

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

TWO COMPLEMENTARY HEURISTICS FOR

TRANSLATING GRAPHICAL DSP PROGRAMS

INTO MINIMUM MEMORY IMPLEMENTATIONS

by

Shuvra S. Bhattacharyya, Praveen K. Murthy,
and Edward A. Lee

Memorandum No. UCB/ERL M95/3

10 January 1995

TWO COMPLEMENTARY HEURISTICS FOR

TRANSLATING GRAPHICAL DSP PROGRAMS

INTO MINIMUM MEMORY IMPLEMENTATIONS

by

Shuvra S. Bhattacharyya, Praveen K. Murthy,
and Edward A. Lee

Memorandum No. UCB/ERL M95/3

10 January 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

TWO COMPLEMENTARY HEURISTICS FOR

TRANSLATING GRAPHICAL DSP PROGRAMS

INTO MINIMUM MEMORY IMPLEMENTATIONS

by

Shuvra S. Bhattacharyya, Praveen K. Murthy,
and Edward A. Lee

Memorandum No. UCB/ERL M95/3

10 January 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Two Complementary Heuristics for Translating Graphical DSP
Programs into Minimum Memory Implementations

Shuvra S. Bhattacharyya, Praveen K. Murthy, andEdwardA. Lee

ABSTRACT

Dataflow has proven to bean attractive computational model for graphical DSP design
environments that support theautomatic conversion ofhierarchical signal flow diagrams into
implementations onprogrammable processors. The synchronous dataflow (SDF) model is partic
ularly well-suited to dataflow-basedgraphical programming because its restricted semantics offer
strongformal properties and significant compile-time predictability, whilecapturingthe behavior
of a large class of importantsignal processing applications. When synthesizing software for
embedded signal processing applications, critical constraints arise due to the limited amounts of
memory. In this paper, we propose a solution to the problem of jointly optimizing the code and
data size when converting SDF programs into software implementations.

We compare two approaches. The first is a customization to acyclic graphs of a bottom-up
technique, called pairwisegrouping ofadjacent nodes (PGAN), that was proposed earlier for gen
eral SDF graphs. We show that our customization to acyclic graphs significantly reduces the com
plexity of the general PGAN algorithm, and we present a formal study of our modified PGAN
technique that rigorously establishes its optimality for a certain class of applications. The second
approach that we consider is a top-down technique, based on a generalized minimum-cut opera
tion, that was introduced recently in [14]. We present the results of an extensive experimental
investigation on the performance of our modified PGAN technique and the top-down approach
and on the trade-offs between them. Based on these results, we conclude that these two techniques
complement each other, and thus, they should both be incorporated into SDF-based software
implementation environments in which the minimization of memory requirements is important.

A portion of this research was undertaken as part of the Ptolemy project, which is supported by the
Advanced Research Projects Agency and the U. S. Air Force (under the RASSP program, contract
F33615-93-C-1317), Semiconductor Research Corporation (project 94-DC-008), National Science Foun
dation (MIP-9201605), Office of Naval Technology (via Naval Research Laboratories), the State of Cali
fornia MICRO program, and the following companies: Bell Northern Research, Dolby, Hitachi, Mentor
Graphics, Mitsubishi, NEC, Pacific Bell, Philips, Rockwell, Sony, and Synopsys.

S. S. Bhattacharyya is with the Semiconductor Research Laboratory, Hitachi America, Ltd., 179
East Tasman Drive, San Jose, California 95134, USA.

P. K. Murthy and E. A. Lee are with the Dept. of Electrical Engineering and Computer Sciences,
University of California at Berkeley, California 94720, USA.

Motivation

In this paper, we present efficient techniques to compile graphical DSP programs based on

the synchronous dataflow (SDF) model into software implementations that require a minimum

amount of memory for code and data. Here, we focus mainly on programs that are represented as

acyclic SDF graphs; a large class of important DSP applications (some examples will be given in

the sequel) can be implemented with such programs.

Numerous DSP design environments, including a number of commercial tools, support

SDFor closelyrelated models [10,12,15,16,17]. In SDF, a program is represented by a directed

graph in which each vertex (actor) represents a computation, and an edgespecifies a FIFO com

munication channel. In SDF, each actorproduces (consumes) a fixed number of data values

(tokens) onto (from) each output (input) edgeper invocation.

Figure 1shows a simpleSDFgraph.Thisgraphcontains threeactors, labeledA , B and C.

Each edge is annotated with number of tokens produced (consumed) by its source (sink) actor,

and the "D"on the edge from A to B specifies a unit delay on this edge. Given an SDF edge e,

we denote the source actor and sink actor of e by src (e) and snk (e) , and we denote the delay

on e by delay (e) . Each unit ofdelay is implemented as an initial token on the edge (when there

is no ambiguity, we do not distinguish between the FIFO buffer associated with and edge and the
edge itself). Also, prod (e) denotes the number of tokens produced by src (e) , and cons (e)
denotes the number of tokens consumed by snk (e) .

Aschedule is asequence of actor firings. We compile aproperly-constructed SDF graph
by first constructing a finite schedule S that fires each actor at least once, does not deadlock, and
produces no net change in the number oftokens queued on each edge. We call such a schedule a

valid period schedule, or simply a"valid schedule." Corresponding to each actor in the schedule

—5 •(')t — -:J C

Figure 1. Asimple SDF graph.

S, we instantiate a code block that is obtained from a library ofpredefined actors, and the result

ing sequence of code blocks is encapsulated within an infinite loop to generate asoftware imple
mentation of the SDF graph.

SDF graphs for which valid schedules exist are called consistent SDF graphs. In [13],
efficient algorithms are presented to determine whether ornot agiven SDF graph isconsistent,

and to determine the niimmum number of times that each actor must be fired in a valid schedule.

We represent these niinimum numbers of firings by arow vector qG, indexed by the actors in G,
and werefer to qG astherepetitions vector of G. We often suppress the subscript if G is under

stood from context. More precisely, the repetitions vector gives the minimum positive integer

solution x = qG to thesystem ofbalance equations

x(src(e)) prod (e) = x (snk (e)) cons (e), for eachedge e in G. (1)

A valid schedule is any schedule that does not deadlock, and that invokes each actor A

exactly kqG (A) times for some positive integer k. This positive integer is called theblocking

factor of the valid schedule, and it is denoted by J ox by J (S), where S is schedule. A schedule

that has / = 1 is called a minimal schedule.

Given an e in G, we define the totalnumber ofsamples exchangedon e, denoted

TNSE (e, G), or simply TNSE (e) if G is understood, by

TNSE (e) = qG (src (e)) xprod (e), (2)

or equivalency, from (1),

TNSE (e) = qG (snk (e)) x cons (e). (3)

Thus, TNSE (e) is the total number of tokens produced onto (consumed from) e in any

minimal, valid schedule for G.

For Figure 1, q = q(A,B,C) = (3,6,2), and

77VS£ ((A, B)) = TNSE ((B, C)) = 6. Note that we adopt the convention of indexing vectors

using functional notation rather than subscripts.

One valid schedule for Figure 1 is B (2AB) CA (35) C. Here, a parenthesized term

(nS^.'-Sj) specifies n successive firings ofthe "subschedule" SlS2...Sk$ and we may trans

late such a term into a loop in the target code. Observethat this notation naturally accommodates

therepresentation of nested loops. We refer toeach parenthesized term (nS1S2~-Sk) as a sched

ule loophaving iteration count n and iterands S1S2.>.Sk.

A looped schedule is a finite sequence (Vlf V2 Vk), represented as VxV2...Vk,

where each Vi is eitheranactorora schedule loop. Thus, the"looped" qualification indicates that

the schedule in question may be expressed in terms of schedule loops. Since a looped schedule is

usually executed repeatedly,we refer to each V- as an iterand of the associated looped schedule.

Henceforth in this paper, by a "schedule" we mean a "looped schedule."

Note that in the valid schedule B (2AB) CA (35) C, B is allowed to fire first because of

the unit delay on the edge (A, B).

A more compact valid schedule for Figure 1 is (3A) (2 (35) C) . We call this schedule a

single appearance schedule since it contains only one lexical appearance ofeach actor. To a

good first approximation, any valid single appearance schedule gives the minimum code space

cost for in-line code generation. This approximation neglects second order affects such asloop

overhead and the efficiency of data transfers betweenactors [2].

Given anSDF graph G, a valid schedule S, and anedge e in G, wedefine

maxjokens (et S, G) to denote the maximum number oftokens that are queued on e during an

execution ofS. If G isunderstood, then we may write maxjokens (e,S) inplace of

maxjokens (e, 5,G). For example iffor Figure 1, Sl = (34) (65) (2C) and

S2 = (3A(2B)) (2C) .then maxjokens((A,5),SJ = 7 and

maxjokens ((A, B), S2) = 3. We define the buffer memory requirement ofa schedule S,

denoted bufferjnemory (S) ,by bufferjnemory (S) = £ maxjokens (e, S) ,where £ is the
e€ E

set ofedges in G. Thus, buffer memory (Sx) = 7+6 = 13, while for the "nested" schedule

S2, we have bufferjnemory (S2) = 3+ 6 = 9.

Inthe model ofbuffering implied by our "buffer memory requirement" measure, each

4

buffer is mapped to a contiguous and independentblock of memory. Although perfectly valid tar

get programscan be generatedwithout this restriction, it can be shown that havinga separate

bufferon each edge is advantageous because it permits full exploitation of the memory savings

attainablefrom nested loops, and it accommodates delays withoutany complication [14]. Another

advantage of this model is that by favoring the generation of nested loops, the model also favors

schedules that havelower latency thansingle appearance schedules that areconstructed to opti

mizevarious alternative cost measures [14]. Themodel of buffering discussed in thispaperis

used in the SDF-based code generation environments described in [10,12,17].

In thispaperwe address theproblem ofcomputing a validsingle appearance schedule that

minimizes the buffer memory requirement overallvalid single appearance schedules. In this

paper, we call such a schedule an optimal schedule. Wefocus on acyclicgraphs. Weintroduce a

customization toacyclic graphs ofa bottom-up scheduling technique, calledpairwise grouping of

adjacent nodes (PGAN), thatwas proposed inanearlier paper [3] forgeneral SDF graphs. We call

this customization Acyclic PGAN (APGAN). We show that APGAN significantly reduces thetime

and space complexity of thegeneral PGAN algorithm; we rigorously establish that APGAN per

forms optimally for acertain class ofSDF graphs; and we give examples ofpractical applications

that fall within the class ofgraphs for which APGAN produces optimal results. We present exper

imental data onpractical applications that verifies that our implementation ofAPGAN performs

optimally for graphs that fall within the specified class, and suggests that it often performs very
well for graphs that lie outside the class.

We compare APGAN toa top-down heuristic based onrecursively partitioning the input

graph using a generalized minimum cutoperation, which was introduced recently in [14]. We call

this top-down heuristic Recursive Partitioning Based onMinimum Cuts (RPMC). On all of the

applications that we considered, both heuristics produced excellent results and consistently out

performed randomly generated schedules. However, wehave found applications where RPMC

significantly outperforms APGAN, and others where APGAN significantly outperforms RPMC.

Furthermore, ona diverse collection oflarge randomly-generated SDF graphs, we have found that

RPMC outperforms APGAN by a margin ofover 10% on 45% ofthe random graphs, while

APGAN outperforms RPMC byover 10% on23% oftherandom graphs. Theconclusions that we

postulate based on ourstudy arethat techniques should beinvestigated for efficiently combining

the methods of APGAN and RPMC, and that in the absence of such a combined solution,or of a

more powerful alternative solution, both of these heuristics should be incorporated into SDF-

based DSP prototyping and implementation environments in which the minimization ofmemory

requirements is important.

2 Background

For reference, much of the terminology that is introduced ir. this and subsequent sections

is summarized in theglossary at the end of the paper.

Given a finite set H, we denote the number ofelements in H by \H\. l£x and y are posi

tiveintegers, we say thatx divides y if y = kx for some positive integer k. If themembers of H

are positive integers, thenby gcd (H) we mean the largest positive integer thatdivides all mem

bers of H.

Precisely speaking, SDFgraphs, as we use them in this paper, aredirected multigraphs

rather than directed graphs, since we allow two or more edges to hfive the same source and sink

vertices. However, we usually ignore this distinction. Thus, when mere is no ambiguity, we may

refer to an edge e as the ordered pair (src (e), snk (e)) . We frequently represent an SDF graph

G by an ordered pair (V, E) , where V is the set of vertices and E is theset of edges. By a sub

graph of G, we mean thedirected graph formed by any V £ V and the setof edges

{e £ E\ src (e), snk (e) £ V'\ .We denote the subgraph associated with the vertex subset V" by

subgraph (V") . A connected component of G is a subset V £ V such that subgraph (V") is

connected, arid no subsetof V thatproperly contains V induces a connected subgraph.

Given an SDF graph G = (V, E) , we say that actor X is a predecessor of actor Y if

there is an e £ E such that src (e) = X and snk (c) = Y, and we say that X is a successor of

Y if Y is a predecessorof X. Two actors X, Y are adjacent if X is a predecessor or successorof

Y, and if X, Y are distinct, then {X, Y} is called an adjacent pair. A path in G from X to Y is

a finite, nonempty sequence (ev e2»...»en) such that each ei is amember of E, X = srcie^) ,

Y= snk(en), and snk (ej) = src(e2), snk(e2) = jrc(e3) snk(en_l) = src(efl).If

(PpP2> •• •» Pp isafinite sequence ofpaths such that pt = (^. lf e. 2,..., et n) , for 1£ j£ /:,
and m*(e.) = src (e.+x x), for 1£ / £ (it- 1), then we define

<(pPP2,...'PkVs(el,V-eltnl'e2tV~'e2.n2 «*P "•»**«,> •

Clearly, <(px,p2, ...,/>*)> is apath from src (^ j) to oti*^„) .If thereis apathfrom

X£ VtoYe V, then we say that X is an ancestor of Yf and Y is a descendant of X. If X is

neither a descendant noranancestor of Y, we say that X is independent of Y. A path that is

directed from a vertex to itself is called a cycle. If G is acyclic, a topological sort for (V, E) is

an ordering (vp v2,..., v^) of the members of Vsuch that for each e€ E,

((src (e) = v.) and (snk (e) = v;)) => (i<;). Given an SDF graph and an actor X in this

graph, ancs (X) denotes the set of ancestors of X, and desc(X) denotes the set of descendants

ofX.

