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Abstract

We describe some recent advances in the mathematical theory of communication
networks.

1 Introduction

Developments in telecommunications, manufacturing, and transportation, together with
mathematical developments in the theories of interacting particle systems, large deviations,
Markov processes, and point processes, have stimulated research on stochastic models having
the feature that streams of customers (or packets, or calls) arrive at a system of processing
stations, where they occupy resources, move between stations, and eventually leave. Such
models are of interest to engineers because, if chosen with sufficient care, they are able to
predict the behaviour of engineering systems and aid in their design and operation. They
are of interest to mathematicians because they raise a number of fascinating questions,
some of which are still unresolved, and also provide a source of examples for more general
theories. This area has by now a well established identity, going by the name of stochastic
networks.

In this article we describe some basic results and sketch some recent advances in
this area that have been motivated by problems in telecommunications. The exposition
closely follows the pattern of a series of nine fifty-minute lectures delivered by the author
at the Fifth Workshop on Stochastic Analysis of Oslo-Silivri held in Silivri, Turkey, in July
1994, at the kind invitation of Professors Hayri Korezlioglu, Bernt @ksendal, and Silleyman
Ustiinel. Only a limited range of topics could be covered during the lectures, and the
decision of which topics to cover was left to the idiosyncrasies of the author; I would like
to apologize in advance to colleagues whose work is not adequately exposed in this article.

*Research supported in part by NSF grant NCR 88-57731



Some references to other survey articles that are useful in developing a broader perspective
on stochastic networks are to be found at the appropriate points in the article. The focus
throughout is on stochastic models.

This article has been organized into three units, each of them in rough correspon-
dence to a distinct engineering context. In Section 2 we discuss circuit-switched networks,
which are useful models for telephony. In Section 3 we discuss datagram networks, which
are useful models for the existing generation of data networks. Similar models are also
useful in manufacturing and transportation applications. Finally, in Section 4 we discuss
more recent questions raised by the drive to merge the telephone and data networks into
integrated broadband networks. The nature of the questions that are of interest here has
been greatly influenced by the enormous bandwidth available in fiber-optical links.



2 Circuit-switched networks

2.1 The Erlang blocking probability formula

Consider a communication link between two large cities A and B. This link facilitates
communication between individuals living in A and those living in B. If the cities are large
enough one can plausibly argue, based on the well know limit theorems for a large number
of rare events, that the process of call requests between A and B forms a Poisson process,
say of rate v. We assume each accepted call is assigned a fixed amount of bandwidth.
We say the link has capacity C circuits if the maximum number of simultaneous calls it
can support is C. We assume that a call request arriving when the link is fully loaded
is rejected (blocked). If we also make the simplifying assumption that each accepted call
holds its assigned bandwidth for an independent exponential duration of mean 1, then we
have a simple Markov description of the process of calls in progress. It is a birth and death
process on the finite state space {0,1,...,C} with up rates v and downrate k in state k.
Of particular interest is the stationary probability that a call request will be blocked. This
is seen to be
WO &k -1
B.C) = (gL )™
This formula is called the Erlang formula for blocking probability, see [32].

Two comments should be made at this point. First, the Erlang blocking probability
formula gives the time-stationary probability that a call request is blocked. What is more
relevant is the stationary probability that an arriving call request finds itself blocked. Here
the two probabilities are the same, as a consequence of a property called PASTA (Poisson
Arrivals See Time Averages), see [80). The relation between event and time averages is
a recurring theme in stochastic networks. For a review of the literature in this area, see
Brémaud et al. [16].

The second point is that the Erlang blocking probability formula continues to give
the time-stationary probability that a call request is blocked when the assumption of expo-
nential service times is relaxed (for instance, to independent identically distributed service
times of mean 1). To determine the stationary blocking probability, all that is important
about the service time distribution is its mean. This is an example of an insensitivity prop-
erty, see [18]. Several such insensitivity results are known for stochastic networks. Some of
these are described in the text of Walrand [78].

2.2 The circuit switched network model

Consider a graph whose links are numbered 1,...,J. Link j is assumed to have capacity C;
(a positive integer). In addition there is a finite set of routes numbered 1,..., R. To each
route 7 is associated a J-dimensional column vector of nonnegative integers aj,,1 < j < J
and a Poisson process of rate ,. The interpretation is that call requests along route r arrive
at the times of this process and will be accepted iff each link j has at least a;r free circuits, in



which case the call holds a;, circuits on link j for an exponentially distributed time of mean
1, after which it simultaneously releases all these resources. The holding times of accepted
call requests are independent and independent of the arrival processes. Call requests that
arrive to find insufficient resources are rejected (blocked). See Figure 1.

Bach link may have a different capacity

A 3-link route is highlighted

Figure 1: A circuit-switched network with 9 links

Let n(t) = (n.(t),1 < r < R) denote the R-dimensional column vector giving the
number of calls along each route that are in progress at time ¢. This process is a Markov
process whose state space is

{neZf : An<C)

where 4 = [aj;] is a J x R matrix, C is the J-dimensional column vector of the C;, and the
inequality is interpreted coordinatewise. This process is time-reversible, and its stationary
distribution can be written as

w(n)= 27! H % (1)

where

Z = Z HVr'.

n:An<C T R

Let L, denote the time stationary probability that a call request along route r is
blocked. By PASTA, this is the same as the stationary probability that an arriving call
request along route 7 will find itself blocked. Of course the stationary distribution (1) gives



us exact formulas for the L,. Unfortunately these are not of much use in applications, as
their use entails computing the normalizing constant Z, which is difficult. In view of this,
we seek good approximations for the blocking probabilities.

2.3 The Erlang fixed point approximation

We attempt to define a notion of effective overall arrival rate of requests for individual
circuits at each link j, call it p;. Assuming this has been somehow defined, and that the
process of overall arrivals is a Poisson process, the Erlang blocking probability formula
would say that the stationary probability that link j has all circuits occupied is

E; = E(p;, Cj) - (2)

Further, the stationary rate at which individual circuits are occupied would be p;(1 —
E;). We now pretend that each circuit request on a link j is rejected independently with
probability E;. This allows us to compute the effective overall rate at which circuits are

occupied at link j as
pi(1 = Ej) =) e, [J(1 - Ei)™r 3)
r i

Equations (2) and (3) are to be thought of as a set of fixed point equations for
the unknown quantities Fy,...,E; in terms of the parameters of the model (the matrix
A, the capacities, and the arrival rates of call requests). This technique of writing fixed
point equations by making independence assumptions is called the Erlang fized point ap-
prozimation technique. Kelly [45], has proved that there is a unigue solution to these fixed
point equations. The quantity p; is called the reduced load at link j. If the assumption
that individual circuits block independently approximates reality, one may hope that the
approximate equality

1-L,~ H(l - Ej)*r
j

is valid in some sense. In [45] it is shown that if one considers a sequence of circuit-switched
networks indexed by a paramenter N, with the same matrix A, and with ﬁu,(N ) and
ﬁCj(N ) converging to limits as N — oo then we have

1-L,(N)= H(l — Ej(N))*" +0(1) .

2

An excellent survey of these and other results on circuit-switched networks is that of Kelly
(46].

2.4 Dynamic Routing

The introduction of digital switches and the common-channel signalling system - see for
instance [69, Sec. 12-2] for historical perspective — made it possible to consider dynamic



routing strategies, where the route of a call between nodes of the network can be cho-
sen adaptively based on traffic conditions. Such strategies are also called non-hierarchical
routing strategies, in contrast to the hierarchical strategies that were earlier used in the
telephone network. Consider the simple network of Figure 2. For each pair of nodes there
is Poisson process of call requests of rate v. If at least one circuit is free on the direct
link between the nodes the call is accepted and occupies one circuit for an exponentially
distributed time of mean 1. However, if the link is blocked, the call request tries to make
the two link connection between the nodes via the remaining node; this is feasible if there
is at least one circuit available on each of the other links. If so, the call request is accepted
and holds one circuit on each of these links for an exponentially distributed time of mean
1, after which it releases both of them simultaneously.

