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Abstract

A Computational Theory of Laurent Polynomial Rings and Multidimensional FIR

Systems
by

HYUNG-JU PARK
Doctor of Philosophy in Mathematics

University of California at Berkeley

A Laurent polynomial ring is a natural ground ring for the study of FIR (Finite Impulse
Response) systems in signal processing since an FIR filter bank can be seen as a matrix over
this ring, and the notion of perfect reconstruction is represented by the unimodularity of
the corresponding multivariate Laurent polynomial matrices. Contrary to the conventional
affine approach to the theory of multidimensional FIR filter banks as a linear algebra
over polynomial rings, the toric approach based on Laurent polynomial rings offers a more
adequate framework. In connection with these applications, we look at the computational
aspects of the theory of modules over Laurent polynomial rings, and develop a few of their

applications to signal processing:

e A new, computationally effective algorithm for the Quillen-Suslin Theorem is found,

and implemented using the computer algebra package SINGULAR.

e An algorithmic proof of Suslin’s Stability Theorem is found, which gives an analogue

of Gaussian Elimination over a polynomial ring.

e An algorithmic process of converting results over polynomial rings to their counter-
parts over Laurent polynomial rings is developed. With the help of this process, we
extend the above two algorithms, the Quillen-Suslin Theorem and Suslin’s Stability

Theorem, to the case of Laurent polynomial rings.

e A notion of inner product spaces over Laurent polynomial rings is introduced, and a

theoretical framework for this notion is developed.



e A few outstanding problems in multidimensional perfect reconstructing filter banks
are shown to be solvable with the aid of the above algorithms. Explicit examples are
included that are worked out by SINGULAR.
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Chapter 1

Introduction to Part I: History

and Problems

The theory of ideals and (finitely generated and projective) modules over polyno-
mial rings and Laurent polynomial rings! has been studied in various contexts. Geometri-
cally, such ideals and modules correspond to affine and toric varieties, and vector bundles
over them, respectively. And algebro-geometric results concerning algebraic vector bundles
over an algebraic torus directly affect the FIR filter bank theory since finitely generated
"projective modules over a Laurent polynomial ring are represented by such vector bundles.

Computational aspects of this theory, however, have a relatively short history, and
Grobner bases theory provides the foundation for them, with the Buchberger algorithm
acting as the universal engine that drives many computations. In Chapter 2, we will review
this Grobner bases theory in a brief and self-contained manner.

In 1955, Jean Pierre Serre made a conjecture regarding the triviality of algebraic
vector bundles over an affine space. This problem became a daunting task for many mathe-
maticians, and was fully solved only in 1976, 20 years after the question was raised. Serre’s
conjecture, which is now known as the Quillen-Suslin theorem after the two mathematicians
who independently solved this long standing problem, states that any finitely generated pro-
Jective module over a polynomial rings is free. And in 1978, R.G. Swan [Swa78] extended

this result to the case of Laurent polynomial rings.

!'Unless otherwise specified, we will generally assume throughout this thesis that the coefficient rings of
these polynomial rings and Laurent polynomial rings are fields even though many results can be readily
extended to more general kinds of coefficient rings.



While the original proofs by Quillen [Qui76] and Suslin [Sus76] are nonconstructive,
new constructive proofs were found lately [LS92], [Fit93], [FG90), which give us algorithmic
ways of finding a free basis of any given (f.g. and projective) module over a polynomial ring.
In Chapter 3, we give a new, and readily implementable algorithm for the same purpose,
that is based on a syzygy computation. This algorithm is very easily implementable since
syzygy computation is already a standard part of many computer algebra packages, e.g.
Macaulay? and SINGULARZ. We present a few examples which are worked out in detail by
the computer algebra package SINGULAR.

Immediately after proving the Serre Conjecture, A.A. Suslin went on to prove the
following K';-analogue of Serre's conjecture [Sus77, Thm. 6.3).

Suslin’s Stability Theorem. Let R be a commutative Noetherian ring and
n 2 max(3,dim(R) + 2). Then, any n x n matrix A = (f;;) of determinant

1, with f;; elements of the polynomial ring R[zy,...,2), can be written as a
product of elementary matrices over R[zy,...,Zm).

In Chapter 4, we develop an algorithmic proof of the above assertion over a field R = k.,
which gives an analogue of the Gaussian elimination algorithm over a multivariate polyno-
mial ring k[z;,...,2;,]. Our method is inspired by the Logar-Sturmfels algorithm. (LS92].
for the Quillen-Suslin Theorem.

For a given A € SL,(k[r)....,z])) with n > 3. the algorithm of this chapter
produces elementary matrices El; .. E; € Ep(k[z),...,2m]) such that A=E,---E,, and
implementation of this algorithm involves use of Grébner bases.

Suslin’s stability theorem established in Chapter 4 fails for n = 2, and a counter-
example was constructed by P.M. Cohn in [Coh66). In Chapter 5, we will develop an
algorithm determining precisely when a given matrix in SLy(k[z;,.. .+ ZTm)) allows such a
factorization into elementary matrices, and if it does, expressing it as a product of elemen-
tary matrices.

In Chapter 6, we extend our algorithm for the Quillen-Suslin Theorem to the case
of Laurent polynomial rings. For a commutative ring R, we call v = (vy,...,vn) € R"

unimodular if its components generate R, i.e. if there exist g;,...,9, € R such that

?Macaulay is a computer algebra system for algebraic geometry and commutative algebra, developed by
M. Stillman and D. Bayer. It is available freely by anonymous ftp from ftp.math.harvard.edu. For more
information, see [BS).

3SINGULAR is a computer algebra system for singularity theory and algebraic geometry. developed in
the University of Kaiserslautern, Germany. It is still being alpha-tested, and is freely available by anonymous
ftp from helios.mathematik.uni-kl.de. For more information, see [GPS95).



V191 + -+ + vngn = 1. And in this chapter, we develop a systematic process of converting
Laurent polynomial vectors to polynomial vectors while preserving unimodularity. The
same process will be used in Chapter 11 to extend our algorithm for the Suslin’s Stability
Theorem to the case of Laurent polynomial rings. A similar idea of changing variables was
used by A. Suslin in [Sus77].

In Chapter 7, we develop the notion of inner product spaces over Laurent polyno-
mial rings, and study the unitary group with respect to the canonical group ring involution

over Laurent polynomial rings.

Notations

o A field is typically denoted by k while R, C denote the field of real numbers and the

field of complex numbers.

¢ A ring always means a commutative ring with identity unless otherwise specified, and

is denoted by roman characters: e.g. A, R, etc.

e Modules over a ring are denoted by M, N, etc.

Elements of a module are denoted by bold-face characters: e.g. f, v, etc.

Matrices over a ring are denoted by bold-face characters: e.g. A, B, E, etc.



Chapter 2

Grobner Bases (Standard Bases)

*- -+ In view of the ubiquity of scientific problems modeled by polynomial equa-
tions. this subject is of interest not only to mathematicians. but also to an
increasing number of scientists and engineers. In this context, Grébner bases
theory provides the foundation for many algorithms in algebraic geometry and
commutative algebra, with the Buchberger algorithm acting as the engine that
drives many computations. ---" (B. Sturmfels, [Stu94)).

2.1 Brief History

The Hilbert Basis Theorem states that any ideal of a polynomial ring is finitely gen-
erated. However, Hilbert’s original proof is nonconstructive and does not offer an effective
way of finding a finite set of generators for a given ideal of a polynomial ring. Determining if
a given polynomial belongs to a particular ideal is not an easy problem. either. Even when
we have an explicit (and finite) set of generators for the ideal and a polynomial known to
be a member of the ideal, writing this polynomial as a linear combination with polynomial
coefficients of the given generators could already be a daunting task.

In his celebrated 1964 paper [Hir64], H. Hironaka' answered this ideal membership
question by introducing special kinds of ideal generators called standard bases. Slightly later.
B. Buchberger independently and effectively addressed the same problem in his Ph.D the-
sis [Buc65], but used the name Grébner bases in honor of his thesis advisor W. Grébner. It
was mainly Buchberger’s continued works that inspired far more research on the theoretical

and computational aspects of Grobner bases and their applications to various mathematical

! According to D. Eisenbud [Eis95), earlier mathematicians like P. Gordan, F. Macaulay. and \W. Grobner
already had found the notion of Grobner Bases, and used them for their respective problems.



and scientific problems.

Nowadays, Grobner bases have become a very important tool in computational
algebra and computational algebraic geometry, and are implemented in many commercial
and noncommercial computer algebra packages.

The explicit Grobner basis computations for the examples in the remaining chap-
ters of this thesis were carried out by using two noncommercial computer algebra packages:
Macaulay (see [BS]) and SINGULAR (see [GPS95]).

[CLO92], [Mis93], [BW93], [Eis95) are excellent references for more information on
Grobner bases and their applications.

B. Sturmfels’ unpublished lecture notes [Stu94) from New Mexico State Univer-
sity Holiday Symposium 94 offers a state-of-the-art exposition on relatively new polytope

theoretic aspects of Grbner bases and their application to integer programming.

2.2 Monomial Order
From now on, we will use the following shorthand notations.
o x:=(z1,...,Zn),

e Ford = (dy,...,dn) € Z%,, zd = x‘f’ coogdm,

Definition 2.2.1 Let M be a finitely generated free module over k[z] = k[zy,...,zn] with

basise;, 1 < i< n.
1. A monomial in M is an element of the form
m=:z:de,-, 0<d; €2z,
and Mono(M) is the set of all the monomials in M.

2. A term? in M is a monomial multiplied by a scalar.

3. A monomial order is a linear order < on Mono(M) such that, if t;,t, € Mono(M)
and 1 # s € Mono(k[z]), then t; <ty impliest; <t; -s <t -s.

>The definitions of term and monomial vary in the literature, e.g. our term (resp. monomial) is
monomial (resp. term) in [Mis93].



4. Letc = (c1,...,¢m),d = (dy,...,dp) € Z%,. Then for two monomials 1 = x%e; and
m = z9¢;, we say 1 divides m if i = j and 0 < ¢, < d, Vs. In this case, we define

m/] := z9-Ce;.

Now, fix a monomial order < on Mono(M). Any nonzero term t € M can be
uniquely written in the form t = am for some nonzero a € k and m € Mono(M), and for
two nonzero terms t) = ayjm,; and t; = aym;, we loosely say 0 < t; < tz if m; < m,.
This is obviously an abuse of notation because it implies, for example, 2z%y < 3z%y and

322y < 222y at the same time. Note also that any f € M can be uniquely written as
f=ti+to+---+t;

where ty,...,t; are nonzero terms in M such that t; < ty < .-+ <t;. The term t; = aym
is called the leading term or initial term of f and is denoted as It(f) or in(f). We call ¢; and
my the leading coefficient and the leading monomial of f, respectively, and denote them by
le(f) and Im(f). For f,g € M, we say f < g if Im(f) < Im(g). It should be noted that.
if we change the monomial order on Mono(M), then we may have a different 1t(f) for the
same f € M.

Throughout this thesis. we will use the word leading interchangeably with the word
initial. Also, by a k[z]-module, we will always mean a finitely generated k[z}-module. and
thus, is actually a submodule of a finitely generated free module over k[z]. Since monomials
in a finitely generated free k[x)-module were defined in the above. we can now talk of
monomials in an arbitrary finitely generated k[z)-module by regarding them as elements
in a fixed ambient free module. In the following subsections, we will describe some of the
most commonly used monomial orders in practice: lexicographic, degree lexicographic, and

reverse degree lexicographic order.
2.2.1 Univariate Case
There is a natural (and in fact unique) monomial order on Mono(k[z)), that is,

1<z=<z2<23<....

If M is a submodule of a free module (k[z])" with e, ...,e, being the free basis. then for

two monomials z%e;, z%e; € N,

:r°e,--<:rﬁe,~4=n'>jora<l3.



2.2.2 Lexicographic Order
When the ambient free module is k[z], for a = (@1,...,am) and B = (By,...,Hn),
2 <jex 2P = 31 < Sm:iay=py,...,qi01 = fiy,0; < Bi.

When the ambient free module is (k[z))" with e, ..., e, being the free basis, for

a and B same as in the above,
z%e; <ex :c'Bej < 1> jor % <oy :cB.

Example 2.2.2 Let M = (k[z,y, 2])? with k[z, y, z]-basis e;, e;. Then, with respect to the
lexicographic order, z%yze) >jex 22yz%€) >iex Y32%€) >iex €1 Slex Z5€2 >lex Tyz2e) >ex

z%€) »jex €2. Also, note that
1t(222y%ze; + 3y%2%;) = 2:2%y°ze,
It(—e; + ye; + zze3) = —e.

o

Proposition 2.2.3 (Characteristic property of lex order) If f € k[zy,....7,) satisfies

Wiez (f) € k[zs,Zo414...,2m] for some s, then f € RlZg, Tog1yeeny2m).

Proof: An easy exercise. D

2.2.3 Degree Lexicographic Order
When the ambient free module is k[z], for a = (ay,...,a,;) and B8 = (310 ... 3m).

T <glex P = deg(z?) < deg(mﬁ), where deg(z¥) =a; 4 -+ ap, or
deg(x®) = deg(zP) and 1< i< m:

ar = By,...,ai-1 = Bi—y,0; < B;.

When the ambient free module is (k[z])", we extend above ideal-case order to this

module case in the same way as in the previous subsections.

Proposition 2.2.4 If f € k[zy,...,zn) is homogeneous with Water (f) € ks, 2541 . ... Tm)

for some s, then f € k[zy,2541,...,2m].

Proof: An easy exercise. o



10

2.2.4 Reverse Degree Lexicographic Order
When the ambient free module is k[z), for a = (a1,....am) and 8 = (By,...,8m),
% <gex 2P = deg(z®) < deg(zP), where deg(z*)=a; + -+ am, or
deg(z®) = deg(zP) and 1< i< m:

Qn = P, ..., Q41 = Big1,0; > B:.

Again, we can extend this ideal-case order to the general module case in the same
way as in the previous subsections.

This reverse degree lexicographic order (or simply reverse lexicographic order) is
the monomial order that we will use for most of our computations throughout this thesis.
As Bayer and Stillman showed in [BS&7a) and [BS87b]. the use of this monomial order

sometimes improves the efficiency of the computation enormously.

Example 2.2.5 Consider the two monomials 7173.23 € k[r),75,23). Then, 7,73 =qglex 3

while 7123 < diex 73. O

Proposition 2.2.6 If f € k[z,,.. .+ Tm) is homogeneous with Warter (f) € (25 Tsq1e- .., Tp)

for some s. then f € (z,,2541....,2p).

Proof: An easy exercise. 0

2.3 Grobner Bases and Division Algorithm

Definition 2.3.1 1. A k[z])-module is called a monomial module if it is gencrated by

a finite number of monomials.

2. For a subset S of a free k[z]-module M with a fired monomial order. we denotc by
in(S) (or 1t(S)) the set of the initial terms (or leading terms) of elements of S. i.c.

in(S) := {lL(f) | f € S).

3. The initial module associated to a subset S of a free k[z)-module M with a fircd

monomial ordcr is the module generated by the elements of in(S). i.c.

(in(8)) = ({I(S) | f € S)).
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Remark 2.3.2 By Dickson’s Lemma, any k[z]-module generated by monomials is actually
generated by a finite number of monomials, and henceforth a monomial module. Therefore
the finiteness condition in the above definition of a monomial module is not necessary, and
the initial module (It(S)) associated to any subset S of a free k[z]-module is a monomial
module. For a proof of Dickson’s Lemma, see [CLO92] or [Mis93].

Let {fi,...,fi1} be a set of generators for A'. Then, since each It(f;) € 1t(N), the
monomial module (It(fy),...,1t(f;)) is clearly contained in the monomial module (It(N)).
Now one can ask when these two monomial modules coincide.

First note that A is the set of all the linear combinations (with coefficients from
k[z]) of f;’s. Therefore, if one can form a linear combination (with coefficients from k[z}])
of f;’s so that the resulting combination has the leading term not divisible by any of 1t(f;),
1< j <1, then (It(fy),...,1t(fy)) is a proper submodule of (It(N)).

Example 2.3.3 Fix the degree lexicographic order on k[z,y], and let Z = (f,g), with
f=1-2zyand g = z2. Then the relation

(I+zy)f+y%g = 1

implies that we can form a linear combination of f and g so that the resulting combination
is strictly smaller than f and g (w.r.t. the monomial order), i.e. the resulting combination
has the leading term 1 which is not divisible by either of It(f) or lt(g), and thus not in
(1t(f),1t(g)). Therefore, (It(f),1t(g)) is a proper submodule of (It(Z)).
Actually, Z = k[z, y}, and therefore (I1t(Z)) = k[z, y] while
(1t(f),1t(g)) = (~zy,2%) C ().

