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The theory of signal expansions into time-frequency localized atoms was one of the

major breakthroughs in signal processing during the past decades. In the continuous-

time domain, L2(R), the focus was on representations based on Weyl-Heisenberg and

wavelet bases as well as frames which are theirovercomplete counterparts. In parallel,

these expansions were studied in the discrete-time domain, ^(Z), in the framework of

filter banks and subband coding schemes. This research has been confined mainly to

orthonormal and biorthonormal bases which are equivalent to critically sampled filter

banks. This thesis is concerned with oversampled filter banks. The motivation stems

from applications in which critical sampling or orthogonality is not needed and even

imposes restrictive design constraints, and also from applications in which redundant

representations are sought per se.

The general issues related to filter banks addressed in this thesis are 1) the neces

sary and sufficient conditions on filter banks for implementing frame or tight frame

decompositions in ^2(Z); 2) the feasibility of perfect reconstruction using FIR synthe

sis filters following an FIR analysis; 3) the parameterization and design of interesting



classes of perfect reconstruction oversampled filter banks; 4) the relation of filter

banks to continuous-time signal analysis.

Nonsubsampled filter banks and modulated filter banks are two important partic

ular classes which are studied in more detail. Nonsubsampled filter banks provide a

tool for the discrete-time implementation of continuous-time transforms. They allow

for a very flexible design and this is illustrated here by a procedure for designing

maximally flat two-channel filter banks which yield highly regular wavelets with a

given number of vanishing moments. The study of modulated filter banks is confined

here to the paraunitary case, which is equivalent to tight Weyl-Heisenberg frames in

P(Z). We give a complete parameterization of these filter banks.

Robustness of overcomplete expansions to quantization is also investigated. A

heuristic error analysis, based on the white noise error model, indicates that the mean

squared quantization error (MSE) is inversely proportional to the frame redundancy,

MSE = 0(1/R). This phenomenon has been exploited for a long time in oversampled

A/D conversion for improving accuracy of the conversion. One of the results of this

thesis is a deterministic analysis of error in oversampled A/D conversion which shows

that the classical linear reconstruction is suboptimal and that the quantization error

can be reduced in the squared norm as 0(1/jR2). Besides, even with the optimal

reconstruction, the MSE of the oversampled A/D conversion, as a function of the

bit-rate B, behaves as 0{1/B2). We demonstrate that the classical coding used

in oversampled A/D conversion is inefficient and propose a coding scheme which

asymptotically attains 0(2~fiB) error-rate characteristic. As a generalization, we give

adeterministic analysis of the quantization error inWeylrHeisenberg frame expansions

which demonstrates that under certain reasonable assumptions the quantization error

decays as 0(1/R2) in the squared norm.

The applications considered here are based on signal characterization using in

formation on its singularities. These schemes use nonsubsampled filter banks as a

preprocessing tool. One of the central issues in these applications is the signal recon
struction from singularities. We study this problem and propose simple and efficient
reconstruction algorithms. Signal interpolation is considered as well, in particular



image interpolation. We propose a locally adaptive interpolation algorithm based on

extrapolation of the discrete-time wavelet transform across the scales.

Professor Martin Vetterli
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Chapter 1

Introduction

1.1 History of the Subject and Motivation

The idea of time-frequency localized representations goes back to the 1940's and

the work of Gabor [14], who proposed decompositions of signals in L2(R) in terms of

modulated Gaussians as opposed to Fourier expansions. It was aimed at overcoming

the major drawback of the two traditional signal descriptions, one in time and the

other in the frequency, which both achieve infinitely fine resolutions in their respec

tive domains but no resolution in the complementary domains. On the other hand,

expansions based on modulated Gaussians, which achieve the lower bound on the

uncertainty in the joint time-frequency domain, should facilitate descriptions with

good resolution in both time and frequency.

Although the idea was itself a paramount shift towards novel signal processing

techniques, a few technical problems were still to be resolved. First, is a Gabor family

of functions, obtained by translating a Gaussian in time and frequency, complete

in L2(R)? What would be admissible prototype functions other than Gaussians,

since in spite of its optimal localization, Gaussian need not be the most appropriate

waveform for all applications? For instance, in analysis of signals with compact

support, prototype functions which are themselves compactly supported would be a

rather convenient choice. Then, given such a complete family of functions, how can



expansion coefficients be calculated, and moreover is there a fast algorithm for this

purpose?

Expansions based on different kinds of time-frequency localized waveforms have

been subsequently used in physics, geophysics and signal processing. However, not

before the 1980's have they received a thorough and rigorous treatment and have

the aforementioned problems been satisfactorily solved. An important result was the

discovery of the relationship between filter banks and wavelets. Bases of wavelets for

L2(R) can be derived from critically sampled filter banks [10], which are equivalent

to an analogous class of bases in £2(Z). Iterated critically sampled filter banks can

also be used for the efficient computation of coefficients of wavelet expansions in

£2(R), e.g. by using Mallat's algorithm [24]. Discovery of these relations wasn't

just a curiosity wedding the continuous time theory with its discrete time analogue,

which had been developing independently as the theory of filter banks and subband

coding; it also paved the way for applications of novel signal processing principles and

brought some insights into subband coding schemes.

The theory of expansions into time-frequency localized atoms in L2(R) has been

developed beyond the orthogonal or biorthogonal case, focusing on redundant repre

sentations based on Weyl-Heisenberg and wavelet frames [12]. However, the theory

of filter banks has so far been confined mostly to the critically sampled case [47, 50],

that is orthogonal and biorthogonal bases. In this thesis westudy a particular class of

frames in^2(Z), those which are equivalent to perfect reconstruction FIR oversampled
filter banks.

One of the main reasons for studying overcomplete expansions is that the require

ment for orthogonality or linearindependence imposes considerable constraints which

can sometimesbe in conflict with other design specifications. Ironically enough, per

haps the most striking example is the fact that Gabor analysis with orthonormal

bases with good resolution in both time and frequency is not possible. For a number

of applications orthonormality is indeed not needed. For instance, it is hard to be

lieve that orthonormal families of wavelets occur anywhere in nature; therefore they

would not be a natural choicein modeling of biological systems or natural phenomena.



Other examples from biological systems are signal descriptions in sensory systems of

mammals which are based on highly redundant representations. This redundancy

compensates for system imperfections and, in spite of very coarse quantization which

occurs in the cortical level, facilitates perception of fine signal structures. Further

more, redundant representations followed by a sophisticated selection of information

can even yield a good compression scheme. This has been demonstrated by Mallat

and Zhong with their wavelet modulus maxima based signal compression scheme [28].

Another approach, using matching pursuit algorithm, also by Mallat [27], is based on

the idea that there are greater chances for finding compact signal representations if the

dictionary of elementary vectors at our disposal is richer. The full potential of these

algorithms hasn't been assessed yet, however they already give results comparable to

standard compression schemes [32].

It was first pointed out by Morlet (as reported in [10]) that for a given accuracy

of representation overcomplete expansions allow for a progressively coarser quanti

zation as redundancy is increased. A particular case of this effect, which has long

been exploited in engineering practice, is oversampled A/D conversion, where the

underlying frame is a sine frame. Statistical analysis, based on the white noise model

for quantization error, shows that the error variance is inversely proportional to the

oversampling ratio [3], so that oversampling can be used in order to improve the

accuracy of the conversion. An intuitive explanation of this effect for frame expan

sions in general has been given by Daubechies [10]. Daubechies showed, using a

heuristic argument based on the white noise model for quantization error, that the

expected value of error energy is inversely proportional to the frame redundancy fac

tor, £(||e||2) = 0(l/r). However, she conjectured that the error probably decays

faster, as indicated by experimental results reported by Morlet.

One of the goals of this thesis is to provide some new insights into this effect

and give a stronger quantitative characterization in the case of the oversampled A/D

conversion and the quantization of Weyl-Heisenberg frame expansions. Our analysis

is based on the following premises. Quantization error, commonly modeled as a white

noise, is not really a white noise but rather a structured "noise." This is especially



true if quantization of highly redundant representations is considered. Deterministic

analysis may reveal some clues on that structure which are missed by the stochastic

treatment and yield a more accurate error bound. Besides, the previous studies of

quantization error assume linear reconstruction, which is suboptimal. For a signal

/, which is given in terms of its expansion coefficients as / = C-c^,-, the linear

reconstruction from quantized coefficients {c,} gives a recovered version / = J2i WPi*
A

If {(fi} is an overcomplete set in the considered space of signals, then / obtained

this way and / need not share the same set of quantized expansion coefficients. This

indicates that the linear reconstruction does not utilize all the available information

and is therefore suboptimal. It can be expected that a consistent reconstruction,

that is a reconstruction which always restores a signal which has the same set of

quantized coefficients as the original, will be more accurate. Quantization error is

here considered with respect to a consistent reconstruction, and it is shown that in

some particular but relevant cases the error is inversely proportional to the square of

the expansion redundancy factor, ||e||2 = 0(l/r2).

1.2 Overview and Contribution of the Thesis in

the Context of Previous Work

A global framework for the material presented in the thesis is set up in Chapter 2.

We review the main concepts of linear expansions in Hilbert spaces. The emphasis is

on overcomplete expansions, that is those based on frames. Three particular classes

which are reviewed are wavelet and Weyl-Heisenberg frames, as well as frames of

complex exponentials in L2[—a, a] spaces.

Oversampled filter banks are studied in Chapter 3. The previous work in this area

was concerned only with FIR two channel nonsubsampled filter banks [40, 28], and

amounted to the investigation of the perfect reconstruction condition. In Chapter 3,

general N channel FIR filter banks followed by subsampling by factor K, K < N,

are considered. A necessary and sufficient condition on a filter bank to be equivalent

to a frame in P(Z) is derived, as well as a necessary and sufficient condition for the



tightness of that frame. Feasibility of perfect reconstruction using FIR filters is also

investigated and a necessary and sufficient condition is formulated. Complete param-

eterizations of classes of filter banks satisfying these conditions are also given. For a

given oversampled filter bank which satisfies the frame condition, the corresponding

perfect reconstruction synthesis filter bank is not unique. One of them is dual to

the analysis filter bank, that is frames in £2(Z) which are equivalent to the two filter

banks are dual frames [10]. An advantage of such a synthesis filter bank is that when

reconstruction from noisy subband signals is performed, it projects to zero the noise

component which is orthogonal to the range of the subband expansion. We also give

a necessary and sufficient condition on an FIR filter bank for its dual to also be FIR

and parameterize a class of filter banks satisfying this property. Two special cases,

focused on in Chapter 3, are nonsubsampled filter banks and modulated filter banks.

Nonsubsampled filter banks, implementing shift invariant redundant transforms, have

a considerable potential for signal analysis and are related to continuous-time signal

filtering. Furthermore, absence of subsampling in the channels results in a very flex

ible design. We illustrate this point by giving a design procedure for maximally flat

two channel filter banks from which highly regular wavelets with a given number of

vanishing moments can be derived.

The treatment of modulated filter banks in this thesis is concerned with FIR pa-

raunitary filter banks, that is tight finite length Weyl-Heisenberg frames in £2(Z).

Analogously to the situation in continuous-time, short-time Fourier analysis with

reasonable bases, or equivalently nontrivial critically sampled filter banks, is not pos

sible. It is demonstrated in this thesis that if some redundancy is allowed the situation

changes, so that it is possible to attain tight Weyl-Heisenberg frames with good lo

calization and some other desirable properties such as symmetry. We give a complete

parameterization of these tight frames, which are the tool for short-time Fourier anal

ysis in P(Z). These frames were a subject of a considerable study, however results

were confined to finite dimensional spaces or "almost tight" frames [33, 37, 36, 38, 53].

The problem of quantization of overcomplete expansions is considered in Chapter

4. A rigorous treatment of the effect of quantization error reduction in frames, in



the case of tight Weyl-Heisenberg frames with integer oversampling ratios, is due to

Munch [31]. Munch proved that the contribution to error energy due to coefficients

which correspond to frame vectors localized in a given bounded region of the time-

frequency plane, behaves as 0(l/r). Note, however, that the estimate of total error

which is obtained from Munch's analysis is unbounded. We assert in this thesis that

linear reconstruction is suboptimal if we deal with overcomplete expansions, and that

a consistent reconstruction should give an error ||e||2 = 0(l/r2). So far, this claim

has been experimentally verified for frames in Rn [16] and also been proven in the

case of oversampled A/D conversion of periodic bandlimited signals (trigonometric

polynomials) [44, 43, 45]. In Chapter 4, it is proven that this also holds in the case of

oversampled A/D conversion of bandlimited signals in L2(R). Our approach is based

on the concept of consistent reconstruction, first pointed out in [44], as well as on

a deterministic model which uses results of nonharmonic Fourier analysis. If error-

rate properties of oversampled A/D conversion are considered, instead of the error

itself, then an efficient lossless encoding of quantized samples becomes crucial. With

standard PCM (Pulse Code Modulation), quantization erroras the function of the bit

rate, B, behaves as ||e||2 = 0(1/B2) whenoversampling increases. An efficient coding

scheme, proposed here, attains ||e||2 = 0(2~f3B). The purpose of this result is to

illustrate the importance of efficient lossless encoding of overcomplete expansions, and

perhaps give directions for further research in this subject. Note that the deterministic

analysis of oversampled A/D conversion is an important fundamental result per se.

Besides, it gives the first proof of the 0(1/r2) error reduction property of frames in

a case of an infinite dimensional space. This analysis is further generalized to the

quantization errorof Weyl-Heisenberg frame expansions in Ir2(R), proving again that

under reasonable assumptions ||e||2 = 0(1/r2).

Applications based on wavelet modulus maxima or wavelet zero crossings repre

sentation are very illustrative for various concepts related to overcomplete expan

sions. These are discussed in Chapter 5. Wavelet modulus maxima and wavelet

zero-crossings representations were introduced by Mallat, et al. [25, 26, 28] as a tool

for extraction of information on singularities, which are considered to be among the



most meaningful features for signal characterization. The representations are based

on irregular sampling of the multiscale wavelet transform, which is implemented in

discrete-time using iterated nonsubsampled filter banks. The samples are taken at lo

cal modulus maxima or zero-crossings, which for a particular class of wavelets occur at

points of sharp signal variation. Promising performance of these representations has

been demonstrated in applications such as signal denoising and compression [26, 28].

They also provide a convenient framework for studying problems such as signal char

acterization and reconstruction from multiscale edges or zero-crossings, which have

been subjects of considerable attention in the signal processing community in the last

two decades. One of the central issues about the two representations, in all of these

applications, is signal reconstruction from the information they provide. Original

reconstruction algorithms, which outperform the existing ones [25, 28, 4] in either

numerical complexity or convergence properties are also described in Chapter 5.

Another application discussed here is in image interpolation. Given a small im

age, the classical problem of image interpolation is to magnify the image many times

without loss in the sharpness of the picture. Some existing methods such as bilineax

and spline interpolations generate blurred images since they do not utilize any infor

mation relevant to preserving the image clarity. To deblur these images, one could

use the standard approach of unsharp masking [20]. Other methods include modeling

the edges or filtering with nonlinear filters to boost the high frequencies needed to

make an image look sharper. The algorithm described in this thesis, which was de

veloped in collaboration with Grace Chang, is a locally adaptive image interpolation

scheme. The interpolating functions do not appear explicitly, but are contained in

the enhancement component which is added to an initial linearly interpolated image.

The enhancement component is a result of analysis of signal singularities, specifically

propagation of local extrema of a wavelet transform across scales. The implementa

tion is based on preprocessing using nonsubsampled filter banks. Images interpolated

using this algorithm provide better subjective quality than those obtained with the

standard schemes.

The results presented in this thesis are also documented in the publications listed



in Appendix A.

The contributions of the thesis are listed below.

• Development of a framework for the study of oversampled filter banks, i.e. filter

bank frames in £2(Z).

• Necessary and sufficient condition on a filter bank to be equivalent to a frame

in P(Z).

• Necessary and sufficient condition on a filter bank to be equivalent to a tight

frame in P(Z).

• Necessary and sufficient conditionon a finite impulse response (FIR) filter bank

frame to have a dual frame consisting of finite length vectors.

• Necessary and sufficient condition on an FIR filter bank frame to have the

minimal dual frame consisting of finite length vectors.

• Complete parameterization of FIR filter bank frames.

• Complete parameterization of tight FIR filter bank frames.

• Complete parameterization of FIR filter bank frames which have dual frames

consisting of finite length vectors.

• Parameterization of FIR filter bank frames which have minimal duals consisting

of finite length vectors.

• Complete parameterization of tight FIR Weyl-Heisenberg frames in £2(Z).

• Designing procedure for wavelets with high regularity and a given number of

vanishing moments.

• Deterministic analysis of oversampled A/D conversion of signals in L2(R).

• Proof of 0(11r2) quantization error behavior in oversampled A/D conversion,

with r being the oversampling ratio.



• Efficient lossless encoding scheme for oversampled A/D conversion.

• Analysis of error-rate characteristics of oversampled A/D conversion and meth

ods for its improvement.

• Explanation of the quantization error reduction property in overcomplete ex

pansions.

• Deterministic analysis of quantization error in Weyl-Heisenberg frame expan

sions and proof of its 0(1 /r2) behavior as a function of the frame redundancy

r.

• Study of discrete-time wavelet extrema and wavelet zero-crossings representa

tions (multiscale edge representations) in the framework of convex representa

tions in P(Z).

• Efficient algorithm for signal reconstruction from the wavelet extrema represen

tation.

• Efficient algorithm for signal reconstruction from the wavelet zero-crossings rep

resentation.

• Implementation of the orthogonal projection operator onto the range of the

discrete-time wavelet transform.

• Novel locally adaptive signal interpolation scheme.

Notation

The notation used in this thesis is described below.

The identity operator in a Hilbert space will be denoted by Id.

The Fourier transform of a signal f(t), T{f(i)}, will be written as f(uj).
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We say that a signal f(t) is c-bandlimited if

/(«) =0 for \u\ >a, and ||/||2 = f°° \f(t)\2dt <oo.

Similarly, a signal f(t) is said to be T-timelimited if

f(t) =0 for \t\ >T, and ||/||2 = f° \f(t)\2dt < oo.
J—oo

Convolution of functions in L2(R) will be denoted by *, i.e.

f*g = /(*)*g(t) = f *g{*) = f° f^M*~s^ds-
J—oo

For a sequence (p, (p will denote the complex conjugate of the time reversed version

of <p, <p[n] = <p*[—n]. Also, for a filter H(z) with impulse response h[n], H(z) will

denote the filter whose impulse response is h[n]. Similarly, when used with a matrix

H(z) whose entries are rational functions of the complex variable z, H(z) will denote

the matrix obtained from H(z) by transposing it, changing all coefficients of the

rational functions in H(z) by their complex conjugates, and substituting z by z~x.

If fl(z) = H(z) we say that H(z) is parahermitian. Polynomial matrix H(z), whose

determinant, detH(z), is a nonzero constant is called unimodular matrix. Note that

here we shall use the term polynomial for Laurent polynomials in general, that is FIR

filters H(z) = ££Ln hiz\ which possibly contain both positive and negative powers of

z. The complex conjugate transpose of a vector v will be denoted as v*, and when

used with a scalar, the * superscript will denote its complex conjugate value.



Chapter 2

Frames in a Hilbert Space

11

2.1 Notion of Frames

A common signal processing framework is to considersignalsas vectors in a Hilbert

space H, usually L2(R), P(Z) or Rn. Signal processing algorithms often involve

some sorts of linear expansions. We may justifiably say that linear expansions are

ubiquitous tools of signal processing. Linear expansion refers to representation of a

signal as a linear combination of vectors of a family {<pj}jej which is complete in H.

Completeness of {y>j}jeJ means that any signal x in the space can be represented as

a linear combination,

* = £ciS>;- (2.1).
jeJ

In addition to completeness, for applications in signal processing it is essential that

{<Pj}j€j also has some stability properties. First, the coefficients of the expansion

should constitute a sequence of finite energy for any signal in the space,

{<?}*;€ <V). V*€«. ' (2.2)
Moreover signals in any given bounded set cannot have expansion coefficients of ar

bitrarily high energy. In particular, expansion coefficients of signals in the unit ball

should be bounded by some finite constant 6,

£|cj|2<6 whenever ||x|| < 1. (2.3)
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The second requirement is that the expansions should provide a unique description of

signals in ri, and enable discrimination with a certain reasonable resolution. In other

words, expansion coefficients corresponding to two different signals x and y should

not be close in £2(J) if x and y are not close themselves. A precise formulation of

this requirement is that there exists a constant a > 0 such that

£|c* —c||2>a, whenever \\x —y\\2 > 1.
jeJ

A family {<Pj}j€J which satisfies these requirements is said to be a frame in 7i.

H

Figure 2.1: Principal classes of frames in a Hilbert space.

(2.4)

Three fundamental subclasses of frames are tight frames, Riesz bases and or

thonormal bases (see Figure 2.1). A basis in H is said to be Riesz basis if it is the

image of an orthonormal basis under a bounded operator with a bounded inverse.

Examples of frames in theses classes for R2 are shown in Figure 2.2. Note that in

finite dimensional spaces, i.e. Rn, completenessof {<fj}jeJ implies the stability prop

erties, so most of problems discussed in this chapter are nontrivial only for infinite

dimensional spaces. Nonetheless, Figure 2.2 illustrates distinctive properties of the

three main subclasses. Both bases1 and orthonormal bases are linearly independent

1The term basis will here always mean Riesz basis.
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families of vectors. On the other hand, frames and tight frames in general are.re

dundant, overcomplete families in ri and therefore exhibit some linear dependencies.

Tight frames and orthonormal bases are subclasses of frames and bases, respectively,

characterized by a certain structure, which makes them particularly convenient in

signal analysis.

n(pl <PlV <p2 <Pl J
<Po \ <Po \ <p0 \. / <Po

orthonormal basis Riesz basis *Py tight frame frame

redundancy r=3/2

Figure 2.2: Examples of different frame classes in R2.

In this chapter, basic results on frames are reviewed, based on material presented

in [10, 12, 13, 56], and some classes of frames which are relevant for further consider

ations are described.

2.2 Properties of Frames

Expanding a signal with respect to an orthonormal basis {<fj}jej is equivalent to

characterizing it through inner products with the vectors of the basis. This is due

to the fact that coefficients of the expansion x = J2jeJ tfVj are equal to the inner

products, dj —(x,ifj). The two representations, expansion and the inner product

sequence, are not equivalent for frames in general, but there is still a certain duality.

The following definition of a frame in a Hilbert space is based on the inner product

description.

Definition 1 A family of vectors {<Pj}jzj in a Hilbert spaces ri is called a frame if

there exist A > 0 and B < oo such that for all f in %,

>l||/l|2 < £ K./>i>|2 < Bll/H2. (2-5)
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A and B are called frame bounds. E

For a frame {<pj}jej<, there exists a dual frame {V^jjeJ* sucn *na* any / m the

space can be reconstructed from the inner products {(f,<Pj)}jeJ ^

/ = £(/.W>*i- (2-6)

The frames {<Pj}jqj and {^jJje./ nave interchangeable roles, so that any / can also

be written as a superposition of ipj vectors, as

/ = £(/.*>,•• (2J)

Implications of this expansion formula are actually the stability conditions discussed

in the previous section. If A\ and B\ are frame bounds of {il>j}jej then (2.4) and

(2.3) are satisfied with a = A\ and b—B\. Existence of a dual frame also establishes

duality between the inner product description and the series expansion.

In order to establish the existence of a dual frame and give a systematic generating

procedure we introduce the frame operator.

Definition 2 // {<Pj}jej & a frame in ri, then the frame operator F is the linear

operator from H to £2(J), defined by

Ff = c, c = {ci:ci = (/,v?i)}jGJ. (2.8)

The frame condition (2.5) implies that F is a bounded invertible operator from Ti to

£2(J). The Hilbert adjoint F* of F is a linear operator from £2(J) to %satisfying

(F-c,/) = (c,F/> (2.9)

for all / G ri and c € £2(J)- If Ff is written in the expanded form, we obtain

<«.*"/) = E«*<W./>, (2-10)
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so at least in the weak sense,

^c=Ew (2-11)
jeJ

The linear operator F*F, given by

F*Ff = J2(f,<Pj)<Pj, (2.12)

is self-adjoint. It follows from the frame condition (2.5) that

A\\ff<(F'FfJ)<B\\f\\2 (2.13)

for any / G %, that is, F*F is positive definite with positive upper and lower bounds.

This implies that the inverse (F*F)~X exists. The image of {<Pj}jcj under (F*F)~1,

{<Pj '• <Pj = (FmF)~lipj)j^j, turns out to be a frame dual to {<Pj}jeJ-

Proposition 1 [10] The {<f>j)j^j constitutes a frame with frame bounds 1/B and

1/A. The associated frame operator

F-.n^f(J), Ff = {cj • Cj = (/, W»i£j,

satisfies the following:

(i) F*F = F*F = Id,

(ii) FF* = FF* is the orthogonal projection operator in P(J) onto Ran(F) =

Ran(F).

•

This proposition establishes in a constructive manner the existence of a dual frame.

