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ABSTRACT

This paper discusses a hierarchical scheduling framework toreduce the complexity of

scheduling synchronous dataflow (SDF) graphs onto multiple processors. The core of this frame

work is aclustering algorithm that reduces the number ofnodes before expanding the SDF graph

intoa precedence DAG (directed acyclic graph). The internals of the clusters are thenscheduled

with uniprocessor SDF schedulers which can optimize for memory usage. The clustering isdone

insuch a manner as to leave ample parallelism exposed for the multiprocessor scheduler. The

advantages ofthis framework are demonstrated with several practical, real-time examples.
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1. Introduction

Dataflow is anatural representation for signal processing algorithms. One of its strengths

isthat it exposes parallelism byexpressing only the actual data dependencies that exist in an algo

rithm. Applications are specified byadataflow graph inwhich the nodes represent computations,

and data tokens flow between them along the arcs of the graph. Ptolemy [2] is a framework that

supports dataflow programming (as well as other computational models, such as discrete event).

Generating a stand-alone application from adataflow graph description requires two

phases: scheduling and synthesis [3]. In the scheduling phase, the dataflow graph ispartitioned for

parallel execution. We splice send and receive nodes into the graph for interprocessor communi

cation. These nodes do the synchronization necessary for aself-timed implementation [4]. For

each target processor, a sequence of node firings is determined. In the synthesis phase, the code

segments associated with each node are stitched together, following the order specified by the

scheduler. Commercial systems that use this "threading" technique include Comdisco's DPC [5]

and CADIS's Descartes [6]. The techniques we describe here are complementary tothose inDPC

and Descartes, and could, in principle, be used in combination with them.

There are several forms of dataflow defined in Ptolemy. In synchronous dataflow (SDF)

[7], the number of tokens produced or consumed in one firing ofanode is constant. This property

makes it possible todetermine execution order and memory requirements at compile time. Thus

these systems do not have the overhead of run-time scheduling (in contrast todynamic dataflow)

and have very predictable run-time behavior. The production/consumption property on the arcs

also provides anatural representation of multirate signal processing blocks [8]. In this paper, we

will focus on scheduling SDF graphs onto multiple processors.

In the following sections, wewill review scheduling of SDF graphs, including uniproces

sor scheduling and DAGconstruction. Then we will present the SDF composition theorem which

is needed to apply clustering heuristics onthe SDF graph. Following that we discuss the cluster

ingtechniques that comprise thehierarchical scheduling framework and the automated hierarchi

cal scheduling algorithm.



2. Background

Figure 1shows a simple SDF graph. Inthis graph, node Aproduces two tokens and node B

consumes three tokens for each firing. Inavalid SDF schedule, the first-in/first-out (FIFO) buffers

on each arc return to their initial state after one schedule period. Balance equations are written for

each arc and an integral repetitions vector isfound that solves this system ofequations [7]. Inthis

simple example, the balance equation for the arc is: 2x RA = 3x RB. Any vector ofthe form

\RA RBj = \3n 2«]»n e Z+ is asolution to the balance equation. For agiven SDF graph, either
the balance equations do not have a nontrivial solution (asolution other than the zero vector), or

there exists aunique minimal solution whose components are all positive integers [7]. This unique
minimum vector iscalled the repetitions vector and it is denoted by the symbol q. For the exam

ple in figure 1, the repetitions vector is given by q = [q(4) q(B)~] = [3 2]-Note that our con
vention is to represent the component ofthe vector q that corresponds to anode x using the
functional notation q (x).

An SDF graph isconsistent if it isnot deadlocked, and a repetitions vector exists. Given a

consistent SDF specification, we can construct a schedule atcompile-time that can beiterated an

indefinite number oftimes without requiring unbounded memory. Such a schedule can be con

structed by invoking each actor x exactly q (x) times, and ensuring that the data precedences

defined by the SDF graph are respected. Forfigure 1, one such schedule is AABAB.

2.1 Notation

We use the following notational conventions when working with SDF graphs.

• G = (V,E): Adirected graph, G, made upof thesetof nodes K and setof arcs E1.

• Ka: The number of samples consumed onthe SDF arc a, persink invocation.

• pa: Thenumber of samples produced onSDF arc a, persource invocation.

Figure 1. A simple SDF graph.
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8a: The number of initial samples ("delay") on the SDF arc a.

ax: The set of all SDF arcs that are connected to node x.

src (a) : The node that produces the tokens on arc a.

snk (a): The node thatconsumes thetokens produced on arca.

Avalid schedule for aconsistent SDF graph isa schedule that respects the data depen

dencies in the graph (does not deadlock), and invokes each node x exactly q (x)

times.

• If Z is a subset of actors in a consistent SDF graph G, wedefine

X(Z)s*a/({q(z)|(zeZ)}),

where gcd denotes the greatest common divisor. The quantity x (Z) can beviewed as

the number of times that a valid schedule for G invokes the subsystem corresponding

to Z [16].

• Similarly, if x and v are distinct nodes ina consistent SDF graph, then

o(x y) b qM = q(*)
'" X({*,y}) gcd({q(x),q(y)})'

We can view Q(x, y) as the number oftimes that node x isinvoked ina single invocation
of the subsystem {x, y} .

• Twonodes in a directed graphare adjacent if thereis an arc directed from one of the

nodes to the other.

• Given aconsistent SDF graph G, a subset Z = {z,,z2,..., z„} ofnodes in G is a

uniform repetition count (URC) subset if q(z j) = q (z2) = ... = q(z„).IfZis

a URC subset, theassociated subgraph is called a URC subgraph.