0

Definition 2.3.4 Let N be a submodule of a a free k[x)-module M. Then w.r.t. a fized

monomial order on M,
1. G={fy,...,fi} CN C M is called a Grébner basis of N if
), () = (L))

i.e. if the submodule generated by It(f}),...,1t(f)) coincides with the initial module
(It(NV)) associated to N.
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2. G={fi,...,fi} CN is called a minimal Grébner basis of N' if G is a Grébner basis

with Ic(f;) = 1 Vi, and no monomial in this set is redundant.

3. G={f1,...,fi} C N is called a reduced Grébner basis of N if G is a Grébner basis
with lc(f;) = 1 Vi, and for any two f;,f; € G, no term of f; is divisible by 1t(f;).

Remark 2.8.5 It actually turns out that A" always has a unique reduced Grébner basis.

Example 2.3.6 The computation done in the previous example shows that {1-zy,z%}is

a not a Grobner basis. ]

Before proceeding to the multivariate division algorithm, let us take a look at the
univariate polynomial case: For any given polynomials f,g € k[z] with g # 0, the Euclidean

Division Algorithm constructs an expression of the form

f = qg+r

with deg(gg) = deg(f) and deg(r) < deg(g). With respect to the usual univariate monomial
order, we can restate these conditions on ¢ and r by saying that It(f) = 1t(gg) and none of
the monomials of r is in the monomial ideal (It(g)).

Now, we define a natural multivariate analogue of Euclidean Division.

Definition 2.3.7 Let M be a free k[z]-module with a fired monomial order <. and F =
{fl“. .., f1} be an ordered subset of M. Then for a nonzerof € M, a standard expression

of f in terms of F (or f;'s) is an ezpression

1
f = Zh,-f,-+r, hiek[m],reM

=1
such that It(f) > It(h;f;) Vi, and r € k[z] is a k-linear combination of monomials not in
(It(f1), ..., 1t(f)).

Example 2.3.8 Let fi =1 - zy, f, = z2 € k[z,y]. Then, w.r.t. the lex order with r » y.
Py-1 = - fi+f-1
is a standard expression while
1 = (I+ah+y'fe

is not. Actually, the unique standard expression of 1in termsof f;, f2is 1 = 0-f;+0-f,+1.
and thus 1 is not divisible by {fi, f2}. u
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Theorem 2.3.9 Let M be a free k[z]-module with a fized monomial order <, and F =
{f1,...,fi} be an ordered subset of M. Then there is an algorithm that yields a unique

standard ezpression in terms of f;’s for any given nonzero f € M.

Proof: We have to construct the following Division Algorithm.

Algorithm 2.1: Division Algorithm
Input: fi,....f,f e Mwithf#0

Output: hiy...,hi € k[z],r e M

Specification f = Ef-=1 hif; + r is a standard expression

Initialize ¢ = 0 and let rg :=f.
WHILE r; :=f - 3", _, m,f,, # 0 DO
IF no lt(f;) divides a monomial of f;

THEN for each j =1,...,1, set

f = f;

h; = z my

{plsp=3}

ELSE let f be the maximal term of f; that is divisible by some 1t(f;), and let

Sig1 = ]
fir = £/1L(E))
i = 141

The termination of this algorithm is guaranteed since the maximal term of r; divisible by

some lt(f;) decreases at each step. 0

Definition 2.8.10 1. The unique polynomial vector r € M in the above Division Algo-

rithm is called the remainder or normal form of f on division by F, and denoted
by N(f, F).

2. If the Division Algorithm applied to f yields zero as its remainder, then we say f is

divisible by F, or f reduces to zero on division by F.
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Remark 2.3.11 The Division Algorithm depends on the ordering of the elements of F =
{f1,...,fi}, i.e. changing the order of f;’s will produce different standard expressions for
the same f.

Example 2.3.12 Let f = 2z%y-3zy2+y?, fi =zy—-1, f =y?— 1€ k[z,y), and use the
lex order with z > y as the fixed monomial order on k[z,y]. Apply the Division Algorithm

to find a standard expression of f in terms of f; and f5:

We note first that It(f;) = zy and It(f,) = y2.
e = 0: Since It(f) = zy divides lt(ro) = 2%y,

ro = f=52:::"’y—3:::y"’+y2

m = 2zl
j =1
s = 1

mi = m/lt(f;) = 22%y/(ay) = 2z.
e i=1:

rno o= f-mf, =2s% -37y° 4+ y?) - 2r(zy - 1) = -3zy2 + 27 + v

m = -=3zry?
J =1
s = 1

me = m/lt(f;) = -3ry*/(zy) = -3y.
o =2

r2 = f-muf, —mafy, =r1-mafi = (-3zy° + 27 + y*) + 3y(zy - 1)

= 2z+4+y* -3y
m = y?
j = 2
s3 = 2

my = m/lt(f;) =y*/y*=1.
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o i=23:

ra = f—mifs, —mafs, —mafe, =ra—mafo= (22 +y%-3y) - (¥*-1)
= 2z-3y+1.

Now, note that neither of It(f;) nor 1t(f,) divides a monomial of r3. Therefore the

process terminates here, and

r = r3=2x-3y+1

hy = Z my=m; +my =2z -3y
{plsp=1}

hz = Z mp =m3= 1.
{rlsp=2}

Finally, we get the following standard expression of f in terms of f; and f;:

f = mfithafotr
= (2z-3y)r+ fa+2z-3y+ 1L

O

The following corollary, together with the above Division Algorithm, shows why a

Grobner basis is so special among many sets of ideal generators.

Corollary 2.3.13 (Submodule Membership Algorithm) Suppose N is a submodule
of a free k[z])-module M with a fized monomial order < and G = {fy,...,fi} C N is a
Grobner basis of M. Then, there is an algorithm for writing any f € M in the form

f = mfi+---+hfi+r, hi€klz],reM
such that f € N if and only if r = 0.

Proof: One direction (<=) is obvious.

If f € M and r # 0, apply the Division Algorithm to get a standard expression of
f in terms of f;’s: f = hyfy + -+ + hify + r. Note that the Division Algorithm necessarily
requires lt(r) € (It(fy),...,1t(f)).

Now, noting r = f = Y"!\_, hifi € M and (It(NV)) = (It(fy), .. .,1t(f)), we get

It(r) € (ItNV)) = (It(f1), ..., 1t(f1)),

which is a contradiction. D
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Theorem 2.3.14 (Buchberger Algorithm) Any submodule of a free k[x]-module has a

Grébner basis w.r.t. an arbitrary fized monomial order.

We will prove this theorem in the next section by giving an algorithm that con-

structs a Grobner basis for any given submodule of a free k[z]-module.

Definition 2.3.15 Let N be a submodule of a free k[z])-module M. Then the monomials
of M which do not lie in the initial module (1t(I)) := ({1t(f) | f € S}) associated to N are

called the standard monomials w.r.t. N.

Corollary 2.3.16 (Macaulay) Let N be a submodule of a free k[z]-module M. Then the

(images of the) standard monomials w.r.t N form a k-vector space basis for M/A’.

Proof: In order to show that the standard monomials span M /A as a k-vector space, let
{g1....,81} be a Grébner basis for A" whose existence is guaranteed by the Theorem 2.3.14.
Now choose an arbitrary g € M/A’, and use the above Division Algorithm to write g € M
in the form g = lygy +---+ hygi+r. Theng=r (mod I), where r € M is a k-linear
combinations of monomials not in (It(g;)....,It(g:)) = (It(N)). Therefore, g € M/A is a
k-linear combination of standard monomials w.r.t A’

To show the linear independence, assume we have nonzero standard monomials.
m;’s, 1 <7<, w.r.t. A such that

| f=2c‘,-m,~ € N,

for some nonzero ¢;’s in k. Then It(f) € (It(A")). But this is a contradiction since It(f) is

one of ¢;m;’s and m; is a standard monomial, i.e. not in (It(A")). o

2.4 Buchberger Algorithm

By the Hilbert Basis Theorem, any submodule A/ of a f.g. free module M over
k[x] is generated by finitely many elements, say, f1,...,fi € M. Now, we intend to construct

a Grobner basis for A’ out of these generators.

Definition 2.4.1 Let N be a submodule of a free k[x]-module M and f,,f; be elements of
N such that t(f;) and It(f,) involve the same basis element e; of M. Then the S-pair of
fi and f; is defined by

S(fl,fg) = h]f]—hgfg.
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where hy, hy € k[x] are the smallest degrees terms making the cancellation
1t(hyfy) = 1t(hof2).

(One finds that hie; = It(f;)/ ged(It(fy),1t(f2)).) If 1t(f)) and It(f,) involve distinct basis
elements of M, we set S(fy,f;) := 0.

The following theorem offers an important algorithmic criterion in terms of S-pairs

to test if a given set of generators for A is in fact a Grobner basis.

Theorem 2.4.2 (Buchberger’s Criterion) The set G = {f},...,f}} is a Grébner basis
iff for all pairs i # j, the remainder on division of the S-pair S(f;,f;) by G is zero.

Proof: See the Theorem 15.8 of [Eis95]. o

Now above theorem allows us to construct a Grébner basis for A in a finite number

steps by the following algorithm. Again we let A be a submodule of a free k[z]-module M.

Algorithm 2.2: Buchberger Algorithm
Input: G ={fi,...,fi}, 2 set of generators for N

Output: {gi,...,8,}, a Grébner basis for N’

e Step 1: If all the S(f;,f;)’s, i # j, have zero remainders on division by G, then G is
a Grobner basis by the Theorem 2.4.2. Give G as the output.

e Step 2: If some S(f;, f;) has a nonzero remainder S;; := N(S(f;,f;),G), then replace
G by the enlarged set {fi,...,f,S;;}, and go back to Step 1:.

Since the submodule generated by the leading terms of fi, .. . f1,8;; is strictly

larger than (It(f}),...,1t(fi)), this process must terminate after finitely many steps.

The Buchberger Algorithm outlined in the above does not necessarily yield a min-

imal Grobner basis, and the following lemma lets us eliminate some redundant generators.

Lemma 2.4.3 Let G be a Grébner basis for a submodule N of a free k[x)-module. If there
is f € G such that It(f) € (1t(G — {f})), then G — {f} is also a Grébner basis for N.
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Proof: By definition, (I1t(G)) = (It(1)). If it(f) € (It(G - {f})), then (It(G - {f})) = (It(G)).
Now by definition, it follows that G — {f} is a Grébner basis. u]

Example 2.4.4 Find a minimal Grébner basis for G = {1 — zy, 2%} € k[z,y] using the
Buchberger Algorithm, and express each element of the Grobner basis as a linear combina-

tion (with coefficients from [z, y]) of 1 - zy, z2:

e Step 1: The remainder of S(1 — zy,2?) = z-(1 — zy) + y - 22 = z on division
by {1 — zy,z?} is simply itself, =, which is nonzero. Hence, we have to enlarge G
to {1 — zy,z%,z}. But z? is redundant since it is divisible by z. Therefore, let
Gy ={1-1zy,z}.

e Step 2: The remainder of S(1 — ry.z) = 1-(1 —zy)+y-z = 1 on division by
{1 — zy.z} is 1, which is nonzero. Hence, we have to enlarge G, to {1 — ry.z.1)}.
Now, note that 1 —zy, r are redundant since each of them is divisible by 1. Therefore.
{1} is a Grébner basis for G = {1 - zy.2?} € k[z, y].

Since (1-zy,z%) = (1). we should be able to express 1 as a linear combination of 1 - ry. 12

For this purpose, we retrace the above process of getting to {1}:

1 = Sl-zy.r)=(1-zy)+y-7
= (1-2y)+yS(1 - 1y,2?)
= (I-z2y)+y(z(1-z2y) +y-2?)
= (14 zy)(1 - zy) + y222.

Example 2.4.5 (Ideal Membership) Let f = 222y - 3zy2 + 32, fi = zy -1, [, =
y? — 1 € k[z, ). Determine if f belongs to the ideal (fy, f2) C K[z, ).

We will use the lex order with x > y as our fixed monomial order on k[r,y]. In

order to apply the Corollary 2.3.13, we first have to find a Grébner basis for G = {f}, f2}:

o Step 1: The remainder of S(f}, f2) = y(zy - 1) — z(y® — 1) = r — y on division by
{zy — 1,4% — 1} is simply itself, z — y, which is nonzero. Hence, we have to enlarge

G to {zy - 1,y — 1,z — y}. But according to the Lemma 2.4.3. ry — 1 is redundant
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since its leading term zy is divisible by the leading term of z — y. Therefore, let
Gi={y*-1,z-y}.

o Step 2: S(Y¥*-Lz-y) =z -(¥-1)-y? - (z—y) = —z + y° is divisible by
{zy — 1,y% — 1} since the Division Algorithm yields
—z+y’ = g (-1 -1 (z-y)

Hence, Gy = {y® — 1,z — y} is a minimal Grdbner basis for G = {fi, f2} (one checks

easily that this is actually the unique reduced Grébner basis for G = {f1, f2}).

Now apply the Division Algorithm to find a standard expression of f in terms of G;. One
finds that the remainder is y + 1, which is nonzero. Therefore, we conclude from the

Corollary 2.3.13 that
f €, f).

2.5 Syzygy Computation

Let M be a free k[z]-module of rank ¢ with free basis {ej,...,e,}. We will
occasionally identify an element of M with a ¢ dimensional column vector with entries
from k[z] by writing it as a unique linear combination. (with coefficients from k[z]) of the
given basis elements.

Now let vy,..., v, be elements of M = (k[z])9.

Definition 2.5.1 A syzygy of the ordered set F = {vy,...,v,} is a polynomial vector
h = (hy,...,h,) € (k[z])? such that

hivi4---+ thp =0¢€¢ (k[m])"
Consider the homomorphism « of free k[z]-modules defined as follows:

a: (kz*])? —  (kz*))?

(hl,..-,hp) —) h1V1+°"+thp.

Then a syzygy of F = {vy,...,Vv,} is simply an element of Ker(a), and we see that the set

of all the syzygies of F coincides with Ker(a), thus makes a k[z]-module itself.
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Now the Hilbert Basis Theorem tells us that Ker(a), the module of syzygies of F,
has a finite number of generators, but it does not give us an effective way of finding them.

Actually, when vy, ...,v, € (k[z])? satisfy an additional condition called unimod-
ularity condition, then Ker(a) turns out to be free, and thus an arbitrary syzygy can be
written as a unique linear combination (with coefficients from k[z]) of the elements of a
free basis of Ker(a). This result is a consequence of the Quillen-Suslin Theorem, and will
be studied in more detail in the next chapter.

Since the Buchberger Algorithm of the previous section gives us a way of expressing
each remainder S,; := N(S(f;,f;), G) as a linear combination of f;’s, if the remainder S;; = 0,
then we get a linear combination among the f;’s being equal to zero, i.e. a syzygy. Now a
theorem of Schreyer states that these syzygies generate the entire module of syzygies. For

a more detailed exposition, see the section 15.5 in [Eis95).
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Chapter 3

A Syzygy-based Algorithm for the

Quillen-Suslin Theorem

3.1 A Conjecture of Serre

In FAC ([Ser55], 1955), J.-P. Serre pointed out that no example was known of a
nontrivial algebraic vector bundle over an affine space, and this observation became a fact

when D. Quillen and A. Suslin proved it as a theorem in 1976.

Definition 3.1.1 Let R be a commutative ring with identity. Then a module M over R is

called projective if it is a direct summand of a free module over R.

Since locally trivial algebraic vector bundles are interpreted as locally free coherent sheaves,

we can reformulate the Serre’s Conjecture as

[1] Any finitely generated projective module over a polynomial ring (with coeffi-
cients from a field) is free.

Definition 3.1.2 Let R be a commutative ring.

1. Letv = (vy,...,0,)! € R® for some n € N. Then v is called a unimodular column
vector if its components generate R, i.e. if there ezist g1,...,g9n € R such that

g1+ -+ vngn =1

2. A matriz A € Mpy(R) is called a unimodular matrix if its mazimal minors generate

the unit ideal in R.
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Remark 3.1.8 When R = k[z},...,2) is 2 polynomial ring and v € R™ is a2 unimodular
vector, we can explicitly find these g;’s either by using the effective Nullstellensatz (see

[FG90)) or by retracing the steps in computing a Grébner basis G = {1} for (vy,...,v,).
The following lemma gives an important property of a unimodular vector.