If the frame {<Pj}j£j is overcomplete, that is ipj are linearly dependent, then its dual

is not unique. To illustrate this consider a linear combination J2jeJ CLjifj = 0. For

any / in ri, J2j£j aj{fi Vj) = 0- If WjOjeJ 1S a dual frame, and <f> is any vector in ri,

f = £</,ViWi (2-14)

= E</.Vj)^ + Eai(/.Vi>^ (2-15)
ieJ ieJ

= Etf.wWi + «i<«> (2-16)



16

so that {ipj + aj<f>}jej is also dual to {<Pj}jeJ- Another consequence of linear depen

dencies in {<Pj}jeJ is tna* expansions with respect to this frame axe not unique. For

instance, if / = J2jeJ cWi and T,j£JajiPj = 0 then also / = Ej€j(ci + aj)Vi-
The dual {<fj}jej has the distinctive property that for any c = {cj}j^j in the

orthogonal complement of Ran(F), Y.jeJCjW = 0- This is a consequence of Propo

sition 1, and is particularly important for reconstruction of signals from coefficients

degraded by an additive noise. If a signal / is synthesized from noisy coefficients

{(f,<Pj) + *j} ^ing {<f>j}j€j as

r = B</.w>+»i)ft. (2-17)
J£J

the noise component which is in the orthogonal complement of Ran(F) is automat

ically reduced to zero. No other dual of {<Pj}jeJ implicitly performs this projection

while effecting the reconstruction.

Another important fact about {<f>j}j£j is related to the nonuniqueness of the

expansions. Out of all expansion sequences {cj} such that / = HjgjCj^j, {(/,<£,)}

has the minimum norm. This is established by the following proposition.

Proposition 2 [10] fff = J2jeJ Wi for some c ~ icj}jeJ> ^ien

EN2>EK/,^)l2,
jeJ jeJ

and equality holds only if Cj = (f,(pj) for all j £ J. D

Being so special, {<j>j}jeJ deserves a special name, and is said to be the minimal dual

of WjheJ-2
Calculation of the minimal dual frame is not always an easy task, and a closed

form solution does not exist, except for some particular cases. However, there does

exist a formula which describes a numerical algorithm for the computation of {<Pj}jej.

It is given by
9 °°

A + U k=0

2In their pioneering work on frames [13], Duffin and Schaeffer used the term conjugate frames
for a frame and its minimal dual.
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where

R= Id - —?—jTF. (2.19)
The speed of convergence of this series depends on the bounds A and B. It can be

shown that \\R\\ < (B —A)/(B+A), so the closer the frame bounds are, the faster the

series converges. In the limit, when the frame bounds are equal, all these formulae

become much simpler, and the minimal dual frame is given by the first term of the

series (2.18), <pj = A~lipj.

A frame with equal frame bounds is called a tight frame. For a tight frame and

any / in the space

£K/>V>;>|2 = ^II/II2. (2.20)
3€J

This condition implies that

(F'Ff,f) = A\\f\\i, V/€«. (2.21)

Hence, F"F = Aid3, which finally gives <fj = A~ly>j. Therefore, for all / in %

/ = t£</^;- (2.22)

This formula is reminiscent of orthogonal expansions. However, tight frames axe in

general not orthonormal bases, but overcomplete families in ri. If vectors of the tight

frame axe normalized to unit norm, \\(pj\\ = 1, the frame bound A gives a measure

of redundancy of the frame. Tight frames which are not redundant are orthonormal

bases.

Proposition 3 [10]ff{<Pj}jej is a tight frame with frame bound A = 1, and \\ipj\\ = 1

for all j £ J, then {<fj}jeJ *5 an orthonormal basis. D

Analogous relations exist between Riesz bases and frames. They are established

by the following propositions. The first one describes the effect of the removal of a

vector from a frame.

3Note that in the case of complex Hilbert spaces, whichwe consider, if a linear operator S on 7i
satisfies (Sx, x) = j4||x||2 for all x € ti, then Sx = Ax.
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Proposition 4 [56] The removal of a vector from a frame leaves either a frame or

an incomplete set. D

A frame which ceases to be a frame when any of its vectors is removed is said to be an

exact frame. It turns out that the class of Riesz bases and the class of exact frames

are equivalent.

Proposition 5 [56]A sequence of vectors in a Hilbert space ri is a Riesz basis if and

only if it is an exact frame. E

As opposed to orthonormalbases, vectorsof a Riesz basis arenot mutually orthogonal,

however a biorthogonal basis always exists.

Proposition 6 [13] ff {<Pi}j£j is an exact frame, then it is biorthogonal to its min

imal dual frame {<Pj}jej, that is

<£n<ft) = < *' % j - (2.23)
0, otherwise

At this point we end the overview of general results on frames and transfer our

attention to some particular cases which gave rise to the general theory and drove

further developments.

2.3 Some Classes of Structured Frames

2.3.1 Frames of Complex Exponentials in L2[—cr,a]

The general theory of frames originated from studying the characterizability of

bandlimited signals from a sequence of samples [13]. It can be formulated as follows.

Given a space of a-bandlimited signals, it is of interest to characterize sequences of

sampling instants which uniquely describe signals in the space and moreover allow

for a numerically stable reconstruction. Frames of complex exponentials in L2[—a, a]

are closely related to this problem.
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A classical result of Fourier analysis, in communications known as the sam

pling theorem, asserts that regular sampling of a <7-bandlimited signal f(t) at points
{nr}n€z introduces no loss of information as long as r < it [a. Recall that f(t) can
be recovered from the samples as

/(*) = " E f(nr)sinC(T(t - nr), (2.24)
' n

where
. asin(ax)

smcgix) = .
7T ax

The value which f(t) attains at the sampling instant nr represents the inner product

f(nr) = (f,sinca(t - nr)),

so that f(t) can be written as

/W = -B/,¥VrWW, (2-25)
' n

where

(PnAi) -sinca(t-nr).

Therefore, sampling above the Nyquist rate, r < n/a, is equivalent to expanding a

signal with respect to

which turns out to be a tight frame for the space of or-bandlimited signals. Alter

natively, this sampling can be viewed as a linear expansion of the Fourier transform

of f(t) in terms of complex exponentials {eJumT}, which constitute a tight frame for

L2[—a, a]. This interpretation comes from the fact that the space of cr-bandlimited

signals is isometrically isomorphic to L2[—a, a]. In general, (7-bandlimited signals can

be reconstructed in a numerically stable way from the samples at points {An}n€z if

and only if {ejAnU/} is a frame in L2[—a,a\. Recall that a sequence of complex expo

nentials, {ejAnU'}, is said to be a frame in L2[—a, a] if there exist constants A > 0 and

B < oo such that

A£, tfhi2**" *h£ 1/1 /(w)eiA-"«fc'f ^B f_ i/Mi2dw> (2-26)
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for any f(w) € L2[—a, cr]. This can be rephrased as the condition that

^II/WII^EI/WI'^II/WII2 (2-27)
n

for every (7-bandlimited function f(t). If this is satisfied we shall also say that {A„}

is a frame sequence for the space of cr-bandlimited signals.

Definition 3 A sequence of real numbers {A„} is said to be a frame sequence for the

space ofa-bandlimited signals «y{ejAnC"} is a frame in L2[—a, a]. E

Conditions under which a sequence {ejAnW} is complete and moreover a frame in an

L2[—cr,o] space are the core issues of nonharmonic Fourier analysis. An excellent

introductory treatment of this subject can be found in [56]. Here, only a few illumi

natingresults are reviewed in order to provide some intuition about frames ofcomplex

exponentials.

If samples of a <r-bandlimited signals taken at points {An} are sufficient for a

numericallystable, exact reconstruction, then it canbe expected that {An} will retain

this property under smallperturbations. The next theorem asserts that this is indeed

true in the case of the orthonormal basis {ejnir/,ff}.

Theorem 1 [22] (Kadec's \ Theorem). 7/{A„} satisfies

|A„ - n-| < L < --, n = 0,±1,±2,...,
a 4a

then {ejXnU/} is a Riesz basis for L2[—a,cr\. D

The bound given in this theorem is tight, i.e. the result does not follow if supn |An —

rnr/a\ = n/4a. A more general result on stability of frames of complex exponentials

is established by the following theorem.

Theorem 2 [56] Let {eiAnU;} be a frame in L2[-a,a], with bounds 0 < A < B < oo

and S a given positive number, ff a sequence {fin} satisfies |An —p,n\ < S for all n,

then for every a-bandlimited signal f(t)

A(l - %/C)2||/||2 <£ |/(Mn)|2 < B(l + ^)2||/||2, (2.28)
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where

C=j(e°s-l)\ (2.29)
D

Corollary 1 If the set {ejAnU'} is a frame for L2[—a, a] then there is a positive

constant S with the property that {eJMnW} is also a frame for L2[—o~,o~] whenever

|An —p>n\ < $ for every n. E

This corollary follows immediately from Theorem 2 if S in the statement of the theo

rem is chosen small enough that C is less then 1. For instance, note that there exists

a Si/4 ({An},0"), such that whenever S < Si/4 ({A„},cr), {e"*"'"} is a frame with frame

bounds A/4 and 95/4. This fact will be used for derivations in Chapter 4.

Another sufficient condition on {An} to be a frame sequence is given by Duffin

and Schaeffer [13]. Basically, it asserts that {A„} is a frame sequence for the space of

(j-bandlimited signals if the An are sufficiently dense on the real axis.

Definition 4 A sequence {An} of real or complex numbers has uniform density d,

d > 0, if there are constants L < oo and S > 0 such that

|A„ - J| < L, neZ
(2.30)

IAn —Am| > S > 0 n ^ m.

We can now formulate the following criterion.

Theorem 3 [13] If a sequence {An} has a uniform density d > a/n, then {ejAnU'} is

a frame in L2[—a, cr]. D

The condition of this theorem requires the uniform density d strictly greater than

a/it. This bound is tight, since there axe sequences of uniform density d = a/n which

are not frame sequences in L2[—cr,a\. An example is any sequence obtained from

{nn/a} by dropping one of the points. However, this theorem gives only a sufficient
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condition. If some restriction is imposed on L in Definition 4, it is possible to find

sequences of uniform density d = a/ir which axe frame sequences in L2[—a, a]. The
existence of these sequences is established by Kadec's 1/4 Theorem.

The results on irregular sampling which axe reviewed here indicate a tradeoff

between regularity and density of sampling. If signals axe to be represented with a

minimalnumberof samples, these samples are to be located in strictly defined areas

uniformly distributed on the time axis. As soon as some redundancy (oversampling)

is introduced, the restrictions onthe distribution of the sampling points become much

looser.

2.3.2 Weyl-Heisenberg and Wavelet Frames

Frames which axe designed for a particular application usually exhibita specialized

structure. Two examples, which arise from engineering practice as well as physics,

are Weyl-Heisenberg and wavelet frames in L2(R).

Weyl-Heisenberg frames are the tool for Short-Time Fourier analysis and have also

been used in many areas of theoretical physics under the name of coherent states.

They consist of vectors which are obtained by translating and modulating a single

prototype window function,

{<*»(<) :*m»(<) =e>'mwoV(* - ^o)}mn6Z. (2.31)

Vectors <fimn(i) are distributed on a rectangular lattice in the time-frequency plane.

The lattice cell size is given by the time and frequency steps of the frame, t0 and u;0,

respectively (see Figure 2.3). All vectors have the same effective support, which is

determined by the shape of the window. The window initially proposed by Gabor

[14] was Gaussian, since it achieves the lower bound of uncertainty in the joint time-
frequency plane, facilitating signal description with the best possible joint resolution.

Other window functions are admissible, too. In fact, the only restriction which the

window function of a Weyl-Heisenberg frame with bounds A and B has to obey is

A<^-|M|2 <B. (2.32)
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Figure 2.3: Distribution of vectors of a Weyl-Heisenberg frame in the time-frequency
plane. The resolution of the frame, determined by the effective support of frame
vectors, is fixed throughout the plane.
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The restriction on the time and frequency steps is

u0to < 2tt. (2.33)

The meaning of this condition is that if the Weyl-Heisenberg vectors axe to cover

the whole time-frequency plane, so that any signal in L2(R) can be represented in

a numerically stable way as their superposition, then they have to be "sufficiently

dense" in the space. The minimal density corresponds to woto = 2n, so that 2ir/Lj0to

represent redundancy of the frame. It turns out that in order to have good time-

frequency localization we have to allow a certain degree of redundancy. This is a

consequence of the Balian-Low theorem.

Theorem 4 [1, 23] Balian-Low: ff<pmn(t) = ejmu'0V(^ ~ nt0), m,n € Z, constitute
a frame in L2(R), then either £>„ t2\ip(t)\2dt = oo or £>„ u2\<j>(u)\2du = oo. D

In other words, there are no orthonormal Weyl-Heisenberg bases with good localiza

tion in the joint time-frequency domain.

Signal expansions based on Weyl-Heisenberg frames having a fixed resolution

across the whole time-frequency plane cannot provide compact descriptions which

capture both signal transients as well as large scale behavior. Frames of wavelets

alleviate this problem. They consist of vectors which are obtained by dilating and

translating a single mother wavelet i/>(t) as

{-VwW :V>mn(0 =aZml2il>(aZmt - "M}mneZ , (2.34)

where ao > 1 and &o are positive constants. The distribution of vectors of a wavelet

frame in the time-frequency plane is illustrated in Figure 2.4. The support of the

wavelet ipmn(t) in time is proportional to aj1. Going to higher frequencies (smaller

values of m) wavelets are better concentrated and distributed with higher densities

on the time scale. As a result, wavelet expansions provide signal descriptions with a

progressively better time resolution at highfrequencies. Hence, they provide an anal

ysis tool which is well suited for extracting information on both fine signal structures

(singularities, etc.) and global trends.
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time

Figure 2.4: The distribution of vectors of a wavelet frame in the time-frequency
plane. Time resolution of the wavelet frame is progressively refined going to higher
frequencies at the expense of coarser frequency resolution.



The admissibility conditions on the mother wavelet i/>(t) for

i>mn(t) = aZmt2\l)(aQmt - nb0), m,n € Z,

to constitute a frame in L2(R) with bounds A and B are given by

60lna0 . . Z*00 |0(w)| , ^ &olna0
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2tt

and

iA < r 1^4, <£otaooB (2 36)
J-oo M 27T

<f MHJ!^ <6otoaoB) (235)
70 W 27T

60lna0 . . f° I^MI2, , b0\na0
2*

A detailed analysis of these admissibility conditions is given in [10]. The result is that

for a mother wavelet which has a reasonable decay in time and frequency and satisfies

f™nftyil>(t)dt = 0, there exists a range of parameters ao and &o such that {^mn} in

(2.34) is a frame. One of the fundamental differences with Weyl-Heisenberg frames is

that orthonormal bases of wavelets with good localization, and even compact support,

axe attainable. A systematic procedure for generating wavelet bases in L2(R) was

pioneered by Daubechies [10] and is based on iterated filter banks.

The theory of filter banks is a discrete-time analogue of the theory of structured

linear expansions in L2(R). It had been developing independently, driven mainly by

applications to subband coding, until close links between the two theories were unrav

eled and a unifying framework was developed. However, studies of filter banks were

mostly confined to the critically sampled case, that is orthonormal and biorthonor-

mal bases. Two excellent, thorough treatments of the subject are given in [47, 50].

We defer this topic to Chapter 3, which also presents original results on redundant

structured expansions in P(Z).
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3.1 Filter Banks and Linear Expansions in £2(Z)

The theory of filter banks [47, 50] provides a convenient framework for both

the study and the implementation of an important class of signal decompositions

in £2(Z). These axe expansions underlying signal analysis through a sliding window

using a selected set of elementary waveforms. In general, they have the form

K-l oo

*M = I] S CijVfjW, (3-1)
i=0 j=—oo

where the vectors y»,j[n] denote translated versions of K basic functions, v?t',j[n] =

ipi[n —jN]. The study of families of vectors of this type,

* = Ki :WJW = <Pil" ~ JN]> *= 0> 1.•••» K-l,jeZ} (3.2)

amounts to investigation of properties of K channel filter banks followed by subsam-

pling by factor N in each of the channels, as the one shown in Figure 3.1a. In other

words, vector families of this type axe equivalent to filter banks.

Let the filters Ho(z), H\(z), ... , Hk-i(z) of the analysis filter bank, as the one

shown in Figure 3.1a, be selected as complex conjugates of the time reversed versions

of the waveforms <pj, hi[n] = <fi[n], i = 0,1,..., K —1. For an input signal /, such

a filter bank calculates inner products of /, < x,<#,j >, with vectors in the family
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Ho(z) N|)— y0W —@)- Go<z>

x[n] -
H!(z) yiW —@- G!(Z)

TO-x[n]

HK.!(z) _/JJ^— yKl[n] —^jjh GK.i(z)

a) b)

Figure 3.1: A K channel filter bank with subsampling by factor N in the channels,
a) Analysis filter bank, b) Synthesis filter bank.

$. If the vector family $ is a frame in ^2(Z), then the filter bank implements the

associated frame operator F, which is in this case a bounded linear operator from

^2(Z)to£2({0,l,...,JV-l} xZ),

F :£2(Z) -• ^2({0,1,..., N - 1} x Z). (3.3)

We shall also say then that the filter bank implements a frame decomposition and

refer to $ as its associated frame, or a filter bank frame. In filter bank terms, $ being

a frame means that any signal can be reconstructed from the subband components,

obtained at the outputs of the filter bank, using stable filters.

On the other hand, a synthesis filter bank as the one in Figure 3.1b, implements

the Hilbert adjoint of the frame operator, F*,

K-\ oo

t=0 j——oo

(3.4)

provided that impulse responses of the filters G\(z),... ,Gk-i(z) match the waveforms

<Pi, that is gi[n] = <pi[n]. Hence,for the stable filters Gi(z), this filter bank is a bounded

linear operator from ^2({0,1,..., N - 1} x Z) to ^2(Z).

Expansions in P(Z) with respect to frames $, as given in (3.2), axe studied in

detail in the critically sampled case, N = K, which correspond to orthonormal or
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biorthonormal bases [50]. Results presented in the remainder of this chapter are

concerned with redundant expansions of this type (N < K), that is oversampled

filter banks, although most of them axe valid in the critically sampled case as well.

3.2 Frame Conditions on Filter Banks

A convenient representation of signals and filters in analysis of multirate

systems is the so-called polyphase decomposition. Consider a K channel filter bank,

followed by subsampling by a factor N in the subbands (see Figure 3.1a). The suit

able decomposition of an input signal x[n] in this case, is in terms of N polyphase

components,

X{z) = £ z-'Xiiz") (3.5)
i=0

where

Xi(z)= f; x[nN +i]z-n. (3.6)
n=oo

Each polyphase component X{[n], given in the z-domain by X{(z), is obtained sub-

sampling x[n) by the factor N, starting with the i-th point.

Similarly, filters of the filter bank can be represented as

Hi(z)='£^Hij(zN), (3.7)
i=o

where
+oo

#i(*)= £ hi[nN-j]z-n. (3.8)
n——oo

It can be easily verified [50] that an input signal x[n] produces at the output of this

filter bank subband components yo[n], y\[n], ... , yic-i[n] which are given in terms of

their ^-transforms as

[Y0(z) Y,{z) ... Yk-^z))7 = HP(2)[X0(2) Xl(z) ... X„,_1(2)]r. (3.9)

In this expression Hp(z) denotes the polyphase analysis matrix of the filter bank,



which is defined as

HPW =

#00(2)

H10(z)

H01(z)

Hu(z)

Hq(N-1)(z)

ffl(N-l)(z)
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(3.10)

. H(K-l)o(z) H(K-i)i(z) ... H^K-1)(N-1)(^)

Another way to look at the filter bank is as a bounded linearoperator which maps

the polyphase components of the input signal to the set of subband components, in the

manner described by the relation (3.9). The input signal can be reconstructed from

the subband components if and only if its polyphase components can be recovered

afterthe transform given in (3.9). The frame conditions on an oversampled filter bank

will be therefore expressed in terms of properties of its polyphase analysis matrix.

The necessary and sufficient frame and tight frame conditions axe given by the

following two theorems, which are proven in Appendix 3.7.1 and Appendix 3.7.2,

respectively.

Theorem 5 A filter bank implements a frame decomposition if and only if its poly

phase analysis matrix is offull rank on the unit circle. D

Theorem 6 A filter bank implements a tight frame decomposition if and only if its

polyphase analysis matrix is paraunitary, Hp(2)Hp(z) = cl. E

An equivalent statement of Theorem 5 is that a filter bank implements a frame

decomposition if and only if there exists a matrix Gp(z) of stable, rational, not

necessarily causal, functions such that

Gp(z)Hp(z) = cl. (3.11)

The matrix Gp(z) is called the synthesis polyphase matrix and itsentries [Gp(z)]t.tJ. =
Gij(z) axe the polyphase components of filters of the synthesis filter bank (Figure

3.11b),

GM^z-iGviz"), (3.12)
t'=0
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which can be used for perfect reconstruction of a signal from the decomposition

obtained from the analysis filter bank. In other words, a synthesis filter bank gives a

frame which is dual to the frame associated with the analysis filter bank. This dual

frame consists of impulse responses of the filters Gi(z) and their translates by integer

multiples of N.

If the frame conditions given by Theorem 5 or Theorem 6 are satisfied, in the

oversampled case N < K, the solution for Gp(z) of the polyphase equation (3.11),

and hence the synthesis filter bank, is not unique. This is in accordance with the fact

that for a given analysis frame, the corresponding synthesis frame is not unique. One

solution for Gp(z) is the pseudoinverse of Hp(z), which is given by

H+(z) =(Hp(*)Hp(*))"1 Hp(z). (3.13)

It can be easily verified that the frame associated to Gp(z) = H+(z) is the minimal

dual of the frame associated with the analysis filter bank. Hence, it is important to

investigate conditions under which both a filter bank frame and its minimal dual con

sist of finite length vectors. The following theorem states the necessary and sufficient

condition for this to hold.

Theorem 7 For a frame associated to an FIR filter filter bank, with the polyphase

analysis matrix Jip(z), its dual minimal frame consists offinite length vectors if and

only z/Hp(z)Hp(2) is unimodular. E

Sufficiency of this condition is obvious. It is proven in Appendix 3.7.3 that it is also

necessary. This theorem is a generalization of the analogous result for the critically

sampled filter banks. Accordingto that result, perfect reconstruction with FIR filters

after an analysis by a critically sampled FIR filter bank is possible if and only if the

determinant of Hp(z) is a pure delay [50], which implies that ~H.p(z)Jip(z) has to be

unimodular. Note that in the oversampled case, Theorem 7 does not preclude the

existence of an FIR dual frame even if HP(2)HP(2) is not unimodular. However, for

the reasons discussed in Chapter 2.3.2 we put the emphasize on the reconstruction

using minimal dual frames.
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Recall that we pointed out in Chapter 2.3.2 that, in general, for a given frame

there is no closed form expression for its minimal dual. A remarkable property of the

filter bank frames is that the task of finding a dual or the minimal dual amounts to

finding a left inverseor a pseudoinverse, respectively, of a matrix of polynomials.

3.3 Parameterizations of Frames in £2(Z)

The parameterization of filter bank frames which is given here is based

on the Smith form of polynomial matrices [42]. Any polynomial matrix HP(z) of

dimension K x N (K > N) can be decomposed as the product

Hp(«) = R(*)D(z)C(z), (3.14)

where R(z) and C(z) axe unimodular matrices of dimensions K x K and N x JV,

respectively, while D(z) is a diagonal K x N polynomial matrix

0

0

D(*) =

di(z) 0

0 d2(z)

0 0

0 0

0 0

dN(z)

0

0

(3.15)

The unimodular matrices can be chosen so that the polynomials d{(z) are monic and

that di(z) is a factor of di+1(z). The matrix D(*) is called the Smith form of Hp(z).

The unimodular matrices H(z) and C(z) axe products of finitely many elementaxy

matrices

K(z) = R1(z)R2(z)--'Rm(z)

C(z) = C1(z)C2(z)'--Cn(z).

Elementaxy matrices Ri(z), Cj(z) correspond to elementary row (column) operations,

and have one of the following forms:
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• a permutation matrix, i.e. the identity matrix with two rows permuted;

• a diagonal matrix with elements on the diagonal equal to unity, except for one

which is equal to a nonzero scalar;

• a matrix with ones on the main diagonal and a single non-zero entry off the

diagonal, which is a polynomial ol(z).

An example of the three types of elementaxy matrices, for the 4x4 case, is given

below.

r 1 0 0 0

0 10 0

0 0 c 0

0 0 0 1

A complete parameterization of FIR filter bank frames in ^2(Z) follows directly

from the Smith form, and is stated by the following Proposition.

Proposition 7 An oversampled FfR filter bank implements a frame decomposition in

Z2(Z) if and only if the polynomials on the diagonal of the Smith form of its polyphase

analysis matrix have no zeros on the unit circle. Q

This proposition follows from the fact that the polyphase matrix and its Smith form

have the same rank on the unit circle, since they are related by elementary row

(column) operations. Hence, the filter bank implements the frame decomposition if

and only if its Smith form is of full rank everywhere on the unit circle, which holds if

and only if the polynomials on the diagonal have no zeros on the unit circle.

An important class of filter bank frames axe those which have minimal duals

consisting of finite length vectors. According to Theorem 7, these are equivalent to

polynomial matrices Hp(z) suchthat Hp(z)Jip(z) is unimodular. A parameterization

of these frames is given by the following proposition.