3

Each link has C circuits
Figure 2: A simple network with dynamic routing

While this network can be described by a finite state Markov process, the state space
requires more detail than just the occupancy numbers of the individual links. We are still
interested in the stationary probability that an arriving call request is blocked. The Erlang
fixed point approach may be adopted to approximate this. Let B denote the stationary
probability that an individual link is blocked. The effective arrival rate of requests for
circuits on a link is the sum of the direct arrival rate and the arrival rate of requests on
each of the other links that have to attempt alternate routing. Assuming that links block
independently, this overall rate is seen to be v + 2vB(1 — B), leading to the fixed point
equation

B =E(v+2vB(1- B),C). (4)

A sketch of the solutions of this fixed point equation may be found in Figure 1 (i) of Gibbens
et al. [37). Remarkably, for large enough C, there is a range of v/C where this equation
has multiple solutions.

The existence of such multiple solutions suggests the possibility of metastable regimes
of operation for a circuit-switched network with dynamic routing. In fact, simulations have
revealed the existence of hysteresis phenomena in such networks, see [1, 37]. Namely, for
certain parameter values, there is more than one qualitatively different regime of operation
for the same offered traffic, with the network spending long periods of time in one or the
other regime and rapidly moving from one to the other in response to fluctuations in the



demand. Intuitively a situation where most calls are using alternate routes is likely to per-
sist for a while because arriving calls will then find the network close to saturation and will
be unable to make their direct connections. On the other hand, for the same offered traffic,
it might also be the case that if most of the calls in progress are using their direct route,
arriving calls will be able to make their direct connection.

This fascinating phenomenon has led to several analytical investigations. A simple
model for dynamic routing is considered in [37). There are n links, each link comprised
of C circuits. At each link calls arrive as a Poisson process of rate ». If the link is not
saturated then the call occupies one circuit. If the link is saturated the call chooses two
distinct links at random from the n — 1 remaining links. If neither one is saturated the
call occupies one circuit from each of these two links. Otherwise the call is lost. All circuit
holding times are exponentially distributed with unit mean, independent of one another
and of the arrival times. Further, a call holding circuits from two links is assumed to release
them independently.

Let u}(t), 0 < k < C be the fraction of the n links that have k occupied circuits
at time t. Then u"(t) = (ug(t),u}(?), ..., u3(t)) evolves on a C-dimensional simplex. It is
shown in [37] that as n — oo, if the initial condition u™(0) converges weakly to a limit (0)
then the process (u™(t),t € [0,00)) converges weakly to a deterministic process (u(t),t €
[0, 00)) satisfying the following set of differential equations.

% = 43— (v+2vuc(l - ug))uo,
= (k+ Dugs1r + (v + 2vuc(l — ug))uk—1

- (k+v+2vuc(l - uc))ux, 0<k<C (5)
¢ = =Cuc+ v+ 2vuc(l - uc))uc-1.

The set of fixed points of this set of equations can be seen to be in one to one correspondence
with the solutions of the Erlang fixed point equation (4).

A spatio-temporal version of this model was considered by Anantharam [2]. Let
Z%/M denote the lattice in R? consisting of points all of whose co-ordinates are rational

with denominator dividing M. Let W denote {0,1,...,C}. Let M* denote ((ZM"Z:)LI).

Consider a Markov process (nM,t > 0) on WZ/M which caricatures a circuit switched
network with dynamic routing. The Markov process is described by the transitions

n(z) — n(z)-1 atraten(z),
n(z) — n(z)+1 atratevif n(z)#C,
(n(z),n(y),n(z)) — (n(z)yn(y)+1,m(z)+1) at rate v/M*
if z,y, z are distinct sites with
n(z) = C,n(y) < C,n(2) < C and y,z € z 4+ [-1,1]%.

Standard techniques, for instance Theorem 3.9 of Liggett [56], ensure that the process is
well defined.

In the model each site of the lattice is thought of as representing a portion of a
link consisting of C circuits. The value at a site represents the number of occupied circuits



in the corresponding link. Thus occupied circuits become free at rate 1 and at each link
there is a Poisson process of call requests with rate v. The dynamic routing is captured
by the way call requests are handled : Each call request occupies one circuit on its link if
available; if the link is saturated the call randomly picks two other links which are in its
[-1,1)¢ neighbourhood, and uses one circuit from each of these links if possible. Otherwise
the call is blocked and rejected from the system. Note that because we have a compressed
lattice, the interaction actually has range M on the scale of links.

For z € Z¢/M, let upm(t, z,k) denote P(nM(z) = k), 0 < k < C. We may extend
the definition of upm(2, -, k) to R by setting ups(t, z, k) = up(t, [z)m, k) for z € R?, where
[z]ar denotes the minimum element in Z?/M which dominates z in the usual partial order
on R?. Let u(0,z,k),0 < k < C, be continuous functions with bounded derivative and with
Y ou(0,2,k) = 1. Let u(t,z,k), 0 < k < C denote the solution of the integrodifferential
equations

w = u(t,z,1)
ol-2df ’
- v(1+ are [_1 I]du(t,m +4,C)(1 = u(t,z + ¢ + r,C))dgdr)u(t, z,0) ,
@(—gfﬁ = (k + 1)u(t,z, k+ 1)
21—2d fr
+v(1+ e [_~1-1]du(t »Z2+¢,C) 1~ u(t,z + g+ r,C))dgdr)u(t,z,k—1)
ol-2dr r
—(k+v(1+ g€ [-1, 1]du(t 12 +¢,C)(1-u(t,z + g+ r,C))dgdr)u(t,z, k),
for0<k<C,
_31&(%::,0) = —-Cu(t,z,C)
21-—2d“ f

+V(1+ g,r € [—.1: l]du(t’z +4q, C)(l - u(tvx +q+ r,C’))dqdr)u(t, z,C - 1) .

Then we have the following result, see [2].

Theorem 2.1 Fiz T < oo. Suppose that we start (M), with initial configuration the
product measure having P(nd(z) = k) = upm(0,2,k),0 < k < C. If upm(0, 2, k) — u(0, z, k)
unformly on compact sets, 0 < k < C, then upm(t,z,k) — u(t,z,k) for allt € [0,T), z € R®
and 0 <k <C.

Theorem 2.1 is a statement about pointwise convergence of probabilities. There
is a corresponding functional limit theorem. This functional limit theorem allows us to
describe the limit behaviour of an arbitrary choice of spatial integrals ¢(1, ..., (™ at times



t1,...,tn € [0,T] as long as the ¢(*) decrease sufficiently rapidly. This allows, for example,
to describe the evolution in time of spatial averages of the state over compact regions of
the lattice (which caricatures compact regions of our network with dynamic routing). For
details, see [2]. When we look for spatially homogeneous solutions of egns. (6) which are
time invariant, we are led to the same equations as that in the model of [37], so that these
are in one to one correspondence with the solutions of the Erlang fixed point equation (4).
Thus we see that for large enough C, there is a range of v over which eqns. (6) admit
multiple spatially homogeneous solutions. These may be loosely thought of as different
phases associated to the network.

Dynamic routing schemes with symmetry on complete networks were analyzed by
Marbukh, [59, 60). Exploiting the symmetry and making the assumption that in the limit as
the number of nodes in the network grow to infinity the evolution of any fixed finite collection
of them becomes asymptotically independent (so called propagation of chaos assumption;
see below) limiting differential equations analogous to (5) were derived for the empirical
fraction of links having various occupation numbers. These differential equations also have
multiple fixed points for certain ranges of the parameters; the intuitive explanation for
this phenomenon is the same as that above. This propagation of chaos assumption was
later proved by Graham and Méléard [38). Graham and Méléard [39] have also proved a
fluctuation limit theorem around the law of large numbers that follows from the propagation
of chaos proved in [38].