• A path ina directed graph isa finite, nonempty sequence ofarcs (e,, e2,..., en) such

1. Technically, practical SDF graphs may arise that are directed multigraphs — graphs inwhich more than
one arc can exist for the same pair of source and sink nodes — rather than directed graphs. However, the dis
tinction between directed multigraphs and directed graphs is not important for the developments ofthis paper:
our results can easily beextended tohandle directed multigraphs. For clarity however, werestrict our discus
sion to directed graphs, rather than multigraphs.



that snk (*.) = src(ei+l) for i = 1,2,..., (n- 1) . We say that a path

(ep e2,..., en) isdirected from src (*?,) to snk (en); we say that this path traverses

src (ej), src (e2),..., src (en), m& (en); and wemay write

src (*,) -> src (e2) ->...-» src (en) -» m£ (<?„) as an alternative representation of the

path. The path (cv ev ...,en) is simple if src (e,), src (e2),..., src (<?„) are all dis

tinct, and it isacycle if src (<?j) = snk (en).

• We denote the set ofpositive integers by Z+.

• The precedence graph (defined below) of an SDF graph G is denoted by PRG (G) .

• Given aproblem P, ifpx, p2,..., Pn are real-valued parameters ofaproblem instance,

and Ais an algorithm to solve P, then Ais 0 (/ (p,, p2,..., pn))

(^ (/ (Pi, P2> ••., Pn))) if for sufficiently large pP p2,..., pn, the number of elemen

tary computational steps required by A is bounded above (below) by aconstant multi

ple of/(p,,p2, ...,pn) .

• If r is areal number, \_rJ denotes the largest integer that is less than or equal to r.

2.2 SDF graph to DAG translation

To schedule SDF graphs onto multiple processors, aprecedence graph is constructed
from the original SDF graph. In general, the SDF graph exposes some of the functional parallel
ism in the algorithm; the precedence graph may reveal more functional parallelism, and in addi
tion, it exposes the data parallelism available. The precedence graph for the SDF graph of figure 1
is shown in figure 2. Notice that for each node in the original SDF graph, there are multiple nodes
in the precedence graph corresponding to the repetition counts derived from the balance equa
tions.

Formally, the precedence graph is constructed by first instantiating q (x) nodes, labeled
*p *2» •••» *q (x). for each node x of the SDF graph. Each precedence graph node *,. corresponds to
the /th invocation ofx in an iteration ofavalid schedule. For each arc a in the SDF graph, an arc
in the precedence graph is instantiated from src (a),. to snk (a); for each ordered pair (/, j)
that satisfies 1<i<q (src (a)) , 1<j <q (snk (a)) ,and at least one of the following two con-



ditions:

(/-l)p0 +8a<(y-l)Ka</p0 +80,fir (1)

0,-l)Ka<(/-l)po + 8o<>/Ka. (2)

The following fact isa straightforward consequence ofthe developments in [7].

Fact 1: An SDF graph is deadlocked ifand only ifits precedence graph contains acycle.

Thus, if an SDF graph isconsistent, then its precedence graph is guaranteed to be acyclic.

We refer to the precedence graph ofaconsistent SDF graph G as the precedence DAG (directed

acyclicgraph) of G, or simplyas the DAG of G.

Unfortunately, theexpansion due to therepetition count of each SDF node canlead to an

exponential growth ofnodes in the DAG. This growth has been overlooked inprevious SDF mul

tiprocessor scheduling work [9,10]. An SDF graph that exhibits this growth is shown in figure 3.
It is easily seen that the number ofnodes inthe corresponding DAG is

Figure 2. The precedence graph for the SDF graph of figure 1

©^ 1©* 1©M- 10

Figure 3. Afamily of SDF graphs in which the number of DAG nodes increases exponen
tially with respect to the number of nodes in the SDF graph.



Another example canbe found in [17], where a five-node SDFrepresentation of a compact-disc to

digital audio tape samplerate conversion systemexpands to a DAG that contains over 600 nodes.

This growth is undesirable, especially considering that known optimal multiprocessor scheduling

algorithms under precedence constraints have complexity that is exponential in the number of

nodes in the DAG [11]. Most uniprocessor SDF schedulers, onthe other hand, do notrequire a

DAG to be generatedfor scheduling purposes.

2.3 Clustering

To limit the explosion ofnodes when translating an SDF graph into a DAG graph, we

apply clustering ofconnected subgraphs into larger grain composite nodes. The composite nodes

will then bescheduled with one of the available uniprocessor schedulers. We cluster the nodes in

a manner that simplifies the DAG without hiding much exploitable parallelism.

The concept ofclustering in an SDF graph is illustrated in figures 4(a-b). Here, the graph
on the right is obtained by clustering the subset ofnodes {B, C] .The "D" on arc (£, C) speci
fies aunit delay (8{BC) = 1).

Formally, clustering asubset Z ofnodes in an SDF graph G = (V, E) into a single com

posite node Q, produces a new SDF graph, denoted cluster (Z, G) that consists of the setof

nodes (V- Z+ {Q}). The set ofarcs E' in cluster (Z, G) can be expressed as

E' = E- {e\((src(e) e Z) or (snk (e) € Z))} +£*,

where E* is a "modification" of the set of arcs that connect actors in Z to actors outsideof Z. If

for each e e E such that src (e) € Z and snk (e) g Z, we define e by

src(l) =Q,snk(~e) =snk(e),K-e =Ke, 8- =8,,andp- =q(^g))pe;

and similarly, for each ee E such that snk (e) e Z and src (e) g Z, we define e by

snk (e) =O, src (e) = src (e), p, =p,, 8, =8e, and k. =q(^f(e))Ke,

then we can specify E* by

E* = {e\ ((src (e) e Z) and (snk (e) <£ Z)) or ((snk (e) € Z) and (src (e) € Z))} .



This precise interpretation of clustering inSDF graphs was introduced in [23].

The precedence graph of cluster (Z, G) can be derived from the precedence graph of G
by consolidating each subset of invocations

{z|.|((zEZ)and(^l)ji|<i<^)}
X(Z) '-"x(Z)

into the single precedence graph node Clk, for k = 1,2,..., %(Z). This isillustrated in figures

4(c-d) for theclustering operation shown in figures 4(a-b).