Proposition 8 Consider an oversampled FfR filter bank with the polyphase analysis

matrix Hp(z). Then, Hp(z)Hp(;z) is unimodular if Jlp(z) has the following form:

1 0 0 0 '

0 0 0 1

0 0 10
>

0 10 0

1 0 0 0

0 10 0

a(z) 0 1 0

0 0 0 1

Hp(z) = K0R(z)D(z)C(z), (3.16)
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where the factors Ho, R(z), D(z), C(z) have the following form:

• Ho - a K x N (K > N) matrix of scalars, such that HoHo = cl,

• R(z) and C(z) - N xN unimodular matrices, products offinitely many elemen

tary matrices,

• D(z) - an N x N diagonal matrix of polynomials, with nonzero monomials on

the diagonal.

On the other hand, any unimodular parahermitian matrix of polynomials, P(z), which

is positive definite on the unit circle, can be factored as P(z) = Hp(2r)Hp(z), where

Hp(jz) is of the form given in (3.16). D

This result is proven in Appendix 3.7.4.

As we noted in the previous section, for perfect reconstruction using an FIR filter

bank after analysis with an oversampled FIR filter bank, Hp(z)Hp(z) need not be

unimodular. The necessary and sufficient condition for an FIR synthesis is given by

the following proposition which is proven in Appendix 3.7.5. This proposition also

gives a complete parameterization of frames associated to FIR filter banks which have

duals consisting of finite length vectors.

Proposition 9 Perfect reconstruction with FIR filters after analysis by an oversam

pled FIR filter bank is possible if and only if polynomials on the diagonal of the Smith

form of the polyphase analysis matrix are monomials. •

As it was shown in the previous subsection, tight filter bank frames axe equivalent

to paraunitary polynomial matrices. A K x N paraunitary matrix- (K > N) can

always be embedded into a K x K paraunitary matrix [35]. The parameterization

of the rectangular paraunitary polyphase matrices, that is filter bank tight frames

in ^2(Z), which we give in the following proposition follows directly from one of the

factorizations of square paraunitary matrices studied by Vaidyanathan [47].
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Proposition 10 A K x N (K > N) polynomial matrix Hp(z) is paraunitary if and

only if it has the decomposition

Hp(*) = Vm(i)Vh.,W •••Va(*)Ho. (3.17)

The elementary building blocks, V{(z), have the following form,

V|(«) = I - ViVj* + z-'viVi*, (3.18)

where vj denotes a unit norm vector, while Ho is a K x N matrix of scalars such

that H0Ho = cl. O

The scope of frames in ^2(Z) which can be derived from filter banks goes beyond

families of vectors of the type given in (3.2). An abundance of frames can be generated

by iteratively growing filter bank trees, in the manner used for generating wavelet

packets [51]. The significance of iterated filter structures is in the fact that they can

generate waveforms with almost any reasonable localization in the time-frequency

plane which allows for signal analysis with a great flexibility of time or frequency

resolution.

3.4 Nonsubsampled Filter Banks

3.4.1 Frame Conditions on Nonsubsampled Filter Banks

The motivation for the study of nonsubsampled filter banks stems from

applications where critical sampling is not needed but rather imposes severe design

constraints. Signal analysis and modeling of biological systems are examples of such

applications. Nonsubsampled filter banks also find their place in applications which

require shift invariant signal representations, which is known to be inconsistent with

the subsampling in the filter bank channels [41]. Highly redundant representations

followed by a sophisticated sampling strategy can even yield compression schemes.

Examples are wavelet modulus maxima and wavelet zero-crossings representations [25,

26] which axe proposed for singularity detection, signal denoising and compression,
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and axe based on preprocessing by nonsubsampled filter banks. The crucial property

of the nonsubsampled filter banks in these applications is that they produce dense

sequences of samples resulting in representations which axe close approximations of

continuous-time transforms.

In the case of nonsubsampled filter banks, the frame conditions as well as the

condition for the feasibility of an FIR synthesis after an FIR analysis have a peculiar

form. These conditions axe reviewed in this section. The flexibility of the design

of nonsubsampled filter banks is in this thesis illustrated for the case of maximally

flat two channel filter banks which implement tight frame decompositions in ^2(Z).

These design considerations are deferred to Chapter 5.3.3, where applications of non

subsampled filter banks axe discussed.

y«w

x[n] -
yiW

@-x[n]

yK-iW

a) b)

Figure 3.2: A K channel nonsubsampled filter bank, a) Analysis filter bank, b)
Synthesis filter bank.

The polyphase analysis matrix of a nonsubsampled filter bank (Figure 3.2a) is a

column vector whose entries axe the analysis filters themselves,

Hp(z) = {Ho(z) Hr(z) ... HK.r(z)]T. (3.19)

Perfect and stable reconstruction is possible provided that there exist stable filters
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G0(z), Gi(z), ... , Gk-i(z) satisfying

Ho(z)G0(z) + H1(z)G1(z) + ...+ HK-i{z)GK-i{z) = 1. (3-20)

This equation expresses reconstruction by a synthesis filter bank with filters Gi(z)
(Figure 3.2b). The necessary and sufficient condition for the existence of such filters

is given by the following corollary of Theorem 5.

Corollary 2 A nonsubsampled filter bank implements aframe decomposition if and
only if its analysis filters have no zeros in common on the unit circle. D

The frame condition does not generally guarantee the possibility of FIR reconstruc

tion.

Corollary 3 Perfect reconstruction using FIR filters after an FIR analysis by a non

subsampled filter bank is possible if and only if the analysis filters have no zeros in

common. ^

This result is a corollary of Proposition 9. As a special case of Theorem 6 we have

the following result about nonsubsampled filter banks and tight frames.

Corollary 4 A nonsubsampled filter bank implements a tight frame decomposition if

and only if its analysis filters are power complementary:

H0(z)Ho(z) -r ffi(z)#i(*) + ...+ HK-i(z)HK-i(z) = 1- (3-21)

In the case of nonsubsampled filter banks, a frame associated with an FIR filter bank

has the minimal dual consisting of finite length vectors only if the frame is tight. This

result is an immediate corollary of Theorem 7.

Corollary 5 Foraframe associated with an FfR nonsubsampled filter bank, its min

imal dual frame consists offinite length vectors if and only if the analysis filters are

power complementary, that is if and only if the frame is tight. D
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3.4.2 Nonsubsampled Filter Banks and Continuous-Time

Signal Analysis

Filter banks, as it will be shown here, give samples of continuous time transforms

of signals in L2(R), provided that anappropriate discrete-time version of the signal is

available at the input. The usefulness of nonsubsampled filter banks comes from the

fact that the highly redundant representations they generate can be close discrete-

time approximations of continuous-time signal transforms. In this section weidentify

the underlying continuous-time filters.

Discretization of a continuous-time signal / € L2(R) usually amounts to project

ing it onto an approximation space Vv, which is spanned by integer translates of a

single function <p(x), called the generating function. The generating function should

satisfy a condition

0 < « < E |£(w + 2fc7r)|2 < P < oo (3.22)

which means that its integer translates constitute a Riesz basis for V^. The projection,

fp(x), of an f(x) onto Vv, can be represented by a sequence of parameters f<j>[n] which

are coefficients of its expansion:

/,(*) = £ /*l»M* - »)• (3-23)
n€Z

The sequence ftj>[n] represents a discrete-time version of the signal, and is obtained

by sampling f(x) prefiltered by an appropriate filter </>(x),

/+oo

f(x)<f>(n - x)dx. (3.24)
-oo

Integer translates of the time-reversed version of <j>(x) constitute another bases for Vv

which is dual to {<p(x —n),n € Z} [46] so that fp(x) can be alternatively represented

as

M*) = E f»<t>(n - x), (3.25)
n€Z

where
/+oo

f(x)<p(x - n)dx. (3.26)
•oo
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Shannon's sampling occurs when the approximation space is the space ofbandlimited

signals generated by translates of the sine function. Another particular case is the Vb

space of Mallat's multiresolution analysis, with y(x) being the corresponding scaling

function. For detailed analysis of various aspects of generalized sampling the reader

is referred to work by Unser and Aldroubi [46].

For a continuous-time signal f(x) discretized as in (3.24) consider subsequent

processing by the nonsubsampled filter bank which consists of filters Hq(z)^ H\(z), ...

, HK-\(z). Subband components /*, k = 1,2,... K - 1 generated by the filter bank

axe given in the Fourier domain by the following formula,

fk(en = Hk(en £ f(u+ 2k7r)]>(u + 2kn). (3.27)
fc€Z

This expression indicates that the filter bank performs regular sampling of signals

obtained by filtering f(x) by a set of filters ipo(x), y?i(a;), ..., ipK-i(x), which axe

given by

&(w) = Hk(j<)4(u>). (3.28)

This characterizes continuous-time transforms which underlie nonsubsampled filter

bank analysis in the given approximation space Vv. An interesting particular case is

wavelet analysis implemented by iterated two channel filter banks. It is discussed in

more detail in the next section.

3.5 Wavelet Analysis in f{Z)

3.5.1 Wavelet Bases and Critically Sampled Filter Banks

Wavelet bases in ^2(Z) are derived from critically sampled iterated two-channel

filter banks. Such a filter bank is shown in Figure 3.3. The corresponding wavelet

family is given by

{i>mn[i\ :tfmnH = tfm[t - "2m+1], m=0,1,..., J- 1,4>Jn\i] =Mi ~n2Jl}n€Z .
(3.29)
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where i>m[n] is the complex conjugate of the time-reversed version of the equivalent

filter from the input of the filter bank to the m-th output. In paxticulax, if Hq(z) and

H\(z) denote the prototype filters of the filter bank, then the equivalent filters axe

H0(z)H1(z2),

(3.30)
,J-2, • J-l

ff0(2)ff0(22) ••• ff0(22 )ffl(*2 ),

ff0(2)ffo(^)---ffo(^J"').

{ipmn} is a basis if and only if the elementaxy building block of the iterated filter

bank, that is #0(2) and #1(2) followed by subsampling by 2, constitute a so-called

perfect reconstruction filter bank. This condition is equivalent to the requirement

that the determinant of the polyphase matrix of the building block has to be a pure

delay, that is detHp(z) = z~l [50]." The polyphase analysis matrix is given by 3.8

and 3.10, for N = K = 2. Filters Hq(z) and Hi(z) which constitute an orthonormal

Ho(z) -^2+)-

HjCz) •®-

H^z2) -(g)-

«!<*> -©-•. HoCz2") -(2j)-

Lh/i -Q)-

Figure 3.3: Two-channel iterated critically sampled filter bank.

filter bank give a family ipmn which is an orthonormal wavelet basis in ^2(Z). The

orthonormality is equivalent to paraunitariness of the polyphase analysis matrix, and

can be further expressed as the conjunction of the following two conditions [47, 50]

Ho(z)H0(z-1) + H0(-z)Ho(-z-1) = 2, (3.31)

Hx{z) = -z2MH0(-z-1), keZ. (3.32)
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The analogy between wavelet bases inthediscrete and the continuous-time domain

comes from the same type of tiling of the time-frequency plane (see Figure 2.3),

although one can not speak of discrete-time wavelet bases, as given by (3.29), which

are obtained by dilating and translating a single filter in time. The most striking link

between these discrete-time operators andwavelets in £2(R) is the fact that there is a

systematic procedure for generating wavelet bases in L2(R) from iterated filter banks.

This procedure was originally proposed by Daubechies [11] for generating compactly

supported wavelets from FIRorthogonal filter banks, and subsequently verified to be

valid for general FIR perfect reconstruction filter banks [49, 8]. The details of the

construction axe as follows.

Consider a two channel octave band iterated filter bank of depth i, as the one

shown in Figure 3.3. The equivalent filters of the two lowest branches axe

HP(z) =JQ Ho (zik) , (3.33)
Jfc=0

t-2

#<"(*) =H, (**-) II H0 (z*) . (3.34)
k=0

Then associate with the impulse responses h$ and h\' of H&'(z) and H\x)(z) the
continuous-time functions <j>^(x) and i/>W(x):

*»(x) =2U<i»(n), | <x<2±±, (3.35)
*«(*) =2*fc[i)(n)> | <x<!i±i. (3.36)

The elementaxy interval is divided by 2* so that the continuous-time functions remain

compactly supported as z —> oo. The factor 2a which multiplies /&q and /ij is needed

in order to keep the L2 norms of <f>{ and if>{ inside finite bounds. Assume that <j>M(x)
and ^*)(ic) converge in the L2 sense to the limits

<j>(x) = lim <t>^(x\ (3.37)
{-•oo

1>(x) = lim ^(x), (3.38)
t-foo

which are piecewise smooth functions in L2(R). For an in-depth review of the condi

tions which ensure this convergence the reader is referred to [10]. The function ij)(x)
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obtained as the limit of the above construction is the mother wavelet of a wavelet

basis, while <j>(x) is the so-called scaling function associated with the basis.

X8e-»)
n

Figure 3.4: Discretization of a continuous-time signal for discrete-time implementa
tion of the Continuous Waveiei Transform.

Not only can a wavelet be derived from a two channel filter bank, but a filter

bank can be used for the computation of the coefficients of the corresponding wavelet

expansion. This result is known as Mallat's algorithm [24]. The algorithm requires

that a continuous-time signal f(x)' be discretized as in (3.24), which amounts to

filtering with the scaling function and sampling at points t = ...,—1,0,1,2,... (see

Figure 3.4). If such a discrete-time version of f(x) is fed into the iterated filter bank,

then at the fc-th output of the filter bank we obtain the sequence fk[n] which gives

inner products of f(x) with adilated version -^^ Nr) of the wavelet i/>(x). Precisely,

fh[n]=JZf{x)i^1l'(n~i)dx- (3-39)
This formula was originally proven based on orthogonality of the wavelet ij)(x) with

respect to its dilates and translates. However, it follows immediately from the con

siderations in the previous section (see formula (3.28)) and the wavelet construction.

3.5.2 Nonsubsampled Filter Banks and Wavelet Analysis

The major advantage of wavelet analysis over Fourier and Short-Time Fourier

transforms is that it can isolate events such as singular signal points or other fine

details. Strictly speaking this is the property of the continuous wavelet transform

(CWT). The continuous wavelet transform of a signal f(x) is defined as

Wf(s,x) = f*M*), (3-40)
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where ij>a(x) = -W (?)• Critically sampled octave-band filter banks, as described in
the previous subsection, give samples of the CWT at the grid

(«,x)e{(2',2V) : «= l,2,...,Jj€Z}, (3.41)

where J is the depth of the filter bank tree. For applications such as singularity

detection it is advantageous to remove the subsampling from the filter bank channels

in order to obtain samples of the CWT at a denser grid.

Hj(z)
*i

f-i

H^z2)
l2

f*

— Ho(z) Hj(z4)
*3

L

HoCz2) Hx(z8)
M

Ho(z4)
fc

Ho(z8)
£5

Figure 3.5: An octave-band nonsubsampled iterated filter bank for discrete-time
wavelet transform, of depth J = 4.

A nonsubsampled filter bank, as illustrated in Figure 3.5 produces samples of the

CWT at the grid

(s,z)€{(2\j) : t = l,2f...,Jj€Z}. (3.42)

Note that in addition to the different sampling grid there is also a slight difference

in the construction of the wavelet with respect to the critically sampled case, which

amounts to different scaling factors. In the nonsubsampled case, the wavelet tl>(x)

and the scaling function <f>(x) are obtained as the limits of

#>(x) =2'7*</,H | <*
*«(x) =2'V1i)[n], £ <*

n + 1
<

n + 1

(3.43)

(3.44)
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a) b)

Figure 3.6: Sampling grids of the CWTimplemented by discrete-time processing, a)
Grid corresponding to two-channel critically sampled iterated filter banks, b) Grid
corresponding to two-channel nonsubsampled iterated filter banks.

where &o and hy axe again impulse responses of iterated filters

Hi'\z) ='ff Ho {z*) ,
ib=0

i-2

H?{z) =^ (z*-1) n Ho (z*)
fc=0

(3.45)

(3.46)

The wavelet transform which underlies the analysis with the nonsubsampled filter

bank has the same form except for the scaling factor and is given by

Wf(s,x) = f*M*), (3.47)

where ip3(x) =7^(7)-
Besides giving the CWT on a denser grid, nonsubsampled filter banks allow for

more flexible design than the critically sampled ones. The design freedom attained

by nonsubsampled filter banks is demonstrated in Chapter 5.3.3 through a design of

highly regular wavelets with a given number of vanishing moments which are used

for singularity detection and discrimination.



45

3.6 Short-Time Fourier Analysis in £2(Z)

3.6.1 Modulated Filter Banks

Along with the development of Gabor's original scheme of the short-time

Fourier representations, i.e. Weyl-Heisenberg expansions, it was observed in the

1980's that such time-frequency representations can be stable only in the overcom

plete case [2, 21]. Another incarnation of the same phenomenon is expressed by

the Balian-Low theorem [1, 23] which implies that there axe no orthogonal Weyl-

Heisenberg bases which have good localization in both time and frequency. However,

as soon as some redundancy is introduced, the picture changes drastically and, as

demonstrated by Daubechies [10], good localization of tight Weyl-Heisenberg frames

is attainable.

In ^2(Z) Weyl-Heisenberg frames have the form

$ = {<Pim :w«[n] = e>&n<p[n - miV]}, (3.48)

where (p[n] denotes the prototype window function. Note that redundant families of

this type correspond to K > N, while the Weyl-Heisenberg bases axe obtained for

K = N. Such a family of vectors is equivalent tb a K channel modulated filter bank,

with subsampling by N in the channels (see Figure 3.1). Filters of the equivalent filter

bank are modulates of a prototype filter V(z), H{(z) = V(e*~&'z)i which is given in

the time domain as the complex conjugate of the time-reversed version of <p[n]. A

fact about Weyl-Heisenberg bases in ^2(Z) analogous to the one described by the

Balian-Low theorem has been observed by Vetterli [48].

Theorem 8 [48] The Weyl-Heisenberg family given in (3-48) derived from a finite-

support <p[n] is a basis in ^2(Z) if and only if<p[n] has exactly N nonzero coefficients.

D

A consequence of this result is that there are no critically sampled modulated filter

banks with finite impulse responses which exhibit good frequency selectivity. The

purpose of this section is to investigate the existence of tight Weyl-Heisenberg frames

in ^2(Z), with finite support in time and good localization in frequency.
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In the following, a complete parameterization of tight Weyl-Heisenberg frames

in ^2(Z) with arbitrary rational oversampling ratios is given within the framework

of modulated filter banks. Oversampled filter banks axe much less constrained than

critically sampled ones and consequently allow for the design of frequency selective

FIR filters, which can be linear-phase as well. In other words, there exist tight

Weyl-Heisenberg frames with symmetries and good localization in the time-frequency

domain.

Consider a K channel modulated filter bank, based on the prototype filter V(z),

with the subsampling factor N < K. Let M be the least common multiple of K and

N and let J and L be the two integers satisfying JK = LN = M. The M-component

polyphase representation of V(z) has the form:

M-l

V(z) = £ z-iVjiz").
• i=o

Elements of the polyphase analysis matrix can be expressed as

L-l

HiAz) = £ Wif*+W)*-'Vi4W(^),
/=0

where Wk = exp(j2ir/K). This gives the following factorization:

Hp(*) = FtfV(z),

where F# is the K x K DFT matrix and

V(*) =[/*.../*] •diag (V0(zL), Vi(*L),..., VM-i(zL))

In

z-xIN

z-lL-»IN

(3.49)

(3.50)

(3.51)

(3.52)

/„ here stands for the n x n identity matrix.

By inspection of the above factorization one can see that the elements of V(z) are

given by

[V(*)]0- =*"'W)VWflirf*1) *=<U K - 1, j =0,1,..., N- 1 (3.53)
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where p(i,j) and q(i,j) are integers satisfying

i + p(iJ)K=j + q(i,j)N, p(iJ)<J-l, q(iJ)<L-l. (3.54)

Note that equation (3.54) cannot be satisfied for every pair of integers * and j. In

fact, for each j there axe exactly J indices, i, which satisfy (3.54). Consequently J

nonzero elements axe regulaxly spread in each row of V(z) and L nonzero elements

axe regulaxly spread in each column of V(z). Three possible cases are illustrated by

the following examples.

Example 1 K is a multiple of N. In this case, J = 1, so that there is a single

nonzero element in each row ofV(z). For K = 6 and N = 3 we have:

V(*) =

Vo(z2) 0 0

0 Vi(z2) 0

0 0 V2(Z2)

z~lVz(z2) 0 0

0 z-lVA(z2) 0

0 0 z-lV*(z2)

D

Example 2 K and N are coprime. In this case, J = N, so that all elements ofV(z)

are nonzero. For K = 3 and N = 2 we obtain:

V(*) =

V0(z3) z-lV*(zz)

z~2V4(z3) V^z3)

z-lV2(z3) z~2V5(z3)

Example 3 Neither of the above cases, e.g. K = 6 and N = 4 yields V(z) equal to



the following matrix:

V0(z3) 0 z-lVe(z3) 0

0 Vx(z3) 0 z~lV7(z3)

z-2V8(z3) 0 V2(z3) 0

0 z~2V9(z3) 0 V3(z3)

z-lVA(z3) 0 z~2V10(z3) 0

0 z-lVs(z3) 0 ^-2Vn(23)

48

3.6.2 Tight Weyl-Heisenberg Frames in £2(Z)

As it was stated earlier in this chapter (see Theorem 6 in Section 3.2), a filter bank

implements a tight frame decomposition if and only if its polyphase analysis matrix

is paraunitary. According to the definitions of Hp(z) and V(z) the paxaunitariness

condition can be expressed also as:

V(z)V(*) = IN.

Noting that some of the elements of Y(z)V(z) axe identically zero and taking

symmetries into account, it can be observed that the paxaunitariness condition im

poses N H—'2~ ' distinct constraints. We now investigate the implications of these
constraints for the three cases presented in the previous subsection.

Case 1 K is a multiple of N

V(z) is constrained only by

L-l

EK+wWVi+w(2) = c, i = 0,l,...,iV-l -
/=o

This indicates that the polyphase components

{Vi(z), Vi+N(z),..., Vi+{L-i)N(z)},

for each i = 0,..., N —1 axe power complementary. It follows that they axe the poly

phase components of a filter jFi(«), which is orthogonal to its translates by multiples

(3.55)
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of L. Hence, tight Gabor frames with an integer oversampling ratio K/N axe gener

ated by arbitrarily selecting N orthogonal filters Fi(z) and identifying their polyphase

components with the polyphase components of V(z). •

Case 2 K and N are coprime

In this case, the polyphase components of V(z) axe, up to a time delay, equal to entries

of a full K x N paraunitary matrix. In order to show this we need to transform

V(.z). Let Dr(z) and T)i(z) be diagonal matrices of monomials, selected so that

elements in the first row and column of D/(z)V(z)Dr(z) axe equal to polyphase

components ofV(z). These matrices are given byDi(z) = diag(l, z9(1'0),..., zq^K~lfi))
and Dr(z) = diag(l,z9(cu),... ,zq^N~l)). For instance, for matrix V(z) in Example

2, T>t(z) = diag(l,z2,z), Dr(z) = diag(l,z), giving

V0(z3) V3(z3)

D,(*)V(*)Dr(z) = V(zL) = V4(z3) z3V, (z3)
V2(z3) V5(z3)

In general, entries of Di(z)V(z)Dr(z) axe equal to

[Dl(z)Y(z)Dr(z)]itj =z^t^VMWVirtvVctf)' (3'56)

It follows from (3.54) that

(-p(iJ) + p(i,0)+p(OJ))K = (-q(iJ) + q(hO) + q(OJ))N,

which implies that -q(i,j) + 9(*\0) + <l(QJ) can be only ° or L- Therefore we can

write

D,(*)V(*)Dr(*) = U(zL), (3.57)

where V(z) is a matrix whose nonzero entries are up to a delay equal to polyphase

components ofV(z). Therefore, an arbitrary paraunitary K x N matrix V(z) gives a
window function V(z) of a tight Gabor frame. Any FIR tight Weyl-Heisenberg frame

in ^2(Z) with the oversampling ratio K/N can be obtained in this manner. O
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Case 3 Neither of the above cases

It can be easily observed that paraunitariness ofY(z) is equivalent to paxaunitariness
of its submatrices V;(z), i = 0, ...,N/J - 1, each of dimension L x J. Note that I
and J axe coprime and all submatrices Vt(z) have the same structure, interms ofthe
distribution of delay elements, as a Y(z) matrix of the size L x J. For instance, in

Example 4, V(z) is paraunitary if and only if its submatrices

VoW =

Vo(z3) z^V6(z3) ' Vi(z3) z-lV7(z3)

z~2Vs(z3) V2(z3) ViW = z~2V9(z3) V3(z3)

_z-*VA(z3) 2-2Vio(*3). z-lV*(z3) z~2Vn(z3

(3.58)

axe paraunitary (compare these submatrices with V(z) in Example 3). According to

considerations in Case 1, it follows that the paxaunitariness of the submatrices V,(z)

is equivalent to the paxaunitariness of some matrices Ut(z), i = 0,..., N/J —1, whose

entries are up to a delay equal to polyphase components of V(z). For the matrix

V(z) in Example 4, corresponding matrices Ut(z) axe given by

U0(2) =

Vo(z) Ve(z)

V*(z) zV2(z)

Va(z) Vio(z)

Vx(z) =

Vx(z) V7(z)

Vs(z) zV3(z)

Vs(z) Vn(z)

(3.59)

Therefore, a prototype lowpass filter V(z) of any tight Gabor frame with the over-

sampling ratio K/N can be obtained by starting with arbitrary N/J paraunitary

matrices of the size L x J and identifying their entries, up to a delay, with M poly

phase components of V(z). •

The results presented in this section give a complete parameterization of FIR tight

Gabor frames in ^2(Z) for arbitrary rational oversampling ratios. Design of the tight

frames then amounts to an optimization procedure under these constraints. Recall

that, in the case of perfect reconstruction FIR modulated filter banks with critical

sampling, the polyphase components of V(z) can not have more than one nonzero

coefficient [48], which is too restrictive to obtain good frequency selectivity. In the
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oversampled case no similar restriction is imposed. The acquired design freedom is

illustrated by the following example.

