
 

 

 

 

 

 

 

 

 

Copyright © 1995, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



A METHODOLOGY TO APPLY OPTIMIZING

TRANSFORMATIONS

by

Shan-Hsi Huang and Jan M. Rabaey

Memorandum No. UCB/ERL M95/32

1 February 1995



A METHODOLOGY TO APPLY OPTIMIZING

TRANSFORMATIONS

by

Shan-Hsi Huang and Jan M. Rabaey

Memorandum No. UCB/ERL M95/32

1 February 1995



A METHODOLOGY TO APPLY OPTIMIZING

TRANSFORMATIONS

by

Shan-Hsi Huang and Jan M. Rabaey

Memorandum No. UCB/ERL M95/32

1 February 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A Methodology to Apply Optimizing
Transformations

Abstract - Transformationsfor algorithm optimization have shown to be effective in high-level syn
thesis. When a large number oftransformations are available, it is always difficult to determine which
transformations should be applied and in whatorder. In this report, we propose a methodology which
clearly addresses these issuesand organizes them in a systematicfashion. Theproposed methodology
is composed of a set of sub-tasks including bottleneck identification (why transformations should be
applied), algorithm partitioning (whichparts ofan algorithm should be transformed), transformation
prediction/selection (which transformations to apply), transformation ordering (the order in which
the transformations are applied), and transformation execution (how to apply the selected transfor
mations). A framework based on this methodology and aimed at the optimization of speed, area, or
power consumption of custom DSP designs, is under development. Assisted by such a framework,
designers can easily and quickly to apply a variety of transformations to explore the algorithmic
design space to reach better designs.



A Methodology to Apply Optimizing
Transformations

1 Introduction

Optimization is one of the most important tasks in the design process. This is especially true at

the algorithmic level. An algorithm that only specifies the functionality of an applicationoften has

high degrees of abstraction which provides great freedom to improve the quality of the design

implementation. Using transformations for algorithmoptimization has proven to be effective and

important in high level synthesis. The transformations include those explored in software compil

ers as well as specific ones for custom ASIC design. Some examples in the former set include

common sub-expression elimination (CSE), strengthreduction, loop invariant code motion, and a

variety of for-loop transformations. The latter set contains retiming, pipelining, and time-loop

transformations. In addition, algebraic transformations are of critical importance in DSP applica

tions due to their computation-intensive nature.

In the past few years, many approaches have been developed for using transformations towards

a variety of goals ranging from speed [1][2][3][4][5][6][7][8][9][10], area [11][12][13][14],

power [16], and memory[17]. Most of these approaches only consider individual or small sets of

transformations. Becausean individual transformation usuallyhas a limited application space, the

reachable improvement range is often restricted. Integrating a large number of transformations

can dramatically enhance their effectiveness. Unfortunately this also significantly increases the

complexity of the optimization process.

When a large numberof transformations are available, determining which parts of the algorithm

(where) should be transformed, which transformations could be effective, and what is the appro

priate order (when) to apply certain transformations is a non-trivial task. These issues are related

to the designer's algorithm, the constraints (and goals), and the considered transformations. In this

report, we propose a methodology to address these issues (Section 2). This methodology easily

translates into a generic framework, whose structure is discussed in Section 3. Such a framework

allows adesigner to readily and easilyuse a large setof transformations to explore the algorithmic

design space. The report is concludedwith a discussion of future development and a summary.

1of11



2 Methodology

The basic concepts of the methodology to apply transformations for algorithm optimization are

illustrated in Figure 1. The inputs of the optimization process are the designer's algorithm repre

sented as a control/data flowgraph (CDFG), the design constraints ranging from time, area, to

power, and a predefined transformation set. This methodology is composed of a set of sub-tasks

including bottleneck identification (why transformations should be applied), algorithm partition

ing (which parts of the algorithm should be transformed), transformation ordering (the orderin

which certain transformations are applied), transformation predictionand selection (which trans

formations could be effective and should to be considered), and transformation execution (how to

apply the selected transformations).