(a)

(c)

(b)

(d)

Figure 4. An illustration ofclustering. Parts (a) and (b) illustrate how a clustering opera
tion transforms an SDF graph, and parts (c) and (d) illustrate the corresponding transfor
mation on the precedence graph.

(3)



Figure 5. Nodes with the same pattern belong to the same strongly connected com
ponent. Note that the clear node is a trivial strongly connected component.

2.4 Strongly connected components

Asubgraph, G' = (V, E'), is anontrivial stronglyconnectedcomponent of a directed

graph G = (V,E) if:

• V'qV and E'cE\

• Vv,, v2 e V there isapath directed from Vj to v2 and there isapath directed from v2

to v,; and

• |V'\ > 1 (G' contains more than one node).

Figure 5 shows a graph with the strongly connected components marked. Tarjan in [19]

developed anefficient algorithm to find strongly connected components in linear time with

respectto the numberof arcs and nodesin the SDFsystem

If (V, E') isa nontrivial strongly connected component, we may also say that V isa

nontrivial stronglyconnectedcomponent.

3. Multiprocessor DAG scheduling

DAG multiprocessor schedulers that minimize the interprocessor communication (IPC)

costs typically havetwo distinct scheduling phases [12-15]:

1. Aclustering phase to minimize IPC costs, by improving the parallel time at each clustering
step.

2. Aprocessor assignment phase, to map and schedule the clusters onto the available processors.

During initialization each DAG node ismapped onto a separate processor. Then, the nodes



are labeled with the computation times and the arcs are labeled with the IPC costs. As groups of

nodes are clustered together (mapped onto the same processor), the corresponding arc costs are

settozero. The parallel time (PT) can then bedefined asthe length of the longest path in the

graph. Figure 6 shows an initial labeled DAG and the result ofone clustering step.

It is important tonote that each resultant cluster is mapped onto a single processor. This

observation motivates the modification ofparallel time minimization clustering heuristics for use

on the SDF graph. By clustering the SDF graph we also have the opportunity touse specialized

uniprocessor SDF schedulers, which can optimize for such parameters ascode size, buffer mem

ory, and contextswitch overhead [18,23,26,27,28,29].

4. Some properties of precedence graphs

In this section, we introduce several properties ofprecedence graphs. In the following sec

tion, we will apply these properties to develop an efficient test for whether ornot agiven cluster
ing operation introduces deadlock.

Lemma 1: Suppose that G is an SDF graph, a is an arc in G, and Q isapositive integer

such that pa = klQKa, where kx is apositive integer, and 8a = k2Qna where k2 is anonnega-

PT=14 PT = 6

Figure 6. The graph on the left shows an initially labelled DAG. The graph on
the right shows the result after one clustering step.
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tive integer. Suppose that wedivide the invocations of snk (a) into groups of Q:

Ij = {snk(a)u_l)Q+l,snk(a)u_l)Q+29...,snk(a)JQ}J = 1,2, ...,*,q (src(a)) (4)

Then for each ;, there is at mostoneinvocation y of src (a) such that an arc in

PRG (G) exists that is directed from src (a) y to at least one member of/.. That is, no more
than one invocation of src (a) has aprecedence graph output arc directed toamember of 7 .

Furthermore, if src (a) y has an output (precedence graph) arc directed to some member of /.,

then src (a) y has output arcs directed toall members of /•

As an example of lemma 1, consider figure 7. Let a = (A, B), and observe that for this

choice ofa, the assumptions oflemma 1are satisfied with 0 = 2, it, = 3 and fc2 = 2. Each
group ofinvocations 7, is shown by one ofthe dashed ovals that encircles agroup ofQ = 2 adja
cent invocations of B. We see that the members of /, and I2 do not have any input precedence

edges from any ofthe invocations ofA; the members of73,74,75 have input precedence edges
from exactly one invocation —invocation Ax —of A; and similarly, the members of76 have
input precedence edges only from A2. Thus, the example of figure 7 isconsistent with lemma 1.

©^©V1©

Figure 7. An illustration of lemma 1
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Proofof lemma 7: LetA = src (a) and B = snk (a), and recall from (1) and (2) that an arc in

PRG (G) exists from Am to Bn if and only if one of the following two conditions hold:

(m-l)pa +oa<(n-l)Ka<mp0 +8a,or (5)

(n-l)Ka< (m-l)pa +8a<«Ka. (6)

Now, from the given assumptions, (6) becomes

(n-l)Ka< (m-l)*,2Ka +*20Ka<>nco, (7)

or equivalently,

(n-l) < (m-\)kxQ + k2Q<n. (8)

Since there are no integers "between" (n - 1) and n,clearly (8) cannot hold for any pair ofpos

itive integers (m, n) ,and thus, we conclude that aprecedence graph arc exists from Am to Bn if

and only if (5) holds.

Now from thegiven assumptions, (5) is equivalent to

(m-l)*1CKa +*2eK0^(n-l)K0<m*1eK0 +*2eK0, (9)

or

rmQ<(n-\)< (rm +kx)Q, where rm = (m- 1)*, +k2. (10)

Clearly, (10) is satisfied if and only if

ne {(rj2+l),(rj2 +2),..., {rmQ + kxQ)} , (\\)

and from the definition of the sequence /,, 72,..., we conclude that

there isaprecedence graph edge from Am to Bn iff for some k€ { 1, 2, ...,*,} , B el ..(12)

Thus, ifthere is aprecedence graph edge from Am to Bn, and Bn e Ijy then there is aprecedence

graph edge from Am to all members of 1..

