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Abstract

We propose a methodology for formal verification of real-time systems with the following
components:

Formal Model The use of a formal model eliminates ambiguities and inconsistencies that
often arise in informal or simulation-based descriptions. We define a powerful model that
includes as special cases several models that can be automatically verified.

Intermediate Format We have developed BLIF.MVT, an intermediate format to describe
ourformal model. Thus, to support different system description languages one only needs
to provide a translator to BLIF.MVT.

System Specification To specify real-time systems in aform suitable for synthesis, simulation
and verification we interpret in our model a large subset ofVerilog, which includes delay
and event operators.

Property Specification To specify timed properties and timing constraints in aform natural
for the designer, we define TESLA, an annotation language for embedding in Verilog.

Automatic or Directed Verification Both TESLA and the subset of Verilog that we con
sider describe systems that can be automatically verified. However, we have observed
that theefficiency oftheverification can be significantly improved if thedesigner provides
guidelines describing why the system should satisfy the property.

Together, these components provide a full path from high level descriptions ofreal-time systems
and properties to powerful real-time verification capabilities. We have developed a set of tools
to support this methodology. We give some preliminary results on a set ofsmall examples.

1 Introduction

The complexity ofelectronic systems being designed today requires new ways of verifying func
tionality and performance. In particular, verification of the design at an early phase may reduce
substantially design time and yield better quality ofthe final implementation. Verification at an

early stage implies an abstract description of the design in terms of its behavior. At this level
of abstraction it is relatively easy to express in a formal way properties the system must have to

behave correctly. In this case, it is possible to use formal techniques to check whether the system



has the desired property. This methodology is particularly appealing since usingstandard verifica

tion techniques such as simulation (even at the behavioral level) mayrequire very longtime and not

guarantee the same accuracy. However, westrongly believe that simulation is indispensable to verify

some behavior that cannot be described in abstract form. Thus, we believe, the formal verification

may be successful only if integrated in a design flow.

In more traditional design flows, timing specifications enter relatively late in design refinement.

However, more and more often timing requirements are most difficult to meet and lengthen the

design time. Hence, we believe timing models and specifications have to be given at a higher level

of abstractions and possibly be formally verified.

In this paper, we present a timing-driven formal verification framework consisting of a language

to describe the system being verified, of a formalism to express properties, of a mathematical model

of timed systems, and of algorithms for formal verification of timed properties.

The framework has been developed with a design flow based on successive refinement and hierar

chical verification in mind. In this methodology, a design is described at a high level of abstraction

together with a set of timed and untimed properties. Extensive verification using formal methods as

well as simulation is carried out. Successive refinement is used to bring the description to a level of

detail that allows implementation on a given architecture or set of gates. If the successive refinement

process follows a formal scheme (for example see [Kur90]), then the properties verified at the entry

level are guaranteed to hold. Hence, only properties that relate to lower levels of hierarchy need to

be verified. In case a formal scheme is not followed, all properties should be re-verified at all levels,

making the verification process quite expensive.

The verification paradigm based on the previousdescription is agreed upon by the formal verifica

tion community and by some high-level designers. However, much remains to be done to bring formal

verification in the hands of a larger design community, especially in the case of timing verification.

Most of the existing formal verification systems (like SMV [McM93], MurPhi [DDHY92] and

Auto/Autograph [RdS92]) do not support quantitative timing constraints. Only a few systems for

formal timing verification are available:

• RT-COSPAN [CDCT93] is based on timed automata [AD90]. Unfortunately, both the system

and the property to be verified are described in a dedicated language (S/R), so it is hard

to integrate in the design flow, and significant user's expertise is necessary to specify the

properties to be verified. Furthermore, there is no intermediate format, so developing an

interface to different high-level languages is difficult.



• EPSILON [CGL93] is based on timed modal specifications (a formalism similar to timed au

tomata), and it suffers from similar drawbacks as RT-COSPAN.

• KRONOS [NSY92] automatically verifies whether a description in an intermediate format

represents a model of a given formula of timed computational tree logic (TCTL). The interme

diate format used in KRONOS can express structures that are essentially equivalent to timed

automata. Translators from a higher level languages are available, but they are either not

supported by other tools (ARGOS), or are rarely used in the design community (LOTUS-ET).

