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Abstract

A genetic algorithm for building-block placement oflCs and MCMs is presented which si
multaneouslyminimizes layout area and an Blmore-based estimate of the maximum path de
lay while trying to meet a target aspect ratio. Explicit design space exploration is performed
by using a vector-valued, 3-dimensional cost function and searching for a set of distinct so
lutions representing the best tradeoffs of the cost dimensions. From the output solutions, the
designer can choose the solution with the preferred tradeoff. This approach eliminates the
inherent weight and constraint specification problems of existing multi-objective placement
methods, in which a weighted sum is minimized subject to user-defined constraints. Very
good experimental results are obtained for various placement problems.

1 Introduction

During placement of an integrated circuit (IC) or a multichip module (MCM) the objective is
to find a solution which is satisfactory with respect to each of a number of competing criteria.
Most often specific constraints has to be met for some criteria, while for others, a good tradeoff
is wanted. However, at this point in the design process, the available information as to which
values axe obtainable for each criteria is based on relatively rough estimates only. Consequently,
the designers notion of the overall design objective is rarely clearly definable.

Virtually all existing placement tools considering more than one optimization criterion min
imizes a weighted sum of some criteria subject to constraints on others. E.g., if k criteria are
considered, the objective is to minimize the single valued cost function

j

= ^2wici subject to V i = j + 1,..., k : c, < C, (1)
•=i

for somej, 1 < j < k. Here c, measures the cost of the solution with respect to the i'th criterion
and the w.-'s and C.-'s are user-defined weights and bounds, respectively. For example, if area is
minimized subject to a bound on delay we have k = 2 and j = 1.



However, in practice it may be very difficult for the designer to specify a set of bounds and
weights which makes the placement tool find a satisfactory solution. If the bounds are too tight,
a solution may not be found at all, and it is far from clear how to derive a set of weight values
from the vaguely defined design objectives. Furthermore, depending on the nature of the c,
functions, the relative magnitude of the u>,c,- terms may change during the optimization process
itself, in which case constant weights are unlikely to keep the cost function properly balanced
throughout the process.

Our work is motivated by the need to overcome these problems. A building block placement
algorithm for both ICs and MCMs is presented, which supports explicit design space exploration
in the sense that 1) a set of alternative solutions rather than a single solution is generated, and
2) solutions are characterized explicitly by a cost value for each criterion instead of a single,
aggregated cost value. The algorithm simultaneously minimizes layout area, the maximum path
delay and the deviation from a target aspect ratio. A 3-dimensional, vector-valued cost function
measures solution quality for each criterion independently, and the algorithm searches for a
set of alternative, good solutions where "good" is defined relative to a user-defined goal vector
specifying ideal values for each criterion. The goal vector eliminates the use of both the weights
and the bounds of (1) and asopposed to the bounds, the goal values neednot be obtainable. From
the output set of solutions, the designer chooses a solution representing the preferred tradeoff.

Apart from supporting explicit design space exploration as described, the approach has two
other significant characteristics:

• It is based on the genetic algorithm (GA), which is well suited for multi-objective opti
mization in the above sense since it operates on a set of solutions simultaneously [9].

• Delay minimization is path-based, i.e., path delay is explicitly modelled and minimized.
This is in contrast to net-based placement approaches, in which given path constraints are
initially converted into net constraints. While simpler, net-based approaches usually over-
constrains the problem, thereby potentially excluding good solutions from being found [10].

Previous work on explicit design space exploration in CAD is still very limited, but approaches
for scheduling and channel routing are presented in [5]. In recent years an increasing number
of GA applications in CAD are reported [6]. However, we are only aware of three previous GA
approaches to building-block placement [3, 4, 8], none of which optimizes delay. Despite the fact
that delay is inherently path oriented, timing-driven, path-based placement algorithms are rare.
The few existing approaches includes [12, 14,15], all of which, however, relies on very simple net
models (stars and bounding boxes). In contrast, the approach presented here approximates net
topology by a minimum spanning tree, in which the Elmore delay is computed.

The remaining of this paper is organized as follows. Section 2 presents the problem definition
used. The algorithm is described in Section 3 and in Section 4 experimental results are presented.
Conclusions are given in Section 5.



