Copyright © 1995, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



TWO COMPLEMENTARY HEURISTICS FOR
TRANSLATING GRAPHICAL DSP PROGRAMS
INTO MINIMUM MEMORY IMPLEMENTATIONS

by

Shuvra S. Bhattacharyya, Praveen K. Murthy,
and Edward A. Lee

Memorandum No. UCB/ERL M95/3

10 January 1995



TWO COMPLEMENTARY HEURISTICS FOR
TRANSLATING GRAPHICAL DSP PROGRAMS
INTO MINIMUM MEMORY IMPLEMENTATIONS

by

Shuvra S. Bhattacharyya, Praveen K. Murthy,
and Edward A. Lee

Memorandum No. UCB/ERL M95/3

10 January 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



TWO COMPLEMENTARY HEURISTICS FOR
TRANSLATING GRAPHICAL DSP PROGRAMS
INTO MINIMUM MEMORY IMPLEMENTATIONS

by

Shuvra S. Bhattacharyya, Praveen K. Murthy,
and Edward A. Lee

Memorandum No. UCB/ERL M95/3

10 January 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



Two Complementary Heuristics for Translating Graphical DSP

Programs into Minimum Memory Implementations

Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A. Lee

ABSTRACT

Dataflow has proven to be an attractive computational model for graphical DSP design
environments that support the automatic conversion of hierarchical signal flow diagrams into
implementations on programmable processors. The synchronous dataflow (SDF) model is partic-
ularly well-suited to dataflow-based graphical programming because its restricted semantics offer
strong formal properties and significant compile-time predictability, while capturing the behavior
of a large class of important signal processing applications. When synthesizing software for
embedded signal processing applications, critical constraints arise due to the limited amounts of
memory. In this paper, we propose a solution to the problem of jointly optimizing the code and
data size when converting SDF programs into software implementations.

We compare two approaches. The first is a customization to acyclic graphs of a bottom-up
technique, called pairwise grouping of adjacent nodes (PGAN), that was proposed earlier for gen-
eral SDF graphs. We show that our customization to acyclic graphs significantly reduces the com-
plexity of the general PGAN algorithm, and we present a formal study of our modified PGAN
technique that rigorously establishes its optimality for a certain class of applications. The second
approach that we consider is a top-down technique, based on a generalized minimum-cut opera-
tion, that was introduced recently in [14]. We present the results of an extensive experimental
investigation on the performance of our modified PGAN technique and the top-down approach
and on the trade-offs between them. Based on these results, we conclude that these two techniques
complement each other, and thus, they should both be incorporated into SDF-based software
implementation environments in which the minimization of memory requirements is important.

A portion of this research was undertaken as part of the Ptolemy project, which is supported by the
Advanced Research Projects Agency and the U. S. Air Force (under the RASSP program, contract
F33615-93-C-1317), Semiconductor Research Corporation (project 94-DC-008), National Science Foun-
dation (MIP-9201605), Office of Naval Technology (via Naval Research Laboratories), the State of Cali-
fornia MICRO program, and the following companies: Bell Northern Research, Dolby, Hitachi, Mentor
Graphics, Mitsubishi, NEC, Pacific Bell, Philips, Rockwell, Sony, and Synopsys.

S. S. Bhattacharyya is with the Semiconductor Research Laboratory, Hitachi America, Ltd., 179
East Tasman Drive, San Jose, California 95134, USA.

P. K. Murthy and E. A. Lee are with the Dept. of Electrical Engineering and Computer Sciences,
University of California at Berkeley, California 94720, USA.



1 Motivation

In this paper, we present efficient techniques to compile graphical DSP programs based on
the synchronous dataflow (SDF) model into software implementations that require & minimum
amount of memory for code and data. Here, we focus mainly on programs that are represented as
acyclic SDF graphs; a large class of important DSP applications (some examples will be given in
the sequel) can be implemented with such programs.

Numerous DSP design environments, including a number of commercial tools, support
SDF or closely related models [10, 12, 15, 16, 17]. In SDF, a program is represented by a directed
graph in which each vertex (actor) represents a computation, and an edge specifies a FIFO com-
munication channel. In SDF, each actor produces (consumes) a fixed number of data values
(tokens) onto (from) each output (input) edge per invocation.

Figure 1 shows a simple SDF graph.This graph contains three actors, labeled A, B and C.
Each edge is annotated with number of tokens produced (consumed) by its source (sink) actor,
and the “D” on the edge from A to B specifies a unit delay on this edge. Given an SDF edge e,
we denote the source actor and sink actor of e by src (e) and snk () , and we denote the delay
on e by delay (e) . Each unit of delay is implemented as an initial token on the edge (when there
is no ambiguity, we do not distinguish between the FIFO buffer associated with and edge and the
edge itself). Also, prod (e) denotes the number of tokens produced by src (e) , and cons (e)
denotes the number of tokens consumed by snk (e) .

A schedule is a sequence of actor firings. We compile a properly-constructed SDF graph
by first constructing a finite schedule S that fires each actor at least once, does not deadlock, and
produces no net change in the number of tokens queued on each edge. We call such a schedule a

valid period schedule, or simply a “valid schedule.” Corresponding to each actor in the schedule

@2 D >‘I®1 3@

Figure 1. A simple SDF graph.




S, we instantiate a code block that is obtained from a library of predefined actors, and the result-
ing sequence of code blocks is encapsulated within an infinite loop to generate a software imple-
mentation of the SDF graph.

SDF graphs for which valid schedules exist are called consistent SDF graphs. In [13],
efficient algorithms are presented to determine whether or not a given SDF graph is consistent,
and to determine the minimum number of times that each actor must be fired in a valid schedule.
We represent these minimum numbers of firings by a row vector q G- indexed by the actors in G,
and we refer to q; as the repetitions vector of G . We often suppress the subscript if G is under-
stood from context. More precisely, the repetitions vector gives the minimum positive integer

solution X = q; to the system of balance equations
x(src (e)) prod (e) = x(snk(e)) cons (e) ,foreachedge e in G. ¢))

A valid schedule is any schedule that does not deadlock, and that invokes each actor A
exactly kq; (A) times for some positive integer k. This positive integer is called the blocking
factor of the valid schedule, and it is denoted by J or by J (S) , where S is schedule. A schedule
that has J = 1 is called a minimal schedule.

Given an e in G, we define the total number of samples exchanged on e , denoted
TNSE (e, G) , or simply TNSE (e) if G is understood, by

INSE (e) = qg(src(e)) x prod(e), 2
or equivalently, from (1),
INSE (e) = qg(snk(e)) x cons (e) . 3)

Thus, TNSE (e) is the total number of tokens produced onto (consumed from) e in any
minimal, valid schedule for G .

ForFigure 1, q = q(4,B,C) = (3,6,2),and
TNSE ((A,B)) = TNSE ((B,C)) = 6.Note that we adopt the convention of indexing vectors

using functional notation rather than subscripts.



One valid schedule for Figure 1 is B (2AB) CA (3B) C. Here, a parenthesized term
(nS,S,...S;) specifies n successive firings of the “subschedule” S, S,...5;, and we may trans-
late such a term into a loop in the target code. Observe that this notation naturally accommodates
the representation of nested loops. We refer to each parenthesized term (nS,S,...S;) as a sched-
ule loop having iteration count n and iterands S,S,...S,.

A looped schedule is a finite sequence (V,, V,, ..., V}) ,represented as V,V,...V,,
where each V/, is either an actor or a schedule loop. Thus, the “looped” qualification indicates that
the schedule in question may be expressed in terms of schedule loops. Since a looped schedule is
usually executed repeatedly, we refer to each V; as an iterand of the associated looped schedule.
Henceforth in this paper, by a “schedule” we mean a “looped schedule.”

Note that in the valid schedule B (24B) CA (3B) C, B is allowed to fire first because of
the unit delay on the edge (A, B) .

A more compact valid schedule for Figure 1is (34) (2 (3B) C) . We call this schedule a
single appearance schedule since it contains only one lexical appearance of each actor. To a
good first approximation, any valid single appearance schedule gives the minimum code space
cost for in-line code generation. This approximation neglects second order affects such as loop
overhead and the efficiency of data transfers between actors [2].

Given an SDF graph G, a valid schedule S, and an edge e in G, we define
max_tokens (e, S, G) to denote the maximum number of tokens that are queued on e during an

execution of §. If G is understood, then we may write max_tokens (e, S) in place of

max_tokens (e, S, G) . For example if for Figure 1, $; = (34) (6B) (2C) and
S, = (34(2B)) (2C) , then max_tokens ((A,B),S,) = 7 and

max_tokens ( (A, B),S,) = 3.We define the buffer memory requirement of a schedule S ,

denoted buffer_memory (S) , by buffer_memory (S) = E max_tokens (e, S) , where E is the
e€EE

set of edges in G . Thus, buffer memory (S 1) = 7+6 = 13, while for the “nested” schedule
S, , we have buffer_memory (S)) =3+6=09.
In the model of buffering implied by our “buffer memory requirement” measure, each

4



buffer is mapped to a contiguous and independent block of memory. Although perfectly valid tar-
get programs can be generated without this restriction, it can be shown that having a separate
buffer on each edge is advantageous because it permits full exploitation of the memory savings
attainable from nested loops, and it accommodates delays without any complication [14]. Another
advantage of this model is that by favoring the generation of nested loops, the model also favors
schedules that have lower latency than single appearance schedules that are constructed to opti-
mize various alternative cost measures [14]. The model of buffering discussed in this paper is
used in the SDF-based code generation environments described in [10, 12, 17].

In this paper we address the problem of computing a valid single appearance schedule that
minimizes the buffer memory requirement over all valid single appearance schedules. In this
paper, we call such a schedule an optimal schedule. We focus on acyclic graphs. We introduce a
customization to acyclic graphs of a bottom-up scheduling technique, called pairwise grouping of
adjacent nodes (PGAN), that was proposed in an earlier paper [3] for general SDF graphs. We call
this customization Acyclic PGAN (APGAN). We show that APGAN significantly reduces the time
and space complexity of the general PGAN algorithm; we rigorously establish that APGAN per-
forms optimally for a certain class of SDF graphs; and we give examples of practical applications
that fall within the class of graphs for which APGAN produces optimal results. We present exper-
imental data on practical applications that verifies that our implementation of APGAN performs
optimally for graphs that fall within the specified class, and suggests that it often performs very
well for graphs that lie outside the class.

We compare APGAN to a top-down heuristic based on recursively partitioning the input
graph using a generalized minimum cut operation, which was introduced recently in [14]. We call
this top-down heuristic Recursive Partitioning Based on Minimum Cuts (RPMC). On all of the
applications that we considered, both heuristics produced excellent results and consistently out-
performed randomly generated schedules. However, we have found applications where RPMC
significantly outperforms APGAN, and others where APGAN significantly outperforms RPMC.
Furthermore, on a diverse collection of large randomly-generated SDF graphs, we have found that
RPMC outperforms APGAN by a margin of over 10% on 45% of the random graphs, while
APGAN outperforms RPMC by over 10% on 23% of the random graphs. The conclusions that we



postulate based on our study are that techniques should be investigated for efficiently combining
the methods of APGAN and RPMC, and that in the absence of such a combined solution, or of a
more powerful alternative solution, both of these heuristics should be incorporated into SDF-

based DSP prototyping and implementation environments in which the minimization of memory

requirements is important.

2 Background

For reference, much of the terminology that is introduced ir. this and subsequent sections
is summarized in the glossary at the end of the paper.

Given a finite set H, we denote the number of elements in H by |H|.If x and y are posi-
tive integers, we say that x divides y if y = kx for some positive integer k . If the members of H
are positive integers, then by gcd (H) we mean the largest positive integer that divides all mem-
bers of H.

Precisely speaking, SDF graphs, as we use them ia this paper, are directed multigraphs
rather than directed graphs, since we allow two or nore edges to have the same source and sink
vertices. However, we usually ignore this distinction. Thus, when there is no ambiguity, we may
refer to an edge e as the ordered pair (src (e), snk (e)) . We frequently represent an SDF graph
G by an ordered pair (V, E) , where V is the set of vertices and E is the set of edges. By a sub-
graph of G, we mean the directed graph formed by any V/ €V and the set of edges
{e€ E|src(e), snk (e) € V’'} . We denote the subgraph associated with the vertex subset V/ by
subgraph (V') . A connected component of G is a subset V/ &V such that subgraph (V') is
connected, and no subset of V that properly contains V* induces a connected subgraph.

Given an SDF graph G = (V, E) , we say that actor X is a predecessor of actor Y if
there is an e € E such that src (¢) = X and snk (¢) = Y, and we say that X is a successor of
Y if Y is a predecessor of X . Two actors X, Y are adjacent if X is a predecessor or successor of
Y,and if X, Y are distinct, then {X, Y} is called an adjacent pair. A pathin G from X to Y is

a finite, nonempty sequence (¢ 1» € +-+» €,,) such that each e; isamemberof E, X = src (ep)



Y = snk(e,),and snk (e;) = src (ep) , snk(ep) = src (e3),...,snk(e,_;) = src(e,) . If
(PysPgs ---» D) is a finite sequence of paths such that p; = (e,-, 1282 - € o) for1<i<k,
and snk (e,.. "‘) = sTC (e”l. 1) »for 1<i< (k-1), then we define

((PsPy s D)) = (€115 -ees €1, np €2, 19 s €2, s +01 € 11 oo ek’n‘) .
Clearly, ( (py» Py ... Py)) is & path from src (el’ 1) to snk(ek, "k) . If there is a path from

X €V toY€V,then we say that X is an ancestor of Y, and Y is a descendant of X . If X is
neither a descendant nor an ancestor of Y, we say that X is independent of Y. A path that is
directed from a vertex to itself is called a cycle. If G is acyclic, a topological sort for (V, E) is

an ordering (v,, v,, ..., vM) of the members of V such that for each e € E,
((src(e) =v,) and (snk (e) = vj)) = (i<j) . Given an SDF graph and an actor X in this

graph, ancs (X) denotes the set of ancestors of X, and desc (X) denotes the set of descendants
of X. |

If e is an SDF edge, then the delayless version of e is an edge e’ such that ¢’ = e if
delay (e) = 0, and if delay (e) #0, then e’ is the edge defined by src (¢’) = src (e),
snk (e’) = snk (e) ,and delay (¢’) = 0.If G = (V, E) is an SDF graph, then G is delayless
if delay (¢) = O for all e € E, and the delayless version of G is the SDF graph defined by
(V,E’) ,where E’ = {the delayless version of e|e € E} . In words, the delayless version of G
is the graph that results from setting the delays on all edges to zero.