If e is anSDF edge, then the delayless version of e is anedge e' such that e' = e if

delay (e) = 0, and if delay (e)*0, then e' is the edge defined by src (e') = src (e),

snk (e') = snk (e) ,and delay (e') = 0. If G = (V, E) is an SDF graph, then G isdelayless

if delay (e) = 0 for all eGE, and the delayless version ofG isthe SDF graph defined by

(V, E'), where E' = {the delayless version ofe\e€ E} . Inwords, the delayless version ofG
is thegraph thatresults from setting thedelays onalledges to zero.

A contiguous sequence ofactors and schedule loops in a looped schedule S iscalled a

subschedule of S. Forexample, the schedules (3AB) C, (2D (3AB) C) , and

(4E) (2D (3AB) C) are all subschedules of (4E) (2D (3AB) C) .IfSQ is asubschedule of S,
we say that SQ is contained in 5, and we say that S0 is nested in S ifS0 is contained in S and
S0*S.

We denote the setofactors that appear ina single appearance schedule S by actors (S),

andgivenan A € actors (S), wedefine inv (A> S) to be thenumber of times that S invokes A.

Similarly, if 5Q is asubschedule ofS, we define inv (50, S) to be the number oftimes that S
invokes 50. For example, if S = (2 (35 (2CD))) (5E) , then inv (E, S) = 5, and

inv((2CD)tS) = 6.

We will occasionally need torefer tothe relative lexical positions ofactors ina single

appearanceschedule.For this purpose,we define position (X,S) to be the number of actors that

lexically precede X in the single appearance schedule S. Observe that noambiguity arises in this

definition since weapply it only tosingle appearance schedules. For example, if

S= (2(3B)(5C))(7A)fthenposition(A,S) = 2, position (B,S) =0,and

position (C,S) = 1. Formally, wedefine the lexical ordering ofa single appearance schedule

5, denoted lexorder (S) , tobe the sequence ofactors (AVA2, ...>An) where

{AVA2, ...,An] = actors(S) and position (A .tS) = i-l for each i. Thus,

lexorder ((2 (35) (5C)) (7A)) = (5, C, A) . We will apply the following obvious fact about

lexical orderings.

Fact 1: If S is a valid single appearance schedule for a delayless SDF graph, then whenever X

is an ancestor of Y, we haveposition (X,S) <position (Y,S).

Suppose that S is a looped schedule foranSDF graph G and Z is a setof actors. If we

remove from S all actors that are not in Z, and then we repeatedly remove allnull loops (loops

that have empty bodies) until nonull loops remain, we obtain another looped schedule, which we

call the projection of S onto Z, denoted projection (S,Z). For example,

projection ((2 (25) (54)), {A, C]) = (2 (5A)). Clearly, projection (5,Z) fully specifies

the sequence oftoken populations occurring on each edge in subgraph (Z, G). More precisely,

for any A € Z, any i € {1,2,..., inv (A, S) } , and any input edge e of A contained in

subgraph (Z, G), the number of tokens queued on e just before the i th invocation of A in S

equals the numberof tokensqueuedon e just before the i th invocation of A in an execution of

projection (5, Z). Thus,we have thefollowing fact.

Fact2: If S is a valid looped schedule foranSDF graph G = (V, E), andZ £ V, then

projection (S, Z) is a validlooped schedule for subgraph (Z), and

maxjokens (et projection (S,Z)) = maxjokens (e,S), for each edge e in subgraph (Z) .

If Z is a subset of actors in a connected, consistent SDF graph G, we define

pG (Z) s gcd({qG (A) \A €Z} J,and we refer to this quantity as the repetition count of Z.

We show below (Fact 3(a)) that the repetition count of Z can be viewed as the number of times

that a minimal schedule for G invokes the "subsystem" corresponding to Z.

Wewillextensively apply theconcept of "clustering" a subgraph in an SDFgraph, which

was introduced in [11]. Given a connected, consistent SDFgraph G = (V, E) , a subset Z£V,

and an actor CI £ V, clustering Z into CI means generating the newSDFgraph (V, E') such

thatV" = V-Z+ {CI} andE' = E- ({e\(src(e) € Z) or (snk(e) £ Z)}) +E*,where

E* is a "modification" of the setofedges that connect actors in Z toactors outside of Z. If for

each e € E such that src (e) € Z and snk (e) £ Z, we define e' by

src (e') = CI, snk (e') = snk (e) ,

delay (e') = delay (e), prod (e') = prod (e) x (qG (src (e)) /pG(Z)), and

cons (e') = cons(e);

andsimilarly, for each e € E such that snk (e) £ Z and src (e) $ Z, wedefine e' by

src (e') = src (e), snk (e') = CI

delay(e') = delay(e), prod (e') = prod(e), and

cow(<?') = cow (e) x (qGsnk (e)/pG (Z)),

then, wecanspecify E* by

E* = {e'\ (src (e) € Zand snk (e) € Z) or (snk(e) £ Zand jrc (e) € Z)} .

For each e' € E*,we say that e' corresponds to e and vice versa (e corresponds to e').The

graph that results from clustering Z into CI in G isdenoted cluster (Z, G, Q), orsimply

cluster (Z, G) . Intuitively, aninvocation of CI in cluster (Z, G, Q) corresponds toan invoca

tion of a minimal validschedule for subgraph (Z) in G. Wesay that Z is dusterable if

cluster (Z, G) is consistent, and if G is acyclic, wesaythat Z introduces a cycle if

cluster (Z, G) contains one or more cycles. Figure 2 gives anexample ofclustering. Here, edge

(D, CI) corresponds to (Dt C) (and viceversa), and (CI, A) corresponds to (5, A).

Thefollowing factrelates therepetitions vector of anSDF graph obtained byclustering a

subgraph to therepetitions vector of theoriginal SDF graph. Theproofs of both parts can be

found in [2].

Fact3: (a). If G = (V, E) is a connected, consistent SDFgraph, Z £ V, and

G' = cluster (Z, G, CI), then qG, (CI) = pG (Z), and for each A£ (V - Z) ,

qG,(A) = qG(A).

(b). If G is a connected, consistent SDFgraphand G' = (V", E') is a connected sub

graph of G, then for each A£ V", qG, (4) = qG (A) /pG (V) .

Fact 3(a) together withthedefinition ofclustering immediately yields

Fact4: If G and G' are as in Fact3(a), then foreachedge e in G',

©^^i©a_^<3^-^A) *•

©*—£02 !S0 w

Figure 2. An example of clustering. In (b), we have cluster ({5, C}, G, Q), where

G denotes the SDF graph in (a). Here, qG (A, 5, C, D) = (3,30,20,2), and thus,

9G({B,C}) = 10.

10

TNSE (e, GO = TNSE (e\ G), where e' is the edge in G that corresponds to e.

Wewill use following fact, which is developed in [2].This factprovides a simple test for

the validity a schedule transformationcalled thefactoring transformation. In [2] it is shown that

thistransformation cansignificantly reduce thebuffer memory requirement in a single appearance

schedule.

Fact 5: Suppose that S is a valid schedule for an SDFgraph G, andsuppose that

L = (m(fljSj) (n2S2)... (n^^) is a schedule loop in S of any nesting depth such that

(1 £i<j'>£ k) =* actors (S.) n actors (Sfi = 0. Suppose also that y is any positive integer

that divides nv n2,..., nk\ let V denote the schedule loop

[ym(j~ WpSj^y" n2S2J--.[y'lnkSkJJ ;and let S' denote the schedule that results from replac
ing L with U in S. Then

(a). S' is a valid schedule for G; and

(b). maxjokens (e, S') £ maxjokens (e, S), for eachedge e in G.

If A is eithera schedule loop or a looped schedule, wesaythat A is non-coprime if all

iterands of A are schedule loops and there exists aninteger j > 1 thatdivides all of the iteration

counts of the iterands of A. If A is notnon-coprime, wesaythat A is coprime.Thedistinction

between the conditions for a schedule loopanda looped schedule arisebecause ourconvention in

manipulating looped schedules is todrop the outermost loop (mS) (usually m = «>) that encap

sulates a valid schedule S in the final implementation. If we retain the outermost loop, then it is

equivalent tosaythat 5 is a coprime looped schedule if (mS) is a coprime schedule loop. For

example, theschedule loops (3(44) (25)) and (10 (1C)) are both non-coprime, while the

loops (5(34) (75)) and (70C) arecoprime. Similarly, the looped schedules (445) and

(645) (3C) areboth non-coprime, while theschedules 4 (75) (7C) and (24) (35) are

coprime.

From our discussion ofFact5,we know that non-coprime schedules orloops may result in

much higher buffer memory requirements than their factored counterparts. Given a single appear-

11

ance schedule S, we say that S is fully reduced if S is coprime and every schedule loop con

tained in S is coprime.

In [2], it is shown that every fully reduced schedulehas unit blocking factor. This result is

easily generalized to yield the following fact, which we will use in Section 3.

Fact6: Suppose that S isavalid, fully reduced schedule, and L = (iLBL) isa schedule loop in

S. Then for each 4€ actors (BL), inv (A, BL) = 9^ m
gcd[{q(A')\(A'£ actors(BL))}}

Proof: Observe that for each 4 £ actors (BL), we have J(S)q(A) = kx inv (A, BL) , where

k= inv (BD S) .Thus, it suffices to show that gcd({inv (4', BL) 14' € actors (BL) }1 = 1.

First suppose that not all iterands ofL are schedule loops. Then inv (A, BL) = 1 for

some 4 £ actors (BL), and weare done.

Now suppose that all iterands of L are schedule loops, andsuppose thatj is an arbitrary

integer that is greater than one. Then, since S is fullyreduced,j does not divide at least one of the

iteration counts associated with the iterands ofL. Define /0 = 1 and letLx denote one ofthe

iterands ofLwhose iteration count i1 is not divisible by j =j/(gcd({j, /Q}]]. Again, since S

isfully reduced, if all iterands of Lx are schedule loops, then there exists an iterand L2 ofLj

such that j =jA gcd({j, iQi1} JJdoes not divide the iteration count i2 of L2. Similarly, if all

iterands ofL2 are schedule loops, there exists an iterand L3 ofL2 whose iteration count i*3 is not

divisible by / =j/[gcd]^ {j, irf^} y^ .

Continuing inthis manner, we getasequence (L x, L2, L3...) such that the iteration count

12

ik of each Lk is not divisible by j =j/(gcdi {j, iQix... ik _1} jj. Since Scontains afinite num

berof loops, we cannotcontinuethis process indefinitely — for some m £ 1, not all iterands of

Lm are schedule loops. Thus, there isan actors 4 that isan iterand of Lm. Since S isasingle

appearance schedule,

mv(4,5L) = inv(L2iL1)inv(L3tL2)...inv(Lm_vLm)inv(A,Lm) = i0ix..Jm. (4)

By our selection of the Lk%j/(gcd({j, iQix... im _x} jJdoes not divide im, and thus, from (4),

j does notdivide inv (A, BL).

We have shown that given any integer ; >1,there exists an 4 € actors (BL) such that

inv (4, Bj) is not divisible by j. It follows that gcd({inv (4', BL) 14' €actors (BL) }") =1.

QE.D.

Repeated application of the factoring transformation can beused toconstruct avalid fully

reduced single appearance schedule from an arbitrary valid single appearance such that the

amount of memoryrequired to implement each edge in the fully reduced schedule is less than or

equal to theamount of memory required for the same edge in the original schedule. This is estab

lished by the following fact.

Fact 7: Suppose that G = (V, E) isaconsistent, connected SDF graph, and 5 isasingle

appearance schedule for G. Then there exists avalid, fully reduced schedule S' such that

lexorder (S') = lexorder (S), and maxjokens (e, S') £ maxjokens (e, S) , for each e £ E.

Proof: We prove this fact by construction. Given alooped schedule ¥, we denote the set of

schedule loops in ¥ that are not coprime by non-coprime (W) . Now suppose that S is avalid

single appearance schedule for G, and let Xl = (m(«1<P1) (w2*F2) ...(nk^k)) beanyinner-

13

mostmember of non-coprime (S) — that is, X1 is non-coprime, butevery schedule loop nested

within Xx is coprime. From Fact 5,replacing Xx with

V =[tHy'̂ i^iXy"1^1^ •••(r~VF*:J).where y=*«*({"i> «2« ••••"*>)»yields
another valid single appearance schedule 5X such that maxjokens (e, SJ £ maxjokens (e, S),

for all e£ E.Furthermore, A '̂ is coprime, and since every schedule loop nested within A,2 is

coprime, every loop nested within X^ iscoprime as well. Now let X2 be any innermost member

of non-coprime (SJ , and observe that X2 cannot equal Xx'. Fact 5 guarantees areplacement

X2 for X2'mSl that leads to another valid single appearance schedule S2 such that

maxjokens (e, S2) <> maxjokens(e, S), for all e £ E. If we continue this process, it is clear

that noreplacement loop Xk ever replaces one of the previous replacement loops

^i'»^2* -'•» \ -1 »s*nce mese 1°°PS and the loops nested within these loops are already coprime.

Also, no replacement changes the total number of schedule loops in the schedule. It follows that

we can continue this process onlya finite number of times — eventually, we will arrive at an S

such that non-coprime (Sn) is empty.

Now if Sn isacoprime looped schedule, we are done. Otherwise, Sn is ofthe form

(Pi^i) (P2r2) —(PmTw) »where i B&\ {PvPv —>Pm})>l- Applying F^ 5to the

schedule (lSn) = (lO^) (p2T2) ...(pmTJ), we have that

(y[(tO"VJ[(TO"V2J ••{ (TO -lP«rJJ
is a valid schedule for G. Fromthe definition of a valid schedule, it follows that

14

is also avalid schedule, and by our construction of Sn and Sn', S ' is acoprime single appear

ance schedule, and all schedule loops in Sn' are coprime. Thus, Sn' is avalid fully reduced

schedule for G. Furthermore, since (lSn) generates the same invocation sequence as S clearly

maxjokens (e, (\Sn)) = maxjokens (e, Sn) for all e £ E. From Fact 5,

maxjokens (e, Sn') &maxjokens (e, (lSn)) for all e £ E, and thus

maxjokens(e, Sn') £ maxjokens(e,S) for all e £ E.