Lemma 3.1.4 Let R be a commutative ring and v € R*. Then, Rv C R" splits as a direct

summand if and only if v € R™ is unimodular.

Proof: Suppose Rv is a direct summand of R" and v = Y%, v;e;. Write Rv@®N = R" for
some submodule A" of R". Then any element of R can be written uniquely in the form,
av + w, for some a € R and w € N. Define an R-module homomorphism f : R* = R by
flav+w) = a. Then since f(v) =1=37, v;f(e;), v is unimodular. Conversely, if v =
2 iz, vie; € R™ is unimodular, then there exists g1y..+,9n € Rsuch that 3°7_, vigi=1€ R.
Defining an R-module homomorphism a : R* — R by a(e;) = g;, we get the following short

exact sequence:

0 — Ker(a) — R" = R — 0.

Defining an R-module homomorphism 3 : R — R" by 3(a) = av, we see that the

above short exact sequence splits. Hence, Rv is a direct summand of R". O

Actually, this lemma is a special case of the following well known result whose

proof is essentially same as in the above proof.

Lemma 3.1.5 Let R be a commutative ring, and M € My (R) for p 2 q. Then M is
unimodular if and only if its q column vectors form a free basis of a rank ¢ submodule of

RP that splits as a direci summand.

Now consider the following statement over polynomial rings.

[2] (Unimodular Completion) Let A be a p x ¢ unimodular matrix. p > q.
with polynomial entries, i.e. a matrix over k[z] := k[z;,...,Z,]. Then A can
be completed to a square p X p unimodular matrix A € GL,(k[z]) by adding
P — g columns to the matrix A.
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o _/

Figure 3.1: Unimodular completion of A to A

We claim that Serre’s Conjecture [1] is equivalent to the above elementary linear
algebraic statement [2], which is actually the form Quillen and Suslin used to prove Serre’s

Conjecture.
Theorem 3.1.6 The statement [1] is equivalent to the statement [2]

Proof: [1] = [2]: Consider the submodule A of the free k[z]-module (k[z])?, generated
by the g columns of A. Then the unimodularity of A implies that A separates as a direct

summand of (k[z])9, i.e.
NoeT = (kz])?

for some submodule 7 of (k[z])?. Since T is a direct summand of (k[z])?, it is a projective
k[z]-module. We can, therefore, apply the statement [1] to conclude that 7 is free. Let

Vi,.-.,Vp—g € (k[z])? be a free basis for 7, i.e.
T = &Liklz]v:.

Now regarding v;’s as p dimensional column vectors, add them to the matrix A to make a
P X p matrix. The resulting square matrix is unimodular since its column vectors form a
basis for (k[z])?.

[2] = [1]: First, we need to establish the fact that every projective module A over a
polynomial ring k[z] is stably free, i.e. N @ (k[z])? 2 (k[z])? for some p,q € Z3o.
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To see this, consider a free resolution of the projective module
09 Fn o Fuy 2o FoasFoay=N=0.

Note here that we are using the Hilbert Syzygy Theorem to obtain a free resolution of A
whose length is bounded by m, the number of variables. Then, denoting the kernel of the

module homomorphism F; — F;_; by AN, we have
FoSENOMN, F1=Nog®N, Fo 2 MO Ny, -+, Fn = Ny,
Therefore we get
NeFi@Fe - 2 NoMNoM)o N oN) -

Y NoM)DMBOMN)S---
Fo®dFa®---,

R

which implies that A’ is stably free.

Now that we have A" & (k[z])? = (k[z])P, we can make a p X ¢ unimodular polyno-
mial matrix whose column vectors form a free basis for (k[z])? C (k[z])?. Then apply the
statement 2] to complete this p X ¢ matrix to a square p x p unimodular matrix. Then the

last p — g columns of this square matrix form a free basis for A’ o

Remark 3.1.7 The second part of the proof is based on the Hilbert Syzygy Theorem in
assuming the existence of a finite free resolution of a projective module over a polynomial

ring. An algorithmic construction of such a free resolution can be found in [LS92).

In the following section, we will attempt to develop an effective algorithm for
Unimodular Completion. By using this algorithm, one not only knows the freeness of a
given f.g. projective k[x]-module but also can find a free basis for that module.

While there are recent algorithmic proofs of Unimodular Completion. ([LS92] and
[Fit93]), our algorithm based on a syzygy computation using Grébner basis seems to offer
a very effective algorithm which can be easily implemented since syzygy computation is al-

ready a standard part of many computer algebra packages, e.g. Macaulay and SINGULAR.

3.2 A Syzygy-based Algorithm for Unimodular Completion

In the following, we will present an effective algorithm for Unimodular Completion

based on a syzygy computation using Grobner bases.
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Algorithm 3.1: UnimodCompletion

Input: . A = (fi;) € Mpy(k[z]), p 2 ¢, a unimodular polynomial matrix
Output: A € GL,(k[z]), a square unimodular matrix

Specification: the p X ¢ matrix made of first ¢ columns of A is A

This will by no means replace the proof of Unimodular Completion given in Chap-
ter 4 as the Corollary 4.3.6, since we need to assume the validity of the statement of the
Quillen-Suslin Theorem to deduce the right size of a minimal syzygy basis.

Also, the first step in the algorithm is about finding a particular left inverse of
A € My, (k[=]), and our method for this step is due to A. Logar and B. Sturmfels [LS92].

e Step 1: Find a g x p matrix B € Mg,(k[z]) such that BA = I, in the following way:

The column vectors of the unimodular matrix A! = (f;;) € M,,(k[z]) span the free
k[z]-module (k[z])?. Therefore, we can use Grébner bases to express the standard
basis vectors ey, ...e, € (k[2])? as linear combinations (with polynomial coefficients)

of the column vectors of Al.

More explicitly, denoting the i-th column vector of Af by w;, 1 < i < p, we have

fia
w; = : |. Now, use Grobner basis to find gi;’s such that
fiq
0 ffl f;'n
e = .| =9uWit -+ gpWe=gn| |+t g1
(') fiq frq
0
: Jn I
€ = 0 =gawWit tgpWo=ga| | |+ tgp|
) Jiq Joa/
Denoting the ¢ x p matrix (g;;) by B, we can rewrite the above set of equations as
gm o Gip Ju - fig
I, = : : : :
9q1 " YGep Jor o fpg

I
w
>
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o Step 2: Again, let wy,...,w, € (k[z])? be the column vectors of A’. Now, find a

syzygy basis sy,...,8,—¢ € (k[x])? for the set {w,...,w,} in the following way:
Consider the k[z]-module homomorphism a : (k[z])? — (k[z])? defined by A®, i.e. for
any p-dimensional column vector v € (k[z])?,

a(v) = Alv.

First, note that a is surjective due to the unimodularity of A. More explicitly, let B
be the left inverse of A found in the Step 1. Then, for any w € (k[z])?, B'w € (k[z])?

and
a(B'w) = A'B'w)
= (BA)'w
= Lw=w.
Thus we get the following short exact sequence:
0 — Ker(a) — (k[z])? — (k[z])? — 0. (3.1)

Defining a k[z]-module homomorphism 8 : (k[z])? = (k[z])? by B(w) = B'w, we
see that the above short exact sequence splits. Hence, Ker(a) is a direct summand
of (k[z])?. i.e. a projective module over k[x]. and therefore free of rank p — g by the
Quillen-Suslin Theorem. Now find the reduced Grébner basis s;..... Sp—q € (K[z])P

of Ker(a).

Note that o : (k[z])? — (k[z])? satisfies the following property:

hy
a(| i |) = hwi+-+ hyw,,
hp
where wy,...,w, € (k[z])? are the column vectors of A®.
Therefore, Ker(a) is precisely the (first) module of syzygies of the vectors wy,...,w, €
(k[z])°.

e Step 3: Let

s = (sila"'ysip)fs ]SiSp—q
S = (S.‘j) € N“(p—q)q(k[a"])
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and define a square polynomial matrix C € M, (k[z]) by

© = (s)

( g g
_ gql PN gqp
1 o S1p
\s(r-q)l e s(p—q)p/

Now, let A := C~!, and terminate the process.

To verify the validity of this algorithm, it remains to show, (1) that the polynomial
matrix C € Mp(k[z]) is unimodular, and (2) that A ia really a unimodular completion of
A, i.e. the first ¢ columns of A := C~! make A.

To show (1), just note that the row vectors of C span the free module (k[z])? =
Im(B) @ Ker(a) = (k[z])? @ (k[z])P~7 since the first ¢ rows span Im(3) and the rest of the
rows span Ker(a).

To show (2), note that

o= (2

implies

Therefore, for each 1 < i < ¢,

i-th column of A = Ae;

= C! L e;
0

= i-th column of C~},

i.e. the first ¢ columns of A := C~! are same as the ¢ columns of A as desired.
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3.3 Examples
Example 3.3.1 Define four polynomials in k[z,y, z] by

fi = l-zy-22—42z - 22 - 2zyz 4 22%y%2 — 222% — 2222 + 22%y2?
fo = 244z + 1224 22y — 22%y% + 222 + 2222 - 222y

f3 = 1422+ zy—z%y 4224222 — 2%z

fa = 24+z+y—-zy*42-zy2.

Verify that the polynomial vector v := (fi, f2, fa, fa)! € (k[z,y,z2])? is unimodular and
find a unimodular completion of v. Defining a projective module M C (k[z,y.z])* by
(v)SM = (k[z,y.:])* find a free basis of M whose existence is guaranteed by the Quillen-

Suslin Theorem.

e Step 1: The following SINGULAR script computes a Grobner basis G of the ideal
(f1: f2, f3, fa) w.r.t. the reverse degree lexicographic order, and the transformation
matrix T such that G = (fi1, f2. f3. f4)T. and a syzygy basis G of {f;. fo. f3. f4}.

~ring r=0,(x,y,2),(c,dp);
POly £(1)=1-x#y-2%2-4%X¥Z-X24Z=2%XKY*Z+ 24X 24y 24Z- 24X *22-2%X2%22
+24x2%y*22;
poly f(2)=2+4*x+x2+2*x*y-2*x2*y2+2*x*z+2*x2*z—2*x2*y*z;
Poly (3)=142#x+xky-x24y2+xX+2+X2%2Z-X2%y*Z;
poly £(4)=24x+y-x*y2+z-x*y*z;
ideal I=£(1),£(2),£(3),f(4);
ideal G=std(I); matrix T=1ift(I,G); module S=syz(I);

Now SINGULAR responds with

> G;
G[1]=1

> T;
T[1,1]=0
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T[2,1]=-12+1
T[3,1])=2z-1
T[4,1]=-1x

The relation G = (fi, f2, f3, f4)T = 1 implies T'v = 1, and thus v is unimodular, and
B=T'=(0,-24+1,22—-1,-z)
is a particular left inverse.

Step 2: In order to find a unimodular completion of the column vector v, we need
to find a syzygy basis of {fi, f2, fa, fa}-

> S;

S[1]=[0,x2z-1x2+1,-2x2z+x2-2,x3]
S[2]=[1,-1xyz+xy+2z-1,2xyz-1xy-2z+1,~1x2y+x]
S[3]l=[-1y-1z,xz-1yz-122-1x+22-2,-2x2+x~-42+2 ,x2+2x+1]

Therefore,
(s)
C =
S
0 -z+41 2z -1 -z
0
1

z2z-z241 222z 4+ 22 -2 x3

—ryz+ay+2z—-1 2zyz—zy—-2:4+1 -—-zly+z
—y—2z Tz—-yr—z2-1+2:-2 -2rz4+2r-424+2 2242241
Step 3: One checks easily that det(C) = -1, i.e. C is unimodular, and the resulting

unimodular completion of v is

A = c!
i z2=222 1-2zyz-2z22 —2zz
fo =142z 2zy + 22 2z
- fs =14z Ty +z2 z
fa 0 y+z 1

The three column vectors of A other than the first make a free basis of the rank
3 free module M C (k[z,y, 2])* which is the complement of the rank 1 submodule
(v) := k[z,y,2]v C (k[z,y, z])*, i.e. (V) DM = (k[z,y,2])*
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Example 3.3.2 Consider the two polynomial vectors v,,v; € (k[z, y, z]) given by

[zy—y+l
vy = yz4+w
\ -y
(1-z
vy = -z
\ 1

Verify that the k[z,y, z]-module M C (k[z,y, ])® generated by v, and v, splits as a rank
2 direct summand of the free module (k[z,y,z])3. Also, find the k[z,y, z}-module A" C
(k[z,y, 2])® such that M @ N = (k[z,y, z])%

zy—y+1 1—-1z
We have to show the unimodularity of the matrix A := y:+uw -z

- -y 1
and find a unimodular completion A of A. Then the last column vector of A generates .\,

Our SINGULAR script for this purpose goes as follows.

ring r=0,(x,y,z,w),(c,dp);

vector v(1)=[xy-y+1,1-x];vector v(2)=[yz+w,-2z];vector v(3)=[-y,1];
module M=v(1),v(2),v(3);

module G=std(M); matrix T=1ift(M,G); module S=syz(M);

And the results are
> G;

G[1]=[0,1]
G[2]=[1]

> T;

T[1,1]=y
T[1,2]=1
T[2,1]=0
T[2,2]=0
T[3,1]=xy-1y+1
T[3,2]=x-1



> S;

S[1])=[w,-1,xw-12z-1w]
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Since {(1,0),(0,1)} is a Grébner basis of the row vectors of A, A is unimodular, and the

relation G = MT translates to

0 1
( ):A‘T.
10

01
By taking transpose of both sides, we get T!A = (1 ), i.e.

1 0 z-1
A=1,.
y 0 zy-y+1

1 0 z-1
y 0 zy—-y+1

(5)
C =
S
1 0 z-1
= |y 0 zy-y+l1

Hence, B := ( ) is a left inverse of A, and

w -1 zw-2-w
The resulting unimodular completion of A is
A = Cc!
l-y4+zy 1-2z 0
= w+ yz -z -1
-y 1 0
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Chapter 4

An Algorithmic Proof of Suslin’s
Stability Theorem

Over a field k, Gaussian elimination tells us that we can repeatedly apply
elementary row and column operations to reduce any matrix in SL, (k) to the identity
matrix I,, where the standard linear group SL, (k) denotes the group of all the n x n
matrices of determinant 1 whose entries are elements of k.

Less obvious but still true is that, due to the Euclidean Division Algorithm for k[z].
this elementary reduction is also possible for the matrices with entries from the univariate
polynomial ring k[z].

Even more strikingly, while the Euclidean Division Algorithm is not valid any more
for the multivariate polynomial ring k[z] := k[z),..., 2], Suslin’s Stability Theorem states

that the same is true for SL,(k[z]) with n > 3 and m > 1.

Definition 4.0.3 A square matriz A over a ring R is called realizable, if A can be written

as a product of elementary matrices over R.

Recall that for any ring R, an n x n elementary matrix E;;(a) over R is a matrix
of the form I, + a - E;; where i # j,a € R and E;; is the n x n matrix whose (i. j) entry is

1 and all other entries are zero. Now letting E,(R) be the subgroup of SL,(R) generated

Afterit was discovered that Cynthia Woodburn [Wo094] obtained the result of this chapter independently
of the author at the same time, she and the author started collaborating and wrote a joint paper [PW94)
based on the collaboration. The result of this section will be extended, in Chapter 11. to the case of Laurent
polynomial rings.
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by the elementary matrices, for a commutative coefficient ring R, Suslin’s stability theorem

can be expressed as
SLna(R[z1,...,Zm]) = En(R[21,...,2m]) for all n > max(3,dim(R) + 2).

When the coefficient ring is a field R = k, this is equivalent to saying that any nxn (n > 3)
unimodular matrix is realizable. Therefore, the algorithm to be developed in this chapter
could be called a realization algorithm.