A contiguous sequence of actors and schedule loops in a looped schedule S is called a
subschedule of S . For example, the schedules (34B) C, (2D (34AB)C) , and
(4E) (2D (3AB) C) are all subschedules of (4E) (2D (3AB)C) .If S is a subschedule of S
we say that S, is contained in S, and we say that So is mested in S if S, is contained in S and
Sp*S.

We denote the set of actors that appear in a single appearance schedule S by actors (S) ,
and given an A € actors (S) , we define inv (A, S) to be the number of times that S invokes A .
Similarly, if § is a subschedule of S, we define inv (Sg:S) to be the number of times that §
invokes S. For example, if S = (2(3B(2CD))) (5E) , then inv (E,S) = 5,and



inv ((2CD),S) = 6.

We will occasionally need to refer to the relative lexical positions of actors in a single
appearance schedule. For this purpose, we define position (X, S) to be the number of actors that
lexically precede X in the single appearance schedule S . Observe that no ambiguity arises in this
definition since we apply it only to single appearance schedules. For example, if
§ = (2(3B) (5C)) (74) , then position (A,S) = 2, position (B,S) = 0, and
position (C,S) = 1. Formally, we define the lexical ordering of a single appearance schedule
§, denoted lexorder (S) , to be the sequence of actors (A, Ay .. A,) where

{A}, Ay ..., A} = actors (S) and position (A4;,8) = i-1 foreach i. Thus,
lexorder ((2(3B) (5C)) (74)) = (B, C, A) . We will apply the following obvious fact about
lexical orderings.

Fact1: If S is a valid single appearance schedule for a delayless SDF graph, then whenever X

is an ancestor of Y, we have position (X, S) < position (Y, S) .

Suppose that S is a looped schedule for an SDF graph G and Z is a set of actors. If we
remove from § all actors that are not in Z, and then we repeatedly remove all null loops (loops
that have empty bodies) until no null loops remain, we obtain another looped schedule, which we
call the projection of S onto Z, denoted projection (S, Z) . For example,
projection ((2(2B) (5A4)), {A,C}) = (2(5A)) . Clearly, projection (S, Z) fully specifies
the sequence of token populations occurring on each edge in subgraph (Z, G) . More precisely,
forany A€ Z,any i€ {1,2,...,inv(A,S)}, and any input edge e of A contained in
subgraph (Z, G) , the number of tokens queued on e just before the i th invocation of A in S
equals the number of tokens queued on e just before the ith invocation of A in an execution of
projection (S, Z) . Thus, we have the following fact.

Fact2: If § is a valid looped schedule for an SDF graph G = (V, E) ,and ZC V, then
projection (S, Z) is a valid looped schedule for subgraph (Z) , and

max_tokens (e, projection (S,Z)) = max_tokens (e, S) , for each edge e in subgraph (Z) .



If Z is a subset of actors in a connected, consistent SDF graph G, we define

pg(2) = gcd( {q;(A) IA € Z}) , and we refer to this quantity as the repetition count of Z.

We show below (Fact 3(a)) that the repetition count of Z can be viewed as the number of times

that a minimal schedule for G invokes the “subsystem” corresponding to Z.

We will extensively apply the concept of “clustering” a subgraph in an SDF graph, which
was introduced in [11]. Given a connected, consistent SDF graph G = (V,E) ,asubset ZGV,
and an actor Q ¢ V, clustering Z into Q means generating the new SDF graph (V”, E’) such
that V/ = V-Z+ {Q} and E' = E- ({e|(src(e) € Z) or (snk(e) € Z)}) +E*, where
E* is a “modification” of the set of edges that connect actors in Z to actors outside of Z . If for
each e € E such that src (e) € Z and snk (e) ¢ Z, we define ¢’ by

src(e’) = Q, snk(e’) = snk(e),
delay (e’) = delay (e), prod (e’) = prod (e) x (qg (src(e)) /pg(2)) ,and
cons (e’) = cons(e) ;
and similarly, for each e € E such that snk () € Z and src (¢) ¢ Z, we define e’ by
src (e’) = src(e), snk(e’) = Q
delay (e’) = delay (e) , prod (e’) = prod (e) , and

cons (e’) = cons (e) X (qgsnk(e) /pg(2)),

then, we can specify E* by
E* = {e’| (src(e) € Zand snk (e) ¢ Z) or (snk(e) € Zand src(e) ¢ Z) } .

For each ¢’ € E*, we say that e’ corresponds to e and vice versa (e corresponds to e’). The
graph that results from clustering Z into Q in G is denoted cluster (Z, G, Q) , or simply
cluster (Z, G) . Intuitively, an invocation of Q in cluster (Z, G, Q) corresponds to an invoca-
tion of a minimal valid schedule for subgraph (Z) in G.We say that Z is clusterable if

cluster (Z, G) is consistent, and if G is acyclic, we say that Z introduces a cycle if



cluster (Z, G) contains one or more cycles. Figure 2 gives an example of clustering. Here, edge
(D, Q) corresponds to (D, C) (and vice versa), and (Q, A) corresponds to (B, A) .

The following fact relates the repetitions vector of an SDF graph obtained by clustering a
subgraph to the repetitions vector of the original SDF graph. The proofs of both parts can be
found in [2].

Fact3: (a).If G = (V,E) is a connected, consistent SDF graph, Z < V, and
G’ = cluster (Z,G, Q) , then 45 (Q) = Pg(Z) ,andforeach A€ (V-2),

qg-(4) = qg5(4).
(b). If G is a connected, consistent SDF graph and G’ = (V’, E’) is a connected sub-
graph of G, then foreach A € V*, q4.(4) = q5(4)/ pg (V).

Fact 3(a) together with the definition of clustering immediately yields

Fact4: If G and G’ are as in Fact 3(a), then for each edge e in G’,

-,
'''''

10 S1/7\6 477N 10
(o) — I ’@ ®)

-
- -
e RS ReR e

10 2 3 10
O— = ®

Figure 2. An example of clustering. In (b), we have cluster ({B, C}, G, Q) , where
G denotes the SDF graph in (a). Here, q; (4, B,C, D) = (3,30,20,2), and thus,

pe({B,C}) = 10.

10



TNSE (e, G’) = TNSE (¢’,G) , where e’ is the edge in G that corresponds to e .

We will use following fact, which is developed in [2]. This fact provides a simple test for
the validity a schedule transformation called the factoring transformation. In [2] it is shown that
this transformation can significantly reduce the buffer memory requirement in a single appearance
schedule.

Fact 5: Suppose that S is a valid schedule for an SDF graph G, and suppose that
L = (m(n,S,) (n,S,)...(n,S,)) isascheduleloopin S of any nesting depth such that

(1<i<j<k) = actors (S;) N actors (S j) = (. Suppose also that v is any positive integer

that divides n, n,, ..., n;; let L’ denote the schedule loop

('ym(y'lnls 1) ('y'lnzsz) ...(’y’ln S k)) ; and let S* denote the schedule that results from replac-
ing L with L’ in S. Then
(a). S’ is a valid schedule for G ; and

(b). max_tokens (e, S’) < max_tokens (e, S) , for each edge e in G.

If A is either a schedule loop or a looped schedule, we say that A is non-coprime if all
iterands of A are schedule loops and there exists an integer j> 1 that divides all of the iteration
counts of the iterands of A.If A is not non-coprime, we say that A is coprime. The distinction
between the conditions for a schedule loop and a looped schedule arise because our convention in
manipulating looped schedules is to drop the outermost loop (mS) (usually m = o) that encap-
sulates a valid schedule S in the final implementation. If we retain the outermost loop, then it is
equivalent to say that S is a coprime looped schedule if (mS) is a coprime schedule loop. For
example, the schedule loops (3 (44) (2B)) and (10(7C)) are both non-coprime, while the
loops (5(3A) (7B)) and (70C) are coprime. Similarly, the looped schedules (4AB) and

(6AB) (3C) are both non-coprime, while the schedules A (7B) (7C) and (2A) (3B) are
coprime,

From our discussion of Fact 5, we know that non-coprime schedules or loops may result in

much higher buffer memory requirements than their factored counterparts. Given a single appear-

11



ance schedule S, we say that S is fully reduced if S is coprime and every schedule loop con-
tained in S is coprime.

In [2], it is shown that every fully reduced schedule has unit blocking factor. This result is
easily generalized to yield the following fact, which we will use in Section 3.

Fact 6: Suppose that S is a valid, fully reduced schedule,and L = (i;B,) is a schedule loop in

S . Then for each A € actors (B;) , inv(A,B;) = q(4) .
gcd( {q(A") | (A’ € actors (B,)) })

Proof: Observe that for each A € actors (B;) , we have J(S) q (A) = kxinv(A,B 1) » where
k = inv (B, S) . Thus, it suffices to show that gcd( {inv(A’,B;) IA’ € actors (B,) }) =1,

First suppose that not all iterands of L are schedule loops. Then inv (A, B ) =1 for

some A € actors (B;) , and we are done.
Now suppose that all iterands of L are schedule loops, and suppose that j is an arbitrary
integer that is greater than one. Then, since S is fully reduced, j does not divide at least one of the

iteration counts associated with the iterands of L. Define i; = 1 and let L, denote one of the
iterands of L whose iteration count i, is not divisible by j = j/( gcd( U igh )) . Again, since §
is fully reduced, if all iterands of L, are schedule loops, then there exists an iterand L,of L,
such that j = j/ ( gcd( L igis} )) does not divide the iteration count i, of L, . Similarly, if all
iterands of L, are schedule loops, there exists an iterand L, of L, whose iteration count i 3 is not
divisible by j = j/( gcd( Ui giyiy) )) .

Continuing in this manner, we get a sequence (L, L,, L,...) such that the iteration count

12



i, of each L, is not divisible by j = j/(gcd( s dgiyeeiy_ 1})) . Since S contains a finite num-

ber of loops, we cannot continue this process indefinitely — for some m 2 1, not all iterands of
L,, are schedule loops. Thus, there is an actors A that is an iterand of L, . Since S is a single

appearance schedule,

inv (A, By) = inv(Ly L)) inv(LyyLy) ...inv(Ly, 1 L,) inv (A, L)) = igiy.d,. (&)

m-1°

By our selection of the L, s, j/( gcd( {yigiy.eeipy_q} )) does not divide i, , and thus, from (4),

J does not divide inv (4, B;) .

We have shown that given any integer j > 1, there exists an A € actors (B ;) such that
inv (A, B;) is not divisible by j. It follows that gcd( {inv (A%, B)) |A’ € actors (B;) }) =1,

Q.E.D.

Repeated application of the factoring transformation can be used to construct a valid fully
reduced single appearance schedule from an arbitrary valid single appearance such that the
amount of memory required to implement each edge in the fully reduced schedule is less than or
equal to the amount of memory required for the same edge in the original schedule. This is estab-
lished by the following fact.

Fact7: Supposethat G = (V, E) is a consistent, connected SDF graph, and S is a single
appearance schedule for G . Then there exists a valid, fully reduced schedule S’ such that

lexorder (S’) = lexorder (S) , and max_tokens (e, S*) < max_tokens (e, S) , foreach e€ E.

Proof: We prove this fact by construction. Given a looped schedule ¥, we denote the set of
schedule loops in W that are not coprime by non-coprime (¥) . Now suppose that S is a valid

single appearance schedule for G, and let A= (m (n,¥)) (n¥;) ... (n,'¥,)) beany inner-

13



most member of non-coprime (S§) — thatis, A, is non-coprime, but every schedule loop nested

within A, is coprime. From Fact 5, replacing A, with

Ay = (ym('y-lnl‘l'l)({lnz‘l’z) ...(y'lnk‘l’k)) , where y = gcd( {nyn,, ..., nk}) , yields
another valid single appearance schedule S, such that max_tokens (e, S1) < max_tokens (e, S) ,
for all e € E. Furthermore, A’ is coprime, and since every schedule loop nested within A is
coprime, every loop nested within A’ is coprime as well. Now let A, be any innermost member
of non-coprime (S,) , and observe that A, cannot equal A,’. Fact 5 guarantees a replacement
A, for A, in S, that leads to another valid single appearance schedule §, such that
max_tokens (e, S,) < max_tokens (e, S) , for all e € E. If we continue this process, it is clear
that no replacement loop A’ ever replaces one of the previous replacement loops

A’y Ay’s ooy Ay’ , since these loops and the loops nested within these loops are already coprime.

Also, no replacement changes the total number of schedule loops in the schedule. It follows that

we can continue this process only a finite number of times — eventually, we will arrive at an § n
such that non-coprime (S,) is empty.

Now if §, is a coprime looped schedule, we are done. Otherwise, S n is of the form

®,T)) (,1,) ... (»,,T,,) , where Y = gcd( {p1, Py ...,pm}) > 1. Applying Fact 5 to the
schedule (1S5)) = (1(p,T)) (»,1,) ... (p,T,)) , we have that

-1 -1 -1
(Y2 ) 07501y 0 p,T,))
is a valid schedule for G . From the definition of a valid schedule, it follows that

se=s( ) 0 7p1y) . ) paT)

14



is also a valid schedule, and by our construction of S, and §,’, S, is a coprime single appear-
ance schedule, and all schedule loops in S,’ are coprime. Thus, S, is a valid fully reduced
schedule for G . Furthermore, since (1S,) generates the same invocation sequence as S q Clearly
max_tokens (e, (1S,)) = max_tokens (e, §,) forall e € E.From Fact 5,

mavx_tokens (e, S,’) < max_tokens (e, (1S,)) forall e € E, and thus

max_tokens (e, S,’) < max_tokens (e, S) foralle€ E.