Why |

Where I

Which |

How |

When |

Figure 1: Methodology for transformation-based optimization

A design produceddirectly from a given algorithm instance might not meet all specified con

straints or may have a prohibitive cost. The factors that violate the constraints or those compo

nents that yield the high cost are called the bottlenecks of the design. For example, if a design

2 of 11



cannot meet the timing constraint(sample period for DSP applications), the execution time is des

ignated as the bottleneck. The resources that dominates the area are the bottlenecks when area

constraints are not met. The bottleneck resources could be functional units (multipliers, ALUs,

etc.), registers, interconnect, andmemory. Similarly, the bottlenecks for power are those resources

that consume significantly more powerthan others. Given the CDFG and the design constraints,

thebottleneck identification module locates thepotential bottlenecks. The goal of theoptimization

processis then to apply those transformations that specificallyaddress the identified bottlenecks.

To achieve that goal, the optimization process can resort to a predefined set of transformations.

The order in which these transformations are applied has an important impact on theireffective

ness. The task of the transformation ordering module is to establish an appropriate ordering

amongthe transformations. Because the transformation set determines the scopeof the reachable

design space and thus the potential improvement range, it is desirable that the set is sufficiently

large. With a large transformation set, every algorithm is subject to a huge number of potential

transformations-permutations. Reducing the search space and thusimproving the efficiencyof the

optimization process is thus essential. Onepruning technique to reduce the search space is algo

rithm partitioning — consideronly the subgraph of the CDFG that are related to the currently

selected bottleneck. The transformations that are not applicable in the subgraph are avoided

because they haveno chance to improve the bottleneck. In addition to the algorithm partitioning,

the potential improvement of a transformation can also be used to prune the transformation space.

Those transformations that have little potential to improve the bottleneck are avoided. This can be

achieved with the help of the transformation prediction — predict the potential impactof acertain

transformation. Based on the potential of the transformations, the transformation selection mod

ule selects a small setof transformations that are capable to optimize the given bottleneck.

After theordering, partitioning, prediction, and selection, we havedetermined which part of the

CDFG should be transformed, which transformations to apply, and the order in which they are

applied. The last step is to execute the transformation task. After the execution, the transformed

CDFG is sent back to evaluate the status. This optimization process is repeated until the con

straints are satisfied or no further improvement canbe obtained. In the following, we will discuss

each module in more detail.

3 of 11



2.1 Transformation set

Since the scope of the design space to be explored is determined by the transformation set, it

must be reasonably large and diverse. The possible transformations consist of algebraic transfor

mations (associativity, distributivity, reversedistributivity, commutativity, algebraic identity, alge

braic inverse, constantfolding, constant multiplication expansion, and a few other specific ones),

temporal transformations (retiming, pipelining, time-loop unfolding), loop transformations (loop

unrolling, loop merging) and some generic transformations (common sub-expression replication/

elimination, dead code elimination, loop invariantcode motion).

2.2 Bottleneck identification

The prime responsibility of the bottleneckidentification module is to identify the potential bot

tlenecks. It has been shown that there exist strongcorrelations between the performance metrics

of a design and a number of structural properties of the algorithm [18][16]. For example, the

length of critical paths is an accurate measure for the lower bound of the execution time, the con

currency is highly related to the chip area, and power consumption correlates to the number of

access (count). These high-level properties can be used to derive a set of prediction models which

can be used to identify the bottlenecks.

According to the design constraints, there could be a variety of bottlenecks, each of which may

need different transformations. Simultaneously optimizing all bottlenecksin a design is difficult.

A divide-and-conquer strategy is suggested. The bottleneck identification modulepicks the domi

nantone anddefers others to later iterations. This allows the bottlenecks to be solved one by one.

A general scenario to handle differentbottlenecks is to assure a feasible solution first (e.g. satisfy

ing the time constraints) and minimize the design cost (area or power, according to designer's

preference) next.

In the divide-and-conquer strategy, the identification module is alsoresponsible for the control

of the overall optimization flow and to ensure that all the potential bottlenecks are addressed. To

accomplish this, the module must have the capability of memorizing the history of bottlenecks,

actions taken for optimization, and improvements. The module evaluates the solution after each

iteration— if a new version is not acceptable due to too much overhead(side effects), the module

will either provide feedbacks to the transformation selection module to adjust the selections (e.g.

avoid certain transformations) or step back to the previous CDFG.