This chapter is organized as follows.

e In Section 4.1, an algorithmic proof of the normality of E,(k[z]) as a subgroup of
SL, (k[z]) for n > 3 is given. Nonconstructive proofs of the results in this section can
be found elsewhere, e.g. [Sus77] or [Vas81].

e In Section 4.2, we give an algorithm for the Quillen Induction Process, a standard
way of reducing a given problem over a ring to an easier problem over a local ring.
Using this Quillen Induction Algorithm, we reduce our realization problem over the
polynomial ring R[z,] to one over Rpp[2,]’s, where R = k[zy,...,2,-1] and 9 ranges

over a finite set of maximal ideals of R.

e In Section 4.3, an algorithmic proof of the Elementary Column Property, a stronger
version of the Unimodular Column Property, is given, and we note that this algorithm
gives another constructive proof of the Quillen-Suslin theorem. Using the Elementary
Column Property, we show that a realization algorithm for SL, (k[z]) is obtained from

a realization algorithm for matrices of the special form

pgqgbo
r s 0| €SLs(k[z]),
0 01
where p is monic in the last variable z,, (note = := (z1,...,z,)).

e In Section 4.4, in view of the results in the preceding two sections, we note that a

realization algorithm over k[z] = k[z,,...,2,) can be obtained from a realization
pgo

algorithm for the matrices of the special form | r s 0 | over R[X], where R is now
0 01

a local ring and p is monic in X. A realization algorithm for this case found by M.P.

Murthy in [GM80] is reproduced in this section.
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4.1 E, is normal in SL,, for n > 3

l1+zy =z _ A0

Lemma 4.1.1 The Cohn malriz A = is not realizable, but
-2 l-zy 0 1

€ SLa(k[z,y]) ts.

Proof: The nonrealizability of A was first proved by P. M. Cohn in [Coh66), and a complete
algorithmic criterion for the realizability of matrices in SL;(k[z1,...,Zm]) will be developed
in Chapter 5.

Now noting that

l1+4zy 22 0 T
A0 )
0 1 = -y l-2y O0|l=I3+1] -y -(y,:c,O),
0 0 1 0
we see that the realizability of this matrix is a special case of Lemma 4.1.3 below. o

Definition 4.1.2 Let n > 2. A Cohn-type matrix is a matrir of the form
I + av(vje; — vie;)', i< je{l,...,n},

where v = (vy,...,v,)" € (k[x])™, a € k[z), and e; = (0,...,0,1,0,...,0)! with 1 occurring

only at the i-th position.
Lemma 4.1.3 (Mennicke) Any Cohn-type matrizr for n > 3 is realizable.

Proof: First, consider the case i = 1, j = 2. In this case,

vy
B = I,+a| ! | (v2,=1,0,...,0)
Un
(1+avive  —av} 0 0)
avg l—avyv, 0 --- 0
= avzv; —av3v,
: : In_2
\  av, v —av,v ),
(1+avyv; -av? 0 0
av? 1-avv, 0 0 .
= 0 0 H Ej; (avv2)Epp(—avivy).
3 ‘ Iy |
\ o0 0 /
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So, it is enough to show that

14+ avyv, —avf 0
A = av? l1-aviv; 0O

0 0 1
is realizable for any a,v;,v; € k[z]. Let “—” indicate that we are applying elementary

operations, and consider the following:

[ 1+ avyv, -av? 0 l1+aviv; —av? v
A = av? l-—aviv, 0 | — av% 1—0.‘01‘02 vy

\ 0 0 1
( 1 -av? o 1

— 0 l—avjvy, vy | — 0
\ —av; 0 1 —-avy av; 0 av 1+av1v2
( 1 0 0 100 100

— 0 1 1773 =+]01 v, |—=>]|010 (4-1)
\0 av; 1+avv, 001 001

Keeping track of all the elementary operations involved in 4.1, we get
A = Ej3(-v1)E3(—v2)E31(—avz)Esz(av1)E3(v1)E2s(v2) Esy (av2) Eg(—avy ).

In general (i.e., for arbitrary i < j),
U1

B = I.+a| : |(0,...,0,9,0,...,0,-v;0,...,0)
Un

with v; occurring at the i-th position and —v; occurring at the j-th position. Therefore, we

have
/1 “ea avlvj cee —avv; e 0\
. 2
1+ av;v; —av;
B = :
av? 1 - av;v;
J Lt

\ VpUj —Un; 1 }
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{ 1 0 0 \
1+ avv; —av?
= : : - I Eulaviv;)Eij(—aviv;)
avjz 1 - av;v; ‘é’f;’
\ 0 0 1/

= Eir(=0:)Eje(—v)Eri(-av;) Ey;(avi) Eif (v:) Eji (v;) Eei (av;) Erj (—av;)
. H Eji(avv;)Ej(—avy;),

I#1,j

where ¢ € {1,...,n} can be chosen to be any number other than i or J. a

Since a Cohn-type matrix is realizable, any product of Cohn-type matrices is also

realizable. This observation motivates the following generalization of the above lemma.

Lemma 4.1.4 (Suslin) Suppose that A € SL,(k[z]) with n > 3 can be written in the form
A =1+ vw' for unimodular column vectors v,w € (k[z])" such that wiv = 0 € k[z).

Then A is realizable.

Proof: Since v = (v1,...,v,)! is unimodular, we can use the effective Nullstellensatz or
Grébner bases to find gy,...,g, € k[z] such that vygy + -+ -+ vpgn = 1.

This, combined with w!'v = wyvy 4 -+ -+ wpv, = 0, vields a new expression for w:
1 n R

w = Za;j(vjei—t‘,'ej)
i<y

where a;; = w;g; — w;g;. Now,

t
A = I,4+v (Z a;j(vje; - v;ej))
i<j
= In+)_vaij(vjei - vie;)’
i<y
= H (1 + va;j(vje,- - v,~ej)') .
1<)

Each factor on the right hand side of this equation is a Cohn-type matrix and thus realizable.

so A is also realizable. a
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Corollary 4.1.5 BE;;(a)B™! is realizable for any B € GL,(k[z]) withn > 3 and a € k[z].
Proof: Note that ¢ # j, and
BE;j(a)B~! = I,, + (i-th column vector of B)a(j-th row vector of B1).

Let v be the i-th column vector of B and w! be @ times the j-th row vector of B=!. Then
(¢-th row vector of B~!)-v = 1 implies v is unimodular, and w'v is clearly zero since i # j.
Therefore, BE;;(a)B~! = I,, + vw! satisfies the condition of the above lemma, and is thus

realizable. 0
Corollary 4.1.6 E,(k[x]) is a normal subgroup of GL,(k[z]), for n > 3.

Proof: Let A € GL,(k[z]) and E € E,(k[z]). Then the above corollary gives us an
algorithm for finding elementary matrices E,,...,E, such that A~!EA = E, ---E,. a

4.2 Gluing of Local Realizability

Let R = k[z1,...,2m-1), X = 2, and M € Max(R) ={maximal ideals of R}.
For A € SL,(R[X]), we let Am € SL.(Rm[X]) be its image under the canonical mapping
SLa(R[X]) = SLa(Rm[X]). We will occasionally write A = A(X) to emphasize that we
are viewing the entries of the matrix A as polynomials in one variable. Now consider the

following analogue of Quillen’s patching theorem for elementary matrices:

Suppose n > 3 and A € SL,(R[X]). Then A is realizable over R[X] if and only
if Ao € SL,(Rm[X]) is realizable over Ryz[X] for every M € Max(R).

While a non-constructive proof of this assertion is given in [Sus77] and a more general
functorial treatment of this Quillen Induction Process can be found in [Knu91], we will give
a constructive proof for it here, thus providing a patching algorithm with input certain local
factorizations of a given matrix A and output a global factorization of A into elementary
matrices. Since the necessity of the condition is clear, we have to prove the following

theorem.

Theorem 4.2.1 (Quillen Induction Algorithm) Let A € SL,(R[X]). If Am € E,(Rx[X))
for every M € Max(R), then A € E,(R[X])).
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Proof: Let a, = (0,...,0) € k™!, and let M; = {g € k[z),...,Zm-1] | g(a;) = 0} be the
corresponding maximal ideal. Then by assumption, A, is realizable over Ran, [X]. Hence,

we can write

c-
AS!R. = HE"}‘J (d—J) . (42)
j j
where ¢j,d; € R,d; ¢ M. Letting ry = []; d; ¢ My, we can rewrite 4.2 as
c; - dy
Asm, = HE-’:‘J (J_H-:TJ_> € E"(Rrx) c En(Rsm,).
j

Denote an algebraic closure of k by k. Inductively, let a; € k™! be a common zero of
ri....,rj-1 and M; = {g € k[z1,...,2m-1] | g(a;) = 0} be the corresponding maximal
ideal of R for each j > 2. (See Chapter 3 of [CLO92] for details and references for using
Grébner bases to find a common zero of a finite set of polynomials.) Define r; ¢ 9, in the

same way as r; above, so that
Am, € En(Rr,[X])-

Since a; is a common zero of T1y...,Tj—1 in this construction, we immediately see that
™,..Ti-1 € My = {g € R | g(a;) = 0}. But noting r; ¢ M;, we conclude that r; ¢
riR+---+r;_1R. Now, since R is Noetherian, we will get to some [ after a finite number
of steps such that ryR+---+ rR = R. (We can use Grobner bases to determine when 1r
is in the ideal ryR + ---+ rR. e.g. see [CLO92, p. 94].)

Let d be a natural number. Then since r}’R-’-- . -+r;’R = R, wecan find g;,.... g €
R such that rfg; + --- 4 rfg; = 1. Now, we express A(X) € SL,(R[X]) in the following

way:

AX) = A(X - Xrig) -[A™Y(X - Xrig)A(X))]
= A(X - ergl - Xrggg) . [A'l(X - ergl - Xrggg)A(X - .X'rfg,)]
(AT X = Xr{g1)A(X)]

! l -1
= AX-3 Xrig) [ATNX - Y Xrig)AX =Y Xrdg))- -
=1 i=1 i=1

o [ATHX = Xrdg)A (X))
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Note here that the first matrix A(X =Y>!_, Xr%g;) = A(0) on the right hand side is in E.(R)
by the induction hypothesis. We will now show that for a sufficiently large d, each bracketed
expression in the above equation is actually in E,(R[X]), so that A itself is in E,(R[X]).
To this end, we let Ag, = A; and identify A € SL,(R[X]) with A; € SL,(Ra,[X]). Then

each bracketed expression is of the form

AT eX)Ai((c+ rig)X).

Claim: For any ¢,g € R, we can find a sufficiently large d such that A7!(cX)A;((c +
r89)X) € E.(R[X]) fori=1,...,1
Let

Di(X,Y,2) = A7 (Y - X)Ai((Y + 2) - X) € E4(R.[X,Y, Z])

and write D; in the form

h
D; = [[ E.,, (b + Zf;)

J=1
where b; € R,,[X,Y] and f; € R,[X,Y, Z]. From now on, the elementary matrix E; ¢, (a)
will be simply denoted as E?(a) for notational convenience. For p = 1,..., h, define C, by
p .
C, = [ E/(b;) € Ea(R,[X,Y]).
j=1

Then the C,’s satisfy the folowing recursive relations:

E'(%) = Ci,
EP(b,) = C;1,C, (2<p<h),
C, = L

Hence, using the fact that E;;(a + b) = E;;(a)E;;(b), we have

h
D; = HEj(bj'i-ij)

j_l
= HEJ b;)EN(Z f;)

= [E‘ (b1)EN(ZS)][EX (b2) E*(Z2)] --- [EM(bA)E*(Z f4)]
= [CEY(ZH)ICT'CEX (2 )] -+ [Cy2 CREMZ /)]

h
= [l cE (z5)c;
j=1
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Now in the same way as in the proof of Lemma 4.1.4 and Corollary 4.1.5, we can write

C,'EJ.(ij)C;1 as a product of Cohn-type matrices, i.e. for any given j € {1,...,h}, let
v

v=| : | be the s;-th column vector of C;. Then

Un

CjEth.,(ij)CJTl = H I+v-Zf;-a,s(vie5 — vse,))

1£7<8<n

for some a5 € R,,[X,Y]. Also, we can find a natural number d such that

! ! !
VS T him

for some w].al; € R[X,Y], f} € R[X,Y,Z]. Now, replacing Z by r#dg, we see that all
the Cohn-type matrices in the above expression for CjEj(ij)CJTl have denominator-free

entries. Therefore,
C;E’(r{%gf;)C;" € En(R[X.Y]).

Since this is true for each j, we conclude that for a sufficiently large d,
h 3
D;(X.Y,rfg) = T] C;E'(rég f;)C;! € Ea(R[X,YY)).
=1 :

Now, setting Y = ¢ proves the claim, and completes the proof of the theorem. o

4.3 Reduction to SLj

Let A € SL,(k[z]) with n > 3, and let v be its last column vector. Then v is
unimodular. (Recall that the cofactor expansion along the last column gives a required re-
lation.) Now, if we can reduce v to e, = (0,0,...,0,1)" by applying elementary operations.
i.e. if we can find B € E,(k[z]) such that Bv = e,, then
0

BA

P1 s P 1
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for some A € SLn-1(k[z]) and p; € k[z] fori = 1,...,n — 1. Hence,

Ao
BAEnl(—Pl)”'En(n—l)(_pn-l) = 0o 1/°

Therefore, our problem of expressing A € SL,(k[x]) as a product of elementary matrices

is now reduced to the same problem for A € SL,_; (k[x]). By repeating this process, we

P g
get to the problem of expressing A = | r s 0 | € SL3(k[z]) as a product of elementary
0 01

matrices, which is the subject of the next section.

In this section, we will develop an algorithm for finding elementary operations
that reduce a given unimodular column vector v € (k[z])" to e,. Also, as a corollary to
this Elementary Column Property, we give an algorithmic proof of the Unimodular Column
Property which states that for any given unimodular column vector v € (k[z])™, there exists
a unimodular matrix B, i.e. a matrix with constant nonzero determinant, over k[z] such
that Bv = e,. Therefore, our algorithm gives another constructive proof of the Quillen-

Suslin theorem.

Definition 4.3.1 For a ring R, Um,(R) = {n-dimensional unimodular column vectors
over R}.

As in Section 4.2, let R = k[zy,...,2m-1] and X = z,,. Then kfzy,...,2,) =

A 0
R[X]. By identifying A € SL2(R[X]) with € SL,(R[X]), we can regard
n-2

SL2(R[X]) as a subgroup of SL,(R[X]). As before, we use the notation A = A(X) and
v = v(X) to emphasize that we are viewing the entries of a matrix A or a vector v as
polynomials in one variable. Now consider the following lemma and theorem, which will be

used to prove the Elementary Column Property.

Lemma 4.3.2 Let f, f2,b,d € R[X] and let r € R be the resultant of f; and f,. Then
there exists B € SLo(R[X]) such that

5 (fl(b)) _ (fl(b+rd))
f2(b) fa(b+rd)
Proof: By a property of the resultant of two polynomials, we can find g,,92 € R[X] such
that fig: + f2g2 = r. (See [CLO92, Prop. 3.5.9] or [GM80, p. 28] for details.) Let
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s1,82,t1,t2 € R[X,Y, Z] be the polynomials defined by

H(X+YZ) = filX)+Ys(X,Y,2),
X +YZ) = foi(X)+Ys2(X,Y,2),
9(X+Y2Z) = g(X)+Yt(X,Y,2),
B(X+YZ) = g(X)+Yt(X,Y,2).

Now, define

Biy = 1+4s(b,r,d)-g;(b) +t2(b.r.d)- f2(d),
Bz = sy(byr.d)- ga(b) — ta(b, r.d) - f1(b),
By = sy(b,r,d)- g1(b) -ty (b, r,d)- f2(b),
Bya = 1+ sy(b,r,d)-ga(b) +t1(b,r,d)- fi(b).

B, B

Then one checks easily that B := 1712 ) satisfies the desired property and that
B2y Bx

B € SLy(R[X]). 0
v1(X)

Theorem 4.3.3 Suppose v(X) = : € Um,(R[X])), and v1(X) is monic in X.
tn (X)

Then there exists By € SLy(R[X)) and B, € E,(R[X]) such that B,B; - v(X) = v(0).

Proof: Let a; = (0...., 0) € k™', and M, = {g € k[z1,....2m-1] | g(a;) = 0} be
the corresponding maximal ideal. We identify residue field R/, with k. By hypothesis
v € (R[X])" is a unimodular column vector, so its image ¥ in (K[X])* = ((R/9,)[X])" is
also unimodular. Since k[X]is a principal ideal ring, the ideal (fs,...,T,) is generated by a
single element, G = ged(%y,...,,). Then %; and G, generate the unit ideal in k[X] since
1, T2,..., 0y generate the unit ideal. Using the Euclidean division algorithm for k[X]. we
can find E; € E,_(k[X]) such that

G,
0

2
E,
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Since we may regard E, as an element of E,(R[X]) and G as an element of R[X]. Then,

( V1 \
G+ qi2
V= q13

\ %
for some ¢12, ..., q1n € M[X]. Now, define r; € R by r; = Resx(v;, G} +q12), the resultant
of vy and G; + q12 with respect to X, and find fi,h; € R[X] such that

H-v+h - (G4 q12) =71.

