. Do similar cases arise in real synthesis

"Moreover, in the case of the asynchronous benchmark a more appropriate formulation of state minimization requires all
compatibles and a different set-up of the covering problem.

42

table size (rows x columns) # mincov #cover CPU time (sec)

FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction a 0 a 0 a 0 a 0 a 0 a 0
ex2.271 95323x96382 0x0 1 1 - - 2 2 - - 1 55 fails fails

ex2.285 1x121500 0x0 1 1 - - 2 2 - - 0 0 fails fails

ex2304 1053189x264079 1052007x264079 2 - - - 2 - - - 463 fails fails fails

ex2.423 637916x160494 636777x160494 *2 - - - *3 - - - ♦341 fails fails fails

ex2.680 757755x192803 756940x192803 2 - - -
2 - - -

833 fails fails fails

Table 2: Random FSM's.

applications? The examples reported in Table 3 answer in the affirmative the question. They are the from
the suite of FSM's described in [46]. It is not possibleto build and solve these binate tables with explicit
techniques. Instead we can manipulate them with our implicit binate solver and find a solution. In the
example/<?Hrr.40, only the first table reduction was performed.

table size (rows x columns) # mincov # cover CPU time (sec)

FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction a 0 a 0 a 0 a 0 a 0 O 0
threer.20 6977x3936 6974x3936 *4 *6 *5 *3 *5 *5 *6 *6 *13 ♦26 ♦1996 *677

threer.25 35690x17372 34707x17016 *3 *6 - - *5 *6 - - *69 *192 fails fails

threer.30 68007x33064 64311x32614 *4 ♦9 - - *8 *8 - - *526 *770 fails fails

threer.35 177124x82776 165967 x 82038 *8 *9 - - *12 *10 - - ♦2296 ♦2908 fails fails

threer.40 1209783x529420 1148715x526753 *8 - - - •12 - - - ♦6787 fails fails fails

fourr.16 6060x3266 5235x3162 *2 *3 *3 *3 *3 *3 *4 *4 *6 ♦23 *1641 *513

fourr.16 6060x3266 5235 x 3162 *2 623 *3 377 *3 3 *4 3 *6 9194 •1641 1459

fourr.20 26905x12762 26904x12762 *2 *4 - -

♦4 *4 - - ♦31 ♦68 fails fails

fourr.30 1396435x542608 1385809x542132 *2 *5 - - *4 *5 - - ♦1230 ♦1279 fails fails

fourr.40 6.783e9x2.388e9 6.783e9x2.388e9 tl t- f723 fails fails fails

Table 3: Learning I/O sequences benchmark.

11.1.4 Minimizing FSM's from Synthesis of Interacting FSM's

Primecompatibles are required only for the state minimization of ifsml and ifsml. For ifsml, ISM can
find a first solution faster than stamina using a-dominance. But as the table sizes are not very big, the run
times ism take are usually longer than those for stamina.

table size (rows x columns) # mincov #cover CPU time (sec)
FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction a 0 a 0 Of 0 a 0 a 0 a 0
ifsml 17663 x 8925 16764x8829 *4 2 *10 3 *14 14 *15 14 ♦388 864 *17582 805

ifsml 17663 x 8925 16764x8829 *4 2 24 3 ♦14 14 14 14 *388 864 40817 805

ifsm2 1505 x 774 1368x672 4 3 41 44 9 9 9 9 136 230 49 3

Table 4: Examples from synthesis of interactive FSM's.

43

11.2 Selection of Generalized Prime Implicants

Tables 5 and 6 report the results of running our program ISA to select a minimal encodeable cover of
generalized prime implicants (GPI's). GPI's are an extension of the concept of prime implicants to the
case of multi-valued input and multi-valued outputBoolean functions. An encodeable selection of GPI's
translates into a two-valued implementation of the samesize. Details can be found in [19,57], For these
experiments ISA has been run with option -m, that computes a subsetof the GPI's, to generate smaller
tables. The tables provide the following information:

• Underthe column"tablesize" we provide the dimensions of the originaltable and of its cycliccore,
i.e., the dimensions of the table obtained when the firstcycle of reductions converges.

• The column "mincov calls" is the number of recursive calls of the implicit table solver.

• The column "table sol." is the cardinalityof the coverof GPI's returned by the table solver.

• The column"CPUtime table red." gives the timefor the binatetable solver. The timeto computethe
prime compatibles is not included.

Thepartof ISA thatcomputes anencodeable cover ofGPI's and gets thecodes byasecond calltoanimplicit
table solver is not reported here.