4 of 11



2.3 Algorithm partitioning

Based on the identified bottleneck, the algorithm partitioning module extracts the trouble spots

of a given CDFG. For instance, if execution time is the bottleneck of a design, those paths with

the lengths longer than the sample period would be the targets for speedoptimization (critical

path reduction). The transformations will be applied only to the extracted subgraph. This reduces

the transformation space in the sense that the transformations that are not applicable to the sub

graph are avoided.

2.4 Transformation ordering

When a set of transformations are available, the order in which they are applied often affects

their effectiveness. One approach to address the transformation ordering is the enabling principle

[6]. There typically exist only a few transformations that can directly improve a given bottleneck.

They are called kernel transformations [8]. However, those kernel transformations are often not

sufficient due to their limited application space. Usually there exist some other transformations

that can enable the applicability of a certain kernel transformation, and are therefore called the

enabling transformations. The enabling relationship of transformations can be used to establish an

ordering.

2.5 Transformation prediction

The transformation prediction module is to predict the potential improvement of transforma

tions and their possible side effects in order to help to do the selection. The prediction module

takes as input the bottleneck, the partitioned CDFG, and an ordered set of transformations. The

ordered transformation set identifies kernel transformations as well as the dependency relation

ships of the transformations. Since only kernel transformations can directly affect the bottleneck,

their potential improvements are of a major concern. The potential improvement of a kernel trans

formation depends on its applicability and capability. For example, constant multiplication

expansion can be evaluated by the availability of linear multiplications. Associativity to improve

the utilization of multipliers can be evaluated by the multiplication clusters in the partitioned

CDFG. If a design has no loops (e.g. digital filters), all loop transformations are of no use.

Another useful information provided by the prediction module is the possible side effects of a

transformation. This information can be used to degrade a kernel transformation or to unselect an

enabling transformation. For example, the potential side effects of expanding a constant multipli-

5 of 11



cation are newly introduced additions/shifts and a longer computation time. These side-effects

can be quickly predicted with the values of constant multiplicands (e.g. number of 1's in the

binary representation).

2.6 Transformation selection

Based on the predicted performance of the transformations, a small set of kernel transformations

with high priority (high potential improvement plus low side effects) are selected for the final exe

cution. Since enabling transformations are used to enable kernel transformations, they should be

applied in a demand-driven fashion (to avoid theredundant enablers). There is no need to prese

lect them. But if an enabling transformation potentially has negative side effects, it can be inacti

vated (unselected) to avoid the overhead. The goalof the selectionmodule is to choose a small set

of kernel transformations as well asunselect someenabling ones.

2.7 Transformation execution

After the bottleneck identification, algorithm partitioning, transformation ordering, and trans

formation prediction/selection, the bottleneck together with the partitioned CDFG and the

selected transformation set are passed to theexecution module to perform the transformation task.

The execution module applies the selected transformations in thedetermined order ontothe parti

tioned subgraph. The cost function in the optimization process is provided by the bottleneck. Gen

erally speaking, two classes of transformation-application techniques can be discerned — global

and local-move-based optimization techniques. The global approaches typically relyon analytical

or heuristic approaches and tend to be more efficient and powerful. Local-move-based optimiza

tion techniques, on the other hand, are more generic. Examples of the latter are simulated anneal

ing, exhaustive search, or steepest descent method. The execution module should allow both of

them, but may give a preferential treatment to a global approach, if one exists in the library that

matches the cost function and covers the transformations to be applied. The global approaches

have a higher priority due to their efficiency and prowess. A framework with such an execution

module provides an unified environment to integrate avariety of global approaches, and can help

users to select the appropriate ones to apply.

On the other hand, if there are no global approaches available, the local-move-based optimiza

tion techniques are usedinstead. The selection of the techniques depends on the sizeof the search

space, the features of the selected transformations, as well as user's preferences. Although generic

6 of 11



optimization techniques may not be that efficient, the search space is expected to have been dra

matically reduced by the partitioning and selection modules.

In order to avoid the redundant transformations, the enabling transformations should be applied

in a demand-driven mode: only if demanded by the kernel transformations. Their application is

somewhat morecomplex thanthatof the kernel ones in the sense that they dependon the applica

bility of othertransformations. There are atleasttwo possible ways to approach this problem. One

is using the postponing principle proposed by [8]. The basic idea is to relax the conditions under

which a kernel transformation can be applied. Once a kernel transformation is selected but cannot

be applied by itself, the appropriate enabling transformations areinvoked. Another approach is to

use composite moves such as described in [12].

