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ABSTRACT

This paper is concerned withmultiprocessor implementations of embedded applications
specified as iterative dataflow programs, in which synchronization overhead tends to be signifi
cant. Wedevelop techniques to alleviate this overhead by determining a minimal set of processor
synchronizations that areessential for correct execution. Our study is based in thecontext of self-
timed execution of iterative dataflow programs. An iterative dataflow program consists of a data
flow representation of the body of a loop thatis to be iterated an indefinite number of times; data
flow programming in this form has been studied and applied extensively, particularly in the
context ofsignal processing software. Self-timed execution refers to a combined compile-time/
run-time scheduling strategy in which processors synchronize with one another only based on
inter-processor communication requirements, and thus, synchronization ofprocessors at the end
of each loop iteration does not generally occur.

We introduce anew graph-theoretic framework for analyzing and optimizing synchroniza
tion overhead in self-timed, iterative dataflow programs. This framework is based on a datastruc
ture, which we call the inter-processor communication (IPC) graph, that was first proposed in
[32] for analyzing the throughput ofself-timed systems. We show that the comprehensive tech
niques that have been developed for removing redundant synchronizations in non-iterative pro
grams can beextended in this framework tooptimally remove redundant synchronizations in our
context. We alsointroduce two new optimizations for reducing synchronization overhead in self-
timed, iterative dataflow programs —resynchronization and the conversion ofthe synchroniza
tion graph into a strongly connectedgraph.
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1. Introduction

In this paper, we address the problem of minimizing the overhead of inter-processor syn

chronization for an iterative synchronous dataflow program that is implemented on a shared-

memory multiprocessor system. This study is motivated by the widespread popularity of thesyn

chronous dataflow (SDF) model in DSP design environments; the suitability of this model for

exploiting parallelism; and the high overhead of run-time synchronization, which can severely

limit the speedup obtained by movingan implementation of an SDFprogram from a uniprocessor

implementation to a multiprocessor implementation. Our work is particularly relevant when esti

mates are available for the task execution times, and actual execution times are usually close to

the corresponding estimates, but deviations from the estimates of (effectively) arbitrary magni

tude can occasionally occur due to phenomena such as cache misses or error handling.

SDF and closely related models have been used widely as foundations for numerous

graphical DSP design environments, in which signal processing applications are represented as

hierarchies of block diagrams. Some examples are described in [16,22, 25, 26, 29]. In SDF, as in

other forms of dataflow, a program is represented as a directed graph in which the vertices, called

actors, represent computations, and the edges specify FIFO channels for communication between

actors. The term synchronous refers to the requirement that the number of data values produced

(consumed) by each actor onto (from) each of its output (input) edges is a fixed value that is

known at compile time [18] and should not be confused with the use of "synchronous" in syn

chronous languages [2]. The techniques developed in this paper assume that the input SDF graph

is homogeneous, which means that the numbers of data values produced or consumed are identi

cally unity. However, since efficient techniques have been developed to convert general SDF

graphs into equivalent (for our purposes) homogeneous SDF graphs [18], our techniques apply

equally to general SDF graphs. In the remainder of this paper, when we refer to a dataflow graph

(DFG) we imply a homogeneous SDF graph.

It is sometimes necessary to insert delays on the edges of a dataflow graph, to represent

initial tokens on the edges. These delays (which can also be interpreted as registers) specify

dependencies between iterations of the actors in iteratively executed dataflow graphs. For exam-



pie, if tokens produced by the kth executionof actor A are consumedby the (k + 2) th execution

of actor B, thentheedge from A to B will contain two initial tokens, ordelays. We willrepresent

an edge with n delays by annotating it with the symbol "nD" in the dataflow graphrepresenta

tion (see Figure 1).

Multiprocessor implementation of an algorithm specified as a DFG involves scheduling

computations in the algorithm. By "scheduling" we collectively refer to the task of assigning

actors in the DFG to processors, ordering execution of theseactors on eachprocessor, and deter

mining wheneach actorfires (begins execution) suchthat alldataprecedence constraints are met.

Each of these three tasks may beperformed either at run time (a dynamic strategy) or at compile

time (a static strategy). In [19] and [20] the authors propose a scheduling taxonomy based on

which of these tasks are performed at compile time and which at run time; in this paper we will

use the same terminology that was introduced there. To reduce run time computation costs it is

advantageous to perform as many of the three scheduling tasks as possible at compile time.

Which of these can be effectively performed at compile time depends on the information avail

able about the execution time of each actor — that is, on the amount of time it takes for each actor

to complete execution once it fires.

Theperformance metric thatis of interest forevaluating schedules is the average iteration

period 7\ whichis theaverage timethatit takes for all theactors in thegraphto beexecuted once.

Equivalently, we could use the throughput T" (that is, the number ofiterations ofthe graph exe

cuted per unit time) as a performance metric. Thus an optimalscheduleis one that minimizes T.

In the fully-static scheduling strategy of[4], all the three scheduling tasks — assigning

actors to processors, ordering their execution oneach processor, as wellas determining exactly

when anactor fires — areperformed at compile time. This strategy involves theleastpossible

amount ofruntime overhead. Alltheprocessors runinlockstep and noexplicit synchronization is

requiredwhen they exchange data. However, this strategy assumes that exact executiontimes of

actors areknown. Such anassumption is ingeneral notpractical. A more realistic assumption for

DSP algorithms is that good estimates for the execution times of actors can be obtained. These

estimates may notbeaccurate down tothe clock cycle, because the object code for the processors



might be compiled from a high-level language, which makes estimation of exact execution time

difficult, or the processor itself might take a non-deterministic number of cycles to complete an

instruction, if it employs a cache for instance. These estimates may not even have guaranteed

worst case bounds, if, for example, at run time a processorhas to respond to events that require

error handling or has to process user inputs, which are infrequent (rare) compared to the sample

rate at which the DFG executes.

Under such an assumption on timing, it is best to discard the exact timing information

from the fully static schedule, but still retainthe processor assignment and actororderingspeci

fied by the fully static schedule. This results in the self-timed scheduling strategy of [19]. Each

processor executes the actors assigned to it in the orderspecified at compile time. Before firing an

actor, a processor waits for the data needed by that actor to become available.Thus in self-timed

scheduling processors arerequired to perform run-time synchronization when they communicate

data. Such synchronization is not necessary in the fully-static case because exact (or guaranteed

worst case) times could be used to determine firing times of actors such that processor synchroni

zation was ensured. As a result, the self-timed strategy incursgreater run-time cost than the fully-

static case because of the synchronization overhead.

An example of a DFG and a corresponding self-timed schedule are shown in Figure 1.

Note that inter-processor communication primitives (send and receive actors) need to be inserted

when data cross processor boundaries. As a result, a multiprocessor schedule for a DFG falls nat

urally into a message passing inter-processor communication model. The execution times for the

Procl
Proc2

B H B

D

V jf -M 7 ^

Execution times: A: 4 t.u., B: 2t.u.
I :Send

| :Receive

1 :Mle

Figure 1. An example of a self-timed schedule.



actors A and B are estimates thatare usedto determine theprocessor assignment and ordering for

the schedule. However, the processors need to explicitly synchronize ateach communication

point since the estimated execution times may not beexact ormay vary from one iteration of the

DFG to the next. Clearly, if these times were known precisely, we could eliminate the need for

explicit synchronization by determining precisely when eachactor fires and when the send and

the receive primitives areexecuted. If we ignorecommunicationcosts, that is, we assume sends

and receives take zero time, then theestimated iteration period (7) for this example is 4 time

units.

A straightforward implementation of a self-timed schedule would require that for each

inter-processor communication (IPC) the sending processor ascertains that the buffer it iswriting

toisnot full, and the receiver ascertains that the buffer it isreading from isnot empty. The proces

sorsblock (suspend execution) when the appropriate condition is not met. Such sender-receiver

synchronization can beimplemented inmany ways depending on the particular hardware plat

form under consideration: inshared memory machines, such synchronization involves testing and

setting semaphores in shared memory; inmachines that support synchronization in hardware

(such as barriers), special synchronization instructions are used; and inthe case of systems that

consist of amix of programmable processors and custom hardware elements, synchronization is

achieved by employing interfaces that support blocking reads and writes.

In each kind ofplatform, every IPC that requires asynchronization check costs perfor

mance, and sometimes extra hardware complexity: semaphore checks costexecution timeon the

processors, synchronization instructions that makeuseof synchronization hardware also costexe

cution time, and blocking interfaces inhardware/software implementations require more hard

ware than non-blocking interfaces [12].

Themain goal of this paper is topresent algorithms and techniques that reduce the rate at

which processors must access shared memory for the purpose of synchronization inembedded,

shared-memory multiprocessor implementations ofiterative dataflow programs. Thus the optimi
zation procedure that we propose can be used as apost-processing step in any static scheduling

technique for reducing synchronization costs in the final implementation. In this paper we assume

that"good" estimates areavailable for the execution times of actors andthat these execution



times rarely display large variations so that self-timed scheduling is viable for the applications

under consideration. If additional timing information is available, such asguaranteed upper and

lower bounds onthe execution times ofactors, it ispossible touse this information tofurther opti

mize synchronizations in the schedule. However, use ofsuch timing bounds is beyond the scope

of this paper.

Our paper is organized as follows. InSection 2 we review some of the related work in syn

chronization optimization, and in Section 3 we listsome of the notation and terminology used in

this paper. Sections 4, 5 and 6 present our graph-theoretic framework for analyzing and optimiz

ing synchronization. In Section 7, we formally define theoptimization problem addressed in this

paper in terms of themodelandresults developed in Sections 4-6. Sections 8,9 and 10present the

algorithms usedfor our proposed synchronization optimization scheme. Finally, in Section 11 we

present the complete synchronization algorithm, and then end with conclusions in Section 12, and

discuss directions for future work in Section 13. Forreference, some of the terminology and nota

tion used in this paperis summarized in a glossary at the endof thepaper.

2. Related Work

Numerous research efforts have focused on constructing efficient parallel schedules for

DFGs. Parhi and Messerschmitt [23], and Chao andSha [6] havedeveloped systematic tech

niques for exploiting overlapped execution to generate schedules that have optimal throughput,

assuming zerocost for IPC. Other work has focused on taking IPCcosts into account during

scheduling, such as thatdescribed in [1, 21,27, 31]; these efforts have not attempted to exploit

overlapped execution of dataflow graph iterations. Similarly, in [10], Govindarajan and Gao

develop techniques to simultaneously maximize throughput, possiblyusingoverlappedexecution,

and minimize buffer memory requirements under the assumption of zero IPC cost. Our work can

be used as a post-processing step to improve the performance of implementations that use anyof

these scheduling techniques when thegoal is a self-timed implementation.

Among theprior work thatis mostrelevant to thispaperis thebarrier-MIMD principle of

Dietz, Zaafrani, and O'keefe, which is a combined hardware and software solution toreducing



run-time synchronization overhead [8]. In this approach, a shared-memory MIMD computer is

augmented with hardware support that allows arbitrary subsets ofprocessors tosynchronize pre

cisely with respect to one another by executing a synchronization operation called a barrier. If a

subset ofprocessors is involved in a barrier operation, then each processor in this subset willwait

at the barrier until allother processors in the subset have reached the barrier. After all processors

in the subset have reached the barrier, the corresponding processes resume execution inexact syn
chrony.

In [8], the barrier mechanism is applied to minimize synchronization overhead in a self-

timed schedulewith hard lower and upperboundson the taskexecutiontimes.The execution time

ranges are used to detect situations where the earliest possible execution time of a task that

requires datafrom another processor is guaranteed to belaterthanthelatestpossible timeat

which the required data is produced. When such an inference cannot be made, a barrier is instanti

atedbetween thesending andreceiving processors. In addition to performing therequired data

synchronization, the barrierresets (to zero)the uncertainty between the relativeexecution times

for theprocessors thatare involved in thebarrier, and thus enhances thepotential for subsequent

timing analysis to eliminate the need for explicitsynchronizations.

Thetechniques of barrier MIMD donotapply to theproblem thatweaddress because they

assume that a hardware barrier mechanismexists; they assume that tight bounds on task execution

times are available; they do not address iterative, self-timed execution, in which the execution of

successive iterations of the dataflowgraph can overlap; and even for non-iterativeexecution,

there is no obvious correspondence between an optimal solution thatuses barrier synchroniza

tions and an optimal solution that employsdecoupled synchronization checks at the sender and

receiver end (directed synchronization). This lastpointis illustrated in Figure 2. Here, in the

absence of execution time bounds, an optimal application of barriersynchronizations can be

obtained by inserting two barriers —one barrier across A1 and A3, and the other barrier across

AA andA5.This is illustrated in Figure 2(c). However, thecorresponding collection of directed

synchronizations 04 j to A3, and A5 to44) is not sufficient since it does notguarantee that the

data required by A6 from A-^ is available before A6 begins execution.



In [30], Shaffer presents an algorithm that minimizes the number of directed synchroniza

tions in the self-timed execution of a dataflow graph. However, this work, like that of Dietz et al.,

does not allow the execution of successive iterations of the dataflow graph to overlap. It also

avoids having to consider dataflow edges that have delay. The technique that we present for

removing redundant synchronizations can be viewed as a generalization of Shaffer's algorithm to

handle delays and overlapped, iterative execution, and we will discuss this further in Section 8.

The other major techniques that we present for optimizing synchronization — handling the feed

forward edges of the synchronization graph (to be defined in Section 6), discussed in Section 10,

(a)

Proc. 1 start

Proc. 2 start

Proc. 3 start

(c)

Proc. 1: A\>A2

Proc. 2: ^3,i44

Proc. 3: ^5»^6

(b)

Figure 2. (a). A DFG.

(b). A three-processor self-timed schedule for (a).
(c). An illustration of execution under the placement of barriers.



and"resynchronization", defined andaddressed in Sections 9 and theappendix — arefundamen

tally different from Shaffer's technique since they address issues that are specific to our more gen

eral context of overlapped, iterative execution.