Itis easily verified that none ofthe transformations in our derivation of Sn' affect the lex
ical ordering, and thus lexorder (Sn') = lexorder (S). QED.

As aconsequence of Fact 7, we have that given avalid single appearance schedule, there

is a single appearance schedule for any blocking factor such that the memory required for each

edge is no greater than thememory required for thesame edge with theoriginal schedule. This is

establishedby the following fact.

Fact 8: Suppose that G = (V, E) isaconsistent, connected SDF graph, S isasingle appear

ance schedule for G, and k is any positive integer. Then there exists avalid single appearance

schedule S' such that / (50 = k, lexorder (S') = lexorder (S), and

maxjokens (e, S') £ maxjokens (e, S), for each e £ E.

Proof: From Fact 7, thereis a valid, fully reduced schedule S" such that

lexorder (S") = lexorder (S), and maxjokens (e, S") £ maxjokens (e,S), for each e £ E.

Clearly, since S" is fully reduced, (IS") is also fully reduced. Thus, applying Fact 6 with

L = (IS"), we have that J(S") = l.Thus (kS") is avalid schedule that has blocking factor

k, and has the same lexical ordering as S. Furthermore, since S" isavalid schedule, clearly

maxjokens (e, (kS")) = maxjokens (e, S") for all e £ E, and thus,

maxjokens (e, (kS")) £ maxjokens (e,S) for all e £ E. QED.

If A is either a schedule loop or alooped schedule, we say that A satisfies the R-condi-

15

tion if one of the following two conditions holds.

(a). A has a single iterand, and this singleiterandis an actor, or

(b). A has exactly two iterands, and these two iterands are schedule loops having coprime

iteration counts.

Wecall a valid singleappearance schedule S anR-scheduleif S satisfies the R-condition, and

every schedule loop contained in S satisfies the R-condition.

In [2], it is shown that inachain-structured SDF graph, whenever a valid single appear

ance schedule exists, anR-schedule can bederived whose buffer memory requirement is no

greater than that of the original schedule. This result is easily generalized togive the following

theorem for arbitrary consistentSDFgraphs.

Theorem 1: Suppose that G = (V, E) isaconsistent SDF graph and S isa valid single

appearance schedule for S. Then there exists an R-schedule SR for S such that

maxjokens (e, SR) £ maxjokens (e,S) for all e£ E, and lexorder (SR) = lexorder (S).

Proof: We prove this theorem by construction.We use the following notation here: given a sched

ule loop L and a looped schedule S', we define nonR (SO tobethe setofschedule loops inS'

that do notsatisfy theR-condition; / (L) tobe the number of iterands of L; and C (L) to be the

iteration countof L. Also, wedefine / (SO s y I (U) .
Z/€ nonR(S')

First observe that from Fact 7, there exists avalid fully reduced schedule S0 for G such

ih&t maxjokens(e,S0) <.maxjokens(e,S) foralle€ E.NowletLQ = (nT\Tr"T„) bean

innermost loop in (1S0)l that does not satisfy the R-condition; that is, LQ does not satisfy the R-

condition, but all loops nested in LQ satisfy the R-condition. Ifm= 1, then since S0 is fully

reduced, LQ = (n(IF)), where (IT) satisfies theR-condition. Let S* denote theschedule

1. IMs is the schedule loop whose iteration count is one and whose body is S0. Any schedule loop ofthe
form (mS0) isacceptable for the purposes ofthis proof, and we have chosen m = 1 only for simplicity.

16

that results from replacing L0 with (nV) in (1S0) .Then clearly, S* is also valid and fully

reduced, and S* generates the same invocation sequence as SQ, so

maxjokens (e, S*) = maxjokens (e, SQ) for all e£ E. Also, replacing LQ with (nV)

reduces the numberof non-R loopsby one,and does not increase the number of iterands of any

loop, and thus, / (S*) </ ((1S0)) .

If on the other hand m£ 2, we define Sa s (irx) if TY is an actor and Sa s Tx if ^isa

schedule loop. Also,if T2, Tv ...,Tm are all schedule loops, we define

where y=gcd({C(T2),C(TZ) C(Tm)}\md BVBV ...tBm are the bodies of

T2, Tv ..., Tm, respectively; if T2, T3, ...,Tm are not all schedule loops, we define

Sb s (1 T2r3... Tm). Let S* be the schedule that results from replacing LQ with LQ' = (nSQSb)

in (1S0) . Now, because S0 is fully reduced, the iteration counts of Sa and Sb must be coprime.

Thus, itis easily verified that S* is avalid, fully reduced schedule and that L0' satisfies the R-

condition, andwith the aid of Fact 5, it is also easily verified that

maxjokens (etS*) £ maxjokens (e> S0) for all e£ E.

Furthermore, observe that Sa and L0' satisfy the R-condition, but Sb may or may not sat

isfy the R-condition, depending on LQ. Thus, replacing LQ with L0' either reduces the number of

loops that do notsatisfy theR-condition by one, or it leaves the number of loops that donotsat

isfy the R-condition unchanged, and we see that either / (S*) = / ((1S0)) - / (LQ), or
/ (S*) =/ ((1S0)) -/ (L0) +1 (Sb). Since / (Sb) =/ (LQ) - 1< / (L0) ,we again conclude
that/(S*)</((lS0)).

Thus, from (1S0), we have constructed avalid, fully reduced schedule S* such that

maxjokens (e, S*) £ maxjokens (e, S0) £ maxjokens (e, S) for all e£ E, and

/ (S*) </ ((1S0)) .Also, since S* is derived from S0 by replacing asingle loop that has itera-

17

tion count n with another loop that has the same iteration count, it is easily verified that S* is of

the form S* = (IS^) . Clearly, if / ((1SX)) * 0, we can repeat the above process to obtain a
valid, fully reduced schedule (1S2) such that

maxjokens (e2> (1S2)) <, maxjokens (e2, (1S2)) for all e£ E, and 1((1S2)) </ ((lSj)) .
Continuing in this manner, we obtain a sequence of valid, fully reduced schedules

((1S0), (lSj), (1S2), (1S3),...) such that for each Si in the sequence with i> 0,

maxjokens (e, (IS,.)) = maxjokens (e,S() <. maxjokens (e,S) for all e £ E, and

/ ((lSt)) <I((lSi_1)) .Since / ((1S0)) is finite, we cannot go on generating St 's indefinitely
—eventually, we will arrive at an Sn, n^0, such that 1((\Sn)) = 0. Thus, all schedule loops
in Sn satisfy the R-condition, and Sn satisfies the R-condition, and we have that Sn is an R-
schedule.

From Fact 7 and from the observation that the factoring transformationdoes not affect the

lexical ordering, it is easily verified that none ofthe transformations applied in deriving Sn from
S change the lexical ordering. Thus, lexorder (Sn) = lexorder (S) . QED.

3 Optimally Reparenthesizlng a Single Appearance Schedule

In [14], a dynamicprogramming algorithm was developed that constructs an optimal

schedule for awell-ordered SDF graph (a graph that has only one topological sort) in o\ vJ
time, where v is the number of actors. An adaptation of this technique is also presented forgen

eral, delayless, consistent SDF graphs1 that computes an order-optimal schedule —asingle
appearanceschedule that has minimum buffer memory requirement from among the single

appearance schedules that have a given lexical ordering. We refer to this adaptation as Dynamic

Programming PostOptimization (DPPO) for single appearance schedules. Given a single

appearance schedule S, DPPO computes a single appearance schedule that minimizes the buffer

memory requirement over all schedules in the set {S'| (lexorder (S') = lexorder (S)) } . Thus,

1. Note thatforconsistent SDFgraphs, delayless implies acyclic, and thus, wearereferring hereto theclass
of consistent, acyclic —butnotnecessarily well-ordered —SDF graphs such that the delay oneach is zero.

18

DPPO canbe usedas a post-optimization to any scheduling technique for delayless, acyclic SDF

graphs. In this section, we elaborateon this technique andpresentan efficientextensionto handle

delays and general SDF graphs.

Suppose that G is a connected, consistent, delayless SDF graph, S is valid single appear

ance schedule for G, lexorder (S) = (AVA2 An), and S00 is an order optimal schedule for

(G, lexorder (S)) . Assuming that G contains at least two actors, we know from Theorem 1 that

there isa valid schedule ofthe form SR = (iLBL) (iRBR) such that

bufferjnemory (SR) = bufferjnemory (S00) and for some p£ {1,2,...,(«- 1)} ,

lexorder(Bj) = (AvA2...,Ap) and lexorder (BR) = (Ap+vAp+2 ^.Furthermore,
from the order-optimality ofS00, clearly, (iLBL) and (iRBR) must also be order optimal.

From this observation, wecanefficiently compute an order-optimal schedule for G if we

are given anorder optimal schedule Sa b for the subgraph corresponding toeach proper subse

quence Aa,Aa+v ...,Ab of lexorder (S) such that (1). (b-a)<. (n-2) and (2). a = 1 or

b = n. Giventheseschedules, an order-optimal schedule for G can be derived from a valueof

x, 1 £ x < n that minimizes

wherebufferjnemory (Slx) + bufferjnemory (Sx+l n) + Y TNSE (e) ,

Es= {e\[src(e)£ {AVA2, ...,AJ and snk(e) £{Ax+1,Ax+2, ...,An}^\} isthesetof

edges that "cross the split" ifthe schedule parenthesization is split between Ax and A

DPPO isbased onrepeatedly applying this idea inabottom-up fashion tothe given lexical

ordering lexorder (S).First, all two actor subsequences (AVA2), (A2>A$), (An _vAn)
are examined and the minimum buffer memory requirements for the edges contained ineach sub

sequence is recorded. This information isthen used to determine an optimal parenthesization split

and the minimum buffer memory requirement for each three actor subsequence

(Ait Ai +j,Ai+2) ; the minimum requirements for the two- and three-actor subsequences are used

todetermine the optimal split and minimum buffer memory requirement for each four actor sub

sequence; and soon, until anoptimal split isderived for the original n-actor sequence

19

lexorder (S) . Anorder-optimal schedule can easily beconstructed from a recursive, top-down

traversal of the optimal splits [14].

In the r th iteration of this bottom up approach, we haveavailable the minimum buffer

memory requirement b[p, q] for each subsequence (AptA v ...,Aq) that has less than or
equal to r members. Tocompute theminimum buffer memory requirement b [itj] associated

with an r+1-actor subchain (At, Ai+V ...,Aj), we determine avalue of
k£ {/, /+ 1, ...,7- 1} mat minimizes

&[/,*]+*[*+1 J]+^1*], (5)

where b[x, x] = 0 for all x and c(j[k], the memory cost at the split ifwe split the subse

quence between Ak and Ak+x is given by (see Fact 6).

y TNSE(e)

Ci'j[k] =gcd(qG(Ax)\(i£x£J'))^ (6)

where

Es= {e\[src(e)£ {AitAt+v ...,Ak} and snk(e) £{Ak+vAk^2t...tAJ}>j} (7)

is the set of edges that cross the split.

This technique can easily beextended tohandle graphs that are not necessarily delayless,

although a few additional considerationsarise. Werefer to our extension as Generalized DPPO

(GDPPO). First, if delays are present, then Fact 1does not apply, and lexorder (S), the lexical

ordering ofthe input schedule, isnot necessarily a topological sort. As a consequence, generally

notallparenthesizations ofthe input schedule will be valid. For example, suppose that we are

given the valid schedule S = (64) (5(2C) (3B)) for Figure 3.Then

lexorder (S) = (A, C,B) clearly isnot a topological sort, and it iseasily verified that the sched

ule that corresponds to splittingthe outermost parenthesization between C and B —

20

(2 (3A) (5C)) (155) —is nota valid schedule since there isnotsufficient delay onthe edge

(BtC) to fire 10 invocations of C before a singleinvocation of B.

Thus, we see that when delays are present, the set Es defined in(7) no longer generally

gives all of the edges that cross the parenthesization split. Wemustalsoexamine the set of back

edges

Eb ={e\[snk(e) €{ApA(+v...tAk} and src(e) €M,+ P^+2, ...,Ay})} • <8>

Each e£ Eb mustsatisfy

delay (e) Z ™SE(e)n) 8cd(qG(Ax)\(i*X*j))> (9)

otherwise thegiven parenthesization splitwillgive a schedule that is not valid.Totakeinto

account any nonzero delays on members inEs, and the memory cost ofeach ofthe back edges,

the costexpression of (5) for thegiven splitgets replaced with

y TNSE(e)

MU]+M*+U1+g^ ' (10)

Expression (10) gives the cost of spliting the subsequence (Ap Ai+ v ...,A) between
Ak and Ak+ j assuming that the subsequence (Ap Aux Ak) precedes

(Ak+vAk+2, ...t Aj) in the lexical order of the schedule that will be implemented. However, if
(9) is satisfied/or all "forward edges" e£ E$, itmay be advantageous to interchange the lexical

&—2>&-^©
Figure 3. An SDF graph used to illustrate QDPPO applied to SDF graphs that have
nonzero delay on one or more edges. Here q (A, fi, C) = (6,15,10).

21

order of (Ap Ai+ v ..., Ak) and (Ak+ v Ak+2 A.) . Such areversal will be advantageous

whenever the reverse split cost defined by

y TNSE(e)

is less than theforward split cost computed from (10).

The possibility for reverse splits introduces a fundamental difference between GDPPO

and DPPO: if one or more reverse splits are found to be advantageous, then GDPPO does not pre

serve the lexical ordering of the original schedule. This is not a problem since in suchcases the

result computed by GDPPO will necessarily have abuffer memory requirement thatis less than

that of an order-optimal schedule for lexorder (S). On the contrary, it suggests that GDPPO may

be applied multiple times in succession to yield more benefit than asingle application — that is,

GDPPO can in general be applied iteratively, where the iterative application terminates when the

schedule produced byGDPPO produces noimprovement over the schedule computed in the pre

vious iteration.

Figure 4 shows anexample where multiple applications of GDPPO is beneficial. Here

q (AtBtC) = (2,1,2), and the initial schedule is S = (2A) B(2C), so theinitial lexical

ordering is (A, B,C) .Upon application of GDPPO, the minimum cost for the subsequence

Figure 4. An illustration of iterative application of GDPPO.