2.5 Propagation of Chaos

Some version of propagation of chaos is involved in all of the above examples, including the
writing of Erlang fixed point approximations. What this means is the following : Consider
a Markovian system of n identical interacting particles and focus attention on the first p of
them. Suppose that as the number of particles increases to infinity the initial distribution
of the first p particles becomes asymptotically independent, and the empirical distribution
of particle states approaches a limit. In a model having the propagation of chaos property,
one can write down a time inhomogeneous Markov process such that the evolution of any
given particle is described by this process, started from the appropriate initial distribution.
The rates appearing in this process consist of rates associated with autonomous changes of
the state of the particle and rates which represent the aggregate effects of interactions of the
tagged particle with the large number of other particles. Further, the distinguished finite
collection of particles will evolve independently, each according to this time inhomogeneous
process. The intuition is that the probability that the distinguished collection of particles
interacts with one another becomes asymptotically negligible, and because the interaction
is symmetric the interactions with the other particles can be replaced by empirical rates.
The terminology comes because the chaotic initial condition (finite collections of particles
have asymptotically independent initial conditions) propagates. Propagation of chaos is
a well studied property of interacting Markov process models. A recent survey is that of
Sznitman [74].

A simple and useful mean field model in which to investigate the hysteresis phe-
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nomenon associated to dynamic routing in circuit-switched networks is a model of inter-
acting Markov chains introduced by Uchiyama. [76]). Consider a Markov process X"(t) =
(XT(), XZ()...X2(t)) on S™ = § x S8... x S where § is a finite set. (X"(t)), is char-
acterized by two sets of nonnegative constants L = {L*(y) : z,y € S, z # y} and
K = {K*¥(z',y') : z,y,2",y' € S, (2,9) # (z',¥")} and an infinitesimal generator given by

Gn = Z L+~ Z K,
l<k<l<n
with
Lig(8) = Y [#(Z%) - $(@)]L™(x})
z, €S
and

Krg(®) = Y Y [8(&h,) — d(@)) K=+ (z}, z})

zieSzies

where ¥ = (21,...,2,) € §", ¢ is a real function on §™, :ck [resp. :ck ;] is an element of S™
obtained from by replacmg z) [resp. zi and z; ] with z} [resp. z}, and z]], and the sum
2kt is taken over all pairs (k,!) such that 1 < k <! < n. Also assume that K*¥(2',y') =
K¥*(y',2"). (More generally a fixed number of exchangeable multi-particle interactions can
be considered, instead of just considering two-particle interactions as above.)

We think of S as the state space of an individual particle. Hence XP(t) is the
physical state of the kth particle in a system of n identical particles. The process evolves
as follows: each particle k evolves autonomously through a Markovian motion according to
L. Pairwise interaction between particles k¥ and [ is controlled by Kj,;: two particles in
state z and y change simultaneously to states z’ and y’ respectively at rate L{—y(&y—l The
factor n — 1 is there so that the interaction rate per particle is constant asn — oo Another
way to think of the pairwise interaction is as follows : for each y,z’,y’ € S, each particle in
state z chooses another particle at random from the remaining n — 1 at rate 1 s K=¥(2',y')
and if this particle is in state y they change together to states z’ and 3’ respectlvely If the
chosen particle is not in state y nothing happens.

Now let uf(t) = 2%, 1(X](t) = i). Then u™(t) = (u}(t), -1 U[g|(t)) is a Markov
chain on the |§|—dimensional simplex A given by

S|
A={ie RIS',Zug =1}

i=1
For i # j,1 < 1,7 <|S], let Ti; be an operator defined on @ € A by

. .1
Ty =+ (e~ )
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where e; is the unit vector in the ith direction. Then the infinitesimal generator A, of the
Markov Process u"(t) on A is the operator given by

And’(i) = E [¢(njﬂ)—¢(ﬁ)]lzi(j)u;n (6)
Kid'(4. 5! iy
+ Y. [(TTy ) - ¢(3) — EJ,IJ)u n; n @)
i,5,¢',J'€ES
i’ (1) £(5.5)
K:’,i Y] ; -
+ Z [$(T;T:500) — $(1)) n(_.7a1.7)un(u2n 1) ®)
i.5.5'€S

(14)#(5.3")
where ¢ is a continuous function on A.

Let u(t) € A evolve according to the following equation started with u(0).

2i(t) = Z Lj(i)uj - Z L‘(j)u,-

JES Jj€ES
J# J#i
+ PIDIN O DD I S (TR 9)
€S jeS 1'€S jES

for i € § where K7¥(z') = ¥ pes K™¥(', y).

Then the idea of propagation of chaos is captured by the following theorem.

Theorem 2.2 For the system of n interacting particles above let (X,(2), ..., Xy(t)) denote
the state of the first p particles and u2+1"(t) the fraction of particles p+1 <1 < n that are
in state z at time t. Let uP*1™(t) = (uB*1"(t),z € §). Suppose (X1(0), ..., X,(0), wP*1(0))
converges weakly to a product distribution p(V) @ ... @ pP) ® b6u(0) in E = SP X A.

Let u(t) solve the ODE (9) starting at ©(0). For1 <! < plet P* be the probability
measure on DEg[0,00) corresponding to the time inhomogeneous Markov chain X (1) with
state space S, with initial distribution u"), and such that the rate of jumping from state s
to state s’ is '

Mu(t),s,8) = L)+ D0 K¥(,8)u(?)
i,jES
(119)#(3.8)
Then the process (X(t), ..., Xp(t), uP*1(2)) converges weakly to a product distribution PV
e ® P¥? @ 6,4y in Dg[0, ).

This theorem is due to Uchiyama [76]. A proof of this theorem using modern tools
from the theory of weak convergence of Markov processes, see e.g. Ethier and Kurtz [33],
can be found in Anantharam and Benchekroun [6], together with applications to computing
approximations to sojourn times in networks of queues. The model of [37] can be verified
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to be a model of this type. In this model Theorem 2.2 gives the additional information
that the evolution of any finite collection of links is asymptotically independent in the limit
as the total number of links approaches infinity, and that each link evolves according to
a time-inhomogeneous birth and death process with up and down rates given explicitly in
term of the overall time varying empirical occupation distribution, which follows eqn. (5).

2.6 Large deviations

It is of particular importance to give simple rules which can predict which of the metastable
regimes is likely to dominate for a given set of parameter values. One approach to this
problem would be via the theory of large deviations. Intuitively, there is a “potential well”
associated to each equilibrium, and the equilibrium that is likely to dominate is the one
whose associated well is deepest, in that it takes the longest time to escape from the well
via a rare fluctuation. See Wentzell and Freidlin [79] for a rigorous formalization of such
intuition.

There does not appear to be a solution yet to this challenging problem. To close
the section, we briefly describe a recent result that is able to answer a related, albeit much
more special question. Consider the model of [76] (with a fixed number of exchangeable
multiple particle interactions) in the special case where § = {0,1}, i.e. when each of
the interacting chains is a 2-state chain. For each n the process (X™(t)), is a finite state
Markov process, and therefore admits a unique equilibrium distribution. Let a, denote
the stationary distribution of the empirical distribution of the interacting chains. Since
S = {0,1} this is a distribution on the set {£,0 < k < n}. We may write

an(%) = (:) exp(nha( )

for some function h,. We extend the definition of h, to [0,1] by linear interpolation. In
Anantharam [5], we prove the following result.