Example 4 Consider the case N = 2 and K = 4. With the additional requirement

that the prototype filter V(z) is symmetric, the design consists of finding a single
filter F(z) which is orthogonal to its translates by multiples of2. In terms of their

polyphase components, F(z) and V(z) are given by

F(z) = F0(z2) + z-1F1(z2)

V(z) = V0(z4) +z-^z4) +z~2V2(z4) + z~3V3(z4) '

The design constraints are thus satisfied by taking V0(z) and V2(z) to be equal to

F0(z) and Fi(z), respectively, and V\(z) and V3(z) to be their time reversed versions.
One solution, obtained from a 4-tap filter F(z), is shown in Figure 3.7. Of course,

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
frequency response of the window function

Figure 3.7: An example of an 8-tap window function for tight Gabor frames with the
oversampling factor K/N = 2.

better frequency selectivity could be achieved with longer filters, F(z), since in this

case there is no restriction on the filter length. D
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3.7 Appendix

3.7,1 Proof of Theorem 5

The norm of a discrete-time signal x[n] in terms of its polyphase components is

given by

w24rSi^i2(L (3-6o)lit J-« i=Q

Subband components of x[n] produced at the outputof the filter bankwill be denoted

by 2/t, i = 0,1,..., K - 1. Recall that they axe given in the Z-transform domain by

[Yo(z) Y1(z) ... y*-i(*)]T =np(z)[X0(z) X,(z) ... Xn-i(*)]T. (3.61)

a) Necessary condition

Suppose Hp(ejwo)a = 0 for some vector a. Consider a sequence of signals {xj}^
such that the polyphase representation of Xj has the form

[XJV) Xlj)(e>») ... X%)_1(ei")]T = P»a' <" > °

where

Pj(u) = <
^ Wo-^<u;<a;o +i
0 otherwise

Then H^H2 = 1but Y*a h^f -+ 0 as j -> oo. Therefore there is no A> 0 such
that

aW < E llwll2
t=0

for all x e t2(Z). b)Sufficient condition. Consider

£ IMI2 =£ i T IEh^x^)?^
SS »=o 27r J-* j=0

Since we consider FIR filter banks, the following holds:

Ellrf ^ E h r E IHiA^Xj&nfd" (3-62)



53

JV-l j fV K-\

j=0 '

where /? = supi?j supw \Hij(eju>)\2. Therefore

= E f- f E l«j(^)lal^-(^)l2^ (3-63)

^ WmW2 <b\\x\\\ o<b =kp<oo, Vxee2(Z).
t=0

Suppose further that Hp(z) is of full rank everywhere on the unit circle. Then

Hp(z)Hp(2:) is also of full rank on the unit circle and hence

-i ~Hp+(z) =(fip(a)Hp(x))" fip(«)

is a matrix of rational functions of 2 which axe bounded (no poles) on the unit circle.

We have that

[X0(z)Xi(z) ... XN.1(z)]T = Hp*(z)[Y0(z)Y1(z) ... yK_,(z)]T.

Since
1 ,w n-i

Ml2 =i T E l*(^)l2^27T 7-7T |=0

using the same argument as in the above we can show that

IMI2<«£llVill2. 0<a<oo.

This proves that

A||*ir < E Wvf ^ B\\x\\2, 0<A<B<oo, Vx € P(Z).
t=0

3.7.2 Proof of Theorem 6

a) Sufficiency of the condition is obvious.

b) Necessary condition.
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Let Mitj(eju) = [Hp(eia,)Hp(eiu')]. .. First, we want to prove all elements on the
diagonal of Hp(z)Hp(2) have to be equal to a constant. To check this consider

signals x which have only one nonzero polyphase component. Then

\\x\\2 =±JjX^tfd"
and

E llwll2 =i T M{A^)\Xi(^)\2^
i=o 27r J-*

Then, for the tight frame condition to hold we must have Mt-,,(eJW) = c, for i =

0,1,...,N-1.

Now suppose that for some t,j, Mij(e^u) = 0 does not hold. Consider x such that

only Xi(z) and Xj(z) axe nonzero. Then

E IMP =«*+̂ /_* Re (M,„(^)X-(^)^(^)) du,.
From this it follows that

jT R* (Mijl^Xn^XAe*")) dw =0, VX*(^),X,(<>)
and therefore M;,j(eJU') = 0.

3.7.3 Proof of Theorem 7

Given the filter bank polyphase analysis matrix Hp(z), let

Hp(z) = R(z)D(2)C(z)

be its Smith form decomposition. Here, R(2) and C(z) are products of corresponding

elementaxy matrices in (3.14), while

D(*) =
0

(3.65)

with Di(z) being a diagonal matrix of monic polynomials. Suppose that the minimal

dual of the frame associated to this filter bank consists of finite length vectors, i.e.
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-i ~that H+ (z) =(Hp(;z)Hp(z)) Hp(z) is apolynomial matrix. Substituting the Smith
decomposition in the equation for the pseudoinverse H+(z) we obtain:

-l_rC(2)"1 (f>(z)R(z)R(z)D(zj) f>(z)K(z) =H+(z).

This expression further gives

(3.66)

(Dj^Rn^D^))"1 [Dx(2) 0]=C(z)H+(z)^)'1 (3.67)
where Ku(z) denotes the upper-left corner N x N submatrix of R(z)R(2r). It follows

that

Dito^RiiO*)-1 0 -l= C(z)H+(z)R(z) (3.68)

The matrix R(^) is unimodularand therefore its inverse is a polynomialmatrix. Con

sequently, the right hand side of equation (3.68) is also a polynomial matrix. There

fore Di(2)~1Rn(2)"1 is a polynomial matrix. This impliesthat det (Di(z)Rn(2;)) =

c •z*, for some constant c, and an integer A;. However, this is possible only if polyno

mials on the diagonal of Di(z) axe monomials.

Taking this fact into account, the expression CHp(z)'H.p(z)j Hp(z) = H+(z)
can be transformed into

(Hp^HpW)"1 [C(«)Di(«) 0]=H+(z)K(z)-K
From this we obtain

(Hp(z)Hp(z))~1 =H+(z)K(z)-1 Dif^Cf:)"1

b

(3.69)

(3.70)

Since both R(z) and 0(z) axeunimodular, and Di(z) is the diagonal matrix of mono

mials, R(2)-1, C(z)-1 and Di(z)-1 axe polynomial matrices. So, (Hp(z)Hp(z)J
must be apolynomial matrix as well, which proves that det (Hp(2)Hp(z)J =p(z) has
to be a monomial. However, this is only possible if p(z) = constant, since p(z) = p(z).

This proves that HP(2)HP(2) has to be unimodular.
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3.7.4 Proof of Proposition 8

It is obvious that for any Hp(z) of the form given in (3.16), HP(2)HP(2) is uni

modular.

Suppose that P(z) is an N x N unimodular paxahermitian polynomial matrix,

positive definite on the unit circle. Any N x N paxahermitian matrix of polynomials

P(z) can be factored as

P(*) = H(*)H(*). (3.71)

where H(z) is an N x N matrix of polynomials [54]. Let H(z) = R(z)D(z)C(z)

be the Smith form decomposition of H(z). Since P(z) is unimodulax and positive

definite on the unit circle, polynomials on the diagonal of D(z) have to be nonzero

monomials. This proves the proposition.

3.7.5 Proof of Proposition 9

Let the Smith decompositions of the polyphase analysis matrix Hp(2) and a cor

responding FIR polyphase synthesis matrix Gp(z) be

Hp(*) = Rh(*)
Dh(«)

0
Ch(z) Gp(*) = Rg(z) Dg(*) 0 Cg(z) (3.72)

where Dh(^) and Dg(z) axe diagonal polynomial matrices. From the condition that

Gp(2)Hp(2) = I and that detRg(2r) = detCh(2) = 1, it follows that

detDg(z) •detA(ar) •detDh(2) = 1, (3.73)

where A(z) denotes the N x N submatrix in the upper-left corner of Cg(2)Rh(2).

SinceA(z) is a polynomial matrix and both Dh(z) and Dg(2) are diagonal polynomial

matrices, condition (3.73) can be satisfied only if polynomialson the diagonal of Dh(z)

are monomials.
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Conversely, perfect reconstruction can be achieved using the filter bank with the

synthesis polyphase matrix Gp(z) = C^z)*1

Smith decomposition of the analysis polyphase matrix Dh(z) is a diagonal matrix of

monomials, such a synthesis filter bank is obviously FIR.

-1
DhW

-1

»*(*) If in the



Chapter 4

Quantization of Overcomplete

Expansions
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4.1 Noise Reduction in Frames

The fact that overcomplete expansions axe less sensitive to degradations than

nonredundant expansions comes as no surprise considering that redundancy in engi

neering systems usually provides robustness. This principle is exploited in modern

techniques for A/D conversion, which use oversampling in order to compensate for

coarse quantization, resulting in highly accurate conversionoverall. Another example,

from communications, is channel coding, where signal dependent patterns of control

bits axe added to data bits in order to combat channel noise. Error correction capabil

ity, i.e. the robustness of the code, is proportional to redundancy which is reflected in

the number of control bits. Although the principleof redundancy-robustness trade-off

seems close to ones intuition, it is not always as simple as it is in the case of the linear

codes, to unravel underlying mechanisms and give a quantitative characterization.

The first explanation of the noise reduction property of overcomplete expansions was

given by Daubechies [10] and we review it here.

Consider a frame {<Pj}jeJ m a Hilbert space ri. Let {<pj}jej be its minimal dual

frame. Expansion coefficients of a signal / in ri with respect to {<Pj}jeJ are given as
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inner products with corresponding vectors of the dual frame,

/ = £</,^>;. (4-1)

In other words, the expansion coefficients axe the image of / under the frame operator

F which is associated with the minimal dual frame. Recall that F is an operator from

ri to £2( J). If {ipj} is a linearly independent set, then the range of F is all of i2(J),

that is any point in £2( J) represents a set of the expansion coefficients of some g in

ri. However, if {(pj} is overcomplete, then <pj are linearly dependent. This linear

dependency translates to expansion coefficients (/, <f>j). Consequently, the range of

F is no longer all of ^2(J), but a proper subspace. A family of expansion coefficients

(/>£?*) 1S usually not in this subspace after degradation with some additive noise.

Starting with the adulterated coefficients, {(/,<£j) + nj}, another set closer to the

originals can be obtained as the orthogonal projection of {(/, <fj) + nj} onto the

range of F (see Figure 4.1). Recall that the reconstruction formula

/rec = £(</>£;>+ ";)*>; (4.2)

implicitly involves this projection, thus reducing to zero the component of {nj} which

is orthogonal to the range of F. As the frame redundancy increases, the range of F

becomes more and more constrained, "smaller" in some sense, so the noise reduction

becomes more effective. These heuristics can be put in a quantitative framework in

some particular but nevertheless significant cases. If we consider tight frames in a

finite dimensional space, Rn, and a white, zero-mean, additive noise, it can be shown

that in this way the expected squared error norm is reduced proportionally to the

frame redundancy factor, r [10, 15]. Precisely

£(11/ - /redl2) = n<r2/r, (4.3)

where a2 is the noise variance. Noise reduction in Weyl-Heisenberg and wavelet

frames in L2(H) was also studied by Daubechies [10], under the same assumption of

a white, additive, zero-mean noise. Suppose that a signal / 6 L2(H) is well localized

in a bounded region of the time frequency plane, so that it can be well approximated
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c+n

Figure 4.1: Noise reduction in frames using linearreconstruction. Linearreconstruc
tion off from noisy coefficients, F/+n gives a signal frec. The sequenceof expansion
coefficients offrec, c' = Ffrec is the orthogonal projectionof degraded coefficients onto
the range of F, and is therefore closer to the original.

using a finite number of elements of a wavelet or Weyl-Heisenberg expansion (those

localized in the sameregion). If the expansion coefficients {(/, <Pj)}jej axe subject to

the noise {nj}j€j then / can be reconstructed as

frec= £ ((L<Pj) + nj)<Pj. (4.4)
j£BCJ

The reconstruction error produced in this way can be bounded as

£(||/-/rec||2) = e||/||2 + 0(<72/r), (4.5)

where the e||/||2 component is the result of the approximation of / using the finite

set of the expansion terms, {<Pj}jeBcJ- A rigorous proof of this result was Given by

Munch [31] for the case of tight Weyl-Heisenberg frames andinteger frame redundancy

factors. Note that this analysis, although pertaining to £2(R), has a finite dimensional

space flavor, since contribution of the noise on finitely many coefficients is considered.

Based on these results it may be conjectured that the 0(1/r) noise reduction

property has a more general scope than discussed here. For instance, in Rn it might

hold for frames in general, and that is indicated by results reported in [15]. Or

in L2(K) (4.5) may be valid for frames other than Weyl-Heisenberg frames, and
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redundancy factors other than the integer ones. However, no general results have

been proven yet.

4.2 Reduction of Quantization Error and Subop

timality of the Linear Reconstruction

The work on the noise reduction effect, reviewed in the previous section, was

actually aimed at estimating quantization error which is modeled as an additive white

noise. However, results on reconstruction from quantized frame expansions, reported

by Morlet (see [10]), indicate that the error decays faster than could be expected

from the 0(1/r) results. The purpose of this section is to elucidate why a higher

reconstruction precision can be expected and how it can be attained.

Quantization of expansions in a Hilbert space ri, with respect to a given frame

{y>j}j€j, is a many to one mapping from ri to ri,

Q:H-+U.

It defines a partition of M. into disjoint cells {C},g/. In the case of uniform scalar

quantization, each of the cells is defined by a set of convex constraints of the type

Ci = {/ : (nij - l/2)g < (/, <pj) < (ny + l/2)q, j e J}, (4.6)

where q is the quantization step. For each of the cells, the quantization maps all

the signals in the cell to a single signal in its interior, usually its centroid. Roughly

speaking, the expected value of quantization error reflects fineness of the partition.

One way to refine the partitioning is to tighten the constraints which define cells

(4.6) by decreasing the quantization step. Alternatively, for a given quantization

step, more constraints can be added, which corresponds to an increase in redundancy

of the frame. This gives another explanation of the error reduction property in frames,

this time for the quantization error. Effectiveness of the two approaches to partition

refinement, that is error reduction, can be assessed based on the results reviewed in the

previous section. If the white noise model for the quantization error is accepted, than
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the error variance o2 is proportional to the square of the maximum error value, q/2.

According to formulae (4.3) and (4.5), it seems that the quantization step refinement

is more effective than the increase in frame redundancy for the error reduction, since

the error decreases proportionally to q2 in the former case, and proportionally to 1/r

in the latter case. Is this always true, or we axe underestimating the potential of

frame redundancy for error reduction? Let us look at a simple example for the sake

of providing some intuition about this effect.

Quantization of expansions in R2, with respect to the orthonormal basis

{(0,1), (1,0)}

induces the partition of the plane into square cells

d = {(x,y) : (nix-l/2)q <x< (nix + l/2)q,(niy-l/2)q <y< (niy + l/2)q}. (4.7)

Figure 4.2 illustrates partitions obtained after refining the initial partition, with q= 1,

by reducing q by a factor k or introducing redundant expansions with redundancy

factor k, for k = 2,3,4. In the first case, each cell of the initial partition is uni

formly divided into k2 square subcells. On the other hand, in the case of increased

redundancy the number of subcells varies around k2. Some of the cells induced by

overcomplete expansions are larger while some of them axe smaller than the cells of

the orthonormal partition for the same k. Based on a simple inspection of the parti

tions in Figure 4.2 it is hard to tell which of the two approaches gives a finer partition

on average. However, if we take a look at the partitions in Figure 4.3, generated

by reducing q by the factor k or increasing the redundancy by the factor k2, we can

observe that in the latter case partition refinement is faster, contrary to what would

be expected from relations (4.3) and (4.5).

The reason for this discrepancy is that the error estimates in the previous sub

section were derived under the assumption of lineax reconstruction given by (4.2).

However, when dealing with quantization of overcomplete expansions, linear recon

struction is not optimal in the sense that it does not necessarily yield a signal which

lies in the same quantization cell with the original. Hence, linear reconstruction does
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Figure 4.2: Partitions of R2 induced by quantization of frame expansions. Partitions
in the left column are obtained for the orthonormal basis {(1,0), (0,1)} and quan
tization steps q = 1/2, 1/3 and 1/4. Partitions in the right column correspond to
the quantization step q = 1 and tight frames {(cos(t7r/2r),sm(i7r/2r))}t=0...2r-i, for
r = 2, 3 and 4.
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Figure 4.3: Partitions of R2 induced by quantization of frame expansions. Partitions
in the left column are obtained for the orthonormal basis {(1,0), (0,1)} and quan
tization steps q = 1/2, 1/3 and 1/4. Partitions in the right column correspond to
the quantization step q = 1 and tight frames {(co5(z7r/2r),5m(z7r/2r))}t=0...2r-i, for
r = 4, 9 and 16.
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not fully utilize information which is contained in the quantized set of coefficients, so

there is someroom for improvement. Figure 4.4 depicts such a scenario. Let c denote

the set of quantized coefficients of a signal /, c = Q(Ff), and let c be in the parti

tion cell C{. As the result of linear reconstruction we obtain a signal /rec. Expansion

coefficients of frec, Ffrec, are obviously in the range of the frame expansions, and axe

closer to the original ones than c is, ||F/rec - Ff\\ < \\c - Ff\\. However, Ff and

Ffrec do not lie in the same quantization cell.

Figure 4.4: Inconsistency of linear reconstruction from quantized coefficients of an
overcomplete expansion. Expansion coefficients of a signal f, Ff, are located in
the quantization cell d. Expansion coefficients Ffrec, which are obtained from the
quantized coefficients c using the linear reconstruction, need not lie in the same
quantization cell.

Reconstruction can be further improved by alternating projections of Ffrec onto Ct-

and Ran(F) until a signal in their intersection is reached. Note that all signals which

have expansion coefficients in the intersection Ran(F)f]Ci produce the same result

after the quantization, and therefore cannot be distinguished from / based on the

quantized expansion coefficients. These signals constitute the socalled reconstruction
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set of /,

flr(/) = {</: Qfo) = Q(*f)h (4-8)

and are denoted as its consistent estimates.

This has been pointed out first by Thao and Vetterli in the context of oversampled

A/D conversion [44, 43, 45]. Thao and Vetterli further showed that in the case

of the conversion of periodic bandlimited signals (trigonometric polynomials), for

any consistent estimate fc of / ||/ — fc\\2 = 0(1/r2), where r is the oversampling

ratio, provided that / has a sufficient number of quantization threshold crossings.

Experimental evidence of the 0(l/r2) behavior was also reported in [18, 19]. The

question which naturally arises is whether this result has a wider scope. So fax it has

been numerically verified for frames in Rn [15, 16]. In the remainder of this chapter

we consider two particular cases in infinite dimensional spaces. These axeoversampled

A/D conversion of bandlimited signals in X2(R) and quantizationof Weyl-Heisenberg

expansions in L2(R). We prove that undercertain reasonable assumptions, consistent

reconstruction gives an error e which behaves as ||e||2 = 0(l/r2). Considerations

in this subsection already have the flavor of deterministic analysis and this is the

approach which is taken here in the treatment of the error reduction effect. Statistical

analysis and the white noise model, commonly used for the study of quantization error,

are not appropriate in the case of overcomplete expansions, since they ignore the

deterministic nature of the error and consequently miss some details on its structure

which are essential for establishing more accurate bounds.

Before the details of this deterministic analysis are presented a comment on rate-

distortion tradeoffs in frame expansions is in order. Besides the suboptimality of

linear reconstruction, traditional encoding of quantized coefficients using pulse code

modulation (PCM) is also not suitable in conjunction with overcomplete expansions

if efficient signal representations axe an issue. The reason lies in the fact that in

the case of quantized orthonormal expansions reduction of the quantization step k

times increases the bit rate by the factor log2fc, whereas the effect of a A; times

higher redundancy of a frame expansion is a A; times higher bit rate. A sophisticated

encoding algorithm is needed to overcome this disadvantage. However, as we pointed
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out earlier, frames which appear in engineering practice axe not axbitraxy frames but

rather well structured ones which may facilitate the encoding task. In the following

section we discuss this problem in the case of oversampled A/D conversion, and

propose an efficient encoding scheme.

4.3 Deterministic Analysis of Oversampled A/D

Conversion

4.3.1 Traditional View and Its Limitations

Oversampled analog to digital conversion is the fundamental instance of signal

representation based on quantization of overcomplete expansions. The aspects dis

cussed in a general framework in the previous section axe considered in this paxticulax

case in more detail here.

f(t) sampling
T

ffn] quantization

q

Figure 4.5: Block diagram of simple A/D conversion followed by classical reconstruc
tion. Input ^-bandlimitedsignal f(t) is first sampled at a frequency f8 = 1/r, which
is above the Nyquist frequency //v = v/ir. The sequence of samples f[n] is then
discretized in amplitude with a quantization step q. Classical reconstruction gives a
signal frec(t), which is obtained as a low-pass filtered version of some signal having
the same digital version as the original f(t), which amounts to a sine interpolation
between quantized samples.

Oversampled A/D conversion as a process of digital encoding of analog signals

involves discretization of a <r-bandlimited analog signal in time, implemented as sam

pling with a time interval r, followed by discretization in amplitude, that is quan

tization of the sequence of samples with a quantization step q. The classical way

to reconstruct the discretized analog signal is by low-pass filtering, with a/2n cutoff

frequency, a pulse train which is modulated by the quantized sequence of samples. A
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block diagram of the converter together with a classical reconstruction scheme is il

lustrated in Figure 4.5. The discretization in time allows for perfect reconstruction of

the analog signal as long as it is sampled at or above the Nyquist rate, r <tn, where

tn = n/a. However the discretization in amplitude introduces an irreversible loss

of information. The difference between the original analog signal, /, and its version,

free, recovered from the digital representation is therefore denoted as the quantiza

tion error, e = / —/rec. Quantization error is commonly modeled as a uniformly

distributed white noise independent of the input. Under certain conditions, such as

a large number of quantization levels and a small quantization step q compared to

the input amplitude range, this model provides a satisfactory error approximation

giving the error variance g\ —E(e(t)2) = q2/12. Therefore, a natural way to improve

accuracy of the conversion would be to reduce the quantization step q. However,

the complexity of quantizer circuitry and the precisionof analog components impose

limits on the quantization step refinement. Modern techniques for high resolution

A/D conversion axe based on oversampling. Sampling a signal at a rate higher than

the Nyquist rate introduces redundancy which can be exploited for error reduction.

The white noise model explains this effect in the following way. As a result of over-

sampling, the quantization error spectrum remains uniform and spreads over a wider

frequency range [—1/r, 1/r], while the error variance remains q2/12. Only the t/tn

portion of the error spectrum is in the frequency range of the input signal. Therefore,

after the low-pass filtering with a/ir cutoff frequency, the error variance is reduced to

°\ = q2r/12TN, or

E(e(tf) =^ (4.9)
where r = t/tn is the oversampling ratio (see Figure 4.6).

The error estimate in (4.9) indicates that although the oversampling can be ex

ploited for improvement of conversion accuracy, it is inferior to quantization refine

ment. Furthermore, if the erroris considered as a function of the bit rate, quantization

refinement drastically outperforms oversampling. As an illustration consider the case

when the quantization step is halved. This reduces the error by the factor of four,

at the expense of an additional bit per sample. In order to achieve the same error
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Figure 4.6: Statistical analysis of the MSE of oversampled A/D conversion with
classical reconstruction. Under certain assumptions, the quantization error can be
modeled as a white noise. As the sampling interval decreases, the noise spectrum
remains flat and spreads out over the whole sampling frequency range, while keeping
a constant total power equal to -^-. For a sampling frequency fs, which is above the
Nyquist rate, only the portion X 'f is still present in the signal spectrum after the
low-pass filtering with /;v/2 cut-off frequency.

reduction, the oversampling ratio should be increased four times, and consequently

the total number of bits increases by the same factor. This reasoning gives the fol

lowing results. If the quantization step varies, for a fixed sampling interval r, the

quantization error as a function of the bit rate, B, is given by

E(e(tf) =^^-2-^B, (4.10)
where A denotes signal amplitude range. Hence, as the quantization-step decreases,

the error decays as

E(e(t)2) =0(2~2tB). (4.11)

On the other hand if the sampling is successively refined, r —> 0, for a fixed quanti

zation step,
1 /»2 / A\ 1

(4.12)•(•wl-aSKi-
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or in other words, the quantization error behaves as

E(e(tf) =O(i) . (4.13)
In light of the discussion in the previous section we can infer that such inferior

performance of oversampling with respect to quantization refinement is not a conse

quence of some fundamental phenomena, but is rather a consequence of inadequate

reconstruction and coding. Sampling a signal at a rate higher than the Nyquist rate

amounts to expanding it in terms of a family of sine functions

{sinc0 (t - nr)}neZ, (4.14)

which is a tight frame for the space of c-bandlimited signals with redundancy factor

equal to the oversampling ratio. The classical reconstruction based on low-pass fil

tering is essentially the linear reconstruction (see (4.2)) and is therefore inconsistent

and suboptimal. The main point of this chapter is a deterministic analysis of the

quantization error which demonstrates that the error of consistent reconstruction can

be under reasonable assumptions bounded as ||e(<)||2 = 0(l/r2). We also propose an

efficient scheme for lossless encoding of quantized samples, which when used together

with consistent reconstruction gives the error rate characteristics of the oversampled

A/D conversion of the form

||e(i)||2 =O(2"2"B) . (4.15)

The constant j3 in (4.15) is of the same order of magnitude as the Nyquist sampling

interval, so that we have performance comparable to that where the quantization

step tends to zero (4.11), and significantly improved compared to that with linear

reconstruction and traditional PCM encoding (4.13).