22

(A, B) is found to be 2, andthe minimum cost for the subsequence (B, C) is found to occur

with areverse split thathas acostof 2. The minimum cost for the"top-level" subsequence

(A, By C) is taken as theminimum costover thecostif theparenthesization is split between A

and B, whichis equal to 0 +2 +5+0 = 7 from (11), and theminimum costif thesplitoccurs

between B and C, which is2 +0 +7 +0 = 9. Thus, the former split is taken, andthe resultof

applying GDPPO once to S is theschedule Sx = (2A) (1 (2C) (IB)) t which has abuffer

memory requirement of 7, and a lexical ordering that is different from that of S.

Since lexorder (Sx) * lexorder (S), it isconceivable that applying GDPPO toSj can

further reduce the buffer memory requirement. Applying GDPPO to S1, we generate aminimum

costof 1 — whichcorresponds to another reverse split— for (A, C), and we generate a mini

mum (reverse split)cost of 2 for (C, B). Thus,we see that splitting (A, C, B) between A and

C gives acostof 0 +2 +5 +0 = 7, while splitting between C and B givesacostof

1+0 +2+2 = 5. The result ofGDPPO isthus the schedule S2 = (2CA) B, and abuffer mem

ory requirement of 5. It is easily verified that application of GDPPO to S2 yields nofurther

improvement, and thus iterative application of GDPPO terminates after three iterations.

Although the iterative application of GDPPO is conceptually interesting, we have found

that for all of the practical SDF graphs that wehave applied it to, termination occurred after only

2 iterations, which means that no further improvement was ever generated by a second applica

tion of GDPPO. This suggests that when compile-time efficiency is asignificant issue, it maybe

preferable to bypass iterative application of GDPPO, and immediately accept theschedule pro

duced by the first application.

Our extension of GDPPO can be implemented efficiently by updating forward and reverse

costs incrementally. Ifweare examining the splits ofthe subsequence (A,., Ai+1 A) ,and we

have computed the forward and reverse split costs Fk and Rk associated with the split between

Ak and Ak+ 2, i &k< (j - 1), then the splits costs Fk+1 and Rk+ xassociated with the split

between Ak+j and Ak+2 can easily bederived by examining the output and input edges of

Ak+1.Toensure that we ignore reverse splits (forward splits) that fail to satisfy (9) for all e £ E

23

(e£ £6)acostof A/sTl+ £ (TNSE(e) +fife/ay(e))>) is added to the reverse (forward)

split cost for anyinput edge (output edge) e of Ak+1 whose source (sink) is amember of

(Ak+2i Ak+ 3,...,Aj),and that does not satisfy (9). Similarly, for each output (input) edge e of

Ak+ j whose sink (source) iscontained in (A., A/+ v ..., Afc) , and that does not satisfy (9), M is

subtracted from /?fc +j (F^+x) since such anedge no longer prevents the split from being valid.

Choosing M solarge has the effect of"invalidating" any cost CM that has M added toit (without

a corresponding subtraction) since anyminimal valid schedule has abuffer memoryrequirement

less than M, and thus, any valid split will be chosen over asplit that has cost CM.

If forward and reverse costs areupdated in this incremental fashion, then GDPPO attainsa

time complexity of o\ nA where nv is the number of actors, ifwe can assume that the number of
input andoutputedges of eachactor is always bounded by some constant a. In the absence of

such abound, GDPPO has time complexity that is oi nenv), where ne is the number of edges in
the input graph.

GDPPO givesa post-optimization that can beappended to any scheduler for general SDF

graphs thatconstructs single appearance schedules. Applying GDPPO to a single appearance

schedule S yields aschedule that has abuffer memory requirement that is less than orequal to the

buffermemoryrequirement of every valid single appearance schedule that hasthe samelexical

ordering as S. Li theremainder of this paper, we discuss twoheuristics for constructing single

appearance schedules, and we present anexperimental studythatcompares theseheuristics —

with their schedules post-processed by GDPPO — against each other and against randomly gen

erated schedules that are post-processed by GDPPO. To enhance ourdiscussion of theseheuris

tics, we first develop some fundamental bounds onthe buffer memory requirement of asingle

appearance schedule.

24

4 Bounds on the Buffer Memory Requirement

Given a consistent SDFgraph G, there is an efficiently computable upper and lower

bound on the buffermemoryrequirement over all valid single appearance schedules. Our lower

bound can be derived easily by examining a generic two-actor SDFgraph, as shown in Figure

5(a). From the balance equations (see (1)), it is easily verified that the repetitions vector for this

graph is given by q (A, B) = 2 £) where gs gcd ({p, q}) , and that if d<^, then the
^8 8' g

only R-schedule for this graph isSl =f%A)l &BJ .From Theorem 1it follows that if d<£2,

then maxjokens ((A, B), Sx) =f—+<ij is alower bound for the buffer memory requirement

of the graph in Figure 5(a). Similarly, ifd££^, then there are exactly two R-schedules —S, and
8 l

S2 =I~B I[-AJ. Since maxjokens ((A, B),S2) =d, we obtain das alower bound for the

buffer memory requirement. Thus, given avalid single appearance schedule S for Figure 5(a), we

have that

(d <?fj => (maxjokens ((A, B),S)*(&+dj\, and

'p dD *o} B

(a) (b)

Figure 5. Examples used to develop the buffer memory lower bound.

25

(d>£2J => (maxjokens((A,B),S) Zd) . (12)

Furthermore, if (A, B) is an edge in a general SDF graph, we know from Fact 2 that the

projection of a valid schedule S onto {A, B} , which is a valid schedule for

subgraph ({A, B}) , always satisfies

maxjokens ((A, B), projection (S, {A, 5})) = maxjokens ((A, B), S) . (13)

It follows that the lower bounddefined by (12) holds whenever (A,B) is an edge in a consistent

SDF graph G, S is a valid single appearanceschedulefor G,

(prorf ((A, 5)) =p), (co/w((A,fl)) = <?) ,andg = gcd({p,q}) . Wehave motivated the

following definition.

Definition 1: Given an SDFedge e, we define the buffer memory lower bound (BMLB) of e,

denoted BMLB (e), by

BMLB(e) = {^)+delay(e))^ (delay(e)<^(e))
(delay(e)) if (delay(e) ZT\(e))

x\(e) s prod(e) cons (e)
gcd ({prod (e), cons (e)}) '

IfG = (V,E) is an SDF graph, then (£ BMLB(e)\ is called the BMLB of G, and avalid
Vee£ /

singleappearance schedule S for G thatsatisfies maxjokens (e,S) = BMLB (e) for all e £ E

is called a BMLB schedule for G.

In Figure 1, we see that BMLB ((A, B)) = 3, and BMLB ((B, C)) =3.Thus,to

implement any singleappearance schedule for this graph, at leastthree memory words willbe

required to implement theedge (A,B), andat leastthree words willbe required for (B, C).

Furthermore, a valid single appearance schedule forFigure 1is a BMLB schedule if andonly if

its buffer memory requirement equals 6. It is easily verified that only twoR-schedules forFigure

1 exist— (3A (2B)) (2C) , and (3A) (2 (35) C); the associated buffer memory requirements

26

are 3+6 = 9 and 7 +3 = 10,respectively. Thus, aBMLB schedule does notexist for Figure 1.

In contrast, the SDF graph shown in Figure 6 has aBMLB schedule. This graph results

from simply interchanging the production and consumption parameters ofedge (5, C) inFigure

1. Here, q (A,5, C) = (1,2,6), the BMLB values for both edges are again identically equal to

3, and A (25 (3C)) is avalid single appearance schedule whose buffer memory requirement

achieves the sum of these BMLB values.

The following fact is a straightforward extension of ourdevelopment of the BMLB.

Fact 9: Suppose that G is an SDF graph that consists of two vertices A,B and n£ 1 edges

ev ev ...,en directed from A to B. Then (a), if delay (e.) £ T| (e.) for all i e {1,2 n} ,

then (qG(B)B) (qG(A)A) is aBMLB schedule for G; (b) otherwise, (qG(A)A) (qG(B)B)

is an optimal schedule — that is, itminimizes the buffer memory requirement over all valid single

appearance schedules — for G, and it is aBMLB schedule if and onlyif delay (e) <r\(e) for

l£i£n.

For example, in Figure 5(b), let ex denote the upper edge, and let e2 denote the lower

edge. Then r\ (ex) = T\(e2) = 6, and (25) (3A) is aBMLB schedule if

delay (ex), delay (e2) £ 6. Similarly, if delay (ex), delay (e2) <6, then itis easily verified that

(3A) (25) is aBMLB schedule. However, if delay (ex) <6 and delay (e2) £ 6, then
(3A) (25) is optimal, but is not a BMLB schedule since in this case

maxjokens (e2, (3A) (25)) = (delay (e2) +6), while BMLB (e2) = delay (e2).

02 5—*i®3 T©

Figure 6. An SDF graph that has a BMLB schedule.

27

Fact 10: If G = (V,E) is aconnected, consistent, acyclic SDF graph, delay (e) <T\(e) for all

e £ E, and S is a BMLB schedule for the delayless version of G, then S is a BMLB schedule for

G.

Proof: Let G' denote the delayless version of G. If S is a BMLB schedule for G', then S is a

valid schedule for G thatsatisfies maxjokens (e, S, G) = maxjokens (ef S, G') + delay (e)

for all e £ E. It follows from Definition 1 that S is BMLB schedule for G. (2-£-#-

Fact 11: If G is a connected, consistent SDFgraph and e is anedge in G, then

{e) _ TNSE(etG)
pG(src(e),snk(e)) '

Proof: From the balanceequations (1),

TNSE(etG) _ <iG(src(e))prod(e)
Pc(src(e),snHe)) =̂{qo0rcW)>qo(jrtW)})

qG(src (e)) prod(e)

gcd[(qG <5rc (*))»^G (src <*)) 0"0*W/cww (*))})

Multiplying thenumerator and denominator of this last quotient by cons (e), and recalling that

gcd (ka, kb) = kgcd (a,b), we obtain the desired result. QED.

We conclude this section by defining an obvious, efficiently computable upper bound for

singleappearance schedules thathaveunitblocking factor. Clearly, if G = (V,E) is acon

nected, consistent SDF graph, and S is aunitblocking factor single appearance schedule for G,

we have bufferjnemory (S) £ £ (TNSE (e) +delay (e)). We refer the RHS of this inequal-
ee E

28

ity as the buffer memory upper bound (BMUB) for G.

In Figure6, q (A,5, C) = (1,2,6) , andthe BMUB for thisgraphis 9.

5 PGAN for Acyclic Graphs

Theoriginal Pairwise Grouping ofAdjacent Nodes (PGAN) technique was developed in

[3]. In this techmque, a cluster hierarchy is constructed byclustering exactly twoadjacent vertices

at each step. At each clusterization step, a pair of adjacent actors is chosen that maximizes

p ({A,5}), therepetition count of theadjacent pair, over allclusterable adjacent pairs {A,5} .

RecallfromSection2 that p (Z) can be viewed as thenumber of times a minimal periodicsched

ule for the subsetof actors Z is invoked in thegivenSDFgraph, and thus,we see that the PGAN

technique repeatedly clustersadjacentpairs whose associated subgraphs are invokedmost fre

quently in a valid schedule.

To check whether or not an adjacent pair is clusterable, PGAN maintains the cluster hier

archy on a data structure called the acyclicprecedence graph (APG). Each vertex of the APG cor

responds to an actor invocation, and thereis an edgedirected from the vertexcorresponding to

invocation x to the vertexcorresponding to invocation y if and onlyif at leastone tokenpro

duced by * is consumed by y in a valid schedule. See [11] for details on the derivation of the

APG that corresponds to an SDF graph.

ThePGAN technique verifies whether ornotan adjacent pair is clusterable bychecking

whether or not its consolidation introduces a cycle in the APG. It is shown that this check can be

performed quickly by applying a reachability matrix, which indicates foranytwoAPG vertices x

and y ,whether or not there is a path from x to y.

Unfortunately, thecosttocompute and store thereachability matrix canbeprohibitively

highfor multirate applications that involve large changes in sample rate. Sincethe number of ver

tices in the APG ofanSDF graph (V,E) is/x y q(X) .whereJ is the desired blocking fac-
X€V

tor, and the number of entries in the reachabilitymatrix is quadratic in the number of APG

29

vertices, it is easily seen that the time and space required to maintain the APG can grow exponen

tiallywith the number of actors in the givenSDFgraph. Although this is not a problemfor the

large class of practical SDF graphs for which V q(X) is not much larger than the number of

elements in V, practical examples can easily be constructedwhere the technique consumes enor

mous amounts of resources relative to the size of the input SDF graph. For example, for the 6-ver

tex SDF representationof a multi-stage sample-rate conversion systembetweena compactdisc

player and a digital audio tape player discussed in [14], V q (X) > 600, which means that over
xtv

360,000 units of storageare requiredto implement the reachability matrixfor this 6-actorSDF

graph.

Since a large proportion of DSP applications that are amenable to the SDF model can be

represented as acyclicSDFgraphs,wepropose a simple adaptation of PGAN to acyclic graphs

thatmaintains thecluster hierarchy andreachability matrix directly on theinput SDFgraph rather

than on the APG,and thus allows us to efficiently exploit theadvantages of the bottom-up cluster

ing approach of the originalPGANtechnique. We refer to thisadaptation of PGANas Acyclic

PGAN (APGAN). APGAN is exactly theoriginal PGAN technique specified in [3] with the

exception that the inputSDFgraphis assumed to beacyclic, andthecluster hierarchy andreach

abilitymatrixare maintained for the inputSDFgraph ratherthanfor the APG.

In an acyclic SDF graph G, it is easily verified that a subset Z of actors is not clusterable

onlyif cluster (Z, G, Q) contains a cycle—thatis, onlyif Z introduces a cycle. Thiscondition

is easily checked givena reachability matrix for G byexamining eachsuccessor of a member of

Z: cluster (Z, G, Q) contains a cycle if and onlyif there is an X $ Z such that X is a successor

of some member of Z, and there is a path from X to somememberof Z.