3. Background Terminology and Notation

Wefrequently represent a DFG by an orderedpair (V,E), where V is the set of vertices

and E is the setofedges. We refer to the source and sink vertices ofa graph edge e by src (e)

and snk (e), and we denote the delay on e by delay (e). We say that e is anoutput edge of

src (e), and that e is an input edge of snk (e) .

Given x, y € V, we say that x is a predecessorof y if there exists e € E such that

src (e) = x and snk (e) = y; we say that x is a successor ofy if y is a predecessor ofx. A

path in (VtE) is afinite, nonempty sequence (eve2, ...,*„),where each e{ is amember of£,

andM*^) = src(e2), snk(e2) = src(e3),..., snk(efl_l) = src (en) .We say that the

path p = (eve2,..., en) contains each e. and each subsequence of (eve2,..., en); p is

directed from src (ex) to m£(en); and each member of

{src (ex) ,src(e2) src (en), snk (en)} ison p. Apath that isdirected from some vertex to

itself iscalled a cycle, and a fundamental cycle isacycle ofwhich no proper subsequence isa
cycle.

Ifp = (ev e2 en) is a path in a DFG, then wedefine the path delay ofp, denoted

n

Delay (p), by Delay (p) = £ delay (e.). Since the delays on all DFG edges are restricted to
1 = 1

be non-negative, it iseasily seen that between any two vertices x,y€ V, either there isno path

directed from x to y, or there exists a (not necessarily unique) minimum-delay path between x

and y. That is, if there is a path from x to y, then there exists a path p from x to y such that



Delay (pf) £ Delay (p), for allpaths p' directed from x to y. Given a DFG G, andvertices

x,y in G, wedefine pG (x,y) tobeequal to °o if there is nopath from x to y, and equal to the

pathdelay of a minimum-delay pathfrom x to y if there exist oneor more paths from x to y. If

G is understood, then we may drop the subscript and simply write "p" in place of"pG ".

By a subgraph of (V,E), wemean the directed graph formed byany V £ V together

with theset of edges {e € E\src (e), snk (e) e V'} . We denote thesubgraph associated with

the vertex-subset V" by subgraph (V). Wesaythat (V> E) is strongly connected if for each

pairofdistinct vertices x> y, there is a path directed from x to y andthere is a path directed from

y to x. We saythata subset V £ V is strongly connected if subgraph (V) is strongly con

nected. A strongly connected component (SCC) of (V,E) is a strongly connected subset

V Q V such thatnostrongly connected subset of V properly contains V. If V is anSCC, then

when there is no ambiguity, we may also say that subgraph (V) is an SCC. If Cx and C2 are

distinct SCCs in (V, E), we say that Cx is a predecessor SCC ofC2 ifthere isan edge directed

from some vertex in Cx to some vertex in C2; Cj is asuccessor SCC of C2 if C2 is apredeces

sorSCC of Cj. AnSCC is a source SCC if it has nopredecessor SCC; and anSCC is a sink

SCC if it hasnosuccessor SCC. Anedge e is a feedforward edge of (V, E) if it isnotcontained

in anSCC, orequivalently, if it is notcontained in acycle; anedge that is contained in at least one

cycle is called a feedback edge.

Given two arbitrary sets Sx and S2,wedefine the difference of these two sets by

Sx-S2 = {s€ Sx |s€ S2} , and we denote the number ofelements in afinite set S by |5|. Also,

if t isa real number, then we denote the smallest integer that isgreater than orequal to r by \f\.

In this paper, we assume that thesource and sink vertices uniquely identify anedge in a

DFG,and thuswe mayrepresent anedge e € E by theordered pair (src (e), snk (e) ) . It is con

ceivable, however, that a practical system may have a DFG inwhich one ormore pairs ofvertices

10



have multiple edges connecting them in the same "direction". Such graphs can very easily be pre-

processed into aform to which the techniques ofthis paper can be applied; the details are beyond

the scope ofthis paper. Finally, if x, y are vertices in (V, E), we define dn (x, y) to represent an

edge (that isnot necessarily inE) whose source and sink vertices are x and y, respectively, and

whose delay is n (assumed non-negative).

For elaboration on any of the graph-theoretic concepts presented in this section, we refer

the reader to [7].

4. Model of a Multiprocessor Executing a Self-timed Schedule

We modela multiprocessor executing aself-timed schedule as follows. Each processor is

assigneda sequentiallist of actors, some of which aresendand receive actors, which it executes

in aninfinite loop. When a processor executes acommunication actor, it synchronizes withthe

processor(s) it communicates with. Thus exactly when aprocessor executes each actor depends

on when, atrun time, all input data for thatactor is available, unlike the fully-static casewhere no

suchruntime check is needed. In this paper we use "processor" in slightly general terms: a pro

cessorcould be a programmable component,in which case the actors mapped to it execute as

software entities, or it couldbe a hardware component, in whichcase actors assigned to it are

implemented and execute in hardware. See [13] for a discussion on combined hardware/software

synthesis from a single dataflow specification. Examples of application specificmultiprocessors

that use programmableprocessors and some form of static scheduling aredescribedin [4,14,33].

Inter-processor communication between processors is assumedto take placevia shared

memory. Thus the sender writes to a particular shared memory location and the receiver reads

from thatlocation. The shared memoryitself could beglobal memory betweenallprocessors, orit

couldbe distributed between pairs of processors (as ahardware first-in-first-out (FIFO) queues or

dual ported memory for example). Each inter-processor communication edge in our DFG thus

translates into a buffer of a certain size (which we will discuss later) in shared memory.

Sender-receiver synchronization is also assumedto take place by setting flags in shared

memory. Special hardware for synchronization(barriers, semaphores implemented in hardware,

11



etc.) would be prohibitive for the embeddedmultiprocessor machines for applications such as

DSP that we are considering.

Interfaces between hardware and software aretypically implemented using memory-

mapped registers in the address space of the programmable processor (again a kind of shared

memory), and synchronization is achieved using flags that can be tested and set by the program

mable component, and the same can be done by an interface controller on the hardware side [12].

Under the model above, the benefits that our proposed synchronization optimization tech

niques offer become abundantly clear. Each synchronizationthat we eliminate directly results in

one less synchronization check, or a shared memory access. Forexample, where a processor

would have to check a flag in shared memory beforeexecutinga receive primitive,eliminating

that synchronization implies there is no longer need for such a check. This translates to one less

shared memory read. Such a benefit is especially significant for simplifying interfaces between a

programmable component and a hardwarecomponent: a send or a receive without the need for

synchronization implies thatthe interface can be implemented in anon-blocking fashion, greatly

simplifying the interface controller. As aresult, eliminating a synchronization directly results in

simpler hardware in this case.

Thus the metric for the optimizations we present in this paper is the total number of

accesses to shared memory that are needed for the purpose of synchronization in the final multi

processor implementation of the self-timed schedule. This metric will bedefined precisely in Sec

tions 6 and 7.

5. Analysis of Self-Timed Execution

In this section we develop ananalytical modelto studythe execution of a self-timed

schedule. Tomotivate this section, letusconsider the execution of the four-processor schedule in

Figure 3. Inter-processor communication is ignored in the self-timed execution inFigure 3(c). If

the timing estimates are accurate, the schedule execution settles into arepeating pattern spanning

two iterations of G, and the average estimated iteration period is 7 timeunits.

We would like to model such aself-timed execution and determine theaverage iteration

12



period, represent the sequential execution ofactors assigned toasingle processor, and represent

dependencies across iterations of the DFG.

5.1 Inter-processor Communication Modelling Graph

Proc 4

Proc 3

(aJDFG^"

(b) Schedule on four processors
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(c) Self-timed execution

Figure 3. Self-timed execution.
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<V= (V,Eipc)

We model a self-timed schedule using aDFG Gtpc = (V, Eipc) derived from the original

SDF graph G = (V, E) and the given self-timed schedule. The graph Gtpc, which we will refer

to as the inter-processor communication modelling graph, or IPC graph for short, models the

fact that actors of G assigned to the same processor execute sequentially, and it models con

straints due to inter-processor communication. For example, the self-timed schedule in Figure 3

can be modelled by the IPC graph in Figure 4. The IPC edges are shown using dashed arrows. The

rest of this subsection describes the construction of the IPC graph in detail.

The IPC graph has the same vertexset V as G, corresponding to the set of actors in G.

The self-timed schedule specifies the actors assigned to each processor, and the order in which

they execute. For example in Figure 3, processor 1 executes A and then E repeatedly. We model

this in Gipc bydrawing a cycle around the vertices corresponding toA and E, and placing a

delay on the edge from E to A. The delay-free edge from A to E represents the fact that the itth

execution of A precedes the &th execution of £, andthe edgefrom E to A with a delayrepre

sents the fact that the *th execution of A can occur only after the (it - 1) th execution of £ has

u u

Procir
a:

Proc 4

€^^-6---<|--©
Proc 3

D

Proc 2

Figure 4. The IPC graph for the schedule In Figure 3.

14



completed. Thus if actors vv v2,..., vn are assigned to the same processor inthat order, then Gipc

would have acycle ((vp v2), (v2, v3),..., (vn _v vn), (vfl, vx)) ,with delay ((vn,vx)) = 1.

If there are P processors in the schedule, then we have P such cycles corresponding to each pro

cessor.

As mentioned before, edges in G that cross processor boundaries after scheduling repre

sent inter-processor communication. We will call such edges IPC edges. Instead of explicitly

introducing special sendandreceive primitives at theends of the IPC edges, we will model these

operations as part of the sending and receiving actors themselves. For example, in Figure 3, data

produced by actor B is sent from processor 2 to processor 1; instead of inserting explicitcommu

nication primitives in the schedule, the send is modelled within actor B while the receive is mod

elled as part ofactor £. This is done so as not to clutter Gipc with extra communication actors.

Even if the actual implementationuses explicit sendandreceive actors, communicationcan still

bemodelled in theabove fashion because we are simply clustering thesource of an IPC edge with

the corresponding send actor and the sink with the receive actor.

For each IPC edge in G we add an IPC edge e in Gipc between the same actors. We also

set the delay on thisedgeequal to thedelay, delay (e), on thecorresponding edgein G. Thus,

weadd an IPC edge from £ to / in Gipc with asingle delay on it.The delay corresponds tothe

fact that execution of £ is allowed tolag the execution of / byone iteration. AnIPC edge repre

sents abuffer implemented in shared memory, and initial tokens ontheIPC edge are used to ini

tialize the shared buffer. In astraightforward self-timed implementation, each such IPC edge

wouldalso bea synchronization point between thetwocommunicating processors. Part of our

goal is to identify IPC edges that do notrequire sender synchronization orreceiver synchroniza

tion.

The IPC graph has the same semantics as a DFG, and its execution models the execution

of the corresponding self-timed schedule. The following definitions are useful to formally state

theconstraints represented by the IPC graph. Time is modelled as an integer that can beviewed as

a multiple of a base clock.
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Definition 1: The function start (v,k) € Z+ (non-negative integer) represents the time at which

the ^th execution of the actor v starts inthe self-timed schedule. The function end (v, k) € Z+

represents the time at which the £ th execution of the actor v ends, and v producesdatatokens at

its output edges. Since we areinterested in the k th execution of each actor for it = 1,2,3,..., we

set start (v, k) = 0 and end (v, k) = 0 for k £ 0 as the "initial conditions".

As per the semantics ofaDFG, each edge (v, v,) of Gipc represents the following data

dependency constraint:

start (v., *) £ end (vjt k- delay ((vjt v,.))), V(v;, v.) € Eipc, V* >delay (vjt v.) . (1)

This is becauseeach actorconsumes one token from eachof its input edges when it fires. Since

there are already delay (e) tokens on eachincomingedge e of actor v, another it - delay (e)

tokens must be producedon e before the fcth executionof v can begin. Thus the actor src (e)

must have completedits (k - delay (e))± execution before v canbeginits ^th execution. The

constraints in (1) are due both to IPC edges (representing synchronization betweenprocessors)

and to edges that represent serializationof actors assignedto the same processor.

To model execution times of actors we associate execution time t (v) with each vertex of

the IPC graph; t (v) assigns a positive integerexecution time to each actor v (again, the actual

execution time can be interpreted as t (v) cycles of a base clock), and t (v) includes the time

taken to execute all IPC operations (sends andreceives) that the actor v performs. Thus the IPC

graph is Gipc = (V, Eipc, t) . Now, wecan substitute

end (Vj, k) = start (v, k) +1 (v)

in (1) to obtain

start (v., k) Zstart (vjt k-delay ((vjt vt))) +1 (v.) for each edge (v;., v.) in Gipc. (2)

In the self-timed schedule, actors fire as soon as data is available at all their input edges.
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Such an "as soon as possible" (ASAP) firing pattern implies:

start (v., k) =max[ {s(vjt k-delay ((vjt v(.))) +1 (v.) |(v., v,) eEipc} ). (3)

The IPC graphcan also be looked upon as a Marked graph [24] or Reiter's computation

graph [28]. The same propertieshold for it, andwe state some of the relevantproperties here.

Some of the proofs are omitted.

Lemma 1: [28] Every cycle C in theIPCgraph hasa pathdelay of at leastone if andonlyif

the staticschedule it is constructed from is free ofdeadlock. That is, for eachcycle C,

Delay (C) >0.

Lemma 2: Thenumber of tokens in any cycle of theIPC graph is always conserved over all

possible valid firings of actors in thegraph, and is equal to thepathdelay of thatcycle.

Proof: Foreach cycle C in theIPCgraph, thenumber of tokens on C canonly change when

actors thatare onit fire, because actors noton C remove and place tokens only onedges thatare

notpartof C.If C= ((vvv2), (v2,v3),.... (vn_,, vn), (vn, vx)) , and any actor v^

(1 £ k£ n) fires, then in avalid firing exactly one token is moved from the edge (v^ _v vk) to

the edge (v^, vk+ x), where vQ s vn and vn +j =vx. This conserves the total number oftokens on

C.QJED.