2 Problem Definition

The placement model described in Section 2.1 is relevant for both MCMs and for IC technologies
with at least two metal layers available for routing. Section 2.2 characterizes the solution set
searched for by the algorithm.

2.1 Placement Model

The given input is

• A set of rectangular building blocks of arbitrary sizes and aspect ratios with a set of pins
located anywhere within each block.

• A specification of all nets, including for each net 1) the capacitance of each sink pin, and
2) a designated source pin p, its driver resistance and an associated internal delay t(p) in
the block m(p) to which p belongs. t{p) is the time it takes a signal to travel through m(p)
to p.

• A specification of a set of paths V. A path connects two registers of distinct blocks, i.e.,
it is an alternating sequence of wires passing through blocks and net segments. For a sink
pin p, denote by s(p) the source pin of the net to which p belongs. Each path P € V is
then uniquely specified by an ordered set of sink pins P = {p0, Pi,. ••,Pi-i} of distinct nets,
such that rn(pi) = m(s(pl+1)), i = 0,1,...,/- 2. Each path in an MCM will have length
/ = 1 assuming that all signals are latched at the inputs of the components.

• The routing wire resistance f and capacitance c per unit wire length.

Each output solution is a specification of

• An absolute position of each block so that no blocks are closer than a specified minimum
distance A> 0. This parameter allow physical constraints (design rules) to be met and is
not intended for routing area allocation. It is assumed that routing is performed mainly
on top of the blocks.

• An orientation and reflection of each block. Each block in an IC can be orientated and
reflected ineight distinct ways, while for MCMs, four distinct orientations/reflections exists.

For a given placement, the topology of each net is approximated by computing a minimum
spanning tree MSpT over all pins of thenet. The delay D{P) of each path P = {p0,pi,... ,P/-i}
is then estimated as

D(P) = £[£(Pl)+ <(*(?.))] (2)
=0

where E(pi) is the Elmore delay [7] from s(p,) to p, computed in the MSpT. The objective
wrt. delay is to minimize the maximum delay max{Z)(P) | P G V}. The MSpT computation
is a relatively accurate estimation of the net topology, cf. Section 1. Furthermore, for ICs the
topology dependent Elmore delay estimate has high fidelity in the sense that a solution which is
near-optimal according to the estimate will also be near-optimal wrt. actual delay [2].



2.2 What is a "Good" Tradeoff ?

Let n be the set of all placements and 3£+ = [0,oo[. The cost of a solution is defined by the
function c = (ca,Cr,Cd) : II i—> 9^^-. ca is the layout area, i.e., the area of the smallest rectangle
endosing all blocks. cr = \ractuai —rtarget \ is the distance between the actual aspect ratio ractuai
(height divided by width) and auser-defined target aspect ratio rtarget- Finally, cd is themaximum
path delay, computed as described in Section 2.1.

Required/wanted values for each criterion is expressed by the designer in the form of a goal
vector g = (ga,gr,gd) € (9£+ U {oo})3. Goals need not be obtainable, but merely specifies the
properties of the ideal solution. For example, g = (0,0.1,oo) specifies that the smallest possible
area is wanted (the goal 0 will never be met), that ractuai should be within 0.1 from rtarget and
that any delay is satisfactory (since any delay is smaller than oo). As knowledge of obtainable
values is obtained, the designer can refine g in succeeding executions of the algorithm.

To guide the search towards a set of solutions representing "good" tradeoffs, a notion of
relative solution quality is needed, which takes the goal vector into account. Let x,y € II,
c(x) = (xuX2,x3), c(y) = (1/1,2/2,2/3), 9 = (91,92,93), i G {1,2,3}. The relation x dominates y,
written x <</ 3/, is defined by

x<dy & (Vi:xi<yi)A{3i:xi<yi) (3)

Following [9], we then define the relation x is preferable to t/, written x -<p 2/, as follows, depending
on how x compares to the goal vector : If x satisfies all goals, i.e., V?' : x, < #, then

x<py & (x<dy)V{3i:yi>gi) (4)