Sincetheexistence of a cyclein cluster (Z, G,Q) is onlya necessary — butnot suffi

cient —condition for Z not to beclusterable, theclusterability testthat weapply in ourAPGAN

is not exact; it must be viewed as a conservative test. It is even inexact if we restrict ourselves to

single appearance schedules. That is, it is possible for cluster (Z,G, CI) tocontain a cycle, and

still havea validsingle appearance schedule. A simple example is shown in Figure 7. Here, the

30

BMLB schedule C(2A5) results if we first cluster {A, 5} . However in APGAN, clustering

{AtB} is notpermitted since the resulting graph contains acycle. Instead, APGAN generates

the schedule (2A) C (25) or the schedule C (2A) (25) , neitherof which is a BMLB schedule.

Thus, in this example, we see that our inexact clusterization test prevents us from obtaining an

optimal schedule.

In exchange for some degree of suboptimality in certain examples, ourclusterization test

attains alarge computational savings over theexact testbased onthereachability matrix of the

APG, andthis is ourmain reason for adopting it.

Figure 8 illustrates theoperation of APGAN. Figure 8(a) shows theinput SDF graph. Here

q (A, 5, C, Dt E) = (6,2,4,5,1), and for i = 1,2,3,4, CI- represents the i th hierarchical

actor instantiated by APGAN. Each edge corresponds to adifferent adjacent pair; therepetition

counts of the adjacent pairs are given by p ({A, 5}) = p ({A, C}) = p ({5, C}) = 2, and

p({C,D}) =p({£,D}) =p({5,£}) = l.Thus, APGAN will select the one ofthe three

adjacent pairs {A, 5} , {A, C} , or {5, C} for its first clusterization step.Examination of the

reachability matrix yields that {A, C} introduces a cycle due to the path ((A, 5), (5, C)),

while the othertwo adjacent pairs do not introduce cycles.Thus, APGAN chooses arbitrarily

between {AtB} and {B,C} as the first adjacentpairto cluster.

Figure 8(b) shows the graph that results from clustering {AtB} into the hierarchical

actor Qj. In this graph, q (Qv C, DtE) = (2,4,5,1), and it is easily verified that {Qv C}

Figure 7. An example of how a clusterization operation that introduces a

cycle can lead to a BMLB schedule. Here q (A, 5, C) = (2,2,1).

31

(d)
(0

Subgraph corresponding to Qi

Subgraph corresponding to Q2

& *®
Subgraph corresponding to Q3

Subgraph corresponding to Q4

Figure 8. An illustration of APGAN.

32

uniquely maximizes p over all adjacent pairs. Since {Q[fC} does not introduce acycle,

APGAN selectsthis adjacent pair for its second clusterization step.Figure 8(c) shows the result

ing graph.

InFigure 8(c), wehave q(Q2,D,£) = (2,5,1), and thus all three adjacent pairs have

p = 1. Among these, clearly, only {Q2,£} and {£,/>} donot introduce cycles, soAPGAN

arbitrarily selects among these two to determine thethird clusterization pair. Figure 8(d)shows

thegraph that results when {EtD} is chosen. This graph contains only one adjacent pair

{Q2» ^3} »aad APGAN will consolidate this pair inits final clusterization step toobtain the sin

gle-vertex graph in Figure 8(e).

Figures 8(b-e) specifythe sequence of clusterizations performed by APGAN when

applied to thegraph of Figure 8(a). A more compact representation of this sequence is shown in

Figure 8(f). A valid single appearance schedule for Figure 8(a) can easily beconstructed byrecur

sivelytraversing thehierarchy induced by this sequence. We start by constructing a schedule for

the top-level subgraph, the subgraph corresponding to Q4. The subgraph Gt corresponding to

each Qt consists ofonly two actors Xi and Yi, such that all edges in Gt are directed from X- to

Y.. Thus, from Fact 9, it is clear how an optimal schedule can easily be constructed for the sub

graph corresponding toeach Q.: if each edge e in Gi satisfies delay (e) £ x\ (e) , then wecon

struct the schedule (qG (Y() Yt) (qG (X^X^ , and otherwise we construct

(qG (y.)^) (qG(X|)X|.) .InFigure 8, This yields the "top-level" schedule (2Q2)fi3 (we

suppress loops that have an iteration count ofone) for the subgraph corresponding to Q4.

Next, werecursively descend one level incluster hierarchy tothe subgraph corresponding

to Q3, and we obtain the schedule (5D)E. Since this subgraph contains nohierarchical actors,

(5£>) E is immediately returned as the "flattened" schedule for the subgraph corresponding to

33

£>3. This flattened schedule then replaces its corresponding hierarchical actor in thetop-level

schedule, and thetop-level schedule becomes (2Q2) (5D)E.

Next, descending to Cl2, we construct the schedule Cl1 (2C) for the corresponding sub

graph. We then examine the subgraph corresponding to Q2 toobtain the schedule (3A) 5. Sub

stituting this for Q1, the schedule for the subgraph corresponding to Q2 becomes (3A) 5 (2C) .

Finally, this schedule gets substituted for Q2 in the top-level schedule toyield the valid single

appearance schedule Sp= (2(3A)B(2Q) (5D)E for Figure 8(a).

From Sp and Figure 8(a) it is easily verified that bufferjnemory (S) and

(H BMLB (e)], where £ is the set of edges in Figure 8(a), are identically equal to 43, and

thus in the execution of APGANillustrated in Figure 8, a BMLB scheduleis constructed.

As seen in the aboveexample,the APGAN approach, as we havedefined it here, does not

uniquely specify thesequence ofclusterizations that will beperformed, and it does notingeneral,

result in a unique schedule fora given SDF graph. The APGAN technique together with anunam

biguous protocol fordeciding between adjacent pairs that are tied for thehighest repetition count

form anAPGAN instance, which generates a unique schedule fora given graph. Forexample,

onetie-breaking protocol thatcanbe used when actors arelabelled alphabetically, as in Figure 8,

is to choose that adjacent pair that maximizes the sum of the "distances" of the actor labels from

the letter "A". If thisprotocol is used to break the tiebetween {A,5} ("distance sum"is

0+1 = 1) and {BfC} (distance sum isl+2 = 3)inthe first clusterization ofstep ofFigure

8, then {BtC} is chosen.

We saythatan adjacent pairis an APGAN candidate if it does notintroduce a cycle, and

its repetition count is greater than orequal toallother adjacent pairs that donotintroduce cycles.

Thus, an APGAN instance is any algorithm that takes a consistent, acyclic SDF graph asinput,

repeatedly clusters APGAN candidates, and then outputs the schedule corresponding to a recur

sive traversal of the resulting cluster hierarchy.

In thefollowing two sections, weshow that for a consistent, acyclic SDF graph (V, E)

34

that has a BMLB schedule,and that satisfies delay (e) < Tj (e) for each e £ E, any APGAN

instance is guaranteed to obtain a BMLB schedule when applied to this graph. As a consequence,

all delay-free graphs, such as that shown in Figure 8(a), for which BMLB schedules exist are han

dled optimally by any APGAN instance.For example,even if in a certain APGAN instance,

{5, C} is clustered instead of {AtB} in the first clusterization step of Figure8, we are still

guaranteed that final result achieved by that APGAN instance will be a BMLB schedule. To dem

onstrate therelevance of thisoptimality result, in Section 9 we willgivepractical applications to

which theresult applies. Also, wewill present experimental data thatsuggests thatourimplemen

tation of an APGAN instance frequently produces excellent results evenfor applications thatdo

nothave BMLB schedules, andweshow that it hasexhibited encouraging performance ona large

collection of complexrandomly-generated SDFgraphs.

Thefollowing fact, which is easily understood from ourdiscussion of theexample in Fig

ure 8, is fundamental to developing our resulton the optimality of APGANinstances.

Fact12: Suppose that G is a connected, consistent, acyclic SDFgraph suchthat

delay (e) <T\(e) for each e £ E; P is an APGANinstance; and S is the schedule that results

when P isapplied to G. Then bufferjnemory (S) = y BMLB (e'), where £Q isthe set of
e'Vka

edges thatarecontained thesubgraphs corresponding to thehierarchical actors {Q } instanti

ated by P.

Forthe example ofFigure 8, £Q is the setofsix edges that appear inFigure 8(f). It is eas

ilyseenthattheBMLB values for these edges are, from top to bottom, 3, 6, 2, 10, 2, and 20.

Thus, Fact 12 states that the schedule obtained from the sequence ofclusterizations shown inFig

ure 8 has a buffermemoryrequirement equalto 3 + 6 + 2 + 10+ 2 + 20 = 43, whichwe knowis

correct from the discussion above.

There are twomain parts in thedevelopment of ouroptimality result. First, wedefine a

certain class of "proper" clusterizations; weshow thatfordelayless graphs, suchclusterizations

have theproperty that they do notincrease theBMLB values onanyedge; andweshow that

35

under the assumption thataBMLB schedule exists, aclustering operation performed by any

APGAN instanceis guaranteed to fall in the class of proper clusterizations. Then we show that

clustering an APGANcandidate cannot transform agraph that has aBMLBschedule intoagraph

thatdoes not have a BMLB schedule. From thesethree developments andFacts 10 and 12, the

desiredresult can be derived easily.

If anefficient data structure, such as aheap, is used tomaintain thelistof pairwise cluster

ingcandidates, thenit canbe shown that APGANinstances existwithrunning times that are

0\ M \E\) •The details are beyond the scope of this paper.

6 Proper Clustering

Definition 2: If G is aconnected, consistent SDF graph, and {X, Y} is an adjacent pair in G

that does notintroduce acycle, we saythat {X, Y} satisfies the properclusteringconditionin

G if for eachactor Z £ {X, Y} that is adjacent to a memberof {X, Y} , we have that

p({Z,P}) divides p({X,y}) , for each PG {X,7} that Z is adjacent to.

InFigure 8(a) q (A, 5, C,D,E) = (6,2,4,5,1), and p ({5, C}) = 2 is divisible by

p({A,C}) = 2,p({A,5}) = 2,p({C,D}) = l.and p({5,£}) = l,andthus,

{5, C} satisfies the proper clustering condition. Conversely, p ({5, £}) isnotdivisible by

p ({5, C}), so {5, £} does not satisfy the proper clustering condition.

The motivation for Definition2 is given by Theorem 2 below,whichestablishes thatwhen

theproper clustering condition is satisfied, clustering {X, Y} does notchange theBMLB onany

edge, andthatwhen the proper clustering condition is notsatisfied, clustering {X, Y} increases

theBMLB onatleast one edge. Thus, aclustering operation that does notsatisfy theproper clus

tering condition cannot be used to derive a BMLB schedule.

To establish Theorem 2, we will usethe following simple fact about greatest common

divisors,which we statehere without proof.

36

Fact 13: Suppose that a, b, c are positive integers. If gcd ({a, b}) divides gcd ({a, c}), then

gcd({atb,c}) = gcd({a,b}); otherwise, gcd({a,btc}) <gcd({atb}).

Theorem 2: Supposethat G is a consistent, connected, delayless SDFgraph, and {X, Y} is a

clusterable adjacent pair in G. If {X, Y} satisfies the proper clustering condition, then for each

edge e in Gc s cluster ({X, Y}, G) , BMLB (e') = BMLB (e) , where e' is the edge in G that

corresponds to e. If {X, Y} does not satisfy the proper clustering condition, then there exists an

edge e in Gc suchthat BMLB (e') < BMLB (e) .

For example, in Figure 6, BMLB((A, 5)) = 3, BMLB((BtQ) =3,and

q (A,5, C) = (1,2,6). Figures9(a) and9(b) respectively show cluster ({AtB}fGt CI) and

cluster ({5, C}, G, Q), where G denotes thegraphof Figure6. In Figure9(a),we see that if

e = (5, C), then <?' = (Q, C), and 5ML5 (<?') = 6, while BMLB(e) = 3, and thus,

5ML5 (*?0 > 5ML5 (e) .In contrast, in Figure9(b),we see that if e = (A,5) , then

e' = (A, Q), and BMLB (e') = 5ML5 (e) = 3. These observations are consistent with The

orem 2 since pG({A, 5}) = 1 divides pG({5, C}) = 2, and thus {B,C} satisfies the

proper clustering condition, while pG({C,5}) =2 does not divide pG ({A, 5}) = 1, and

thus {AtB} does not satisfy the proper clusteringcondition.

Proofof Theorem 2: First,suppose that {X,Y} satisfies theproper clustering condition. Let e

beanedge in Gc, and let e' bethe corresponding edge in G. If src (e), snk (e) * CI, then

e' = e, so from Definition 1, it follows that BMLB (e) = BMLB (e').

If src (e) = CI, observethat snk (e) = snk (e') and src (ef) £ {X, Y} , and observe

<a> ©6 T© W ©2 5 *1©
Figure 9. An example used to illustrate Theorem 2.

37

from Fact 3(a) that QG({src(e)tsnk(e)}) =gcd[{qG(X),qG(Y),qG(snk(e)) }) .

Thus, since {X, Y} satisfies the properclustering condition, it follows from Fact 13 that

pGe ({ src (e) ,snk(e)}) = pG ({src (e'), snk (e')}). From Facts 4and 11, we conclude that

BMLB (e) = BMLB (e') .A symmetric argument canbe constructed for the case

(snk(e) = CI) . Thus, we have that BMLB (e) = BMLB(e') whenever {X,Y} satisfies the

proper clustering condition.

If {X, Y} does not satisfy the proper clustering condition, thenthere exists an actor

Z£ {X, Y} that is adjacent to some P £ {X, Y} suchthat

pG ({Z, P}) does not divide pG ({X,Y}). (14)

Without loss of generality, suppose that P = X and X is apredecessor of Z (the other possibili

tiescanbe handled with symmetric arguments). Let e' be an edgedirected from X to Z in G,

and let e be the corresponding edge (directed from CI toZ) in Gc. From Fact 3(a),

PGe({src(e)t snk(e) }) =gcd({qG(X),qG(Y),qG(snk(e)) }1, and thus from (14) and

Fact 13, it follows that pG^ ({src (e), snk (e)}) <pG ({src (ef), snk (e')}). From Facts 4

and 11,we conclude that BMLB (e) > BMLB (e') . Q.E.D.