Lemma 3: Theasymptotic iteration period for a strongly connected IPC graph G when actors

execute as soon as data is available at all inputs is given by [28]:

cycleCinGl£>e/o)>(C) J ' W
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Note that Delay (C) > 0 from Lemma 1.

The quotient in (4) is called thecyclemean of thecycle C. Thatis, thecyclemean of C

is thesum of theexecution times ofallvertices on C divided bythepath delay of C. Theentire

quantity on theRHS of (4)is called the"maximum cycle mean" of thestrongly connected IPC

graph G. If theIPCgraph contains more than one SCC, then different SCCs may have different

asymptotic iteration periods, depending ontheirindividual maximum cyclemeans. In sucha case,

the iterationperiod of the overallgraph (andhence theself-timed schedule) is the maximum over

the maximum cycle means ofall the SCCs ofG^c. This isbecause the execution ofthe schedule

is constrained bytheslowest component in the system. Henceforth, wewill use the following def

inition for the maximum cycle mean.

Definition 2: The maximum cycle mean of an IPC graph Gipc, denoted by Xmax, is the maxi

mal cycle mean over all strongly connected components ofGipc: That is,

_ max

max ~ cycle Cin GI Delay (C) t

Afundamental cycle in Gipc whose cycle mean is equal to Xmax is called acritical cycle of Gipc.

Thus the throughput of the system of processors executing a particular self-timed schedule is

equal to the corresponding -— value.
max

For example, inFigure 4, Gipc has one SCC, and its maximal cycle mean is7 time units.

Thiscorresponds to thecritical cycle ((£,£), (£,/), (/,G), (G, B)) :t(B) = t(E) =3

time units, t (I) = t (G) =4 time units, so thetotal time along this cycle is 14t.u., andthere are

two delays on this cycle. Thus the average iteration period for this schedule is 7 t.u. We have not

included IPCcosts in this calculation, butthese can beincluded in a straightforward manner by

adding thesend andreceive costs to thecorresponding actors performing these operations.

The maximum cycle mean can be calculated in time O(\V\ |£,pc|log2 (|V\ +D+T)) [17]

r I 'Mi
J visonC .
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by repeated applications of the Bellman-Ford shortest-path algorithm. Here, D and T are such

that delay (e) £D Ve € Eipc and t(v) <. T Vv € K. IfD and 7 are constants, the complexity

of determining A,mfljC is simply O(M\Eipc\\og2 (\V\)).

5.2 Execution Time Estimates

If we only have execution time estimates available instead of exact values, and we set

/ (v) in the previous section to be these estimated values, then we obtain the estimated iteration

period bycalculating \max. Henceforth we will assume that we know the estimated throughput

r— calculated by setting the t (v) values to theavailable timing estimates.
max

In all thetransformations that wepresent in the restof thepaper, wewill preserve theesti

mated throughput by preserving the maximum cycle mean ofGipc, with each / (v) set to the esti

mated execution timeof v. In the absence of more precise timing information, this is the bestwe

can hope to do.

5.3 Strongly Connected Components and Buffer Size Bounds

Indataflow semantics, the edges between actors represent infinite buffers. Accordingly,

the edges ofthe IPC graph are potentially buffers ofinfinite size. However, from Lemma 2,every

feedback edge (an edge that belongs toa strongly connected component, and hence to some

cycle) can only have a finite number oftokens atany time during the execution ofthe IPC graph.

We will call this constant the self-timed buffer bound ofthat edge, and for afeedback edge e we

will represent this bound by Bp (e). Lemma 2yields the following self-timed buffer bound:

Bjb (e) = min ( {Delay (C) \C isa cycle that contains e]) (5)

Feedforward edges have nosuch bound on buffer size; therefore for practical implementa

tions we need to impose a bound on the sizes ofthese edges. For example, Figure 5(a) shows an
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IPC graph where the IPC edge (A, B) could be unbounded when the execution time of A is less

thanthatof B, for example. In practice, we needto bound thebuffersize of suchanedge; we will

C0--0TI
D

(a)

Figure 5. An IPC graph witha feedforward edge: (a), original graph (b). imposing bounded
buffers.

denote such an "imposed" bound for afeedforward edge e by%(<?) .Since the effect ofplacing

such arestriction includes "artificially" constraining src (e) from getting more than Bff(e)

invocations ahead of snk(e), itseffectontheestimated throughput can be modelled by adding

the reverse edge dm (snk (e), src (e)), where m = Bff(e) - delay (e), to Gipc (grey edge in

Figure 5(b)). Since the addition ofthis edge introduces anew cycle in Gipc, ithas the potential to

reduce the estimated throughput; to prevent such areduction, Bjf(e) must be chosen to be large

enoughso thatthe maximum cyclemeanremains unchanged uponadding d (snk (e)>src(e)) .

Sizing buffersoptimally suchthat the maximum cyclemeanremains unchanged has been

studied by Kung, Lewisand Lo in [15], where theauthors propose an integer linear programming

formulation of the problem, with the number of constraints equal to thenumber of fundamental

cycles in the DFG (potentially an exponential numberof constraints).

Anefficient albeit suboptimal procedure to determine Bjf isto note that if

%(e)*[(JVw)/:wl
holds for each feedforward edge e, then themaximum cyclemean of theresulting graph does not

exceed X.
max'

Then, doing a binary search on%(e) for each feedforward edge, and computing the
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maximum cycle mean at each search step and ascertaining that it is less than X results in a

buffer assignment for the feedforward edges. Although this procedure isefficient, it isgreedy (and

suboptimal) because the order that the edges e are chosen is arbitrary and may effect the quality

of the final solution.

However, as we will see in Section 10, imposing such abound Bjr is anaive approach for
bounding buffer sizes and, in terms ofsynchronization costs, there isa better technique for bound

ing buffers. Thus, in our final algorithm, we will not in fact find itnecessary to use or compute

these bounds Bg.

6. Synchronization Model

6.1 Synchronization Protocols

We define two basic synchronization protocols for anIPCedge based onwhether or not

the length ofthe corresponding buffer is guaranteed to be bounded from the analysis presented in

the previous section. Given an IPC graph G, and an IPC edge e in G, if the length ofthe corre

sponding buffer is not bounded —that is, if e is a feedforward edge ofG —then we apply a syn

chronization protocol called unbounded buffer synchronization (UBS), which guarantees that

(a) an invocation of snk (e) neverattempts to readdata from the bufferunless the buffercontains

at least one token; and (b) an invocation of src (e) never attempts towrite data into the buffer

unless the number of tokens in the buffer is less than some pre-specified limit Bff(e) ,which is
the amount of memory allocated to the buffer as discussed in subsection 5.3.

On the other hand, ifthe topology of the IPC graph guarantees that the buffer length for e

is bounded by some value Bfl,(e) (the self-timed buffer bound of e), then we use asimpler pro

tocol, called bounded buffer synchronization (BBS), that only explicitly ensures (a) above.

Below, we outline the mechanics of the two synchronization protocols that we have defined.

BBS. In this mechanism, a write pointer wr (e) for eis maintained on the processor that
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executes src (e); a readpointer rd (e) for e is maintained on the processor that executes

snk(e) ; and a copy of wr (e) is maintained in someshared memory location sv (e) .The point

ers rd (e) and wr (e) are initialized to zeroand delay (e), respectively. Just aftereachexecu

tion of src (e), the new data value produced onto e is written into the shared memory buffer for

e at offset wr (e); wr (e) is updatedby the following operation —

wr (e) <- (wr (e) +1) mod Bp, (e); and sv(e) isupdated tocontain the new value of wr (e).

Justbeforeeachexecutionof snk(e), the value contained m sv(e) is repeatedly examineduntil

it is found to be not equalto rd(e); then the data valueresidingat offset rd (e) of the shared

memory buffer for e is read; and rd (e) is updatedby the operation

rd(e) <- (rd(e) +1) modBfi,(e) .

UBS. This mechanism alsouses the read/write pointers rd (e) and wr (e), and these are

initializedthe same way; however,rather thanmaintaining a copy of wr (e) in the shared mem

ory location .sv (e), we maintain a count (initialized to delay (e)) of the number of unread

tokens thatcurrently reside in the buffer. Just after src (e) executes, sv (e) is repeatedly exam

ined until itsvalue is found tobe less than Bg(e); then the new data value produced onto e is

written into the sharedmemory buffer for e at offset wr (e); wr (e) is updated as in BBS

(except that the new value is not written to shared memory); and the count in sv (e) is incre

mented. Just before each execution of snk(e), the value contained in sv (e) is repeatedly exam

ined until it is found to be nonzero; then the data valueresiding at offset rd (e) of the shared

memory buffer for e is read; the count in sv (e) is decremented; and rd (e) is updated as in

BBS.

Note that we areassumingthat thereis enoughshared memory to hold a separate buffer of

size Bff(e) for each feedforward IPC edge e of Gipc, and aseparate buffer of size B^ (e) for

each feedback IPC edge e. When this assumption does not hold, smaller bounds on some of the

buffers must be imposed, possibly for feedback edges as well as for feedforward edges, andin

general, this may require some sacrifice in estimated throughput. Note that whenever a buffer
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bound smaller than Bp(e) is imposed on a feedback edge e, then a protocol identical toUBS

must be used. The problem of optimally choosing which edges should be subject to stricter buffer

bounds when there is a shortage of shared memory, and the selection of these stricter bounds is an

interesting area for further investigation.

6.2 The Synchronization Graph gs = (v,e5)

An IPC edge in G(pc represents two functions: 1) reading and writing ofdata values into

the buffer represented by that edge; and 2) synchronization between the sender and the receiver,

which could beimplemented with theUBS protocol orwith theBBS protocol. We find it useful to

differentiate these two functions bycreating another graph called thesynchronization graph

(Gs), in which edges between actors assigned todifferent processors, called synchronization

edges, represent synchronization constraints only. Recall from Subsection 5.1 that anIPC edge

(Vj>v/) ofGipc represents the synchronization constraint:

start (v,., k) 7> end (v., k- delay ((vjt v{))) \fk >delay (vjt v.). (6)

Thus, before we perform any optimization on synchronizations, the synchronization graph
is identical to the IPC graph, because every IPC edge represents asynchronization point. How
ever, we will modify the synchronization graph incertain 'Valid" ways (which will be defined

shortly) by adding some edges and deleting some others. Thus, at the end of our optimizations,
the synchronization graph may look very different from the IPC graph: it is ofthe form

(Y» (Eipc - F+F')). where F is the set ofedges deleted from the IPC graph and Ff is the set of

edges added to it. At this point the IPC edges in Gipc represent buffer activity, and must be imple
mented as buffers in shared memory, whereas the synchronization edges represent synchroniza
tion constraints, and are implemented using the UBS and BBS protocols introduced in the
previous section. If there is an IPC edge as well as asynchronization edge between the same pair
of actors, then the synchronization protocol is executed before the buffers corresponding to the
IPC edge are accessed so as to ensure sender-receiver synchronization. On the other hand, ifthere
is an IPC edge between two actors in the IPC graph, but there is no synchronization edge between
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the two, then no synchronization needs to be done before accessing the shared buffer. Ifthere isa
synchronization edge between two actors but no IPC edge, then no shared buffer is allocated

between the two actors; only the corresponding synchronization protocol is invoked.

Thus, initially, the synchronization graph Gs is identical to Gipc. Then we perform trans
formations on the synchronization graph inorder toreduce synchronization costs. The cost mea

sure and the transformations will be discussed inthe following sections ofthis paper. All ofthese

transformations must respect the synchronization constraints implied by Gipc. Ifwe ensure this,
then we only need toimplement the synchronization edges ofthe optimized synchronization

graph. The following theorem is useful toformalize the concept ofwhen the synchronization con

straints represented by one synchronization graph Gx imply the synchronization constraints of

another graph G2. This theorem provides a useful constraint for synchronization optimization,

and it underlies the validity of the main techniques that we will present in this paper.

Theorem 1: The synchronization constraints in asynchronization graph Gx = (V,EX) imply

the synchronization constraints ofthe synchronization graph G2 = (V, E2) if the following con

dition holds: Ve € E2> e € Ex, pG (src (e), snk (e)) £ delay (e), that is, iffor each edge £ that

ispresent in G2 but notin Gx there isa minimum delay path from src (e) to snk (e) in Gx that

has total delay of at most delay (e) (number of delays on edge e).

(Note that since the vertex sets for the two graphs are identical, it is meaningful to refer to src (e)

and snk (e) as being vertices of Gx even though e € £2,e £ Fx.)

First we prove the following lemma.

Lemma4: If there is a path p = (ev e2> e3,..., en) in Gx, then

start (snk (en), k) £ end (src (ex)tk- Delay (p)).

ProofofLemma 4:

The following constraints hold along such a path p (as per (6))
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start (snk (ex), k) £ end (src (ex)>k- delay (ex)) . (7)

Similarly,

start(snk (e2), k) ^ end (src (e2),k- delay (e2)) .

Noting that src (e2) is the same as snk (ex), we get

start (snk (e2), k) ^ end (snk (ex),k- delay (e2)).

Causality implies end(vfk) £ start (v, k), so we get

start (snk (e2), k) £ tfarf (snk(ex), #- delay (e2)) . (8)

Substituting (7) in (8),

start (snk (e2), k) >end (src (ex), k- delay (e2) - delay (ex)).

Continuing along p in this manner, it can easily beverified that

start (snk (en),k) Zend (src (ex),k-delay (en) -delay(en_x) -...-delay (ex));
that is,

start((snk(en),k) Zend(src(ex)>k-Delay(p))) .QED.

ProofofTheorem 1: If e€ £2, ee Ex, then the synchronization constraint due to the edge e

holds in both graphs. But for each e€ £2, e$ Ex we need to show that the constraint due to e:

start (snk (e),k) >end (src (e)tk-delay (e)) (9)

holds in Gx provided pGj (src (e)tsnk(s))£ delay (e), which implies there is at least one path

P = (ev ey eV —*et) from src (e) to snk (e) in Gx (src(ex) = src(e) and

snk (en) = snk (e)) such that Delay (p) <> delay (e).