If x satisfies none of the goals, i.e., V i : a*,- > (/, then

x -<p y & x <d y (5)

Finally, x may satisfy exactly one or two of the goals. I.e., assuming a convenient ordering of
the optimization criteria, 3 k € {2,3} : (V?" < k : Xi < gi) A (Vi > k : x, > gi). Then

x-<py <* [(V?: > k : Xi < y{) A(3i>k: xs < t/,)] (6)
V

[(Vi>k:xi = yi)A (7)

{((V* < k : Xi < yi) A(3i<k: Xi < y,-)) V (3t < k : y{ > gi)}} (8)

The right hand side of (6) states that x dominates y wrt. the dimensions for which x does not
satisfy the goals. (7) and (8) states that in the special casewhen .t equals y wrt. the non-satisfied
dimensions, then x is still preferable to y if it either dominates y wrt. the satisfactory dimensions
or if y does not satisfy a goal satisfied by x. Notice from (6) that when two solutions satisfy the
same subset of goals, they are considered equal with respect to these goals, regardless of their
specific values in these dimensions. In other words, when goals are satisfied, they are "factored
out", focusing the search on the remaining, unsatisfactory dimensions.

The algorithm outputs a set of distinct solutions $0 which are the "best" found in the sense
defined by -<p. As a special case, if g = (0,0,0) the algorithm searches for (a sample of)
the Pareto-optimal set, i.e., the set of solutions, in which no solution can be improved in any
dimension without being deteriorated in another. Since V.r,7/ £ $0 • "•(^ -<p y) the output
solutions represents distinct design alternatives.



3 Description of the Algorithm

The concept of genetic algorithms, introduced in 1975 by John Holland [13], is based on natural
evolution. In nature, the individuals constituting a population adapt to the environment in which
they live. The fittest individuals have the highest probability of survival and tend to increase
in numbers, while the less fit individuals tend to die out. This survival-of-the-fittest Darwinian
principle is the basic idea behind the GA. The algorithm maintains a population of individuals,
each of which corresponds to a specific solution to the optimization problem considered. Based
on a given cost function, a measure of fitness defines the relative quality of individuals. An
evolution process is simulated, starting from a set of randomindividuals. The main components
of this process are crossover, which mimics propagation, and mutation, which mimics the random
changes occurring in nature. After a number of generations, highly fit individuals will emerge
corresponding to good solutions to the optimization problem.

A phenotype is the physical appearance of an individual, while a genotype is the corresponding
representation or genetic encoding of the individual. Crossover and mutation are performed in
terms of genotypes, while fitness/cost isdefined in terms of phenotypes. For a given genotype, the
corresponding phenotype is computed by a decoder. A good introduction to genetic algorithms
is given in [11]. Section 3.1 outlines our algorithm, Section 3.2 presents the genotype and its
interpretation, and Sections 3.3 and 3.4 describes the genetic operators and the selection strategy,
respectively.

3.1 Overview

01 genera te(<I>);
02 repeat :

03 select <£i,02 € $;
04 defV'2 := crossover(0i, <j>2, #i, V>2);
05 mutate(V'i);
06 update(<I>,01,^1);
07 if deiV'2 :
08 mutate^);
09 update($,02,02);
10 if converged() :
11 optimize) <I>0);
12 diversify^ $);
13 until converged() or terminate();
14 output <I>o;

Figure 1: Outline of the algorithm.



Fig. 1 outlines our GA. Let $ = {0o,0i,.. .,0n_i} denote the current population. The rank
r(0) of 0 € $ is the number of currently existing individuals which are preferable to 0, i.e.,
r(0) = |{7 e $ 17 -<P 0}|- Furthermore, let $0 = {0 € $ |r(0) = 0} C $, i.e., $0 is the current
best solutions. Initially, $ is constructed by routine generate from distinct, random individuals
(line 1). One iteration of the repeat loop (lines 2-13) corresponds to the simulation of one
generation. Throughout the optimization N = |$| is kept constant.