The following lemma establishes that if there isan adjacent pair {X, Y} , X is apredeces

sorof Y, that introduces a cycle in a delayless SDFgraph thathasa BMLB schedule, then there

exists an actor V€ {X,Y} that is apredecessor of Y and adescendant of X, such that the repe

tition count of {V, Y} is divisible by the repetition count of {X, Y} . One interesting conse

quence of this lemma is that whenever aBMLB schedule exists, therepetition count of an

adjacent pair that introduces acycle cannot exceed the repetition counts of all adjacent pairs that

do not introduce cycles. An exampleis shown in Figure 10.

Lemma 1: Suppose that G is aconnected, delayless, consistent SDF graph that has aBMLB

38

schedule, and e is anedge in G such that { src (e), snk(e)} introduces a cycle. Then there

exists anactor V in G suchthat V is apredecessor of snk(e), V is adescendant of src (e); and

pG({src (e), snk (e)}) divides pG({V, snk (e)}) .

Proof: Observe that from Theorem 1, there exists aBMLB schedule SR for G that isan R-sched

ule; since ({ src (e), snk (e)}) introduces acycle, there isapath (ev e2>..., en) , n>2, from

src (e) to snk (e) ; and from Fact 1,

position (src (e)tSR) <position (src (en),SR) <position (snk (e),SR) .Thus, there exists a

schedule loop L = (i'oO'^) (i2B2)) in (1SR), where B1 and52 are schedule loop bodies

such that (a) Bx contains src (e), and 52 contains both src (en) and m* (e), or (b) 5X con

tains both src (e) and src (en), and 52 contains s/i* (e) . Observe that L is simply the inner

most schedule loop in (15^) that contains src (e), src (en), and snk (e) .

Figure 10. An illustration of Lemma 1. Here, the repetitions vector is given by
q(V,X,y) = (2,l,2),andX(2VT) is a BMLB schedule. Clearly, {X,Y} intro
duces a cycle. Thus, Lemma 1guarantees that p({X, Y}) divides p({ V, Y}), and
this is easily verified from q: p ({X, Y}) = gcd({1,2}) = 1, and

p({V,y>) = gcd({2,2}) =2.

39

Without loss ofgenerality, assume that (a) applies —that is, assume that Bx contains
src (e), and 52 contains both src (en) aadsnk (e). Then there isa schedule loop

L' ~ (V ('Y^i7) (V52')) contained in 52 such that 5^ contains src(en) ,and52' contains
snk (e). This is the innermost schedule loop that contains src (en) and snk (e), and this sched
ule loop may be equal to (i2B2), or itmay be nested in (i2B2).

Let / be the product of the iteration counts of all schedule loops in (ISR) that contain

0'i#l) 0*252) •Similarly, let Vbe the product of all schedule loops contained in (i2B2) that

contain (i^B^) (i2B2) . Then, it is easily verified that

maxjokens (e,SR) = qG(src(e))prod(e)/I = 77VS£ (<?)//, and

maxjokens (en,SR) = (qG (src (en))prod (en))/ (IP) = TNSE (en)/ (IP) .

Since SR is aBMLB schedule, we have from Fact 11 that pG({src(e),snk(e)}) = /,

and pGf {src (en), snk (e)}J =//'. Thus, pG ({ src (e), snk (e)}) divides

pGf {src (en), snk (e) }J.Furthermore, since the path (ev e2,..., en) originates at src (e),

weknow that src (en) is a descendant of src (e). QED.

Thefollowing corollary to Lemma 1states that under the hypotheses ofLemma 1 (a

BMLB schedule exists and {src (e), snk (e) } introduces acycle), we are guaranteed the exist

ence ofan adjacent pair {V, snk (e)} such that {V, snk (e)} does not introduce a cycle, and

the repetition count of {src (e), snk (e)} divides the repetition count of {V, snk (e)} .

Corollary 1: Assume the hypotheses ofLemma 1. Then, there exists apredecessor V* src (e)

of snk (e) such that {V, snk (e)} does not introduce acycle, and p({ src (e)tsnk(e)})

divides p ({ V, snk (e) }) .

40

Proof: Let X = src (e) and Y = snk(e). From Lemma 1, thereexists an adjacent pair

{Wv Y} such that (a), p({X, Y}) divides pf {Wv Y} J, and (b). there is apath px from Xto

Wx. If {Wj, y} introduces acycle, then again from Lemma 1, wehave {W2, Y} such that

pf {Wv Y} Jdivides pf {W2, Y} J, and there is apath p2 from Wx to W2. Furthermore,

W2 * X, since (W2 =X) implies that ((p^ p2) >isacycle, and thus that G isnot acyclic.

If f {W2, Y} j introduces acycle, then from Lemma 1, we have ({W3, Y}) such that

pf {Wv Y} j divides pf {Wv Y} J, and there is apath p3 from W2 to W3. Furthermore

W3 *X, since otherwise <(pvp2% p3)) is acycle in G; similarly, W3 * Wx, since otherwise

((j>2> ^3)) isacycle- Continuing this process, weobtain asequence ofdistinct actors

(Wx, W2,...). Since the Wi s are distinct and weare assuming a finite graph, wecannot continue

generating W(s indefinitely. Thus, eventually, we will arrive at aWn such that f {Wn, Y}]does

not introduce acycle. Furthermore, by our construction, p({X, Y}) divides pf {Wv Y} j, and

for 1€ {1,2,..., (n - 1)} ,pf {Wp Y}) divides pf {Wi+ vY} V ItfoUows that p({X, Y})

divides p({Wn)Y}\Q£I>.

As aconsequence of Corollary 1, wecan besure that given an APGANcandidate {X, Y}

in an SDF graph that has aBMLB schedule, noother adjacent pair has ahigher repetition count.

41

As an example consider Figure 11, and suppose that the SDF parameters onthegraph edges are

such that ({A, 5}) is anAPGANcandidate — that is, ({A, 5}) does notintroduce acycle

and maximizes p (*) overall adjacent pairs that donotintroduce cycles. Since ({BtC}) intro

duces acycle, the assumption that ({A, 5}) is an APGANcandidate is not sufficient toguaran

tee that p ({5, C}) £ p ({A, 5}) . However, Theorem 3 belowguarantees thatunder the

additional assumption that Figure 11(a) has aBMLB schedule, p ({5, C}) is guaranteed not to

exceed p({i4,5}).

Figure 11(b) shows acase where this additional assumption is violated. Here,

q (A, 5, C, D) = (2,4,8,1). It is easilyseen that four invocations of 5 must fire before a sin

gle invocationof C can fire, andthus for anyvalidschedule S,

maxjokens((5, C), S) £ 4 x 2 = 8 >BMLB ((5, C)); consequently, Figure 11(b) cannot

have a BMLB schedule. It is also easily verified that among thethree adjacent pairs in Figure

11(b) that donotintroduce cycles, {AtB} is theonlyAPGANcandidate, and p({5, C}) = 4,

while p({A,5}) =2. Thus, theconclusion of Theorem 3 does notgenerally hold if werelax

the assumption that the graphin questionhas a BMLB schedule.

Figure 11. Examples used to illustrate Theorem 3.

42

Theorem 3: Suppose that G is a connected, delayless SDF graphthat has a BMLB schedule,

and p is an APGAN candidate in G. Then for all adjacent pairs p' in G, p (p) £ p (p').

Proof: (By contraposition.)Suppose that p (p') > p (p). Then since p is an APGAN candidate,

p' must introduce a cycle. From Corollary 1, there exists anadjacent pair p" such that p" does

not introduce a cycle, and p (p') divides p (p"). It follows that p (p") > p (p). Since p" does

not introduce a cycle, p cannot be an APGAN candidate. QED.

Lemma2: Suppose that G = (V,£) is aconsistent, connected SDF graph, R£ V is asub

set of actors such that C s subgraph (R) is connected, and X, YtZ € R . Then

(*«*({QC(X).Qc W>) dividesgcd[{qc(Y)tqc(Z) }J):

(^{qG(X),qG()0})^v/^gc^{qG(y),qG(Z)}^

/W Suppose mat ^c^{qc(10,qc(Z)}^/^c^{qc(X),qc(y)})) =it,for
positive integer k. Then, from Fact3(b),

(^{qG(y),qG(Z)}J/(^{qG(X),qG(r)})]

=(^({PGWflc('̂PGWqc(z)}))/(^({pGWqcW»PGWqcW}))

=(^({qc(y)'qc(Z)}))/(^({qc(X),qc(V)}))
= k. QED.

some

The following lemma states that in aconnected SDF graph that contains exactly three

43

actors, and that has a BMLB schedule, the repetition countcan exceedunityfor at most one adja

centpair. For example, consider the three-actor graph in Figure 12. Here, therepetitions vector is

given by q (A, 5, C) = (6,2,3) ,and (2(3A)B) (3C) is aBMLB schedule. The two pairs of

adjacent actors {AtB} and {BtC} have repetition counts of 2 and 1, respectively. Thus, we

see thatonlyoneadjacent pairhasa repetition count that exceeds unity.

Lemma 3: Suppose that (a). G is a connected, consistent, delayless SDFgraph thatconsists

ofexactly three distinct actors X,Y andZ;(b).X is apredecessor of Y;(c).Z€ {X,Y} is adja

cent toP £ {X, Y} ; (d). pG ({X, Y}) > pG ({P,Z}); and (e). G has aBMLB schedule. Then,

pG({P,Z}) = 1.

Proof: For simplicity, assume that P = Y,andthat Z is a successor of Y.The otherthreepossi

ble cases — (P = Y, Z is a predecessor of Y), and (P = X, Z is a predecessor or successor of

X) — can be handledby simpleadaptations of this argument.

Let exy be an edge directed from X to Y, and let eyz be an edge directed from Yto Z.
From Theorem 1, there exists a BMLB R-schedule SR for G. Since G contains only three actors,

G has exactly two R-schedules, and it iseasily verified that either SR is ofthe form

(ixX) (i2 (i3Y) (i4Z)) , orithas the form (jx UJQ U3Y)) (y4Z) .

If SR = (/XX) (i2(i3Y) (i4Z)) ,then maxjokens (exyiSR) = TNSE(exy) , and thus
from Fact 11, we have that

TNSE(exy) = TNSE(exy)/9({X,Y}),

©i •5®3 -8©

Figure 12. An illustration of Lemma 3.

44

which implies that p ({X, Y}) = 1. From Assumption (d), it follows that p ({YtZ}) = 1.

Conversely, suppose that SR = (j\ U2X) (J^Y)) (y4Z) .Then

maxjokens (eyz, SR) = TNSE (eyz) , so from Fact 11, we have that

TNSE(eyz) = mS£(^2)/p({v,Z}),

which implies the desired result. QED.

The following theorem guarantees that whenever an APGANinstance performs a cluster

ingoperation onatop-level graph that has aBMLB schedule, theadjacent pair selected satisfies

theproper clustering condition in thetop-level graph. For example in Figure 8(a), {A, 5} and

{5, C} are APGANcandidates, and it is easily verified from therepetitions vector

q (A, 5, C, D, E) = (6,2,4,5,1) that both ofthese adjacent pairs satisfy the proper clustering

condition inFigure 8(a). Similarly, for Figure 8(b) we have q (Qp C, D, £) = (2,4,5,1), and

thus {C1VC} is the only APGAN candidate. Thus, Theorem 4guarantees that {C1VC} satis

fies the properclusteringcondition in Figure 8(b).

Theorem 4: Suppose that G is aconnected, consistent, delayless SDF graph; aBMLB sched

ule exists for G; and {X,Y} isan APGAN candidate in G. Then {XtY} satisfies the proper

clustering condition in G.

Proof: LetZC {X, Y] be an actor that is adjacent to some P £ {X,K};let

C = subgraph ({X, Y, Z}), and observe from Fact 2 that C has a BMLB schedule. FromThe

orem 3, pG ({Z, P}) £ pG ({X,Y}), and from Fact 3(b), it follows that

pc ({Z, P}) £ pc ({X, Y}). Applying Lemma 3tothe three-actor graph C, wesee that

pc ({Z, P}) = 1,and thus from Lemma 2, pG ({Z, P}) divides pG ({X, Y}) .QED.

45

The Optimality of APGAN for a Class of Graphs

In this section, we use main the results of Section 6 to show that for any acyclic SDF

graph (V, E) that has a BMLB schedule, and that satisfies delay (e) < rj (e) , for all e £ E, any

APGAN instance is guaranteed to construct a BMLB schedule.

In Section 6, weshowed that clustering anadjacent pairthat satisfies theproper clustering

condition does not change the BMLB on an edge. However, to derive a BMLB schedule when

everoneexists, it is not sufficient to simply ensure thateach clusterization stepselects an adjacent

pair that satisfies the proper clustering condition. This is because although clustering an adjacent

pair that satisfies theproper clustering condition preserves the BMLB value oneach edge, it does

not necessarily preserve the existence of a BMLB schedule.

Consider the SDF graph in Figure 13(a) (q (A,B, C, D, £, F) = (3, 5, 10, 10,5, 2)). It

is easily verified that (3A) (55 (2DC) E) (2F) is a BMLB schedule. Also, observe that

p{{A,F}) = p({A,5}) = p({£,£}) = 1, and thus, {A,F} satisfies theproper cluster

ingcondition. Figure 13(b) shows cluster ({A,F} ,G,Cl) , where G denotes the graph ofFigure

13(a). In Figure 13(b), we see that due to the path ((Z), £), (£, CI), (CI, B), (5, C)) , D must

15

3

©r—&

(b)

Figure 13. An example of how clustering an adjacent pair that satisfies the
proper clustering condition can cancel the existence of a BMLB schedule.

46

fire 10 times before a single invocation of C can fire, and thus

maxjokens ((D, C), S) £ 10 > BMLB ((D, C)), if S is a valid schedule for Figure 13(b).

Thus, Figure 13(b)cannot have a BMLB schedule, andwe see that even though {A, F} satisfies

the properclustering condition in Figure 13(a), clusteringthis adjacentpairdoes not preserve the

existence of a BMLB schedule.

Fortunately, the assumption that the adjacent pairbeing clustered has maximum repetition

count is sufficient to preservethe existence of a BMLB schedule. Thus, clusteringan APGAN

candidate always preserves the existence of a BMLB schedule.