4.3.2 Reconstruction Sets and Asymptotic Behavior

The deterministic analysis of oversampled A/D conversion is based on the

study of the structure of the partition which it induces in L2[—a, cr], when considered
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as a quantization of an overcomplete expansion. The knowledge on a signal, con

tained in its digitally encoded representation, defines a set of signals which cannot

be distinguished from it after the A/D conversion. Recall from the discussion in the

previous section that this set is referred to as the reconstruction set ofthe considered
signal. In this context, the reconstruction set of a signal / can be represented as the

intersection of two sets

a.(/) = v„ncg(/), (4.16)

where Va is the space of cr-bandlimited signals, and Cq(f) consists of signals in L2(R)
which have amplitudes within the same quantization intervals as / at all sampling

instants.

The size of the reconstruction set can be considered as a measure of the uncer

tainty about the original analog signal. Let us assume that the quantization interval

is decreased by an integer factor m. As a result, the reconstruction set becomes

smaller, since Cq/m(f) is a proper subset ofCq(f) (see Figure 4.7). In the limit, when
q —> 0, there is no uncertainty about the signal amplitude at the sampling points

..., —t, 0, r, 2r,..., and the signal can be perfectly reconstructed if sampled above

the Nyquist rate. This means that the reconstruction set asymptotically reduces to

a single point which is the considered analog signal itself.

This view of the reconstruction set is based on the traditional interpretation of

the digital version of an analog signal as a representation which bears information

on its amplitude, with the uncertainty determined by the quantization step q, at

the sequence of time instants t = ..., -r, 0, r, 2r,.... An alternative interpretation

comes into play if the quantization threshold crossings axe sepaxated and sampling

is sufficiently fine so that at most one quantization threshold crossing can occur in

each of the sampling intervals. If this is satisfied, quantized samples of the signal /

are uniquely determined by the sampling intervals in which its quantization threshold

crossings occur, and vice a versa. So, we can think of the digital representation as

carrying information on the instants, with uncertainty r in time, when the signal

assumes values ...,—q, 0, q, 2q,... . Hence, the reconstruction set of / can also be
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reconstruction set

Figure 4.7: The effect of the quantization refinement on the reconstruction set. The
set of signals which share the same digital version with the original, Cq(f), becomes
smaller as the result of quantization refinement, Cq/m(f) C Cq(f). Consequently, the
reconstruction set is also reduced giving a higher accuracy of the representation

viewed as lying in the intersection

W/)CVfnDT(/), (4.17)

where VT(f) is the set of all signals in L2(R) which have the same quantization

threshold crossing as the original, in all of the sampling intervals where the original

goes through a quantization threshold. If in addition we require that signals in Vr(f)

cannot have more than one quantization threshold crossing per sampling interval,

then equality holds in (4.17).

Consider now the effect of reduction of the sampling interval by an integer factor

m. The set of signals shaxing the sampling intervals of quantization threshold cross

ings with the original, for this new sampling interval, is a proper subset of VT(f),

?>T/m(f) C Vtau(f). As a result, the size of the reconstruction set is also reduced,

implying a higher accuracy of the conversion. This reasoning gives a deterministic

explanation for the error reduction as a consequence of oversampling in the A/D

conversion. Quantization step refinement, which also improves the accuracy of the

conversion, asymptotically gives the reconstruction set reduced to the original signal
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only. Does this also happen in this case, when the sampling interval goes to zero?

In other words, is it possible to reconstruct perfectly an analog cr-bandlimited signal

after simple A/D conversion in the case of infinitely high oversampling?

In the limit, when the sampling interval assumes an infinitely small value, the time

instants in which the signal goes through the quantization thresholds axe known with

infinite precision. The information on the input analog signal in this limiting case is

its values at a sequence of irregularly spaced points {An}, which axe its quantization

threshold crossings. If {ejAnt"} is complete in L2[—cr,cr], then the reconstruction set

asymptotically does reduce to a single point, giving the perfectly restored input analog

signal. Completeness of {e*XnW} in L2[—cr, a]means that any cr-bandlimited signal f(t)

is determined by the sequenceof samples {/(A„)}. However, this does not necessarily

mean that f(t) can be reconstructed in a numerically stable way from the samples

{/(An)}, unless another constraint on {An} is introduced which would ensure that any

two cr-bandlimited signals which are close at points {An} axe also close in L2 norms.

In other words we want to be sure that the reconstruction error does converge to zero

as the oversampling tends to infinity, that is

lim ||/-/rec|| = 0, (4.18)
T—HI

rather than only asymptotically becoming zero in some odd fashion. A precise for

mulation of the stability requirement is that {e'AnU/} constitute a frame in L2[—a, a].

The error bound derived in the following subsection is based on this assumption. In

order to illustrate how restrictive this assumption is, at this point we briefly review

some of the frame conditions discussed in Section 2.3.1.

Recall that exact frames in a separable Hilbert space, those which cease to be

frames when any of the elements is removed, are Riesz bases. Are there any bases of

complex exponentials other than Riesz bases? This is still an open problem. Every

example of a basis of complexexponentials for L2[—cr, cr] so far has been proven to be a

Riesz basis ([56], pp. 190-197). So, if wewant a reasonable, completecharacterization

of<7-bandlimited signals from samples at points {An}, then {ejAnU/} should be a frame

in L2[—<7,cr].
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According to Kadec's 1/4 Theorem, if a sequence of real numbers {A„} satisfies

|A„-n-|<L<i-, n=0,±l,±2,..., (4.19)
cr Act

then {ejXnU/} is a Riesz basis for L2[—a, a]. How realistic is this condition in the

quantization context? For a quantization step small compaxedto a signal amplitude, a

sufficiently dense sequence of quantization threshold crossings could be expected, thus

satisfying (4.19), at least on a time interval before the signal magnitude eventually

falls below the lowest nonzero quantization threshold. Suppose that the analog signal

f(t) at the input of an A/D converter satisfies: f(u) is continuous on [—cr, cr] and

/(cr) 7^ 0. Such a signal f(t), in terms of its zero-crossings, asymptotically behaves

as sinca(t). So, if one of the quantization thresholds is set at zero, then for large n,

the quantization threshold crossings should be close to points nn/cr.

Another criterion, given by Theorem 3, states that if {A„} has a uniform density

d > cr/ir, then {ejAnU/} is a frame in L2[—cr, cr]. The feasibility of a cr-bandlimited signal

with a sequence of quantization threshold crossings having uniform density greater

than cr/ir is unlikely for a quantization scheme with a fixed quantization step. The

amplitude of a bandlimited signal f(t) decays at least as fast as 1/t, and outside of

some finite time interval, [-T, T], it is confined in the range between the two lowest

nonzero quantization thresholds. Zero-crossings are the only possible quantization

threshold crossings of f(t) on (—oo, —T] U [T, oo). However, it doesn't seem to be

plausible that zero-crossings of a cr-bandlimited signal can have a uniform density

greater than the density of zero-crossings of sinca(t), which is cr/7r. Therefore, in

order to meet this criterion the quantization step has to change in time following

the decay of the signal. One way to achieve this is a scheme with quantization steps

which are fixed on given time segments but eventually decrease with segment order.

4.3.3 0(l/r2) Error Bound

Consider a cr-bandlimited signal, f(t), at the input of an oversampled A/D

converter with sampling interval r. Suppose that its sequence of quantization thresh

old crossings, {xn}, is a frame sequence for the space of cr-bandlimited signals. If g(t)
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isa consistent estimate of f(t), there exists a sequence {yn} of quantization threshold

crossings of g(t), such that every xn has a corresponding yn in the same sampling

interval. Hence, for each pair (xn,yn), f(xn) = g(yn) and \xn —Vn\ < t.

g(*it)'g(yn)

m+3 m+4

Figure 4.8: Quantization threshold crossings of an analog signal f(t) and its consis
tent estimate g(t). The sequence of quantization threshold crossings, {xn}, of f(t),
uniquely determines its digital version and vice versa, provided that all the cross
ings occur in distinct sampling intervals. If f(t) goes through a certain quantization
threshold at the point xn, then g(t) has to cross the same threshold at a point yn
which is in the same sampling interval with xn. At a point xn, the error amplitude is
equal to \g(xn) - f(xn)\ = \g(yn) - g(xn)\.

At the points {xn}, the error amplitude is bounded by the variation of g(i) on the

interval [yn>Zn] (without loss of generality we assume that yn < xn), as shown in

Figure 4.8. Since g(t) is bandlimited, which also means that it has finite energy, it

can have only a limited variation on [yn, in]. This variation is bounded by some value

which is proportional to the sampling interval, so

\9(Xn) ~ g(Vn)\ < Cn ' T. (4.20)
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The constant Cn in this relation can be the maximum slope of g(t) on the interval

bfe,*n], (^ = supte{yntXn)g'(i). The error signal, e(t) = g(t) - f(t), is itself a cr-
bandlimited signal. At the points {xn} its amplitude is bounded by values which are

proportional to r (4.20). If the sequence {c„} is square summable, it can be expected

that the energy of the error signal is bounded as ||e||2 < const •r2, or in terms ofthe

oversampling ratio r,

||ef <̂ . (4.21)
This result is the content of the following theorem.

Theorem 9 Let f(t) be a real a-bandlimited signal at the input ofan A/D converter
with a sampling interval t <ir/cr. If the sequence ofquantization threshold crossings

°f f(f)y ixn}, forms a frame sequence for the space of a-bandlimited signals, then
there exists a positive constant S such that ifr<8, for every consistent estimate of

f(t), g(t) e C\

ll/W-^)ll2<fc|l/WI|V, (4-22)

where k is a constant which does not depend on r. E

Proof Let A and B be bounds of the frame {ejXnU} in L2[-cr,cr], so that for any

cr-bandlimited s(t)

A|K<)||2<£k*«)l2<fl|K<)ll2- (4-23)
n

At the points xn, the erroramplitude is bounded by the variation ofthe reconstructed

signal onthe corresponding sampling intervals, as described by thefollowing relations:

|e(*n)| = \f(Xn) ~ 9(Xn)\

= \f(xn) - g(yn) + g(yn) - g(xn)\

= \g{yn) - g(xn)\

< r •g'(en), min(xn, yn) < c„ < max(xn, yn). (4.24)
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Here, tn denotes a point on the interval [yn,^n]- The error norm then satisfies

lleWf < ^£K*»)|2
n

2

< TElfl'(^)l2- (4-25)A
n

If r issmaller than S= Si/4 ({xn}, a) (see thecorollary ofTheorem 2), then |e„-a:n| <

6 and consequently

E Is'MI2 S ^rlb'WII2- (4-26)

This gives

2 ^ _2^°|| J/*\||2||e(«)H2 < r2^||S'(t)||

< rV2£||<,(*)||2 (4.27)

so that the energy of the error can be bounded as

t2_2qd

lleMII2 <-^f-W)\?. (4.28)

It remains to find a bound for the norm of g(t).

According to Theorem 2, since |xn —yn| < r < &i/4 ({xn},cr), the following holds

HsWII2 < ^EsW2
71 n

= 4e/(*-)2
A n

< ^ll/(<)ll2- (4-29)

As a consequence of the last inequality and the error bound in (4.28) we obtain
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\\e(t)\\2 <9cr2 |̂|/(<)||2r2. (4.30)
D

In Appendix 4.5 we give another, more intuitive error bound for the case when

quantization threshold crossings form a sequence ofuniform density greater than cr/7r.

An extension of the result of Theorem 9 to complexbandlimited signals is straight

forward, provided that the real and imaginary parts axe quantized separately.

Corollary 6 Let the real and imaginary parts ofa complex cr-bandlimited signal f(t),

at the input of an A/D converter with the sampling interval r < n/cr, be quantized
separately. If sequences ofquantization threshold crossings ofboth Kef(t) and lmf(t)
formframe sequences for the space ofcr-bandlimited signals, then there exists a positive

constant 8 such that ifr<8 then for every consistent estimate g(t) € C1

11/(0 - g(t)\\2 < kWmW'r2, (4-31)

for some constant k which does not depend on t. E

Proof Let {xn} and {xn} be the sequences of quantization threshold crossings of

the real and imaginary parts of f(t), respectively, and 0 < Ar < Br < oo, 0 < A{ <

Bi < oo be the corresponding frame bounds. Then the relation (4.31) holds for

t <min (8l/4 ({xrn}, a), 81/4 ({xjj, cr))

and

k=9a2p, /z =max0|,|n. (4.32)
D

4.3.4 Error-Rate Characteristics with Optimal Reconstruc

tion and Efficient Coding

An efficient schemefor lossless encoding of the digital representation follows from

the observation that, for sufficiently fine sampling, the quantized values of signal
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samples can be determined from the corresponding sequence of quantization threshold

crossings.

Consider a bandlimited signal f(t) and suppose that its quantization threshold

crossings axe separated, that is there is an e > 0 such that no two threshold crossings

are closer than e. Note that as a bandlimited signal of a finite energy f(t) has a

bounded slope so that there is always an Ci > 0 such that f(t) can not go through

more than one quantization threshold on any interval shorter than Ci. The condition

for separated quantization threshold crossings requires in addition that intervals be

tween consecutive crossings through a same threshold are limited from below away

from zero. For a sampling frequency higher than 1/e, all quantization threshold

crossings of f(t) occur in distinct sampling intervals. Under this condition quantized

samples of f(t) axe completely determined by its sequence of quantization threshold

crossings (see Figure 4.8). Another effect of high oversampling is that quantized val

ues of consecutive samples differ with a small probability. In this case, an economical

digital representation would encode incidences of data changes, that is, sampling in

tervals where quantization threshold crossings occur rather than quantized samples

themselves.

Quantization threshold crossings can be grouped on consecutive time intervals

of a given length, for instance T. For each of the crossings at most 1 + log2(r/r)

bits axe then needed to record its position inside the interval T. The height of the

threshold crossing can be given with respect to the previous one, so that for this

information only one additional bit is needed, to denote direction of the crossing

(upwards or downwards). Hence, for recording of the information on quantization

threshold crossings on an interval where Q of them occur, Q (2 + log2(T/r)) bits axe

needed (see Figure 4.9). The bit rate is then bounded as

£<^(2+log2Q), (4.33)
where Qm denotes the maximal number of the crossings on an interval of length T.

Note that if the samples themselves axe recorded the bit rate increases linearly with

the oversampling ratio, so quantization threshold crossings encoding is substantially



80

Figure 4.9: Quantization threshold crossings encoding. Quantization threshold cross
ings are grouped on intervals of a length T. Refining the sampling interval by a factor
2k requires additional k bits perquantization threshold crossing to encode its position
inside the interval T.

more efficient. If this efficient coding is used together with consistent reconstruction,

then the error-rate characteristics of the oversampled A/D conversion becomes

2o-2-\e(t)\Y = KT22-*Q^ (4.34)

where K is a constant which depends on the input signal, as follows from (4.22) and

(4.33).

In order to estimate factor the T/Qm in this expression, we consider again the

two types of quantization threshold crossings, denoting them as d-crossings and s-

crossings. A quantization threshold crossing is said to be a d-crossing if it is preceded

by a crossing of a different quantization threshold, or an s-crossing if it is preceded by

a crossing of the same threshold (see Figure 4.10). The total number of quantization

threshold crossings of a cr-bandlimited signal f(t) on an interval T is sum of these
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time

Figure 4.10: Quantization threshold crossing types. A quantization threshold crossing
can be immediately preceded by a crossing of the same quantization threshold, as
illustrated by the crossings at points xn and xn+i. Such threshold crossings are
denoted as s-crossings, and each of them is preceded by a point where the consider
signal assumes an extremum. The other type ofquantization threshold crossings, d-
crossings, are those which occur after a crossing ofa different quantization threshold.
The threshold crossing at xn+2 is of this type.

two types of crossings. The count of d-crossings, Qd, depends on the slope of f(t) as

well as the quantization step size, q. The slope of f(t) can be bounded as

which gives

l/'WI <
3

%<4h/ii-T q

(4.35)

(4.36)

For the count of s-crossings, Qa, we can investigate average behavior. Each of the

s-crossings of f(t) is preceded by a point where f(t) assumes a local extremum. If
s-crossings constitute a sequence of a uniform density d, then there is a subset of
zeros of f'(t) which also constitute a sequence of uniform density d. According to
Theorem 3, d < cr/ir except in a degenerate case when f'(t) is identically equal to
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zero. If we assume that the sequence of quantization threshold crossings of f(t) is a

realization of an ergodic process, then as the interval T grows

T 7T
(4.37)

Hence the error rate characteristics are given by ||e(<)||2 = 0(2~"ai+°2 ) where ct\ <

\\f\\cri/q and a2 is "close" to cr/7r. Recall that for an A/D converter with a fixed
sampling frequency /s > cr/7r and quantization step refinement the mean squaxed

error is given by E(e(t)2) = 0(2"«B), where a = f8.

It is interesting to find the error-rate characteristics of oversampled A/D con

version for the four combinations of reconstruction and encoding, i.e. linear versus

consistent reconstruction, and PCM versus quantization threshold crossings encoding.

These are given in Table 1.

Table 4.1: Error-rate characteristics of oversampled A/D conversion, as the sam
pling interval tends to zero, for the four different combinations of reconstruction and
encoding. The quantization error, e(t), is expressed as a function of the bit rate, B.

Linear Reconstruction Consistent Reconstruction

PCM E(e(t)2) =0 (i) IK<)II2 =o (£)

Efficient Encoding E(e(t)2) =0 (2"*rB) IWOII2 =o (2-2&B)

These results demonstrate the importance of an appropriate lossless coding of

the digital representation. According to the given characteristics, for good error-rate

performance of oversampled A/D conversion, efficient coding is more important than

optimal reconstruction.

The most successful technique for high resolution analog to digital conversion is

currently Sigma-Delta modulation, which achieves higherror reductiongains based on

a sophisticated exploitationof oversampling. The error reduction propertyof an n-th
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order Sigma-Delta modulator is characterized by the relation E(e(t)2) = 0(r2n+1),

in the case of classical reconstruction. However, it has been shown in [45] that in

the case of periodic bandlimited signals this result can be improved with a consistent

reconstruction which gives E(e(t))2 = 0(r2n+2). The error-rate characteristic of the

Sigma-Delta modulator, with a consistent reconstruction, is then given by E(e(t))2 =

0(B~(2n+2>). It can be observed that it is asymptotically outperformed by the simple

A/D conversion, even with the linear reconstruction, provided that efficient coding is

used.

4.4 0(l/r2) Error Behavior in Quantization of

Weyl-Heisenberg Frame Expansions

Error analysis in the case of quantization of Weyl-Heisenberg frame expansions

is an immediate generalization of the results on oversampled A/D conversion. The

two cases which axe considered first axe: 1) frames derived from bandlimited window

functions without restrictions on input signals, except that they axe in L2(R); 2)

timelimited input signals, with no restrictions on the window function except for the

requirement that it is in L2(R).

CASE 1. cr-bandlimited window function

Let

{VWW :VmA*) =¥>(* " nuy™'*} (4.38)

be a Weyl-Heisenberg frame in L2(R), with the bounds

A\\f\\2< £ l<Vm.„,/)|2 < BH/f. (4.39)
m,n€Z

Frame coefficients {cmin '• Cm,n = (¥W>/)} of a signal / can be expressed in the

Fourier domain as
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Figure 4.11: Evaluation of Weyl-Heisenberg frame coefficients. For a fixed m, coef
ficients Cmtn are obtained as samples, with to sampling interval, of the signal fm(t),
which is the result of modulating the input signal with ejmu/°*, followed by filtering
with <p(—t).

cm>n = r /V - muoW'Wer^dLj.
J—oo

(4.40)

The system which for an input signal gives these coefficients can be viewed as a

multichannel system, containing a separate channel for each frequency shift mu>o,

such that the m-th channel performs modulation of an input signal with eJ'TOWD*, then

linear filtering with <p(—t) and finally sampling at points {nt0}. Such a system is

shown in Figure 4.11. For a fixed m, coefficients Cmtn axe samples of the signal

/-(*) =(/We*""") *¥>(-'). (4.41)
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which will be called the m-th subband component of f(t). In the sequel, the ra

th subband component of a signal s(t) will be denoted by sm(t) and the sequence

obtained by sampling sm(t) with the interval *o will be denoted by 5m[n], Sm[n] =

sm(nt0). Using this notation, frame coefficients of f(t) axe given by Cm>n = Fm[n].

Such an interpretation of Weyl-Heisenberg frame coefficients of the signal f(t)

means that their quantization amounts to simple A/D conversion of the subband

components of f(t). Note that these coefficients are in general complex, and it is

assumed here that real and imaginary parts axe quantized separately. If the frame

window, <p(t), is a cr-bandlimited function, each of the subband components is also a

cr-bandlimited signal. In this context, a signal g(t) is said to be a consistent estimate

of f(t) if they have the same quantized values of the frame coefficients and each

subband component of g(t) is continuously differentiate, gm(t) G C1 (note that the

subband signals, being bandlimited, are continuously differentiable a.e.). According

to the results from the previous section, this indicates that if the frame redundancy

is increased by decreasing the time step to for a fixed o?0, the quantization error of

consistent reconstruction should decay as 0(t\). This result is established by the

following corollary of Theorem 9, and can be expressed in terms of the oversampling

ratio, r = Jl, as ||e||2 = 0(l/r2).

Corollary 7 Let {<pm,n(t)} be a Weyl-Heisenberg frame in L2(R), with time step t0

and frequency step ljq, derived from a cr-bandlimited window function <p(t). Consider

quantization of the frame coefficients of a signal f(t) € L2(R) and suppose that for a

certain ljo the following hold:

i) quantization threshold crossings of both real and imaginary parts of all the sub-

band components fm(t) = (f(t)ejmwot) * <p(-t) form frame sequences for the

space of cr-bandlimited signals, with frame bounds 0 < ctrm < fFm < oo and

0 < oi < pm < oo;

ii)

sup max (&L, @b-) =M<oo.
meZ \am QmJ
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Then there exists a constant 8, such that if to < 8, for any consistent estimate g(t) of

f(t), the reconstruction error satisfies

ll/(')-sWU2< fell/Mil2*2,. M2)

where k is a constant which does not depend onto. G

Proof Let f(t) be reconstructed from its quantized coefficients as g(t). Suppose that

g(t) is a consistent estimate of f(t), that is, frame coefficients of g(t) axe quantized

to the same values as those of f(t). Under the bandlimitedness condition on <p(t), all

subband signals fm(t) are also cr-bandlimited, and each gm(t) is a consistent estimate

of the corresponding fm(t).

Under assumption i), and as a consequence of Corollary 7, for each m there is a

8m such that the m-th subband error component, fm(t) —gm(t), satisfies

Sk)2 (2*I/-W " ft»M||2 <9^m\\/m(t)\\Hl, »„ =max I\Z*.j ,g M• (4-43)

For a sampling interval to < n/cr and any s € L2(H), norms of subband signals sm

and their sampled versions satisfy

IKII2 = <o||Sm||2. (4.44)

The frame condition (4.39) then implies

1
HI2 < -jEIIS» ii .-» ii

m

=i;I>«.ll2. <4-45)
m

and

Ml2 > iEll^"2
& m

= T5-EWI'- (4-46)Bta
m
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From assumption ii) and Theorem 2, it follows that 8 = infm6z 8m is strictly greater

than zero, 8 > 0. For t0 < 8, we have the following as a consequence of relations

(4.43), (4.45) and (4.46):

This finally gives

\\f(t) - g(t)\\2 < 4-EH/*W-^(*)lls

< 4-E9^m||/m(*)||2*2
M0 m

< 9<t2M2|||/||2<?. (4.47)

||/(t)-fl(<)||2<fc||/(<)||2t2, (4.48)

which for a constant u>0 can be expressed as \\f(t) —g(t)\\2 = 0(1/r2). Q

CASE 2. T-timelimited signals

Another way to interpret expansion coefficients of f(t) with respect to the frame

(4.38) is to consider them as samples of signals

Mu) = {$(u)e-int»") */(«), (4.49)

with wo sampling interval. This is illustrated in Figure 4.12. Suppose that f(t)

is a T-timelimited signal. Then J7 {<f>n(u)} is also T-timelimited for each n, which

makes all subband signals <£„(u>) bandlimited. From an argument completely anal

ogous to the one in the previous case, it can be concluded that if for some fixed to

sequences of quantization threshold crossings of subband signals <p(w) satisfy certain

frame properties, the quantization error of consistent reconstruction can be bounded

as ||e(i)||2 < A;||/(*)||2u>o- Since we consider the case when t0 = const and u;0 -> 0,

this can also be expressed as ||e||2 = 0(1/r2). The precise formulation of this result

is as follows.
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Figure 4.12: Evaluation of Weyl-Heisenberg frame coefficients. For a fixed n, coeffi
cients Cm^n are obtained as samples, with uo sampling interval, of the signal <pn(v)}
which is itself the result of modulating <p(u) by e~Jn*oa,, followed by filtering with

Corollary 8 Let {<pm,n(i)} be a Weyl-Heisenberg frame in L2(R), with time step t0
and frequency step uo, derived from a window function ip(t). Consider quantization

of the frame coefficients of a T-timelimited signal f(t) € L2(R). Suppose that for a

certain to the following hold:

i) quantization threshold crossings of both real and imaginary parts of all the sub-

band components <£n(<*>) = (<£(k>)e~jn<ota') * f(u) form frame sequences for the

space of T-timelimited signals, with frame bounds 0 < arn < /?£ < oo and

0 < < < /£ < oo;
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ii)

sup max (&, @k )=M<oo.
n€Z V< </

7%en tfiere existe a constant 8, such that ifu0 < 8, for any consistent estimate g(t)

of f(t), the reconstruction error satisfies

ll/M-»WII'<*ll/Mlr,«S. (4-5°)

where k is a constant which does not depend on ujq. D

If the Weyl-Heisenberg frame is redefined as

{Vm.»(0 :<PmAt) =V(t - nio)ejWo(t-nto)},

then analogous results hold for the cases when input signals axe bandlimited or the

window function has a compact support in time.