It is easily verified that none of the transformations in our derivation of S . affect the lex-
ical ordering, and thus lexorder (S o) = lexorder (S) .Q.ED.

As a consequence of Fact 7, we have that given a valid single appearance schedule, there
is a single appearance schedule for any blocking factor such that the memory required for each
edge is no greater than the memory required for the same edge with the original schedule. This is
established by the following fact.

Fact8: Suppose that G = (V, E) is a consistent, connected SDF graph, S is a single appear-
ance schedule for G, and £ is any positive integer. Then there exists a valid single appearance
schedule S’ such that J(S’) = k, lexorder (S’) = lexorder (S) , and

max_tokens (e, S’) < max_tokens (e, S) , foreach e € E.

Proof: From Fact 7, there is a valid, fully reduced schedule §” such that

lexorder (§”) = lexorder (S) , and max_tokens (e, §”) < max_tokens (e, S) ,foreach e€ E.
Clearly, since S“ is fully reduced, (15”) is also fully reduced. Thus, applying Fact 6 with

L = (1§”) ,we have that J (S”) = 1. Thus (kS”) is a valid schedule that has blocking factor
k, and has the same lexical ordering as S . Furthermore, since S” is a valid schedule, clearly
max_tokens (e, (kS”)) = max_tokens (e, S”) forall e € E, and thus,

max_tokens (e, (kS”)) < max_tokens (e, S) forall e€ E.Q.E.D.

If A is either a schedule loop or a looped schedule, we say that A satisfies the R-condi-

15



tion if one of the following two conditions holds.

(a). A has a single iterand, and this single iterand is an actor, or

(). A has exactly two iterands, and these two iterands are schedule loops having coprime
iteration counts.

We call a valid single appearance schedule S an R-schedule if S satisfies the R-condition, and
every schedule loop contained in § satisfies the R-condition.

In [2], it is shown that in a chain-structured SDF graph, whenever a valid single appear-
ance schedule exists, an R-schedule can be derived whose buffer memory requirement is no
greater than that of the original schedule. This result is easily generalized to give the following
theorem for arbitrary consistent SDF graphs.

Theorem 1: Suppose that G = (V, E) is a consistent SDF graph and § is a valid single
appearance schedule for S . Then there exists an R-schedule S, for S such that

max_tokens (e, Sp) < max_tokens (e, S) for all e € E, and lexorder (S r) = lexorder (S) .

Proof: We prove this theorem by construction.We use the following notation here: given a sched-
‘ule loop L and a looped schedule S’, we define nonR (S’) to be the set of schedule loops in S

that do not satisfy the R-condition; /(L) to be the number of iterands of L ; and C (L) to be the

iteration count of L . Also, we define 7 (S) = E I(L) .
L’ € rionR (8*)

First observe that from Fact 7, there exists a valid fully reduced schedule So for G such
that max_tokens (e, So) < max_tokens (e, S) forall e € E. Now let Ly = (nT|T,...T,) bean
innermost loop in (1S,) ! that does not satisfy the R-condition; that is, L, does not satisfy the R-
condition, but all loops nested in L, satisfy the R-condition. If m = 1, then since Sy is fully

reduced, L, = (n(17")) , where (1T”) satisfies the R-condition. Let S* denote the schedule

1. This is the schedule loop whose iteration count is one and whose body is S, - Any schedule loop of the
form (mS,) is acceptable for the purposes of this proof, and we have chosen m = 1 caly for simplicity.

16



that results from replacing L, with (n7’) in (1S,) . Then clearly, S* is also valid and fully
reduced, and S* generates the same invocation sequence as Sp» SO

max_tokens (e, S*) = max_tokens (e, S,) forall e € E. Also, replacing Ly with (nT")
reduces the number of non-R loops by one, and does not increase the number of iterands of any
loop, and thus, 7 (S*) <7 ((15y)) .

If on the other hand m > 2, we define S, = (1T)) if T| isanactorand S, = T,ifTisa
schedule loop. Also, if T, T, ..., T,, are all schedule loops, we define

e ({=528) (520 - (2ms)).

where v = ged( {C(T,), C(Ty), e C(Tp)} ) a0d By, By .. B, are the bodies of

T, T;, ..., T, respectively; if Ty, T, ..., T, are not all schedule loops, we define

Sy= (17,T,...T,)) . Let S* be the schedule that results from replacing Ly with Ly’ = (nS,S,)
in (15;) . Now, because S is fully reduced, the iteration counts of S o and §, must be coprime.

Thus, it is easily verified that $* is a valid, fully reduced schedule and that Ly’ satisfies the R-
condition, and with the aid of Fact 5, it is also easily verified that
max_tokens (e, S*) < max_tokens (e, S,) foralle€ E.

Furthermore, observe that S, and L’ satisfy the R-condition, but S, may or may not sat-
isfy the R-condition, depending on L. Thus, replacing L, with L’ either reduces the number of
loops that do not satisfy the R-condition by one, or it leaves the number of loops that do nbt sat-
isfy the R-condition unchanged, and we see that either 1 (§*) = 7 (( 1S9)) -1(Ly) ,or
1(8%) =1( (1S9)) -I(Ly) +1(S,) - Since I(S,) = I(Ly) - 1<1(Ly) , we again conclude
that 7 (S*) <7((1S,)) .

Thus, from (1§;) , we have constructed a valid, fully reduced schedule S$* such that
max_tokens (e, S*) < max_tokens (e, Sg) < max_tokens (e, S) forall e € E, and

1(s*) <1((15p)) . Also, since S* is derived from S, by replacing a single loop that has itera-

17



tion count n with another loop that has the same iteration count, it is easily verified that S* is of
the form S* = (18,) . Clearly, if 1( (1S,)) #0, we can repeat the above process to obtain a
valid, fully reduced schedule (1S,) such that
max_tokens (e2, (18,)) < max_tokens (e, (ISl)) forall e€ E, and 7( (15,)) <7( (18))) .
Continuing in this manner, we obtain a sequence of valid, fully reduced schedules
((18p), (1S5)), (1S,), (1S3), ...) such that for each §; in the sequence with i >0,
max_tokens (e, (1S;)) = max_tokens (e, S,) < max_tokens (e, S) forall e € E, and
1( (15)) < 1( (1S;_,)) . Since 1( (1S,)) is finite, we cannot go on generating S, 's indefinitely
— eventually, we will arrive at an S,,n20,such that 1( (1S,)) = 0. Thus, all schedule loops
in §, satisfy the R-condition, and § , satisfies the R-condition, and we have that S , isanR-
schedule.

From Fact 7 and from the observation that the factoring transformation does not affect the
lexical ordering, it is easily verified that none of the transformations applied in deriving § , from

S change the lexical ordering. Thus, lexorder (S,) = lexorder (S) .Q.E.D.

3 Optimally Reparenthesizing a Single Appearance Schedule

In [14], a dynamic programming algorithm was developed that constructs an optimal
schedule for a well-ordered SDF graph (a graph that has only one topological sort) in Otv3)
time, where v is the number of actors. An adaptation of this technique is also presented for gen-
eral, delayless, consistent SDF graphsl that computes an order-optimal schedule — a single
appearance schedule that has minimum buffer memory requirement from among the single
appearance schedules that have a given lexical ordering. We refer to this adaptation as Dynamic
Programming Post Optimization (DPPO) for single appearance schedules. Given a single
appearance schedule S, DPPO computes a single appearance schedule that minimizes the buffer

memory requirement over all schedules in the set {S’| (lexorder (S”) = lexorder (S))} . Thus,

1. Note that for consistent SDF graphs, delayless implies acyclic, and thus, we are referring here to the class
of consistent, acyclic — but not necessarily well-ordered — SDF graphs such that the delay on each is zero.

18



DPPO can be used as a post-optimization to any scheduling technique for delayless, acyclic SDF
graphs. In this section, we elaborate on this technique and present an efficient extension to handle
delays and general SDF graphs.

Suppose that G is a connected, consistent, delayless SDF graph, S is valid single appear-
ance schedule for G, lexorder (S) = (A, A,, ..., A ») »and S is an order optimal schedule for
(G, lexorder (S)) . Assuming that G contains at least two actors, we know from Theorem 1 that
there is a valid schedule of the form § & = (i;B;) (igBg) such that
buffer_memory (Sg) = buffer_memory (S,,) andforsomep€ {1,2,...,(n-1)},
lexorder (B;) = (Al,Az...,Ap) and lexorder (Bg) = (AP+1,AP+2, ..sA,) . Furthermore,
from the order-optimality of S, clearly, (i 1B;) and (ipBp) must also be order optimal.

From this observation, we can efficiently compute an order-optimal schedule for G if we

are given an order optimal schedule S q, b Tor the subgraph corresponding to each proper subse-
quence A, A, 1, ... A, of lexorder (S) suchthat (1). (b-a) < (n-2) and(2).a =1 or

b = n. Given these schedules, an order-optimal schedule for G can be derived from a value of

x, 1 £x < n that minimizes

buffer_memory (S 1, ) + buffer_memory (S, , 1, W+ Z‘k TNSE (e) , where
¢€E,

E = {el(src (e) € {A}, A, ...»A.} and snk (e) € {A 14540 ...,An})} is the set of

edges that “cross the split” if the schedule parenthesization is split between A candA .

DPPO is based on repeatedly applying this idea in a bottom-up fashion to the given lexical
ordering lexorder (S) . First, all two actor subsequences (A 1Ay, (A3 49), ..., (4,. pA)
are examined and the minimum buffer memory requirements for the edges contained in each sub-
sequence is recorded. This information is then used to determine an optimal parenthesization split
and the minimum buffer memory requirement for each three actor subsequence

(A A;, 15 4;, ) ; the minimum requirements for the two- and three-actor subsequences are used
to determine the optimal split and minimum buffer memory requirement for each four actor sub-

sequence; and so on, until an optimal split is derived for the original n -actor sequence

19



lexorder (S) . An order-optimal schedule can easily be constructed from a recursive, top-down
traversal of the optimal splits [14].

In the r th iteration of this bottom up approach, we have available the minimum buffer
memory requirement b [p, q] for each subsequence (A » Ap Y. q) that has less than or
equal to 7 members. To compute the minimum buffer memory requirement b [i, j] associated
with an r + 1 -actor subchain (4,4, ,, ..., Aj) , we determine a value of

k€ {i,i+1,...,j~-1} thatminimizes

b[i,k]+b[k+l,j]+ci’j[k], )

where b [x,x] = 0 for all x and Cij [£] , the memory cost at the split if we split the subse-

quence between A, and A, _, is given by (see Fact 6).

TINSE (e)
¢, . [k] = e;':' . '
ij ged (g (A,) I (i<x<j))

(6)
where
E, = {el(src(e) € {ApA;, 1 AL} and snk (e) € {4, , Ay, ...,Aj})} @

is the set of edges that cross the split.

This technique can easily be extended to handle graphs that are not necessarily delayless,
although a few additional considerations arise. We refer to our extension as Generalized DPPO
(GDPPO). First, if delays are present, then Fact 1 does not apply, and lexorder (S) , the lexical
ordering of the input schedule, is not necessarily a topological sort. As a consequence, generally
not all parenthesizations of the input schedule will be valid. For example, suppose that we are
given the valid schedule S = (6A) (5(2C) (3B)) for Figure 3. Then
lexorder (S) = (A, C, B) clearly is not a topological sort, and it is easily verified that the sched-
ule that corresponds to splitting the outermost parenthesization between C and B —

20



(2(34) (5C)) (15B) — is not a valid schedule since there is not sufficient delay on the edge
(B, C) tofire 10 invocations of C before a single invocation of B.
Thus, we see that when delays are present, the set E . defined in (7) no longer generally
gives all of the edges that cross the parenthesization split. We must also examine the set of back
edges

E, = {el(snk(e) € {ApA,, 1, Ay)} and src(e) € {AM,AM,...,AJ.})} . ®

Each e € E, must satisfy

TNSE (e)
gcd(qg(4y)|(isx<)))’

delay (e) 2 ©

otherwise the given parenthesization split will give a schedule that is not valid. To take into

account any nonzero delays on members in E , and the memory cost of each of the back edges,

the cost expression of (5) for the given split gets replaced with

):kmsz(e)
. , e€E,
bli k] +b[k+ I’J]+8cd(<lc(Ax)|(i5xSf))+e2:k,delay(e)+ee bdelay(e). (10)

Expression (10) gives the cost of spliting the subsequence (A pAisp A j) between
is 1 +-»Ap) precedes

0 VST PR j) in the lexical order of the schedule that will be implemented. However, if
(9) is satisfied for all “forward edges” e € E ¢» it may be advantageous to interchange the lexical

O—(F—=0

Figure 3. An SDF graph used to illustrate GDPPO applied to SDF graphs that have
nonzero delay on one or more edges. Here q (4, B,C) = (6, 15, 10) .

A, and A, , assuming that the subsequence (A4, A

21



order of (A, A;, »..-»4,) and (0 PRRBTY: PP ...,Aj) . Such a reversal will be advantageous

whenever the reverse split cost defined by

TNSE (e)

. e€E,
bli,k] +b[k+1,j] +gcd(qG (Ax)l(isxsj)) +e€ bdelay (e) +e;'delay (e) (1)

is less than the forward split cost computed from (10).

The possibility for reverse splits introduces a fundamental difference between GDPPO
and DPPO: if one or more reverse splits are found to be advantageous, then GDPPO does not pre-
serve the lexical ordering of the original schedule. This is not a problem since in such cases the
result computed by GDPPO will necessarily have a buffer memory requirement that is less than
that of an order-optimal schedule for lexorder (S) . On the contrary, it suggests that GDPPO may
be applied multiple times in succession to yield more benefit than a single application — that is,
GDPPO can in general be applied iteratively, where the iterative application terminates when the
schedule produced by GDPPO produces no improvement over the schedule computed in the pre-
vious iteration.