Theorem 5: Suppose that G = (V, £) is aconnected, consistent, delayless SDFgraph with

\V\ > 1; G hasa BMLB schedule; and {X, Y} is anAPGAN candidate in G. Then

cluster ({X, Y}, G) has a BMLB schedule.

Proof: We assume without loss of generality thatX is a predecessor of F, andwe provethis the

orem by induction on |Vj. Clearly, thetheorem holds trivially for |V| = 2, since in this case,

cluster ({X, Y}, G) containsno edges. Now suppose that the theorem holds for

\V\ = 2,3,...,/:, and consider thecase |V| = (* + l).

Define Gc = cluster ({X, Y}, G, CI), and let SR beaBMLB R-schedule for G; the

existence of such aschedule is guaranteed byTheorem 1. Since SR is an R-schedule and \V\ > 2,

SR is of the form (i'jUj) U2B2) *

Now suppose that X, Y£ actors (5X), and let Cv C2,..., Cn denote the connected com

ponents of subgraph (actors (5j)). Observe that from Fact 2, St = projection ((ij/^), C,) is

aBMLB schedule for each Ci. Let C•denote that connected component that contains X and Y.

Then, since [Cj £k, we can apply Theorem 5with \V\ =|CJto obtain aBMLB schedule S* for
cluster ({X, Y}, subgraph (Cj)) , and from Fact 8, we can assume without loss ofgenerality
that J(S*) =J(Sj) .Then, it is easily verified that SxS2...Sj_ iS*Sj+lSj+2...Sn (i2B2) is a
BMLB schedule for Gc. A similar argument can be applied to establish theexistence of aBMLB

schedule for Gc when X, Y £ actors (B2) .

Now suppose that X € actors (5j) and Y£ actors (B2) , and let e bean edge directed

47

from X to Y. Also, let Ec denote the set ofedges in Gc, and for each e£ Ec, let e' denote the

corresponding edge in G. Clearly maxjokens (e^ SR) = TAtf£ (e^) ,and thus, since SR is a
BMLB schedule, wehave from Fact 11 that pG ({X, Y}) = 1. From Theorem 3,it follows that

pG {X7, Y'} = 1 for all adjacent pairs {X', Y'} in G. Thus, from Fact 11,

BMLB (e) = TNSE (et G) for all e £ E. (15)

Let (Xj, X2,..., Xn) beaany topological sort for Gc. Then clearly,

Sc = (Qgc (*i))-(^gc ^2)) -• (Qg (*«)) is avalid single appearance schedule for Gc, and

bufferjnemory (Sc) = V TNSE(etGc)

TNSE(e/iG) (from Fact4)

BMLB (e') (from (15))

BMLB (e). (from Theorems 2 and 3)

Thus, Sc is a BMLB schedule for Gr. g.£.D.

We are now able to establish our result on theoptimality of APGAN.

Lemma 4: Suppose that G = (VtE) is aconnected, consistent, delayless SDF graph that

has aBMLB schedule; P is an APGAN instance; and Sp(G) is the schedule obtained byapply

ing/' to G. Then Sp(G) is aBMLB schedule for G.

Proof: By definition, P repeatedly clusters APGAN candidates until thetop-level graph consists

on only one actor. From Theorem 4, the first adjacent pair px clustered when P isapplied to G

48

satisfies the proper clustering condition, and thus from Theorem 5, the top level graph Tx that

results from the first clustering operation has aBMLB schedule. Since TY has aBMLB schedule

wecan again apply Theorems 4 and 5toconclude that the second adjacent pair p2 clustered by P

satisfies the proper clustering condition, and that the top-level graph T2 obtained from clustering

p2 in Tj has aBMLB schedule. Continuing in this manner successively for /?3, p4,...,pn, where

n is the totalnumberof adjacent pairs clustered when P is applied to G, we conclude thateach

adjacent pair clustered by P satisfies the proper clustering condition. Thus, from Theorem 2,

BMLB (e') = BMLB (e) , whenever e' and e are corresponding edges associated with aclus

terization step of P. It follows from Fact 12 that bufferjnemory (Sp(G)) = V BMLB (e),
eeE

and thus Sp (G) is aBMLB schedule for G. QED.

The following theorem gives our general specification of the optimality of APGAN

instances.

Theorem 6: Suppose that G = (V,£) isaconnected, consistent, acyclic SDF graph that has a

BMLB schedule; delay (e) <T\ (e) for all e£ E; P is an APGAN instance; and Sp (G) is the

schedule obtained byapplying P toG. Then Sp(G) isaBMLB schedule for G.

Proof: Let G' denote the delayless version of G, andlet P' be the APGAN instancethat returns

Sp (G) if the input graph is G', and returns Sp (G7) otherwise, where G7 isthe input graph.

Clearly P' is an APGAN instance since edge delays do not affect the repetition counts of adjacent

pairs. From Lemma 4 and Fact 10, Sp, (Gf) is BMLB schedule for G. Butby construction,

49

Sp,(GO = Sp(G).Q.ED.

Figure 14 shows what can"go wrong" in trying to achieve the BMLB with APGAN when

the assumption that delay (e) <l\ (e) is not satisfied for alledges. In the SDFgraph of (a),

q (A, 5, C, D) = (1,1,1,1), and thusalladjacent pairs havethe samerepetition count. Thus,

two possibleclusterization sequences by an APGAN instance for this graph are {W, Y} fol

lowed by {X,Z} (shownin (b)),and {W,X} followed by {Y,Z} (shownin (c)).From (b) and

(c), we see that the schedules resulting from these twoclusterization sequences are (ignoring all

one-iteration loops), respectively, YWZX and YZXW. Here, the former schedule has a buffer

memory requirementof 5, while the latter schedule hasa buffer memory requirement of 4 since

the sink actor fires before the source actor for each edge thathasunit delay. Thus, we see thatdif

ferent APGAN instances will in general produce different buffer memoryrequirements when

applied to Figure 14(a).

&—^—^2)

1 ri

©i •!©
(a) (b) (c)

Figure 14. An example of how an APGAN instance may fail to achieve the
BMLBwhen delay (e) <T| (e) does not hold for every edge e.

50

8 Recursive Partitioning by Minimum Cuts

APGAN constructs a single appearance schedule in a bottom-up fashion by starting with

the innermost loops and working outward. In [14], weproposed an alternative top-down

approach, which we call Recursive Partitioning by Minimum Cuts (RPMC), that computes the

schedule by recursively partitioning the SDF graph in such a way thatouter loops are constructed

before the inner loops. The partitions are constructed by finding the cut (a partition of the set of

actors) of thegraph across which the minimum amount ofdata is transferred and scheduling the

resulting halves recursively. Thecut that is produced must have the property thatall edges that

cross the cut have the same direction. This is to ensure that we can schedule all actors on the left

side of the partition before scheduling any on the right side. In addition, we would also like to

impose the constraint that thepartition thatresults be fairly evenly sized. This is to increase the

possibility of havinggcd's that aregreater thanunity for therepetitions of the actors in the subsets

produced by thepartition, thus reducing the buffer memory requirement (see Fact 6). In this sec

tion, we give an overview of the RPMC technique.

Suppose that G = (V,E) is a connected, consistent SDF graph. Acut of G is apartition

of Vinto two disjoint sets VL and VR. Define GL = subgraph (VL) and GR = subgraph (VR)
tobe thesubgraphs produced by the cut. Thecutis legal if for alledges e crossing thecut (that is

all edges that are not contained in subgraph (VL) nor subgraph (VR)), we have src (e) £ V,

and snk (e) £ VR. Given a bounding constant K<, \V\, the cutresults in bounded sets if it satis

fies

\VR\<,K, \VL\ZK . (16)

The weight of an edge e is defined as

w(e) = TNSE(e) . (17)

Theweight of the cutis the total weight ofall the edges crossing thecut. Theproblem then

is to find the minimum weight legal cut into bounded sets for the graph with the weights defined

51

as in (17). Sincethe related problem of finding a minimum cut (notnecessarily legal) into

bounded sets is NP-complete [6],andtheproblem of finding an acyclic partition of a graphis NP-

complete[6], we believe this problem to be NP-complete as welleven though we have not dis

covereda proof.Kernighan and Lin [8] devised a heuristic procedure for computing cuts into

boundedsets but they consideredonly undirected graphs. Methods basedon networkflows [5] do

not work because the minimumcut given by the max-flow-min-cut theorem may not be legal and

may not be bounded[14]. Hence,we give a heuristic solution for finding legal minimumcuts into

bounded sets.

The heuristic is to examine the set of cuts produced by takinga vertex and all of its

descendants as thevertex set VR and thesetofcuts produced bytaking a vertex and allof its

ancestors as theset VL. Foreach such cut, anoptimization step is applied that attempts to

improve the cost of the cut. Consider a cut produced by setting

VL = (ancs(v) u {v}),VR = V\VL for some vertex v, and let 7^00 be the set ofindepen

dent, boundary actors of v in V^. A boundary actor in VR is an actor that isnot the predecessor

of any other actor in VR. Following Kernighan and Lin [8], for each of these actors, wecancom

pute the cost difference that results if the actor ismoved into VL. This cost difference for an actor

a inTR(v) is defined to be thedifference between thetotal weight of alloutput edges of a and

the total weight of all input edges of a. We then move those actors across that reduce the cost. We

applythis optimization step for all cuts of the form (ancs (v) u {v}) and (desc (v) u {v})

foreach vertex v in thegraph and take thebest one as the minimum cut. Fora pseudocode speci

fication of the algorithm, see [14]. Since a greedy strategy is being used to move actors across,

and only the boundaryactors are considered, examples can be constructed wherethe heuristicwill

notgive optimal cuts. Since there are \V\ actors in thegraph, 2\V\ cuts areexamined. Moreover,

the cut produced will have boundedsets sincecuts that produceunbounded sets are discarded.

RPMC now proceeds by partitioning thegraph by computing the legal minimum cut and

forming the schedule (rLSL) (rRSR) where rL =gcd({q (v) |v £VL} j,

rR =gcdl {q(v) |v £VR} J and 5L, SR are schedules for GL and GR respectively. The sched-

52

ules SL, SR are obtained recursively by partitioning GL and GR. It can beshown that the running

timeof RPMC is given by O (\V\3) [14].

The RPMC algorithm is easily extended to efficiently handle nonzero delays. See [14] for

details.

Experimental Results

Table 1 shows experimental results on the performance of APGAN and RPMC that we

have developed for several practical examples of acyclic, multirate SDF graphs. The column

titled "average random" represents the average buffer memory requirement obtained by consider

ing 100random topological sorts and applying GDPPO to each. All of the systems shown below

are acyclic graphs. The data for APGAN and RPMC also includes the effect of GDPPO. As can

be seen, APGAN achieves the BMLB on 5 of the 9 examples, outperforming RPMC in these

cases. Particularly interesting are the last three examples in the table, which illustrate theperfor

mance of the two heuristics as the graph sizes areincreased. The graphs represent a symmetric

tree-structured QMF fllterbank with differing depths. APGAN constructs a BMLB schedule for

each of these systems whileRPMC generates schedules thathave buffer memory requirements

about 1.2 times the optimal. Conversely, the third and fourth entries show that RPMC canoutper

form APGAN significandy ongraphs that have more irregular rate changes. These graphs repre

sent nonuniform filterbanks with differing depths.

Table 2 shows more detailed statistics for the performance of randomly obtained topologi

cal sorts. For example, the column titled "APGAN < random" represents the number of random

schedules that had a buffer memory requirement greater than thatobtained by APGAN. The last

two columns givethe mean number ofrandom schedules needed tooutperform these heuristics. A

dash indicates that norandom schedules were found that had a buffer memory requirement lower

that obtained by the corresponding heuristic.

While the above results on practical examples are encouraging, we have also tested the

heuristic ona large number ofrandomly generated 50-actor SDF graphs. These graphs were

53

sparse, having about 100edges on average. Table 3 summarizes the performance of these heuris

tics, bothagainst each other, and against randomly generated schedules. As canbe seen, RPMC

outperforms APGAN on theserandom graphs almosttwo-thirds of the time. We chooseto com

pare these heuristics against 2 random schedules because measurements of theactual running

time on50-vertex graphs showed that wecan construct and examine approximately 2 random

schedules in the time it takes for either APGAN or RPMC to construct its schedule and have it

Table 1. Performance of the two heuristics on various acyclic graphs.

System BMUB BMLB APGAN RPMC Average
Random

Graph
size(nod
es/arcs)

Fractional decima

tion

61 47 47 52 52 26/30

Laplacian pyramid 115 95 99 99 102 12/13

Nonuniform filter-

bank (1/3,2/3 splits)
(4 channels)

466 85 137 128 172 27/29

Nonuniform filter-

bank (1/3,2/3 splits)
(6 channels)

4853 224 756 589 1025 43/47

QMF nonuniform-
tree filterbank

284 154 160 171 177 42/45

QMF filterbank
(one-sided tree)

162 102 108 110 112 20/22

QMF analysis only 248 35 35 35 43 26/25

QMF Tree filter-
bank (4 channels)

84 46 46 55 53 32/34

QMF Tree filter-
bank (8 channels)

152 78 78 87 93 44/50

QMF Tree filter-
bank (16 channels)

400 166 166 200 227 92/106

54

post-optimized by GDPPO. The comparison against 4 random schedules shows that in general,

the performance of these heuristics goes down if a large number ofrandom schedules are

inspected. Of course, this alsoentails a proportionate increase in running time. However, as

shown on practical examples already, it is unlikely thateven pickinga large numberof schedules

randomly will give better results than these heuristics since practical graphs usually havea signif

icant amount of structure (as opposed torandom graphs) thattheheuristics can exploitwell.Thus,

the comparisons against random graphs give aworst case estimate of the performance we can

Table 2. Performanceof 100 random schedules against the heuristics

Comparison with ran
dom schedules (100 tri

als)

APGAN

<

random

APGAN

random

RPMC

<

random

RPMC

random

avg. to

beat

APGAN

avg. to

beat

RPMC

Fractional decimation 92% 8% 54% 13% — 3

Laplacian pyramid 74% 26% 74% 26% — —

Nonuniform filterbank

(1/3,2/3 splits) (4 chan
nels)

100% 0% 100% 0% ••••"
_•••

Nonuniform filterbank

(1/3,2/3 splits) (6 chan
nels)

100% 0% 100% 0% ••••

QMF nonuniform-tree
filterbank

100% 0% 81% 7% — 8

QMF filterbank (one
sided tree)

100% 0% 77% 23% — —

QMF analysis only 99% 1% 99% 1% — —

QMF Tree filterbank
(4 channels)

100% 0% 16% 13% — 1.4

QMF Tree filterbank
(8 channels)

100% 0% 87% 3% — 9.1

QMF TVee filterbank
(16 channels)

100% 0% 96% 1% — 22.3

55

expect from these heuristics.