The assumptions on bounded support of frame window functions or input sig

nals in either time or frequency, introduced in the above considerations, axe natural

assumptions of time-frequency localized signal analysis. A question which naturally

arises is whether in the case when both the window function is bandlimited and the

considered signals have finite support, the error decays as ||e||2 = O(a>o*o)' Another

interesting case is when none of these assumptions is introduced. Is it then also pos

sible to exploit frame redundancy for quantization error reduction so that the error

norm tends to zero as the redundancy is increased, or even more ||e||2 = 0(l/r2)?

These axe still open problems.

4.5 Appendix

4,5.1 Alternative Proof of Theorem 9

For this proof we need following result by Duffin and Schaeffer [13].
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Lemma 1 [13] Let {ejXnW} be a frame in L2[-c,a\. ffM is any constant and {p,n}
is a sequence satisfying \p,n —A„| < M, then there is a number C = C(M,cr, {An})

such that

El/(/<»)l2
^ t < C (4.51)
E I/(a»)I2 '

n

for every a-bandlimited signal f(t). n

Recall that in order to have a sequence of quantization threshold crossings of a

cr-bandlimited signal f(t), having a uniform density d > a/ir, the quantization step q

must change in time following the decay of the signal. Since f(t) is square integrable,

q = q(t) has to decay at least as fast as 1/t, although it can be fixed on a given set

of time segments.

Let A and B denote again the lower and the upper bound, respectively, of the

frame determined by the quantization threshold crossings, {xn}, of f(t), and let g(t)

be a consistent estimate of f(t). Following the discussion in the proof of Theorem 9

(see (4.25)), the error norm is bounded as

IK<)ll2<jX>'(<»)l2- (4-52)

Since r is smaller then the Nyquist sampling interval, \xn —en\ < n/cr for all n.

According to Lemma 1, there exists a constant C = C (n/cr, cr, {xn}) such that for all

sampling intervals r < ir/a

Elff'MI2<CEl</(*n)|2. (4-53)
n n

This gives

W)\? <^pHlffWII2. (4-54)
Being a consistent estimate of f(t), g(t) can not differ from f(t) by more than q(nr),

at time instants {nr}. The energy of g(t) can be bounded, by considering its samples

at these points, as

llsWII2 = rElfl(nr)|2 (4.55)
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< T^(|/(nr)|2 +2|9(nr)/(nr)| +|9(nr)|2) (4.56)
= H/WII2 + E.{r). (4.57)

E.{t) =rE (2|9(nr)<,(nr)| +|9(nr)|J)
n

lim E,(t) =j£* (2|9(%(<)| +|«(i)|2) <ft, (4.58)
which has to be finite since q(t) = 0(f(t)) and /(t) is squaxe integrable. Therefore,

Es(t) has to be bounded by some E which does not depend on r. This gives the

following error bound

IK<)U2 <̂ (ll/WII2 +E) t\ (4.59)
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5.1 Foreword

Singularities based signal processing schemes, described in this chapter, illustrate

several issues related to overcomplete expansions. They provide examples of applica

tions where redundancy is used to improve accuracy of signal analysis, demonstrate

advantages of design flexibility of overcomplete expansions. They also indicate a

possibility of efficient signal compression resulting from a sophisticated selection of

information provided by redundant expansions. A powerful framework for a number

of relevant theoretical problems as well as applications related to signal characteriza

tion using information on its singularities was introduced by Mallat et al. [25, 26, 28]

as the concept of wavelet modulus maxima and wavelet zero-crossings representa

tions. For particular classes of wavelets, singular events are reflected in the wavelet

transform, by inducing evolution of local modulus maxima or zero-crossings across

the scales. The two representations, based on irregular sampling of a dyadic wavelet

transform at either local extrema or zero-crossings, provide signal descriptions which

give explicit information on its singularities and transient phenomena. Due to a fairly

broad applicability of the concept, we take a general approach when discussing the

two representations while pointing out the relations to concrete problems and ap

plications. The emphasis is on our work, which is focused on algorithms for signal
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reconstruction from the two representations and onthe development of the concept in

the framework of convex representations in P(Z). Our work was influenced by results

of Berman [4], who first posed the problem in purely discrete-time, using Rn as the
model space.

Another application of a similar flavor, described in more detail, is an image

interpolation algorithm developed in collaboration with Chang [6, 7]. The algorithm

is locally adaptive and is aimed at good rendition of edges. Information needed for

applying the appropriate local interpolation is obtained through an analysis of image

singularities, based on a redundant wavelet expansion which is implemented using an

iterated nonsubsampled filter bank.

5.2 Singularity Detection and Processing Using

Wavelets

In this section we briefly review an excellent treatment of this topic given in

[25, 26, 28].

5.2.1 Wavelet Transform and Multiscale Edge Detection

Even before the wavelet formalism was developed, multiscale techniques have been

used in computer vision for edge detection. The approach is to smooth a signal

f(x) € L2(H) at different scales using the dilated versions

0 «=;«(!)
of a low-pass filter 0(x) and detect the resulting points of shaxp variations. These

shaxp variations of / * Ba(x) are considered to be edges of f(x) at the scale s. The

purpose of the smoothing at a scale s is to remove signal fluctuations which are small

relative to the analysis scale so that shaxp vaxiations of the larger structures axe better

visible. An inflection point of the smoothed signal f*Oa(x) produces a local extremum

in its first derivative or a zero-crossings in its second derivative (see Figure 5.1).



94

Hence, an edge in f(x) can be detected as either alocal extremum of d(f *0(x))/dx
or a zero-crossing of cP(f * $(x))/dx2. In a particular case when the smoothing
function, 6(x) is aGaussian, the extrema detection gives a Canny edge detector [5],
while the zero-crossing scheme corresponds to the Maxr-Hilderth edge detection [29].
Although the two detection schemes axe similar the detection of local extrema has
an advantage. A local extremum of d(f *9(x))/dx can be either a local maximum
or a minimum of the modulus of d(f *6(x))/dx. Modulus maxima of d(f *9(x))/dx
correspond to sharp variations of f(x) while modulus minima correspond to points

where f(x) issmooth. Hence, thelocal extrema detection makes information on these
different types of signal behavior explicit, whereas with the zero-crossings approach

it is not so simple to distinguish between the two types of inflection points.

In order to cast these edge detection schemes into a wavelet transform framework

consider wavelets

For a wavelet i/)(x), let i/>a(x) denote

*•(*) = t*(t)-
s s

The wavelet transform of f(x) withrespect to wavelets ^)a(x) and ij)h(x) is defined by

W/(«,*) = /*«(*) and W"f(s,x) = f*ti(x), (5.2)

respectively. Note that this is the definition of the continuous wavelet transform in

troduced in (3.47). The wavelet transforms Waf(s,x) and Wbf(s,x) axe respectively

proportional to the first and second derivative of / * 0(x),

W°f(s, x) =/*(«§)(*) =s£(f*«.)(«), (5-3)
J2/3 J2

«*/(«, s) =/*(*2^)(s) =*2j-;(f*«.)(«). (5.4)
Therefore, a sharp signal variation produces modulus maxima in the wavelet trans

form for a wavelet which is the first derivative of a smoothing function, or zero-

crossings if the wavelet is the second derivative of a smoothing function. The po

sitions of these modulus maxima or zero-crossings constitute smooth curves in the
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/**.(*)

d(f * 9a(x))/dx

<f*(f * Oa(x))/dx*

Figure 5.1: Edge detection. Local extrema of thefirst derivative of a smoothed signal,
d(f * Oa(x))/dx, indicate the presence of sharp variations in the signal. Alternatively,
the sharp variations can be detected from zero-crossings of the second derivative of
the smoothed signal, cP(/ * 9a(x))/dx2.
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scale-space plane (s,x), called finger prints [52]. These facts can be demonstrated

in a rigorous manner, but they are beyond the scope of this thesis. The purpose of

this discussion is only to illustrate the applicability of the concept of wavelet trans

form modulus maxima to the problem of multiscale edge detection and to provide

some intuition results which axe presented in the following. The usefulness of wavelet

transform in the detection of shaxp signal variations is not limited only to being a

reformulation of the classical results. Wavelet transform provides a powerful tool not

only for detection but also for discrimination of different types of shaxp variations

and singular behaviors. This aspect of wavelet transform is the content of the next

subsection.

5.2.2 Detection and Characterization of Singularities

The notion of a singular point is defined based on the Lipschitz regularity of a

function. A function f(x) is said to be Lipschitz a at x0, where n < a < n + 1 for

some positive integer n, if there exist two constants A and h0 and a polynomial of

order n, Pn(h), such that for h < h0

\f(x0+ h)-Pn(h)\<A\h\Q. (5.5)

The function f(x) is uniformly Lipschitz a over the interval (a, b) if there exists a

constant A and for any x0 € (a, b) there exists a polynomial Pn(x) of order n, such

that equation (5.5) is satisfied if x0-rh £ (a,b). The Lipschitz regularity of f(x) at x0
is the superior bound of all values a such that f(x) is Lipschitz a at x0. A function

is said to be singular at x0 if it is not Lipschitz 1 at x0. Lipschitz regularity gives

a characterization of function differentiability. It can be shown that a function f(x)
which is Lipschitz a, for a > n at a point, is n times differentiable at that point. A

function which is continuously differentiable at :r0 is Lipschitz 1 at x0. Even if the

derivative of f(x) is discontinuous but bounded at xo, f(x) is Lipschitz 1 at xo and

therefore not considered to be singular at so.

Negative Lipschitz exponents for tempered distributions are defined by consider

ing their primitives. Let a be a noninteger real number. A tempered distribution
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f(x) of a finite order is is said to be uniformly Lipschitz a on (a, 6) if its primitive is

uniformly Lipschitz a + 1 on (a,b). Let us illustrated these definitions in the case of

a Dirac which is a frequently encountered tempered distribution. The second order

primitive of a Dirac is a piecewise linear function. It is uniformly Lipschitz 1 in a

neighborhood of x = 0, and therefore uniformly Lipschitz a for a < 1. Consequently,

in a neighborhood of 0 a Dirac is uniformly Lipschitz a for a < —1. This is not

sufficient to conclude that a Dirac is uniformly Lipschitz —1 in a neighborhood of 0,

but based on the definition of local regularity we can say that the uniform Lipschitz

regularity of a Dirac in a neighborhood of 0 is equal to —1. The Lipschitz charac

terization of singularities as is discussed so fax has a global nature since it deals with

uniform regularity of functions over intervals rather than points. In the applications

which axe considered in this chapter we axe concerned with isolated singularities. The

definition of Lipschitz exponents can be extended to isolated singularities, and it is

said that a distribution f(x) has an isolated singularity Lipschitz a at xq, if f(x) is

uniformly Lipschitz a over an interval (a, 6) containing Xo and is uniformly Lipschitz

1 over any subinterval of (a, b) which does not include Xo- For instance, a Dirac cen

tered at xo = 0 has an isolated singularity of Lipschitz regularity —1 at x0 = 0, while

a step function centered at 0,

{0, x <0
(5.6)

1, x>0

has that of Lipschitz regularity 0.

The Lipschitz regularity of a function can be estimated by considering the asymp

totic decay of its Fourier transform [34]. However, Fourier transform indicates only

the global regularity of a function and cannot capture the local variation of regularity.

On the other hand, the wavelet transform Wf(s,x) = f * i>a(x), with respect to a

compactly supported wavelet tp(x), depends only upon values of / in a neighborhood

of x whose size is determined by the support of i>a(x). The wavelet transform, consid

ered over a range of small scales, is therefore well suited for detection of signal local

characteristics. As an illustration, consider again a Dirac 8X0 = 8(x —xq) and a step

function hXo(x) = h(x —x0)- The wavelet transform of the Dirac is the wavelet itself
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translated by xo

W8X0(s, x) =ij>a(x - xo) =-*(^^). (5-7)
s s

From this equation we can observe two things. First, themodulus maximaofW8(s, x)
form a set of lines in thehalf-plane (s, z)a>0,x€R (scale-space ofthewavelet transform)
which originate at the point x = x0 on theboundary ofthehalf-plane (s = 0). Second,

the asymptotic behavior of the values of the modulus maxima as the scale approaches

zero can be characterized as 0(s-1). In the case of the step function, the wavelet

transform has the form

Whxo(s,x) =9(^±), (5.8)
S

where 9(x) is the primitive of the wavelet. Similarly to the wavelet transform of

8xo<> WhXQ has modulus maxima which define lines in the scale-space originating from

(or converging to) (s,x) = (0,a:o), the location of the singularity. As opposed to

the Dirac, the modulus maxima of WhXo retain uniform values across all the scales,

so that their asymptotic behavior when s tends to zero can be described as 0(s°).

We see that in these two simple cases, the finger prints of the wavelet transform

modulus maxima point to locations of the isolated singularities and, furthermore, the

asymptotic behavior of the modulus maxima values reveals the type of singularity.

This observation has a more general scope, and is established below.

The potential of wavelet transform for characterizing local Lipschitz regularities

in a given range depends on the number of vanishing moments of the wavelet. We

say that a wavelet j>(x) has n vanishing moments if for all positive integers k < n

°° xk7J)(x)dx =0. (5.9)i.
The following theorem asserts that a function is uniformly Lipschitz a on a given

interval if its wavelet transform with respect to a wavelet with n vanishing moments,

n > a, has no modulus maxima at small scales in that interval.

Theorem 10 [26] Let n be a strictly positive integer andi>(x) a wavelet which has a

compact support and n vanishing moments and is n times continuously differentiable.

Let f(x) G Ll[a,b], ff there exists a scale Sq > 0 such that for all scales s < so and
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x £ (a,b), \Wf(s,x)\ has no local maxima, then for any e > 0 and a < n, f(x) is

uniformly Lipschitz a in (a + e,b —e). ff ij)(x) is the n-th derivative of a smoothing

function, then f(x) is uniformly Lipschitzn on any such interval (a + c,b —e). D

The fact that singularities of a function can be located as the origins of the modulus

maxima lines of its wavelet transform, as illustrated above, can be given a precise

formulation. First we need to define the closure of the set of local modulus maxima

as the set of points on the real line which are adherent points of the set of modulus

maxima when the real line is considered as the boundary of the scale-space half-plane

(s, x)5>0,s€R. In other words, xo is in this closure if for any e > 0, there exists wavelet

transform modulus maxima at a point (si,xi) such that \xo —xi\ < e and s\ < e.

Now we can formulate the following corollary of Theorem 10.

Corollary 9 [26] The closure of the set of points where f(x) is not Lipschitz n is

included in the closure of the wavelet transform maxima of f(x). E

Isolated singularities canbe discriminated based on the evolutionof wavelet trans

form modulus maxima in the manner described by the following theorem. It is as

sumed that the wavelet has a compact support, is n-times continuously differentiable

and has n vanishing moments.

Theorem 11 [26] Let f(x) be a tempered distribution whose wavelet transform is well

defined over (a,b) and let xo € (a,b). Suppose that there exists a scale So > 0 and a

constant C such that for x G (a, b) and s < s0 all the modulus maxima ofWf(s,x)

belong to a cone defined by \x - x0\ < Cs. Then, at all points xx € (a, 6), xi ^ x0,

f(x) is uniformly Lipschitz n in a neighborhood of x\.

Let a < n be a non-integer. The function f(x) is Lipschitz a at xq if and only

if there exists a constant A such that at each modulus maxima at (s,x) in the cone

\x —xo\ < Cs

\Wf(s,x)\<Asa. (5.10)
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Shaxp variations of real signals are oftennot singularities such as a Dirac or a step

function, but axe rather their smoothed versions. In suchcases it is usually important

to estimate how smooth axe these transitions. As suggested by Mallat et al. in [28],

a smooth transition can be modeled as a singular function u(x) convolved with a

Gaussian of variance a2,

f(x) = u*gc(x), (5.11)

where

g.{x) =Tg£«~£- (5-12)
If u(x) has a singularity at xo of Lipschitz exponent ao, then f(x) has a sharp variation

in a neighborhood of xo and that variation is characterized by ao as well as a which

indicates its smoothness. For a wavelet which is the first derivative of a smoothing

function, the evolution of wavelet modulus maxima as the scale tends to zero can be

well approximated by

\Wf(s,x)\^Kss^'\ (5.13)

where s0 = y/s2 + a2 [28]. Therefore, the decay of wavelet modulus maxima provides

information on the underlying singularity as well as the Gaussian smoothing.

With this we end the overview of results on singularity characterization from

wavelet transform modulus maxima. For more detail the reader is referred to [26].

5.3 Wavelet Modulus Maxima and Wavelet Zero-

Crossings Representations

5.3.1 The Concept and Its Applicability

Evaluating the wavelet transform across a continuum of scales is computationally

expensive and certainly unnecessary for many singularity based applications. Due to

the convenience from its filter bank implementation the wavelet transform is usually

computed at dyadic scales s = 2J, j € N. The wavelet modulus maxima representa

tion [26, 28] of a signal f(x) is obtained by sampling the dyadic wavelet transform
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{W/(2j,x)}j€n at the local maxima of \Wf(2',x)\, which captures information.on

its singularities or transient behaviors. This irregular sampling also overcomes the

problem of the lack of shift invariance, which is one of the major drawbacks of wavelet

series expansions which is lack of shift invariance. The wavelet zero-crossings repre

sentation [25] is obtained by recording zero-crossing positions of the dyadic wavelet

transform and the integral values of {W/(2',aj)}j€N between consecutive pairs of

zero-crossings. We saw earlier in this chapter that for a wavelet which is the second

derivative of a smoothing function the zero-crossings of the wavelet transform cor

respond to signal inflection points. However, the zero-crossings themselves do not

provide a stable chaxacterization of the signal1 [25] and the purpose of supplementing

the information of multiscale zero-crossings with the integral values is to make the

representation stable.

The concept of the wavelet modulus maxima and the wavelet zero-crossings rep

resentations is not only convenient for formulating some classical signal processing

and computer vision problems, such as signal characterization from zero-crossings

or multiscale edges and multiscale edge detection, but is also a powerful framework

for studying these problems. An immediate benefit of the wavelet formalism is a

systematic filter design procedure for multiscale schemes using iterated two chan

nel filter banks, in the manner described in Section 3.5.1. Furthermore, the filter

bank approach was also useful for a fast digital implementation of the underlying

continuous time wavelet transform. An important issue related to multiscale edges

or zero-crossings is to investigate whether they provide a unique characterization of

signals and whether this characterization is stable. The wavelet formalism facilitated

the design of novel efficient algorithms for signal reconstruction from multiscale edges

or zero-crossings [25, 28, 4, 9] which was partly a result of attempts to experimentally

assess the uniqueness and stability of the representations. Although experiments in

reconstruction from wavelet modulus maxima and wavelet zero-crossings represen

tations yielded very good results, it was demonstrated by Meyer [30] and Berman

1By stable we mean that a small perturbation of the representation cannot correspond to an
arbitrarily large perturbation of the signal itself.
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[4] that these representations in general do not provide a unique chaxacterization of
signals. Nonetheless, an answer ofarelatively broad scope to theuniqueness problem
has been reached. Furthermore, Berman has also proved certain stability properties

of the representations [4].2

The wavelet modulus maxima representation was incorporated into novel schemes

for signal denoising and compression. Both schemes were developed by Mallat, et

ai. [26, 28]. The signal denoising algorithm is based on analyzing the propagation

across the scales of wavelet transform modulus maxima of a signal degraded by an

additive white noise. This enables the discrimination of the modulus maxima corre

sponding to important signal structures from the maxima produced by the noise. The

denoising then amounts to selecting signal related maxima and reconstructing from

the partial wavelet modulus maxima representation. The details of the algorithm, as

well as the experimental results demonstrating its effectiveness axe given in [26]. The

compression scheme is based on a similar idea. Data reduction is achieved by repre

senting signals using partial wavelet modulus maxima representations. Compression

factors of this scheme reported by Mallat et al. [28] were around 30 for 256 x 256

images without significant image degradation. The wavelet modulus maxima image

compression scheme is actually a perceptual coding algorithm since it basically pre

serves information on edges and other shaxp variations which axe perceptually the

most important image characteristics.

For both of these applications it is essential to have an effective and reliable re

construction algorithm. In the following subsections we study the wavelet modulus

maxima and the wavelet zero-crossings representations in the context of convex repre

sentations in£2(Z), which is amodel space for digital implementation. One appealing

property of convex representations is that the reconstruction problem can be at least

theoreticallyeasily solvedusing alternating projections onto convex sets. It turns out

that in the casethese two presentations this method yields simple and efficient recon

struction algorithms. Wavelet modulus maxima representation as discussed above is

2Note that Berman considers wavelet extrema and wavelet zero-crossings representations in Rn,
and his results pertain to this space.
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not a convex representation, and therefore we consider wavelet extrema representation

as its convex modification.

5.3.2 Discrete-Time Wavelet Extrema and Wavelet Zero-

Crossings Representations

The wavelet transform for the wavelet modulus maxima or zero-crossings based

schemes is implemented using an octave band analysis nonsubsampled filter bank,

as discussed in Section 3.5.2 and shown also in Figure 5.2a. Such an analysis FIR

filter bank is a bounded linear operator W : £2(Z) -+ £2(l), I = {1,2,..., J + 1} x Z,

and is called the discrete dyadic wavelet transform. In this chapter we shall refer to

the discrete dyadic wavelet transform as the wavelet transform. The operator W is

an ensemble of J + 1 linear operators W, : F(Z) -± e2(Z), j = 1,2,..., J + 1. The

operators Wj axe convolution operators with filters

V1(z) = H1(z),

V2(z) = H0(z)H1(z2),

Vj(z) = Ho(z) •••tfo^'Vi^2'"1),
VJ+1(z) = Ho(z)---Ho(z2J"2)Ho(z2J-1),

respectively. In the following, signals in £2(Z) will be denoted by lower case letters,

/, g,... and their wavelet transforms by the corresponding upper case letters, F =

W/, G = Wg,.... Any vector F in £2(l) will represent a (J + l)-tuple of vectors

in £2(Z), F = (F1, F2,..., FJ+1), so the jth component of W/ will be denoted by

WJ = FK

In Section 3.5.2, we demonstrated that if a discrete-time signal f[n] at the input

of this filter bank is obtained by sampling a continuous time signal fc(x) prefiltered

with an appropriate scaling function, then the sequences at the output of the filter

bank are samples of the continuous-time wavelet transform of fc(x). In practice,

the discrete-time version of a continuous-time signal is usually obtained by sampling

the signal prefiltered by a low-pass filter which needs not be the required scaling
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Figure 5.2: The discrete dyadic wavelet transform, a) Implementation of the W op
erator; b) Implementation of an inverse ofW; c) Implementation of the W* operator.
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function. However, if the scaling function is a reasonable low-pass filter, which is

usually the case, the two methods of discretizations give approximately equal results.

This illustrates a case where overcomplete expansions, implemented as nonsubsam

pled filter banks, axe essential in providing a close approximation to continuous-time

filtering. Redundancy is exploited here for improving the accuracy of signal analysis

with respect to possible implementation based on critically sampled filter banks.

The definitions of the wavelet extrema and zero-crossings representations adopted

here axe essentially those introduced by Berman et al. [4]. Let Ma and M,- denote

the operators which give the locations of local maxima and minima of a signal, re

spectively,

MJ = {fc : /(fc + 1) < f(k), f(k - 1) < /(fc)}, (5.14)

Mtf = {k : /(fc + lj > /(fc), /(fc - 1) > /(fc)} , (5.15)

and M be the operator extracting signal values at its local extrema points

Mf = {/(fc), keMafU Mif} . (5.16)

According to this notation, the wavelet extrema representation of a signal / is defined

as

Etf = {MaWjf, MWf, MWJ, j = 1,..., J + 1}, (5.17)

meaning that Eef consists of the indices of local extrema of Wjf and the values of

Wjf at these points, for all scales j = 1,2,..., J + 1.