In each generation, two parent individuals 0i and 02 are selected for crossover as described in
Section 3.4 (line 3). The crossover operator, described in Section 3.3, generates offspring ^i and
possibly ^2 (line 4). def^2 is true if and only if 02 was defined. The algorithm is a steady-state
GA,which means that onlyone crossover operation is performed per generation. Routine mutate,
described in Section 3.3, subjects the generated offspring to random changes (lines 5, 8) and the
resulting individuals are inserted in $ by routine update (lines 6, 9). In general, update{$, 0,0)
replaces parent 0 by offspring ij\ However, if (r(0) = 0) A-i(0 -<<p 0), another poor solution with
high rank is replaced instead. Fig. 2 describes the detailed replacement scheme.

if (r(<j>) > 0) V (4> -<„ <j>) •
*:-(»\{*})U{*};

else

if $v<, = 0 :

**:={7€$h(7-<p
if $* # 0 :

randomly select 76$,
*:=(*\{0})U{7};

4') A

p with

r(7) > r(V>)};

r[y) maximal;

Figure 2: Routine update^, 0,V'j. Notice that $ may be unaltered.

Routine converged (line 10) detects if no improvement has occurred in 5 consecutive gener
ations, that is, if $0 has not changed in this period. In that case routine optimize (line 11)
attempts to optimize all rank zero individuals by simple hillclimbing. On each individual0 6 * 0
a sequence of H mutations is tried. Each mutation yielding 7 from 0 is only executed if 7 ^p 0.
With frequency F (a number of generations) routine diversify (line 12) ensures that all solutions
represents distinct cost values. For all pairs 0, t/> e * | c(0) = c(xj)), routine diversify executes a
sequence of mutations on tj> until c(V') ^ c(0). The algorithm terminates (line 13) when either
a) the process has converged, or b) % contains a solution satisfying all goals or c) a cpu-limit T
has been exceeded (detected by routine terminate). Finally, $0 is the output set of solutions
(line 14).

Whenever routines update, optimize and diversify replaces or alters individuals of $ the ranks
of all individuals are updated. As described above, routines update and optimize only replace,
resp. modify, a rank zero individual if the new individual is preferable to the existing one.



Furthermore, routine diversify leaves the subset of distinct solutions in $o unaltered. Hence, in
the sense inferred by -<p the solution set $o is monotonically improving as a function of time. For
single-valued cost functions, GAs keeping the current best solution throughout the optimization
are often referred to as elitist GAs. Thus, the above scheme can bee seen as a generalization of
the elitist GA to vector-valued domains.

3.2 Solution Representation and Decoder

Given a problem instance with 6 blocks, the representation, or genotype, of a placement consist
of two parts:

a) An inverse Polish expression of length 26—1 over the alphabet {0,1,...,6—1,+,*}, where
the operands 0,1,..., 6 — 1 denotes block identities and +, * are operators. Each operand
occurs exactly once in each Polish expression. As in [4], an expression uniquely specifies
a slicing-tree for the placement, with + and * denoting a horizontal and a vertical slice,
respectively.

b) A bitstring of length q, where q = 26 for ICs and q = b for MCMs. The bitstring represents
the reflection of each block. In an IC each block can be reflected in four distinct ways
(reflection in one or both of the axis) without changing the contour of the block. The
reflection of the i'th block is specified by bits 2i and 2i + 1. Similarly, each block in an
MCM can be reflected in two distinct ways (180 degree rotation) as specified by the i'th
bit for the z'th block.

Let ft denote the set of all such representations and let d: ft •—* H be the decoder. The search
space ft considered by the algorithm is defined as the image of d, i.e., ft = d(ft) C n. For a given
representation u? £ ft the corresponding placement, or phenotype, d(u) 6 n is computed in five
steps as follows (illustrated in Fig. 3):

1. From the unique slicing tree specified by the Polish expression, the orientation (possible
90 degree rotation) of each block is determined such that layout area is minimized. The
orientations are computed using an exact algorithm b)r Stockmeyer [16] which guarantees
that a minimum area layout for the given slicing-structure is obtained. The reflection of
each block is as specified by the bitstring.

2. Absolute coordinates are determined for all blocks by a top-down traversal of the slicing
tree. At each operator node, if relative movement of the two subtrees along the slicing axis
is possible, the centerpoints of the subtrees are aligned (perpendicular to the slicing axis).