Furthermore, the English-like syntax of TCTL may be appealing to designers on first sight,

but its precise semantics is intricate, and specifying properties (particularly those involving

sequences of events) is quite error-prone.

Based on the drawbacks of existing systems, we have formulated a set of requirements that we

have followed in developing our framework.

Requirement 1 The formal verification framework must support a language to describe real-time

systems at a high level of abstraction.

Formal verification is most valuable if it can help find design flaws early in the design cycle.

Unfortunately, the higher a level of abstraction is, the more complex are the timing constraints, and

the more difficult is the verification problem. At a lower-level of abstraction, assigning fixed delays

to gates may be sufficient to capture timing constraints. Then, simple longest path techniques

can be used to verify the system. At a higher level of abstraction, it is not that simple, e.g.

the speed by which a software task progresses might change in time depending on the load of

the system. Many formalisms that can capture complex timing constraints have been proposed,

but most are not suitable for automatic verification, because the associated verification problems

are undecidable. Two notable exceptions are timed automata [Dil89, AD90] and alternating RQ

automata [LB93, LB94]. Since both of these models can describe some systems that the other one

cannot, we decided to support them both. To provide a uniform framework for both models, we

define a new model called TALE (Timed Automata with Linear inEqualities), which includes both

timed and alternating RQ automata as special cases. We base our methodology on this formal

model.

Requirement 2 Properties to be verified must be expressed in a form "natural" to the designer.



The answers provided by the formal verification tool are only as good as questions asked. We

can never guarantee that all property descriptions are error-free, but it is plausible to assume that

the property is more likely to be correct if it is simpleand expressed in a form natural to the person

who wrote it down.

For property specification we define TESLA, a simple annotation language for embedding in

Verilog. TESLA is capable of describing sequences of events, as well as timing constraints between

them. TESLA can also be used to place some restrictions on a system's specification.

Requirement 3 Formal verification must be integrated in the design flow.

If verification is done after the design, its value is diminished. If verification is done in parallel

but not integrated with the design, inconsistencies between verification and design descriptions of

the system are likely. Therefore, formal verification should be integrated in the design flow. To

achieve this goal we define formal semantics for a subset of Verilog that includes subsets supported

by popular synthesis tools, plus delay and event operators.

We want a verification methodology that can be easily adapted to any design flow, not only

those using Verilog. For this purpose, we define BLIF-MVT, an intermediate format for compactly

describing TALE's. To adapt our methodology and tools to different system description languages

only a translator to BLIF.MVT needs to be provided.

Requirement 4 Designer's inputs must be allowed to make the verification process feasible.

Both timed and alternating RQ automata can be verified automatically, but we have observed

that the efficiency of the verification can be significantly improved if the designer provides guidelines

describing why the system should satisfy the property. Since these guidelines also provide a useful

documentation of the system, a verification tool supporting the methodology should be able to take

advantage of any such guidelines.

To support our methodology we provide the following tools:

• procedures for formal verification of timed and alternating RQ automata implemented in the

verification system HSIS [ABB+94]; both procedures can be guided by user-provided hints,

describing timing constraints that are critical for the property to be verified,

• vl2mvt, a compiler from a subset of Verilog to BLIF.MVT,

• a compiler from TESLA to the subset of Verilog supported by v!2mvt.



Figure Xprovides an overview of the proposed methodology. Starting from the Verilog descript.on
annotated with TESLA, we use the TESLA confer to translate it Verilog. If theTESLA property
include, event«alities(e.g.areauest must eventually be acknowledged), it is not possible toexpress.t
completely either in Verilog, or in BLIF.MVT, so for this purpose we define the propertv W«Mf
format (PIF). PIF can also be used for specifying so-called fairness ononis on the system, that
arise naturally at the higher level of abstractions (e.g. an internal computation takes some unknown
time, but always terminates). The Verilog description is then translated to BLIF.MVT by v!2mv,
Finally HSIS reads in both BLIF.MVT and PIF descriptions. At this point the user can choose
between the timed and alternating RQ automata verification algorithms (provided the descnpt.ons
satisfy corresponding constraints), and optionally provide hints that can speed up the computat.on.
If the property to be verified does not hold, HSIS generates afailure trace that is an example of the
behavior of thesystem that violates the property.

successor

failure trace

Figure 1: Overview of the proposed methodology.