Since v; is monic, and ©;, and G, € k;[X] generate the unit ideal, we have

f1 = Resx(v1,G1+ q12)
= Resx(9;,G1)
£ 0.

Therefore, r; ¢ 9M;. Denote an algebraic closure of k by k. Inductively, let aj € k™1 be
a common zero of ry,...,r;_; and M; be the corresponding maximal ideal of R for each
J 2 2. Define rj ¢ M; in the same way as above. Define also E; € E,_(k;[X]),G; €
k;[X], f;»h; € R[X], and gja,...,¢;jn € M;[X]in an anaLlogous way. As we saw in the proof
of Theorem 3.1, there is a finite ! such that ryR+ ---+ rn R = R. Find g;’s in R such that
r1g1 + -+ rigi = 1. Now, define b, by,...,b; € R[X] by

bo = 0
by = rnaX
by = rigiX +ragX

b = rnagX+rgX+---+rgX=X.
Then these b;’s satisfy the recursive relations:

bp = 0
by = bi_1+rgX fori=1,...,1L
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Claim: For each i € {1,...,1}, there exist B; € SLy(R[X]) and B! € E,(R[X]) such that
v(bi) = BiBlv(bi_1).

Using this and the fact that E,(R[X])-SL2(R[X]) C SL2(R[X)) - E.(R[X]) (Corol-
lary 4.1.5), we get inductively

v(X) = v(b)
= B;Bv(b-)

= BB’V(bo)
= BB'v(0)

for some B € SL2(R[X]) and B’ € E,(R[X]). Therefore, it is enough to prove the above
claim.

Proof of claim: Let G; = G; + gi2. Then

v (X)
Gi(X)

(1 0 X) = | ga(X)
0 E,‘(X)) v(X) = ‘]13(:-
Qin(-“()
For 3 < j < n, we have
9ij(bi) — gij(bi-1) € (bi — bi_1) - R[X]) = rig;X - R[X].

Since r; € R doesn’t depend on X, we have

SilX)ui(X) + hi(X)Gi(X)
= fi(bic1)v1(bi=1) + hi(bi=1)Gi(bi—1)

= a linear combination of v;(b;—;) and G;(bi—,) over R[X].

Ty

Therefore, we see that for 3 < j < n,

gij(bi) = gij(bi-1) + a linear combination of vy(b;—;) and G;(b;-;) over R[X].
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Hence we can find C € E,(R[X]) such that

v1(bi-1) vy (bi-1)

1 0 Gi(bi1) Gi(bi-1)
© (0 Ei(bi—l)) Vi) =€ qia(l:i-l) B qiafbi)
Gin(bi=1) gin (b;)

Now, by Lemma 4.3.2, we can find B € SL(R[X]) such that

3 (v.l(bi—l)) _ (lil(bi) )
Gi(bi-1) Gi(b;)

Finally, define B € SL,(R[X]) as follows:

1 0 B 0 1 0
B = .C- X
(0 Ei(bi)_l) ( 0 In—2) (0 Ei(bi))

Then this B satisfies
Bv(bi_1) = v(b),
and, by using the normality of E, (R[X]) again, we see that
B ¢ SLy(R[X])E.(R[X]),
which proves the claim and ¢ompletes the proof of the theorem. O

Remark 4.3.4 Note that the groups GL,(k[z]) and E, (k[z]) act on the set Um,, (k[z]) by
matrix multiplication. If the group action of E,(k[z]) on Um,(k[z]) is transitive, then we
get a desired algorithm in the following way: For any n-dimensional unimodular column

vectors v, v’ over k[z], we can find B € E, (k[z]) such that Bv = v'. Now, let v’/ = e,.

Theorem 4.3.5 (Elementary Column Property) The group E,(k[z]) acts transitively
on the set Um, (k[z]), for n > 3.

Corollary 4.3.6 (Unimodular Column Property) The group GL,(k[z]) acts transi-
tively on the set Um,(k[z]), for n > 2.

Proof: For n > 3, the Elementary Column Property clearly implies the Unimodular Column
Property since a product of elementary matrices is always unimodular, i.e. has a constant

nonzero determinant.
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If n =2, for any v = (v;,v2)" € Umy(k[z]), by using Buchberger’s algorithm for
computing a Grobner basis, we can find g;, g2 € k[z] such that v;g; + v2g2 = 1. Then the

v, -v
unimodular matrix Uy = 2 ! satisfies Uy - v = e;. Therefore we see that, for any
9 G2
v,w € Umy(k[z]), Uy'Uy - v = w where Uz 'Uy € GLy(k[z)). =]

Proof of Theorem 4.3.5: Since the Euclidean division algorithm for k[z,] proves the

theorem for m = 1, we may assume by induction the statement of the theorem for R =
u;

klzy,...,2m1). Let X =znandv=| : | € Um,(R[X]). We may also assume that v,

Un
is monic by applying a change of variables (as in the proof of the Noether Normalization

Lemma). Now by Theorem 4.3.3, we can find B; € SL,(R[X]) and B; € E,(R[X)) such
that

BB, -v(X) = v(0)€R.
Then by the inductive hypothesis, we can find B’ € E, (R) such that
B'-v(0) = e,.
Therefore, we get
v = B;'B;'B'le,.

By the normality of E,(R[X]) in SL.(R[X]) (Corollary 4.1.5), we can write B]'B'~! =
B”B7! for some B” ¢ E,(R[X]). Since

(pqO 0\
0o ... 0

r

7]

B;!

00

\0

o
S—-

for some p,q,r, s € R[X], we have

— -lp-1p/~1
v = B;'Bi'B' e,

(BQ_]B”)BI-len
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P g 0 \
s 0 0
= (B;'B")|0 0
: L2 0
00 1/
= (B; IB”)en

where B7'B” € E,(R[X]). Since we have this relationship for any v € Um,(R[X]), we get
the desired transitivity. O

4.4 Realization Algorithm for SL3;(R[X])

Now, we give a realization algorithm for the matrices of the form:

g 0
s 0| € SLa(k[z]).
01

(=2 T - ]

Again, by applying a change of variables, we may assume that p € k[z] = k[z;,...,2,] is
a monic polynomial in the last variable z,,. In view of the Quillen Induction Algorithm

developed in Section 4.2, we see that it is enough to develop a realization algorithm for

p g0
matrices of the form | r s 0 | € SL3(R[X]), in the case where R is a commutative local
0 01

ring and p € R[X]is a monic polynomial. A realization algorithm for this case was obtained
by M.P. Murthy [GM80, Lemma 3.6]. We present below a slightly modified version.

Lemma 4.4.1 Let L be a commutative ring, and a,a’',b € L. Then, the following are true.

1. (a,b) and (a’,b) are unimodular over L if and only if (aa’, b) is unimodular over L.

2. For any c,d € L such that aa’d — bc = 1, there ezist ¢,,c3,dy,d2 € L such that

ady —bey =1, a'dy — bey =1, and

ad b 0 a b 0 a b 0
[ d 0 = C1 d1 01 Co d2 0 (mod Ea(L))
0 0 1 0 0 1 0 0 1
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Proof: (1) If (ad’,d) is unimodular over L, then (e,b) and (a’,d) are clearly unimodular.
Suppose, now, that (a,b) and (a’,b) are unimodular over L. Then, we can find
hy, ha, by, kY € L such that hya+ hob =1, hia' + hib = 1. Now, by letting g; = b1k}, go =
2 +a'hah, we get gjaa’ + gob = 1.

(2) If ¢,d € L satisfy aa’d — bc = 1, then (ad’,b) is unimodular, which in turn implies
that (a,b) and (a’,d) are unimodular. Therefore, we can find ¢;,d;,d;,d2 € L such that

ady — bey = 1 and a’d; — be; = 1. For example, we can let
a=c=c, dy=dd d;=ad.

Now, consider

ad’ b 0 aad’ b 0
¢ d 0| = En(cdids —d(cs+d'erdy)) | o+ a'erdy dydy 0
0 0 1 0 0 1

= Eg Cdldz - (02 + d'c1d2))Ega(d; - 1)E32 Ezs -
a a

a d E3(1)E32(—1)E23(1) | ¢

E23 Esz 1)Ez3(a — 1)Ezy(-d'e; E32 dl)

This explicit expression shows that

aa’ b 0 a b 0 ad b 0
¢c d 0 = c; dp 0)-le d2 O (mod E3(L)).
0 01 0 0 1 0 0 1
O
p g0
Theorem 4.4.2 Suppose (R,M) is a commutative local ring, and A = | r s 0] €
0 01

SL3(R[X]) where p is monic. Then A is realizable over R[X).

Proof: We induct on deg(p). If deg(p) = 0, then p = 1, and A is clearly realizable. More

explicitly, we have

A = Ey(r-1)Exy()E;2(1-p+g).
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Now, suppose deg(p) = d > 0 and deg(q) = I. Since p € R[X] is monic, we can find
[, 9 € R[X] such that

g = fp+g, deg(g)<d.

Then,
p ¢g—fp 0 p g O
AE;(-f) = r s—fr 0|l=]r s=fr O
0 0 1 0 0 1

Hence we may assume deg(q) < d. Now, we note that either p(0) or ¢(0) is a unit in
R, otherwise, we would have p(0)s(0) — ¢(0)r(0) € 9, which contradicts the fact that
ps — gr = p(0)s(0) — ¢(0)r(0) = 1. Consider these two cases separately.

e Case 1: Suppose that ¢(0) is a unit.

We have
p-9(0)"'p(0)g ¢ 0
AE;(-¢(0)7'p(0)) = | r-q(0)"'p(0)s s
0 0 1

So, we may assume p(0) = 0. Now, write p = Xp’. Then, by Lemma 4.4.1, we can
find ¢, dy, c2,d2 € R[X] such that Xd; — ge; = 1, p'dy — gc; = 1 and

p ¢ 0 X ¢q 0 P ¢ 0
r s 0] = | dp 0)|-|cg do O (mod E3(R[X])).
0 01 0 0 1 0 0 1

Since p’ is monic and deg(p’) < d, the second matrix on the right hand side is realizable
by the induction hypothesis. As for the first matrix, we may assume that g is a unit of

R since we can assume deg(g) < deg(X) =1 and ¢(0) is a unit. Then invertibility of

q
q leads easily to an explicit factorization of { ¢; d; 0 | into elementary matrices.
0 0 1

e Case 2: Suppose that ¢(0) is not a unit.
First we claim that there exist p',¢’ € R[X] such that deg(p') < I,deg(¢’) < d and
?'p — ¢'q = 1. To prove this claim, we let s € R be the resultant of p and g. Then
there exist f,g € R[X] with deg(f) < /,deg(g) < d such that fp + gg = s. Since
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p is monic and p,g € R[X] generate the unit ideal, we see that s ¢ o, hence s
is a unit in R. Now, setting p’ = f/s, ¢' = —g/s proves the claim. Also note that
P'(0)p(0) - ¢'(0)g(0) = 1 and ¢(0) € M implies p'(0) ¢ M. This means that ¢(0)+p'(0)
is a unit. Now, we have that
p g0 g 0

r s 0| = Exn(rp'-s¢)|¢d p 0
1

p

s

0 01 0

(=)

+q¢ g+p 0
= Ea(rp' - s¢')Epa(-1)| ¢ P 0
0 0 1

Note that the last matrix on the right hand side is realizable by Case 1, since ¢(0) +
p g0

p'(0) is a unit and deg(p+¢') = d. Thus, | » s 0| is also realizable.
g
0 01

4.5 Eliminating Redundancies in the Realization Algorithm

When applied to a specific polynomial matrix, the realization algorithm obtained
in this chapter will produce a factorization into elementary polynomial matrices. but this
factorization may not have minimal length. The Steinberg relations [Mil71, p. 39] from
algebraic K -theory provide a method for improving a given factorization by eliminating
some of the unnecessary factors. The Steinberg relations which elementary matrices satisfy

are
1. E;;(0) = I;
2. Eij(a)Ei;(b) = Eij(a + b);
3. For i #1, [Eij(a), E;i(b)] = Eij(a)Eji(b)Eij(~a)Eji(~b) = Eq(ab);
4. For j # 1, [Eij(a), Eii(b)] = Eij(a)Eii(b)Ei;(—a)Eyi(—b) = Eyj(—ab);
5. For i # p, j # I, [Eij(a), Eip(b)] = Ei; (a) Erp(b)Eij(~a)Ery(=b) = 1.

The realization algorithm developed in this chapter can be implemented together with a re-
dundancy elimination algorithm based on the above set of relations using existing computer

algebra systems.
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Chapter 5

A Realization Algorithm for
SLQ(k[.’El, oo ,xm])

5.1 Introduction

Suslin’s stability theorem established in the previous chapter fails for n = 2,

and a counter-example was constructed by P.M. Cohn in [Coh66], i.e. the Cohn matriz,
14+ zy
-y 1-
“huizen, H. Holmann and A. Kalker have developed an algorithm in [THK95] that determines

€ SL2(C[z, y]), was shown to be nonrealizable. On this matter, L. Tol-

precisely when a given matrix in SLa(k[z]) := SL2(k[z1,...,Zm]) is realizable, and if it is,
expresses it as a product of elementary matrices.

In this chapter, we will develop another algorithm for the same task based on
degree lexicographic order on the polynomial ring k[z]. Actually, usual lexicographic order
doesn’t work for our purpose since it does not necessarily guarantee the termination of our

algorithm in a finite number of steps.

5.2 Main Theorem

For an p X ¢ matrix A = (ai;) € Mp,(k[z]), we can define its rank, viewing it
as a matrix over k(z), the field of quotients of k[x). Also, for a fixed monomial order on
Mono(k[z]), we define the matrix of its leading terms as It(A) := (lt(a;;))-

Now, the following theorem gives a characterizing property for the realizable 2 x 2
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matrices.

Theorem 5.2.1 Suppose that A = (p q) € SLa(k[x]) is realizable, and fiz @ monomial
r s

order on Mono(k[z]). Then, either the matriz of its leading terms, I1t(A), is of rank 2, or

one of its row vectors is @ monomial multiple of the other row.

14zy =22

Remark 5.2.2 In the case of the Cohn matrix A = ( ), note that It(A) =

-y* l-azy
gy 22\ |
is of rank 1, but neither of the two row vectors (zy,z?) = z - (y,z) and

-y -y
(-y*. —zy) = —y - (y,7) is a monomial multiple of the other.

Proof: Since A is realizable, we can write A as a product of elementary matrices. Let
A = E, ---E; be such a representation without a trivial factor , i.e. for each i = 1.....1/,

E; is either E13(f) or Ey;(f) for some f # 0 € k[z). Now, we will do an induction on /.

1
If I = 1, the statement of the theorem is trivial since we have either A = (0 Z)

10
or A= ( 1) for some g, r € k[z], and in both cases, 1t(A) is of rank 2.

r
Now let

A" = E,---E,
' a b
= ( ) € SLy(k[z]).
c d

Suppose that the rank of 1t(A’) is 1. Then by the induction hypothesis. we may assume

without loss of generality that
(It(a),1t(b)) = h-(it(c),]t(d))

for some nonzero monomial h € k[z).

Now, we have two cases:
P g a b+ fa
r s c d+ fc
or

P q , 5 a+ fb b
s ( )'AE”U)"(c+fd d)'
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In the first case, det(A) = 1 implies

It(c) -1t(b+ fa) = Ilt(a)-1t(d + fc)
= h-lt(c)-It(d+ fe).

Therefore, 1t(b+ fa) = h-1t(d + fc).

Now,
(It(r),1t(s)) = (It(c),1t(d + fec))
and
(t(p),1t(q)) = (It(a),lt(b+ fa))
= (h-lt(c),h-1t(d + fc))
= h-(lt(c),lt(d + fc))
= h-(1t(r), It(s))
as desired.
The same method gives the same conclusion in the second case.
Now, to complete the proof, we have to consider the case when
It 1t(b
lt(c) I1t(d)
is of rank 2.