3. The layout is compacted, first vertically and then horizontally. The compaction algorithm is
a simplified version of the one-dimensional channel compaction algorithm presented in [18],
which adapts a scan-line approach. Area and aspect ratio of the layout is now computed.

4. Foreach net, a MSpT over all its pins is computed as an approximation of the net topology.
The Elmore delay from the source pin to each sink is computed by traversing the MSpT.

5. Each path delay is computed using (2) and the delay of u; is the maximum path delay.



Since more than one slicing tree may exist for a slicing structure the decoder d is not injective.
The genetic representation and the decoder defines the search space ft considered by the algorithm
as the set of all possible oriented (step 1), centered (step 2) and compacted (step 3) slicing
structures. Note that ft is not a subset of the set of slicing structures and vice versa.
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Figure 3: Given 10 blocks and the Polish expression 12+6*90+ + 34 + + 5* 7 8 + *,
the placement on the left is the result of step 2 of the decoding. Subtrees are recursively centered
and oriented optimally. Since the height of the layout is determined by the blocks 1,2,9,0,3,4, no
blocks are moved when attempting vertical compaction. Subsequent horizontal compaction moves
blocks 8,7,5,9 and 0 towards the left, so that blocks 2,6,7 now determines the width of the layout.
The placement to the right is the result of compaction (step 3), i.e., the final placement.

At first sight the use of Stockmeyers algorithm (step 1) as well as the compactor (step 3) may
seem to introduce an unwanted bias towards optimizing area at the cost of delay. And indeed,
simple pathological examples can be constructed in which each of these algorithms does increase
the path delay. However, experiments performed using the layouts described in Section 4 clearly
showed that for a given, fixed Polish expression, each of the algorithms of steps 1 and 3 also
have a positive effect on the path delay in the vast majority of all cases. Hence, in practice
these algorithms are believed to be beneficial wrt. path delay as well as area. Intuitively, this is
because the path causing the maximum delay will connect a relatively large number of blocks,
which are more likely to be further apart in a larger layout.

Since thousands of representations will be decoded during a typical execution the computa
tional complexity of d is crucial. While step 2 requires linear time in the number of blocks 6,
Stockmeyers algorithm is quadratic and so is our implementation of the compactor. The time
consumption of step 4 is dominated by the MSpT computations using Prims algorithm, which
is quadratic in the number of pins of the net. Step 5 is linear in the total number of path seg
ments paeg, i.e., the accumulated number of sink pins of all paths. In total, each computation
of d requires time 0{b2 -f £ nf +p8eg), where w,- is the number of pins of the i'th net and the sum
is over all nets.



3.3 Genetic Operators

Given the genotypes of two parent individuals 0i and 02, the crossover operator (line 4 on Fig. 1)
generates one or two new individuals fa and possibly fa as follows. The Polish expression parts
and the bitstring parts of the new genotypes are constructed independently. The expression
parts are constructed using one of four distinct operators COl, C02, C03 and C04, introduced
and described in detail in [4]. The operator applied is chosen uniformly at random. Each of
COl, C02 and C03 generates a single offspring, while C04 generates two offspring. When using
COl, fa inherits the order and positions of all operands from fa. Similarly when using C02, fa
inherits the order and positions of all operators from 0i, i.e., C02 preserves the slicing structure.
In addition to also preserving the complete slicing structure from one parent, C03 preserves
a complete subtree. Finally, C04 generates two offspring by interchanging two subtrees of 0i
and 02. If this is not possible while preserving feasibility of the generated expressions, C04 fails
and one of the other operators are applied instead. The bitstring part of fa and, when C04 is
applied, fa, is generated using uniform crossover [11,13] : Bit values are inherited independently
of each other and the value of the i'th bit is inherited from either 0i or 02 with probability 0.5.