Theorem 2.3 The functions h,, converge uniformly to a limit h. A consequence is that the
distributions o, obey a large deviations principle with action functional

I(w) = ~h(x)+ D(u,3) +p 0Sus1

where !
D(u, -2-) = ulog2u + (1 — u)log(2(1 — u))
and )
= h(v) - D(u,=)] .
usel[lol.)l][ (v) = D(u,3)]

It is of particular interest that the action functional is in general nonconvex. Its
local minima correspond to the fixed points of the limiting differential equation (9). The
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global minima of the action functional may then be considered as corresponding to the
dominating regimes for the given parameter values. Arriving at a theorem of this sort for
the case of general S in the model of [76], and therefore in the model of [37], would be of
great interest.
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3 Datagram networks

Data networks work by breaking messages into packets, which are routed through the
network and reassembled at the destination. The mathematical analysis and design of such
networks involves studying networks of queues.

3.1 The M/M/1 queue

A basic queueing model is the M/M/1 queue. Packets enter a buffer of infinite capacity at
the times of a Poisson process of rate A. Each packet brings in an amount of work which
is an exponential random variable of mean u~!, these variables being independent from
packet to packet, and independent of the arrival process. There is a server performing work
at rate 1, that operates as follows : on finishing serving a packet it picks an arbitrary packet
from the buffer, if any, and proceeds to serve that packet till all the work it has brought in
is complete. Packets that have had their work completely served immediately depart the
buffer. The first M is a mnemonic for the Poisson (memoryless) character of the arrival
process, the second M for the exponential (memoryless) character of the work distributions,
the 1 reminds us there is a single server at work. (The queueing literature is littered with
a taxonomist’s paradise of such abbreviations.) The work brought in by a packet may be
taken as representative of its length, or more generally of the time required to carry out
some processing of it.

It is conventional to think of the packets as being served in the first-come-first-
served (FCFS) order, but as long as the identity of the individual packets is of no concern
the exponential assumptions ensure that the order in which packets are served is irrelevant.

Let (X (2),t 2 0) be the process of total of number of packets in the buffer, including
the packet being served, if any. Then (X (), > 0) is a birth and death process on the non-
negative integers Z, with up-rate A and down-rate u. It admits a stationary distribution if
and only if A < u, in which case, with p = Au~1 denoting the traffic intensity, the stationary
distribution is

m(n)=p"(1-p) ,n2>0.

3.2 The Jackson network model

Let us make three observations. The first is Burke’s theorem, also called the output theorem
for the the M/M/1 queue, see [17]. Consider an M/M/1 queue with A < p in stationarity
as a process defined for all t € R. Let (A;,t € R) denote the (Poisson) arrival process, and
(Dy,t € R) the departure process of packets leaving the queue. Burke’s theorem states that
(D1, t € R) is a Poisson process of rate A whose past at any time ¢t € R is independent of
the present state of the buffer, i.e.,

(D,,sSt)lIXt ,tER.



15

This is a direct consequence of the time reversibility of a stationary birth and death process.
Indeed, the departure process of the forward-time process is precisely the arrival process
of the reverse-time process. Nevertheless it is a striking, and even counterintuitive, result
as naive intuition would suggest, for instance, that an enormous number of departures just

prior to a given time ¢ would result in an increased likelihood of the buffer being empty at
time ¢.

The second observation is that Bernoulli sampling of a Poisson process results in in-
dependent Poisson processes. More precisely, if at each time of a Poisson process (N,t€R)
of rate A we draw an independent sample of a Bernoulli random variable whose probability
of being 1 is p, and split the process into two streams (N}, ¢ € R) and (N?,t € R) consisting
respectively of those points for which the value of the Bernoulli random variable was 1 or
0, then these are independent Poisson streams of rates Ap and A(1 — p) respectively.

The third observation is that the sum of independent Poisson processes is a Poisson
process.

We now describe a model of interconnected queues due to Jackson [44] by which
to describe a system into which packets enter, move between servers, and eventually leave.
A Jackson network has J infinite buffers. Packets arrive from the external world at the
times of a Poisson process of rate y. The outside world is conventionally indexed by 0.
An arriving packet is routed to buffer j with probability ro;, with E‘j’ﬂ ro; = 1, where it
queues in FCFS order. The work required by a packet at node j is an exponential random
variable of mean uf‘. Each buffer is served by its own server, that works on the leading
packet in the buffer at rate 1 till it completes the work required by this packet, after which
it immediately begins work on the next packet in the buffer, if any. With probability 7;; a
packet completing service at node j is routed to buffer k¥ where it queues in FCFS order,
and it leaves the system with probability rjo, where Ei:o ik = 1. Service times are i.i.d
and independent of the arrival process. Routing is Bernoulli, independent of the arrival
process and the service times.

We assume that the Jackson network is irreducible, i.e. it is possible for an exogenous
arrival to visit any queue before leaving the system. We also assume that it is stable, namely
that the solutions of the flow balance equations:

J
Mi=qroit ) Ajri, 1<i< (10)
=1
satisfy
N<m, 1<ig<lJ. (11)

Let X;(t) denote the number of packets in buffer j at time ¢. and let X(t) =
(X1(t),...,X4(t)). Then (X(t)); is a Markov process. Note that as long as the focus
is on this Markov process, so that the identities of the individual packets are ignored, it
is not important that the service at the individual buffers be FCFS, or even that it be
non-preemptive (i.e. the sever could leave a partially worked-on packet and move to begin
work on another packet). All that is important is that the servers be work-conserving, i.e.
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that they work whenever there is at least one packet in the corresponding buffer. Under the
stability and irreducibility conditions the Markov process (X (¢)); admits a unique stationary
distribution. The importance of the Jackson network model in applications stems from the
simple form of its stationary distribution, which is given by

71'(.'271, 73’-]) = H (1 - pl (12)
i€l

where p; = A\;u;! is called the load factor at node i. Such a stationary distribution is
said to be of product-form, since the individual stationary queue sizes are independent. As
might be imagined, this facilitates the computation of stationary quantities. Note that
it is far from the case that the evolutions of the individual buffer sizes are independent
in stationarity. An interesting line of research in stochastic networks is to develop more
sophisticated network models with product-form stationary distributions. A recent survey
of some of this literature is that of Nelson [63].

Walrand [77] has provided a clever explanation for the product-form stationary
distribution. Suppose that we introduce a small delay in the feedback of packets after they
have finished service at a buffer and before they are routed to another buffer in the system.
Schematically, the situation can be represented as in Figure 3.

1@

—=rrouting " routing -
Exogenous :l. Exogenous
arrivals departures

1@

< delay =

Figure 3: Explaining the product form stationary distribution

Let (X A(t))t be the process of buffer sizes in this modified system, where X4(t) =
(X£(t),...,X5(t)). We can guess the stationary distribution of (X 2(2)); using the intuition



17

gained from the M/M/1 queue. Suppose that X jA(O—) are independent geometric random
variables with parameter p; = ,\ijTI, 1 < j < J (where ); was defined in eqn. (10)). Also
assume that the delay line holds independent pieces of Poisson processes of rate 2oi AiTij
respectively destined for buffer j, and that these pieces are independent of X2(0-). This
sets up the initial conditions at time 0. We now argue that the situation at time A is
exactly the same. Over the time interval [0,A) the individual buffers are being fed by
independent Poisson process of rate A; respectively, since this is the result of summing
independent Poisson processes of rates yroj and 3°; A;vi; (see eqn. (10)). This process is
independent of the initial condition X J-A(O—), which is the stationary initial condition of an
M/M/1 queue of arrival rate A; and service time of mean uj?, so it follows that X4(A-)
is also a collection of independent geometric random variables of parameter p; respectively.
But Burke’s theorem tells us that the departures from the buffers over the interval [0, A)
are independent of this vector ! Since Bernoulli sampling of each Poisson process results in
independent Poisson processes, and the sums of independent Poisson processes are Poisson,
the delay line once again holds pieces of Poisson processes of rates 3°; A;r;; respectively
destined for buffer j, that are independent of X2(A-). When we let A — 0 we can
understand why the stationary distribution of the Jackson network is product-form.