Outof theexamples in Table 5, isa fails to complete the first tablereduction of slavebecause of timeout
at 18000 seconds, during collapse columns. Ouf of the examples in Table 6, ISA fails to complete some
of them, again due to timeout or no more memory in the collapse column stepof the first table reduction.
FSM's cse, dk512, keyb, ex2, maincont, pkheader, markl were run on a DEC7000Model 610 AXP with
1Gb ofmemory. There is no program against which to compare.

Weunderlinethat the coveringproblemsfaced to selectcovers of GPI's, eventhoughthey are unate, are
oftenharderthanthoseencountered to selectcovers of primeimplicants in the espresso benchmark [24,8],
a reason beingthe largervariable support of the BDD representations of columns and rows. To be ableto
solve the examples of the previous tables, the package described in [31] had to be further optimized and
inadequacies still remain to be addressed.

References

[1] K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDDpackage. In The Proceedings
oftheDesignAutomation Conference, pages 40-45, June 1990.

[2] R.Brayton, G.Hachtel, C.McMullen, andA.Sangiovanni-Vincentelli. LogicMinimizationAlgorithms
for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[3] R. Brayton, A.Sangiovanni-Vincentelli, and G. Hachtel. Multi-level logicsynthesis. The Proceedings
ofthe IEEE, february 1990.

[4] R. Brayton, A. Sangiovanni-Vincentelli, G. Hachtel, and R. Rudell. Multi-level logic synthesis.
Unpublished book, 1992.

[5] R. Brayton and F. Somenzi. An exact minimizer for Boolean relations. In The Proceedings of the
International Conference on Computer-Aided Design, pages316-319, November 1989.

[6] R. Bryant. Graph based algorithm for Boolean function manipulation. In IEEE Transactions on
Computers, pages C-35(8):667-691,1986.

44

table size (row xcol) mincov table CPU time (sec.)

FSM before red. | after red. calls sol. table red.

bbara 187x4124 98x35 9 8 329

bbtas 28 x 107 9x6 3 4 3

beecount 153 x176 0x0 6 44

chanstb 169216x525 0x0 11 1218

cpab 208896x1892 683 x 73 4 8 7774

dkl4 157x199 0x0 17 129

dkl5 88x68 0x0 14 9

dkl7 64x164 0x0 9 46

dk27 20x71 0x0 4 5

dol2 20x113 19x25 2 8

es 23x45 0x0 5 1

ex3 42x495 0x0 5 563

ex5 50x301 0x0 3 139

ex6 908x423 0x0 22 645

ex7 48 x 583 0x0 4 106

fstate 5360x1605 11x11 8 12770

leoncino 21x22 0x0 5 0

lion 25x29 0x0 4 0

lion9 42 x 175 0x0 2 10

mc 96x71 0x0 7 5

ofsync 300x97 48x24 18 12 69

opus 914x2830 0x0 14 704

s8 40x206 0x0 1 8

scud 2966x2533 0x0 57 15633

shiftreg 24x89 8x6 5 3 6

slave 2207744 x16845 »
- - timeout

tav 100x81 4x4 5 10 10

test 8x5 0x0 1 3 0

virmach 4992 x144 0x0 1 16 778

<a) timeout 18000 incollapse columns

Table 5: Selection of a minimal encodeable GPI cover

45

table size (row x col) mincov table CPU time (sec.)

FSM before red. after red. calls sol. table red.

bbsse 3480x34727 »
- - timeout

cf 30208x102781 -(*) - - -

cse 2588x21798 0x0 1 23 6534

dk512 43 x1777 0x0 1 6 4150

ex2 86 x 38410 0x0 1 3 830

ex4 1072x26759 0x0 1 10 803

keyb 2666 x 361240 0x0 1 8 1706

kirkman 100252x1081088 »
- - timeout

maincont 67586x245784 0x0 1 4 115

markl 1936x50258 5x5 3 7 1313

modulo12 24x9039 24x36 17 2 50

pkheader 140288 x 29099 0x0 1 19 5850

ricks 31232x16561 14x14 18 27 3301

si 15336x586240 .(*)
- - -

sla 5120x586240 -(b)
- - -

saucier 18496x7106239 0x0 1 15 6802

tma 2028x287558 -(*)
- - -

trainll 43 x 583 0x0 1 2 177

(a) timeout 18000 in coUapse columns
W out-of-memory incoUapse columns

Table 6: Selection of a minimal encodeable GPI cover

46

[7] E. Cerny. Characteristic functions in multivalued logic systems. Digital Processes, vol. 6:167-174,
June 1980.