Figure 4 shows an example where multiple applications of GDPPO is beneficial. Here
q(A,B,C) = (2,1,2), and the initial schedule is S = (2A4) B (2C) , so the initial lexical
ordering is (4, B, C) . Upon application of GDPPO, the minimum cost for the subsequence

Figure 4. An illustration of iterative application of GDPPO.

22



(A, B) is found to be 2, and the minimum cost for the subsequence (B, C) is found to occur
with a reverse split that has a cost of 2. The minimum cost for the “top-level” subsequence

(A, B, C) is taken as the minimum cost over the cost if the parenthesization is split between A
and B, which is equalto 0+ 2+ 5+0 = 7 from (11), and the minimum cost if the split occurs
between B and C, whichis 2+ 0+ 7 +0 = 9. Thus, the former split is taken, and the result of
applying GDPPO once to S is the schedule §; = (24) (1(2C) (1B)), which has a buffer
memory requirement of 7, and a lexical ordering that is different from that of S.

Since lexorder (S,) # lexorder (S) , it is conceivable that applying GDPPO to S ) can
further reduce the buffer memory requirement. Applying GDPPO to S 1» We generate 8 minimum
cost of 1 — which corresponds to another reverse split — for (A, C) , and we generate a mini-
mum (reverse split) cost of 2 for (C, B) . Thus, we see that splitting (4, C, B) between A and
C givesacostof 0+2+5+0 = 7, while splitting between C and B gives a cost of
1+0+2+2 = 5. Theresult of GDPPO is thus the schedule S, = (2CA) B, and a buffer mem-
ory requirement of 5. It is easily verified that application of GDPPO to S, yields no further
improvement, and thus iterative application of GDPPO terminates after three iterations.

Although the iterative application of GDPPO is conceptually interesting, we have found
that for all of the practical SDF graphs that we have applied it to, termination occurred after only
2 iterations, which means that no further improvement was ever generated by a second applica-
tion of GDPPO. This suggests that when compile-time efficiency is a significant issue, it may be
preferable to bypass iterative application of GDPPO, and immediately accept the schedule pro-
duced by the first application.

Our extension of GDPPO can be implemented efficiently by updating forward and reverse

costs incrementally. If we are examining the splits of the subsequence (A;, A i emA j) , and we
have computed the forward and reverse split costs F, and R & associated with the split between
Ayand A ,,iSk< (- 1), then the splits costs F,, ; and R, , | associated with the split
between A, ., and 4, , , can easily be derived by examining the output and input edges of

Ay, 1- To ensure that we ignore reverse splits (forward splits) that fail to satisfy (9) for all e € E s

23



(e€ E,)acostof M= ( 1+ E (TNSE (e) + delay (e) )) is added to the reverse (forward)
e€E

split cost for any input edge (output edge) e of A, , whose source (sink) is a member of
(A2 4ps3 -l j) » and that does not satisfy (9). Similarly, for each output (input) edge ¢ of
A; ., whose sink (source) is contained in (Ap A, 5 ---sAy) , and that does not satisfy (9), M is
subtracted from R, _, (F,, ) since such an edge no longer prevents the split from being valid.
Choosing M so large has the effect of “invalidating” any cost C,, that has M added to it (without

a corresponding subtraction) since any minimal valid schedule has a buffer memory requirement

less than M, and thus, any valid split will be chosen over a split that has cost C, .

If forward and reverse costs are updated in this incremental fashion, then GDPPO attains a
time complexity of 0(1:3) where n,, is the number of actors, if we can assume that the number of
input and output edges of each actor is always bounded by some constant o . In the absence of
such a bound, GDPPO has time complexity that is O(n eni) , where n,, is the number of edges in
the input graph.

GDPPO gives a post-optimization that can be appended to any scheduler for general SDF
graphs that constructs single appearance schedules. Applying GDPPO to a single appearance
schedule S yields a schedule that has a buffer memory requirement that is less than or equal to the
buffer memory requirement of every valid single appearance schedule that has the same lexical
ordering as S . In the remainder of this paper, we discuss two heuristics for constructing single
appearance schedules, and we present an experimental study that compares these heuristics —
with their schedules post-processed by GDPPO — against each other and against randomly gen-
erated schedules that are post-processed by GDPPO. To enhance our discussion of these heuris-

tics, we first develop some fundamental bounds on the buffer memory requirement of a single

appearance schedule.

24



4 Bounds on the Buffer Memory Requirement

Given a consistent SDF graph G, there is an efficiently computable upper and lower
bound on the buffer memory requirement over all valid single appearance schedules. Our lower
bound can be derived easily by examining a generic two-actor SDF graph, as shown in Figure

5(a). From the balance equations (see (1)), it is easily verified that the repetitions vector for this

graph is given by q (A, B) = (g,‘g) , where g = gcd ({p, q}) , and that if d<% , then the
only R-schedule for this graph is §; = (gA) (EB) . From Theorem 1 it follows that if d < % ,
then max_tokens ((A, B),S,) = (}%q + d) is a lower bound for the buffer memory requirement
of the graph in Figure 5(a). Similarly, if d > %q » then there are exactly two R-schedules — S, and

S, = (gB)(gA) . Since max_tokens ((A, B),S,) = d, we obtain d as a lower bound for the

buffer memory requirement. Thus, given a valid single appearance schedule S for Figure 5(a), we

have that

(d <‘%q) =2 (max_tokens ((A,B),S) 2 (,%q + d)) , and

@p dD

(a) (b)

Figure 5. Examples used to develop the buffer memory lower bound.

25



(dz%) = (max_tokens ((A, B),S) 2d) . (12)

Furthermore, if (A, B) is an edge in a general SDF graph, we know from Fact 2 that the
projection of a valid schedule S onto {A, B} , which is a valid schedule for
subgraph ({A, B} ) , always satisfies

max_tokens ( (A, B), projection (S, {A,B})) = max_tokens ( (A, B),S) . (13)

It follows that the lower bound defined by (12) holds whenever (A, B) is an edge in a consistent
SDF graph G, S is a valid single appearance schedule for G,
(prod ((A,B)) =p), (cons((A,B)) =q) ,and g = gcd ({p,q}) . We have motivated the

following definition.

Definition 1: Given an SDF edge e, we define the buffer memory lower bound (BMLB) of e,
denoted BMLB (e) , by

(M (e) + delay (e)) if (delay (€) <M (e))

BMLB (e) = { (delay (e)) if (delay (e) 2m(e))

where

_ prod (e) cons (e)
n(e) = gcd ({prod (e), cons(e) })

If G = (V,E) is an SDF graph, then ( 2 BMLB (e)) is called the BMLB of G, and a valid
e€E

single appearance schedule S for G that satisfies max_tokens (e, S) = BMLB (e) forall e€ E
is called a BMLLB schedule for G.

In Figure 1, we see that BMLB ((A,B)) = 3,and BMLB ((B,C)) = 3. Thus, to
implement any single appearance schedule for this graph, at least three memory words will be
required to implement the edge (A, B) , and at least three words will be required for (B, C) .
Furthermore, a valid single appearance schedule for Figure 1 is a BMLB schedule if and only if
its buffer memory requirement equals 6. It is easily verified that only two R-schedules for Figure
1 exist — (3A(2B)) (2C) , and (34) (2(3B) C) ; the associated buffer memory requirements

26



are3+6 =9 and 743 = 10, respectively. Thus, a BMLB schedule does not exist for Figure 1.
In contrast, the SDF graph shown in Figure 6 has a BMLB schedule. This graph results

- from simply interchanging the production and consumption parameters of edge (B, C) in Figure

1. Here, q (4, B,C) = (1,2,6),the BMLB values for both edges are again identically equal to

3,and A(2B(3C)) is a valid single appearance schedule whose buffer memory requirement

achieves the sum of these BMLB values.

The following fact is a straightforward extension of our development of the BMLB,

Fact9: Suppose that G is an SDF graph that consists of two vertices A, B and n 2 1 edges
e}, ey, ..., e, directed from A to B. Then (a). if delay (e)) 2n(e) forallie {1,2,...,n},

then (qg (B) B) (q;(A) A) is a BMLB schedule for G ; (b) otherwise, (g5 (4)A) (a;(B) B)
is an optimal schedule — that is, it minimizes the buffer memory requirement over all valid single

appearance schedules — for G, and it is a BMLB schedule if and only if delay (e;) <n(e,) for

1<i<n.

For example, in Figure 5(b), let e, denote the upper edge, and let e, denote the lower
edge. Then 1 (e;) = N(e,) = 6,and (2B) (34) is a BMLB schedule if
delay (e,), delay (ep) 2 6. Similarly, if delay (e)), delay (e;) <6, then it is easily verified that
(34) (2B) is a BMLB schedule. However, if delay (e}) <6 and delay (e,) 26, then
(34) (2B) is optimal, but is not a BMLB schedule since in this case
max_tokens (e,, (3A) (2B)) = (delay (e;) +6) , while BMLB ( e;) = delay(e,) .

O Oz (O

Figure 6. An SDF graph that has a BMLB schedule.

27



Fact 10: If G = (V, E) is a connected, consistent, acyclic SDF graph, delay (e) <1 (e) for all
¢€ E,and S is a BMLB schedule for the delayless version of G, then S is a BMLB schedule for
G.

Proof: Let G’ denote the delayless version of G . If S is a BMLB schedule for G/, then S is a
~ valid schedule for G that satisfies max_tokens (e, S, G) = max_tokens (e, S, G’) + delay (e)

for all e € E . It follows from Definition 1 that S is BMLB schedule for G. Q.E.D.

Fact 11: If G is a connected, consistent SDF graph and e is an edge in G, then

TNSE (e, G)
pg (src (e), snk (e))

n(e) =

Proof: From the balance equations (1),

INSE (e,G)  _ dg (57 (€)) prod (¢)
Polere(ed E(ON) " gea( {ag(sre (), ag (smk (1) })

_ qg (src (e)) prod (e)
gcd( {ag (src(€)), ag (sre (€)) (prod (e) / cons (¢)) })

Multiplying the numerator and denominator of this last quotient by cons (e) , and recalling that

ged (ka, kb) = kgced (a, b) , we obtain the desired result. Q.E.D.

We conclude this section by defining an obvious, efficiently computable upper bound for
single appearance schedules that have unit blocking factor. Clearly, if G = (V, E) is a con-

nected, consistent SDF graph, and S is a unit blocking factor single appearance schedule for G,

we have buffer_memory (S) < Z (INSE (e) + delay (e)) . We refer the RHS of this inequal-
e€EE

28



ity as the buffer memory upper bound (BMUB) for G.
In Figure 6, q (4, B,C) = (1,2,6) , and the BMUB for this graph is 9.

5 PGAN for Acyclic Graphs

The original Pairwise Grouping of Adjacent Nodes (PGAN) technique was developed in
[3]. In this technique, a cluster hierarchy is constructed by clustering exactly two adjacent vertices
at each step. At each clusterization step, a pair of adjacent actors is chosen that maximizes
p ({A, B}) , the repetition count of the adjacent pair, over all clusterable adjacent pairs {A, B} .
Recall from Section 2 that p (Z) can be viewed as the number of times a minimal periodic sched-
ule for the subset of actors Z is invoked in the given SDF graph, and thus, we see that the PGAN
technique repeatedly clusters adjacent pairs whose associated subgraphs are invoked most fre-
quently in a valid schedule.

To check whether or not an adjacent pair is clusterable, PGAN maintains the cluster hier-
archy on a data structure called the acyclic precedence graph (APG). Each vertex of the APG cor-
responds to an actor invocation, and there is an edge directed from the vertex corresponding to
invocation x to the vertex corresponding to invocation y if and only if at least one token pro-
duced by x is consumed by y in a valid schedule. See [11] for details on the derivation of the
APG that corresponds to an SDF graph.

The PGAN technique verifies whether or not an adjacent pair is clusterable by checking
whether or not its consolidation introduces a cycle in the APG. It is shown that this check can be
performed quickly by applying a reachability matrix, which indicates for any two APG vertices x
and y,whether or not there is a path from x to y.

Unfortunately, the cost to compute and store the reachability matrix can be prohibitively

high for multirate applications that involve large changes in sample rate. Since the number of ver-

tices in the APG of an SDF graph (V, E) is J X xZ q (X) , where J is the desired blocking fac-
€EV

tor, and the number of entries in the reachability matrix is quadratic in the number of APG

29



vertices, it is easily seen that the time and space required to maintain the APG can grow exponen-

tially with the number of actors in the given SDF graph. Although this is not a problem for the

large class of practical SDF graphs for which xE q (X) is not much larger than the number of
€V

elements in V, practical examples can easily be constructed where the technique consumes enor-
mous amounts of resources relative to the size of the input SDF graph. For example, for the 6-ver-

tex SDF representation of a multi-stage sample-rate conversion system between a compact disc

player and a digital audio tape player discussed in [14], AZ q (X) > 600, which means that over
€V

360, 000 units of storage are required to implement the reachability matrix for this 6-actor SDF
graph.

Since a large proportion of DSP applications that are amenable to the SDF model can be
represented as acyclic SDF graphs, we propose a simple adaptation of PGAN to acyclic graphs
that maintains the cluster hierarchy and reachability matrix directly on the input SDF graph rather
than on the APG, and thus allows us to efficiently exploit the advantages of the bottom-up cluster-
ing approach of the original PGAN technique. We refer to this adaptation of PGAN as Acyclic
PGAN (APGAN). APGAN is exactly the original PGAN technique specified in [3] with the
exception that the input SDF graph is assumed to be acyclic, and the cluster hierarchy and reach-
ability matrix are maintained for the input SDF graph rather than for the APG.

In an acyclic SDF graph G, it is easily verified that a subset Z of actors is not clusterable
only if cluster (Z, G, Q) contains a cycle — that is, only if Z introduces a cycle. This condition
is easily checked given a reachability matrix for G by examining each successor of a member of
Z: cluster (Z, G, Q) contains a cycle if and only if there is an X ¢ Z such that X is a successor
of some member of Z, and there is a path from X to some member of Z.