3.3 Stability of Jackson-type networks

The stability condition (11) for the Jackson network is easy to understand : the effective rate
at which work enters a buffer should be strictly less the service rate. Of course, discussing
“effective service rate” presupposes that the network is stable. One of the main concerns
in stochastic networks over recent years has been to come to grips with the question of
necessary and sufficient stability conditions in more general queueing network models.

Consider the following generalization of the Jackson network model : We retain the
Bernoulli routing feature, but generalize the process of packet arrival times to a general
renewal process of rate 7, and the service times of packets at the individual buffers to
general independent identically distributed service times with mean service time [.I.;l at
buffer j. We also insist that service at the individual buffers is FCFS, non-preemptive, and
work-conserving. Intuition would suggest that if the flow balance equations (10) satisfy
(11), the resulting process is stable in some sense.

This problem turned out to be very difficult to resolve. Early works on this problem
are due to Borovkov [12], and Sigman [73]. Relatively satisfactory solutions to the problem
have only been found quite recently, see Foss [34, 35], Meyn and Down [61], Chang et al.
[20], Baccelli and Foss [10], and Dai [25).

We now give a glimpse of the elegant solution of this problem in [10]). Here the
problem of stability of datagram networks is approached from a very general point of view.
Consider first a broad generalization of the single server M/M/1 queue. On a sample space
(Q, F,P) admitting a shift  under which P is ergodic, we are given nonnegative random
variables (0o, 7o) satisfying E[og] = p™! < oo and E[rg] = A~! < o0. Let (0n,7;) =
(g008",1908"). Thus {0, T }n is a stationary ergodic sequence. ¢, has the interpretation
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of the work brought in by the nth customer to a server and 7, of the interarrival time
between the arrival of the nth customer and the n + 1st customer. The server works at rate
1 if there is work in the system. Let W, denote the workload in the system seen by the
nth customer. Then, starting from some initial condition, the workload evolves according

to the equation
Wapr = (Wn + 0y — Tn)+ (13)

This equation is called the Lindley equation. We ask for what parameter values this recursion
admits a stationary solution, i.e., a proper random variable Wy such that, with W,, = Wyoé™,
we have (W, ), satisfying (13). The M/M/1 queue is the special case where the sequence
{0n)Tn}n isii.d. with og and 7p independent exponential random variables. For the M/M/1
queue, we know that the condition for existence of a stationary solution to (13) is precisely
A < p. The following remarkable result is due to Loynes [57].

Theorem 3.1 If A < pu the Lindley equation admits a unique stationary solution. If A > p
there is no stationary solution to the Lindley equation.

Proof:

The proof is representative of a large number of results of this type, so it is worthwhile to
sketch the ideas. Fix m > 0. We define random variables (W*,n > —m) with W™_ =0
and obeying Lindley’s equation

i1 = (W' +on =)t (14)

We observe that W4, is a monotone increasing function of W, in (13). Thus (W™, m > 0)
is increasing in m for fixed n, and has a limit W which obeys

:?l-l = (W:o + 05 — Tn)+ . (15)

Since W, = W1 0 0, we have W3, = W 0 0. It remains to consider when W<° is
proper. We may write

Wit o0 =Wr, =Wl = W™ A (1, — 0,) . (16)
Taking expectations, we get
EWz' A(ta—0n)] <0 (17)
and so
EWP A(1n—0,)]1<0. (18)

Since (W2°), is a stationary ergodic sequence, P(W° = o) is either 0 or 1. From (18)
we see that P(WS° = oo) = 1 implies that E[r,] < E[oy), i.e., A > u. This proves that
if A < p then a stationary solution to the Lindley equation exists. For the situation when
A > p, first note that (W3°), constructed above is the minimal 6-invariant solution of (13),
and that

Wse = (sup Y (0ms — 7-)* = o0 (19)
R k=1
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when A > p. For more details regarding the solutions of (13) see Baccelli and Brémaud [9,
Sec. 2.2). o

The stability question for datagram networks can be studied in the stationary ergodic
framework. A fundamental distinction that emerges is between a station-centered and a
customer-centered point of view, see [10]. In the station-centered model, called the Jackson-
type network, the service times and routing variables are associated to the stations, and
handed out to the packets by the server as they are picked up for service. One can visualize
identical, featureless packets moving around the network and queuing up in FCFS fashion
at the individual nodes. When it is the turn of such a packet to receive service at a node it
picks up its service time from a list maintained at the node; when this service is complete
it then picks up a routing variable from a list maintained at the node to decide which node
to move to next. In contrast to this, in the customer-centered model, called the Kelly-type
network, the service and routing variables are associated to the individual packets. One
can visualize the packets arriving with marks giving their entire route through the network,
together with the service times the packet will require at each visit to each node along the
route. As before the service at each node is in FCFS order of arrival, but the mark is carried
by the packet throughout its route. We discuss each of these models in turn.

The generalized Jackson network with renewal arrivals, i.i.d. service, and Bernoulli routing,
can be considered as either a Jackson-type network or a Kelly-type network. Baccelli and
Foss [10] have given a very satisfactory solution to the stability problem for Jackson-type
networks. Consider a network consisting of a fixed finite number of stations, each of which
has infinite waiting room and a single server that works at unit rate. Consider a stationary
ergodic marked point process of arrivals, each of which brings with it a route through the
nodes of the network and a service variable for each visit to each node along the route. This
process can be described on a sample space (2, F,P) admitting a shift § under which P is
ergodic, by giving a pair (£, 7o) : the variable & describes the route through the nodes of
the network and the corresponding service variables for each visit to each node along the
route, and 7o gives the time to the next arrival. We now visualize the entire mark peeling
off the arriving customer at the time of its arrival and joining lists of service and routing
variables maintained at the individual nodes, in sequence, at the tail of such lists. The
featureless packets now move around the network picking up service and rounting variables
that are handed to them from these lists by the nodes.

A key observation is that this mechanism of peeling off the marks of the arriving packets and
attaching them to lists at the appropriate nodes ensures that service and routing variables
are always available at a node when needed. What is meant by this statement is the following
: Consider an initially empty network (also with empty service time and routing lists at each
node) and suppose that n packets arrive at the network at times #(1) < ¢(2) < ... < {(n).
Each packet brings a mark (a route through the network and a service time requirement
at each visit to each node along the route). This mark is peeled off immediately on arrival
and distributed among the appropriate lists at the appropriate nodes. The now featureless
packets move through the network, queueing at the nodes in FCFS order and picking up
service time and routing variables from the lists. Then we will not have a situation where a
packet looking for a service time variable to pick up to enter service at a node or a routing
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variable to pick up on finishing service at a node finds the list empty. This statement needs
a proof; indeed, with the mechanism of peeling off marks being used, it is possible for a
packet to use a service time or routing variable brought in by a packet that arrives after it
does.

A second key observation is a monotonicity property proved by Foss [34], and Shantikumar
and Yao [71]; see also [20, Prop. 4.1] and [10], Theorem 10. This says that, with the
mechanism of peeling off marks on arrival that was just described, when we consider the
situation with n customers entering into an empty network with empty lists, then delaying
the arrival times or increasing any of the service requirements delays the times at which
service completions take place; in fact, for any nodes k and ! and any j > 1, the jth service
at node k that sends a packet to node ! will be delayed. Further the time by which these
services are delayed can be bounded in terms of the time by which the arrivals are delayed
and the increases in the individual service times at the nodes, see [10, Corollary 3).