The wavelet extrema representation contains information on both wavelet trans

form modulus maxima and minima. This does not necessarily lead to a significant

increase in the number of points to be considered with respect to the wavelet modulus

maxima representation as would appear at first. It turns out that most of the wavelet

transform local extrema are actually modulus maxima (there axe examples of signals

for which the wavelet extrema and modulus maxima representations are the same).

In experiments performed on lines from images and on randomly generated signals

we observed that taking the modulus maxima instead of all local extrema reduces
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the total number of points by only about 10%. Another example of a convex mod
ification of the original modulus maxima scheme is a representation which includes
information on positions of local modulus minima without coding their values. Also,
either the whole low-pass signal Wj+if or only its local extrema could be kept for
this representation. For the sake of conciseness we will adhere to the definition (5.17)

since most of the results apply to the other cases as well.

The definition of wavelet zero-crossings representation requires the introduction

of two moreoperators. Let Z denote the operator which provides information on the

zero-crossing locations of a sequence,

Zf={k:f(k)-f(k-l)<0}. (5.18)

and let S be the operator which gives the integral values (the sum of points) between

all pairs of consecutive zero-crossings of some sequence. If the total number of zero-

crossings of / is denoted by \Zf\, and its fcth zero-crossing by Zk, the S operator is

defined as

Sf =(s/(fc): S/(fc) =5 /(j), fc =1,..., \Zf\ +1} . (5.19)
It is assumed here that the points —oo and +oo are also zero-crossings, denoted by

z0 and 2|z/|+i, respectively. In order to ensure that 5/(1) and Sf(\Zf\ + 1) axe

finite, we shall require that the signal / be integrable, that is / € £l(Z). Therefore,

the following definition of wavelet zero-crossings representation is valid for signals

in £l(Z) (this is usually the case in practice, where signals with sufficient decay axe

encountered):

Ezf = {ZW;f, SWJ, j = 1,..., J + 1} . (5.20)

In words, the zero-crossings representation, Ezf, consists of the indices of the zero-

crossings of Wjf and the integral values of Wjf between consecutive zero-crossings,

across all scales j = 1,2,..., J + 1.

It is worthwhile to point out the mutual relationship between wavelet extrema

and wavelet zero-crossings representations. Consider the extrema representation Ref
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of some signal / € ^(Z),

Ref = {Maf,Mif,Mf} (5.21)

and the zero-crossings representation RzAf of its difference A/,

A/(n) = /(n + l)-/(n), (5.22)

defined as

RzAf = {ZAf,SAf}. (5.23)

Accordingto the definitions of local extrema and zero-crossings, (5.14), (5.15), (5.18),

the local extrema of / coincide with the zero-crossings of A/:

MJUMif = ZAf. (5.24)

In addition to the equivalence between Maf U M,/ and ZAf, Mf and SAf also

provide equivalent information on the signal /. With Zk denoting the index (location)

of the fcth zero-crossing of A/, fc = 1,2,..., \ZAf\, the following relations can be easily

proven:

Mf ={/(*,), /(*»),.. •, /(«ua/|)} > (5-25)
SAf ={(/(«!) - /(-oo)),(/(*) - /(„)),..., (/(+oo) - /(*pa/|))} - (5-26)
Since in most practical cases /(—oo) = 0 and /(+oo) = 0, information contained

in Mf and 5A/ are equivalent, i.e. one uniquely determines the other. We can now

state the relation between the two representations which is an immediate consequence

of equalities (5."24), (5.25), (5.26), and the commutativity of the A and Wj operators.

Proposition 11 For signals in £?(Z), the wavelet extrema representation and the

wavelet zero-crossings representation of the signal'sfirst difference (5.22) provide an

equivalent characterizations of the signal. Consider an arbitrary signal f G£?(Z) and

its difference A/. Any signal in the reconstruction set of A/, from its wavelet zero-

crossings representation, is the first difference of some signal in the reconstruction

set of f, from its wavelet extrema representation. Conversely, the first difference of

any signal in the reconstruction set of f, from its wavelet extrema representation, is

in the reconstruction set of A/, from its wavelet zero-crossings representation. •
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5.3.3 Filter Design

Besides giving samples of the continuous wavelet transform at a considerably
denser grid than critically sampled filter banks, another important advantage ofnon
subsampled filter banks in this application is that they allow for design specifications

which cannot be attained with critically sampled filter banks. This is demonstrated

in this section. First, we review perfect reconstruction conditions on the filter banks

for the discrete dyadic wavelet transform.

Although the purpose of the wavelet transform here is to obtain information on

signal singularities, it is important that the W operator is invertible, or that the

analysis filter bank allows for a stable perfect reconstruction of the input signal, since

that means that during the analysis we do not lose any information of the signal.

For perfect reconstruction from the discrete dyadic wavelet transform, W/ based on

prototype filters H0(z) and H\(z), it is necessary and sufficient that there exist two

filters Go(z) and G\(z) satisfying

H0(z)Go(z) + Hx{z)Gi(z) = 1. (5.27)

The inverse of the wavelet transform operator, W"1, can be implemented by the

filter bank shown in Figure 5.2b, which will be referred to as the non-subsampled

synthesis octave band filter bank. A stable reconstruction is possible if and only

if the filters Ho(z) and Hi(z) do not have common zeros on the unit circle. For

the reconstruction scheme using only FIR filters following FIR analysis, the perfect

reconstruction condition (5.27) is equivalent to the constraint that H0(z) and #1(2)

have no common zeros. These results also follow immediately from the more general

considerations in Chapter 3. Recall that the synthesis filters Go(z) and G\(z), and

therefore the inverse wavelet transform operator W"1, are not unique. An obvious

solution for the reconstruction operator W"1 is represented by Figure 5.2c, where

V(z) is

V(z) = Vi^ViOT1) + V2(z)V2(z'1) + - + Vm(z)VM(z'1). (5.28)

It amounts to filtering the octave band components W\f, W2f, ••• » Wj+if by

U,(z) = V1(z)/V(z), U2(z) = V2(z)/V(z), ... ,UJ+1(z) = VJ+1(z)/V(z) respectively,
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and adding the resulting sequences. This inverse is the Hilbert adjoint of the dual

of W, and will be denoted by W*. In applications of wavelet modulus maxima

representation, signals axe usually reconstructed from a partial information of their

wavelet transform. In such cases it is important to use W* as an inverse of W since

it reduces the error, whereas some other inverses can produce the opposite effect.

Also, the algorithms for signal reconstruction from wavelet extrema or wavelet zero-

crossings representations use iteratively the orthogonal projection operator onto the

range of the wavelet transform, Pv = WW*. For these reasons, it is desirable to deal

with filter banks for which the corresponding W* operator has an FIR implementa

tion, which turns out to be possible if and only if V(z) = 1. From the considerations

in Chapter 3 it follows that W* can be implemented using FIR filters if and only if

Hq(z) and H\(z) are power complementary,

Ho(z)H0(z-1) + H1(z)H1(z~1) = 1, (5.29)

(see also [9]). In many signal processing tasks linear phase filters axe desirable. How

ever, the power complementary condition (5.29) excludes the possibility of non-trivial

linear phase FIR designs [47]. If lineax phase filters are to be used then it is important

to use the synthesis filters Go(z) and G\(z) which closely approximate Ho(z~l) and

#,(*-•).

Another relevant feature of the wavelet transform extrema and zero-crossings

schemes is the flatness of filters at zero and at half the sampling frequency. It is

related to the number of vanishing moments and to the regularity of the wavelet used

in the signal analysis implemented by the filter bank. We say that a filter H(eiu)

has flatness n at frequency ujq if dff(e^)/duj has a zero of multiplicity n at u>o. If

the multiplicity of the zero of Hq(z) at z = —1 is No, then Hq(z) has flatness No —1

at lj = 7r. The regularity of the wavelet depends on the flatness of the low-pass

filter Hq(z) at z = —1. Roughly speaking, highly regular wavelets are obtained from

filters with maximum number of zeros at z = —1. On the other hand, the number of

vanishing moments of the wavelet is given by the multiplicity of the zero at z —1 in

the high-pass filter H\(z). In applications which are described in this chapter, we axe

interested in detecting discontinuities and sharp variations with Lipschitz exponents
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smaller than 1. For that purpose, it is sufficient to use a wavelet with a single vanish

ing moment, that is a wavelet which is the first derivative of a smoothing function.

If we want to relate sharp variations in the signal to zero-crossings of its wavelet

transform then the wavelet should have two vanishing moments, i.e. it should be

the second derivative of a smoothing function. Also, for detection and characteriza

tion of singularities with Lipschitz regularities smaller than 1, it is sufficient that the

wavelet used is once continuously differentiable. However, in order to obtain clearer

description and to facilitate detection of important singularities, it is advantageous

that the wavelet does not have more vanishing moments than necessary, and that it

is highly regular at the same time. These two requirements axe contradictory in the

case of wavelets derived from orthogonal (critically sampled) filter banks. However,

this is not the case with wavelets derived from nonsubsampled filter banks. This is

demonstrated below.

Consider a pair of filters, Hq(z) and H\(z), satisfying the following conditions:

Ho(z)H0(z-1)-rH1(z)H1(z-1) = l, Ho(-l) = 0, ft(l) = 0. (5.30)

If the multiplicity of the zero of Hq(z) at z = —1 is No and the multiplicity of the zero

of H\(z) at z = 1 is Ni, then the filters have flatness iV0 —1 at u —n and flatness

N\ — 1 at uj = 0. The issue is here to investigate how large Nq can be given N\ and

the length of the filters, L. The following proposition holds.

Proposition 12 For a pair of filters Ho(z) and Hi(z) of length L, satisfying (5.30),

let No be the multiplicity of the zero of Ho(z) atw = ir, and N\ be the multiplicity of

the zero of H\(z) at u = 0. It is possible to design Ho(z) and Hi(z) for any pair of

No and Ni such that 1 < N0 < L, 1 < Nx < L, and N0 + Nt < L. •

A constructive proof of the above proposition is given in Appendix 5.6.1. The low-

pass filter of the maximally flat pair, the case when No + N\ = L, is obtained as a

spectral factor of

H0{z)H0{z~l) =P((^-) (^=f^\) , (5.31)
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where P(y) is given by (see Appendix 5.6.1)

P(y) =(i -y)N° r£* ("°+/ "* )A• (5-32)
The high-pass filter Hi (z) is obtained from the factorization

HMH^z-i) =1-P((i^l) (L=^)) • (5-33)
The regularity of wavelets derived from these filters can be estimated using Daube

chies' criterion [10, 11]. According to this criterion, a wavelet derived from a filter

bank with the low-pass filter

(l + eiu,\No
Ho(e3U) =(^~J R{U)> (5*34)

is r times continuously differentiable if

B = svlPw€[0M\R(u)\ < 2*-'"1. (5.35)

For the maximally flat power complementary filter design, No + N\ = L,

B=supy€M\/e(2^ (5.36)

where Q(y) is the polynomial defined in (5.50), while its coefficients axe given by

(5.52) (see the proof of Proposition 12 in Appendix 5.6.1). The case of N\ = 1,

corresponds to wavelets with a single vanishing moment, Q(y) = 1 and Nq = L —1,

implying that the derived wavelet is at least L —3 times continuously differentiable.

This also follows from the theory of B-splines, since the function <j>(x) in (3.43) in this

case is a B-spline. Wavelets with two vanishing moments axe obtained from filters

with Ni = 2. In this case, the low-pass filter has all but one of its zeros at w = n, and

therefore from (5.50) and (5.52) it follows that N0 = L-2, while Q(y) = 1+ (L-2)y.

Consequently B = yJL —1 and Daubechies' criterion immediately proves that the

derived wavelet is at least L —3 —\ log2 L times continuously differentiable. Note

that wavelets with a single or two vanishing moments generated from orthogonal filter

banks cannot have such a high regularity. The reason is that in the orthogonal design
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the multiplicity of the zero of the low-pass filter at z = —1 has to be equal to the

multiplicity of the zero of the high-pass filter at z = 1, so that the requirements for

a small number of vanishing moments and a high regularity axe contradictory.

To achieve a sufficient regularity, the low-pass filter Ho(z) does not necessarily

have to be maximally flat at u = n. This brings additional freedom which can be

used to meet other design specifications. We illustrate this point by the following

design example.

0.1 0.2 0.3 0.4
normalized frequency

0.1 0.2 0.3 0.4
normalized frequency

Figure 5.3: Magnitude responses of power complementary filters for generating
wavelets with two vanishing moments. The length of the filters is L = 9 and the
high-pass filters have a zero of multiplicity N\ = 2 at z = 1 in all cases, a) Maximally
Bat filters: low-pass filter has No = 7 zeros at z = —1. b) Power complementary pair:
low-pass filter with No = 6 zeros at z = —1. c) Power complementary pair: low-pass
filter with No = 5 zeros at z = —1. d) Power complementary pair: low-pass filter
with No = 4 zeros at z = —1.

Example 5 Figure 5.3 shows magnitude responses of several power complementary

filters for generating wavelets with two vanishing moments. All filters are of length

L = 9 and differ in the multiplicity of the zero of the low-pass filter at uj = n.

The maximally flat pair is shown in Figure 5.3a. The design flexibility obtained by

relaxing the maximally flat constraint can be usedfor attaining different bandwidths,
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•0.5

•0.5

Figure 5.4: Wavelets derived from the filters represented in Figure 5.3. Wavelets
in figures a, b, c and d are derived from filters in figures 5.3a, 5.3b, 5.3c and 5.3d,
respectively.

as illustrated by the three other examples in the same figure. Figure 5.4 shows wavelets

which are derived from these filters, in the manner described by equations (3.43) and

(3.44)- The coefficients of these filters are given in Table 1. E

5.3.4 Consistent Reconstruction

The wavelet extrema and zero-crossings representations of a signal define a num

ber of convex constraints which the signal obeys. In general, an infinite number of

signals satisfy the same set of constraints. The set of all such signals is called the

reconstruction set. A consistent reconstruction strategy, which is our goal, means

finding a signal in the reconstruction set since it satisfies all of the constraints and

can not be distinguished from the original based on the representation. This notion

is also important when quantization of extrema values (or integral values between

zero-crossings) is used, as would be the case in coding. Recall that we used the no

tions of reconstruction set and consistent reconstruction with the same meaning in

the context of quantization of overcomplete expansions in Chapter 4.

The reconstruction procedures described here actually recover the wavelet trans-



a b

#0 #i #0 Hi

0.37690273 0.53402011 0.03078682 0.22376086

-0.65503275 -0.61696397 -0.17864344 -0.53553401

0.09170122 -0.13570812 0.38821680 0.38072858

0.18384469 0.06867234 -0.47681949 0.05794996

0.05438736 0.08732849 0.12287851 -0.14190924

-0.02189883 0.04577467 0.22906289 -0.04590050

-0.02218162 0.01415950 -0.02304830 0.03319186

-0.00691311 0.00251695 -0.07359995 0.02348454

- 0.00080969 0.00020001 -0.01883383 0.00422792

c d

#0 #i Ho #i

0.04095616 0.01495479 0.18430940 0.10430306

0.21295453 0.09754126 0.53853041 0.40558545

0.42509906 0.26405461 0.41251639 0.51532830

0.37209430 0.37342961 -0.07678751 0.13439669

0.07046279 0.27343750 -0.10938868 -0.16366452

-0.04396930 -0.04530460 0.00941692 0.05310331

-0.04396930 -0.04530460 0.00941692 0.05310331

0.01192523 -0.03504126 -0.01515299 0.00659616

0.00745127 -0.00714229 0.00314598 -0.00907015
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Table 5.1: Coefficients of the power complementary filters whose magnitude responses
are plotted in Figure 5.3. The high-pass filter, H\(z), has a zero of multiplicity 2 at
2 = 1. a) Maximally fiat filters, b) Low-pass filter, Ho(z), with No = 6 zeros at
z = —1. c) Low-pass filter, Ho(z), with No = 5 zeros at z = —1. d) Low-pass filter,
Hq(z), with No = 4 zeros at z ——1.
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form Fr = W/r of a signal fr in the reconstruction set, which is then itself obtained

usingthe inverse wavelet transform. The closure of the imageof the reconstruction set

of an /, $l(F)3, under the wavelet transform can be represented as the intersection

*t(F) = Vr\£f)\f)Citj\ (5.37)

of the following sets:

• V - the range of the wavelet transform

V = {G :G = Wg for some g e £2(Z)}; (5.38)

• S - the set of all G € ^2(I), such that G{(k) = F{(k) for all k which axe local

extrema of F\ across all the scales i = 1,2,..., J + 1;

• dj - the set determined by the requirement that the component G{ of G 6

$l(F) has to be nonincreasing/nondecreasing at the point j if F* is decreas

ing/increasing at the same point. Note that the sets d,j axe associated only

to those points where F is strictly increasing or decreasing, i.e. only for those

indices (i, j) such that F*(j) ^ F\j + 1).

Obviously, V is a subspace of^(1) and S and C{/s axe closed convex sets, therefore

alternating projections [55] of any initial point F0 € ^(1) onto V, S and all the CttJ's

will converge to a point in their intersection, $e(^)-

The projection Gs of some G onto £ is obtained by assigning extrema values of

F to the corresponding points of G (see Figure 5.5):

G£(k) = { F*(k), A; is an extremum of F\
. . (5.39)

G'(fc), otherwise

The projection, Gc,f>, of some G 6 ^2(I) onto dj is equal to G, except possibly at

the points j and j + 1 of Gx, if the monotonicity condition imposed by the set dj is

3Recall that F denotes W/.



violated. In that case

<4#) =
I •(G'(j) + &U +1)) k= j,j + l
Gl(k) otherwise

116

(5.40)

as illustrated by Figure 5.5c.

Hence, finding successive projections of some G onto E and all Ct,j's consists of

assigning the axithmetic mean to the pairs of points of G which do not obey the re

quired monotonicity, and assigning the local extrema values of F at the corresponding

points. This requires 0(JN) additions and O(JN) divisions by two for a length N

signal. If the conditions for an FIR implementation of Pv are met, the numerical

complexity of the Pv operator is O(JLN) additions and O(JLN) multiplications,

where L is the filters' length.

In the wavelet zero-crossings case, the image of the reconstruction set of / under

the W operator is the intersection

^(F) =Vf)U0\f]ZiA, (5.41)
W

where U and Zij are defined as the following:

U - the set of all sequences G € ^(1) such that for all scales i = 1,..., J + 1, Fl

and G% have the same integral values between any two adjacent zero-crossings

of F\ If z\ denotes the fcth zero-crossing of F-, then U can be written as:

U={
G.Ge P(I), *£ C?(j) = £ F\j)

i=zLx J=zl-i

k = 1,2,..., \ZFl\ + l,z = l,2,..., J + 1

>; (5.42)

• Zij - the set of all sequences G € ^2(I) such that G* has the same sign as Fl

at point j. The Zij sets are defined only for the nonzero points of F, only for

those indices (i,j) satisfying Fl(j) ^ 0.

Since the sets Z^j and U axe also closed and convex, a point in the reconstruction

set $CZ(F) can be reached as the limit of a sequence of alternating projections of an
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extrema

representation

time

projection
onto £

_^ time

projections

<mtoCij>Citk
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X projection point

Figure 5.5: Reconstruction from the wavelet extrema representation: implementation
of projection operators, a) A segment of the extrema representation of the sequence
Fx, with the local maximum and minimum occurring at the points lmax and /mtn,
respectively, b) A segment of the signal Gx (bold dots) and its projection onto S is
obtained by assigning to it values of Fx at the points which are local extrema of Fx
(crosses represent the new values of the altered points), c) Projection of Gx onto S
is now represented by the bold dots. It is increasing at the point j, and therefore is
not in d,j- The projection is obtained by assigning to the points j and j + 1 their
arithmetic mean.
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arbitrary starting point F0 6 £2(l) onto V, U and all Zi/s. The projection Gzi>3 of

any vector G G^2(I) onto Zij, is obtained by assigning a zero value to the point j of

Gx if Fx and Gx don't have the same sign at that point, as shown in Figure 5.6a and

Figure 5.6b. The projection operator ontoU operates on someG in the following way.

For each sequence Gx, we consider every interval between consecutive zero-crossings

of the corresponding Fx. To each point of an interval we add the average difference

of Gx and Fx on that interval (see Figure 5.6c). Thus the projection Gu of a G onto

U is given by

Gl(k) =&{k) +-ri7- Z (F(j) - GU)),
3 n-1 (5.43)

4-i < A: < <, n = 1,..., \ZFX\ + 1, i = 1,..., J + l.

Therefore, Gu has the same integral values as F on each interval between consecutive

zero-crossing points of F.

This algorithmactually iterates alternatingly betweenthe operator Pv, the projec

tion operator onto li, Py, and the projection operator onto Z, Pz, where Z is the set

of all vectors in ^2(I) which have the prespecified zero-crossings. A similar algorithm

for consistent reconstruction from wavelet transform zero-crossings is proposed by

Mallat [25]. Mallat's algorithm iterates between Pv and the projection operator onto

r = U f]Z, Pr. Numerical complexity of Pr is O(JNlogN) additions and O(JN) di

visions by integers. On the other hand the composition of Pz and Pu requires 0(JN)

additions and 0(JN) divisions by integers and reduced number of loops with respect

to Pp- It may appear that the algorithm described here has a slower convergence

since the constraints in T axe split between U and Z, and successive projections onto

U and Z in general do not yield projection onto T. However, the situation is not so

simple. It is possible to come up with examples where such splitting strategy can

even improve speed of convergence or give exactly the same results at a reduced cost

of implementation. For instance, if we start the reconstruction with a point inside T

and the reconstructed signals stayed in Z throughout the reconstruction procedure,

the two algorithms would give the same result. Experiments showed that during the
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X projection point

Figure 5.6: Reconstruction from the wavelet zero-crossings representation: implemen
tation of the projection operators, a) A segment of the zero-crossings representation
of Fx with zero crossings occurring at the points z\ and zxk+1; b) A segment of the
sequence Gx, represented by the bold dots. Its projection onto each Z^j is obtained
by assigning zero values to those points which do not have the required sign, c) The
projection of Gx onto Z^j is represented by the dots. Its projection onto U is found
by adding the same value to each point of a segment between zero crossings of Fx, so
that the required integral values are achieved.
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reconstruction process all intermediate solutions are very close to Z, if not inside it,

and hence that the composition of operators Pu and Pz yields points close to those

obtained by the Pp operator. In most cases we observed that the reconstructed signals

obtained by Mallat's and the newalgorithm, starting at a same point, were veryclose

and differed in the reconstruction error typically by less than O.ldB in each iteration.

It is important to note that with each iteration of the reconstruction algorithms the

distance between the original signal and its estimate is decreased, which is a conse

quence of the fact that projectors onto convex sets axe non-expansive operators. For

alternative algorithms for consistent reconstruction, based on the gradient descent

algorithm, the reader is referred to work by Berman et al. [4].

Extension of the wavelet modulus maxima representation framework to two-di

mensional signals and its applications in image processing are considered by Mallat,

et al. in [26, 28]. We introduce wavelet zero-crossings representation of images as a

multiscale edge representation. An advantage of the wavelet zero-crossings represen

tation over the wavelet modulus maxima representation is its convexity which makes

consistent reconstruction simple.

The discrete wavelet transform operator of two-dimensional signals for wavelet

modulus maxima [26, 28] and wavelet zero-crossings representations is the linear

operator W :£2(Z2) -• ^({1,2,..., 2J+1} x Z2) consisting of 2J +1 linear operators

Witj : £*(Z2) -» ^2(Z2) i = 1,2 j = 1,2,..., J and WJ+1 : £2(Z2) -+ ^(Z2). The

operators Wij, W2j and Wj+i denote, respectively, separable filtering with the filters

Vu(zx,zy) = Ho(zx)H0(zy)---H0(zl'-')H0(zli-')H1(zl'),
V2,i(2l, *„) = H0(zx)H0(zy) •••Ho(zl'-' )i/o(<"' )#i«)> (5-44)
VJ+1(zx,zy) = Ho(zx)H0(zy) •• •Ho(zlJ)H0(zlJ).

Defined this way, the wavelet transform operator W can be implemented using

the filter bank based on the prototype filters #0(2) and H\(z) as shown in Figure

5.7a. Perfect reconstruction is possible provided that there exist two filters Go(z)

and Gi(z) satisfying (5.27). An inverse operator W"1 implemented again as a filter

bank, based on the filters G0(z), Gx(z) and L(z) = \(1 + H0(z)G0(z)), is illustrated
by Figure 5.7b. For the analysis filters of which H0(z) is low-pass and #1(2) has
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exactly two zeros at z = 1, zero-crossings of W\jf and \V2jf axe related to the shaxp

variations of / along x and y coordinates, respectively. This explains the reason for

using this paxticular type of wavelet transform. For the details on this issue the reader

is referred to the work by Mallat and Zhong [28].

The wavelet zero-crossings representation of a two-dimensional signal will be de

fined again using two operators, denoted as in the one-dimensional case by Z and S,

with similar meaning. The zero-crossing operator Z in P(Z2) is defined as

Zf = {(fc, /) : /(fc, l)f(k - 1, /) < 0 or /(fc, /)/(fc, / - 1) < 0}. (5.45)

Zero-crossings of a two-dimensional signal define a number of connected areas of

points sharing the same sign, which will henceforth be referred to simply as areas.