The rest of the paper is organised as follows. In section 2we define timed automata with linear
inequalities, asemantic model of real-time systems used in our methodology. This intermediate
format BLIF MVT is presented in section 3. For system specification, we provide acompiler from
asubset of Verilog to BLIF.MVT. This subset is described in section 4. The TESLA language for
property specification is introduced in section 5. Verification algorithms for alternating RQ and



timed automata are reviewed in section 6. Initial experimental results are discussed in section 7.

2 TALE: a Formal Model of Real-Time Systems

Let V = {x\,.. .,xn} denote a set of timer variables. Timing constraints are formulas of the form

5Zr=i **xi ~ an+i where ai,...,a„+i are real numbers, and ~ is one of <, <, =, >, or >. Let

$ denote the set of all timing constraints and let 2* be the set of all finite subsets of $. A timer

valuation r : V —*• R assigns a real value to every timer variable. We say that a timer valuation r

satisfies a timing constraint Y%=i a,x,- ~ a„+i if Y^=i a»r(x») ~ an+i-

A timed automaton with linear inequalities (TALE) is a 7-tuple (E, Q, I, TR, V,TO, R) where £

is a finite set of I/O values, Q is a finite set of states, I C Q is a set of initial states, V = {xi,..., xn}

is a set of timer variables, TR CQxExQisa transition relation, TO : Q x Q —» 2* is a timing

obligation, and iJCQxQxVisa reset relation.

Given a TALE {Y.,Q,I,TR,V,TO,R) we say that (q,q') is a reset edge of a timer x € V if

(?,?', x) 6 i2. If there exists a timing constraint in 70(9,?') in which the coefficient of x is different

from 0, we say that (q, q') is a query edge of x.

A sequence of states qoqi... G Qw is a ran of a sequence of I/O values gqC\ ... € Ew if for all

»> 0: (ft. 0"»» 9»+i) € T.R. A run is initialized if go € /. A sequence So, 6i,... of positive real numbers

is a consistent timing of go<7i ••• if there exists a sequence of timer valuations tqT\ ... such that for

all t > 0:

the timing obligation is fulfilled: rt- satisfies all timing constraints in TO(qi,qi+i),

the reset relation is obeyed: for all timer variables x G V:

-1(x) + Si if i > 0 and (^i-i, qi, x) g R,
otherwise, (i.e. i = 0 or (gt-i.gi.x) G.ft).»«={r

Thus all timers progress at the same rate.

a run r is fair if the set of states that occurs infinitely often in r satisfies fairness constraints.

For the purpose of this paper it suffices to say that if no fairness constraints are given, then all runs

are fair. For more details the reader is referred to [ABB+94]. A run is accepting if it initialized, and

fair.

The language of a TALE is the set of all pairs ((<ro^i •••)» Ofoi $i. ••.)) for which there exists a

run go<Zi... such that go?i... is an accepting run of <ro<ri... and So,Si,... is a consistent timing

of qoqi It is possible to define a composition relation on TALE's such that the language of the
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composition isequal to the intersection ofthe languages ofthe components. We thinkofthe language

as all possible behaviors of the system. The task of formal verification is to determine whether all

these behaviors are acceptable, i.e. whether the languageof the system is contained in some language

Cp defining acceptable behaviors. We restrict ourself to the case where the complement of Cp can

be described as a language of some TALE P. The formal verification problem then reduces to

deciding whether the language of the composition of the system and P is empty. This problem is

undecidable for TALE's in general. Verification algorithms in section 6 solve this problem for two

different subclasses of TALE's: timed and alternating RQ automata.

We say that a TALE (E, Q, I, TR, V, TO, R) is an alternating RQ automaton (ARQA) if for each

timer x G V there is only one reset edge of x and along any initialized fair path:

• between any two occurrences of the reset edge of x there must be at least one query edge of x,

• a query edge of x cannot precede the fist occurrence of the reset edge of x,

• if a query edge of x appears infinitely often so must also the reset edge of x.

A TALE is a timedautomaton (TA) if for every edge (q,q') and every timing constraint <f> G TO(q, q():

• <f> is either x —y ~ k or x ~ k, where x and y are timer variables, k is an integer, and

For example, in the railroad crossing example in Figure 2 [ACD+92], the system has three

components: the train, the gate, and the controller [ACD+92]. The train approaches from outside

of the crossing. After at least two time units of approaching, the train will enter the crossing, and

then exit at most five time units from the beginning of the cycle.