3 Transformation Framework

Based on the methodology, the structure of a generic transformation framework is established

(Figure 2). The framework takes as input a CDFG and a number of user-defined design con

straints. A set of structural-property-based prediction modes (P-models) and a transformation

library (T-lib) are predefined. The transformations in the T-lib are precharacterized into an ordered

set (manually), which identifies the kernel transformations for a certain P-model as well as the

dependency relationships of the transformations. The structural properties of a given CDFG are

extracted by the property extractor (P-extractor). The bottleneck analyzer (B-analyzer) uses the

predefined P-models and the structural properties to identify the prime bottleneck, which is then

passed to the transformation manager (T-manager) (Figure 3). The T-manager consists of the

algorithm partitioner (A-partitioner), transformation analyzer (T-analyzer), and transformation

selector (T-selector). The A-partitioner locates the trouble spots in the CDFG. The T-analyzer pre

dicts the potentials of the transformations, and the T-selector suggests an appropriate set to apply.

Finally, the bottleneck, the partitioned CDFG, and the selected transformation set are passed to

the transformer. After execution, the transformed CDFG plus the executed actions are sent back to

the B-analyzer to verify the result. If nothing better can be achieved, the best solution is returned

to the user. Otherwise, the B-analyzer analyzes the history of bottlenecks/improvements and picks

up one CDFG to optimize further. (It is often the most recent solution unless it was rejected). If

possible, some feedback is provided to T-manager to adjust its selections. Of course, a new bottle

neck is identified for the next iteration.

7 of 11



CDFGj ^"Constraints

1
P-models B-analyzer «* • P-extractor

T-characterizer • T-manager

• transformer

Figure 2: Structure of the transformation framework

QT-characterizer )-

{ B-analyzer )

A-partitioner

• T-analyzer

TT
T-selector

sa an las ass as &s i b bss s9

, t y •
^ transformer 1

Figure 3: Structure of the transformation manager

8 of 11



4 Future work

The proposed methodology is currently being used to develop a transformation framework for

optimizing speed, chip area, or power consumption of custom DSP designs. This framework is

named as TAO (transformationsfor algorithm optimization). One thing worth to mention is that

the TAO system is not only intended to be an automatic environment, but also an analysis and

guidance environment. The B-analyzer andT-manager provide all the key elements as a guidance

for the optimization process. A designer can take the guidance as an assistance to his/her own

knowledge and experiences for design optimization (the guidance is the same as used for automa

tion). With such a framework, a user has the full accessibility to the environment and can manu

ally override the decisions/actions made by the framework. This feature is very useful because

designers may want to keep the control to their designs at such a high level.

5 Conclusion

We have proposed a new methodology to apply algorithmic transformations for design optimi

zation.The proposedmethodology clearly addresses the issues of which transformations to apply,

when to apply certain transformations, as well as where to apply the selected transformations.

With this methodology, the TAO system, a methodology-based transformation framework, is cur

rently underdevelopment. This framework can systematicallychoose the appropriate transforma

tions to apply at the right place and in the right order.

Since algorithm developers seldom take into account the implementation cost, and hardware

designers rarely consider the merits of various algorithm instances, there often exists a gap

between the algorithms conceived by the software developers and those that designers want to

use. Moreover, an algorithmmight be used by different designers for different specificationsover

a variety of implementation platforms. It is nearly impossible to have an algorithm well optimized

for all situations. Our framework can bridge the gap by allowing hardware designers, under their

specific design constraints, easily and quickly apply a variety of transformations to explore the

algorithmic design space to reach better designs.

9 of 11



6 Acknowledgments

The authors would like to thank M. Potkonjak for valuable discussion, and Semiconductor

Research Cooperation to sponsor this project (95-DC-324).

7 Reference

[I] R. Hartley, A. Casavant: "Tree-height minimization in pipelined architectures," Proceedings of
ICCAD, pp. 112-115, Nov. 1989.