From Lemma 4,existence of such apath p implies

start ( (snk (en)tk) Zend (src (ex)>k- Delay (p))) .
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that is,

start((snk(e)tk)Zend(src(e), *-Delay(/>))) . (10)

UDelay(p) ^delay(e), then end (src (e),k- Delay (p)) Zend(src (e),k- delay (e)).
Substituting this in (10) we get

start((snk(e), k) £end(src(e), ifc - delay (e))) .

The above relation is identical to (9), andthis proves theTheorem. QED.

The above theoremmotivates the following definition.

Definition 3: If Gx = (V,EX) and G2 = (V,£2) are synchronization graphs with the same

vertex-set, we say that Gx preserves G2 if Ve € £2, e £ Ex, we have

pG (src (e), snk (e)) £ delay (e).

Thus, Theorem 1states that the synchronization constraints of (V,EX) imply the synchroniza

tion constraints of (V,£2) if (V,EX) preserves (V,£2) .

Observation 1: Given an IPC graph Gipc, and asynchronization graph Gs such that Gs pre

serves Gipc »suppose that we implement the synchronizations corresponding tothe synchroniza

tion edges of Gs. Then, the iterationperiodof theresultingsystemis determinedby the maximum

cycle mean of Gs. This is because the synchronizationedges alone determine the interaction

between processors; an IPC edge without synchronization does not constrain the execution of the

corresponding processors in any way.

6.3 Computing Buffer Bounds from gs and Gipc

After all the optimizations are complete we have a final synchronization graph

Gs = (V, (Eipc -F +F')) that preserves Gipc. Since the synchronization edges in Gs are the

ones that are finally implemented, it is advantageous tocalculate the self-timed buffer bound B^
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as a final step after all the transformations on Gs are complete, instead ofusing Gipc itself to cal

culate thesebounds. This is because addition of the edges F* may reduce these bufferbounds. It

is easily verified that removal of theedges (F) cannot change thebuffer bounds in (5) aslong as

the synchronizations in Gipc are preserved. Thus, in the interest of obtaining minimum possible

shared buffer sizes, we compute thebounds using theoptimized synchronization graph. The fol

lowing theorem tells ushowtocompute the self-timed buffer bounds from Gs.

Theorem 2: If Gs preserves Gipc and the synchronization edges in Gs are implemented, then

for each feedback IPC edge e in Gipc, the self-timed buffer bound ofe (Bp (e)) — an upper

bound onthenumber of data tokens that can ever bepresent on e — is given by:

Bfb (e) = Pg, (snk (*)»src (*) ) +delay (e) .

Proof: By Lemma 4, if there is apath p from snk (e) to src (e) in Gs, then

start (src (e)tk)Z end(snk (e),k- Delay (p)) .

Taking p to be an arbitrary minimum-delay path from snk (e) to src (e) in Gs, we get

start (src (e),k) Zend (snk (e),k-pGt(snk(e),src(e))) .

That is, src (e) cannot be more that pG^ (snk (e), src (e)) iterations "ahead" of snk (e) .Thus

there can never be more that pG^ (snk (e), src (e)) tokens more than the initial number of

tokens one — delay (e). Since the initial number of tokens on e was delay (e), the size of the

buffer corresponding to e is bounded above by Bp (e) = pG (snk (e), src (e)) +delay (e) .

QED.

The quantities pG^ (snk (e), src (e)) can be computed using Dijkstra's algorithm [7] to

solve the all-pairs shortest path problem on the synchronization graph in time o( |V|3J .Thus the
problem ofdetermining the By, (e) values has complexity at most cubic inthe size of the number
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of actors in the schedule.

7. Problem Statement

Werefer to each access of theshared memory "synchronization variable" sv (e) by

src (e) and snk (e) as a synchronization access1 to shared memory. Ifsynchronization for e is

implemented usingUBS, thenwe see that on average, 4 synchronization accesses are required

for e in each iteration period, whileBBS implies 2 synchronization accesses per iteration period.

We define the synchronization cost ofa synchronization graph Gs to be the average number of

synchronization accesses required per iteration period. Thus, if n* denotes the number of syn

chronization edges in Gs that are feedforward edges, and nfb denotes the number ofsynchroniza

tion edges that are feedback edges, then the synchronization cost of Gs can be expressed as

(4?z~+ 2nfb) . In theremainder of this paper we will develop techniques that apply the results

and the analysis framework developed in Sections 4-6 to minimize the synchronization cost of a

self-timed implementation of a DFG withoutsacrificing the integrity of any inter-processor data

transfer or reducing the estimated throughput.

We will explore three mechanisms for reducing synchronization accesses. The first is the

detection and removal of redundant synchronization edges, which are synchronization edges

whose respective synchronization functions are subsumed by other synchronization edges, and

thus need not be implemented explicitly. The second mechanism is the insertion of new synchro

nization edges in such a way that the numberof original synchronization edges that become

redundant exceeds the number of new edges added. This mechanism, which we call resynchroni-

1.Note thatin our measure of thenumber of shared memory accesses required for synchronization, we ne
glect the accesses to shared memory that areperformed while thesinkactor is waiting for therequired data
to become available, or the source actor is waitingfor an "empty slot" in the buffer.The number of accesses
required to performthese"busy-wait"or "spin-lock" operations is dependent on theexactrelativeexecution
timesof the actor invocations. Since in our problem context, this information is not generally available tous.
we use the best case number of accesses — the number of shared memory accesses required for synchroni
zation assuming that IPC data on an edge is always produced before the corresponding sink invocation at
tempts to execute — as an approximation.
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zation, is explored in sections 9 and in the appendix. Finally, in Section 10, we examine the utility

of adding additional synchronization edges to convert a synchronizationgraph that is not strongly

connected into a strongly connected graph. Such a conversion allows us to implement all synchro

nization edges with BBS. We address optimization criteria in performing such a conversion, and

we will show that the extra synchronization accessesrequired for such a conversion are always (at

least) compensated by the number of synchronization accesses that are saved (by the UBSs that

get converted to BBSs).

8. Removing Redundant Synchronizations

The first technique that we explore for reducing synchronization overhead is the removal

of redundant synchronization edges of the synchronization graph. Formally, a synchronization

edge is redundant in a synchronization graph G if its removal yields a synchronization graph

that preserves G. Equivalently, from definition 3, a synchronization edge e is redundant in the

synchronization graph G if there is a path p * (e) in G directed from src (e) to snk (e) such

that Delay (p) < delay (e) .

Thus, the synchronization function associated with a redundant synchronization edge

"comes for free" as a by product of othersynchronizations. Figure 6 shows an example of a

redundant synchronization edge. Here, beforeexecuting actor D, the processor that executes

Figure6. An example of a redundant synchronization edge.
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{A, 5, C, D] doesnot needto synchronize with theprocessor thatexecutes {£, F, G,H}

because due to the synchronization edge xx, the corresponding invocation of F isguaranteed to

complete before each invocation ofD is begun. Thus, x2 isredundant inFigure 6. Itiseasily ver

ified that the path p = ((F, G), (G, H), xp (£,C), (C, D)) is directed from src (x2) to

m*(x2), and has a path delay (zero) that isequal to the delay on x2.

In this section we develop anefficient algorithm to optimally remove redundant synchro

nization edges from a synchronization graph.

8.1 The Independence of Redundant Synchronizations

Thefollowing theorem establishes that theorder in which weremove redundant synchro

nization edges is not important, andthus, weneed notimplement synchronization for any of the

redundant synchronization edges in a synchronization graph.

Theorem 3: Suppose that Gs = (V,E) isasynchronization graph, ex and e2 are distinct

redundant synchronization edges in Gs, and Gs =(V, E- {ex}j. Then e2 is redundant in Gs.

Proof: Since e2 isredundant in Gs, there isapath p* (e2) in G5 directed from src (e2) to

snk(e2) such that

Delay (p) <> delay (e2) . (11)

Similarly, there isapath p'* (ex) , contained in both Gs and Gs, that isdirected from src (ex)

to snk (ex), andthatsatisfies

Delay (p')<L delay (ex). (12)
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Now, if p does not contain ex, then p exists in Gs, and weare done. Otherwise, let

p/ = (xv x2,..., xn) ;observe that p is of the form

P = (vi»v2, ~»yk-i>evyk>yk+v —»ym) ;anddefine

p"*(yvy2>--->yk-vxvfy--'x#y*yk+v"-*ym) •

Clearly, />" is apath from src (e2) to snk (e2) in G^. Also,

Delay (p,r) =£<fe/0y(jt.) +J^delay(yi)

= Delay (p') + (Delay (p) - delay (ex))

ZDelay (p) (from (12))

<>delay (e2) (from (11)). Q£D.

Theorem 3 tells usthat wecan avoid implementing synchronization for allredundant syn

chronization edges since the"redundancies" are notinterdependent. Thus, an optimal removal of

redundant synchronizations can be obtained by applying a straightforward algorithm thatsucces

sively tests thesynchronization edges for redundancy in some arbitrary sequence, and since short

estpath computation is atractable problem, wecan expect such asolution tobepractical.

8.2 An Algorithm for Removing Redundant Synchronizations

Figure 7 presents an efficient algorithm, based on the ideas presented in the previous sub

section, for optimal removal of redundant synchronization edges. In this algorithm, we first com

pute the path delay ofaminimum-delay path from x toy for each ordered pair ofvertices (x, y);

here, we assign apath delay of °° whenever there isnopath from x toy. This computation is

equivalent to solving an instance of the well known allpoints shortest paths problem [7]. Then,

we examine each synchronization edge e—in some arbitrary sequence — and determine whether

or not there isapath from src (e) to snk (e) that does not contain e, and that has apath delay

thatdoesnot exceed delay (e) . Now, at first, it may notbe obvious thatthischeck for redun-
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dancy is equivalent tothecheck that is performed bythe(/"statement inRemoveRedundantSynchs:

onemightask"Whatif eQ satisfies theinequality in the//statement, butall of theminimum-

delay paths from snk (eQ) to snk (e) contain eV To see that the //statement is indeed equiva

lent to checking theredundancy of e, observe that if p is apath from src(e) to snk (e) that

contains morethan oneedgeand that contains e, then p mustcontain acycle c suchthat c does

notcontain e; and since all cycles (from Lemma 1) must have positive path delay, the path delay

of such apath p must exceed delay (e). Thus, if eQ satisfies the inequality inthe //statement of

RemoveRedundantSynchs, and p* is apath from snk (eQ) to snk (e) such that

Delay (p*) = p(snk (eQ), snk (e)) , then p* cannot contain e.

Function RemoveRedundantSynchs
Input: Asynchronization graph Gs = (V, E) such that / £ E is the set ofsynchro
nization edges.

Output: The synchronization graph G* = (V, (E-Er)), where Er is the set of
redundant synchronization edges in Gs.

1. Compute p (x, y) for eachordered pair of vertices in Gs.
2. Initialize: Er = 0.

3. For each e e /

For each output edge e0 of src (e) except for e
If delay (e0) + p (snk (e0), snk (e)) £ delay (e)
Then

Er = Eru{e]

Break I* exit the innermost enclosing For loop V
End If

End For

End For

4. Return (V, (E-Er)).

Figure 7. An algorithm thatoptimally removes redundant synchronization edges.
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From the definition of aredundant synchronization edge, it is easilyverified thatthe

removal of aredundant synchronization edge does notalter any of theminimum-delay path val

ues (path delays). That is, given aredundant synchronization edge er in Gs, and two arbitrary

vertices*,y€ V,ifweletG5 =\V>\F- Ur] JJ,thenp^ (xty) =pG(x,y) .Thus,noneof

theminimum-delay path values computed in Step 1need to berecalculated after removing a

redundant synchronization edge in Step 3.

Observe that the complexity ofFunction RemoveRedundantSynchs isdominated by Step 1

and Step 3. Since all edge delays are non-negative, wecan repeatedly apply Dijkstra's algorithm

(once for each vertex) to carry out Step 1in 0\\V\ J time; amodification ofDijkstra's algorithm

can be used to reduce the complexity of Step 1to of |V|2log2(|V|) +M|£|J [7]. In Step 3, |£| is
an upperbound for the number of synchronization edges,andin the worst case,each vertex has

all members of V inits set of successors. Thus, the time complexity of Step 3 is O(|V||£|), and

if we use themodification to Dijkstra's algorithm mentioned above for Step 1,then thetime com

plexity of RemoveRedundantSynchs is

o[\V\2log2(\V\) +|V1|£|+|V1|F|J =o(|Vl2log2(|V|) +|V1|F|J .

8.3 Comparison with Shaffer's Approach

In [30], Shaffer presents an algorithm that minimizes the number of directed synchroniza

tions in the self-timed execution of adataflow graph under the (implicit) assumption that the exe

cution of successive iterations of the dataflow graph are not allowed to overlap. In Shaffer's

technique, aconstruction identical toour synchronization graph isused with the exception that

there is no feedback edge that connects the last actor executed onaprocessor to the first actor exe

cuted on the same processor. Also, inShaffer's construction, edges that have delay are ignored

since only dependences within the same graph iteration are significant. Thus, Shaffer's synchroni
zation graph canbe assumed to be acyclic.

In the context of Shaffer's problem, asynchronization edge isredundant if and only if
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there is apath from the source of the edge tothe sink — here weonly need "reachability" infor

mation; no notion of path delay is required. As in the context of our problem, theremoval of a

redundant synchronization edge inShaffer's synchronization graph cannot negate the redundancy

of another redundant synchronization edge, and consequently, the order inwhich synchronization

edges are tested for redundancy isnot significant. Shaffer's algorithm begins by computing a

boolean value r (xt y) for each ordered pair of vertices (x, y) that is setto true if and only if

there is apath directed from x to y. Then, the algorithm proceeds inamanner equivalent to Step

3 ofRemoveRedundantSynchs, with the exception that the predicate of the //statement is changed

from (delay (e0) +p(snk (eQ), snk (e)) <> delay (e)) to (r (snk (e0), snk (e))). Thus,

RemoveRedundantSynchs canbe viewed as adirect extension of Shaffer's algorithm to handle

pureself-timed, iterative executionof a DFG; Shaffer's algorithm accounts for self-timedexecu

tion onlywithin agraph iteration, and in general, it can beapplied toiterative dataflow programs

only if all processors are forced to synchronize between graph iterations.