Exactly one time unit after the train approaches, the controller commands the gate to lower,

and with a delay of at most one time unit the gate will close. Similarly, within one time unit after

the train exits the crossing, the controller commands the gate to raise, and with a delay of at least

one and at most two time units the gate will open. For simplicity, we only consider the case when

there is ample time between trains. Therefore, we require the train to approach only if the gate is

up. Two properties to be verified are:

safety: the gate is down whenever the train is in, and

liveness: the gate is never down for more than seven time units.
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Figure 2: Railroad crossing example.

3 BLIF_MVT Intermediate Format

BLIF.MVT is a timed extension of BLIF.MV, an interchange format used to describe (untimed)

automata in HSIS. A BLIF.MV description combines three primitives: variables, tables and latches.

A variable (declared by .mv command) takes values from some given finite domain. A table

(declared by .names) is a relation defined over a set of variables. The variables of a table are

partitioned into inputs and outputs. A latch (declared by .latch) is a pair of variables: one input

one output, both of which must be defined over the same domain. An initial value can also be

assigned to latches with the .r command. We require that every variable is an output of some

unique table or latch.

Intuitively, BLIF.MV descriptions are much like synchronous hardware, with variables corre

sponding to wires, and tables corresponding to pieces of combinational logic, (and latches corre

sponding of course to latches). The languageassociated with a BLIF-MVdescription is then the set

of all possible executions of the hardware. There can be more than one execution because a table

can specify more than one output value for the same input (nondeterministic tables).

Formally, we interpret a BLIF-MV description as an automaton as follows:

• the set of states Q is the Cartesian product of the domains of all latch outputs,

• the set of initial states I contains all states consistent with all . r commands,

8
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• the set of I/O values E is the Cartesian product of the domains of all the variables in the

system, including latch inputs and outputs,

• the transition relation TR contains all triplets (q,a, r) G Q x E x Q such that:

1. assigning a to variables in the system satisfies the relations defined by all the tables,

2. the part of a corresponding to latch outputs is equal to q,

3. the part of a corresponding to latch inputs is equal to r.

Tables consist of lines. The relation defined by a table is the union of the relations defined by

the lines. If assigning q to latch outputs and r to latch inputs can satisfy (with some assignment to

the other variables) a relation defined by a line, we say that a line covers an edge (q,r).

BLIF.MVT is an extension of BLIF.MV that allowsa declaration of timer variables (by .timers

command) and a labelingof lines in tables with sentences generated by the following grammar:

label> ..— <label> ft& <timer> = 0

<label> St& <lhs> <op> <const>

<lhs> ::=

€

<term> + <lhs>

<term>

<term> ::= <const>*<timer>

<timer>

where <timer> is a timer variable, <const> is a real constant, and <op> is one of <, >, <=, >=,

—, or !=.

We interpret a BLIF.MVT description as a TALE as follows:

• Q, E and TR are determined as above.

• the set of timer variables V contains all variables declared by .timers command,

• for all states q, r: a linear inequality <f> is in TO(q, r) if an edge (q, r) is covered by some line

labeled with <f>,

• for all states q, r and all timers x: (q, r,x)€ R if an edge (q,r) is covered by someline labeled

with x=0.

Figure 3 shows a BLIF.MVT description of the train automaton from Figure 2.



.model train

.inputs gate

.outputs train

.mv ps,ns 3 OUT APP IN

.mv train 3 out app in

.mv gate 2 up down

.timers x

latch ns ps

r ps

out

names ps gate -> ns train

OUT - OUT out

OUT up APP app ftft x=0

APP - APP app &ft x<5

APP - IN in ftft x<5 ftft x>=2

IN - OUT in ftft x<5

IN - OUT out ftft x<5

.end

Figure 3: A BLIF-MVT description of the train automaton from Figure 2.

4 System Specification with Verilog

For system specification we define a TALE semantics for a subset of Verilog. We have developed

v!2mvt, a compiler from that subset to BLIF.MVT. The subset that vl2mvt supports (referred to as

vl2mvt-Verilog) includes the subsets supported by popular synthesis tools.