Now, from the definition of rm in (10), we see that if u. and u/ are distinct positive inte-

12



gers, and \, %' are members of {1,2,..., kx} , then (r^ +X) * (r^ +V). Thus, it follows from
(12), that for a given Ijt there isatmost one invocation ofA that has a precedence graph output

edge directed into 7;. (directed to some member of7^).Q

The following lemma is analogous to lemma 1, with the roles of the source and sink nodes

interchanged.

Lemma 2: Suppose that G is an SDF graph, a is an arc in G, and Q is a positive integer

such that Ka = kxQpa, where kx is a positive integer, and 8a = k2Qpa where k2 isa nonnega-

tive integer. Suppose that we divide the invocations of src (a) into groups of Q:

Ij = {src(a)ij_l)Q+l,src(a){j_l)Q+2,...isrc(a)jQ}J = 1,2, ...,fc,q (snk(a)).

Then for each j, there isatmost one invocation y of snk (a) such that anarc in PRG (G) exists

that is directed to snk (a)yfrom amember of 7;.. Furthermore, if snk (a) has an input arc

directed from some member ofIp then snk (a)yhas input arcs directed from all members of7 .

Proofof lemma 2: Follows by symmetry from lemma 1.•

Lemma 3: Suppose that C is a connected, consistent SDF graph that contains at least two

nodes, and whose edges form a simple cycle. Suppose that a is an arc in C, p is the arc whose

source nodeis snk (a), and Q is a positive integer such that

8C = *0Ka, where ke (Z+u {0}), (13)

and

Pa = 7fiKa where yeZ+. (14)

Define a' and p', respectively, by

src (a') = src (a), snk (a') = snk (a), 8a, = 8a, pa, = pa, Ka, = 0Ka, and (15)

13



src (p') = src (p), snk (p') = snk (P), 8p, =8p, pp, =Qpp, Kp, = Kp. (16)

Suppose that C is the SDF graph that results from replacing a, p with a', P' in C, respec

tively. Then C" is consistent.

As an example of lemma 3,consider figure 8 with a = (A, B), P = (B, C) and

(a)

(b)

(c)

I

7? 2D W

3 '

•

^4 »S

20\ l

Figure 8. An illustration of lemma 3

14



(2 = 3, whichcorresponds to the clustering operation shown. Clearly (14) is satisfied with

7=1. However 8a * kQKa in figure 8(a), while 80 = kQKa in figures 8(b) and 8(c). Accord

ingly, the clustering operation introduces a precedence graph cycle (deadlock) in figure 8(a),

while (as guaranteed by lemma 3)the clustering operation leaves the cycle consistent in figures

8(b) and 8(c).

Proofof lemma 3: It is easily seen that the vector b defined by

bW =

' qc(x) if x*snk(a)y

if x = snk (a)
Q

satisfies the balance equations for C". Thus, arepetitions vector exists for C, and it remains only

tobeshown that C isnot deadlocked. We show this by contraposition.

Suppose that C" is deadlocked. Then from Fact 1, there exists acycle in PRG (C) that

traverses some invocation, say invocation a, of snk (a). From lemma 1,

there is exactly one invocation, say invocation b,ofsrc (a) such that in PRG (C) , src (a)b\s

connected to snk (a) a by an arc. (18)

Now observe that

PRG (C") can beobtained by consolidating

{snk(a)liSnk(a)2f...lSnk(a)Q}y {snk(a)l+Q,snk(a)2+Q,...,snk(a)2Q},... in

PRG(C). (19)

From lemma 1 we know that

in PRG (C) , there is an arc directed from src (a) b toeach member of

{snk(a)aQisnk(a)aQ_v...1snk(a)aQ_{Q_l)} . (20)

Now since there isacycle in PRG (C) that traverses snk (a) a,we have from (18) that

there isapath in PRG (C) directed from snk (a)a to src (a)b. Thus, from (19), it follows that

in PRG (C), there isapath directed from some member snk (a) c of

{snk (a)aQ, snk (a)fl(2_„ ...,snk (a)aQ_ (fl_I}} to src (a)fe, and from (20), we conclude that

15
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in PRG (C), there is acycle that traverses snk (a) c. This contradicts the assumption that Cis
consistent^

Lemma 4: Assume the same hypotheses as lemma 3, except replace (13) and (14) with

5p = *Gpp where ke (Z+ u {0}), and (21)

Kp = 7'Gpp where j e Z+. (22)

Then the SDF graph that results from replacing a, p with a', P' in C isconsistent.

Proof: Follows by symmetry from lemma 3. •

Lemma 5: Suppose that Cisa consistent, connected SDF graph that contains at least three

nodes, and whose edges form asimple cycle vY -> v2 -»... -*vN = vx; let ep denote the arc that

has vp as its source node, for each p; and suppose that for some je {1,2, ...,N- 1} , we have

fl(v; +1) = *Qty), where ke Z+, and (23)

5<, = 0» (24)

where q is the repetitions vector of C. Then cluster ({vjt vj+l},C) is consistent.

Proof: Arepetitions vector for the clustered graph can always be derived from the repetitions

vector ofthe SDF graph [16]. Thus, clustering always preserves the existence ofarepetitions vec

tor. It remains to be shown that clustering {vp v;+,} does not introduce deadlock. We show this

by contraposition.

Let C = cluster ({v,, vj+ J, C),and suppose that C is deadlocked. Let Q denote the
clustered node in C. Then from Fact 1, there exists acycle in PRG (C) that traverses some
invocation, say invocation x, of Q.

From (3), PRG (C) can beobtained by clustering each of the subsets1

1. Here, (vg) h represents the hthinvocation ofnode v

16



{(v,),, (v,+ I)If (v, +1)2,..., (vJ+l)k},{(vj)2, (vj+l)k+], (vy+1)4 +2,...f (vj+ ,)„},...

in PRG(C) .