The mutation operator (also applied by routines optimize and diversify) similarly treats the
Polish expression and the bitstring independently and the expression is mutated using the four
mutations of [4] : A pair of operands can be interchanged, a pair of operators can be inter
changed, the type of an operator can be changed and an operator and an operand can be inter
changed. Only the latter operation requires a check for feasibility of the produced expression.
Each possible and feasible mutation of the Polish expression is performed independently and in
random order with a small user-defined probability pmtlt. The bitstring is subjected to pointwise
mutation [11, 13] : Each bit is independently inverted with probability pmut.

A crucial property of the crossover operator as well as the mutation operator is that they
preserve feasibility, i.e., only feasible genotypes, which can be interpreted by the decoder, are
ever generated. If feasibility were not preserved by the operators, either a "repair" algorithm
would be required in the decoder, slowing down the algorithm, or a cost penalty method would
be needed, jeopardizing a main objective of our approach, the need to eliminate weight factors.

3.4 Selection Strategy

The scheme for selection of parents for crossover (line 3 of Fig. 1) should enforce the principle of
survival-of-the-fittest. The particular scheme chosen here is in line with the suggestions of [9].
The parents are selected independently of each other, subject only to the requirement that they
are distinct. Assume that the current population $ = {0o, 0i,..., 0jv_i} is sorted in ascending
order according to rank, i.e., r(0o) < r(fa )<...< r(0^_!). Each parent is selected by a two step
procedure. In the first step the rank of the parent is chosen to be r(fa), where k is determined
by

fc" W=T) (9)
Here x is a uniform stochastic variable on [0,1] and /? is a user-defined parameter, 1 < ft < 2.
Using (9), which was introduced in [17], the probability of selecting a given individual increases



linearly with the index of the individual and the probability of selecting 0O is /? times the
probability of selecting the median individual 0w/2- Then, in the second step, the parent is
selected uniformly at random among all individuals having rank r(0jt).

In the traditional GA, selection is based on a fitness function, which defines the relativequality
of each individual by a (non-trivial) transformation of the cost values, cf. Section 3. In contrast,
the rank-based selection scheme described eliminates the need for a fitness function.

4 Experimental Results

A performance evaluation based on comparison to an existing approach is unfortunately very
difficult to establish for a number of reasons. Firstly, the placement model, which extends to
MCMs by assuming routing on top of blocks, is not compatible to the IC models applied by
previous building-block approaches. Secondly, there are no building-block benchmarks which
includes appropriate timing information. And thirdly, it is inherently difficult to fairly compare
the 3-dimensional optimization approach to existing 1-dimensional approaches. Sections 4.1
and 4.2 describe the alternative evaluation approach taken and Section 4.3 presents the results.

4.1 Test Examples

Fivecircuits wereused for testing, cf. Table 1. Al is a pathological example which we constructed
such that the global optimum values for area and delay are known. This facilitates an absolute
measure of performance. The 20 blocks of Al fit together in a rectangular area with no empty
space and 17 paths, each of which is a two-pin net, connect neighboring blocks so that only
eight points exists in the search space, in which both the globally optimal area and the globally
optimal delay are obtained1.

circuit type blocks block area nets pins paths Pmax

Al IC 20 42.00 17 34 17 1

xeroxT IC 10 19.35 206 706 115 9

ami33T IC 33 1.16 110 530 204 32

ami49T IC 49 35.45 431 1,058 123 48

SPERT MCM 20 4,311.30 210 750 540 1

Table 1: Main characteristics of test examples. The columns are : type (IC/MCM), no of blocks,
total block area in mm2, no. of nets, pins and paths. The no. of nets and pins includes only
those nets/pins, which are part of a path. pmax is the length of the longest path in terms of no.
of involved nets.

xeroxT, ami33T and ami49T areconstructed from the building block benchmarks xerox, ami33
and ami49, respectively, by adding the required timing information. The original specifications
of these circuits are unaltered and paths are generated in a random fashion, adding a few nets

2For a given orientation and reflection of Al, only one global optimum exists, which can then beoriented and
reflected in eight distinct ways.
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to assure that the longest path in each circuit connects all blocks. The output driver resistances,
the internal block delay associated with each source pin and the capacitance of sink pins are
assigned randomly according to a normal distribution N(n, a) (mean fi and standard deviation a)
for each quantity. For the driver resistances, (ft,or) = (100,20) fi, for the internal block delays,
(/z,cr) = (0.5,0.2) ns, and for the input capacities, (fi,a) = (15.3,3.0) fF//zm. These mean values
are representative of a 0.8 /im CMOS process [2, 15].