Conceptually, a design in vl2mvt-Verilog consists of a set of modules. All modules run in parallel

and communicate through a set of channels (essentially sets of wire variables declared in the modules

that these channels belong to). It is assumed that communication through channels takes no time.

Within each module, values on channels can be accessed through a set of ports. Ports can be

either wiresor registers. Through wire (register) ports a module can input/output from/to channels

instantaneously. A wire port has no storage element associated with it, while a register has one.

A module consists of a set of declarations, module instantiations, continuous assignments (state

ments beginning with the key word assign), and procedural blocks (sequential blocks, sometimes

referred to as always statements). Continuous assignments are executed in every step. They can be

thought of as combinational circuits continuously computing some function of their inputs. State

ments within a procedural block are executed sequentially. Module instances, continuous assign

ments, and procedural blocks within a module run concurrently. Execution of each continuous
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always

begin
if (ctrl_state != lover) C(lowerE);

#(1) gate.state = down;
if (ctrl_state != raise) C(raiseE);
#(1:2) gate_state = up;
end

Figure 4: Verilog description of a railroad crossing gate gate.

assignment, basic block in a procedural block, and module instance is assumed to be atomic within

each instant.

Caution should be taken when there is more than one procedural block in the same module since

Verilog simulators treat each statement as atomic instead of each basic block (which may consist of

several sub-statements). If there is more than one procedural block in a module and the simulated

result depends on how expressions from different blocks are interleaved by the simulator, then the

simulated result may not be reproducible by the generated automata.

Delayed assignments (e.g. # 7 a=b-4) and event-controls (e.g. ©(go) a=5) synchronize the tran

sition of always statements. The vl2mvt-Verilog language allows delays/event-controls to appear

anywhere inside always statements, but it requires that every such statement blocks the execu

tion. For example, #2 a <= b; is allowed. It says that program execution is halted and the as

signment a <= b; will be executed after two time units, and then execution restarts from that

statement. However, a statement like a <= #2 b; is forbidden. It says that, without blocking

execution, a is scheduled to get the value of b two time units later. Thus, in the statement

always ®(trigger) a <= #2 b;, the number of pending assignments (and thus the number of

required timers) depends on the number of trigger events in a given time interval, which may be

unbounded.

For example, Figure 4 shows a portion of the Verilog code describing the gate module from

Figure 2.
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5 Specifying Timing Properties with TESLA

Verilog is a high-level language for describing system implementations. For verification, there is

also a need for an abstract, natural language for describing properties about a system. Currently

property specification is rather mathematical, and hence not well suited for designers. We introduce

the TESLA language for describing properties and constraints of systems at a level which is natural

for designers and useful in formal verification.

5.1 The TESLA Language

TESLA statements are composed of a set of sequencing constraints. A constraint is a specification of

the form "every request is eventuallyfollowed by an acknowledge". However, instead of referring

simply to atomic events, we constrain sequences. Specifically, a trigger sequence is related to its

completion sequence as an abstraction of a 'request/acknowledge' exchange. Sequences are recur

sively defined, so a sequence may be composed of subsequences in several ways (e.g. concatenation or

conjunction). An assertion also implies a fairness condition; just as in the atomic case we imply that

we cannot transmit a request without receiving an acknowledge, every trigger sequence completion

must be followed by a complete completion sequence.

The general form of a TESLA statement is:

{assert I restrict} <trigger-sequence> => <sequence>;

With assert constraints, we specify properties we expect the system to adhere to; a verification

tool must report a failure if these are violated. With restrict constraints, we specify restrictions

on the behavior of the system to be verified; a verification tool must not consider any behavior

violating them.

A sequence is defined by:

<sequence> ::= | <ap> | eventually <ap>
| <ap> until <ap> | not <sequence>
| <sequence> <op> <sequence> | <sequence>[<lb>, <ub>]

where op is then, and, or, or xor; lb and ub are two integers satisfying 0 < lb < ub; and an atomic

proposition ap is an arbitrary predicate on the state and I/O variables.

Atomic propositions combined with the eventually and until operators form the primitive

sequences of the language. All sequences can be composed via concatenation (then operator),

conjunction (and), disjunction (or), mutual exclusion (xor), and negation (not). In addition, any

sequence or subsequence can be time-constrained relative to its start.