Thus,inP7?G(C),

thereisapathfrom(v7+1)ffljt+.to (vy)/n +1,forsome/,m,whereO<m<q(v;),and 1<i<A:.(25)

Nowfrom (23), (24) it is easily seen that there are arcs in PRG (C) from (v.) , to

every member of{ (vJ+l)mk+v (vJ+,) mt+y ..., (v,+,) mt+Jk}, and it follows from (25) that

there is acycle in PRG (C) containing the arc ((v;.) m+,, (vj+,) mk +.). This contradicts the
assumption that C is consistent. •

Lemma 6: Assume the same hypotheses as lemma 5,except replace (23) with

q(v,) = *q(vy+I). (26)

Then cluster ( {v;, vJ+,}, C) is consistent.

Proof: Followsby symmetry from lemma5.Q

5. The SDF composition theorem

Unfortunately, SDF lacks the composition property. That is, ifwe cluster two arbitrary
SDF nodes, we may introduce deadlock into the SDF graph. To compose two SDF nodes into a

valid SDF cluster, we have developed the SDF composition theorem. This theorem presents four
conditions that guarantee that deadlock is not introduced into the clustered SDF graph.

Thus, the SDF composition theorem provides asufficient condition that aclustering oper
ation does not introduce deadlock. Currently there is no known exact condition (both necessary
and sufficient) that can be evaluated in polynomial time with respect tothe number ofnodes in the

SDF graph. In [30], Karp and Miller give an exact algorithm for determining whether ornot an

arbitrary computation graph deadlocks. When this algorithm is applied to an SDF graph that has a
repetitions vector, the following steps are effectively carried out for each strongly connected com-
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ponent:

(a) For each simple cycle C, aweighted sum of the arc delays iscompared against the

inner product oftwo vectors1. The weights ofthe delays and the two vectors are functions ofthe
production and consumption parameters on the arcs in C. If for each simple cycle, the weighted

sum ofthe delays exceeds the corresponding inner product, then one can conclude that the given
SDF graph is not deadlocked.

(b) Otherwise, a second pass over the simple cycles is initiated. An iterative method is

applied to each cycle that isexamined. For an SDF graph that has arepetitions vector, this itera

tive method is equivalent (in terms ofcomplexity) to first computing the repetitions vector q of
the cycle, and then starting at any node snk (a) ofthe cycle that satisfies delay (a) >Ka;
repeatedly traversing the cycle by moving from the current node to its successor in the cycle at

each traversal step; and simulating (updating the number oftokens on the appropriate arcs)

exactly \b (a') /Ka,J invocations ofeach node when it is visited, where a' is the input arc to the
node in the cycle, and b(a') is the number oftokens on a'. The test for agiven cycle terminates

when either the simulated system deadlocks, in which case we know that the overall SDF graph is
deadlocked, or astate isreached where some node x has been executed q (x) or more times, in

which case we know that thecurrent cycle is not deadlocked.

Step (b) entails two levels ofrunning time explosion since (1) the number ofsimple cycles
in adirected graph is not polynomially bounded by the number ofnodes, and (2) there is no poly
nomial bound (in thenumber of SDF nodes) onthe number of node visits that occur in the simu

lation of a given cycle.

We justify claim (2) with the aid of figure 9. Assuming that n> 1, it can beshown that the

graph in figure 9is deadlocked if an only if 8£2(n - 1). Now since the production parameter of
each arc is equal to the consumption parameter on the other arc, it follows that throughout any
execution of this graph, the total number tokens queued on both arcs remains constant. Thus, the
number of tokens residing onedge (A, B) is always less than or equal to 8.

1. In [30], this test is expressed in aform that is suitable for general computation graphs. This form involves
the comparison ofthe zero vector against the product ofasquare matrix with acolumn vector. However for
the special case in which the cycle in question is an SDF graph for which arepetitions vector exists (unity
gain), it iseasily verified that the rows in the matrix are constant multiples ofone another, and thus, all but
one (any one) of them can be discarded from the test.
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Now suppose that 8 = 2(n - 1),which implies that 8<2k(A B). Then each time node
B isvisited during the simulation defined in step (b) above, exactly one invocation of B isexe

cuted, and thus node B is visitedatotal of q (B) times in the simulation. Since

q (B) = (n - 1), we see that the time required to complete the simulation increases without

bound as the parameter n tends to infinity. Thus, we see that for arbitrary SDF graphs, there is no
bound on the completion time, let alone apolynomial bound, that is a function of the number of
SDF nodes alone.

An alternative exact condition can be evaluated by applying the loop scheduling algorithm

of[18], and then using aclass-S scheduling algorithm [7] to process the resulting tightly interde
pendent components. Families ofgraphs exist for which the technique of[18] requires O. (m2)
time, where m is the number ofSDF nodes; one such family is illustrated in figure 10. For this
family ofgraphs, it can be shown that in each application, the subindependence partitioning step
in [18] separates out the left-most node ofthe strongly connected component that it is applied to,
thereby reducing the size ofthe strongly connected component by exactly one node. Thus, n sub-
independent partitions must be constructed. Furthermore each application ofsubindependence
partitioning involves an application of Tarjan's algorithm for finding strongly connected compo
nents [19], which requires Q(n') time, where n' is number ofnodes in the SDF subgraph that it
is applied to. From these observations, it is easily seen that the technique of[18] requires Q(n2)
time for figure 10.

For general SDF graphs, the net running time attributed to the use ofaclass Sscheduling

Jn-1)

Figure 9. Afamily of SDF graphs that is used to show that there is no upper bound on
the number of steps required by Karp and Miller's iteration scheme that is a function
of the number of SDF nodes.
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algorithm in the technique of [18] is

Cll ]T q(x) ]per clusterization test,

where T is the setof SDF nodes that are contained in the tightly interdependent components. It

has been observed that T is usually empty in practice. However, the potential for Q(m2) behav

ior evidenced by theexample in figure 10 proves prohibitively expensive for hierarchical schedul-

ing since m such cases, the CI (m ) cost must be incurred at least once for each clusterization

step, and there maybeupto e total clusterization steps, where e is the number of edges in the

original SDF graph.