[8] O. Coudert. Two-levellogic minimization: anoverview. Integration, 17-2:97-140, October 1994.

[9] O. Coudert. On solving binatecovering problems. Manuscript, May 1995.

[10] O. Coudert, C. Berthet,andJ.C. Madre. Verification of sequential machinesusing functional Boolean
vectors. IFIP Conference, November 1989.

[11] O. Coudert, H.Fraisse, and J.C. Madre. Towards a symbolic logic minimization algorithm. In The
Proceedings of the VLSI Design1993Conference, pages 329-334, January 1993.

[12] O. Coudert and J.C. Madre. Implicit and incremental computation of prime and essential prime
implicants of Boolean functions. In The Proceedings of the DesignAutomation Conference, pages
36-39, June 1992.

[13] O. Coudert and J.C. Madre. A new implicit graph based prime and essential prime computation
technique. In Proceedings of theInternational Symposium on Information Sciences, pages 124-131,
July 1992.

[14] O. CoudertandJ.C. Madre. A new method to compute primeandessentialprimeimplicantsofboolean
functions. In Advanced Research in VLSI and Parallel Systems, pages 113-128. The MIT Press, T.
Knight and J. Savage Editors, March 1992.

[15] O. Coudert and J.C. Madre. A new viewpoint on two-level logic minimization. Bull ResearchReport
N. 92026, November 1992.

[16] O. Coudert and J.C. Madre. New ideas for solving covering problems. In The Proceedings of the
Design AutomationConference, pages 641-646, June 1995.

[17] O. Coudert, J.C. Madre, and H.Fraisse. A new viewpoint on two-level logic minimization. In The
Proceedingsof the Design Automation Conference, pages625-630, June 1993.

[18] O. Coudert, J.C. Madre, H.Fraisse, and H. Tbuati. Implicit prime cover computation: an overview. In
TheProceedingsofthe SASIMI Conference, pages413-422,1993.

[19] S. Devadas and R. Newton. Exact algorithms for output encoding, state assignment and four-level
Boolean minimization. IEEE Transactions on Computer-Aided Design, pages 13-27, January 1991.

[20] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. W. H. Freeman and Company, 1979.

[21] J.Gimpel. A reduction technique for primeimplicanttables. IRE Transactions on Electronic Comput
ers, EC-14:535-541, August 1965.

[22] A. GrasseUi and F. Luccio. A method for minimizing the number of internal states in incompletely
specified sequential networks. IRE Transactions on Electronic Computers, EC-14(3):350-359, June
1965.

[23] A. GrasseUi and F. Luccio. Some covering problems in switching theory. In Networks and Switching
Theory, pages 536-557. Academic Press, New York, 1968.

47

[24] CSwamy, R.Brayton, and RMcGeer. A fuUy impUcit Quine-McQuskey procedure using BDD's.
Tech. Report No. UCBIERLM92I127,1992.

[25] R. W. House and D.W. Stevens. A new rule for reducingcc tables. IEEE Transactions on Computers,
C-19:1108-llll,November 1970.

[26] S. Robinson III and R. House. Gimpel's reduction techniqueextended to the covering problem with
costs. IRE Transactions on Electronic Computers, EC-16:509-514, August 1967.

[27] S.-W. Jeong and F. Somenzi. A new algorithm for 0-1 programming based on binary decision
diagrams. In Proceedings ofISKIT-92, International symposium onlogicsynthesis andmicroprocessor
architecture, lizuka, Japan, pages 177-184, July 1992.

[28] S.-W. Jeong and F. Somenzi. A new algorithm for the binate covering problem and its application
to the minimization of boolean relations. In The Proceedings of the International Conference on
Computer-Aided Design, November 1992.

[29] T. Kam. State Minimization of Finite State Machines using Implicit Techniques. PhD thesis, U.C.
Berkeley,Electronics Research Laboratory, University of CaUfornia at Berkeley,May 1995.

[30] T. Kam, T. ViUa, R. Brayton, and A. Sangiovanni-VincenteUi. A fuUy implicit algorithm for exact
stateminimization. Tech. ReportNo. UCBIERLM93I79, November 1993.

[31] T. Kam,T. ViUa, R. Brayton, andA. Sangiovanni-VincenteUi. A fuUy impUcit algorithm forexact state
minimization. In The Proceedings of theDesign Automation Conference, pages 684-690, June 1994.