12
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For example, in the TESLA constraint:

assert trig => (eventually b [4,10] then c then eventually d[6,15]) [3, 20];

trigger sequence trig is followed by event b within 4 to 10 units from trigger, whichis then followed

immediately by event c, which is then followed by event d within 6 to 15 time units from the time

of event c. The entire sequence must complete (i.e. event d must be received) within 3 to 20 time

units from the completion of trig.

The TESLA compiler accepts Verilog descriptions which include TESLA assertions and con

straints embedded in Verilog comments. For each sequence, TESLA produces a vl2mvt-Verilog

description of an automaton with reset and enable inputs and success and fail outputs. In addi

tion, for each assertion, the TESLA compiler produces a fairness constraint in PIF indicating that

every successful completion of a trigger sequence must eventually (in a finite but unbounded time)

be followed by a successful completion of an acknowledge sequence. To constrain a sequence in

time, we introduce a timing primitive which is implemented as a library element available in the

vl2mvt compiler. This element is both a TA and an ARQA, so TESLA is compatible with both HSIS

verification algorithms.

6 Verification Algorithms

In general, it is undecidable whether the language of a TALE is empty. However, algorithms are

available for two special cases: timed automata and alternating RQ automata.

The decision procedure for language emptiness for timed automata was developed by Alur and

Dill [AD90]. They show how to construct a finite-state automaton called the region automaton

that accepts only timing consistent sequences. Unfortunately the number of states of the region

automaton grows exponentially not only with the number of timers but also in the relative sizes of

constants (normalized to integers) appearing in timing constraints.

The verification of alternating RQ automata is based on the following simple-path properties:

• a state is reachable from an initial state if and only if it is reachable through a simple path

(one with no loops),

• a fair cycle is traversable infinitely often if and only if it is traversable once.

Using this property, Lam and Brayton [LB94] have proved that the verification of ARQA can be

reduced to the verification of untimed automata, but in the worst case exponential blow-up may

13



occur because all simple paths may have to be enumerated.

6.1 Iterative Algorithms

To speed up the verification of timed automata and ARQA, an iterative procedure is used in

HSIS [BSV94, Wu94]. The key idea is to introduce timing constraints only if needed and when

they are needed. In this way, the verification process is made as similar to the untimed verifica

tion process as possible, and hence we may be able to avoid exponential blow up. A sketch of the

procedure follows:

INITIALLY: Ignore all timing constraints.

VERIFY: If the language of the current abstraction of the system is empty, then return PASS,

otherwise proceed with the next step.

ANALYZE: If some accepting run in the current abstraction of the system contains no violations

of timing constraints, then FAIL, otherwise proceed with the next step.

MODIFY: Compose the current abstraction of the system with some small abstraction of timing

constraints, sufficient to eliminate the reported failure. Proceed with the VERIFY phase.

In the case of timed automata, ANALYZE reduces to checking whether there exists a negative

weighted cycle in the graph. In the MODIFY phase the current abstraction of the system is

composed with some abstraction of the region automaton. These abstractions are all of a certain

type. It is possible to show that there can be only finitely many abstractions of that type, so the

procedure will terminate.

In the case of alternating RQ automata, ANALYZE reduces to checking satisfiability of a set

of linear inequalities. In the MODIFY phase the current abstraction of the system is composed

with an automaton that blocks all infinite paths related via loops to some simple path on which the

associated linear inequalities are not satisfiable. Since there are only finitely many simple paths, the

procedure will terminate.

In both cases, there can be exponentially many iterations in the worst case, but in our experience

that is rare. Also, since the algorithms build different abstractions it is possible that each is more

efficient for a certain class of real-time systems. Defining criteria to recognize these classes is an

interesting open problem.
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6.2 Hints

Usually, the designer knows which timing constraints are critical for a particular property. Not

relaxing these constraints initially can dramatically reduce the number of iterations. Following our

methodology, we provide in HSIS an option to the user of hinting which timing constraints not to

ignore initially. This may increase the size of the initial abstraction, so one must be careful not to

list too many constraints. Ideally, the user would list exactly those constraints that are necessary

to prove the property at hand. In that case, the algorithm would terminate in a single iteration.

In general, every hint has two parts. The first consists of a lower bound on some timer and a set

of transitions which are enabled only if that bound is satisfied. Similarly, the second part consists

of an upper bound on some timer and a set of transitions which are enabled only if that bound is

satisfied.