A third exact condition is described by Bilsen, Engels, Lauwereins, and Peperstraete [31]

for acomputational modelcalled cyclo-static dataflow, which is an extension of SDF. As in the

approach of Karp and Miller, evaluating this condition for ageneral SDF graph requires examin

ing each simple cycle separately. For acycle that isnot deadlocked, the tightest known upper

bound, time complexity expression for thetestapplied to each cycle is

O (n x min ( { q (x) \x is traversed by C])),

where q is the repetitions vector of C and n is the number of nodes traversed by C. It is easily

shown that there is noupper bound on the minimum repetitions vector component that is polyno

mial in n, and thus, theapproach of [31] exhibits the potential for a similar form of "two-level

• •

Figure 10. A family of SDF graphs for which the running time required by
the loop scheduling algorithm of [18] is Q ((number of SDF nodes)2).
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running time explosion" as is present in the approach of Karp and Miller.

Two sufficient —but not necessary —clustering conditions that were developed previ

ously —the merge pass conditions ofBuck [26], and How's clustering ofuniformfrequency sub

graphs [27] —are too restrictive for our purposes since these conditions require that the nodes

involved in a given SDF cluster must have identical repetition counts (components ofq). Thus,

they cannot be used to reduce theexplosion in thesize of theDAG thatarises from multirate sub

graphs such as the example in figure 3. The clustering techniques described in [18,25,28] all per

mitclustering across changes in repetition count; however, the first of these maintains thecluster

hierarchy on the DAG, the second technique is restricted to acyclic graphs, and the third tech

nique was designed under the restriction that the existence ofa single appearance schedule must

be preserved. Thus, these three approaches are not in alignment with our primary objectives in

clustering for hierarchical multiprocessor scheduling, which are (a) to avoid constructing aDAG
until the entire cluster hierarchy is constructed; (b) to limit the size ofthe DAG resulting from the
final cluster hierarchy as much as possible; and (c) to handle arbitrary topologies, including
graphs that contain cycles. After our clustering pass has constructed its decomposition ofthe

input graph, individual components of the resulting hierarchy may subsequently be processed by
any ofthe alternative clustering techniques described above; however, our objectives in construct

ing the initial hierarchy require acluster selection process that is significantly more general (less
restrictive) than the previous approaches.

The following theorem, which we call the SDF composition theorem, establishes four

clustering criteria that together provide asufficient condition that agiven clustering operation
involving two adjacent nodes does not produce deadlock. The first three conditions prevent the
introduction ofcycles into the precedence graph. The last condition prevents the introduction of
new cycles into both the SDF graph and the precedence graph.

Theorem: Suppose that Gis aconsistent, connected SDF graph, and (x, y) is an ordered pair of

distinct, adjacent nodes in G. Then cluster ( {x, y}, G), the graph that results from clustering

{x,y} into a single node £1, isconsistent if the following four conditions all hold.

1. Precedence shift condition A: Ifx is in anontrivial strongly connected component C, then:
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foreach a e {a'| (snk (a') = x) and (src(a') e C) and (src (a') £ {*, y})} ,

there exists a positive integer kx and a nonnegative integer k2 such that

Pa = k\Q(x> y)*a ™d 5<x = kiQ(x> v)Ka> ^ <27>

foreachae {a'| (.yrc(a') = *) and (snk(a') e C) and (.mjfc(a') g {*,y})},

there exists a positive integer kx and a nonnegative integer k2 such that

Ka = kxQ(x, y)pa and 8a = *2g(*, y)pa. (28)

2. Precedence shift condition B: If y is in a nontrivial strongly connected component C, then:

foreach a e {a'| (snk (a') = y) and (src (a') e C) and (src (a') £ {*, y})} ,

there exists a positive integer kx and a nonnegative integer k2 such that

Pa = k\Q(*> v)Ka and 8a = k2Q(x, y)Ko,fir (29)

foreach a e {a'| (^rc (a') = y) and (sn*(a') € C) and (5^ (a') e {x, y})} ,

there exists a positive integer kx and a nonnegative integer fc2 such that

Ka = kxQ(x, y)pa and 8a = ^QU, y)pa. (30)

3. Hidden delay condition: If x and y are inthe same strongly connected component, then (a) at

least one arc from x toy has zero delay, and (b) for some positive integer k, q(jc) = kq(y) or

q(y) = kq(x).

4. Cycle introduction condition: There is no simple path from x to y that contains more than

one arc.

Figure 11 illustrates graphs that violate the conditions of the SDF composition theorem.

Note that the conditions given in theSDF composition theorem may be satisfied for the

ordered pair (y, x), even though they are not satisfied for (x,y). Thus, in general, both order-

ings should be triedbeforeruling out a clustering operation.
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Proofof the SDF composition theorem: LetG' = cluster ( {*, y}, G). As mentioned in the

proofoflemma 5, clustering does not cancel the existence ofarepetitions vector, so we need only

show that G' isnot deadlocked. Asin lemmas 3and 5, we prove this by contraposition.

Suppose G' is deadlocked.

From condition 4,no new cycles are introduced bythe clustering operation. That is, for

every cycle C = ax ->a2->... -»affl_, -*am = Cl-*am+x ->... -*aN = ax in G' thatcon-
tains Ci, there is aunique corresponding cycle in G, and this cycle has one ofthe following forms:

(a) ax -» a2 -» ... x ... -*aN = ax (same as C, but with Q replaced by*);

(b) ax -> a2 -> ... y ... -» aN = ax (same as C, but with 12 replaced by y);

(c) a, -» a2 -» ... ^ x-> y ->... -> aw = a, (same as C, but with CI replaced by
*->y).