Shaffer states that the complexity of his algorithm is o\\V\ J; however, the complexity
can be improved (at least for sparse graphs) by using amore efficient technique to compute the

function r. The function r in Shaffer's method can becomputed in O (|V||E|) time [7], and

usingthis method,Shaffer's algorithm achieves a timecomplexity of O (\V\\E\) . Thus, in

exchange for itsdependence onaless flexible execution model, Shaffer's solution, with appropri

ate choice of r, attains a slightly more favorable asymptotic complexity than our RemoveRedun

dantSynchs.

8.4 An Example

In this subsection, we illustrate the benefits of removing redundant synchronizations

through a practical example. Figure 8(a) shows anabstraction of a three channel,multi-resolution

quadrature mirror (QMF) filter bank, which has applications in signal compression [34]. This rep

resentation is based on thegeneral (not homogeneous) SDF model, and accordingly, each edge is

annotated with the number of tokens produced and consumed by its source andsink actors. For
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Figure 8. (a). Amulti-resolution QMF filter bank used to illustrate the benefits of removing
redundant synchronizations, (b). The precedence graph for (a), (c). Aself-timed, two-pro
cessor, parallel schedule for (a), (d). The initial synchronization graph for (c).
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clarity, theactors are drawn as boxes, rather than circles. Actors A and F represent thesub

systems that, respectively, supply and consume data to/from the filter bank system; B and C each

represents a parallel combination of decimating high and low pass FIR analysis filters; D and E

represent thecorresponding pairs of interpolating synthesis filters. The amount of delay onthe

edge directed from B to E is equal to the sum of the filter ordersof C and D. Formore details on

the applicationrepresented by Figure 8(a),we refer the reader to [34].

To construct a periodic, parallel schedule we must firstdetermine the number of times

q (N) that each actor N must beinvoked inthe periodic schedule. Systematic techniques to

compute these values are presented in [18]. Next, wemust determine theprecedence relationships

between the actor invocations. In determining theexact precedence relationships, we must take

into account the dependence of agiven filter invocation on not only the invocation that produces

the token that is"consumed" by the filter, but also on the invocations that produce the n preced

ingtokens, where n is the order of the filter. Such dependence can easily beevaluated with an

additional dataflow parameter oneach actor input that specifies the number ofpast tokens that are

accessed [27]l. Using this information, together with the invocation counts specified by q, we

obtain the precedence relationships specified by thegraph of Figure 8(b), in whichthe i th invoca

tion of actor N is labeled Nt, and each edge e specifies that invocation snk (e) requires data

produced by invocation src(e) delay (e) iteration periods after theiteration period in which the

data is produced.

A self-timed schedule for Figure 8(b) thatcan be obtained from Hu's well-known list

scheduling method [11] is specified inFigure 8(c), and the synchronization graph that corre

sponds to the IPC graph of Figure 8(b) and Figure 8(c) is shown in Figure 8(d). All of the dashed

edges in Figure 8(d) are synchronization edges. If we apply Shaffer's method, whichconsiders

onlythose synchronization edges that do nothave delay, wecan eliminate the need for explicit

1. It should benoted that some SDF-based design environments choose toforego parallelization across mul
tiple invocations of an actor in favor of simplified code generation and scheduling. For example, in the
GRAPE system, misrestriction has been justified onthe grounds that it simplifies inter-processor data man
agement, reduces code duplication, and allows thederivation of efficient scheduling algorithms that operate
directly ongeneral SDF graphs without requiring the use of the acyclic precedence graph (APG) [3].
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synchronization along only one of the 8 synchronization edges — edge (Av B2). In contrast, if

weapply RemoveRedundantSynchs, wecan detect the redundancy of (Av B2) as well as four

additional redundant synchronization edges — (AVBX), (AA%BX) , (B2,EX) ,and (BVE2) .

Thus, RemoveRedundantSynchs reduces the number of synchronizations from 8 down to 3 — a

reduction of 62%. Figure 9 shows the synchronization graph of Figure 8 (d) afterall redundant

synchronization edges are removed. It is easily verified that thesynchronization edges that remain

in thisgraph are not redundant; explicitsynchronizations needonly be implemented for these

edges.

9. Resynchronization

It is sometimes possible toreduce the total number of irredundant synchronization edges

by adding new synchronization edges to asynchronization graph. We refer to theprocess of add

ingone ormore new synchronization edges and removing theredundant edges that result as

resynchronization (defined more precisely below). Figure 10(a) illustrates this concept. Here, the

dashed edges represent synchronization edges. Observe that if we insert the newsynchronization

Hg> •© +

Figure 9. The synchronization graph of Figure 8(d) after all redundant synchroni
zation edges are removed.
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edge dQ (C, H) , then two of theoriginal synchronization edges — (B, G) and (£, /) —

becomeredundant. Sinceredundant synchronization edges can beremoved from the synchroniza

tiongraph to yield an equivalent synchronization graph, we see that theneteffectof adding the

synchronization edge dQ (C,H) is toreduce the number of synchronization edges that need tobe

implemented by 1. InFigure 10(b), we show thesynchronization graph that results from inserting

theresynchronization edge dQ(C, H) into Figure 10(a), and then removing theredundant syn

chronization edges that result.

Definition 4 gives a formal definition of resynchronization that we willuse throughout the

remainder of this paper. This considers resynchronization only"across" feedforward edges.

Resynchronization thatincludes inserting edges intothe SCCs is also possible; however, for our

objectives, it must be verified thateach new synchronization edgeintroduced in anSCCdoes not

decrease the estimated throughput. To avoid this complication, which requires acheckof signifi

cant complexity (O (|V||£|log2 (|V|)) ,where (V, E) is the modified synchronization graph —-

thisis usingthe Bellman Ford algorithm described in [17])/or each candidate resynchronization

edge, we focus only on feedforward resynchronization in this paper.

©••-^--KD^irCD

(a) (b)

Figure 10. An example of resynchronization.
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Definition 4: Given a synchronization graph G = (V, E) consisting of feedforward edges

F s {ev ev ..., en] , a resynchronization of G isa finite setF'b {e^, e2',..., em'} ofedges

that are not necessarilycontained in E, but whosesource and sink vertices are in V, such that (a).

ex\ e2\ ..., em' are feedforward edges inthe DFG G* s (V, ((E - F) +F')); and (b). G* pre

serves G —that is, pG* (src (e.), snk (et)) £ delay (e.) for all /' € {1,2,..., n} .

If we let G denote the graphin Figure 10,then the set of feedforward edgesis

F = { (5, G) ,(£,/)}; F' = {dQ (C, H) } isaresynchronization of G; Figure 10(b) shows

theDFGG* = (V, ((E-F) +F')); and from Figure 10(b), it iseasily verified that F, F', and

G* satisfy conditions (a) and (b) of Definition 4.

We refer to the problem of finding a resynchronization with the fewest number of ele

ments as the resynchronization problem. In the appendix, weformally show that the resynchro

nization problem is NP-hard, and in this section, we explain the intuition behindthis result. To

establish the NP-hardness of theresynchronization problem, weexamine a special caseof the

problem that occurs when there are exactly two SCCs, which wecallthe pairwise resynchroni

zation problem, and we derive a polynomial-time reduction from the classic set covering prob

lem [7], a well-known NP-hard problem, to the pairwise resynchronization problem. In theset

covering problem, one is given a finite set X and a family T of subsets of X, and asked to find a

minimal (fewest number ofmembers) subfamily Ts £ T such that KJ t = X. Asubfamily of T
t€Tt

is said tocover X if each member ofX iscontained in some member of the subfamily. Thus, the

set covering problem is the problem of finding a minimalcover.

Although the correspondence that we establish between the resynchronization problem

and setcovering shows that the resynchronization problem probably cannot be attacked optimally

with a polynomial-time algorithm, we will show that the correspondence allows any heuristic for

setcovering to beadapted easily into a heuristic for the pairwise resynchronization problem, and
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applying such a heuristic to eachpair of SCCs in a general synchronization graphyields a heuris

tic for the general (notjust pairwise) resynchronization problem. This is fortunate since the set

covering problem has been studied in great depth, and efficient heuristic methods have been

devised [7].

The following definition facilitates the developments of this section and the appendix.

Definition 5: Given a synchronization graph G, let (xx, x2) and (yx, y2) be two ordered pairs

ofvertices inG. We say that (yvy2) subsumes (xvx2) in G if p(xvyx) = p(y2,jt2) = 0.

Wemay omit the qualification "in G" if thegraphin question is understood from context.

Intuitively, every ordered pair ofvertices subsumes itself, and if (xx, x2) and (yx, y2)

are distinct, then (yvy2) subsumes (xvx2) ifa zero-delay synchronization edge directed from

yx toy2 would make a synchronization edge (regardless ofits delay) directed from xx tox2

redundant.

The following fact is easily verified from Definitions4 and 5.

Fact 1: Suppose that G is a synchronization graph thatcontains exactly twoSCCs, F is the set

of feedforwardedges in G, and F/ is a resynchronization of G. Then for each e£ F, there exists

e' € F' such that (src (ef), snk(e')) subsumes (src (e)tsnk(e)) in G.

An intuitive correspondence between thepairwise resynchronization problem andtheset

covering problem canbe derived from Fact1.Suppose that G is a synchronization graph with

exactly two SCCs Cx and C2 such that each feedforward edge is directed from amember ofCx

to a member of C2. We startbyviewing thesetF offeedforward edges in G as thefinite set that

we wish tocover, and with each member p of { (x, y) \(xGCvyGC2)} , we associate the

subsetof F defined by %(p) s {e € F\ (p subsumes (src (e), snk (e)) ) } . Thus, %(p) is the

set of feedforward edges of G whose corresponding synchronizations can be eliminatedif we
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implement a zero-delay synchronization edge directed from the first vertex of the ordered pair p

tothe second vertex of p. Clearly then, {ex\ e2\ ..., eR'} is aresynchronization if and only if

each e € F iscontained inat least one %((src (e{), snk (e{))) — that is, if and only if

{%((src (e{), snk (e{) ))|l£i£/i} covers F. Thus, solving the pairwise resynchronization

problem for G is equivalent to finding aminimal cover for F giventhe family of subsets

{%(x,y)\(xecvyec2)}.

Figure 11 helps to illustrate this intuition and our method (defined formally inthe appen

dix) for converting an instance of the set covering problem toan instance of pairwise resynchroni

zation. Suppose that we are given the set X = {xv x2, xv xA] , and the family ofsubsets

T = {tvt2,tz} ,where/j = {*p*3} , t2 = {xvx2} ,andf3 = {*2,*4} .To construct an

instance of the pairwise resynchronization problem, we first create two vertices and an edge

directed between these vertices for each member of X; welabel each of the edges created in this

step with the corresponding member of X. Then for each t € T, we create twovertices vsrc (t)

and vsnk (t) . Next, for each relation x.Gt. (there are six such relations in this example), wecre

ate two zero-delay edges — one directed from the source of the edge corresponding x.to

vsrc (tj), and another directed from vsnk (tj) to the sink of the edge corresponding to x-. This

last step has the effect ofmaking each pair (vsrc (t.), vsnk (t.)) preserve exactly those edges

that correspond to members of ti; in other words, after this construction,

X((vsrc (tt), vsnk (t.))) = tf, for each /. Finally, for each edge created in the previous step, we

create acorresponding feedback edge oriented inthe opposite direction, and having aunit delay1.

Figure 11 shows the graph that results from this construction process. Observe that the
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graph contains two SCCs —({src (*,)} u {vsrc (f.)} 1and ( {snk (*,)} u {vsnk (r,)} 1

vsrc(t,) vsrcftg)

vsnk(tO vsnk(t2) vsnk(t3)

Figure 11. (a). An instance of the pairwise resynchronization problem that is
derived from an instance of the set covering problem.

(b). The DFG that results from a solution to this instance.

1.Ingeneral, these edges willnotbesufficient toensure that theresulting graph has exactly twoSCCs. Inthe
appendix, we will showthatforourreduction of setcovering to pairwise resynchronization, we canassume
without loss of generality that thefamily T is such that theconstruction outlined here guarantees agraph with
exactly two SCCs.

42



— and that theset of feedforward edges is thesetof edges that correspond to members of X.

Now, recall that amajor correspondence between the given instance of setcovering and the

instance of pairwise resynchronization defined by Figure 11(a) is that

X((vsrc (t.), vsnk (t.))) = t., for each /. Thus, if wecan find aminimal resynchronization of

Figure 11(a) such that each edge in this resynchronization is directed from some vsrc (tk) to the

corresponding vsnk (tk) , then the associated f '̂s form aminimum cover of X. For example, it is

easy, albeit tedious, to verifythat theresynchronization illustrated in Figure 11(b),

{dQ (vsrc (tx), vsnk (tx) ),dQ( vsrc (r3), vsnk (t3))} ,is aminimal resynchronization ofFigure

11(a), and from this, we can conclude that {tv f3} is aminimal cover for X. From inspection of

the given sets X and T, it is easily verified that this conclusion is correct.

This exampleillustrates how aninstance of pairwise resynchronization canbe constructed

(in polynomial time) from an instance of set covering, and how asolution tothis instance of pair-

wiseresynchronization can easily be converted intoasolution of thesetcovering instance. Our

proofof the NP-hardness of pairwise resynchronization, presented in theappendix, is a formal

ized generalization of this example. We summarize withthe following theorem.

Theorem 4: The pairwise resynchronization problem is NP-hard, and thus, theresynchroniza

tion problem is NP-hard.