Since the existence of a cycle in cluster (Z, G, Q) is only a necessary — but not suffi-
cient — condition for Z not to be clusterable, the clusterability test that we apply in our APGAN
is not exact; it must be viewed as a conservative test. It is even inexact if we restrict ourselves to
single appearance schedules. That is, it is possible for cluster (Z, G, Q) to contain a cyéle, and

still have a valid single appearance schedule. A simple example is shown in Figure 7. Here, the

30



BMLB schedule C (2AB) results if we first cluster {4, B} . However in APGAN, clustering

{A, B} is not permitted since the resulting graph contains a cycle. Instead, APGAN generates
the schedule (2A4) C (2B) or the schedule C (24) (2B) , neither of which is a BMLB schedule.
Thus, in this example, we see that our inexact clusterization test prevents us from obtaining an
optimal schedule.

In exchange for some degree of suboptimality in certain examples, our clusterization test
attains a large computational savings over the exact test based on the reachability matrix of the
APG, and this is our main reason for adopting it.

Figure 8 illustrates the operation of APGAN. Figure 8(a) shows the input SDF graph. Here
q(A,B,C,D,E) = (6,2,4,5,1) ,andfori = 1,2,3,4, €, represents the i th hierarchical
actor instantiated by APGAN. Each edge corresponds to a different adjacent pair; the repetition
counts of the adjacent pairs are given by p ({4,B}) = p({A,C}) = p({B,C}) = 2,and
p({C,D}) =p({E,D}) = p({B,E}) = 1.Thus, APGAN will select the one of the three
adjacent pairs {A, B}, {A,C},or {B,C} for its first clusterization step. Examination of the
reachability matrix yields that {A, C} introduces a cycle due to the path ( (4, B), (B,C)),
while the other two adjacent pairs do not introduce cycles. Thus, APGAN chooses arbitrarily
between {A,B} and {B, C} as the first adjacent pair to cluster.

Figure 8(b) shows the graph that results from clustering {4, B} into the hierarchical

actor Q, . In this graph, q (Q,,C,D,E) = (2,4,5,1), and it is easily verified that {Q,,C}

\\_,

Figure 7. An example of how a clusterization operation that introduces a
cycle can lead to a BMLB schedule. Here q(4,B8,C) = (2,2,1).

31



(d)

(e)

Subgraph corresponding to Q;

S—b

Subgraph corresponding to Q,

Subgraph corresponding to Q3

()

10 20
Subgraph corresponding to Q,

Figure 8. An illustration of APGAN.

32



uniquely maximizes p over all adjacent pairs. Since {Q, C} does not introduce a cycle,

APGAN selects this adjacent pair for its second clusterization step. Figure 8(c) shows the result-
ing graph.
In Figure 8(c), we have q (Q,, D, E) = (2,5, 1), and thus all three adjacent pairs have

p = 1. Among these, clearly, only {Q,, E} and {E, D} do not introduce cycles, so APGAN

arbitrarily selects among these two to determine the third clusterization pair. Figure 8(d) shows
the graph that results when {E,D} is chosen. This graph contains only one adjacent pair

{Q,, Q,} , and APGAN will consolidate this pair in its final clusterization step to obtain the sin-

gle-vertex graph in Figure 8(e).

Figures 8(b-¢) specify the sequence of clusterizations performed by APGAN when
applied to the graph of Figure 8(a). A more compact representation of this sequence is shown in
Figure 8(f). A valid single appearance schedule for Figure 8(a) can easily be constructed by recur-
sively traversing the hierarchy induced by this sequence. We start by constructing a schedule for

the top-level subgraph, the subgraph corresponding to Q, . The subgraph G, corresponding to
each Q; consists of only two actors X; and Y, such that all edges in G, are directed from X; to
Y,;. Thus, from Fact 9, it is clear how an optimal schedule can easily be constructed for the sub-
graph corresponding to each Q,: if each edge e in G, satisfies delay (e) 21 (e) , then we con-
struct the schedule ( qg, Yyr) (qG‘ (X)) X,) , and otherwise we construct

(qG,. (Ypr)( qg, (X;) X,) . In Figure 8, This yields the “top-level” schedule (2Q,) Q4 (we
suppress loops that have an iteration count of one) for the subgraph corresponding to Q 4-

Next, we recursively descend one level in cluster hierarchy to the subgraph corresponding
to Q,, and we obtain the schedule (5D) E . Since this subgraph contains no hierarchical actors,
(5D) E is immediately returned as the “flattened” schedule for the subgraph corresponding to

33



Q, . This flattened schedule then replaces its corresponding hierarchical actor in the top-level
schedule, and the top-level schedule becomes (2Q,) (5D)E.

Next, descending to Q, , we construct the schedule Q, (2C) for the corresponding sub-
graph. We then examine the subgraph corresponding to Q, to obtain the schedule (34) B. Sub-
stituting this for Q, , the schedule for the subgraph corresponding to Q, becomes (34) B (2C) .
Finally, this schedule gets substituted for Q, in the top-level schedule to yield the valid single
appearance schedule Sp = (2(34)B(2C)) (5D) E for Figure 8(a).

From Sp and Figure 8(a) it is easily verified that buffer_memory (Sp) and

( E BMLB (e)) », where E is the set of edges in Figure 8(a), are identically equal to 43, and
e€E

thus in the execution of APGAN illustrated in Figure 8, a BMLB schedule is constructed.

As seen in the above example, the APGAN approach, as we have defined it here, does not
uniquely specify the sequence of clusterizations that will be performed, and it does not in general,
result in a unique schedule for a given SDF graph. The APGAN technique together with an unam-
biguous protocol for deciding between adjacent pairs that are tied for the highest repetition count
form an APGAN instance, which generates a unique schedule for a given graph. For example,
one tie-breaking protocol that can be used when actors are labelled alphabetically, as in Figure 8,
is to choose that adjacent pair that maximizes the sum of the “distances” of the actor labels from
the letter “A”. If this protocol is used to break the tie between {A, B} (“distance sum” is
O0+1 = 1)and {B,C} (distance sumis 1+2 = 3)in the first clusterization of step of Figure
8, then {B, C} ischosen.

We say that an adjacent pair is an APGAN candidate if it does not introduce a cycle, and
its repetition count is greater than or equal to all other adjacent pairs that do not introduce cycles.
Thus, an APGAN instance is any algorithm that takes a consistent, acyclic SDF graph as input,
repeatedly clusters APGAN candidates, and then outputs the schedule corresponding to a recur-
sive traversal of the resulting cluster hierarchy.

In the following two sections, we show that for a consistent, acyclic SDF graph (V, E)

34



that has a BMLB schedule, and that satisfies delay (¢) <1 (e) for each e € E, any APGAN
instance is guaranteed to obtain a BMLB schedule when applied to this graph. As a consequence,
all delay-free graphs, such as that shown in Figure 8(a), for which BMLB schedules exist are han-
dled optimally by any APGAN instance. For example, even if in a certain APGAN instance,

{B,C} isclustered instead of {A, B} in the first clusterization step of Figure 8, we are still
guaranteed that final result achieved by that APGAN instance will be a BMLB schedule. To dem-
onstrate the relevance of this optimality result, in Section 9 we will give practical applications to
which the result applies. Also, we will present experimental data that suggests that our implemen-
tation of an APGAN instance frequently produces excellent results even for applications that do
not have BMLB schedules, and we show that it has exhibited encouraging performance on a large
collection of complex randomly-generated SDF graphs.

The following fact, which is easily understood from our discussion of the example in Fig-

ure 8, is fundamental to developing our result on the optimality of APGAN instances.

Fact 12: Suppose that G is a connected, consistent, acyclic SDF graph such that
delay (e) <m (e) foreach e€ E; P is an APGAN instance; and S is the schedule that results

when P is applied to G . Then buffer_memory (S) = ;ﬁ: BMLB (¢’) , where E, is the set of
eCE,

edges that are contained the subgraphs corresponding to the hierarchical actors {Q ;} instanti-
ated by P.

For the example of Figure 8, E, is the set of six edges that appear in Figure 8(f). It is eas-
ily seen that the BMLB values for these edges are, from top to bottom, 3, 6, 2, 10, 2, and 20.
Thus, Fact 12 states that the schedule obtained from the sequence of clusterizations shown in Fig-
ure 8 has a buffer memory requirement equal to 3 + 6 +2 + 10 + 2 + 20 = 43, which we know is
correct from the discussion above.

There are two main parts in the development of our optimality result. First, we define a
certain class of “proper” clusterizations; we show that for delayless graphs, such clusterizations

have the property that they do not increase the BMLB values on any edge; and we show that

35



under the assumption that a BMLB schedule exists, a clustering operation performed by any
APGAN instance is guaranteed to fall in the class of proper clusterizations. Then we show that
clustering an APGAN candidate cannot transform a graph that has a BMLB schedule into a graph
that does not have a BMLB schedule. From these three developments and Facts 10 and 12, the
desired result can be derived easily.

If an efficient data structure, such as a heap, is used to maintain the list of pairwise cluster-
ing candidates, then it can be shown that APGAN instances exist with running times that are
0( |V|2IEIJ . The details are beyond the scope of this paper.

6 Proper Clustering

Definition 2: If G is a connected, consistent SDF graph, and {X, Y} is an adjacent pairin G
that does not introduce a cycle, we say that {X, Y} satisfies the proper clustering condition in
G if foreachactor Z¢ {X,Y} thatis adjacent to a member of {X,Y} , we have that
p({Z,P}) divides p({X,Y}),foreach P€ {X,Y} that Z is adjacent to.

In Figure 8(a) q (4, B,C,D,E) = (6,2,4,5,1) ,and p({B,C}) = 2 is divisible by
p({A,C}) = 2,p({A,B}) =2,p({C,D}) = 1,andp({B,E}) = 1, and thus,

{B, C} satisfies the proper clustering condition. Conversely, p ( {B, E}) is not divisible by
p({B,C}),so {B,E} does not satisfy the proper clustering condition.

The motivation for Definition 2 is given by Theorem 2 below, which establishes that when
the proper clustering condition is satisfied, clustering {X, Y} does not change the BMLB on any
edge, and that when the proper clustering condition is not satisfied, clustering {X, Y} increases
the BMLB on at least one edge. Thus, a clustering operation that does not satisfy the proper clus-
tering condition cannot be used to derive a BMLB schedule.

To establish Theorem 2, we will use the following simple fact about greatest common

divisors, which we state here without proof.

36



Fact 13: Suppose that a, b, ¢ are positive integers. If gcd ( {a, b} ) divides gcd ({a, c}) , then
ged ({a,b,c}) = ged({a,b}) ;otherwise, gcd ({a,b,c}) < gcd ({a,b}).

Theorem 2: Suppose that G is a consistent, connected, delayless SDF graph, and {X,Y} isa
clusterable adjacent pairin G. If {X,Y} satisfies the proper clustering condition, then for each

edge e in G, = cluster ({X,Y},G) , BMLB (¢’) = BMLB (e) , where €’ is the edge in G that

corresponds to e. If {X,Y} does not satisfy the proper clustering condition, then there exists an

edge e in G, such that BMLB (e’) < BMLB (e) .

For example, in Figure 6, BMLB ((A,B)) = 3, BMLB((B,C)) = 3,and
q(A,B,C) = (1,2,6) .Figures 9(a) and 9(b) respectively show cluster ({A, B}, G, Q) and
cluster ({B, C}, G, Q) , where G denotes the graph of Figure 6. In Figure 9(a), we see that if
e = (B,C),thene’ = (Q,C),and BMLB (e¢’) = 6, while BMLB (e) = 3, and thus,
BMLB (e’) > BMLB (e) . In contrast, in Figure 9(b), we see thatif ¢ = (A, B) , then
e’ = (A, Q),and BMLB (e’) = BMLB (e) = 3. These observations are consistent with The-
orem 2 since p; ({A,B}) = 1 divides p;({B,C}) = 2,and thus {B, C} satisfies the
proper clustering condition, while p; ({C, B}) = 2 does not divide pg({A,B}) = 1,and
thus {A, B} does not satisfy the proper clustering condition.

Proof of Theorem 2: First, suppose that {X, Y} satisfies the proper clustering condition. Let e

be anedgein G, and let ¢’ be the corresponding edge in G . If src (e), snk (e) # Q, then

e’ = e, so from Definition 1, it follows that BMLB (e¢) = BMLB (¢’) .

If src (e) = Q, observe that snk (¢) = snk (e’) and src (e’) € {X, Y}, and observe

@ @9 o Wr——=®

Figure 9. An example used to illustrate Theorem 2.

37



from Fact 3(a) that p ( {src (e), snk(6)}) = ged {0 (), ag (1), 4g (snk (e))} ).

Thus, since {X, ,VY} satisfies the proper clustering conditioh, it follows from Fact 13 that

pg ({src(e),snk(e)}) = pg({src(e’), snk(e’)}) . From Facts 4 and 11, we conclude that

.BMLB (e) = BMLB (e’) . A symmetric argument can be constructed for the case
(snk (e) = Q) . Thus, we have that BMLB (¢) = BMLB (e’) whenever {X,Y} satisfies the

proper clustering condition.
If {X,Y} does not satisfy the proper clustering condition, then there exists an actor
Z¢ {X,Y} thatis adjacenttosome P€ {X,Y} such that

pg ({Z,P}) does not divide pg({X,Y}). (14)

Without loss of generality, suppose that P = X and X is a predecessor of Z (the other possibili-
ties can be handled with symmetric arguments). Let ¢’ be an edge directed from X to Z in G,
and let e be the corresponding edge (directed from Q to Z) in G,,. From Fact 3(a),

pg ({src(e),snk(e)}) = gcd( {a(X),q5(Y), qg (snk (e))}),and thus from (14) and

Fact 13, it follows that p; ({src(e), snk(e)}) < pg({src(e’), snk (e’)}) . From Facts 4

and 11, we conclude that BMLB (e) > BMLB (e’) . Q.E.D.