In describing hints, we use the expression (A : a, b) to denote the transition of the automaton A

from state a to state 6. similarly, we use (A : a, *) to denote all transitions of A from state a.

For example, consider the safety property in the railroad crossing. It is satisfied because:

• the train will enter the crossing at least two time units after it approaches, and

• the gate will be down in less than two time units after the train approaches (one time unit for

the controller to issue the command, and less than one unit for the gate to close after that),

This reasoning can be converted into three hints. The first hint for the safety property of the

railroad crossing indicates that (TRAIN : APP, IN) implies x > 2, and that (GATE : U2D, *)

implies z < 1. Given such hints, HSIS first checks that indeed in the original description the

transitions (TRAIN : APP, IN) and (GATE : U1D, *) are possible only if x > 2 and z < 1 are

satisfied. If that were not the case, the hint would be ignored.

The constraints x > 2 and z < 1 cannot be satisfied simultaneously if x —z < 1. Therefore, HSIS

automatically generates a two-state automaton with one state corresponding to values of x and z

satisfying x —z > 1, and the other corresponding to the values satisfying x —z < 1. We refer to this

automaton as Hi. The automaton Hi monitors the rest of the system to check whether x and z are

reset, and chooses the next state accordingly. For example, if both x and z are reset, the next state

must be x — z < 1.

Finally, HSIS adds a constraint to H\ disallowing the train to move from APP to IN if the gate

is in the U2D state and Hi is in the x —z < 1 state. The resulting automaton is shown as Hi in

Figure 5.
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The second hint indicates that (Hi : x - z > 1,*) implies x > 1, and that (CONT : R2L,*)

implies y < 1. Again, after checking the validity of the hint, HSIS generates a two state automaton

(say #2) with states x —y > 0 and x —y < 0, and adds to the transition relation a constraint not

allowing the controller to be in the R1L state if Hi is in x —z > 1 and #2 is in x —y < 0.

Finally, the third hint indicates that (TRAIN : APP, IN) implies x > 1, and that (CONT :

R2L,*) implies y < 1. To enforce this hint HSIS does not have to generate any automaton, because

an automaton with states x —y > 0 and x —y < 0 has already been generated (namely H2). HSIS

only needs to add a constraint to #2 that disallows the train to move from APP to IN, if the

controller is in the R2L state, and #2 is in the x —y < 0 state. The resulting automaton is shown in

Figure 5, where Rx, Ry, and Rt respectively denote the transitions on which timers x, y, and 2 are

reset, and Ci, C2 and Cz respectively denote transitions disabled by the first, the second, and the

third hint above. We invite the reader to check that in the composition of the automata in Figure 5

and Figure 2 (with timing constraints relaxed), the gate is always down whenever the train is in.

Ci C^AC3 j"£™'tr'aTnT6ut',APP
\ / \ / \ Ry =CONT: RAISE, R2L VCONT :LOWER, L2R

—»(x-y<o) : Rz = GATE :UP,U2D VGATE :DOWN,D2U—<•;-*<0

Rx Rx A Rx A C\

1

-2>0

E \

Rx Rx A Ry A (?2 A C3

r^—fT>\ : Ci = TRAIN : APP, IN AGATE : U2D, *
U-y>0) :

/f \ ':C2 = Hi:{x-z>l),*ACONT:R2L,*
C J •C3 =TRAIN :>4PP, IJV ACONT : J?2L, *

Rx '

H2

Figure 5: Automata resulting from hints for the railroad crossing.

The mechanics of hints is directly taken from the MODIFY phase of the TA verification al

gorithm. Therefore, hints can be used to eliminate all potential timing violations, and ensure that

the verification terminates in one iteration. But usually, this is too big a burden on the designer,

because generating the right hints can be time consuming and non-intuitive. In our experience, it is

most productive to generate hints interactively, i.e. the designer takes over the ANALYZE phase of

the verification algorithm. Usually, the designer is a much better analyzer than HSIS, because HSIS

cannot distinguish between timing violations that are easily avoided from those that really restrict

the behavior of the system. Typically, in the interactive mode only a few iterations are needed to
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example
no hints with hints

iter. reach, st. time hints | iter. reach, st. time

csma 5 120 1.5s 1 48 0.5s

fddi-1 2 15 0.5s 1 15 0.3s

fddi-s 38 95 39.0s 6 29 0.4s

fis3 14 826 26.4s 6 830 0.8s

fis4

fis5

29 42,998 1,141.8s 12

20

44,545
6*106

6.7

168.4sspace out

belt space out 5 299 0.8s

patho space out 4 3*106 16.5s

fact

cross-s

space out 58

3

8*107
11

84.7s

0.3s
4 16 0.6s

cross-1 13 78 3.6s 11 17 0.4s

generate exact hints, while in the direct mode even tens of iterations may not be enough to verify
the system.