Finally,SPERT is a specification of an MCM consisting of a vector processor (ASIC), 16 SRAMs
and 3 buffer components. SPERT is the key component of a dedicated hardware system for neural
net based speech recognition, currently being developed at the International Computer Science
Institute (ICSI) in Berkeley, California [l].

For all ICs, the routing wire resistance f is 0.03 Q/ftm and the capacitance c is 0.352 fF/fim,
again typical for an 0.8 //m CMOS process [2]. The minimum block spacing A is 0, i.e., blocks
can be abutted. For the MCM, we assume f = 0.008 Q/ftm, c = 0.06 fFj\im, and a minimum
spacing of A = 5.0 mm.

4.2 Method

The algorithm is implemented in 5,000 lines of C and runs on a DEC station 5000/125. The
layouts'obtained are compared to those obtained by a random walk in the space ft for 10 CPU-
hours. This algorithm, denoted RWlO, simply generates genotypes at random, evaluates them
using the decoder, and stores the best (rank 0) solutions found. Since the cost of previously
examined points in a random walk does not affect the future search, RWlO can be considered
using the same 3-dimensional cost function as the GA, and hence the two approaches can be
compared. Furthermore, the use of RWlO reveals some information on the difficulty of searching
in ft.

For all executions of the GA on all examples, the following fixed set of control parameters
were used : Population size N = 40, selection bias /? = 1.8, mutation rate pmut = 0.0005,
diversity frequency F = 100 generations. The hillclimber attempts H = 1,000 mutations on a
given individual, and the search is considered converged if no improvement has been observed
for 5 = 10,000 consecutive generations. The time limit is T = 1 CPU-hour. For all circuits,
^target = 1.0 and g = (0,0.2,0), i.e., any aspect ratio in the range from 0.8 to 1.2 is satisfactory
and both area and delay should be as small as possible.

4.3 Performance

A single execution of the GA was performed for each circuit. For Al and xeroxT, the algorithm
terminated due to convergence after 33 and 42 CPU-minutes, respectively. The 1 hour CPU-
limit caused termination for the remaining circuits. The number of decodings performed during
optimization varied from 28,838 (SPERT) to 111,287 (Al). In comparison, RWlO performed
from about 3 x 105 (SPERT) to 4 x 106 (Al) decodings. For ami33T and SPERT, the GA never
executed the hillclimber since $0 was always updated within 10,000 generations.

Figures 4 and 5 compares the solution sets $0 found by the GA and RWlO for ami33T and
ami49T, respectively. The tradeoffs found by the GA are significantly better in all dimensions.
Similar results were obtained for Al, xeroxT and SPERT, although the distance between the
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solution sets found by the two algorithms are smaller for these circuits, as expected because of
the significantly smaller search spaces.

For each of the circuits Al, xeroxT and SPERT and each of the algorithms, Figures 6, 7 and 8
shows the subsets of the output sets $0, which satisfies the aspect ratio goal. From these sets
the designer can choose the preferred tradeoff between area and delay. As can be seen from
Figures 6, 7 and 8 the GA always finds the best solutions wrt. both area and delay except in the
case of Al. Here RWlO finds a placement with the globally optimal area 42.0 mm2 (with aspect
ratio 6/7, i.e., satisfying the aspect ratio goal), whereas the smallest area found by the GA is
49.0 mm2. Although the GA obtains the best delay values, none of the algorithms are close to
the globally optimal delay of only 8.873 ps.

For each of the five circuits, Figures 9 through 11 shows the smallest area solution found by
the GA which satisfies the aspect ratio goal. The empty space, i.e., the ratio of the area not
occupied by blocks to the total layout area, varies from 4.2 % for SPERT2 to 14.3 % for Al.
Smaller layouts can easily be obtained by optimizing for area only, i.e., using the goal vector
g = (0,oo, oo). For example, a sample execution of the GA using this goal vector yielded a
placement for SPERT of size 6,628.17 mm2. However, the cost is an aspect ratio of 12.25 which
illustrates the need for considering all objectives simultaneously.