The following lemma establishes that if there is an adjacent pair {X, Y} , X is a predeces-
sor of Y, that introduces a cycle in a delayless SDF graph that has a BMLB schedule, then there
exists anactor V¢ {X,Y} thatis a predecessor of Y and a descendant of X, such that the repe-
tition count of {V,Y} is divisible by the repetition count of {X, Y} . One interesting conse-
quence of this lemma is that whenever a BMLB schedule exists, the repetition count of an
adjacent pair that introduces a cycle cannot exceed the repetition counts of all adjacent pairs that

do not introduce cycles. An example is shown in Figure 10.
Lemmal: Suppose that G is a connected, delayless, consistent SDF graph that has a BMLB

38



schedule, and e is an edge in G such that {src(e), snk (e)} introduces a cycle. Then there

exists an actor V in G such that V is a predecessor of snk (¢e) , V is a descendant of src (e) ; and
pg({src(e), snk(e)}) divides ps({V,snk(e)}).

Proof: Observe that from Theorem 1, there exists a BMLB schedule Sy, for G that is an R-sched-
ule; since ({src (e), snk(e)}) introduces a cycle, there is a path (e, €5 ..., e,) , n>2, from

src (e) to snk (e) ; and from Fact 1,

position (src (e), Sg) < position (src (e,), Sg) < position (snk (e),S ») - Thus, there exists a
scheduleloop L = (i (i;B,) (i,B5)) in (1Sz) , where B, and B, are schedule loop bodies
such that (a) B, contains src (e) , and B, contains both src (e,) and snk (e) , or (b) B | con-
tains both src (e) and src(e,) , and B, contains snk () . Observe that L is simply the inner-

most schedule loop in (1Sz) that contains src (e) , src ( e,) , and snk (e) .

Figure 10. An illustration of Lemma 1. Here, the repetitions vector is given by
q(V,X,Y) = (2,1,2), and X (2VY) is a BMLB schedule. Clearly, {X,Y} intro-
duces a cycle. Thus, Lemma 1 guarantees that p ( {X, Y}) divides p ({V, Y}),and
this is easily verified from q: p ({X,Y}) = ged({1,2}) = 1, and

p({V,Y}) = ged({2,2}) = 2.

39



Without loss of generality, assume that (a) applies — that is, assume that B, contains
src (e) , and B, contains both src (e,) andsnk (e) . Then there is a schedule loop
- L = (iy (i;’By’) (iy'B,’)) contained in B, such that B’ contains src (e,) ,and B,’ contains
snk (e) . This is the innermost schedule loop that contains src (e,) and snk (e) , and this sched-
ule loop may be equal to (i,B,) , or it may be nested in (i,B,) .

Let / be the product of the iteration counts of all schedule loops in (1S z) that contain
(i,B,) (i3B,) . Similarly, let J be the product of all schedule loops contained in (i,B,) that
contain (i,’B,’) (i,’B,’) . Then, it is easily verified that
max_tokens (e, Sg) = qg (src (e)) prod (e) /1 = TNSE (e) /1, and
max_tokens (e,, Sp) = (qg (src (e,)) prod(e,)) / (II') = TNSE (e)) 7 (r) .

Since S, is a BMLB schedule, we have from Fact 11 that pg({src(e),snk(e)}) =1,

and pG( {src(e,), snk (e) }) = II'. Thus, ps ({src(e), snk(e) }) divides

pG( {src (e,), snk (e) }) . Furthermore, since the path (eys €5, ..., €,) originates at src (e) ,

we know that src (e,) is a descendant of src (e) . Q.E.D.

The following corollary to Lemma 1 states that under the hypotheses of Lemma 1 (a
BMLB schedule exists and {src (e), snk ()} introduces a cycle), we are guaranteed the exist-
ence of an adjacent pair {V, snk (e)} such that {V, snk (e)} does not introduce a cycle, and

the repetition count of {src (e), snk(e)} divides the repetition count of {V, snk (e)}.

Corollary 1: Assume the hypotheses of Lemma 1. Then, there exists a predecessor V # src (e)
of snk (e) suchthat {V, snk (e)} does not introduce a cycle, and p ( { src (e), snk (e) })
divides p ({V, snk (e) }) .



Proof: Let X = src(e) and Y = snk (e) . From Lemma 1, there exists an adjacent pair

{W,, Y} suchthat(a). p ({X,Y}) divides p( {Wy, Y}) , and (b). there is a path p, from X to
W,.If {W,Y} introduces a cycle, then again from Lemma 1, we have {W,, Y} such that
p( {w,, Y}) divides p( {w,, Y}) » and there is a path p, from W, to W, . Furthermore,
W,# X, since (W, =X) implies that { (p,, p,)) is acycle, and thus that G is not acyclic.
If ( {W,, Y} ) introduces a cycle, then from Lemma 1, we have ( (W, 7} ) such that

p( {w,, Y}) divides p( {w,, Y}) , and there is a path p; from W, to W, . Furthermore

W3 # X, since otherwise { (p, p5, P3)) is acycle in G; similarly, W, # W , since otherwise
((py p3)) is a cycle. Continuing this process, we obtain a sequence of distinct actors

(W), W,, ...) . Since the W;s are distinct and we are assuming a finite graph, we cannot continue

generating W, s indefinitely. Thus, eventually, we will arrive ata W, such that ( {w,Y }) does
not introduce a cycle. Furthermore, by our construction, p ( {X, Y} ) divides p( {Wy,Y }) , and
fori€ {1,2,.... (n-1)}, p( w, Y}) divides p( W, Y}) Tt follows that p ( {X, Y})

divides p( w, Y}) .QED.

As a consequence of Corollary 1, we can be sure that given an APGAN candidate {X, Y}
in an SDF graph that has a BMLB schedule, no other adjacent pair has a higher repetition count.

41



As an example consider Figure 11, and suppose that the SDF parameters on the graph edges are
such that ( {A, B}) is an APGAN candidate — thatis, ( {4, B}) does not introduce a cycle
and maximizes p (*) over all adjacent pairs that do not introduce cycles. Since ( {B, C}) intro-
duces a cycle, the assumption that ( {A, B}) is an APGAN candidate is not sufficient to guaran-
tee that p ({B, C}) <p ({A, B}) . However, Theorem 3 below guarantees that under the
additional assumption that Figure 11(a) has a BMLB schedule, p ( {B, C}) is guaranteed not to
exceed p ({A,B}).

Figure 11(b) shows a case where this additional assumption is violated. Here,
q(A,B,C,D) = (2,4,8,1).1tis easily seen that four invocations of B must fire before a sin-
gle invocation of C can fire, and thus for any valid schedule S,
max_tokens ((B, C),S) 24x2 = 8> BMLB ((B, C)) ; consequently, Figure 11(b) cannot
have a BMLB schedule. It is also easily verified that among the three adjacent pairs in Figure
11(b) that do not introduce cycles, {A, B} is the only APGAN candidate, and p ({B,C}) = 4,
while p ({4, B}) = 2. Thus, the conclusion of Theorem 3 does not generally hold if we relax
the assumption that the graph in question has a BMLB schedule.

Figure 11. Examples used to illustrate Theorem 3.

42



Theorem 3: Suppose that G is a connected, delayless SDF graph that has a BMLB schedule,
and p is an APGAN candidate in G. Then for all adjacent pairs p’ in G, p (p) 2p (p’) .

Proof: (By contraposition.) Suppose that p (p”) > p (p) . Then since p is an APGAN candidate,
p’ must introduce a cycle. From Corollary 1, there exists an adjacent pair p” such that p” does

not introduce a cycle, and p (p’) divides p (p”) . It follows that p (p”) > p (p) . Since p” does

not introduce a cycle, p cannot be an APGAN candidate. Q.E.D.

Lemma2: Supposethat G = (V,E) is a consistent, connected SDF graph, R SV is a sub-
set of actors such that C = subgraph (R) is connected, and X,Y,Z € R . Then

(sea( tac 0. ac (0} ) dvides ged {ac (0, ac(2)1) )=

(ged( 950,95 }) divides sed( {951, 45(2) H)-

Proof: Suppose that (gcd( {qC(Y),qC(Z)}))/(gcd( {ac (X),qC(Y)})) = &, for some

positive integer k. Then, from Fact 3(b),

(gc&( {ag (1), 45 (2) }))/(gcd( (15,450 }))
= (sed( {P6 R ac (NP6 R4 (D })/((sed( {6 (R ac (), p6 R ac () H)

= (sea( tac ™, 9c@1)) /(g0 1ac ). acM)3))

=k. QED.

The following lemma states that in a connected SDF graph that contains exactly three

43



actors, and that has a BMLB schedule, the repetition count can exceed unity for at most one adja-
cent pair. For example, consider the three-actor graph in Figure 12. Here, the repetitions vector is
givenby q(4,B,C) = (6,2,3),and (2(34)B) (3C) is a BMLB schedule. The two pairs of
adjacent actors {4, B} and {B,C} have repetition counts of 2 and 1, respectively. Thus, we
see that only one adjacent pair has a repetition count that exceeds unity.

Lemma 3:  Suppose that (a). G is a connected, consistent, delayless SDF graph that consists
of exactly three distinct actors X, Y and Z; (b). X is a predecessorof Y; (c). Z¢ {X, Y} is adja-
centto P€ {X,Y};(d). pg({X,Y}) 2ps({P,Z}) ; and (e). G has a BMLB schedule. Then,

pg({P.2Z}) = 1.

Proof: For simplicity, assume that P = Y, and that Z is a successor of Y. The other three possi-
ble cases — (P = Y, Z is a predecessor of Y), and (P = X, Z is a predecessor or successor of

X) — can be handled by simple adaptations of this argument.

Let €y be an edge directed from X to Y, and let ey, be an edge directed from Y to Z.
From Theorem 1, there exists a BMLB R-schedule S, for G. Since G contains only three actors,
G has exactly two R-schedules, and it is easily verified that either S is of the form
(i,X) (i5 (i5Y) (i,Z)) , or it has the form U1 GxX) G31) G2) .
If Sp = (i}X) (i5(i3Y) (i42)) , then max_tokens(exy, Sp) = TNSE (exy) , and thus

from Fact 11, we have that
TNSE (exy) = TNSE (exy) /p({X,Y}),

@1 >3®3 3@

Figure 12. An illustration of Lemma 3.

44



which implies that p ({X,Y}) = 1.From Assumption (d), it follows that p ({Y,Z}) = 1.
Conversely, suppose that Sp = (j; (j,X) (U3Y)) (4Z) . Then

max_tokens (eyz, Sp) = INSE (eyz) , o from Fact 11, we have that
TNSE (eyz) = TNSE (eyz) /p({Y,2}),
which implies the desired result. Q.E.D.

The following theorem guarantees that whenever an APGAN instance performs a cluster-
ing operation on a top-level graph that has a BMLB schedule, the adjacent pair selected satisfies

the proper clustering condition in the top-level graph. For example in Figure 8(a), {A, B} and
{B,C} are APGAN candidates, and it is easily verified from the repetitions vector
q(4,B,C,D,E) = (6,2,4,5,1) thatboth of these adjacent pairs satisfy the proper clustering

condition in Figure 8(a). Similarly, for Figure 8(b) we have q (Q »C.D,E) = (2,4,5,1),and

thus {Q,, C} is the only APGAN candidate. Thus, Theorem 4 guarantees that {Q),C} satis-
fies the proper clustering condition in Figure 8(b).

Theorem 4: Suppose that G is a connected, consistent, delayless SDF graph; a BMLB sched-
ule exists for G; and {X, Y} isan APGAN candidate in G. Then {X, Y} satisfies the proper

clustering condition in G .

Proof: LetZ¢ {X,Y} be an actor that is adjacent to some P € {X,Y} ;let
C = subgraph ({X,Y,Z}) , and observe from Fact 2 that C has a BMLB schedule. From The-

orem 3, p-({Z,P}) < pg ({X,Y}), and from Fact 3(b), it follows that
Pc({Z,P}) <p-({X,Y}) . Applying Lemma 3 to the three-actor graph C, we see that

Pc({Z,P}) = 1, and thus from Lemma 2, pg ({Z,P}) divides pg({X,Y}).QED.

45



7 The Optimality of APGAN for a Class of Graphs

In this section, we use main the results of Section 6 to show that for any acyclic SDF
graph (V, E) that has a BMLB schedule, and that satisfies delay (e) <n(e) ,foralle€ E, any
APGAN instance is guaranteed to construct a BMLB schedule.

In Section 6, we showed that clustering an adjacent pair that satisfies the proper clustering
condition does not change the BMLB on an edge. However, to derive a BMLB schedule when-
ever one exists, it is not sufficient to simply ensure that each clusterization step selects an adjacent
pair that satisfies the proper clustering condition. This is because although clustering an adjacent
pair that satisfies the proper clustering condition preserves the BMLB value on each edge, it does
not necessarily preserve the existence of a BMLB schedule.

Consider the SDF graph in Figure 13(a) (q (A, B, C,D, E,F) = (3,5,10,10,5,2)).1t
is easily verified that (3A) (5B (2DC) E) (2F) is a BMLB schedule. Also, observe that
p({A,F}) =p({A,B}) =p({E,F}) = 1,andthus, {A, F} satisfies the proper cluster-
ing condition. Figure 13(b) shows cluster ({A, F}, G, Q) , where G denotes the graph of Figure
13(a). In Figure 13(b), we see that due to the path ( (D, E), (E,Q), (Q,B), (B,C)) , D must

(a) (b)

Figure 13. An example of how clustering an adjacent pair that satisfies the
proper clustering condition can cancel the existence of a BMLB schedule.

46



fire 10 times before a single invocation of C can fire, and thus
max_tokens ( (D, C),S) 210> BMLB ((D,C)) ,if § is a valid schedule for Figure 13(b).
Thus, Figure 13(b) cannot have a BMLB schedule, and we see that even though {A, F} satisfies
the proper clustering condition in Figure 13(a), clustering this adjacent pair does not preserve the
existence of a BMLB schedule.