In this case, note that both ad and bc are constants, otherwise, det A (') = 1 implies

det(lt(A’)) = 0 contradicting rank(lt(A’)) = 2. So, let us assume a is a constant. If one

a b+ fa a+ fb b
of b or d is also a constant, then A’Ej5(f) = J and A'Ey (f) = d
¢ d+ fc c+ fd d

always have at least one constant entry, so we are done. Hence we assume that both of b
and d are nonconstants.

In this case, note that a # 0 and ¢ # 0, otherwise det(A’) = ad — bc = 1 can not
be satisfied.

Claim: lIt(b) | 1t(d)
det(A) = 1 implies a - 1t(d) = 1t(b)lt(c), and a # 0. So, 1t(d) = (a~'it(c)) - 1t(b).
There are two cases to consider, again.

P q , _[a b+ fa
A = (r s)—AElz(f)—<c d+fc)
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or

AN _[a+fb b
A= (r s)—AEn(f)_(c+fd d)'

In the first case, p = a is a constant entry of A, so we are done.
In the second case, note that 1t(a) < It(c) < It(d) since a - 1t(d) = It(b)lt(c) and
b is not a constant. Hence, we have lt(c+ fd) = It(fd). Recall we are assuming f # 0.

Therefore,
(It(r), 1t(s)) = (t(f) - I1t(d), 1t(d)) = It(d) - (1t(f), 1)
and
(t(p),1t(g)) = (L(f) - 1(b), 1t(8)) = I(b) - (It(f), 1) = - (1t(r),1t(s))
as desired. 0

5.3 Realization Algorithm for SLy(k[zy,...,2,])

Now. let us see how to obtain a realization algorithm for E;(k[x]) from the Theo-

rem 5.2.1 of the previous section.

If one of the entries of A := (p 9

) € SL,(k([z]), say p. is a constant. then A is
r s

always realizable in the following way.

o If p =0, then det(A) = —rg = 1 necessarily implies r, g are invertible. Using the

invertibility of r, we easily get

0 g -1 -1
A = . s = Ej2(=r7)E (r)Ej2(g+ r 7' s).

e If p # 0, then using the invertibility of p, we get
A = Exn(p'(r-1)Ewn(p- DEa(1)Ewn(p~'(1- p+49)).

Definition 5.3.1 For B= (b;;) € SL.(k[z]), we define deg(B) € (Z30)™ by

deg(B) = max {deg(bi;)} € (Z30)".

Remark 5.3.2 If deg(B) = (0,...,0) € (Z50)™, then clearly all the entries of B are

constants.
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Now, out of a given A € SLj(k[z]), we try to make a matrix with a constant entry by

P g

applying elementary operations. If A = € SLa(k[x]) doesn’t have any constant

entries, then compare the two vectors (It(p),1t(g)) and (It(r),1t(s)).

e Step 1: If neither of them is a monomial multiple of the other, then by the Theo-

rem 5.2.1, A is not realizable. Otherwise, go to step 2.

e Step 2: Assume without loss of generality that

(It(p),1t(g)) = h-(It(r),1t(s))

for some monomial h € k[z]. There are two cases to consider. If h is a constant,

replace A by E;3(—h)A and go to step 1. Otherwise, go to step 3.

p—hr q-—hs .
e Step 3: Note that the matrix Ej,(—-h)A = has a strictly smaller
r s

degree than A. Now replace A by E;3(—h)A, and see if it has a constant entry. If it

does, then terminate the process. Otherwise go to step 1 with the new A.

If any intermediate matrix in the above process is not realizable by step 1, then A
itself is not realizable. Otherwise, since the above procedure strictly reduces the degree of
A each time and there are only finitely many elements of (Z»0)™ between 0 € (Z50)™ and
deg(A) € (Z0)™, we get a matrix in SLy(k[z]) with a constant entry after a finite number
of steps. By keeping track of all the intermediate matrices, we find elementary matrices
E,,...,E; over k[z] such that A = E, ---E,.

Remark 5.3.3 With respect to lexicographic order, there are infinitely many elements of
(Z30)™ between 0 € (Z30)™ and deg(A) € (Z30)™ for a nonconstant matrix A € SLy(k[z]).
Therefore, even though the above procedure strictly reduces the degree of A each time, we

may not get to a matrix with constant entry in a finite number of steps.
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Chapter 6

Extensions to Laurent Polynomial

Rings

6.1 Polynomial Rings and Laurent Polynomial Rings

So far, we have studied unimodular matrices exclusively over polynomial rings.
We now want to study unimodular matrices over Laurent polynomial rings. and see the
possibility of extending the results of the preceding chapters to the case of Laurent polyno-
mial rings. Therefore, in this chapter, we develop an algorithm that transforms a Laurent
polynomial column vector to a polynomial column vector while preserving unimodularity.

Let n > 2 be a nonzero integer.

Algorithm 6.1: LaurentToPoly
Input: v(x) € (k[x*"])", a Laurent polynomial column vector

Output: * — y, a change of variables
T(x) € GL, (k[z*!']), a square unimodular Laurent polynomial matrix

Specification: (1) V(y) := T(z)v(z) € (k[y])" is a polynomial column vector in
the new variable y
(2) v(=) is unimodular over k[z%'] if and only if V(y) is unimodular
over k[y]

This process is very powerful essentially because the unimodularity of the Laurent
polynomial vector v(z) € (k[z*!])" is converted to the unimodularity of the polynomial

vector v(y) € (k[z])".
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Algorithm 6.2: ReduceToSingle

Input: An Algorithm for the Unimodular Column Property,
i.e. an algorithm that completes any unimodular column vector
v=(f1,..., fp)! € (k[z*'])? to a p X p unimodular matrix over k[z*!]

Output: A general Unimodular Completion Algorithm

Now we can use this process to give an algorithmic proof of the following important

result.

Corollary 6.1.1 (Laurent polynomial analogue of Quillen-Suslin Theorem) Let
B be a p x ¢ unimodular matriz, p > q, with Laurent polynomial entries. Then B can be

completed to a square p X p unimodular matriz B by adding p— ¢ columns to the matriz B.

Proof:

Single Column Case: For a given unimodular Laurent polynomial vector v € (k[z*!]),
one can use the algorithm UnimodCompletion to complete the unimodular polynomial
vector V(y) € (k[y])" to a square unimodular polynomial matrix A € M, (k[y]). Then.
T-!A € k[z*!] expressed in terms of the original variables z := (z,....2) is a unimod-

ular completion of v € (k[z*!])".

General Case: We reduce this to a single column case.

For a given p X ¢ (p > ¢) unimodular matrix A, consider its first column vector

1
O . . 3
v:=A| . |. By using the input algorithm, we can complete v to a p X p unimodular
0
1
matrix B and from B | , | = v, we have
0
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This implies

B 'A =

0
for some hy,...,hq € k[z*'], and a (p— 1) x (¢ — 1) matrix C.

Now, C, the cofactor of (B~'A);; = 1, is also unimodular, and by induction, we

can complete C to a (p— 1) x (p— 1) unimodular matrix C. Then the p x p matrix

1 hy -+« hy 0 --.0
- 0
A = BJ. -
: C
0
is a unimodular completion of A. o

We start with generalizing the Noether Normalization Lemma to the case of Lau-

rent polynomial rings.

6.2 Laurent analogue of Noether Normalization

The Noether Normalization Lemma states that, for any given polynomial f € k[z].
by defining new variables y;,...,ym by z) = y1, 22 = y2 + y{,. cyTm = Ym + yim-l for a
sufficiently large / € N and regarding f as a polynomial in the new variables y;,...,ym. we
can make f a monic polynomial in the first variable y;.

Now, we extend this to the Laurent polynomial ring k[z*!] = k[z£!,..., 2Z!].

Algorithm 6.3: LaurentNoether
Input: f € k[z*1)

Output: T — y, a change of variables

Specification: the leading and the lowest coefficients of f € k[y®!] with respect to
the first variable y; are units in the ring k[y3’,..., y2!

Theorem 6.2.1 (Laurent polynomial analogue of Noether Normalization) Let

f € k[z*'] be a Laurent polynomial, and define new variables yy. ..., ym by ¥y = y1.72 =
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Yoy eeerZm = ymy{m-l. Then, for a sufficiently large | € N, the leading and the low-
est coefficients of f € k[z*!] with respect to the first variable y, are units in the ring
klyz's .- 3.

Proof: Since f is a finite sum of monomials, we can write

f = )Y ..tz
(f),...,im)GI
where I is a finite index set.
. . -1
Defining new variables y;,...,yn by 21 = y1,22 = ygy{, vy Ty = ymyf" , and

letting i = (i1,...,im) and 1 = (1,1,1%,...,1™"1), we have

f = Tt oain

iel
l : {mim—1
= Y ey (wRy?) - (i)
iel
i p o amel .
= Zaiyil+tzl+ tml™ y?"'y:r'zn
ierl
il ]
= Y oyl vl
iel

Now, as in the proof of the usual Noether Normalization Lemma, by choosing a

sufficiently large /, we can make the integers i-1for i € I all distinct. Let
p = min{i-1]ie ]}
g = max{i-l|ieI}.
Then we can write
fo= b+ byt o+ by

where all the b;’s are units of k[yf!, ..., yZ!], i.e. monomials. ]

6.3 Description of the Algorithm

Letn>2, 5= k[x,fl,.. o zE and v = (vy,...,v0)! € (K[xE)" = (S[zy])".
using the algorithm LaurentNoether, we may assume that the leading and the Iowest

coefficients of v; w.r.t. z; are invertible elements of S. Write
+1
v = apa) +appizy + o+ agai

where a, and a4 are units of S.
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e Step 1: Using the invertibility of a, € S, define D € M,(S[z§']) and v’ € (S[z¥!))"

by
a;tzi? 0
]n—2
vi = (vf,...,v)) :=Dv.

Note here that the matrix
D = Ej(ap2])E2(1 - a;'277)Es (1)E2(1 — apzf)

is realizable over S[z¥!], and

1

!= glpPy = 9-p
UV = 6z v = 14 apa/apzi + -+ ag/apT]

is a polynomial in S[z,).

e Step 2: Since the constant term of v{ € S[z,] is 1, by adding suitable multiples of
v to vf’s. i = 2....,n, we can make v}, ..., v/, polynomials in S[z,] whose constant
terms are zero, i.e. find E € E,(k[x*']) such that

Uy

Evi=v=| : | € (S[x)",

-

Un

where #) = 1 mod z; and &; =0 mod z; forall i = 2,....n.

e Step 3: Choose a sufficiently large number / € N so that, with the following change

of variables,

Iy = Y- (y2°°'ym)l

I2 = Y

I = Ym,

all the ¢;’s become polynomials in k[y]). Then &, =1 mod y; - - - ym.

Now give the transformation matrix T := ED as the output.
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Lemma 6.3.1 With the notations as in the above, v(z) is unimodular over k[z*!] if and
only if V(y) is unimodular over k[y].

Proof: (¢<=) The unimodularity of v(y) over k[y] trivially implies the unimodularity of
V(z) over k[z*!]. This, together with the unimodularity of T € M, (k[x*!]) immediately

implies the unimodularity of v(z) = T~V (z) over k[z*!].

(=>) Since ¥ is a unimodular column vector over k[y*!], we can use Grébner bases to find
hi,...,h, € k[y] and k € N such that

hdy+- 4 hatn = (y1-- ym)*.
Since ©, = 1mod y; -+ ym, we can find g € k[y] such that
b = 149 (41 Ym)-
Now, define recursively a sequence of polynomials {f; € k[y] | i € N} in the following way:

h = 1-g-(n1+ ym)

fir = =6 - ym)®) - fi

Then the f;’s defined in this way satisfy the following property:

fitt = (I=g-(1um)) - (149 -1 ym))=1=g* (%1 Yym)?
ftr = (=g (- ym)?) it =1-g* (1 ym)*
fir = 1=g%(y1--ym)?.

Let r € N be the smallest number such that 2" > k, and define h € k[y] by h =
9% (41 -+ ym)* ~*. Then,

1 = fir+9% (1 ym)”
= o+ 0¥ (W ym)T T (b + -+ o)
= fetr +h(h1dy + -+ haty)
= (fr + hhy)Dy + hhaDo + - - - + hhy by

This gives a required unimodular relation. O
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Chapter 7

Parahermitian Modules and

Paraunitary Groups

7.1 Introduction

Let R be a commutative ring with an involution o, and
n n 7
G = {20'z3? .2} | ny,no....np € Z}

be the free abelian group with m generators z,,z,...2,. Then the Laurent polynomial

ring over R,
Rlz*'] := R[zF',...,2%) = Rlz), 27", ....2m, 23},

as viewed as a group ring R[G], has a natural involution o, that is compatible with o. i.e.
for f = ¥ ajy.ippz™ -+ -z'™ with @;,..i,, € R, 0p(f) = £ 0(ai, i)z~ -+ 27", One can
consider other (actually 2 more) involutions on R[z*!] that extends o, for one thing. oy
defined by o4 (f) = T 0(i;.i, )z - -z*™. Over the polynomial ring R[z], this polynomial
involution o}, |g[x) has been studied in hermitian K-theory for various reasons.

To distinguish the hermitian structure associated with the involution o, from the
one associated with a5, we use the term parahermitian in the first case, following its usage
in electrical engineering. The unitary group associated with the involution @, is called the
paraunitary group. The coefficient ring R for us will mainly be R or C. Among the signal
processing researchers, it is well recognized that an element of this paraunitary group rep-

resents a lossless or energy-preserving system. When m = 0, paraunitary matrices are just
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ordinary unitary matrices and, over R, they are simply a product of rotations (up to sign).
When m =1 (1-D case), a classification theorem on the paraunitary group was obtained by
P. P. Vaidyanathan [Vai93], which, over R, asserts that rotations (constant unitary matri-
ces) and delays (diagonal matrices with monomial entries) generate the paraunitary group
Un(R[z*!]). As for its multivariable analogue, while there was a conjecture asserting the
existence of a similar factorization in the multivariable case (e.g. [HP94]), S. Venkataraman
and B. Levy ([VL94]) successfully used the theory of 2-D state space to construct a nu-
merical example of a paraunitary matrix in Ma(X,Y]) that is not factorizable into any
smaller paraunitary polynomial matrices.

In the following section 2, the general aspect of the hermitian modules over the
Laurent polynomial ring R[z*!] arising from the involution op is studied. In the remaining
sections, we study the structure of the paraunitary group U,(C{z*!]), n > 2, in particular.
its subgroup of the completely separable paraunitary matrices, i.e. those that can be written
as a product of constant unitary matrices and delays. We do this by giving a convex
geometric look at the system of polynomials involved. As an application of these techniques,
we will construct a closed form 2x2 paraunitary matrix that is not factorizable into rotations

and delays.

‘7.2  Orthogonal Summands of Parahermitian Modules

Definition 7.2.1 Suppose M is a finitely generated projective module over a Laurent poly-
nomial ring R[x*!], and (,) is a hermitian sesquilinear form on M w.r.t the involution Op.
We call a pair (M, (,)) a parahermitian space over R[z*!] if (,) is nonsingular, i.e. if
its adjoint h : M — M™* defined by h(v) = (v,:) for v € M is an isomorphism.

On R = C, we take o to be the usual complex conjugation, i.e. o(a) = a for any
a € C. For any f € Clz*'), we simply denote o,(f) by f.

Definition 7.2.2 For a matriz H = (h; ;) € My (Clz%!)), its parahermitian conjugate

H = (h};) € My(Cz*)) is defined by hi; = hji. We call a square matriz H € M, (Clz*!))
parahermitian if it satisfies H = H.

-2 2+41/y

Example 7.2.3 Let H, = ( .
y/z 141

) € M,(C{z*!,y*']). Then one gets H, =
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- 1 1 3
1-1/z =/y ) For H, = (:r +1/e y+1/= ), one checks easily that H, =
24y 1-i /y+z zy-1+1/zy

H,. Therefore, H; is parahermitian while H, is not. o

Definition 7.2.4 A square matriz H € M,(Clz*')) is called paraunitary if it satisfies
H-H=H-H=1. The paraunitary group, U, (C{z*!)), is the group of all the n x n

paraunilary matrices in M, (Clz*')).

Remark 7.2.5 Let H(z),...,z,) € M,(Clz*!]) be paraunitary, and (a1,...,am) be a
point on the topological torus S x -+ x S§! . Then H(ay,...,an) € M,(C) is just unitary
as a matrix over C (because @; = a;! for any q; € S'). This shows that a paraunitary

matrix is a natural Laurent polynomial analogue of a unitary matrix.