Proof: A formal proof is given in the appendix.

Two natural questions that arise when studying theexample of Figure 11 are "Howdo we

know that aminimal resynchronization exists such that each edge is directed from a vsrc (tk) to

thecorresponding vsnk (tk) ?"and "If such aminimal resynchronization exists, howcan we

obtain oneefficiently from an arbitrary minimal resynchronization?" Intheappendix, we will

show that such aminimal synchronization always exists, and that we can always derive (in poly-
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nomial time) such a minimal resynchronization from an arbitrary minimal synchronization. The

key here is that if e' is a member of a minimal resynchronization R, then there is always a mem

ber p* = (x*t y*) of { (vsrc (t.), vsnk (r.))} such that %(snk (<?'), snk (e')) £%(/>*) , and

thus, replacing e' with dQ (x*, y*) in R yields aminimal resynchronization.

We have pointed out that the correspondencewe have established between set-covering

and pairwise resynchronization allows us to adapt any heuristic for set-covering into a heuristic

for pairwiseresynchronization. Furthermore applying such a heuristic for pairwise resynchroniza

tion to each pair of SCCs in a general synchronization graph gives a heuristic for the general

resynchronization problem. Figure 12 below shows how any algorithm Cover that solves the set

covering problem can be applied to derive a heuristic algorithm for resynchronization.

10. Making the Synchronization Graph Strongly Connected

In Section 6, we defined two different synchronization protocols — bounded buffer syn

chronization (BBS), which has a costof 2 synchronization accesses per iteration period, andcan

be used whenever the associated edge is contained ina strongly connected component of the syn

chronization graph; and unbounded buffer synchronization (UBS), which has a cost of4 synchro

nization accesses per iteration period. Wepay the increased overhead of UBS whenever the

associated edgeis a feedforward edge of the synchronization graph.

One alternative toimplementing UBS for a feedforward edge e is to add synchronization

edges to thesynchronization graph so that e becomes encapsulated in a strongly connected com

ponent; such a transformation would allow e to beimplemented with BBS. However, extra syn

chronization accesses will berequired to implement the new synchronization edges that are

inserted. In this section, we show that by adding synchronization edges through a certain simple

procedure, the synchronization graph can betransformed into a strongly connected graph in such

a way that the overhead of implementing the extra synchronization edges is always at least com

pensated by the savings attained by being able to avoid the use of UBS. That is, the total number
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Function Resynchronize
Input: A synchronization graph G = (V,E).

Output: Asynchronization graph G that preserves G.

E = E

Compute pG (x,y) for each orderedpairofvertices in G. I* used in Pairwise 7
For each SCC Ca of G

Foreach SCC Cd of G

If Ca is a predecessorSCCof Cd Then

Compute £, = {e € £| (src (<?) € Ca) and (m* (<?) € Cd)}
F = Pairwise (subgraph (Ca), subgraph (Cd), £.)

£= ((f-^uF)
End If

End For

End For

Return (V,E)

Function Pairwise(Gl ,G2,F)

Input: Two strongly connected synchronization graphs Gx and G2, and a set F of edges
whose source vertices are all in Gx andwhose sink vertices are all in G2.
Output: A resynchronization F'.

For each vertex u'mG1

Foreach vertex v in G2

X((u,v)) ={eeF\(pG(src(e),u) = 0) and (pG(v,snk(e)) =0)}
End For

End For

T = {%((u,v))\(uis'm Gx and v is in G2)}

S = Cover (F, T)

Return {d0(u,v)\x((utv)) e S}

Rgure 12. An algorithm for resynchronization that is derived from an arbitrary algorithm Cover
for the set covering problem
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of synchronization accesses required (per iterationperiod) for the transformed graph is less than

or equal to the number of synchronization accessesrequired for the original synchronization

graph. Through a practical example,we showthat this transformation can significantlyreduce the

number of required synchronization accesses. Also, wedevelop a technique to compute thedelay

that should be added to each of the new edgesaddedin the conversion to a stronglyconnected

graph. This technique computes thedelays in such a waythattheestimated throughput of theIPC

graph is preserved withminimal increase in theshared memory storage costrequired to imple

ment the IPC edges.

10.1 Adding Edges to the Synchronization Graph

Figure 13presents our algorithm for transforming a synchronization graph thatis not

strongly connected into a strongly connected graph. This algorithm simply "chains together" the

source SCCs, and similarly, chains together the sink SCCs. The construction iscompleted bycon

necting the first SCC of the "source chain" tothe last SCC ofthe sink chain with an edge that we

call thesink-source edge. From each source or sink SCC, thealgorithm selects a vertex thathas

nunimum execution timeto be thechain "link" corresponding to thatSCC. Minimum execution

time vertices arechosen in anattempt tominimize theamount ofdelay that must beinserted on

thenew edges topreserve theestimated throughput of theoriginal graph. In Subsection 10.2, We

discuss indetail the selection ofdelays for the edges introduced by Convert-to-SC-graph.

It is easily verified that algorithm Convert-to-SC-graph always produces a strongly con

nected graph, and that a conversion toa strongly connected graph cannot beattained by adding

fewer edges than the number ofedges added by Convert-to-SC-graph. Figure 14 illustrates apos

sible solution obtained byalgorithm Convert-to-SC-graph. Here, the black dashed edges are the

synchronization edges contained inthe original synchronization graph, and the grey dashed edges

arethe edges thatareadded byConvert-to-SC-graph. The dashed edge labeled e is thesink-

source edge.

Assuming the synchronization graph is connected, the number of feedforward edges nf

must satisfy (nf> nc-2) , where nc is the number ofSCCs. This follows from the fundamental
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graph theoretic fact that inaconnected graph (V*, E*), |£*| must exceed (|V*| - 2). Now, itis

easily verified that thenumber of newedges introduced by Convert-to-SC-graph is equal to

(nsrc +nsnk " *)»wnere nSrc *s *e numDer ofsource SCCs, and nJ||jk isthe number ofsink

SCCs. Thus, the number of synchronization accesses per iteration period, S+, that isrequired to

implement the edges introduced byConvert-to-SC-graph is (2 x (nsrc +nsnk - 1)) , while the

number of synchronization accesses, 5_, eliminated by Convert-to-SC-graph (by allowing the

feedforward edgesof the original synchronization graph to be implemented with BBS rather than

UBS) equals 2fly. It follows that the net change (S+ - SJ in the number ofsynchronization

Function Convert-to-SC-graph
Input: Asynchronization graph G that is notstrongly connected.
Output: A strongly connected graph obtained by adding edges between the
SCCs of G.

1. Generate an ordering CvCv...tCm ofthesource SCCs of G, and similarly,
generate an ordering Dv D2>..., Dn of the sinkSCCs of G.

2.Select a vertex v, € C, that minimizes t(*) over Cx.
3. For i = 2,3...,m

• Select a vertex vi € Ct that minimizes t(*) over ci.
• Instantiate the edge d0(vi_v v.).

End For

4.Select a vertex w{ e Dx that minimizes /(*) over Dx.
5. For i = 2,3...,n

• Select a vertex w. e D. that minimizes t(*) over Dt.
• Instantiate the edge d0 (*>,._,, w.).

End For

6. Instantiate the edge d0 (wm, v{).

Figure 13. An algorithm for converting a synchronization graph that is not strongly
connected intoa strongly connected graph.
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accesses satisfies

(S+-SJ =2(nsrc +nsnk-l)-2nf<L2(nc-l-nf)Z2(nc-l-(nc-l)) .

and thus, (5+ - 5J £ 0. Wehaveestablished thefollowing result.

Theorem 5: Suppose that G is a synchronization graph, and G is thegraphthat results from

applyingalgorithmConvert-to-SC-graph to G. Thenthe synchronization cost of G is less thanor

equal to the synchronization cost of G.

For example, without theedges added byConvert-to-SC-graph (thedashed greyedges) in

Figure 14, there are 6 feedforward edges, which require 24synchronization accesses periteration

periodto implement. The addition of the4 dashed edges requires 8 synchronization accesses to

implement thesenewedges, but allows us to useUBS for theoriginal feedforward edges, which

leadsto a savings of 12synchronization accesses for theoriginal feedforward edges. Thus, thenet

effect achieved by Convert-to-SC-graph in this example is a reduction of thetotal number of syn

chronization accesses by (12 - 8) = 4. As another example, consider Figure15,which shows

the synchronization graph topology (afterredundant synchronization edgesare removed) that

ee«

Rgure 14. An illustration of a possible solution obtained by algorithm Convert-to-SC-graph.
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results from a four-processor schedule of a synthesizer for plucked-string musical instruments in

seven voices based on the Karplus-Strong technique. This graphcontains n. = 6 synchronization

edges (the dashed edges), all of which are feedforward edges, so the synchronization cost is

4ft; = 24 synchronization access per iteration period. Since thegraph has one source SCC and

one sink SCC, only one edge is added by Convert-to-SC-graph, and adding this edge reduces the

synchronization cost to 2n{ + 2 = 14 — a42% savings.

Figure 16shows the topology of a possible solution computedby Convert-to-SC-graph on

Prod Proc 2 Prog 3 Proc 4

Excit-ir - -

D (Voice5

.-"

Figure 15. The synchronization graph, afterredundant synchronization edges are
removed, induced by a four-processor schedule of a music synthesizer based on
the Karplus-Strong algorithm.
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this example. Here, the dashed edges represent the synchronization edges in the synchronization

graph returned byConvert-to-SC-graph. The actual solution computed byagiven implementation

of Convert-to-SC-graph will depend onexactly howtheordering in Step 1is constructed, and

thus maydiffer from the one shown here. However, any solution for Figure 15 generated from an

implementation of Convert-to-SC-graph willhave six synchronization edges in theresult, as

shown in Figure 16.

10.2 Insertion of Delays

One issue remains to be addressed in the conversion ofasynchronization graph Gs into a

strongly connected graph Gs —the proper insertion ofdelays so that Gs is not deadlocked, and

does not have lower estimated throughput than Gs. The potential for deadlock and reduced esti

mated throughput arise because theconversion toastrongly connected graph necessarily must

introduce one ormore new fundamental cycles. In general, anew cycle maybedelay-free, orits

Rgure 16. A possible solution obtained by applying Convert-to-SOgraph tothe
example of Figure 15.
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cycle mean may exceed that ofthe critical cycle in Gs. Thus, we may have toinsert delays onthe

edges added by Convert-to-SC-graph. The location (edge) and magnitude of thedelays thatwe

add are significantsince (from Theorem2) they affect the self-timed buffer bounds of the IPC

edges. Since the self-timed buffer bounds determine theamount of memory thatwe allocate for

thecorresponding buffers, it is desirable toprevent deadlock anddecrease in estimated through

putin sucha waythatwe minimize thesumof theself-timed buffer bounds overall IPCedges. In

this subsection, wepresent a simple and efficient algorithm for addressing this goal. Our algo

rithm produces anoptimal result if Gs has only one source SCC oronly one sink SCC; in other

cases, the algorithm mustbe viewed as a heuristic. In practice, the assumptions underwhich we

can expect an optimal result are frequently satisfied.

For simplicity in explaining ouroptimality result, we first specify a restricted version of

thealgorithm that assumes only one sinkSCC. After explaining theoptimality of this restricted

algorithm, we discuss how it can bemodified toyield an optimal algorithm for the general single-

source-SCC case, andfinally, we discuss how it canbeextended to provide a heuristic for arbi

trary synchronization graphs.

We willuse the following notation in theremainder of this section: if G = (V,£) is a

DFG; (eQ, ex,..., en _x) is a sequence of distinct members of E; and

\>\ \-i€ {0» !»•••» °°} ,thenG[e0->A0,...,5n_1->A|J_1] denotes the DFG

I vv "{*0»*l""»*ii-i}J u {eQ>ei>—>en-\} J), where each e/ is defined by

src(e{) = src(e-) ,snk(e.') = snk(et) ,and delay (e{) = A.. Thus,

G[eQ -> A0,..., en _x-> An _x] is simply the DFG that results from "changing the delay" on

each e. to the correspondingnew delay value A..

Definition 6: Suppose that Gis asynchronization graph that preserves Gipc. An IPC sink-

source path in G is a minimum-delay path in G directed from snk (e) to src (e) , where e is an

IPC edge (in Gipc). The existence ofsuch a path isguaranteed by Definition 3.
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Figure 17 outlines therestricted version of our algorithm that applies when the synchroni

zation graph Gs has exactly onesource SCC. Here, BellmanFord is assumed to be analgorithm

thattakes asynchronization graph Z as input, and applies the Bellman-Ford algorithm discussed

in pp.94-97 of [17] to return thecyclemean of thecritical cyclein Z; if oneormore cycles exist

that have zero path delay, then BellmanFordreturns «>.

Algorithm DetermineDelays is based on the observations that the set of IPC sink-source

paths introduced by Convert-to-SC-graph canbe partitioned into m nonempty subsets

P0, Pv ...tPm_x such that each member ofPi contains e0, ex,..., et l and contains no other

members of {eQ, ev ..., em _x} , and similarly, the setof fundamental cycles introduced by

DetermineDelays can be partitioned into W0, Wv ..., Wm _x such that each member of Wt con

tains eQi ev ..., et and contains no other members of {eQi ev ..., em _x} .

By construction, anonzero delay on any of the edges eQt ex,..., ei "contributes toreduc

ing the cycle meansof allmembersof W". Algorithm DetermineDelays starts (iteration / = 0

of the For loop) bydetermining the minimum delay 60 on eQ that is required to ensure that none

of the cycles in W0 has acycle mean that exceeds the maximum cycle mean Xmax of Gs. Then

(in iteration i = 1) the algorithm determines the minimum delay hx on ex that is required to

guarantee that nomember of Wx has acycle mean that exceeds Xmax, assuming that

delay (eQ) = 60.