These observations now allow us to set into motion a machinery to use the Loynes’s scheme
and exploit Kingman’s subadditive theorem by considering the effect of dilations and time
shifts of the arrival process. The essential features of this process have been abstracted by
Baccelli and Foss [11], and results in a saturation rule for stability. Namely if we consider a
limiting system in which the network is started empty and immediately receives an infinite
number of arrivals, and compute the rate at which packets are released from this scenario
then the original network will admit a stationary regime for all arrival rates strictly less than
this saturated evacuation rate, and will not admit a stationary regime if the arrival rate
strictly exceeds this saturated evacuation rate. In [10] it is shown that this characterization
of stability is precisely that given by the requirement (11) on the J; satisfying (10). The
construction of the stationary regime for the network when (11) holds follows the lines of
Loynes scheme, because the monotonicity property proved above allows the variables of
interest in the network to be described in terms of a monotone stochastic recursion.

3.4 'Weak Solutions of Stochastic Recursions

The recursion (13) is an example of a stochastic recursion. Let (2, F,P) be a probability
space admitting a shift § under which P is stationary and ergodic. Let (E,£) be a Polish
space and ¢p a random variable defined on (2, F,P) that takes values in the space of
measurable maps from (E, £) into itself. Let ¢q(w) = o(§"w). Then, under P, {pn,n > 0}
is a stationary ergodic sequence of random maps from (E, £)into itself. In many applications
the stability question can be framed as one of finding the conditions under which recursions
of the form

Tngl = ‘Pn(zn) (20)

admit a stationary solution. For instance (13) is an equation of this type with (E,£) =
(R,B) and ¢o(z) = (z + 0o — 7o)*. Note that ¢o is monotone. By and large, all such
recursions that have been successfully studied in the literature exploit some kind of mono-
tonicy of ¢o, and are handled by proceeding pathwise using a version of the Loynes’ scheme
outlined in the proof of Theorem 3.1. Recently Anantharam and Konstantopoulos [8], have
developed another approach to solving such stochastic recursions, which does not require



21

monotonicity, but is based on the weakening of the solution concept, along lines also pro-
posed in [15]. We briefly sketch this approach; for details, see [8].

A weak solution of the recursion (20) is a measure Q on a measurable space (2, ) admitting
a measurable shift @ such that Q is f-invariant, and a pair of random variables X and &,
on (&, F) taking values respectively in E and in the space of measurable maps from (E, £)
into itself, such that

Xo 0 6 = ®o(Xo) . (21)

In [8] we observe that it is often possible to construct such a weak solution along the lines
of the skew product construction in ergodic theory (see, e.g. Krengel [50]), even in the
absence of any kind of monotonicity of ¢o. Assume that (Q,F) is a Polish space. Consider
the product space  x E, endowed with the product o-field F ® £ and the new measurable
shift O(w,z): 2 x E — Q x E defined by

O(w,z) = (bw, po(w)[z]). (22)

Note the following composition rule.

OMw,z) = (0"w, wo("  w)po(d"%w). . .po(w)[z])
= (0"w, n-1(w)pn-2(w)...po(w)z]) ,
O™ (w,z) = OM(O™(w,z)).

In (8], the following result is proved.

Theorem 3.2 Let Qg be a probability distribution on Q x E whose  marginal is P. Let Q,
denote the probability distribution Qoo©~" on Q2 x E. Suppose that the sequence {Qn,n > 0}
is tight. Let Q be any subsequential weak limit of {Qn,n > 0}. Then Q on (A X E,F®£)
with the shift © and with Xo(w,z) = z and ®o(w,z) = ¢o(w) is a weak solution of (20).

Examples of non-monotone recursions that can be handled using this approach are discussed
in [8]. The following uniqueness theorem is also useful, see [8]. Let Cy(2 x E) denote the
space of bounded continuous functions on @ x E .

Theorem 3.3 Suppose that for every ©-invariant probability distribution Q on Q x E hav-
ing Q marginal P, and all f € Co(Q x E)

i 13 (69(0,2)) = () (23)

n—oo
— nJ_o

erists Q-a.s. and is a constant for Q-a.a. (w,z). Then if there is a O-invariant probability
distribution Q on Q X E having Q marginal P, it is unique.

Conversely, if there is a unique ©-invariant probability distribution Q on Q x E having Q
marginal P, then for all f € Cy(Q x E) the limit in (23) ezists Q-a.s.. and is constant for
Q-a.a. (w,z).
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3.5 Kelly-type networks

We now turn to a discussion of Kelly-type networks, where the service time and routing
variables are carried by the packets as they move around the network and queue in FCFS
fashion at the nodes. The stability question for Kelly-type networks is very poorly under-
stood. Indeed, already in special cases, examples are known where the rate conditions (11)
do not guarantee stability. We now briefly sketch the genesis of these examples. Note that
the first two examples outlined below are not Kelly-type networks.

The example of Figure 4 is described by Lu and Kumar [58}, and attributed to Seidman; see
also Kumar and Seidman [54]. There is a single server that can serve either of the buffers
1 and 4, and another server that can serve either of the buffers 2 and 3; each server works
at rate 1. There are priority rules for which buffer the server can serve, as indicated in the
figure : buffer 4 has priority over buffer 1, and buffer 2 has priority over buffer 3. Assume
that there is an arrival at every integer time, and that its service requirements are 2/3 at
each of the buffers 2 and 4, and that the service requirement is 0 at each of the buffers 1
and 3 : this means that the server just has to “kiss” the packet before allowing it to leave.
Also assume that kissing at buffer 3 takes place just before kissing at buffer 1. Consider
the initial condition (at time 0-) when there are M packets in buffer 1 and the other buffers
are empty. All M inital packets are immediately kissed and go to buffer 2. Further, if we
define the time 7 by

2rtMy=r (24)

so that 7 = 2M, we see that, in view of the priority rules, at time 7— there will be 3M
packets in buffer 3, and all the other buffers will be empty. These then get kissed at buffer
3, leaving 3M packets at buffer 4 with all the other buffers empty. Finally, in view of the
priority rules, at time 4M- we are in a situation where there are 4M packets in buffer 1,
with all the other buffers empty. The system has returned to a scaled version of the initial
condition, with scaling bigger than 1.

What is remarkable about this example is that the total work that needs to be done per
packet by each server is % < 1. Clearly rate conditions do not suffice to determine the

stability region in this system with service priority rules.

The system above involves a fluid model, and instantaneous events. Motivated by a similar
example in [54], Rybko and Stolyar [68], considered the model of Figure 5. There are two
classes of packets. Assume that the respective arrival processes are independent Poisson
processes of rate 1. The service time required by a packet in buffer ij is an exponential
random variable of mean m;;; all these service times are independent, and independent of
the arrival processes. There is a server that works at rate 1 serving buffers 11 and 22, giving
preemptive priority to buffer 22, and another server that works at rate 1 serving buffers 12
and 21, giving preemptive priority to buffer 12. The rate based condition for stability is
then

mp+me < 1
mia+me; < 1.
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In [68] the situation with m1; = my; = my > 1 and my; = my; = my > 0, and with
my + m3 < 1 is considered. It is shown that the Markov process describing the system is
not positive recurrent. Thus rate conditions do not suffice to determine stability in this
example.

A sketch of the intuition behind this result is the following : Let Q;;(t) denote the queue
size at buffer ¢j at time ¢, including the packet in service, if any. Then the network can
described by a Markov process with state (Q;;(¢),1 < 4,5 < 2). To begin with, we may
restrict attention to the subset of the state space such that Qq2(¢)Q22(t) = 0, since from
any initial condition we reach such a state and then never leave this subset of states. This
means that if @12(2) > 0, then Q32(t) = 0, so that type 1 calls can be thought of as entering
a tandem system of two rate 1 servers with infinite buffers in front of them. This picture
is no longer valid when buffer 12 empties and a packet at buffer 11 is served and enters
buffer 22 before a packet from buffer 11 is served and enters buffer 12. Now arriving type
1 packets build up till we have a situation where buffer 22 empties and a packet served at
buffer 11 reaches buffer 12 before a packet served at buffer 21 enters buffer 22. Compressing
the intervals where type 2 packets are being worked on gives the picture of type 1 packets
entering a tandem system of two rate 1 servers but with an arrival process that includes
large bursts of arrivals corresponding to the built up packets of type 1 during a cycle when
type 2 packets are being worked on. It is now shown that these bursts destabilize the
system. For details, see Section 6 of [68].