Remark 7.2.6 For the free Clz*!]-module (C[z*'))", define a sesquilinear form (,) on
([Jz*'))" by (v,w) = T, tiw; where v = Y0 ve;w = Y0 wie; € (Jz*))™ with
{e1....,e,} being the standard basis of (C{z*'])". Then, ((dz*')™, (,)) becomes a para-
hermitian space, and a paraunitary matrix H € U, (Cz*!]) defines an isometry from
(Jzx)™, (,)) onto itself.

One deduces easily that an n x n matrix H over Clz*!) is paraunitary if and only if
its cplumn vectors (or row vectors). v;...., Vn. satisfy the usual orthonormality condition:

(Vi vy) = 6;j.

2
Example 7.2.7 Consider H = L € Mp(Q{z%!.y*!]). Then. one verifies

V2 zy? -y
easily that H-H=H -H = . So, H is paraunitary. Let v = \—}.E(r'-’wy?)' and w =
1

7@ -y

2)! be the column vectors of H. Then.

2
o (v,v)= %(5}_#) (:yz) =1
d (w,w):%(%,-;-})(_}) =

. <v,w>=%(;%,,—;,y)<_’;2) =0

This shows that v and w are unit norm vectors in C[z*!, y*!)? that are orthogonal

to each other. O
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Remark 7.2.8 Let M be a submodule of (Clz*!])" that splits as a direct summand. Then
M is projective. Now by the theorem of R. G. Swan [Swa78] that generalizes the Quillen-
Suslin theorem over polynomial rings to the same statement over Laurent polynomial rings,
M is free. |

Let {v1,...,vk} be a free basis of M, k < n. Then the adjoint of (,) |u is
described by the k x k matrix ({vi,v;)). Therefore, (M, {,) |m) is nonsingular if and only
if det({vi,v; >) is a unit of Clz*!). In this case, (M, (,) |m) itself forms a parahermitian

space.

Conversely, if (M, (,) |m) C (((z*'])",(,)) is a parahermitian subspace, then
the following proposition states that M C (Clz*!])" is a projective submodule that splits

as an orthogonal summand.

Proposition 7.2.9 1. Let (U,(,)) be a parahermitian module over Clz*'] and M be a

submodule of U which is finitely generated and projective.

If (M, (,) Im) is nonsingular, then
M, (?)) = (M, <’> lM) 1 (Ml’ (1) IMl)
2. If there ezist parahermitian modules (U;, (,);), i = 1,2, such that

(u’ (1)) =~ (ul’ (1)1) 1 (UZs (a)Z))

then ()i, i = 1,2 are nonsingular if and only if (,) is nonsingular.

Proof: See Lemma 3.6.2 in [Knu91). o

From now on, we will identify v = "%, ve; € ((zz*!])” with the column vector

(v1,...,0n) . Also, we will denote the Laurent polynomial ring C{z*!] by A.

Corollary 7.2.10 Let (M, (,) |m) C (A" (,)) be a parahermitian subspace, and v € M.
Consider the submodule Av C M of rank 1.

1. Av C M splits as a direct summand if and only if v € A" is unimodular.

2. (Av,(,) |av) C (M,{,)) splits as an orthogonal summand if and only if (v,v) € Rso.
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Proof: (1) This is the Lemma 3.1.4.

(2) If (v,v >) € Ryg, then v is clearly unimodular, and thus by the first part of this
Corollary, Av is a direct summand of M. Hence, in view of Proposition 7.2.9, we only
need to check if (,) |av is nonsingular. As we observed in the Remark 7.2.8, (,) lav is
nonsingular since det({(v,v)) = (v,v) € A",

Conversely, if (Av,(,) [av) C (M,{,)) splits as an orthogonal summand, then
(+) lav is nonsingular, which occurs precisely when det((v,v)) = (v,v) € A". Now, the

following Lemma gives the result. 0
Lemma 7.2.11 Let A = Clz*!]}, and v € A™. Then,
(v,v) €A™ < (v,v) €Rs,.

Proof: One direction (<=) is obvious.

If (v,v) € A%, then (v,v)is a nonzero monomial in A = Cz*!] satisfying (v, v) =
(v, V). Involution invariant nonzero monomials in A are just nonzero real numbers. To show
that (v, v) is a positive real number, write v.= Y v; i .z" - - -z with v;,..;.. € B". Then.
by an explicit computation. we see that the constant term of (v, v)is equal to ¥ || v;,...i,, ||?

which must be same as the nonzero real number (v, v). D

Example 7.2.12 Let A = Clz¥!,y*' | M= A% v; = (1 -2y, 73)' € M. and v, = (1 -
2y, 14+zy)' € M. Then both of v; and v are unimodular since (1+zy)-(1—-zy)+y?-22 =1
and % (1 -zy) + 3 - (1 + zy) = 1. Therefore, both of Av, and Av, are direct summands

of M. However, since
(vi,vi) = (1 1)(1;1)+ix2¢A'
1, V1 - Ty y .’1,‘2 y
1 1
= - —)(1- —)(1 = A®,
(v2,v2) (1 zy)(l 3y)+(1+xy)( +ry)=4¢€
we see that Av, is not an orthogonal summand of M while Av; is. Actually, we claim that
wi = (—-y%, 1+ zy)! and wy = (1 + zy, 1 — zy)! satisfy
AV] Lon) AW] = M
Avy L Awy = M,

First, in order to show Av, ® Aw; = M, it is enough to show that any (f.g)' € M

can be uniquely written in the form, f'v, 4+ g'w,, for some f’, ¢’ € A. This translates into
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the following linear system:

()0 - 0
22 1+zy/\g) \g/’

l1-zy -y
This system has unique solution since det =1,i.e
22 142y
1-zy -y
€ GLy(A).
2 142y

To show Avy L Awy = M, first verify in the same manner that Avy, @ Awy = M,

and then note that

(Vg,Vz) = 4€ A‘,
(w2, wg) = 4¢€ A",
(va,w2) = (1-1/zy)(1+2y)+ (14+1/zy)(1 - zy) = 0.

7.3 Paraunitary Completion

Suppose that H (n > k) is an n X k paraunitary matrix over A := Cz*'], ie. a
rectangular matrix with entries in A whose column vectors are orthonormal to each other.

Now the question is,

Can we complete this matriz to a square n X n paraunitary matriz by adding more

columns to it?

Let vi,...,vx € A" be the column vectors of H, and V C A" be the submodule
of A" generated by these vectors. Then since V is an orthogonal summand of A®, we have

V 1 V! = A" Now the above question can be rephrased as,
Can we find an orthonormal basis of V+ ?

If the answer to this question is positive, then the members of this orthonormal
basis will be the extra column vectors we can add to H to make a square paraunitary
matrix.

Let V,,(A) be the set of the n-dimensional vectors over A of unit norm, and W, (4)
be the subset of V,(A) consisting of the vectors of norm equal to 1. Note that, according
to the Corollary 7.2.10 and Lemma 7.2.11,
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Va(A) = {veA"|<v,v>€ A"}
= {veA"| <v,v>€Rsg}
= {v € A" | Av separates as a 1-dimensional orthogonal
summand of A"}. (7.1)
The paraunitary group U,(A) acts on the set W,(A) by matrix multiplication,
and the above problem of paraunitray completion can also be expressed in terms of the

transitivity of this group action. For v,w € W,(A), we will denote v %2 w if there exists
U € U,(A) such that v = Uw.

Proposition 7.3.1 The paraunitary completion problem has a positive answer if and only

if the above group action of U, (A) on W, (A) is transitive.
Proof: An easy exercise. m]

Lemma 7.3.2 Any paraunitary matriz H € Uy(A) can be written uniquely in the form

H = (f —a:a) (7.2)
g aof

for a vector (f) € A2 of norm 1, and a monomial a € A.
g
Proof: Let the first column of H be v = (f

g
Corollary 7.2.10, Av splits as an orthogonal summand of A2. And its orthogonal comple-

), which is clearly of unit norm. Then by

ment (Av)* is a free submodule of A2 of rank 1 whose generator can be any of its elements

-~
-—

of unit norm. We easily see that w = ( :q) is one such element of (Av)t. Since the

second column vector of H is in (Av)<, it can be written as av for some a € A, and since

it is also of unit norm, a should be a unit of A = Clz*!] which must be a monomial. O
Proposition 7.3.3 Uz(A) acts transitively on W (A).

Proof: It’s enough to show that v % (1,0)! for any v = (v),v2)' € W,(A). For this
purpose, define U € M;(A) by
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Using (v,v) = vjv; + v, = 1, one easily checks that U is paraunitary i.e.
UU = I and satisfy Uv = (1,0)". o

Remark 7.3.4 It is still an open problem to determine if the group action of U,(A) on
W,.(A) is transitive for n > 3. The transitivity can be deduced if the parakermitian ana-
logue of Serre’s conjecture is true, that is, if any parahermitian space is isometric to a free
module with trivial inner product. This problem will be more carefully analyzed elsewhere.
However, when m = 1, more can be said without this conjecture. Actually, it will be shown
in the next section that the separable subgroup S,(Cz*!]) of U,(C[z*']) generated by
constant unitary matrices (elements of U,(C)) and delays (diagonal matrices with mono-
mial entries) already acts transitively on W,(C{z*!]). This means that any rectangular

paraunitary matrix over Clz!] can be completed to a square paraunitary matrix.
We will need the following lemma later.

Lemma 7.3.5 The determinant of a paraunitary matriz H € U, (A) is a monomial of the

form ax® for some n = (ny,...,n,) € Z™ and a € C with ||of| = 1.

-~

Proof: From H - H = I, we see that det(H) - det(H) = 1, i.e. det(H) is an invertible
element of C[z*!], which must be a monomial. Let det(H) = az™. Then det(H) = az™™.
.Now, det(H) - det(H) = 1 gives aa = 1. m]

7.4 Paraunitary Groups over C[z*!]

If v.e W,(Oz*')) is a monomial vector, i.e. v = voz* for vo € C* and k € Z,

then it is easy to see that v % (1,0,...,0)'. That is, since v € W,(A), we have
(v,v) =1= < zFvy,zFve > = (vo,vo> = || vo || .

Now find an orthonormal basis {wy,...,w,_1} of (Cvg)L C C* (the standard Gram-

Schmidt process will do this). Then the matrix
U = (vo,Wy,...,Wn_1) € M,,(C)
is clearly unitary. Denoting the delay, diag(z,1,...,1) € M, (C{z*!]), by D, we have
D *Uv = (1,0,...,0)%

Since D=*U € S, (C[z*!)), this implies v L (1,0,...,0)%.
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Lemma 7.4.1 Ifv € W, (C{z*!)) is a binomial vector, i.e. v = voz*+v,z! for vo,v; € C*
and k < 1€ Z, then v & (1,0,...,0)".

Proof: Since the monomial case is considered above, assume that vo # 0 and v; # 0.

1 = (v,v)
= (vox" +vi2!, vozF + viz! >

Il vo "2 + v "2 + (vo,v1 > z'k + (vi,vo> zF,

Therefore, we have || vo || + || vy ||?= 1 and (vo,v; > = (v1,vo > = 0. Now find
an orthonormal basis {wi,...,Ws_1} of (Cvg)* C C*, and define U; € M,(C) by U; =
( :’,o yW1y...,Wn_1) which is clearly unitary. Denote the delay diag(z~*,27!,...,27") €
M, (A4) by D, and let v/ = DU,v. Since
(el
. W)

Uyv = . (voz* + viz!)

\Wn—l
[l vo Il z*

(wy, vy > ot

\(wn—l-vl > z!

we see that v/ = DU v = (|| vo ||, (w1, vy >,..., (Wno1,v1 >)!, and ||V/||= 1.
Now find an orthonormal basis {w},...,w/_;} of (Cv/)L C C", and define U, €
Ma(C) by Uz = (v/,w},...,w},_;). Then Upv' = (1,0,...,0)' = U,DU,v. 0

Lemma 7.4.2 If v e W,((z*!])) "M, (C{z]), i.e. a polynomial vector of unit norm. then
there ezists S € Sn(Clz*!]) "M, (C[z]), a product of constant unitary matrices and negative
delays, such that Sv = (1,0,...,0)".

Proof: Multiplying by a negative delay if necessary, we may assume without loss of gener-
ality that

V = vot+viz4---+val, vieC", vo#0, vi#0.

Now the condition (v,v) € C implies (vo,v; > = 0, which means vo + v;7! is a

unit norm vector. By the proof of Lemma 7.4.1 above, we can find U;, U, € U,(C), and



71

¢ € R such that

vo+wiz' = Updiag(1,2',---,2"U,
0

From this representation, letting ¥; = U;v;, we deduce that

vo+wvizt = U,diag(1, :c', e, z')ﬁl (vo+ vl_lz"'l)
= U,diag(1,2', -, 2") (%o + V1_12'Y).
Also, note that
viz+---+ vz-lm"l

Uydiag(z, 2, -, 2) (V1 + - -+ V1-12'7%)

U,diag(1, z, - - -, z)diag(z, 1,- -+, 1)(¥1 + - - - + V1 272).
Therefore, we get

v = (vo+wviz!)+(viz 4+ 4 vzt
= Uldiag(l,x',---,x')({'0+{',_1x"l)+
U,diag(1, z,- -+, z)diag(z, 1, -+, 1)(¥1 + - - - + V1 2'2)
= Udiag(l,z',---,z"){¥o + Vi_12" 1 +
diag(z,1,+++, 1)(¥; + - + v_12'2)).

Since the degree of the vector polynomial ¥o + ¥;_12/~! + diag(z,1,---,1)(V1 +

1-2

-+++V;_12'7% is I — 1, by induction on the degree, the lemma is proved. (]

Now we can use the above lemmas to show the transitivity of S,(C[z*!]) on

W, (Clz*1)).
Proposition 7.4.3 If m =1, S,(Clz*')) acts transitively on W, (C[z*']).

Corollary 7.4.4 If m =1, U,(C[z%')) acts transitively on W, (C[z*')).
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Proof of Proposition: Let v € W, (C[z%']) . Multiplying by a delay if necessary, we

may assume that v is a polynomial vector, i.e. has no negative exponents involved. Write
vV = vot+vizt-+vizl, v, eC, vo#0 Vi £0.
Now the proposition follows from the Lemma 7.4.2. o

Theorem 7.4.5 (P. P. Vaidyanathan) S,(Clz*!]) = U,(C{z*']) for any n > 2, i.e. any
paraunitary matriz H € U, (C[z%']) can be written as a product of constant unitary matrices
and delays. If H € U, (Clz*'])) "\M,.((fz]) is a polynomial matriz, then it can be written as

a product of constant unitary matrices and positive delays.

Proof: Let v; = H(1,0,...,0)' € W,(C[z*']) be the first column vector of H. Then by
Proposition 7.4.3, there exists S; € S,(C{z*!]) such that

S;vi = (1,0,....0)".

Since the matrix S;H is again paraunitary, it must be of the following form:

1 0
0 H,
where H, € H,_,(C[z*")).

Now apply the same procedure to the first column vector of H;. Repeating this
procedure, we find S,....,S, € S,(C[z%']) such that

S$;---S,U = 1.

This implies that H = §,,---§, € Sn(Clz%1)), i.e. H is a product of constant
unitary matrices and delays. When H is a polynomial matrix, the statement follows from

the Lemma 7.4.2 since all the S;’s involved can be chosen to be products of constant unitary

matrices and positive delays. D
L2 _ 6 o+V2

Example 7.4.6 Consider H = } -6 VB+va € Uz(C[z*']). One checks
1'2 - 6 _;x@ +2

easily that H is paraunitary. Applying the above algorithm, we get the factorization.

0 10
y D) =D, = are delays.
- 0 =z

) are rotations. ]

=

H=Do: (R, D)) (R; D) where Dy =

1 1 1 3
andR1=7‘;(_l 1),R2=% 1

o



73

Definition 7.4.7 1. The standard delay in U,(Cz*!]) is the diagonal matriz D de-
fined by D = diag(1,...,1,z).

2. The i-th standard delay in U,(Qz!,...,2%!)) is the diagonal matriz D; defined
by D; = diag(1,...,1,2;).

A slight variation of the above theorem over the polynomial ring C[z] (rather than

over C[z*!]) which is often used in many applications in 1-D filter banks and wavelets is

the following.