Fortunately, the assumption that the adjacent pair being clustered has maximum repetition
count is sufficient to preserve the existence of a BMLB schedule. Thus, clustering an APGAN
candidate always preserves the existence of a BMLB schedule.

Theorem 5: Suppose that G = (V, E) is a connected, consistent, delayless SDF graph with
[VI> 1; G has a BMLB schedule; and {X, Y} is an APGAN candidate in G . Then
cluster ({X,Y}, G) has a BMLB schedule.

Proof: We assume without loss of generality that X is a predecessor of Y, and we prove this the-
orem by induction on |V]. Clearly, the theorem holds trivially for [V] = 2, since in this case,
cluster ({X,Y}, G) contains no edges. Now suppose that the theorem holds for

IVl = 2,3, ..., k, and consider the case V] = (k+1).

Define G, = cluster ({X,Y},G,Q) ,and letS r be a BMLB R-schedule for G; the
existence of such a schedule is guaranteed by Theorem 1. Since S is an R-schedule and |V] > 2,
Sp is of the form (i;B,) (i,B,) .

Now suppose that X, Y € actors (B,) , and let C}, C,, ..., C, denote the connected com-
ponents of subgraph (actors (B,)) . Observe that from Fact 2, $; = projection ((i,B,),C)) is
a BMLB schedule for each C;. Let C f denote that connected component that contains X and Y.
Then, since |CJ{ <k, we can apply Theorem 5 with |V] = |CJ{ to obtain a BMLB schedule S* for
cluster ({X,Y}, subgraph (Cj) ) , and from Fact 8, we can assume without loss of generality
that J (S*) = J(Sj) . Then, it is easily verified that SlS2...SJ._ 1S*Sj+ 1Sj+2...S,l (i,B,) isa
BMLB schedule for G,.. A similar argument can be applied to establish the existence of a BMLB
schedule for G, when X, Y € actors (B,) .

Now suppose that X € actors (B,) and Y € actors (B,) , and let €yy be an edge directed

47



from X to Y. Also, let E, denote the set of edges in G, and for each e € E ¢+ let e’ denote the
corresponding edge in G . Clearly max_tokens (e,,, Sg) = TNSE (exy) , and thus, since Sp is a
BMLB schedule, we have from Fact 11 that pg({X,Y}) = 1.From Theorem 3, it follows that
P {X’, Y’} =1 for all adjacent pairs {X’,Y’} in G. Thus, from Fact 11,

BMLB (e) = TNSE (e,G) foralle€ E. (15)

Let (X}, X,,...,X,) beaany topological sort for G, . Then clearly,

S, = (ch (X1)).(q5 (X)) ... (qg (X)) is a valid single appearance schedule for G,,and

buffer_memory (S.) = ;k INSE (e, G)
e (4

= INSE (¢, G) (from Fact 4)
e€E,

= ZL- BMLB (e’) (from (15))
e€E,

= z}: BMLB (e) . (from Theorems 2 and 3)
e€E,

Thus, S, is a BMLB schedule for G..QED.

We are now able to establish our result on the optimality of APGAN.

Lemma4: Supposethat G = (V,E) isaconnected, consistent, delayless SDF graph that
has a BMLB schedule; P is an APGAN instance; and S, (G) is the schedule obtained by apply-

ing P to G. Then Sp (G) is a BMLB schedule for G.

Proof: By definition, P repeatedly clusters APGAN candidates until the top-level graph consists

on only one actor. From Theorem 4, the first adjacent pair p, clustered when P is applied to G

48



satisfies the proper clustering condition, and thus from Theorem 5, the top level graph T, that

results from the first clustering operation has a BMLB schedule. Since T; has a BMLB schedule
we can again apply Theorems 4 and 5 to conclude that the second adjacent pair P, clustered by P
satisfies the proper clustering condition, and that the top-level graph T, obtained from clustering
P, in T; has a BMLB schedule. Continuing in this manner successively for P3Pys -+ P, Where

n is the total number of adjacent pairs clustered when P is applied to G, we conclude that each
adjacent pair clustered by P satisfies the proper clustering condition. Thus, from Theorem 2,

BMLB (e’) = BMLB (e) , whenever e’ and e are corresponding edges associated with a clus-

terization step of P. It follows from Fact 12 that buffer_memory (Sp(G)) = 2 BMLB (e),
e€E

and thus S, (G) is a BMLB schedule for G. Q.E.D.

The following theorem gives our general specification of the optimality of APGAN

instances.

Theorem 6: Suppose that G = (V, E) is a connected, consistent, acyclic SDF graph that has a
BMLB schedule; delay (¢) < (e) forall e € E; P is an APGAN instance; and Sp(G) isthe

schedule obtained by applying P to G . Then S, (G) is a BMLB schedule for G.

Proof: Let G’ denote the delayless version of G, and let P’ be the APGAN instance that returns

Sp(G) if the input graph is G, and returns S, (G,) otherwise, where G ; is the input graph.

Clearly P’ is an APGAN instance since edge delays do not affect the repetition counts of adjacent

pairs. From Lemma 4 and Fact 10, S,.(G’) is BMLB schedule for G . But by construction,

49



Sp.(G’) = Sp(G) .Q.ED.

Figure 14 shows what can “go wrong” in trying to achieve the BMLB with APGAN when
the assumption that delay (e) <1 (e) is not satisfied for all edges. In the SDF graph of (a),
q(4,B,C,D) = (1,1,1,1), and thus all adjacent pairs have the same repetition count. Thus,
two possible clusterization sequences by an APGAN instance for this graph are {W, Y} fol-
lowed by {X,Z} (shownin (b)), and {W, X} followedby {Y,Z} (shown in (c)). From (b) and
(c), we see that the schedules resulting from these two clusterization sequences are (ignoring all
one-iteration loops), respectively, YWZX and YZXW . Here, the former schedule has a buffer
memory requirement of 5, while the latter schedule has a buffer memory requirement of 4 since
the sink actor fires before the source actor for each edge that has unit delay. Thus, we see that dif-

ferent APGAN instances will in general produce different buffer memory requirements when
applied to Figure 14(a).

(b) (c)

Figure 14. An example of how an APGAN instance may fail to achieve the
BMLB when delay (e) <m (e) does not hold for every edge e.

30



8 Recursive Partitioning by Minimum Cuts

APGAN constructs a single appearance schedule in a bottom-up fashion by starting with
the innermost loops and working outward. In [14], we proposed an alternative top-down
approach, which we call Recursive Partitioning by Minimum Cuts (RPMC), that computes the
schedule by recursively partitioning the SDF graph in such a way that outer loops are constructed
before the inner loops. The partitions are constructed by finding the cut (a partition of the set of
actors) of the graph across which the minimum amount of data is transferred and scheduling the
resulting halves recursively. The cut that is produced must have the property that all edges that
cross the cut have the same direction. This is to ensure that we can schedule all actors on the left
side of the partition before scheduling any on the right side. In addition, we would also like to
impose the constraint that the partition that results be fairly evenly sized. This is to increase the
possibility of having gcd’s that are greater than unity for the repetitions of the actors in the subsets
produced by the partition, thus reducing the buffer memory requirement (see Fact 6). In this sec-
tion, we give an overview of the RPMC technique.

Suppose that G = (V, E) is a connected, consistent SDF graph. A cut of G is a partition
of V into two disjoint sets V; and V. Define G, = subgraph (V,) and G g = subgraph (V)
to be the subgraphs produced by the cut. The cut is legal if for all edges e crossing the cut (that is
all edges that are not contained in subgraph (V) nor subgraph (V) ), we have src (e) € v,
and snk (e) € Vp. Given a bounding constant K < |V|, the cut results in bounded sets if it satis-
fies

Vel <K, [V)|<K . (16)

The weight of an edge e is defined as

w(e) = TNSE (e). (17)

The weight of the cut is the total weight of all the edges crossing the cut. The problem then

is to find the minimum weight legal cut into bounded sets for the graph with the weights defined

51



as in (17). Since the related problem of finding a minimum cut (not necessarily legal) into
bounded sets is NP-complete [6], and the problem of finding an acyclic partition of a graph is NP-
complete [6], we believe this problem to be NP-complete as well even though we have not dis-
covered a proof. Kernighan and Lin [8] devised a heuristic procedure for computing cuts into
bounded sets but they considered only undirected graphs. Methods based on network flows [5] do
not work because the minimum cut given by the max-flow-min-cut theorem may not be legal and
may not be bounded [14]. Hence, we give a heuristic solution for finding legal minimum cuts into
bounded sets.

The heuristic is to examine the set of cuts produced by taking a vertex and all of its
descendants as the vertex set V, and the set of cuts produced by taking a vertex and all of its
ancestors as the set V, . For each such cut, an optimization step is applied that attempts to
improve the cost of the cut. Consider a cut produced by setting
V, = (anes(v) U {v}),V, = V\ V,, for some vertex v, and let T, (v) be the set of indepen-
dent, boundary actors of v in V. A boundary actor in V,, is an actor that is not the predecessor
of any other actor in V. Following Kernighan and Lin [8], for each of these actors, we can com-
pute the cost difference that results if the actor is moved into V, . This cost difference for an actor
a in Tp (V) is defined to be the difference between the total weight of all output edges of a and
the total weight of all input edges of a. We then move those actors across that reduce the cost. We
apply this optimization step for all cuts of the form (ancs(v) U {v}) and (desc(v) L {v})
for each vertex v in the graph and take the best one as the minimum cut. For a pseudocode speci-
fication of the algorithm, see [14]. Since a greedy strategy is being used to move actors across,
and only the boundary actors are considered, examples can be constructed where the heuristic will
not give optimal cuts. Since there are |V] actors in the graph, 2|V] cuts are examined. Moreover,
the cut produced will have bounded sets since cuts that produce unbounded sets are discarded.

RPMC now proceeds by partitioning the graph by computing the legal minimum cut and

forming the schedule (r;S,;) (rgS;) where r, = gcd( {fa(v)|ve VL}) ,

rg = gcd( {q(v)|ve VR}) and §;, S, are schedules for G; and Gy respectively. The sched-

52



ules §;, Sy are obtained recursively by partitioning G, and Gy . It can be shown that the running

time of RPMC is given by O (|V]3) [14].
The RPMC algorithm is easily extended to efficiently handle nonzero delays. See [14] for
details.

9 Experimental Results

Table 1 shows experimental results on the performance of APGAN and RPMC that we
have developed for several practical examples of acyclic, multirate SDF graphs. The column
titled “average random” represents the average buffer memory requirement obtained by consider-
ing 100 random topological sorts and applying GDPPO to each. All of the systems shown below
are acyclic graphs. The data for APGAN and RPMC also includes the effect of GDPPO. As can
be seen, APGAN achieves the BMLB on 5 of the 9 examples, outperforming RPMC in these
cases. Particularly interesting are the last three examples in the table, which illustrate the perfor-
mance of the two heuristics as the graph sizes are increased. The graphs represent a symmetric
tree-structured QMF filterbank with differing depths. APGAN constructs a BMLB schedule for
each of these systems while RPMC generates schedules that have buffer memory requirements
about 1.2 times the optimal. Conversely, the third and fourth entries show that RPMC can outper-
form APGAN significantly on graphs that have more irregular rate changes. These graphs repre-
sent nonuniform filterbanks with differing depths.

Table 2 shows more detailed statistics for the performance of randomly obtained topologi-
cal sorts. For example, the column titled “APGAN < random” represents the number of random
schedules that had a buffer memory requirement greater than that obtained by APGAN. The last
two columns give the mean number of random schedules needed to outperform these heuristics. A
dash indicates that no random schedules were found that had a buffer memory requirement lower
that obtained by the corresponding heuristic.

While the above results on practical examples are encouraging, we have also tested the

heuristic on a large number of randomly generated 50-actor SDF graphs. These graphs were

33



sparse, having about 100 edges on average. Table 3 summarizes the performance of these heuris-
tics, both against each other, and against randomly generated schedules. As can be seen, RPMC
outperforms APGAN on these random graphs almost two-thirds of the time. We choose to com-
pare these heuristics against 2 random schedules because measurements of the actual running
time on 50-vertex graphs showed that we can construct and examine approximately 2 random
schedules in the time it takes for either APGAN or RPMC to construct its schedule and have it

Table 1. Performance of the two heuristics on various acyclic graphs.

Fractional decima- 26/30
tion
Laplacian pyramid 115 95 99 99 102 12/13
Nonuniform filter- 466 85 137 128 172 27129
bank (1/3,2/3 splits)
(4 channels)
Nonuniform filter- 4853 224 756 589 1025 43/47
bank (1/3,2/3 splits)
(6 channels)
QMF nonuniform- 284 154 160 171 177 42/45
tree filterbank
QMF filterbank 162 102 108 110 112 20/22
(one-sided tree)
QMF analysis only 248 35 35 35 43 26/25
QMF Tree filter- 84 46 46 55 53 32/34
bank (4 channels)
QMF Tree filter- 152 78 78 87 93 44/50
bank (8 channels)
QMF Tree filter- 400 166 166 200 227 92/106
bank (16 channels) '

54



post-optimized by GDPPO. The comparison against 4 random schedules shows that in general,
the performance of these heuristics goes down if a large number of random schedules are
inspected. Of course, this also entails a proportionate increase in running time. However, as
shown on practical examples already, it is unlikely that even picking a large number of schedules
randomly will give better results than these heuristics since practical graphs usually have a signif-
icant amount of structure (as opposed to random graphs) that the heuristics can exploit well. Thus,

the comparisons against random graphs give a worst case estimate of the performance we can

Table 2. Performance of 100 random schedules against the heuristics

Comparison with ran- || APGAN | APGAN | RPMC | RPMC | avg.to | avg.to
dom schedules (100 tri- < = < = beat beat
als)
Fractional decimation
Laplacian pyramid 74% 26% 74% 26% - ---
Nonuniform filterbank || 100% 0% 100% 0% -—-- -——-
(1/3,2/3 splits) (4 chan-
nels)
Nonuniform filterbank || 100% 0% 100% 0% ---- -
(1/3,2/3 splits) (6 chan-
nels)
" QMF nonuniform-tree || 100% 0% 81% 7% ——— 8
filterbank
QMF filterbank (one- 100% 0% 77% 23% -—-- ———-
sided tree)
QMEF analysis only 99% 1% 99% 1% -——- -—--
QMF Tree filterbank 100% 0% 16% 13% -—— 14
(4 channels)
QMF Tree filterbank 100% 0% 87% 3% -—-- 9.1
(8 channels)
QMF Tree filterbank 100% 0% 96% 1% --- 223
(16 channels)

55




expect from these heuristics.