Both examples above are based on priority rules for the servers. Nevertheless, Bramson [13]
had the insight that it is possible to mimic the phenomenon underlying these examples when
the service discipline is FCFS, i.e. in Kelly-type networks. The invention of the examples
of Bramson [13, 14], and fluid-model based examples by Seidman [70]. showing that the
natural rate conditions (11) do not suffice to guarantee stability in Kelly-type networks is
one of the most striking recent developments in the area of stochastic networks.

The example of [13] is illustrated in Figure 6. There is a single stream of customers entering
the network according to a Poisson process of rate 1 and proceeding according to the route

-122-5205...9202-51— (25)

The service requirements at each visit along the route are exponentially distributed random
variables, with mean ¢ at the first visit to node 2 and the last (second) visit to node 1 and
mean § at the first visit to node 1 and all except the first visit to node 2. It is demonstrated
in [13] that for ¢ sufficiently close to 1, if the number of visits, J, to node 2 is sufficiently
large (depending on c¢) and § is sufficiently small (depending on ¢ and J) the Markov process
describing the system is transient. Note that this means that the natural rate conditions

c+é < 1
c+(J-1) < 1
do not suffice to guarantee stability. For details, see [13].

The second example of Bramson, presented in [14], demonstrates that for any given p < 1,
however small, it is possible to have Kelly-type networks where the load factor at each node
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——l 1
4 has priority over 1 2 has priority over 3
Figure 4: The Lu-Kumar Example
-
Type 2

22 has priority over 11 12 has priority over 21

Figure 5: The Rybko-Stolyar Example




25

is less than p, but the network is nevertheless unstable. However, note that the smaller the
prescribed p, the larger the number of nodes needed in order to construct an example of
this sort.

There is an enormous number of quick visits to node 2

Figure 6: Bramson’s first example

Understanding the stability question for Kelly-type networks is one of the important and
exciting challenges thrown up by the area of stochastic networks. Progress towards this
problem in a Markovian framework is reported by Dai [25], Dai and Meyn [26], and Kumar
and Meyn [53].
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4 Integrated Broadband Networks

Network design engineers would like to have in place a network that can offer a wide variety
of services, such as audio, video, data, etc. using a common protocol suite. Such a network
is conceived of as the facilitator of the multimedia revolution that is booted about in the
popular press. Progress in fibre optics and switching technology has made this goal appear
within reach. From the viewpoint of stochastic analysis, a number of new questions have
been brought into prominence by this drive. In this section we briefly introduce a couple of
recent developments in research, aimed at addressing these questions.

4.1 Effective Bandwidths

The theory of effective bandwidths, see Hui [43] and Kelly [47), is currently a topic of
considerable research, The rationale is to try to carry over some of the intuition available
from the design of circuit-switched networks to the design of networks that handle bursty
traffic. This is made possible by results in large deviations theory.

To convey the basic idea, we first recall the Gartner-Ellis theorem, see [30, 36]. For more
details, see Dembo and Zeitouni [27, Sec. 2.3]. Let (X,,n > 1) be a sequence of random
variables and S, = >, X;. Suppose that the limit

A6) = lim %logE[exp(OSn)] (26)

exists (possibly infinite) for all # € R and is lower semicontinuous. Define the effective
domain of A(-) as {6 : A(f) < oo}. Suppose that § = 0 is in the interior of the effective
domain, that A(-) is differentiable throughout the interior of its effective domain, and that
the derivative approaches oo in absolute value for any sequence approaching a boundary
point of the effective domain. Then (%n,n 2 1) obeys a large deviations principle with
convex good rate function A*(:) given by the convex dual of A :

A*(z) = sgp[(h - A(6)], (27)
i.e. for any closed set F C R we have
. 1 Sn PR
h’im_'s;p ;log P(7 €EF)< —;xexi};A (z) (28)

and for any open set G C R we have
NP | Sn .
= = > - *(2) .
h'{y‘gf - log P( — € G)> ;IG%A (z) (29)
Here a rate function is said to be good if it has compact level sets.

Consider now the Lindley equation (13) with X,, = o, ~ 7,,, which we reproduce here :

Woi1 = (W + Xn)+ . (30)

Then we may prove the following result, see [29).



27

Theorem 4.1 Let (X,). be a stationary ergodic process with E[X,) < 0, and satisfy the

conditions of the Gdrtner-Ellis theorem. Then there is a unigue stationary solution to (30)
which satisfies

.1
A@)<0= B]J_r‘nco Elog P(W,>B)<-0. (31)

The probability that the stationary queue size exceeds some level is of particular interest in
applications. Indeed, in practice buffer sizes are finite, and this probability can be taken as
representative of the probability of buffer overflow. Since these probabilities are very small
in well designed systems, an exponent of the form of the limit on the right hand side of
(31) is of considerable interest. Theorem 4.1 gives a broad general connection between this
exponent and the large deviations behaviour of the driving process (X;),.

Consider next a collection of independent sources of different types 1,...,J. We think of
time as divided into slots of identical length and assume that the work brought in by a traffic
stream of type j in successive slots has the distribution of (A4 ),, where (A7), satisfies the
conditions of the Gartner-Ellis theorem, with

A(0) = Jlim, 2 1og Blexp(03 A1) (32)

=1

There are n; traffic streams of type j, 1 < j < J. These streams all share a buffer which
is served by a work-conserving server that can serve at most ¢ units of work during a slot.
Assuming that the work brought in by a traffic stream arrives at the beginning of the slot,
and letting W, denote the total work in the buffer at the end of slot n — 1, we see that
(Wy), obeys a Lindley equation of the form (30) with X, being the total work brought in
during slot n, less c.

For 6 > 0, let a;(0) = 5\-7'3@-. The function a;(-) is called the effective bandwidth function of
sources of type j. The reason behind this is the following theorem, obtained by Kesidis et
al. [48], which follows from Theorem 4.1, see [29] for a proof.

Theorem 4.2 For the buffer shared by n; arrivals of each type j, 1 < j < J, and served
by a work conserving server that can serve at most ¢ units of work during a slot, as above,
we have 1

Y njai(f)<c= Jim —log P(W, > B)< -6 (33)

2

Thus the idea of effective bandwidth appears to convert problems of designing for small
buffer overflow probability into problems similar to fitting calls on a link in a circuit switched
network. Much of the current work in this area is aimed at trying to carry over this analogy
to networks of queues. There has also been considerable interest in computing formulas for
the effective bandwidths of different source types. For a better perspective on this rapidly
evolving area see [19, 31, 64].
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4.2 Virtual backlog

Before a traffic stream is admitted to the network it is regulated to prevent its potential
burstiness from adversely affecting the ability of the network to handle other traffic streams
sharing the network. This process is called flow control. One of the features of broadband
networks is the difficulty of effectively using feedback for flow control. This is because a
large number of packets would have already entered the network before feedback has a
chance to come into play. For this reason the flow control schemes currently being proposed
are largely open loop in nature. Of these, variants of the leaky bucket flow control scheme,
see [75], are by far the most popular.