Since the solution set $0 improves monotonically with time, cf. Section 3.1, better results
are guaranteed to be obtained by spending more CPU-time, as long as the algorithm does not
converge. Fig. 11 (right) shows the minimum area layout obtained for ami49T after 10 CPU-
hours, which can be compared to the result after 1 CPU-hour shown on Fig. 11 (left). The
minimum area solution has improved with respect to both area and delay while still satisfying
the aspect ratio goal.

5 Conclusions and Future Work

A genetic algorithm for building-block placement of ICs and MCMs has been presented, which
minimizes area and path delay while attempting to meet a target aspect ratio. The key feature
of the approach is its capability to explore the 3-dimensional design space explicitly without ex
pressing cost in terms of weighted sums and/or hard constraints as is done in existingapproaches.
Instead the designer directly specifies a goal value for each cost dimension, which may or may
not be obtainable, and the algorithm outputs a set of good solutions, from which the designer
can choose the preferred tradeoff.

This work illustrates that the genetic algorithm is very well suited for this type of multi
dimensional optimization. The search for a set of solutions as opposed to a single solution is
conveniently expressible in terms of the genetic algorithm since it already performs optimization
by manipulating a solution set. In contrast, it is not clear how to use e.g. simulated annealing
for this type of optimization.

The experimental work includesresults for a real-world design and shows that the solution sets
found represent good, balanced tradeoffs compared to a 10 CPU-hour random walk restricted

2For SPERT a minimum distance between blocks of A= 5 mm is required. The layout is 4.2 %larger than
required to satisfy this spacing, assuming an aspect ratio of 1.

12



to the same search space. Furthermore, the runtime requirement of 1 CPU-hour or less is very
reasonable from a practical point of view.

This work can be continued in numerous ways of which only three possibilities are mentioned
here. Currently, I/O pins/pads are ignored for simplicity but should of course be added to
the placement model. More work on how to control and maintain diversity among the solutions
during the optimization is also needed. And finally, it would be very interesting to add a measure
of routing congestion as a fourth independent optimization dimension, which would allow (an
estimate of) routing to directly influence the placement.
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Figure 4: Comparison of the solution sets $0 found by RWlO and the GA for amiSST. The o's
are RWlO solutions and the x 's are GA solutions. The three dimensions (x,y,z) correspond to
the three cost dimensions c = (Ca,cr,C(i), respectively. Although it is not clear from this figure,
three of the nine solutions found by the GA satisfies the aspect ratio goal of 0.2.
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Figure 5: Comparison of the solution sets <t>0 found by RWlO and the GA for ami49T.



Figure 6: Found area/delay tradeoffs for Al, all of which satisfies the aspect ratio goal. The o's
are RWlO solutions and x 's are GA solutions.

Figure 7: Found area/delay tradeoffs for xeroxT, all of which satisfies the aspect ratio goal.

Figure 8: Found area/delay tradeoffs for SPERT, all of which satisfies the aspect ratio goal.
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Figure 9: Left: Al, area = 49.00 mm2 (empty space 14.3 %), ractuai = 1.00, delay = 0.23 ns.
Right: xeroxT, area = 20.38 mm2 (em.pty space 5.1 %), ractual = 0.80, delay = 8.74 ns.
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Figure 10: Left: amiS3T, area = 1.35mm2 (empty space 14.1 %), roc/uo/ = 0.81, delay = 18.75 ns.
Right: SPERT. TO is the vector processor, the S-blocks are the SRAMS and the B-blocks are the
buffers. Area = 7377.09 mm2, ractuai = 1.00, delay = 58.84 ns. Excess area, apart from the min.
spacing required, is 4.2 % (at aspect ratio 1).
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Figure 11: Left: ami49T (1 CPU-hour), area = 41.02 mm2 (empty space 13.6 %), ractuai = 0.97,
delay = 37.77ns. Right: am.i49T after 10 CPU-hours, area = 39.85 mm2 (empty space 11.0 %),
factual = 1.11, delay = 33.31 ns.
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