[2] C.E. Leiserson, J.B. Saxe: "Retiming synchronous circuitry," Algorithmica, Vol. 6, pp. 5-35,1991.
[3] D.G. Messerschmitt: "Breaking therecursive bottleneck," Performance Limits in Communication The

ory and Practice, Kluwer Academic Publisher, 1988

[4] K.K. Parhi, D.G. Messerschmitt: "Pipeline interleaving and parallelism inrecursive digital filters - part
I: pipelining using scattered look-ahead and decomposition," IEEE Trans, on ASSP, vol. 37, no. 7, pp.
1099-1117, July 1989.

[5] K.K. Parhi, D.G. Messerschmitt: "Static rate-optimal scheduling of iterative data-flow programs via
optimum unfolding," IEEE Trans, on Computers, vol. 40,no.2, pp. 178-191, Feb 1991.

[6] M. Potkonjak, J. Rabaey: "Maximally fast and arbitrarily fast implementation of linear computations,"
Proceedings ofICCAD, pp. 304-308, Nov. 1992

[7] M. Potkonjak, J. Rabaey: "Pipelining: Just another transformation," InflConf. on Application Specific
Array Processors," pp. 163-175,1992.

[8] S.-H. Huang, J.M. Rabaey, "Maximizing the throughput of high performance DSP applications using
behavioral transformations," Proceedings ofEDAC-ETC-EUROASIC 94,pp. 25-30, March 1994.

[9] Z. Iqbal, M. Potkonjak, S. Dey, A. Parker, "Critical path minimization using retiming and algebraic
speed-up," ProceedingsofDAC, pp. 573-577,1993.

[10] M.E. Wolf, M.S. Lam: "A loop transformation theory and an algorithm tomaximize parallelism,"
IEEE Trans, onParallel andDistributed Systems, vol. 2, no. 4, pp. 452-471, Oct. 1991.

[II] M. Potkonjak, J. Rabaey: "Optimizing the resource utilization using transformations," Proceedings of
ICCAD, Nov 1991.

[12] M. Janssen, F. Catthoor, H. D. Man, "A specification invariant technique for operation cost minimiza
tion in flowgraphs," Int'lSym. High Level Synthesis, pp. 146-151,1994.

[13] M. Sheliga, E. H.-M. Sha, "Global node reduction of linear systems using ratio analysis," Int'l Sym.
High Level Synthesis, pp. 140-145,1994.

[14] M. Potkonjak, M.B. Srivastava, A. Chandrakasan, "Efficient substitution of multiple constant multi
plications byshifts and additions using iterative pairwise matching," Proceedings ofDAC, pp. 189-194,
1994.

[15] M. Potkonjak, Ph.D. dissertation.

[16] A.P. Chandrakasan, M. Potkonjak, J.M. Rabaey, R.W. Broderson, "HYPER-LP: A system for power
minimization using architectural transformations," Proceedings ofICCAD, pp. 300-303, Nov. 1992

[17] M.F.X.B. van Swaaij, F.H.M. Franssen, F.V.M. Catthoor, H.J. De Man, "Automating high level con
trol flow transformations for DSP memory management," in VLSI Signal Processing, Vol. 5,edited by
K. Yao et al.t pp. 397-406, IEEE Special Publications, 1992.

10 of 11



[18] J.M. Rabaey, L.M. Guerra, "Exploring the architecture and algorithmic space for signal processing
applications,"

[19] L.Guerra, M. Potkonjak, J.M. Rabaey, "System-level design guidance using algorithm properties,"
VLSI Signal Processing VII, IEEE Press, NY, pp. 73-82,1994.

[20] P.G. Paulin, J.P. Knight, "Force-directed scheduling for the behavioral synthesis of ASIC," IEEE
Trans, on CAD,vol. 8, no. 6, pp. 661-679, June 1989.

[21] D. Whitfield, M.L. Soffa, "An approach toordering optimizing transfomiations," 2nd ACM Sympo
sium onPrinciples andPractice ofParallel Programming, pp. 137-147, March 1990.

[22] C.N. Fischer, R.J. LeBlanc, "Crafting acompiler," The Benjamin/Cummings Publishing Co., Menlo
Park, CA 1988.

11 of 11


	Copyright notice 1995
	ERL-95-32