Broadband networks are likely to use the ATM (Asynchronous Transfer Mode) protocol
suite, see [28, 40]. In an ATM network, traffic is broken up into packets of fixed length,
called cells. The basic idea of the leaky bucket scheme is to regulate the admission of
cells into the network by means of a stream of tokens generated at a constant rate with
constant interarrival times. The tokens collect in a token buffer, and the cells collect in a
cell buffer. A cell is released only when there is a token available, in which case it consumes
one token. Tokens arriving when the token buffer is full are lost, as are cells arriving when
the cell buffer is full. This scheme has been found to be very effective in reducing the
burstiness of offered traffic in practice, and this burstiness reducing property has also been
analytically justified, see (7, 51]. For instance, Anantharam and Konstantopoulos [7] prove
the following result : Consider a stationary point process as bringing one unit of work with
each point. Define a stationary point process to be less bursty than another such process
if the steady state queue length in any single server queue working at rate strictly bigger
than the total rate of arrival of work in either process is stochastically smaller than that
for the other process. Then for any stationary arrival process of offered traffic into a leaky
bucket flow controller, if the token arrival rate is at least as big as the rate of offered traffic,
the burstiness of the stationary departure process is monotonically increasing in the size
of the token buffer. Here we assume that the cell buffer has infinite capacity. Note that
the degenerate case of infinite token buffer corresponds to not regulating the arrival process
at all, so this result shows that the departure process from the leaky bucket (the traffic
admitted to the network) is less bursty than the process of arrivals into the leaky bucket
(the offered traffic from the source).

We observe that the leaky bucket scheme regulates offered traffic so that it satisfies bursti-
ness constraints of the form that the amount of traffic over a time interval is bounded by an
affine function of the length of the interval. Indeed, if the size of the token buffer is C, and
the rate of token generation is p, the total number of cells that can be released by the bucket
over a time interval [a, )] can be no more than C + 1 + p(b — a). The class of traffic flows
that satisfy such burstiness constraints is therefore an interesting one to consider. There
has been a considerable amount of work on such models of traffic flow, beginning with Cruz
[22, 23]; see also Chang [19], and Parekh and Gallager [65, 66].

A key observation is that it is possible to characterize the past of a burstiness constrained
flow in terms of a simple recursively updatable statistic which we call the virtual backlog.
To make this precise let us assume, for convenience, that time is discrete, although similar
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ideas carry over to continuous time. We will use the term message flow to denote a sequence
of nonnegative real numbers (an,n > 0). We model traffic on the links of a network
by a message flow. A message flow (a,,n > 0) is said to be (o, p) constrained, if for all
0 < ng £ n; < 00, we have

ny
Eak$a+p(n1—no+l). (34)
no

Let (an,n > 0) be a (0, p) constrained flow. We say that it has initial virtual backlog oo, if
in addition to (34) the flow obeys the constraints

n
Y ax < oo+ p(n+1) (35)
0
for all » > 0. Then we may easily prove the following result, see [4] for instance.

Lemma 1 Let (an,n > 0) be a (o, p) constrained flow with initial virtual backlog o¢. Sup-
pose that ao is revealed. Then the information gained about (an,n > 1) is completely
summarized by the statement that (a.,n > 1) is a (o, p) constrained flow with initial virtual
backlog 0., where

o1 = min(oo + p — ao,0) (36)

This observation allows one to adopt a system theoretic viewpoint to the design of resource
allocation and control strategies in networks handling burstiness constrained flows. Indeed,
the virtual backlog is a recursively updatable state that completely summarizes the past of a
burstiness constrained flow. We have been able to use this intuition to approach the problem
of designing optimal open loop flow control strategies for traffic in broadband networks from
a prescriptive point of view. For instance, Konstantopoulos and Anantharam [49] pose and
solve the problem of regulating an arbitrary traffic stream to create a (o, p) constrained
traffic stream, while subjecting it to minimal delay. The permissible schemes are allowed in
principle to use the entire past history of the offered traffic. The possibility of additional
constraints such as a limit on the amount of traffic that can be buffered or a limit on the
acceptable delay of traffic is also considered. The optimal control schemes that we find
are very simple in nature (in fact they are greedy schemes), and are based on the virtual
backlog of the admitted traffic stream. They can therefore be implemented with very little
intelligence at the flow controller. For the problem with a constraint on the amount of
traffic that can be buffered the optimal solution in fact turns out be a leaky bucket flow
controller.

We now describe an abstract point of view for the control problems faced by network
elements inside a network handling burstiness constrained traffic, relying on the idea of
virtual backlog, see [4). This idea was first discussed in [3]. We visualize the network
element as being fed by a number of burstiness constrained flows and as implementing
actions based on past information. Since we are working in discrete time throughout, we
will assume that the state of the network element at time n, n = 0,1,... is given by an
element £, € =. At time n the network element is to choose a control action u, € U. At
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a switch, for instance, U might represent a choice of matching between input ports and
output ports. The evolution of the state of the network element occurs in response to the
incoming flows at the current time and the choice of control action, resulting in the abstract
evolution equation

€n+1 = f(fm urngn) (37)

Note that when there are K driving message flows with the the i th flow being (o*, p’)
constrained, 1 < ¢ < K, the domain of f is E x U x l'[{il [0,0° + p'). A randomized adapted
control strategy at the network element is a choice of a probability distribution on U at each
time n as a function of {[o,n), %[0,n-1}, Zo, and @jo,n—1) Here gy is the vector of initial virtual
backlogs of the flows.

The problem of designing a good control strategy can be posed via the theory of zero-sum
stochastic games. For instance, we may postulate a function ¢(¢,u,a) representing the
cost associated to taking the action u when the current element state is £ and the current
message flows are given by @. We think of this as a cost paid by the controller to the sources.
Let 0 < 8 < 1 be a discount factor. We may then formulate the problem of the controller
as one of minimizing the total infinite horizon discounted cost

o0

> Bre(bny unya,) (38)

n=0
The minimization is to be done over all possible randomized adapted control strategies of
the controller and over all possible randomized adapted control strategies of the sources.
Since the source action space is convex, this is equivalent to a worst case formulation where
the controller attempts to minimize the overall discounted cost over all possible burstiness
constrained source sequences.

Using techniques that are fairly standard in the theory of stochastic games, one can prove
the following theorem. For the basic ideas behind the Shapley recursion, see Shapley [72].

Theorem 1 Suppose = is a complete separable metric space and U is compact. Suppose f
is continuous. Suppose there is a continuous nonnegative function g defined on = having
compact level sets, a polynomial p(-), and a constant K < oo such that, forall€ € Z, u e U,
and a € [TK,[0,0° + ]

(1) lg(£(&,u,0)) - 9(§)| < K.
(2) c(é,u,0) < p(9(£))-

Then the stochastic game above admits a continuous value function that is the unique fized
point of a Shapley recursion. Further, both the controller and the sources have optimal
stationary randomized adapted strategies which depend only on the state of the game. These
are respectively given by the outer extremizers in the min-maz and the maz-min forms of
the Shapley recursion.
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By iterating the Shapley recursion, optimal control strategies for the controller within the
context of this formulation can be identified. Further, they can in principle be tmplemented
in real time. Indeed, the entire history of a burstiness constrained flow can be kept track of
by the recursively updatable virtual backlog, which is a simple finite dimensional statistic.
This therefore appears to be a promising approach to handle resource allocation problems
in broadband networks. Analytical results about the qualitative nature of optimal control
strategies in specific problems would also be welcome. In practice, of course, one would
expect that the basic burstiness parameters should be updated on a slower time scale.
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5 Concluding remarks

We have given a rather selective sketch of some of the recent research in the area of stochas-
tic networks, organizing them along the lines of distinct applications contexts. Large areas
of highly interesting work, both from the viewpoint of mathematics and from the viewpoint
of applications, have been left entirely untouched; this includes work on diffusion approxi-
mations, see [21, 41, 24, 42}; on the use of self-similar traffic models, which appear to match
actual samples of local area network traffic much better than Markovian models, see Leland
et al. [55]; on the analysis of different scheduling policies for re-entrant lines, see Kumar [52];
on the stochastic perfomance analysis of interconnection networks that form the switching
fabric of high speed networks, see [67]; among many others. The reader whose appetite is
whetted by this survey, and who follows the track of some of the references, will no doubt
quickly find a wealth of interesting and useful problems to occupy his or her attention.
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