Now, if delay (eQ) = 50, delay (ex) = bx, and bx >0, then for any positive integer

k£ 6j, k units ofdelay can be"transferred from ex to eQ " without violating the property that no

member of (^u^) contains acycle whose cycle mean exceeds Xmax. However, such a

1. See Figure 17 for the specification of whatthe e- s represent
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Function DetermineDelays

Input: Synchronization graphs Gs = (V, E) and Gs, where Gs is thegraph computed by Con
vert-to-SC-graph when applied to Gs. The ordering of source SCCs generated in Step 2 of

Convert-to-SC-graph is denoted CVC2 Cm. For / = 1,2, ...m-l, et denotes the edge
instantiated by Convert-to-SC-graph from a vertex in C, to a vertex in Cl+1. The sink-source
edge instantiated by Convert-to-SC-graph isdenoted e0.
Output: Non-negative integers d0,dv...,dm_1 such that the estimated throughput of

Gs [e0 -»d0,..., em _x-> dm _,] equals theestimated throughput of Gs.

^0 =^5^0^°° *m-l-»°°]
^fflflx= BellmanFord(X0) f compute the max. cycle mean of Gs 7

d"i> =IT L r̂ V^no*] /*an uPPer bound on the delay required for any e. 7
Fori = 0,1, ...,m-l

bi^MinDeloy(Xitei,kmax,dub)

Xi+l= X. [e{ -> 6,] /* fix the delay on et tobe 5,. V
End For

Retum60,61,...,5OT_1.

Function MinDelay(X, e,XtB)
Input: Asynchronization graph X, an edge e in X, a positive real number X, and a positive
integer B.

Output: Assuming X[e -*5] has estimated throughput no less than X'1, determine the mini-

mumde {0,1, ...,B} such thatthe estimated throughput ofX[e -* d] is no less than A.'1.

Perform a binary search in the range [0,1,..., B] to find the minimum value of
re {0,1, ...,B] such that BellmanFord(X[e->r]) returns a value less than or equal to X.
Return this minimum value of r.

Figure 17. An algorithm for determining the delays on the edges introduced by algorithm Con
vert-to-SC-graph. This algorithm assumes that the original synchronization graph (G )has only
one sink SCC.
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transformation increases the path delay ofeach member of PQ while leaving the path delay of

each member of Px unchanged, and thus, from Theorem 2, such atransformation cannot reduce

the self-timed buffer bound ofany IPC edge. Furthermore, apart from transferring delay from ex

to e0, the only other change that can be made to delay (eQ) or delay (ex) —without introduc

ing amember of (^u^j) whose cycle mean exceeds Xmax —isto increase one or both of

these values by some positive integer amount(s). Clearly, such achange cannot reduce the self-

timed buffer bound on any IPCedge.

Thus, we see that the values 60 and bx computed by DetermineDelays for delay (eQ)

and delay (ex), respectively, optimally ensure that no member of (WQ u Wx) has acycle mean

that exceeds Xmax. Aftercomputing these values, DetermineDelays computes the minimum delay

62 on e2 that isrequired for all members of W2 to have cycle means less than or equal to X ,

assuming that delay (eQ) = 50 and delay (ex) = bx. Given the "configuration"

(delay(eQ) = 80, delay (ex) = bx, delay (e2) = 62), transferring delay from e2 to ex

increases the path delay of all members of Px, while leaving the path delay of each member of

(PQ u P2) unchanged; and transferring delay from e2 to eQ increases the path delay across

(P0 u Px), while leaving the path delay across P2 unchanged. Thus, byan argument similar to

that given to establish the optimality of (50, bx) with respect to (WQ u Wx), we can deduce that

(1). The values computed by DetermineDelays for the delays on eQt ev e2 guarantee that no

member of (W0 u Wx u W2) has acycle mean that exceeds Xmax; and (2). For any other assign

ment of delays (80', 8/, b2) to (eQ,ex,e2) that preserves the estimated throughput across

(^0U^u W2), and for any IPC edge e such that an IPC sink-source path of e iscontained in

(P0 u Px u P2), the self-timed buffer bound ofe under the assignment (S0', bx't b2) is

greater than or equal to self-timed buffer bound ofe under the assignment (80, bv 62) computed
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by iterations i* = 0,1,2 of DetermineDelays.

After extending this analysis successively to each of theremaining iterations

/ = 3,4,..., m- 1 of thefor loop in DetermineDelays, we arrive atthe following result.

Theorem 6: Suppose that Gs is asynchronization graph that has exactiy one sink SCC; let Gs

and (eQt ev .... em _x) be as in Figure 17; let (dQ, dv ..., dm _x) be the result ofapplying

DetermineDelays to Gs and Gs; and let (dQ\ dx\ ..., dm _x') be any sequence of m non-nega

tive integers such that Gs [eQ -» d0' em _x-» dm _/] has the same estimated throughput as

G,.Then0[G,[eo-^...,^
where 4> (X) denotes the sum ofthe self-timed buffer bounds over all IPC edges in Gipc induced

by the synchronization graph X.

Figure 18 illustrates a solution obtained from DetermineDelays. Here we assume that

t(v) = 1, for each vertex v, and we assume that the set of IPC edges is {eQt eb] (for clarity,

we are assuming in this example that the IPC edges are present in thegiven synchronization

graph). The greydashed edges are theedges added by Convert-to-SC-graph. We seethat X is
° r max

determined bythe cycle in the sink SCC of the original graph, and inspection ofthis cycle yields

Rgure 18. An example used to illustrate a solution obtained by algorithm DetermineDelays.
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^max ~ 4•A**0*we see ***** ^ set wo "" the set offundamental cycles that contain eQ, and do

notcontain ex — consists of asingle cycle cQ that contains three edges. By inspection of this

cycle, wesee that the minimum delay on eQ required to guarantee that its cycle mean does not

exceed Xmax is 1. Thus, the i = 0 iteration of the For loop inDetermineDelays computes

80 = 1. Next, wesee that Wx consists ofasingle cycle that contains five edges, and wesee that

two delays must be present on this cycle for its cycle mean to be less than or equal to Xmax. Since

one delay has been placed on e0, DetermineDelays computes bx = 1 inthe i = 1 iteration of

theFor loop. Thus, the solution determined byDetermineDelays for Figure 18 is

(80, bx) = (1,1); the resulting self-timed buffer bounds of ea and eb are, respectively, 1 and

2; and <D = 2 + 1 =3.

Now (2,0) isan alternative assignment ofdelays on (eQt ex) that preserves the esti

mated throughput of the original graph. However, in this assignment, we see that the self-timed

buffer bounds of eQ and eb are identically equal to 2, and thus, 4> = 4, one greater than thecor

responding sum from the delay assignment (1,1) computed by DetermineDelays. Thus, if Gs

denotes thegraph returned by Convert-to-SC-graph for theexample of Figure 18, wehave that

®{ Gs t*o "* 60> el "* °JJ<°[^ K""* 2> el ~* °1 J•where *W denotes the sum of the
self-timed buffer bounds over all IPC edgesin X.

Algorithm DetermineDelays can easily bemodified to optimally handle general graphs

that have onlyone source SCC. Here, thealgorithm specification remains essentially thesame,

with the exception that for / = 1,2 (m - 1), ei denotes the edge directed from avertex in

Dm-i toavertex in£>m_/+1, where Dx,D2t...,Dm is the ordering of sink SCCs generated in

Step 2ofthe corresponding invocation ofConvert-to-SC-graph (eQ still denotes the sink-source

edgeinstantiated by Convert-to-SC-graph). By adapting thereasoning behind Theorem 6, it is
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easilyverified thatwhen it is applicable, thismodified algorithm always yields anoptimal solu

tion.

As far as we areaware, thereis no straightforward extension of DetermineDelays to gen

eral graphs (multiple source SCCs and multiplesink SCCs) thatis guaranteed to yield optimal

solutions. The fundamental problem for thegeneral case is the inability to derive the partitions

W0, Wv ..., Wm _x (PQt Pv ..., Pm _x) of the fundamental cycles (IPC sink-source paths) intro

duced byConvert-to-SC-graph such that each Wt (P() contains eQt ev ..., ei, and contains no

other members of Es s { eQ, ev ..., em _x} , where Es is the set of edges added byConvert-to-

SC-graph. The existence of such partitions was crucial to our development of Theorem 6 because

it implied that once the minimum values for eQt eXi..., ei are successively computed, "transfer

ring" delay from some e. to some e., j < i, isnever beneficial. Figure 19 shows an example of a

synchronization graph thathasmultiplesource SCCs and multiplesink SCCs, andthatdoes not

induce a partition of the desired form for the fundamental cycles.

However, DetermineDelays can beextended to yield heuristics for thegeneral case in

which the original synchronization graph Gs contains more than one source SCC and more than

one sink SCC. For example, if (ax, a2%..., ak) denote edges that were instantiated byConvert-

to-SC-graph "between" the source SCCs —with each at representing the i th edge created —

and similarly, (bv b2,..., b{) denote the sequence ofedges instantiated between the sink SCCs,

thenalgorithm DetermineDelays can be applied with themodification that m = * + / + 1, and

(eQt ev ..., em_x) s (es> av a2,..., ak, bp bl_v ...,bx),where es is the sink-source edge from

Convert-to-SC-graph.

The derivation of alternative heuristics for general synchronization graphs appears tobe

an interesting direction for further research. It should benoted, though, that practical synchroniza

tion graphs frequently contain either asingle source SCC or asingle SCC, orboth — such as the

example of Figure 15 — sothat algorithm DetermineDelays, together with itscounterpart for
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graphs that have a single source SCC, form awidely-applicable solution for optimally determin

ing the delays on the edges created by Convert-to-SC-graph.

If we assumethat thereexist constants T and D suchthat t (v) £ Tf for all v, and

delay (e) £ D for all edges e, then the complexity ofBellmanFordis O(|V||£|log2 (|V|)) [17];

and we have Xmax Z- and £r (v) £T\V\, so that d^ £DT\V\. Thus, each invocation ofMinD-

e/^runsin G(log2(D7lVl)|Vl|£|log2(|Vl)) =o[|Vl|£|(log2(M))2J time. It follows that
DetermineDelays — andanyof the variations of DetermineDelays defined above — is

G^m|VH£| (log2 (|V|)) J,where mis the number of edges instantiated by Convert-to-SC-
graph. Since m = (nsrc +nsnk - 1), where nsrc is the number ofsource SCCs, and nsnk is the

Bq\

D

Nat <12

*•«,
/H V

Rgure19. A synchronization graph, after processing by Convert-to-SC-graph, such that
there is no m-way partition WQ, Wx,..., Wm _xofthe fundamental cycles introduced byCon

vert-to-SC-graph that satisfies both (1). Each W. contains eQ, ev ...,et and (2). Each Wi

does not contain any member of euvei+2t...tem_x. Here, the fundamental cycles intro
ducedby Convert-to-SC-graph (the grey dashed edges are the edges instantiated by Con-
vert-to-SOgraph) are (eQt av a3), (e0, ev a2, az), (eQt ev a2, a4, e2), and

(e0, ax, aA, a2). It is easily verified that thesecycles cannot be decomposed into a partition

of the above form even if we are allowed to reorder the e.'s.

58



number of sink SCCs, it is obvious that m < \V\. With this observation, and the observation that

\E\ £\V\ ,we have that DetermineDelays and its variations are ol \V\4 (log2 (|V|)) 2]. Further
more, it is easilyverified thatthetime complexity of DetermineDelays dominates thatof Convert-

to-SC-graph, so thetime complexity of applying Convert-to-SC-graph and DetermineDelays in

succession is also ol \V\ (log2 (|V|)) J.
Although the issue of deadlock does not explicitly arise in algorithm DetermineDelays,

the algorithm does guarantee that the output graph isnot deadlocked, assuming that the input

graph is notdeadlocked. This is because (from Lemma 1) deadlock is equivalent to theexistence

of acycle that has zero path delay, and is thus equivalent toan infinite maximum cycle mean.

Since DetermineDelays does not increase the maximum cycle mean, it follows that the algorithm

cannot converta graph that is not deadlocked into a deadlocked graph.

10.3 Related Work

Converting amixed grain DFG that contains feedforward edges into astrongly connected

graph has been studied byZivojnovic [35] inthe context ofretiming when the assignment of

actors to processors is fixed beforehand. In this case, the objective is toretime the input graph so

that the number of IPC edges that have nonzero delay ismaximized, and the conversion isper

formed to constrain the set ofpossible retimings in such away that an integer linear programming

formulation can be developed. The technique generates two dummy vertices that are connected by

an edge; the sink vertices of the original graph are connected toone of the dummy vertices, while

the other dummy vertex is connected toeach source. Itiseasily verified that inaself-timed execu

tion, this scheme requires at least four more synchronization accesses per graph iteration than the

method that we have proposed. We can obtain further relative savings if we succeed in detecting
one or more beneficial resynchronization opportunities. The effect ofZivojnovic's retiming algo

rithm on synchronization overhead isunpredictable since one hand an IPC edge becomes "easier

tomake redundant" when its delay increases, while on the other hand, the edge becomes less use

ful in making other IPC edges redundant since the path delay ofall paths that contain the edge
increase.
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11- Complete Algorithm

In this section we outline our complete synchronization optimization algorithm. The input

to the algorithm is a DFG and a parallel schedule for it. The output from the algorithm is an IPC

graph Gipc = (V, Eipc) , which represents buffers as IPC edges; a strongly connected synchroni

zationgraph Gs = (V, Es) , which represents synchronization constraints; and a set of shared-

Function SynchronizationOptimize
Input: A DFG G and a self-timed schedule for this DFG.

Output: Gipc, Gs, and {B^ (e) \e is an IPC edge in Gipc) .