For example, figure 12(a) corresponds to scenario (a) above; figure 12(b) corresponds to

(a) \ PRG J

PRG (c)

A
Figure 11. Systems that violate the SDF composition theorem. System (a) violates precedence
shift condition A; system (b) violates the hidden delay condition; and system (c) violates the cycle
introduction condition. Notice that the clusterings in systems (a) and (b) introduce cycles in the
precedence graph, while the clustering in system (c) introduces cycles in both the SDF graph
and its corresponding precedence graph. Here, in the SDF graphs, pa = 1and Ka = 1 for all
arcs a, with theexception that k( } = 3 in (a).
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Figure 12. Examples used in the proof of the SDFcomposition theorem.

scenario (b); figure 12(c) corresponds toscenario (c); and the situation in figure 12(d) cannot arise

due to condition 4.

Since G' is deadlocked, at least one of the cycles that traverse CI must bedeadlocked. Let

C* beadeadlocked cycle in G' that traverses CI. Suppose that C* isof form (a). Then from

lemmas 3 and 4, and condition 1, it follows that the corresponding cycle in G must bedead

locked, and thus that G must bedeadlocked. Similarly, if C* isof form (b), then it follows from

lemmas 3 and 4,and condition 2that the Gmust be deadlocked. Finally, if C* isof form (c), then

lemma 5, lemma 6 and condition 3guarantee that Gis deadlocked. Thus the assumption that G'

isdeadlocked implies that G isdeadlocked. But this contradicts our assumption that G isconsis
tent^

Clearly, both of the precedence shift conditions and the hidden delay condition can be

checked exactly in an efficient manner. A number of exact and approximate (conservative) tests

are possible for the cycle introduction condition. Currently, weare trying to determine which test

for the cycle introduction condition yields the best trade-off between accuracy and efficiency for
practical applications.

6. Clustering techniques

In this section, we review our clustering techniques for SDF graphs. There are currently

four clustering techniques: userspecified, resource constraint limited, well-ordered URC sub

graphs (an acyclic graph iswell ordered if it has only one topological sort), and the parallel time
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reduction heuristic.

The first clustering technique is by far the simplest: we allow the user to specify clusters

that will be mapped onto asingle processor. This clustering technique empowers the user with

fundamental scheduling decisions. A potential problem is that the user can introduce artificial

deadlock. However, this error iseasily caught at compile time [20]. We have implemented this

technique in Ptolemy, where ithas enabled the development ofmultiprocessor applications that
have previously been impossible to synthesize using other SDF multiprocessing techniques.
When we automatically cluster subgraphs, we must ensure that theconstructed clusters donot

introduce artificial deadlock. We can accomplish this by using the SDF composition theorem.

The next clustering technique takes into account resource constraints. When mapping SDF

graphs onto heterogeneous processors, agroup ofconnected nodes may be required to be mapped
onto aparticular processor. Here, we are free to cluster these SDF subgraphs as long as we do not
introduce artificial deadlock.

The third clustering technique groups the nodes in awell-ordered, URC SDF subgraph
where the nodes do not have internal state (or equivalently, have self loop arcs). One source node

is connected to all the input arcs and one destination node is connected to all the output arcs.
Thus, when clustering well ordered SDF subgraphs, we do not group over branch or merge SDF
nodes (nodes that have multiple sources or destinations), where functional parallelism is exposed.
This clustering does not hide any ofthe available parallelism that will be exposed in the final
DAG. An example is shown in figure 13.

Finally, the last clustering technique is based on an adaptation ofSarkar's multiprocessor
DAG scheduling heuristic to SDF graphs [14]. Sarkar's algorithm is described below, and an
example is shown in figure 14:

1. Sort arcs of a DAG in descending order of arc costs

Figure 13. A well-ordered, URC

25



2. Zero the arc with the maximum weightif the parallel time does not increase

3. Repeat step 2 for all arcs

To apply Sarkar's algorithm to SDFgraph, we must first construct anacyclicversion of

the SDFgraph. We construct an acyclic version of our SDF graph by:

1. Removing all arcs a that satisfy 8a £ Kaq(snk (a)).

2. Clustering all remaining strongly connected components in themodified SDF graph.

7. Hierarchical scheduling algorithm

We are nowready to present the proposed hierarchical scheduling algorithm. This algo

rithm willbe implemented in themonths tocome within the Ptolemy project.

7.1 Initialization

1. Cluster nodes that are on SDF well-ordered URC subgraphs without internal state [1].

2. Cluster nodes that share resource constraints which satisfy the SDF composition theorem.

3. Compute the repetitions vector, q, 0(\V\ + \E\).

4. Construct the acyclic SDFgraph.

5. Compute the total IPC cost for each arc ontheacyclic SDF graph.

PT=14

/OvM)iv1

m) ' (T) r^
IsXty/2

PT = 6

Figure 14. An illustration of Sarkar's algorithm.
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7.2 Main loop

1. Apply one step of Sarkar's multiprocessor clustering heuristic on the acyclic SDF graph.

2. Using the SDF composition theorem, test the resulting cluster candidate to make sure it does

not introduce deadlock.

3. If the candidate does not introduce deadlock, then perform the corresponding clustering
operation, andupdatethe repetitions vector.