All of our experiments show that APGAN and RPMC complement each other. For the
practical SDF graphs that we examine, APGAN performs well on graphs that have a simple struc-
ture topologically and regular rate changes, like the uniform QMF filterbanks, and RPMC per-
forms well on graphs that have more irregular rate changes and irregular topologies. Since large
random graphs can be expected to consistently have irregular rate changes and topologies, the
average performance on random graphs of RPMC is better than APGAN by a wide margin —
although, from the last two rows of Table 3, we see that there is a significant proportion of random
graphs for which APGAN outperforms RPMC by a margin of over 10%, which suggests that
APGAN is a useful complement to RPMC even when mostly irregular graphs are encountered.
However, the main advantage of adopting both APGAN and RPMC as a combined solution arises

Table 3. Performance of the two heuristics on random graphs

RPMC < APGAN 63%

APGAN <RPMC 37%

RPMC < min(2 random) 83%

APGAN < min(2 random) 68%

RPMC < min(4 random) 75%

APGAN < min(4 random) 61%

min(RPMC,APGAN) < 87%

min(4 random)

RPMC < APGAN by more than 45%
10%

RPMC < APGAN by more than 35%
20%

APGAN < RPMC by more than 23%
10%

APGAN < RPMC by more than 14%
20%

56



from complementing the strong performance of RPMC on general graphs with the formal proper-
ties of APGAN, as specified by Theorem 6, and the ability of APGAN to exploit regularity that
arises frequently in practical applications.

In [14], we report on a variation of APGAN that achieves significantly better performance
on random graphs than the original version, although still significantly worse performance as
compared to RPMC. This variation arises from changing the “priority function” associated with
an edge e from p ( { src (e), snk(e) }) to the product

(TNSE (e) xp ({src(e), snk(e)})) . (18)

In other words, the variation that we propose repeatedly clusters the source and sink vertices of
edges that maximize the measure given by (18). Thus, an adjacent pair is given more weight if a
large amount of data is transferred between it as compared to other adjacent pairs.

We have found that on the random graphs that were used to generate Table 3, this modifi-
cation of APGAN outperforms two random schedules (“min(2 random)”) 76.5 percent of the
time, which indicates a level of performance intermediate to APGAN and RPMC. Furthermore,
its performance equaled the performance of APGAN on all of the practical examples except the
six channel nonuniform filter bank, where it achieved a buffer memory requirement of 696 (8%
better than APGAN), and the four channel nonuniform filter bank, where it achieved 136 (0.7%
better than APGAN).

Interestingly, however, the modification of APGAN corresponding to (18) does not pre-
serve the formal properties specified by Theorem 6. This is easily seen from the example in Fig-
ure 15. Here, q (W, X,Y) = (2,2,1) ,and thus p ({W,X}) =2 and p({W,Y}) = 1, and
if we let p denote the measure defined by (18), then p ({W,X}) = 2x2 = 4, while
P({W,Y}) = 6x1 = 6. We see then that APGAN clusters {W, X} in its first clusterization
step, which leads to the final schedule (2WX) Y, and a buffer memory requirement of 7 , while in
our variation of APGAN, {W, Y} is clustered first, and the resulting schedule (2W)Y (2X)
gives a buffer memory requirement 8. It is easily verified the BMLB for this graph is 7, and thus,
APGAN generates a BMLB schedule, while the variation generates a suboptimal result.

Thus, our variation of APGAN introduces a trade-off between provable optimality for a

57



class of graphs, and average-case performance. Since we are proposing to complement a heuristic
— RPMC — whose average case performance significantly outweighs that of both APGAN and
its variation, it is intuitively more appealing to choose the original version of APGAN since it
adds a feature that RPMC lacks — optimality for a restricted, but useful, class of graphs. For the
practical examples that we examined, the variation of APGAN outperformed the original APGAN
only in cases where RPMC outperformed both APGAN and the APGAN variation, and thus
adopting the new version of APGAN does not improve the final result of any of these examples
when a combined solution with RPMC is employed.

10 Related Work

In [1], Ade, Lauwereins, and Peperstraete develop upper bounds on the minimum buffer
memory requirement for certain classes of SDF graphs. Since the bounds of Ade et al. attempt to
minimize over all valid schedules, and since single appearance schedules generally have much
larger buffer memory requirements than schedules that are optimized for minimum buffer mem-
ory only, these bounds cannot consistently give close estimates of the minimum buffer memory
requirement for single appearance schedules.

In [9], Lauwereins, Wauters, Ade, and Peperstraete present a generalization of SDF called

Figure 15. An example in which APGAN achieves the BMLB, but the modi-
fied version corresponding to (18) does not.

58



cyclo-static dataflow. A major advantage of cyclo-static dataflow is that it can eliminate large
amounts of token traffic arising from the need to generate dummy tokens in corresponding (pure)
SDF representations. This leads to lower memory requirements and fewer run-time operations.
Although cyclostatic dataflow can reduce the amount of buffering for graphs having certain mul-
tirate actors like explicit downsamplers, it is not clear whether this model can in general be used
to derive schedules that are as compact as single appearance schedules for pure SDF graphs but
have lower buffering requirements than those arising from the techniques given in this paper.

A linear programming framework for minimizing the memory requirement of a synchro-
nous dataflow graph in a parallel processing context is explored by Govindarajan and Gao in [7].
Here the goal is to minimize the buffer cost without sacrificing throughput — just as the goal in
this paper is to minimize buffering cost without sacrificing code compactness. Thus, the tech-
niques of [7] address the problem of selecting a schedule that minimizes buffering cost from

among the set of rare-optimal schedules.

11 Conclusions

In this paper, we have addressed the problem of constructing a software implementation of
an SDF graph that requires minimal data memory from among the set of implementations that
require minimum code size. We have discussed a generalization to handle delays and arbitrary
topologies of the dynamic programming approach described in [14] for post-optimizing a single
appearance schedule by reparenthesizing its lexical ordering. We have developed a fundamental
lower bound, called the BMLB, on the amount of data memory required for a minimum code size
implementation of an SDF graph; we have presented an efficient adaptation to acyclic graphs,
called APGAN, of the PGAN technique developed in [3]; and we have shown that for a certain
class of graphs, which includes all delayless graphs, APGAN is guaranteed to achieve the BMLB
whenever it is achievable. We have presented the results of an extensive experimental study in
which we evaluate the performance of APGAN and RPMC, a top-down technique developed in

[14] that is based on recursively applying a generalized minimum-cut operation. Based on this

a9



study, we have concluded that APGAN and RPMC complement each other, and thus, techniques
should be investigated for efficiently combining the methods of APGAN and RPMC, and that in
the absence of such a combined solution, or of a more powerful alternative solution, both of these
heuristics should be incorporated into SDF-based DSP prototyping and implementation environ-
ments in which the minimization of memory requirements is important.

The solutions developed in this paper have focused on acyclic SDF graphs. Single appear-
ance schedules for general SDF graphs can be constructed efficiently by clustering the strongly
connected components into a “top-level graph,” constructing a single appearance schedule for the
resulting (acyclic) hierarchical graph, constructing a single appearance schedule for each strongly
connected component in isolation, and then replacing each hierarchical actors in the schedule for
the top-level graph with the schedule for the corresponding strongly connected component [2].
Thus, the solutions presented in this paper can be exploited when scheduling general SDF graphs
by applying them to the top-level graph. More thorough techniques for jointly optimizing code

and data for general SDF graphs is a topic for further study.

Glossary
, = prod (e) cons (e)
n(e) Given an SDF edge e, 1 (e) S o
p(Z) Given a subset of actors Z, p(Z) = ged (q(A)|A€ Z) .
Adjacent pair

Aset {X,Y} thatconsists of two adjacent actors.

APGAN Acyclic PGAN — a customization of PGAN to acyclic graphs. This is a technique
for constructing single appearance schedules that repeatedly clusters adjacent pairs
that have maximum repetition count over all adjacent pairs that do not introduce
cycles.

Blocking factor
For each valid schedule S for a connected SDF graph, there is a positive integer k

such that S invokes each actor A exactly kq (A) times. The constant k is the

60



BMLB

BMUB

called the blocking factor of S .

The buffer memory lower bound. Given an SDF edge ¢, BMLB (e) is a lower
bound on max_tokens (e, S) over all valid single appearance schedules for any
consistent SDF graph that contains e. The BMLB of an SDF graph G is the sum
of the BMLB values over all edges in G. A BMLB schedule for G is a valid sin-
gle appearance schedule whose buffer memory requirement equals the BMLB of
G.

Given a consistent SDF graph, the BMLB is an upper bound on the buffer memory

requirement over all single appearance schedules that have unit blocking factor.

cluster (Z, G, Q)

DPPO

GDPPO

The SDF graph that results from clustering the subset of actors Z in the SDF graph
G into the actor Q. Also denoted cluster (Z, G) if Q is understood.

Dynamic processing post optimization. A technique for computing a single
appearance schedule that has minimum buffer memory requirement from among
the single appearance schedules that have a given lexical ordering. The technique
applies to delayless SDF graphs.

Generalized DPPO. A generalization of DPPO to handle delays.

Introduces a cycle

J(S)

A subset of actors Z in a connected, consistent, acyclic SDF graph G introduces a
cycle if cluster (Z, G) contains one or more cycles.

Denotes the blocking factor of the valid schedule S .

max_tokens (e, S)

PGAN

Given an SDF graph G, a valid schedule S for G, and an edge e in G, we define
max_tokens (e, S, G) to denote the maximum number of tokens that are queued
on e during an execution of S. When G is understood, we may write
max_tokens (e, S) in place of max_tokens (e, S, G) .

Pairwise grouping of adjacent nodes. A bottom-up technique for constructing

61



looped schedules that repeatedly clusters adjacent pairs of actors that have maxi-

mum repetition count over all clusterable adjacent pairs.
q Given a connected, consistent SDF graph G and an actor A in G, q (A) gives the
minimum number of times that A must be invoked in a valid schedule for G .
RPMC Recursive partitioning by minimum cuts. A top-down technique for constructing

looped schedules that involves recursively computing partitions that have mini-

mum buffering cost for all edges that cross the partitions.
TNSE (e) Total number of samples exchanged on an SDF edge. Given an SDF edge e in a
consistent SDF graph, TNSE (e) = q (src (e)) prod (e) .

References

[1] M. Ade, R. Lauwereins, and J. A. Peperstraete, “Buffer Memory Requirements in DSP Appli-
cations,” presented at JEEE Workshop on Rapid System Prototyping, Grenoble, June, 1994,

[2] S. S. Bhattacharyya, Compiling Dataflow Programs for Digital Signal Processing, Ph. D. the-
sis, Memorandum No. UCB/ERL M94/52, Electronics Research Laboratory, University of Cali-
fornia at Berkeley, July, 1994,

[3] S. S. Bhattacharyya and E. A. Lee, “Scheduling Synchronous Dataflow Graphs for Efficient
Looping,” Journal of VLSI Signal Processing, December, 1993.

[4] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Multirate Signal Processing in
Ptolemy,” Proceedings of the International Conference on Acoustics, Speech, and Signal Process-
ing, Toronto, April, 1991.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-Hill,
1990.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability-A guide to the theory of NP-
completeness, Freeman, 1979.

[7]1 R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing Memory Requirements in Rate-Opti-
mal Schedules,” Proceedings of the International Conference on Application Specific Array Pro-
cessors, San Francisco, August, 1994,

[8] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs,” Bell
System Technical Journal, February 1970.

[9] R. Lauwereins, P. Wauters, M. Ade, and J. A. Peperstraete, “Geometric Parallelism and Cyclo-

62



Static Dataflow in GRAPE-IL,” presented at I[EEE Workshop on Rapid System Prototyping,
Grenoble, June, 1994,

[10] R. Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans, and J. Van Ginderdeuren,
“GRAPE: A CASE Tool for Digital Signal Parallel Processing,” IEEE ASSP Magazine, April,
1990.

[11] E. A. Lee, A Coupled Hardware and Software Architecture for Programmable Digital Signal
Processors, Ph.D. thesis, Department of Electrical Engineering and Computer Sciences, Univer-
sity of California at Berkeley, May, 1986.

[12] E. A. Lee, W. H. Ho, E. Goei, J. Bier, and S. S. Bhattacharyya, “Gabriel: A Design Environ-
ment for DSP,” IEEE Transactions on Acoustics, Speech, and Signal Processing, November,
1989.

[13] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Dataflow Programs
for Digital Signal Processing,” IEEE Transactions on Computers, February, 1987.

[14] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, Combined Code and Data Minimization
Jor Synchronous Datafiow Programs, Memorandum No. UCB/ERL M94/93, Electronics
Research Laboratory, University of California at Berkeley, December, 1994.

[15] D. R. O’Hallaron, The Assign Parallel Program Generator, Memorandum CMU-CS-91-141,
School of Computer Science, Carnegie Mellon University, May, 1991.

[16] J. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software Synthesis for DSP Using Ptolemy,”
invited paper in Journal of VLSI Signal Processing, to appear in 1994,

[17] S. Ritz, S. Pankert, and H. Meyr, “High Level Software Synthesis for Signal Processing Sys-
tems,” Proceedings of the International Conference on Application Specific Array Processors,
Berkeley, August, 1992,

63



	Copyright notice 1995
	ERL-95-3