1. Extract Gipc from G andthegiven parallel schedule (which specifies actor assignment to
processors and the order in which each actor executes on a processor)

2. Set Gs = G^ /* Each IPC edge is also a synchronization
edge to begin with 7

3. Gs = RemoveRedundantSynchs (Gs)

4. Gs = Resynchronize (Gs)

5. Gs = Convert-to-SC-graph (Gs)

6. Gs = DetermineDelays(Gs)

r* Remove any synchronization edges that have become redundant as a result of the appli
cation of Convert-to-SC-graph. 7
7. Gs = RemoveRedundantSynchs (Gs)

8. Calculate buffer sizes Bp (e) for each IPC edge e in Gipc. (to be used for implementing
the BBS protocol)

a) Compute pGj (src (e),snk{e)), the path delay of a minimum-delay
path in Gs directed from src (e) to snk (e)
b) Set Bfi (e) = pGj (src (e), snk (e)) +delay (e)

Figure 20. The complete synchronization optimization algorithm.
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memory buffer sizes {Bfj, (e) \e is an IPC edge in Gipc] ,which specifies the amount ofmemory

to allocate in shared memory for each IPC edge.

The pseudocode for thecomplete algorithm is givenin Figure 20. Here, RemoveRedun

dantSynchs is invoked twice, once atthe beginning, and once again after Convert-to-SC-graph

and DetermineDelays. It is possible that theedge(s) added by Convert-to-SC-graph can make

someof the existingsynchronization edges redundant, and thus, applying RemoveRedun

dantSynchs afterConvert-to-SC-graph may be beneficial.

A code generator can then accept Gipc and Gs, and allocate abuffer in shared memory for

each IPC edge e specified by Gipc ofsize B^ (e), and generate synchronization code for the

synchronization edges represented in Gs. These synchronizations may beimplemented using the

BBSprotocol described inSubsection 6.1. The synchronization cost inthe final implementation is

thus equal to 2ns, where ns is thenumber of synchronization edges in Gs.

12. Summary

We have addressed the problem ofminimizing synchronization overhead when imple

menting self-timed, iterative dataflow programs. We have introduced agraph-theoretic analysis

framework that allows ustodetermine the effects on throughput and buffer sizes ofmodifying the

points in the target program atwhichsynchronization functions are carried out,andwe haveused

this framework toextend an existing technique —removal ofredundant synchronization edges —

for noniterative programs to the iterative case, and to develop two new methods for reducing syn

chronization overhead —resynchronization and the conversion of the synchronization graph into

a strongly connected graph. Finally, we have shown howour techniques can becombined, and

how the result can be post processed to yield aformat from which IPC code can easily be gener
ated.

The premise of our work is that estimates areavailable for the execution times of actors

such that the actual execution time of an actor exhibits large variation from its corresponding esti

mate only with very low frequency. Accordingly our techniques have been devised toguarantee
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that if theactual execution timeof each actor invocation isalways equal to the corresponding exe

cution timeestimate, then thethroughput of an implementation that incorporates our synchroniza

tion minimization techniques is never less than the throughput of acorresponding unoptimized

implementation — thatis, we never accept an opportunity to reduce synchronization overhead if

it constrains execution in such away that throughput is increased. Thus, our work is particularly

relevant to embedded DSP applications, where theprice of synchronization is high, and accurate

executiontime estimates are often available, but guarantees on theseexecution times do no exist

due to infrequent events such as cache misses and error handling.

13. Further Work

Several directions for further work emerge from the study presented in this paper. Perhaps

themostsignificant is theincorporation of timing guarantees — for example, hard upper and

lower execution time bounds, as Dietz, Zaafrani, and O'keefe use in [8]; and handling of amix of

actors some of which have guaranteed execution timebounds, and some that have no such guar

antees, asFilo, Ku, Coelho Jr., andDeMicheli do in [9]. Suchguarantees couldbe usedto detect

situations inwhich IPC data willalways beavailable (produced) before it is needed for consump

tion. Upper and lower bounds also make it an interesting issue to define what theobjective of

"preserving estimated throughput" means — for example: Howcan we formulate aconstraint,

incorporating guaranteed execution time upper and lower bounds, toefficiently prevent synchro

nization optimization from introducing cycles that can significantly degrade the throughput?

Also, execution timeguarantees can beused tocompute tighter buffer sizebounds. As a

simple example, consider Figure 21. Here, theanalysis of Section 5.3 yields a buffer size

Bp((A,B)) = 3, since 3 is the minimum path delay ofacycle that contains (A, B) .How

ever, if f04) and t (B) are guaranteed to beequal to thesame constant, then it is easily verified

that abuffersize of 1 will suffice for (A,B) . Systematically applying execution timeguarantees

to derive lower buffer size bounds appears to be a promising direction for further work.

We haveshown that pairwise resynchronization can be attacked with arbitrary heuristics

for set covering. It wouldbe useful to studywhichof theexisting setcovering heuristics are best
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suited to addressing resynchronization in practical applications. Conceivably, there is also oppor
tunity to devise new heuristics that exploit certain properties ofapplications with regards to resyn
chronization that are not taken into account byexisting set covering heuristics. We have shown

that aheuristic for general (not just pairwise) resynchronization can be derived from any given
heuristic for pairwise resynchronization bysimply applying the pairwise resynchronization heu

ristic to each pair ofdistinct SCCs. It appears to be asignificant challenge to devise amore global
approach to thegeneral (not justpairwise) resynchronization problem.

Finally, there is considerable room for refinement in our techniques for converting the syn

chronization graph into astrongly connected graph. For example, currently the ordering ofSCCs

in the source and sink chains is performed arbitrarily. However, their ordering can impact both the

total shared memory requirement (self-timed buffer bounds), and the number ofredundant syn
chronizations introduced by the new edges added byConvert-to-SC-graph. Thus, it would beuse

ful to study techniques to optimize the ordering ofthe source and sink SCCs with regard to one or
both of these criteria.

Our technique for computing the delays on the edges introduced byConvert-to-SC-graph
is optimal under the assumption that there is one source SCC or one sink SCC. Although this
assumption is frequently satisfied in practice, it may beinteresting to examine whether ornotan

efficient scheme can be devised to determine the delays optimally for general synchronization
graphs.

Figure 21. Anexample of how execution time guarantees canbe used to reduce
buffer size bounds.
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Appendix

In this appendix, we establish the NP completeness of the resynchronization problem,

which was defined in Section 9. We establish this by reducing an arbitrary instance of the set-cov

ering problem, a well-known NP-hard problem, to an instance of the pairwise resynchronization

problem, which is a special case of the resynchronization problem that occurs when there are

exactly two SCCs. The intuition behind this reduction is explained in Section 9.

Suppose that we are given an instance (X, T) of set covering, where X is a finite set, and

T is a family of subsets of X that covers X. Without loss of generality, we assume that

Tdoes not contain aproper nonempty subset V that satisfies f \J t\ n f KJ t) = 0 .(13)
\te {T-T) J \ter J

We can assume this without loss of generality because if this assumption does not hold, then we

can apply the construction below to each "independent subfamily"separately, and then combine

the results to get a minimal cover for X.

The following steps specify how we construct a DFG from (X, T) . Except where stated

otherwise, no delay is placed on the edges that are instantiated.

1.For each x € X, instantiate two vertices vsrc (x) and vsnk (x) , and instantiate an edge e (x)

directed from vsrc (x) to vsnk (x) .

2. For each t G T

(a). Instantiate two vertices vsrc (t) and vsnk (t) .
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(b). For each x € t

• Instantiate an edge directed from vsrc (x) to vsrc (t) .

• Instantiate anedge directed from vsrc (t) to vsrc (x), and place one delay

on this edge.

• Instantiate an edge directed from vsnk (t) to vsnk (x).

• Instantiate anedge directed from vsnk (x) to vsnk (t), and place one delay on

this edge.

3. For eachvertex v thathas been instantiated, instantiate an edge directed from v to itself, and

place one delay on this edge.

Observefrom our construction, that whenever x € X is containedin t € T, there is an

edge directed from vsrc (x) (vsnk (t))to vsrc (t) (vsnk (x)), and there is also anedge (having

unit delay) directed from vsrc (t) (vsnk (x)) to vsrc (x) (vsnk (t)). Thus, from the assumption

statedin (13), it follows that {vsrc(z)\z£ (XuT)} forms oneSCC,

{vsnk (z)\z£ (XuJ)} forms another SCC, and F m{e (x) \xGX} is thesetoffeedforward

edges.

Let G denote the DFG that we have constructed, and as in Section 9, define

X(p) = {e€ F\(p subsumes (src(e),snk(e)))} for each ordered pairofvertices

P = (yvy2) such that yj iscontained in the source SCC ofG, and y2 is contained in the sink

SCC of G. Clearly, G gives aninstance of thepairwise resynchronization problem.

Observation 2: By construction of G, observethat

{xeX\( (vsrc(t), vsnk (t)) subsumes (vsrc (x), vsnk (x)))} = /, for all / G T. Thus, for

all rG T, x(vsrc(t)t vsnk(t)) = {e(x)\x€t}.

Observation 3: Foreach x € X, allinput edges of vsrc (x) have unit delay onthem. It follows

that for any vertex y in the sink SCC of G,
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%(vsrc(x),y) Q {ee F\src(e) = vsrc(x)} = {e(x)} .

Observation 4: For each t € T, theonlyvertices in G that have adelay-free path to vsrc (t)

are thoseverticescontained in { vsrc (x) \xG f} . It follows that for anyvertex y in the sink SCC

of G,%(vsrc(t)ty) Qx(^rc(t)tvsnk(t)) = {e(x)\x£t}.

Now suppose that F' = {/lt/2,.. .,/w} isaminimal resynchronization of G. For each

/ € {1,2 m}, exactiyone of the following two cases must apply

Case 1: vsrc (f.) = vsrc (x) for some x GX. In this case, we pickan arbitrary t G T

that contains x, and weset v|. = vsrc (t) and wi = vsnk (t). From Observation 3,it follows that

X((src(f.)t snk(ft))) Q {e(x)} CxO^w,) .

Case 2: vsrc(f.) = vsrc(t) for some fG T. We set v. = vsrc(t) and h>. = v.s/i/;(r).

From Observation 4,wehave %((src (/)), wiife (/;)))£ %(v., w-) .

Observations: From our definition ofthe v-sand w^s, {d0(vitw.)\(i£ {1,2, ...,m}) } is

aminimal resynchronization of G. Also, each (v/f w,) isof the form (vsrc (t), vsnk (t)),

where fG T.

Now, for each i G {1,2,..., m} , we define

Zts {x G X\ (v., w.) subsumes (vsrc (x), vsnk (x))} .

Proposition 1: {Zx, Z2,..., Zm} covers X.

Proof: From Observation 5,wehave that for each Zi, there exists a t GT such that
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Zi - {x GX\ (vsrc (t), vsnk (t)) subsumes (vsrc (x), vsnk (x)) } .Thus, each Zi isamember

of T. Also, since {d0 (v., w-) | (/G{1,2,..., m})} is aresynchronization of G, each member

of { (vsrc (x), vsnk (x)) \x GX] must be preserved by some (v/} wt), and thus each xGX

must becontained in some Zi. QED.

Proposition 2: {Zp Z2,..., Zm} is a niinimal cover for X.

Proo/- (By contraposition). Suppose there exists acover {YVY2 Ym.) (among the members

of T) for X, with m'<m. Then,each x GX is contained in some y,, and from Observation 2,

(vsrc (Fy), vsnk (Yj)) subsumes e(x) .Thus,

{(vsrc (y,), vsnk (Yt)) | (iG{1,2,..., m'})} is aresynchronization of G. Since m' <m, it

follows that F' = {/p/j,...,/m} is not a minimal resynchronization of G. QED.

In summary, we have shown how toconvert anarbitrary instance (X, T) of thesetcover

ingproblem into aninstance G of the pairwise resynchronization problem, and we have shown

how to convert a solution F' = {fltf2t...Jm} ofthis instance ofpairwise resynchronization

into a solution {Zp Z2,..., Zm) of (X, T). It iseasily verified that all of the steps involved in

deriving G from (X, T), and in deriving {ZpZ2 Zm} from F' can be performed inpoly

nomial time. Thus, from the NP hardness ofset covering [7], we can conclude that the pairwise

resynchronization problem is NP hard.
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Glossary

p (x, y) Same as pG with the DFG G understood from context.

Pg (x> v) Iftnere *s no Pam m G fr°m x t0 y»th611 Pg (a'» v) = °°» otherwise,
Pg (•*» v) = Delay (p) , where p is anyminimum-delay path from x to y.

De/ay (p) Given a path p, Delay (p) is thesum of theedgedelays overall edges in p.

dn (u, v) Represents an edgewhose source and sinkvertices are u and v, respectively, and

whose delay is equal to n .

%>max Represents the maximum cycle mean ofaDFG.

BBS Bounded buffer synchronization. A synchronization protocol that may be used for
feedback edges in a synchronizationgraph. This protocol requires two synchroni
zation accesses per schedule period.

criticalcycle A fundamental cyclein a DFGwhose cycle meanis equal to the maximum cycle
mean of the DFG.

cycle mean The cycle mean of a cycle C in a DFGis equal to T/D, where T is the sum of the
execution times of all vertices on C, and D is the sum of delays of all edges in C.

estimated throughput Given a DFG with execution time estimates for the actors, the esti
mated throughput is the reciprocal of the maximum cycle mean.

feedback edge An edge that is contained in at least one cycle.

feedforward edge An edge that is not contained in a cycle.

maximum cycle mean Given a DFG, themaximum cyclemeanis the largest cycle mean
over all fundamental cycles in the DFG.

SCC Strongly connected component.

self-timed buffer bound Given a feedback edge e in a synchronization graph, the self-timed
buffer bound is an upper bound on the number of tokens that can

simultaneously reside on e (the buffer size).

synchronization access An access to shared memory that used to update or examine the sta
tus of a synchronization variable.

synchronization cost The average number of synchronization accesses that must be per
formed per iteration period in the self timed implementation of a
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DFG.

t (v) The execution time or estimated execution time of actor v.

UBS Unbounded buffer synchronization. A synchronization protocol that must be used
for feedforward edges of the synchronization graph. This protocol requires four
synchronization accesses per iteration period.
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