[32] T. Kam, T. ViUa, R. Brayton, and A. Sangiovanni-Vincentelli. Implicit state minimizationof non-
deterministicfsm's. In The Proceedings oftheInternational Conference onComputer Design,October
1995.

[33] Y.-T. Lai, M. Pedram, and S.B.K. Vrudhula. FGELP: An integer linear program solver based on
function graphs. In The Proceedings of the International Conference on Computer-Aided Design,
pages 685-689, November 1993.

[34] Y.-T. Lai, M. Pedram, andS.B.K. Vrudhula. EVBDD-basedalgorithms forintegerUnear programming,
spectral transformation, and function decomposition. IEEE Transactions onComputer-Aided Design,
pages CAD-13(8):959-975, August 1994.

[35] L. Lavagno. Heuristic andexactmethods forbinate covering. EE290ls Report, May 1989.

[36] B. Lin. Synthesis of VLSI designs with symbolic techniques. Tech. Report No. UCB/ERLM9I/I05,
November 1991.

[37] B. Lin, O. Coudert, andJ.C. Madre. Symbolic prime generation formultiple-valued functions. In The
Proceedingsofthe DesignAutomation Conference, pages40-44, June 1992.

[38] B. Lin andA.R. Newton. Implicitmanipulation ofequivalence classes usingbinary decision diagrams.
In The Proceedings of the International Conference on Computer Design, pages 81-85, September
1991.

[39] B. Lin andF. Somenzi. Minimization of symbolicrelations. In The Proceedings of theInternational
Conference on Computer-Aided Design, November 1990.

48

[40] B. Lin and F. Somenzi. Minimization of symbolic relations. In The Proceedings ofthe International
Conference onComputer-Aided Design, November 1990.

[41] H.-J. Mathony. Universal logic design algorithm and its application to the synthesis of two-level
switching circuits. IEE Proceedings, pages 171-177, May 1989.

[42] E. McQuskey. Minimization of Boolean functions. Bell Laboratories Technical Journal, November
1956.

[43] P. McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni-VinceneteUi. Espresso-signature: anewexact
minimizer for logic functions. IEEE Transactions on VLSI Systems, pages 432-440, December 1993.

[44] S.Minato. Zero-suppressed BDD's for setmanipulationincombinatorial problems. InThe Proceedings
oftheDesignAutomation Conference, pages 272-277, June 1993.

[45] L. Nguyen, M. Perkowski, and N. Goldstein. Palmini - fast boolean minimizerfor personal computers.
In The Proceedings of the Design Automation Conference, pages 615-621, July 1987.

[46] Arlindo L. Oliveira and Stephen A. Edwards. Inference of state machines from examples of behavior.
Technical report, UCB/ERL Technical ReportM95/12, Berkeley, CA, 1995.

[47] C. H. Papadimitriou, J.D. Ullman, and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice HaU, 1982.

[48] J.-K. Rho and F. Somenzi. Stamina. Computer Program, 1991.

[49] R.RudeU. Espresso. Computer Program, 1987'.

[50] R. RudeU. Logic synthesis forVLSI design. Tech. Report No. UCB/ERL M89I49,April 1989.

[51] A. Saldanha, T. ViUa,R. Brayton, and A. Sangiovanni-VincenteUi. A uniform framework for satisfying
input and output encoding constraints. TheProceedings of the Design Automation Conference, June
1991.

[52] S.C. De Sarkar, A.K. Basu, and A.K. Choudhury. Simplification of incompletely specified flow tables
with the help of prime closed sets. IEEE Transactions on Computers, pages 953-956, October 1969.

[53] M. Servit and J. Zamazal. Exact approaches to binate covering problem. Manuscript, October 1992.

[54] F. Somenzi. Cookie. Computer Program, 1989.

[55] F. Somenzi. Gimpel's reduction technique extended to the binate covering problem. Unpublished
manuscript, 1989.

[56] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-VincenteUi. Implicit state enumeration
of finite state machines using BDD's. The Proceedings ofthe International Conference on Computer-
Aided Design, pages 130-133, November 1990.

[57] T. ViUa. Encoding Problems in Logic Synthesis. PhD thesis, University of California, Berkeley, May
1995.

[58] Ming Huei Young and S. Muroga. Symmetric minimal covering problem and minimal PLA's with
symmetric variables. IEEETransactionson Computers, C-34:523-541, June 1985.

49

	Copyright notice 1995
	ERL-95-108