All of our experiments showthat APGAN andRPMC complement each other. For the

practical SDFgraphs thatweexamine, APGAN performs well ongraphs thathave a simple struc

turetopologicaUy andregular ratechanges, liketheuniform QMF filterbanks, andRPMC per

forms wellongraphs thathave more irregular ratechanges andirregular topologies. Since large

random graphs can be expected to consistently have irregular ratechanges and topologies, the

average performance onrandom graphs ofRPMC is better than APGAN bya wide margin —

although, from thelasttwo rows ofTable 3,wesee that there is a significant proportion ofrandom

graphs for which APGAN outperforms RPMC bya margin ofover 10%, which suggests that

APGAN is a useful complement to RPMC even when mostly irregular graphs areencountered.

However, the main advantage of adopting both APGANand RPMC as a combined solution arises

Table 3. Performance of the two heuristics on randomgraphs

RPMC < APGAN 63%

APGAN < RPMC 37%

RPMC < min(2 random) 83%

APGAN < min(2 random) 68%

RPMC < min(4 random) 75%

APGAN < min(4 random) 61%

min(RPMC,APGAN) <
min(4 random)

87%

RPMC < APGAN by more than
10%

45%

RPMC < APGAN by more than
20%

35%

APGAN < RPMC by more than
10%

23%

APGAN < RPMC by more than
20%

14%

56

from complementing the strong performance of RPMCon general graphs with the formal proper

ties of APGAN, as specifiedby Theorem 6, andthe abilityof APGAN to exploit regularity that

arises frequently in practical applications.

In [14], we report on a variation of APGAN that achieves significantly better performance

on random graphs than the original version, although still significantlyworse performance as

compared to RPMC. This variation arises from changing the "priority function" associated with

an edge e from p ({ src (e), snk(e)}) to the product

(TNSE(e)xp({src(e), snk(e)})). (18)

In other words, the variation that we proposerepeatedly clusters the source and sink vertices of

edges thatmaximize the measure given by (18). Thus, anadjacent pair is given moreweight if a

large amount of data is transferred between it as compared to other adjacent pairs.

We have found that on the random graphs thatwere used to generate Table 3, this modifi

cation of APGAN outperforms two random schedules ("min(2 random)") 76.5 percent of the

time, which indicates a level of performance intermediate to APGAN andRPMC.Furthermore,

its performance equaled theperformance of APGAN on all of thepractical examples except the

six channel nonuniform filter bank,where it achieved abuffermemoryrequirement of 696 (8%

betterthan APGAN), andthe four channel nonuniform filter bank,whereit achieved 136(0.7%

better than APGAN).

Interestingly, however, the modification of APGAN corresponding to (18) does notpre

serve the formal properties specified byTheorem 6. This iseasily seen from the example inFig

ure 15. Here, q(W,X,Y) = (2,2,1), and thus p({W,X}) = 2 and p({W, Y}) =l,and

if we let p denote the measuredefinedby (18), then p({W,X}) =2x2 = 4, while

P(WH) = 6x1 = 6. We seethen that APGANclusters {W,X} in its first clusterization

step, which leads to the final schedule (2WX) Y, and abuffer memory requirement of 7, whilein

our variation of APGAN, {W,Y} is clustered first, and theresulting schedule (2W)Y(2X)

gives abuffer memory requirement 8. It is easily verified theBMLB for this graph is 7, and thus,

APGANgenerates aBMLB schedule, while thevariation generates asuboptimal result.

Thus, our variation of APGAN introduces atrade-off between provable optimality for a

57

class of graphs, andaverage-case performance. Sincewe are proposing to complement a heuristic

— RPMC — whose average caseperformance significantly outweighs thatof both APGAN and

its variation, it is intuitively more appealing to choose the original version of APGAN since it

adds a feature that RPMC lacks — optimality for arestricted, butuseful, class of graphs. For the

practical examples thatwe examined, thevariation of APGANoutperformed theoriginal APGAN

only in cases where RPMC outperformedboth APGAN andthe APGAN variation, and thus

adopting thenewversion of APGANdoes notimprove the final result of any of these examples

when a combined solutionwith RPMC is employed.

10 Related Work

In [1], Ade, Lauwereins, and Peperstraete develop upper bounds on the minimum buffer

memory requirement for certain classes of SDF graphs. Since thebounds of Adeet al. attempt to

minimize over all valid schedules, and since single appearance schedules generally have much

larger buffermemoryrequirements than schedules that are optimized for minimum buffermem

oryonly, these bounds cannot consistently giveclose estimates of theminimum buffer memory

requirement for single appearance schedules.

In [9], Lauwereins, Wauters, Ade, and Peperstraete present ageneralization of SDF called

& •*©

©
Figure 15. An example in which APGAN achieves the BMLB, but the modi
fied version corresponding to (18) does not.

58

cyclo-static dataflow. A major advantage ofcyclo-static dataflow is that it can eliminate large

amounts of token traffic arising from the need togenerate dummy tokens in corresponding (pure)

SDF representations. This leads to lower memory requirements and fewer run-time operations.

Although cyclostatic dataflow canreduce the amount of buffering for graphs having certain mul

tirate actors like explicit downsamplers, it is not clear whether this model can ingeneral beused

toderive schedules that are ascompact as single appearance schedules for pure SDF graphs but

have lower buffering requirements than those arising from the techniques given in this paper.

Alinear programming framework for minimizing the memory requirement ofa synchro

nous dataflow graph in a parallel processing context is explored byGovindarajan and Gao in [7].

Here the goal is tominimize the buffer cost without sacrificing throughput —just as the goal in

this paper is to minimize buffering cost without sacrificing code compactness. Thus, the tech

niques of [7] address the problem ofselecting a schedule that minimizes buffering cost from

among the set of rate-optimal schedules.

Conclusions

Inthis paper, we have addressed the problem ofconstructing a software implementation of

anSDF graph that requires minimal data memory from among the setof implementations that

require minimum code size. We have discussed ageneralization to handle delays and arbin-ary

topologies ofthe dynamic programming approach described in [14] for post-optimizing a single

appearance schedule byreparenthesizing its lexical ordering. We have developed a fundamental

lower bound, called the BMLB, on the amount ofdata memory required for a minimum code size

implementation ofan SDF graph; we have presented an efficient adaptation to acyclic graphs,

called APGAN, of the PGAN technique developed in [3]; and we have shown thatfor a certain

class ofgraphs, which includes all delayless graphs, APGAN isguaranteed toachieve the BMLB

whenever it isachievable. We have presented the results ofan extensive experimental study in

which we evaluate the performance ofAPGAN and RPMC, a top-down technique developed in

[14] that is based on recursively applying a generalized minimum-cut operation. Based on this

59

study, we have concluded that APGAN andRPMC complement each other, and thus, techniques

should be investigated for efficientiy combining the methods of APGAN and RPMC, and that in

the absence of such a combined solution, or of a morepowerful alternative solution, both of these

heuristics should be incorporated intoSDF-based DSP prototyping and implementation environ

ments in which the minimization of memory requirements is important.

The solutions developed in thispaper have focused on acyclic SDFgraphs. Singleappear

ance schedules for general SDFgraphs can beconstructed efficientiy by clustering the strongly

connected components into a "top-level graph," constructing a single appearance schedule for the

resulting (acyclic) hierarchical graph, constructing a single appearance schedule for each strongly

connected component in isolation, and then replacing each hierarchical actors in the schedule for

the top-level graph with the schedule for the corresponding strongly connected component [2].

Thus, the solutions presented in this paper can be exploited when scheduling general SDF graphs

by applying them to the top-level graph. More thorough techniques forjointlyoptimizing code

and data for generalSDFgraphs is a topic for further study.

Glossary

T\ (e) Given an SDF edge e,1\ (e) = prod (e) cons (e)
gcd ({prod (e), cons (e)})

p (Z) Given a subset ofactors Z, p (Z) = gcd (q (A) \A £ Z) .

Adjacent pair

A set {X, Y} that consists of two adjacent actors.

APGAN Acyclic PGAN —a customization ofPGAN toacyclic graphs. This is a technique

forconstructing single appearance schedules that repeatedly clusters adjacent pairs

that have maximum repetition count over all adjacent pairs that do not introduce

cycles.

Blocking factor

For eachvalid schedule S for a connected SDFgraph, there is a positive integer k

such that S invokes each actor A exactly kq(A) times. The constant k is the

60

called the blocking factor of S.

BMLB The buffer memory lower bound.Given an SDF edge e, BMLB (e) is a lower

bound on maxjokens (e, S) over allvalid singleappearance schedules for any

consistentSDF graph thatcontains e. The BMLB of an SDFgraph G is the sum

of the BMLB values over all edges in G. A BMLB schedule for G is a valid sin

gle appearance schedule whose buffermemory requirement equals the BMLB of

G.

BMUB Givenaconsistent SDF graph, theBMLB is an upper bound onthebuffermemory

requirement overall single appearance schedules that have unitblocking factor.

cluster (Z, G, Q.)

The SDF graph that results from clustering thesubset of actors Z in theSDF graph

G into the actor CI. Also denoted cluster (Z, G) if Q. is understood.

DPPO Dynamic processing post optimization. A technique for computing asingle

appearance schedule that has minimum buffer memoryrequirement from among

thesingle appearance schedules that have agiven lexical ordering. The technique

applies to delayless SDF graphs.

GDPPO Generalized DPPO. A generalization of DPPO to handle delays.

Introduces a cycle

A subset of actors Z in aconnected, consistent, acyclic SDF graph G introduces a

cycle if cluster (Z, G) contains one or more cycles.

/ (S) Denotes the blocking factor of the valid schedule S.

maxjokens (etS)

GivenanSDF graph G, avalid schedule S for G, and an edge e in G, we define

maxjokens (et S, G) to denote the maximum number of tokens that are queued

on e during an execution of S. When G is understood, we maywrite

maxjokens (e,S) in placeof maxjokens (e, 5, G) .

PGAN Pairwise grouping of adjacent nodes. A bottom-up technique for constructing

61

looped schedules that repeatedlyclusters adjacent pairs of actors that have maxi

mum repetition count over all clusterableadjacent pairs.

q Given a connected, consistent SDF graph G and anactor A in G, q (A) gives the

minimum number of times that A must be invoked in a valid schedule for G.

RPMC Recursive partitioning by minimum cuts. A top-down technique for constructing

looped schedules that involves recursively computing partitions that have mini

mum buffering cost for all edges that cross the partitions.

TNSE (e) Total number of samples exchanged on an SDFedge. Given an SDFedge e in a

consistent SDF graph, TNSE (e) = q (src (e)) prod(e) .

References

[1] M. Ade, R. Lauwereins, and J. A. Peperstraete, "Buffer Memory Requirements inDSP Appli
cations," presented at IEEE Workshop onRapid System Prototyping, Grenoble, June, 1994.

[2] S. S. Bhattacharyya, Compiling Dataflow Programsfor Digital Signal Processing, Ph. D. the
sis, Memorandum No. UCB/ERL M94/52, Electronics Research Laboratory, University of Cali
fornia at Berkeley, July, 1994.

[3] S. S. Bhattacharyya and E. A. Lee, "Scheduling Synchronous Dataflow Graphs for Efficient
Looping," Journal of VLSI Signal Processing, December, 1993.

[4] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Multirate Signal Processing in
Ptolemy," Proceedings of the International Conference on Acoustics, Speech, and Signal Process
ing, Toronto, April, 1991.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-Hill,
1990.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability-A guide to the theory ofNP-
completeness, Freeman, 1979.

[7] R. Govindarajan, G. R. Gao, and P. Desai, "Minimizing Memory Requirements inRate-Opti
mal Schedules,"Proceedings of the International Conference onApplication Specific Array Pro
cessors, San Francisco, August, 1994.

[8] B. W. Kernighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning Graphs," Bell
System Technical Journal, February 1970.

[9] R. Lauwereins, P. Wauters, M. Ade, and J. A. Peperstraete, "Geometric Parallelism and Cyclo-

62

Static Dataflow in GRAPE-II," presented atIEEE Workshop onRapidSystem Prototyping,
Grenoble, June, 1994.

[10] R. Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans, and J. VanGinderdeuren,
"GRAPE: A CASE Tool for Digital Signal Parallel Processing," IEEE ASSP Magazine, April,
1990.

[11] E. A. Lee, A Coupled Hardware andSoftware Architecturefor Programmable DigitalSignal
Processors, Ph.D. thesis, Department of Electrical Engineering andComputerSciences,Univer
sity of California at Berkeley, May, 1986.

[12] E. A. Lee,W. H. Ho, E. Goei, J. Bier, and S. S. Bhattacharyya, "Gabriel: A Design Environ
ment for DSP," IEEE Transactions onAcoustics, Speech, andSignal Processing, November,
1989.

[13] E. A. Lee and D.G. Messerschmitt, "Static Scheduling of Synchronous Dataflow Programs
for Digital Signal Processing," IEEE Transactions onComputers, February, 1987.

[14] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, Combined Code and Data Minimization
for Synchronous DataflowPrograms, Memorandum No. UCB/ERL M94/93, Electronics
Research Laboratory, University of California atBerkeley,December, 1994.

[15] D.R. O'Hallaron, The Assign Parallel Program Generator, Memorandum CMU-CS-91-141,
School of Computer Science, Carnegie Mellon University, May, 1991.

[16] J. Pino, S. Ha, E. A. Lee, and J. T. Buck, "Software Synthesis for DSP Using Ptolemy,"
invitedpaper in Journal of VLSI Signal Processing, to appear in 1994.

[17] S. Ritz, S. Pankert, and H. Meyr, "High Level Software Synthesis for Signal Processing Sys
tems," Proceedings of the International Conference on Application Specific Array Processors,
Berkeley, August, 1992.

63

	Copyright notice 1995
	ERL-95-3