4. Repeat 1,2 until we reach astopping condition. We plan on using astopping condition similar

to:Xq(v,X*max(|Vl,P).
v,e V

7.3 Wrap up

1. Schedule SDF uniprocessor clusters with the loop scheduler of reference [18], which has time

complexity that is 0(m2 + £ q(v)), where m = max(|V|, |£|), and T is the set ofnodes that
ve T

are contained inthe tightly interdependent components of the SDF graph [16].1

2. Schedule user specified clusters with the given scheduler.

3. Schedule the clustered system with the user specified multiprocessor scheduler

8. Performance

The hierarchical scheduling framework for user specified clustering has been imple

mented in Ptolemy [1]. Four signal processing applications have been synthesized for aheteroge
neous multiprocessor consisting of aRISC and aDSP processor. An example system that was

designed within this framework will be detailed in the following section. Atable comparing the
results ofuser specified hierarchical scheduling versus full DAG expansion multiprocessor sched
uling is given in table 1, and this data isdepicted visually in figures 15 and 16. Note that for all

systems, the hierarchical scheduling time was around 1- 2 orders of magnitude faster, while the

1. It has been observed that tightly interdependent components appear to be nonexistent in most practical SDF
graph, and thus, the complexity is often simply O(m2) [16].
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generated code was 1- 2 orders of magnitude smaller. Also, three of the four systems scheduled

using the full DAG expansion scheduling techniques exceed the DSP processor memory

resources. The DSP card onlyhas 16K available while all of themodem examples used atleast

29K. For hierarchical scheduling the modem examples needed 1.5K or less. Finally, there was vir

tually nopenalty for doing hierarchical scheduling, as can be seen in the makespans of the final

multiprocessor schedules.

9. Acoustical modem example

In this section we detail a320 bps quadrature amplitude modulation (4-QAM) acoustical

modem [22] that is scheduled onto two heterogeneous processors (RISC, DSP). The SDF specifi

cation is shown in figure 17. A pseudo-random bitstream isgenerated onthe workstation and then

packedinto a DSPword stream(22 bits/word). The stream of wordsis sent to a DSPwhich

unpacks each word to form abit stream. These bits are then encoded into asymbol (2 bits/sym

bol). The DSP transmits and then receives the symbol stream over aanalog channel. The received

symbols are then decoded, packed and sentbackto the workstation, where the errors are dis

played to the user. The user can control the alignment of the symbol period and examine the

resultant constellation and eye diagram using the peek/poke mechanism described in [24]. All of

System
SDF

Graph Size DAG Size

Scheduling
Time in CPU

Seconds Makespan

PI: DSP

Code Size

Assembly

P2: Sparc
Code Size

C

FM-Synthesis
128 pt spectrum

44 14/806

57 x smaller
0.47/4.35

9.25 x faster
28832/28832

no difference
408/408

same

34K/420K

12 x smaller

bpsk (530 bps)
31 9/2628

292 x smaller
0.37/14.71

40 x faster
41566/41368

< 1% difference
424 / 32045

75 x smaller

14K / 56K

4 x smaller

4-QAM (320 bps)
eye diagram

59 15/9267

618 x smaller
0.91/80.87

87 x faster
150123/150123

no difference
1421/87533

62 x smaller
38K/63K

1.7 x smaller

4-QAM (640 bps)
52 10/3490

349 x smaller
0.69/20.1
29 x faster

40037/39707

< 1% difference
848/29720

35 x smaller

35K/56K

1.6 x smaller

Table 1. Performance ofthe hierarchical scheduling framework for user-specified clustering.
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Processor 1: DSP Code Size
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"
Full DAG Expansion

70000 -

60000 -

50000 -
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•'

10000 - I
FM Synthesis BPSK (530 bps) 4-4-QAM (eye diagram, 320 bps)

Processor 2: Sparc Code Size

450 -

FM Synthesis BPSK (530 bps) 4-QAM (eye diagram, 320 bps)

4-QAM (640 bps)

Hierarchical Scheduling

Full DAG Expansion

4-QAM (640 bps)

Figure 15. Performance of the hierarchical scheduling framework for user-specified
clustering — code size.
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Figure 16. Performance of the hierarchical scheduling framework for user-specified
clustering — scheduling time and makespan.
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the transmitter and receiver filters are polyphase FIR filters with interpolation and decimation fac

tors of 50 samplesrespectively.

Note that the SDF graph shown in figure 17 isexpressed hierarchically. There are atotal of

59 SDFnodes; the corresponding DAG hasa total of 9267 nodes. Since we are ableto use SDF

uniprocessor schedulers on the SDF subgraph clusters, for this example, weare able toobtain a

single appearance schedule which leads to very compact code. A single appearance schedule is

an SDF schedule inwhich each node only appears once [18]. To obtain the single appearance

schedule, three uniprocessor schedulers and one multiprocessor scheduler were used bythe hier

archical scheduling framework. By using the cluster hierarchy, the multiprocessor scheduler only

had to schedule aDAG with 8nodes. The multiprocessor schedule generated from the fully

w.w. 1 \^J I
-- »•••- TTJ •••♦

A

^

• •••

• • • •

• •••

• • ••

• •••

• •• •

• •••

-<X ••—••: LLIZr

-•••• > ••••'>

A

ilWi

Figure 17. A4-QAM acoustical modem. The top center block diagram is the top-level modem
schematic. The hierarchy ofPseudo-Random Bits, DSP Modem, and Error Display blocks is
expanded in the accompanying block diagrams. All ofthe blocks except for the DSP Modem
execute on the host workstation. The DSP Modem executes on the Ariel S-56X DSP board.
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expandedDAG has one function call (orinlined procedure) for eachof its 9267 nodes as com

pared to only 59 function calls for the hierarchical schedule.

10. Conclusions

In this paper, we have introduced ahierarchical scheduling framework for SDF graphs

being mapped onto multiple processors. Using user specified clustering, this framework has dra

matically improved the scheduling time and reduced the memory requirements needed inthe gen

erated system. In some cases, the hierarchical scheduling framework enabled the synthesis of

applications previously impossible using full DAG expansion multiprocessor scheduling tech

niques.

We plan toimplement automated clustering heuristics for use onthe SDF graph before the

SDF to DAG translation. These will beinspired by the DAG clustering heuristics found in multi

processor schedulers. The objective is tohide only that parallelism that would not beexploited,

and in doing so, simplify the DAG.
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