The S operator provides information on integral values (the sum of points) of the

signal in each of these areas:

Sf=<
Sf(k) : the sum of points inside the area fc,

fc = 1,2,..., number of areas
(5.46)

Note that according to the definition (5.45) of zero-crossings, all the points of /,

where / assumes zero value, are declared as zero-crossings. In implementation these

points can be associated with any of the contiguous areas. Analogous to the definition

(5.20) in ^2(Z), the wavelet zero-crossings representation for two-dimensional signals

is defined as

EJ = {ZWijf,SWiJ, i = 1,2 j = 1,..., J + 1, ZWJ+1f, SWJ+1f}. (5.47)

The reconstruction algorithm from this wavelet zero-crossings representation of a

two-dimensional signal, is a straightforward extension of the reconstruction algorithm

in the case of one-dimensional signals, and details axe not given here. However, it

can be shown that for the wavelet transform of a two-dimensional signal as defined in

(5.44), the operator for orthogonal projection onto the range of the wavelet transform

can not have an FIR implementation. For experimentation we use a WW-1 which

has an FIR implementation. The FIR synthesis filters Go(z) and G\(z) axe not
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Figure 5.7: The wavelet transform used in the two-dimensional wavelet zero-crossings
representation, a) Filter bank implementation of the two-dimensional wavelet trans
form operator W; b) Filter bank implementation of an inverse of the two dimensional
wavelet transform operator.
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unique and should be designed with caution, because some choices may even lead to

divergence of the reconstruction algorithm. For instance, a pair of FIR synthesis filters

Go(z) and G\(z) which satisfy the perfect reconstruction condition can be obtained

from Hq(z) and H\(z) using Euclid's algorithm which gives a high-pass filter Go(z)

and a low-pass filter G\(z) for Ho(z) and H\(z) which axe low-pass and high-pass,

respectively. Such synthesis filters axe certainly a bad choices and in this case we

observe divergence of the reconstruction algorithm. The design of synthesis filters

which would ensure convergenceof the reconstruction algorithm in the case when W-1

is not implemented as the Hilbert adjoint of the dual of W is still an open problem.

In experiments with power complementary filters Ho(z) and Hi(z) the reconstruction

algorithm always converges for Go(z) = HQ(z~l) and G\(z) = H\(z~l). Also, we

observe the convergence and very good reconstruction results for Go(z) and G\(z)

whose magnitude responses are close to those of Hq(z) and H\(z), respectively. The

numerical complexity of the WW"1 operator is 0(JLN2) additions and 0(JLN2)

multiplications if it is implemented using FIR filters of length L. The rest of the

operators used in the reconstruction axe analogous to their counter-parts in the one-

dimensional case and their numerical complexity is 0(JN2) additions and 0(JN2)

divisions by integers.

5.4 Experimental Results

Generally, signals cannot be reconstructed with arbitrary high quality from their

wavelet extrema or zero-crossings representation since the representations axe non-

unique. It can be shown that for a finite length signal, the closures of the reconstruc

tion set is the convex hull of finitely many vertices [4]. The size of the reconstruction

set, determined by the distances between these vertices, directly influences the qual

ity of the reconstructed signal. Each wavelet transform extremum or zero-crossing

represents a linear constraint which defines a hyperplane in the signal space bound

ing the reconstruction set. It can be expected that signals producing more extrema

(zero-crossings) have reconstruction sets of smaller sizes, and consequently yield bet-
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ter reconstruction results. However, the price paid is the larger number of points

in the representation. Experiments generally confirm this rather heuristic argument.

Signals with higher frequency content, which results in larger number of extrema or

zero-crossings usually have faster convergence and better reconstruction.

The regularity of the wavelet used for the representation plays an important role.

Recall that the dyadic wavelet transform is a sequence of signals f2j = ifrv * /e> j =

1,2,..., which axe results of filtering a signal fc € L2(R) by dilated versions of

the wavelet ij>. Obviously, in generating signals /2>, the signal fc and the dilated

wavelet ij)2j play interchangeable roles. Therefore, the extrema or zero-crossings of

the dyadic wavelet transform can result from shaxp transitions of either the signal or

the wavelet. If the aim is to suppress those local extrema (zero-crossings) which are

wavelet rather than signal related, it is advisable to use smoother wavelets. How

ever, more regular wavelets generally produce reduced number of wavelet transform

extrema (zero-crossings), and consequently yield poorer reconstruction results. As an

illustration of the above discussion, Figure 5.8a represents results from reconstruct

ing randomly generated signals from the wavelet transform zero-crossings for wavelets

with different regularity properties. Experimental results of the reconstruction from

wavelet extrema representation axe representedin Figure 5.8b. For a comparison with

the zero-crossings reconstruction, one of the curves from Figure 5.8a is plotted again

on the same graph. Note that in both cases shown in Figure 5.8b, each curve rep

resents an average for the same set of random signals, and that the total number of

the zero-crossings was on average around 6.5% smaller than the number of extrema.

In the experiments with wavelet transform extrema representation, we used the same

filters as Mallat, et ai. for their wavelet modulus maxima scheme [28].

Examples of images reconstructed from the wavelet zero-crossings representation

are shown in Figure 5.9. The size of the originals (the left column) is 256 x 256 pixels,

and the reconstructed images (the right column) axe obtained after 10 iterations of

the algorithm. In these experiments the wavelet transform is performed across four

scales and the representation includes the entire signal Wj+if (there is no significant

difference in the reconstruction error with respect to the case when only the zero-
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Figure 5.8: Results from reconstruction of randomly generated one-dimensional sig
nals, a) SNR of the reconstruction from the wavelet zero-crossings representation for
wavelets with different regularities. Curves on the top, middleand bottom correspond
to wavelets on figures 5.3c, 5.3b and 5.3a respectively, b) SNR of the reconstruction
from the wavelet extrema representation (solid line), and SNR of the.reconstruction
from the wavelet zero-crossings representation for the wavelet in figure 5.3c (dashed
line).
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Figure 5.9: Examples of images reconstructed from the wavelet zero-crossings repre
sentation. Left column: the originals, 256 x 256 pixels. Right column: reconstructed
images, obtained after 10 iterations of the algorithm. The SNR's are 36.1dB, 40.3dB
and 33.6dB for "Lenna", "House" and "Tree" images, respectively.
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Figure 5.10: The "Lenna" image reconstructed from partial wavelet zero-crossings
representation. Bottom left: 256 x 256 original. Bottom right: the image obtained af
ter 10 iterationsof the reconstruction algorithm, with 20.8dB SNR (PSNR is 28.0dB).
Biievel images: black regions mark selected areas across four scales of the wavelet
transform; the number of selected areas is 5146. Top left, top right, middle left and
middle right images represent scales 1,2, 3 and 4, respectively.
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crossings information on Wj+if is used). As in the case ofone-dimensional signals we
observe that using more regular filters reduces the amount ofdata to berecorded but
increases the mean-squared reconstruction error. In all experiments with images, we

use linear phase filters: ft = £[1 2 1], ft = ±[1 -2 1], G0 =|[-1 2 6 2-1]
andGi = |[l 2-6 2 1].

Some modified versions of the original wavelet zero-crossings scheme can be more

convenient. The definition of the two-dimensional wavelet zero-crossings represen

tation, as introduced in the preceding section, can be generalized in the following

manner. Some of the areas of the same sign can be partitioned into several subareas,

and the information on these subareas, namely the locations and integral values, is

extracted separately. This increases the overhead, but generally decreases distortion

of the representation and may facilitate some signal processing tasks, such as the

selection of important edges. On the other hand, only partial information on the

wavelet transform zero-crossings can be kept, which has the opposite effect on rate-

distortion properties of the scheme. The reconstruction algorithm can be modified in

a straightforward manner to accommodate these variants of the representation.

Figure 5.10 illustrates the reconstruction of an image from the representation

obtained by combining the two modifications. Black regions in the two-level images

represent the subareas which are included in the representation, across four scales of

the wavelet transform. The selected subareas axe those with positive integral values

and average intensity above a given threshold. The original (bottom left) is the 256 x

256 image, and the reconstructed signal (bottom right) is obtained after 10 iterations

ofthe algorithm, with20.8dB SNR. Thenumber ofsubareas used in the representation

is 5146. It can be noticed that even with this rather naive selection process, wavelet

zero-crossings representation provides information on important multiscale edges and

yields good reconstruction.

Applications of the wavelet zero-crossings or wavelet modulus maxima schemes

to real coding systems require further research. One of the main issues is to find

efficient algorithms for selecting the most relevant information contained in modulus

maxima or zero-crossings and also for exploiting their interdependencies across the
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scales for further lossless encoding of the selected information. An advantage of

the wavelet modulus maxima over the zero-crossings scheme is that it discriminates

between different types of singularities and therefore facilitates the selection process.

On the other hand, extracting sign information, which is required for the wavelet zero-

crossings representation, seems to be computationally less intensive than extracting

information on local modulus maxima as proposed in [28]. Also, as we pointed but

earlier, the convexity of the zero-crossings representation makes the reconstruction

from partial information simple and more reliable. Compression results reported by

Mallat and Zhong [28], based on the wavelet modulus maxima representation, were

encouraging and we believe that the full potential of these schemes is still to be

reached.

5.5 Image Interpolation

5.5.1 Traditional Linear Interpolating Schemes

Digital images obtained from data acquisition systems, such as medical or satellite

images, are often required to be magnified for subsequent analysis which involves a

human observer. The magnification problem amounts to estimating unknown pixel

amplitudes from their known neighbors. A straightforward approach would be to

assign an unknown pixel the amplitude of one of its neighbors, a scheme denoted as

pixel replication. A problem with pixel replication axe the jaggy line artifacts (see

Figure 5.11). These artifacts can be alleviated if the estimation is based on local

averages. A commonly used technique is the bilineax interpolation, which consists

of linear interpolating between the known pixels along each row or column, followed

by linear interpolating in the perpendicular direction. Various other interpolation

functions based on different local averages are also used, such as bell and bicubic

spline interpolation [20]. These methods though eliminating the artifacts tend to

cause blurring of images, so that they axe inevitably linked with the tradeoff between

the interpolation error (artifacts) and the clarity degradation, as illustrated in Figure
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5.11. The image clarity can subsequently be enhanced using a high-pass filtering.
This is commonly used in the printing industry for edge crispening as the so called
unsharp masking technique [20]. Examples ofinterpolated images enhanced using the
unsharp masking are also illustrated in Figure 5.11.

These local averaging techniques are linear schemes which consist oflinear filtering

of an image which has been previously interleaved with zeros. The filter used is a
cascade ofa low-pass filter (averaging) and ahigh-pass filter (unsharp masking). The
linearity implies that the same interpolating function is applied across the image

regardless of the local characteristics. The interpolation algorithm we propose is
a nonlinear locally adaptive scheme. It is based on the wavelet analysis of local

behavior in the image in order to apply appropriate interpolation. Other locally

adaptive methods include modeling of edges, nonlinear filtering for amplification of

the high frequency components [17] .or MAP estimation [39].

5.5.2 Locally Adaptive Image Interpolation

The perceptually most important image features axe edges and textures. However,

they axe of different nature and require different approaches when interpolated. The

algorithm described here is aimed at good rendition of edges only. For the sake of

simplicitythe idea is explained in moredetail for one-dimensional signals. Images axe

treated as a separable extension of the one-dimensional case. Figure 5.12 illustrates

the problem model we use. The available waveform / is considered to be obtained

from the high resolution signal /0, which we want to recover, by lowpass filtering

followed by downsampling by 2. Let H0(z) be a lowpass filter and ft (z) be a highpass

filter such that the two filters constitute a two channel perfect reconstruction filter

bank. Let G0(z) and G\(z) be the corresponding synthesis filters. The filter bank
in this model is arbitrary, but we conjecture that as long as it is reasonable (i.e. a

good lowpass/highpass pair of filters), performance of the algorithm will not depend
strongly on the filter bank. In order to perfectly restore the high resolution signal,
we need to know both its highpass component g8 and its lowpass component f3.

However, only /, the downsampled version of /s, is available. A standard approach



131

Figure 5.11: Examples of an image magnihed 4 times along each of the coordinates
using linear interpolation schemes, a) Original low resolution image, 64 x 64 pixels,
b) Pixel replication, c) Bilinear interpolation, d) Bicubic spline interpolation, e)
Bilinear interpolation followed by unsharp masking, f) Bicubic spline interpolation
followed by unsharp masking.
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Figure 5.12: The model for the locally adaptive interpolation algorithm. The available
low resolution signal f is assumed to be the result of a low-pass filtering followed by
subsampling of the higher resolution signal /0. The algorithm finds an estimate gs of
the high frequency component ga of fo which is then used together with an estimate
fa of the low-frequency component fa for the synthesis of f0.

would be to interpolate / using linear or spline interpolation, possibly followed by

some enhancement algorithm such as highpass filtering to deblur the result. The

algorithm proposed here is based on estimating the high frequency component gs,

which is then combined with an estimate of /,, through the synthesis filter bank to

give a reconstructed version of the high resolution signal.

The initial estimate fs of the low frequency component fa can be obtained by ap

plying any standard interpolation method to /. When estimating the high frequency

component it is certainly not possible to recoverthe details which are irreversibly lost

by the downsampling. However, the estimate of ga should be based on the informa

tion on local smoothness of the signal which can be extracted from its low resolution

version. Since this information is reflected in the propagation of local modulus max

ima in the wavelet transform, the approach to the estimation of ga is to find its local

extrema by analyzing the available signal /.

It can be shown that the discrete dyadic wavelet transform of / is the decimated

version, by factor 2, of the wavelet transform of /o starting from the scale 22, as shown

in Figure 5.13. Recall that the discrete dyadic wavelet transform of /o is a sampled

version of the continuous wavelet transform at scales 2, 22, 23, ... The high-pass

component gs is the wavelet transform of the high resolution signal at the scale 2.

The idea of our algorithm is to extrapolate the wavelet transform of /o at the scale

2 from the subsampled versions of its wavelet transform at scales 22, 23, ... ,2J. The

extrapolation is based on the propagation of local extrema of the wavelet transform
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Figure 5.13: Estimation of the high frequency component g, amounts to extrapo
lation of the wavelet transform of fo across the scales. The extrapolation is based
on the analysis of the wavelet transform of the low-resolution signal f, which is a
subsampled version of the wavelet transform of the high resolution signal fo at the
scaies22,23,24....

of the low resolution signal / across the scales, following the exponential propagation

rule. This enables estimation of the locations and values of important local extrema

of ga. The estimate g, is then obtained by interpolating between these extrema using,

for instance, linear or spline interpolation. A higher resolution signal, which is our
A

final goal, is generated from components fa and ga using the synthesis filter bank (see

Figure 5.12).

The interpolated signal, obtained this way, can be enhanced by recognizing that

the initial estimates fa and ga can be further improved. The enhancement is based

on alternating projections on the sets of convex constraints which /5 and ga should
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obey. We can identify the following constraints:

1. The waveforms (fa,ga) must be in the subspace V of /2({1,2} x Z), which is the

space of all pairs of square-summable sequences which can be obtained at the

outputs of the filter bank [ft(z) H\(z)} for an excitation in £2(Z).

2. The decimated version (by factor 2) of fa should be equal to /, which is the

available low resolution signal.

3. The local extrema of ga should reflect shaxp variations in /o, i.e. their values

and locations axe determined by singularities in fo.

Let V, S, and S be sets in /2({1,2} x Z) denoting, respectively, the sets of points
A

which satisfy these three constraints. The pair of estimates (fa,ga) should belong to

the sets V and S, while projecting it onto S improves the signal clarity.

The projection operator onto V is discussed in the previous section. Projection of
A A

(/«>&) onto S amounts to assigning values of / to even samples of fa. The subspace

V and the convex set S are well-defined, but the set E depends on our knowledge of

the singularities of /o which is based on the analysis of the low resolution signal /, so

there is a certain arbitrariness in its definition.

One approach would be to define S as the set of all pairs of waveforms (fa,ga) such

that the locations and amplitudes of local extrema of g8 match exactly values assigned

based on the analysis of /. This is an extreme approach, with a certain controversy.

The problem of this approach is that it insists on precisely assigned characteristics of

local extrema of ga which are, on the other hand, known with some uncertainty. There

are the two reasons for systematic errors in the measurements of the local extrema.

The first is that the discrete dyadic wavelet transform represents a sampled version

of the continuous wavelet transform provided that the discrete transform is applied

on the appropriate discrete-time version of the continuous-time signal, as pointed

out in Section 5.3.2. Although a reasonable low-pass filtering followed by sampling

would provide a good approximation of the required discretization, it still produces

some error. The other source of error is the limited time resolution of the discrete

wavelet transform. This is particularly pronounced at the fine scales of the wavelet
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transform where the underlying continuous-time signal can assume a considerable

variation between two points of the discrete wavelet transform. Consequently, the

values of local modulus maxima based on which we determine parameters of the

exponential propagation law, KsQ, and estimate the local extrema of ga, axe not

measured accurately. Also, there axe always some errors in associating those wavelet

extrema across the scales which correspond to the same singularity.

Considering the possible errors in the process of estimating the local extrema

of ga, when enhancing the initial interpolated signal we may abandon any further

constraints on local extrema of the estimates ga and project {fa,ga} alternatingly

onto V and 5 only. That gives the other extreme approach in defining S. As a

moderation of the two extreme cases, local extrema of ga can be assigned with certain

tolerance in both positions and amplitudes. These constraints can be defined so that

S is still convex. The algorithm for signal reconstruction from the wavelet extrema

representation, described in Section 5.3.4, can be easily modified to an algorithm for

projection onto S in the case when the local extrema axe constrained to be in the

tolerance bounds.

Images axe treated using a separable extension of the scheme. In general, analyz

ing two-dimensional signals by treating the two coordinates independently is not an

optimal approach. However, we chose a separable scheme in order to reduce compu

tational complexity. The discrete time wavelet transform of images for the interpola

tion algorithm is the one used for the wavelet extrema representation. The filter bank

which implements this transform is shown in Figure 5.7. The wavelet transform of an

image / consists of components {Wij/}j-i,...,j and components {W/2,i/}i=i,...,J which

axe generated by processing /, respectively, along rows and along columns. The one-

dimensional extrapolation algorithm is then applied to rows of the W\tj components

and columns of the W2J components.

The discussion in this section gives only a global idea of the interpolation algo

rithm. Readers interested in more detail are referred to [6].
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5.5.3 Experimental Results

The experiments confirm the expectation that the moderate approach in con
straining local extrema of the high-pass component ga gives better results than the
two extreme cases. For the algorithm variant that does not constrain the extrema
of ga, ringing effects tend to occur around the edges. On the other hand, when con
straining the values to be the initial estimates, the resulting image is of lower quality
compared to the case when some tolerances axe allowed.

The images obtained after 1-2 iterations ofthe enhancement algorithm are already
acceptable. After 5-10 iterations the images are ofgood quality and with more itera
tions they do not change discernibly or some artifacts appear, depending on algorithm
parameters. A direct magnification offour times was also experimented, buttheresult
was not as good as performing the 2-time magnification algorithm iteratively.

Figure 5.14b shows a 256 x 256 images obtained by performing the interpola
tion algorithm twice iteratively. For comparison, interpolated images using the bi

lineax or bicubic spline interpolation followed by unsharp masking axe shown on

the same figure. The original low-resolution 64 x 64 image is obtained from a

256 x 256 high resolution image by performing twice the process of low-pass fil

tering and subsampling by 2. The lowpass filter used in obtaining the test image

is a separable filter F(zx,zy) = Fi(zx)Fi(zy), where the impulse response of Fi(zx)

is [-1,0,9,16,9,0,-l]/32. The filters for the wavelet transform in this experiment

were

ft = [0.125,0.375,0375,0.125],

ft = [-2.0,2.0],

Go = [0.125,0.375,0.375,0.125],

Gi = [0.0078125,0.046875,0.1171875,0.65625,0.1171875,0.046875,0.0078125].

This algorithm is still subject to experimental investigation aimed at fine tuning

of the parameters and reduction of the computational complexity. One issue under

investigation is the impact of filter regularity on the performance of the algorithm.

Preliminary results indicate that using more regular filters yields more pleasing re

sults. Also, as we have already pointed out, regular filters should provide a clearer
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Figure 5.14: Exampleof a 64 x 64 image magnified 4 times along each of the coordi
nates using the adaptive algorithm. The available small size image is shown in figure
a), and its magnified version in figure d). For a comparison, images magnified using
bilinear and bicubic spline interpolation followed by the unsharp masking are also
shown in figures b) and c), respectively.
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picture ofimportant local extrema and thus facilitate the estimation ofthe high fre
quency component. The tolerances of the constraints on the local extrema of the
high frequency component constitute another set ofparameters which require careful
adjustment based on experimental results, since they constitute a tradeoff between
the sharpness of interpolated images and the appearance of undesirable artifacts. As

for the complexity, a considerable computational burden is due to extraction of rel

evant local extrema. An efficient algorithm for that purpose is one of the further

directions of this project. We also hope to be able to reduce the complexity based on

experimental results by eliminating calculations which might be shown not to have a

significant influence on the performance of the algorithm.

5.6 Appendix

5.6.1 Proof of Proposition 12

The design procedure described here follows along the same line as the design of

maximally flat orthogonal filter banks [10, 47]. There is a bijective mapping between

the set of FIR autocorrelation functions with real coefficients and the set of polyno

mials over R which axe positive on the interval [0,1]. The autocorrelation function

H(z)H(z~1) of a real FIR filter defines a real coefficient polynomial of sm2| on the

unit circle:

#(e>u,)i/(e-ju') =P(sin2<^) . (5.48)
On the other hand, any polynomial P(y), positive on [0,1], with y = f^f2) (^f—)
defines an FIR autocorrelation function

According to this, in order to obtain power complementary filters of length L having

flatness of order N0 —1 at uj = it and flatness JV*i — 1 at w = 0, it is sufficient to find

P(y) = (i - y)N°Q(y) (5-50)



139

such that Q(y) has no zeros at y = 1, and P'(y), the formal derivative of P(y), has

a zero of multiplicity ft — 1 at y = 0. For the case of maximally flat filters, the

coefficients of the polynomial

L-l-iVo

Q(y)= £ W (5-51)
/=0

are obtained from the requirement that P'(y) has a (ft —l)th order zero at y = 0

and that P(0) = 1. This gives

(5.52)

Ho(z) is then obtained from (5.49), while ft (z) is derived by factoring

'-'((¥) (^f)) «-»
as Hi(z)Hi(z~1). That this is always possible to do is ensured by the fact that P(y)

has all of its extrema at y = 0 and y = 1, and therefore it is monotonically decreasing

from 1 to 0 on the interval [0,1], making the expression (5.53) positive on the unit

circle. This gives the class of maximally flat, N0 + ft = L, power complementary

filters.

For filters which are not maximally flat, ft + ft < L, P(y) still has the form

(1 - y)NoQ(y), and the coefficients qi, I= 0,1,..., ft -1, are determined as in (5.52).

This gives the required flatness of the filters. The rest of coefficients of Q(y) represent

additional degrees of design freedom.

Several design examples are given in Table 2. This table contains coefficients of

the autocorrelation functions of the low-pass filters, for the maximally flat power-

complementary pairs. These filters are designed for several filter lengths, L, and with

different multiplicities, ft of the zero of the high-pass filter at z = 1. For even filter

lengths and ft = L/2, maximally flat power complementary design gives Daubechies'

filters [10].



4

4

5

5

6

6

6

7

7

7

8

8

8

8

9

9

9

9

10
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ft ft(*)ft(Q
£[1,6,15,20]
£[-1,0,9,16]

£[1,8,28,56,70]
£[-3,-8,12,72,110]

2*0 [1,10,45,120,210,252]
£[-1,-5,-5,20,70,98]
£[3,0,-25,0,150,256]

2^ [1,12,66,220,495,792,924]
^ [-5, -36, -90, -20,405,1080,1428]

jfr [5,12, -30, -100,75,600,924]
.sfr [1,4,91,364,1001,2002,3003,3432]

2k [-3,-28, -105,-168,77,924,2079,2640]
2ir [15,70,21, -420, -665,1050,4725,6792]

2k [-5,0,49,0, -245,0,1225,2048]
2k [1,16,120,560,1820,4368,8008,11440,12870]

2k [-7, -80, -392, -1008, -1092,1456,8008,16016,19734]
2^ [21,144,280, -336, -2100, -1904,5544,18480,25278]
2*6 [-35, -80,280,784, -980, -3920,1960,19600,30318]
jk [1,18,153,816,3060,8568,18564,31824,43758,48620]

2k [-2, -27, -162, -552, -1080, -756,2184,8424,15444,18590]
2i6 [7,63,207,168, -756, -2268, -1092,6552,18018,23738]

5^ [-14, -63,18,504,504, -1764, -3528,3528,19404,28358]
£r [35,0, -405,0,2268,0, -8820,0,39690,65536]
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Table 5.2: The autocorrelation function of various low-pass filters, Ho(z), for power
complementary pairs (Ho(z),H\(z)) of perfect reconstruction nonsubsampled filter
banks. The autocorrelation functions are given for several filter lengths, L, and with
different multiplicities, ft, of the zero at z = 1, of the high-pass filters, H\(z). The
autoccorelation functions are symmtricso that only the irst L out of2L—l coefficients
are given in the table.
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