7 Experimental Results

Experimental results for the timed automata verification algorithm are summarized in Table 1. All
experiments were performed on a DEC workstation with 440Mb of physical memory. Most of the
examples can be roughly divided into communication protocols: CSMA/CD, FDDI, and Fischer's
(denoted in Table 1with prefix fis), and control examples: railroad crossing (cross), seat-belt alarm
(belt), and automated factory (fact). The exception is amodel of the PATHO real-time operating
system (path) [BPSVV94]. The reported numbers of reachable states corresponds to the abstraction
of the system in the last iteration. Reported execution times include the time to read the BLIF.MVT
description, the file describing aproperty to be verified, the time to process hints (if any), and the
verification time. Typically, the total time not spent in verification grows much slower than the
verification times, which dominate the larger examples. All the examples and properties in Table 1
were written directly in BLIF.MVT and PIF.

The value of hints is obvious from Table 1. Without them, only the smallest examples can be
verified. This suggests that better failure analysis techniques are needed. The automated factory
examples illustrates how automatic verification can complement hints. After several tries, we were
able to develop a set of hints that enforces most of the timing constraints necessary to verify the
property. Automatic verification then filled-in the remaining gaps. The user effort in developing
the hints varied from example to example, but generating 2-3 hints per hour seems a good rule of
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Table 2: Comparison of different methods.
example BLIF.MVT VL2MVT ARQA
fis3

cross-s

cross-1

26.4s

0.6s

3.6s

16.8s

24.6s

115.8s

7.7s

4s

thumb.

In Table 2 we compare verification results obtained by applying timed automata algorithm to

the description written directly in BLIF.MVT (column BLIF.MVT) with the results obtained by

applying the same algorithm to the vl2mvtgenerated description (column VL2MVT), and the results

obtained by the ARQA algorithm. For the same algorithm, hand-generated BLIF.MVT code is

approximately an order of magnitude more efficient than code generated by vl2mvt. We are working

on some compiler optimizations that should narrow the gap, but it is unlikely that it would ever be

completely eliminated. Also, the timed automata algorithm appears to be more efficient than the

ARQA algorithm, but the current ARQA implementation is too preliminary and the set of common

examples is too small to make definitive conclusions yet.

8 Conclusions and Future Work

We have proposed a methodology for formal verification of timing properties that can be integrated

in a design flow based on successive refinement. To support our methodology we have extended the

HSIS verification system with timing capabilities and developed interfaces to Verilog (for systems

verification) and TESLA (for property specification). Compared to the existingsystems mentioned

in the introduction, HSIS offers a system-specification language that is widely used and supported

by synthesis and simulation, and a more natural property-specification language. HSIS is also the

only system that offers a user-guided mode in addition to an automatic verification mode. This

may not be important from a theoretic point of view, because it does not contribute to the worthy

goal of fully automatic verification, but from a practical point of view the ability to trade off user

involvement and capacity of the tool is certainly appealing. Finally, HSIS is the only system that

offers state of the art techniques for both timed and untimed verification problems.

Experimentally, the performance of KRONOS is similar to that of HSIS in the automatic mode,

but both can verify significantly smaller systems than HSIS in the user-guided mode. Experimental

results are unfortunately not available for RT-COSPAN and EPSILON, but since in both cases the

verification algorithms are similar to that of KRONOS, it is plausible to expect comparable results.
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Experimental results showthat further improvementin efficiency are necessary beforethe method

ology is widely accepted. One avenue to explore is a better understanding for which class of systems

ARQA or timed automata algorithms are more efficient. Also, identifying essential timing con

straints and retaining them in the initial abstraction is shown to speed up the verification process

significantly, but presently there are no automatic techniques for doing it. Similarly, failure analysis

techniques that can distinguish essential from non-essential timing violations need to be developed.
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