Theorem 7.4.8 (P. P. Vaidyanathan) Let H(z) € U, (Clz*!']) N M,(C{z]) be paraunitary
with det(H) = 2%. Then it can be written in the form, H = V4(z)V4_1(z) - - - Vy(z)Ho,
where Hy is a constant unitary matriz, and for each 1 < i < d, ;(z) = I — v;V; + zv;V; for
certain constant unit norm vector v;.
]n-2
Proof: Consider the rotation matrix R = 0 1} €U,(C). Then,
-1 0
R'diag(1,...,1,z,1)R = diag(1,...,1,z).

Therefore, the unitary polynomial matrix H € U,((z]), which is a product of
constant unitary matrices and delays, can be rewritten as a product of constant unitary
matrices and standard delays, i.e.

H = UDU,.--Uy_ ;DU

where D is the standard delay diag(l,...,1,z).

Note here that det(H) = 2¢ was used to deduce the right number of factors. Now
rewriting H as

H = (UoDUp)(UoU;,;DU,Ty)---

we see that it is enough to show the theorem for H = deiag(l, ...,1,z)U, where U =
(uij) € Un(O).
Noting that
H = Udiag(,...,1,z)U

= U(J +diag(0,...,0,2-1))U
= I+ Udiag(0,...,0,z - 1)U,



4

and
' (.’C - l)ﬁnlunl LR ('-’c' - l)ﬁnlunn
Udiag(0,...,0,2 - 1)U = : :
(-’C - l)ﬁnnunl M (x - l)ﬁnnunn
Uni
Un2 - _
= (33-' 1) t‘ (uﬂliule!""unn)‘l
Unn
we prove the theorem. O

Remark 7.4.9 If H € Mx(Z[z]) is paraunitary with det(H) = z", then according to the
above theorem, we can write it as a product of V;(z)’s, 1 < 7 < n. Now, it is easy to see
that the highest degree term appearing in the expansion of this product could be at most
z". Note that this means. any paraunitary matrix H € My (C[z]) with det(H) = £1z" can

be written uniquely as
H = hot+hiz+---+hz*, k<,

i.e. the order k of a paraunitary matrix H € Mx({[z]) is bounded by the degree n of its

determinant.

7.5 The Structure of Uy(C[z}}, -, z%!))

Again, multiplying by a delay if necessary, we assume that all the paraunitary

matrices being considered are polynomial matrices. First, we need a few lemmas.

Proposition 7.5.1 Let H(x) € M2(Clz]) be a paraunitary polynomial matrir of deter-

minant e®z®. Then it can be written uniquely in the following form:

k) k? km

H(z) = Z Z Z h;,...;m:r'i’a';’ :l':,',"

11=017=0 im=0

where 0 < k; < nj for each j = 1,...,m, and h;,..;,, € Ma(C) for all (iy.---.in) €
{0,...,k1} x---x {0,...,kn}.
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Proof: Since we can always write uniquely

H(z)= Y hiipzizd- - zim
(f140e0im)EI

for a finite index set I, we have only to show that h;,..;,, = 0if iy > ni forany k=1,...,m.

Suppose 6 = max{i; | hj,...,, # 0 for some (i3---i,)} > n;. Then we can write

H(zy,...,2m) = ho(z2y...,Zm) + b1 (22, ..., Tm) 21 + ---+h5(x2,...,xm)zf

for some polynomial matrices hi(z,...,zm) € Ma(Tz2,...,z,]) with ks(za, ..., 2y) being
not identically zero. Now, let (as,as,...,an,) be any fixed point on the torus S! x --- x
S'. Then H(z),a,as,.. .y@m) is a paraunitary matrix in M2(C[z,]) whose determinant

has degree n;. Therefore, by Remark 7.4.9, the highest degree term in the expansion of
H(z,,az,a3,...,a,) with respect to z; can be at most z7'. This means hs(az, a3, ...,an) =
0 since § > n;. Now that this is true for any (a3, a3,...,a,;) on the torus $! x - - x S, the
polynomial matrix hs(z2,...,2,;) must be a zero matrix, which contradicts the definition
of 8. Therefore, h;,...;,, = 0 for any i{; > n;. And the same method gives h;,...i,, = 0 for any

w>n, k=1,...,m. m]

Definition 7.5.2 For any polynomial matriz G € My (C[x]) with the minimal representa-
-tionG = Zfl‘___o Z:'?=o .. Zf;":o hij i xi‘m;’ c.zim we say G isof type (ki,...,km) € Z™
and we callk = ky + - - - + k,, the total order of G.

Using this new terminology, the above Proposition 7.5.1 can be rephrased as “the type
of a paraunitary polynomial matriz is bounded by the exponents of its determinant”. An

immediate but very useful corollary of this lemma is,

Corollary 7.5.3 Let H € Mz(Qz1,...,zm]) be a paraunitary polynomial matriz. If the

determinant of H doesn’t involve a variable zy, then

H e M(Clzy,..., Tk, -+, Ti)s

i.e. H is a polynomial matriz not involving the variable z; at all.

Remark 7.5.4 Any paraunitary polynomial matrix H € My(C[z]) whose determinant in-
volves only one variable must have all of its components involving only one variable by

Corollary 7.5.3 above, and is trivially factorizable by Theorem 7.4.5.



76

Lemma 7.5.5 Suppose H € M(C[z]) with det(H) = 2™ = 2! ...z"m is factorizable into
(constant) unilary matrices and delays, and n = ny+- - -+ n,, is the total degree of det(H).
Then H has a canonical factorization into n + 1 unitary matrices and n standard delays,

i.e.
H = UnDnUn—an—l ---U; D10 (73)

for some unitary matrices Uy, ..., U, € Uy(C) and standard delays D,,...,D,’s with
the number of i-th standard delays appearing in this ezpression being precisely n; for each
1<i<n.

cos(f) —sin(8)

sin(6) cos(f)

¢ (1 0)’ 4 Z; 0)’ b i (:cj 0 R( /2) 1 O)R( /2)
o S an S, notin = - T y We see
0 =z 0 1 Y & 0 1 0 z;

that any delay can be expressed as a product of unitary matrices and standard delays.

Proof: Let R(6) = ( ) be the rotation matrix. Since a delay is a product

Therefore, H itself can be written as a product of unitary matrices and standard delays,
i.e. H=U,D;U;_;D;_; ---U;D; Uy, for some unitary matrices U;’s and standard delays
D;’s. To see that [ = n, take the determinant of both sides:
det(H) = a7'---apm = f[ det(Dy).
k=1
From this expression, we see that the number of i-th standard delays appearing in this

product must be n;, and the / must be equal to the total degree of det(H) = n. D

Let H € M2(C[z]) be a paraunitary polynomial matrix, and let v be its first column
vector. Then the separability of H clearly implies the separability of v: if H = H,; H, for
two paraunitary polynomial matrices Hy, H; € My(C[z]), then v = H,v; where v, is the
first column vector of Hs.

Now, the following lemma asserts that the converse is also true, thereby relating
the separability of a paraunitary matrix with that of a unit norm vector. Since, from
a computational point of view, the unit norm vectors are easier to deal with than the
paraunitary matrices, we will actually consider the separability of the polynomial vectors

of unit norm rather than that of the paraunitary matrices.

Lemma 7.5.6 Let H € Uy(Clz]) be paraunitary with det(H) = z®, and v be its first

column vector of type k := (ky,...,kn). Suppose v is perfectly separable. i.c.

v = UgDgUy 1Dy, ---U;Dyvg (7.4)
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for some unitary matrices Uy, ..., Uy € Uy(C), a constant unit norm vector vo € C2, and
standard delays Dy, ...,Dq with the number of the i’th standard delays appearing in this

expression being precisely k;. Then H is also perfectly separable.

a A
Proof: Write vg = (b) for a,b € C with a® + b2 = 1. Then one checks easily that

H = UdDdUd—lDd-—l"'UlDl(

-5\ /1 0
UyDyUy_1Dy_; --- U D, b g 0 on-k )

a —z"kp
z"kg

o

Q

7.6 Computational Aspects

Consider a vector v = ) € (R[z,y])? of unit norm. Then its component

polynomials f,g € R[z] are constrained by the unit norm condition ¥v = 1, and this
constraint can be described by a system of quadratic polynomials in the coefficients of f, g.
Now we would like to see when these algebraic relations describing the unit norm condition

on v guarantee the decomposition of v into the form 7.4.
f
Let v = ( € (R[z,y])? be of unit norm of type (k;,k;) with total order 2,
g

and let & = z*1y*2 € R[z,y]. Then av becomes a polynomial vector. Define a paraunitary

matrix H € M3 (R[z,y]) by
H = (f —Oz?) ,
g af

in which we get the following three cases to consider; det(H) = 22, zy, y%.
In terms of v, we see that v is of type (2,0),(1,1) and (0,2), in respective cases.
The two cases when v is of type (2,0) and of type (0,2) are trivial by Corol-
lary 7.5.3.
Suppose, therefore, v is of type (1,1), i.e. det(H) = zy. In this case, by Proposi-

tion 7.5.1, we can write

H = hgo+ hioz + ho 1y + h11zy
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for some hoo, k10, ho,1, h11 € M2[R]. The corresponding expression for v is,

v

Voo + V10Z + VoY + vi1ZY
for some vgo, V10, V0,1, V11 € R2. Define the real numbers a;5,bij, 0 < 4,j <1, by v;; =

ai; .
and consider
bgj

1 = vv

= (Voo+ Vier '+ vg,y~t + viz7ly ) (Voo + viez + VoY + v11zYy).

Equating the respective coefficients of z and y, we get the following set of relations:

0 = v},veo= ao a0+ boy byo

0 = vigvor = agoar + boo by

0 = vigVoo+ vi;vVor = ago a0 + ao1 a11 + boo bro + boy b1y
0 = V61V00+V§1V10 = ago ao1 + @30 a1 + boo boy + b10 b1y
1 = Vgevoo+ Vovoa + viovie + vivi

= g0’ + a1 + @102 + a31% + boo® + boy 2 + bio? + byi?. (7.5)

Note here that the above set of relations gives defining equations for a unit norm
vector of type bounded by (1, 1), that is, if we choose any real numbers a;;’s and b;;'s satisfy-
ing above set of relations, and define a polynomial vector v by v = Z%:o Z:}=0 :;j. 'y,
then v will be a unit norm vector of type < (1,1). ’

Therefore, we can view above set of relations as quadratic polynomials f;,1 < i< 5
in the polynomial ring R[ago, a10, @01, @11, boo, b10, bo1, b11] defining a variety which we may
call the Paraunitary Variety of type (1,1). The real valued points on this subvariety
of affine 8-space are in one-to-one correspondence with the unit norm polynomial vectors
of type < (1,1), and thus paraunitary matrices of determinant z™y" with (n;,n;) <
(1,1). Therefore, this variety precisely parametrizes all the paraunitary matrices whose
determinant is a factor of zy.

To see what type of algebraic relations on the a;’s and b;’s assure the factorizability

of v as in 7.4, assume

v = R(6)D(z)v' (

.~l
D
—
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10
for a certain rotation matrix R(f), the first standard delay D(z) = (0 ), and a poly-

T
nomial vector v/ € (R[z,y])%. Letting vo(y) = Voo + Voay and vy(y) = V1o + V11y, We now

get

R(6)'v

R(6)!(vo(y) + vi(y)z)
R(8)'vo(y) + R(8)'v1(v)z
D(z)v’
(1 0) ,
v
0 =z

Since the second component of the vector R(f)'v is divisible by z, its constant term,

that is, the second component of the vector R(6)'vo(y), should be zero. So, we get
(—sin(8), cos(8))vo(y) = 0, i.e.

(—sin(#), cos(8))voo = (- sin(8),cos(8))ver = 0

Conversely, if there exists a nonzero constant vector (a, b) such that (a, b)vo(y) = 0, then v

b a
splits as in 7.6, with R(8) = 7‘12‘? s/ We can do the same to see when v splits

with the factor R(6)D(y). What we get is the following:
The vector v splits asin 7.4
< “(a,b)voo = (a,b)vg; = 0" or “(a,b)veo = (a,b)vip=0" has a

nontrivial solution (a, b).

ago boo\ [a agy boo\ [ a .. .
<~ =0or = 0 has a nontrivial solution
ap1  boy b a0 bio/ \ b

a
b .
— aoobm - booaol =0or agobm - booalo =0.

<= f := (aoobo1 — booto1)(@oob1o — booaio) = 0. (@)

Let 1(1,1) C R{aoo, @10, @o1, @11, boo, 10, bo1, b11) be the ideal generated by the 5 quadratic
polynomials f;,1 < ¢ < 5. Since any point in the variety V(I(1,1)) defines a unit norm
vector of type < (1,1) and an arbitrary point in V(f) defines a vector decomposable into
the form in 7.4, showing V(/(1,1)) C V(f) is equivalent to showing that any unit norm

vector of type < (1,1) is factorizable as in 7.4. Therefore, our question has boiled down to:
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VI, cv(n??

The following lemma gives a sufficient condition for the above question to have a positive

answer.

Lemma 7.8.1 Let k be an arbitrary field. Then,
gevl = V(I)cV(g) (7.8)

Now the following radical ideal membership algorithm can be used for our computational

test of f € \/1(1,15.

Lemma 7.6.2 (Radical Ideal Membership) f € /T iff the ideal (fy, fa, f3, far fs, 1 = ¢ - £
Of the rz'ng R[aoo,alo, a()],an,boo, bm,bol,bn,i] is the unit ideal, ie 1 belongs to the ideal

(f11f27f3af4af591 -t ’f)

Remark 7.6.3 Note here that we have introduced a new variable ¢.

Noting that the ideal (fy, f2, f3, fs. f5,1 — ¢ - f) is a unit ideal iff its Grobner bases is {1}.
we can use any existing computer algebra packages to compute the Grébner bases of the
six polynomials fy, f2, f3, fs, fs,1 =1 - f in 9 variables. We used Macaulay and SINGULAR
for this computation, which gave us the positive answer for the above case (d = 2), that is,
it showed that the Grobner bases of fy, f2, fa, fa, f5,1 = t - f is just 1.

For higher d’s, the corresponding radical ideal membership can be checked in the
same fashion even though the involved Grobner bases computation takes much more time.

For d = 3, there are 4 types of Paraunitary Variety; of type (3,0), (2,1).(1.2).
and (0,3). The (3,0), (0,3) cases are trivial by Corollary 7.5.3, and by symmetry, we have
only to consider type (2,1) case. The Paraunitary Variety of type (2,1) is defined by 8
quadratic polynomials in the affine 12-space, and there are 3 polynomials of degree 4 whose
radical ideal membership is to be checked. Hours of Grobner bases computation in this case
confirmed that the answer is still positive.

For the d = 4 case, there are two nontrivial cases to consider; of type (3,1) and of
type (2,2). The Paraunitary Variety of type (3, 1) is defined by 11 quadratic polynomials in
the affine 16-space, and there are 6 polynomials of degree 4 whose radical ideal membership
is to be checked. For the type (2,2) case, which is defined by 13 quadratic polynomials in

the affine 18-space, there are 9 polynomials of degree 4 whose radical ideal membership is
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to be checked. The computation showed that the the Paraunitary Varieties of type (3, 1)
and (1, 3) are completely separable while the Paraunitary Variety of type (2,2) is not. So

the first counter-example may occur at type (2, 2).

7.7 Convex Geometric Approach

The computation done in the preceding section shows the peculiar behavior of the
Paraunitary Varieties of type (n,1) or (1,n), and that the first nonseparable example may
be found in (2,2) case. With the convex geometric approach to be taken in this section, we
will actually construct the following nonseparable unit norm vector V of type (2,2).

1 /105 (—\/5 —%—%-2}%+’—1§ﬁ—”§—%§—5ﬁ—4x2y2)
BV 24 b gy -ga s g /Ly
First, to understand the convex geometry behind our parahermitian structure, consider a

()

= Voot VioT + VoY, Vi€ c - {0}.

A%

vector

Then the convex hull of its exponent vectors is spanned by {(0.0), (1,0),(0,1)}.

Vvoi
10

Voo Vio
—0
0 1

Figure 7.1: The convex hull of the exponent vectors of v

Now we claim that v € C[z, y] is not of unit norm. To see this, note that (v,v) € C

implies

(v,v) = (vgo+ VioZ + Vo1¥, Voo + V10T + voiy)
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. - - - - 1
= (Voovoo + Viovio + Vo1vo1) + (Vooviez + V10V00;) +

- - 1 . z .
(Voovory + V01Voo:,;) + (V01Vm; + Vm"m%)

€ C.
From the fact that the last expression has to be a constant, we deduce that

veo L vy
veo L vo

vio L1 vo.

Quite clearly, no three vectors vgg. vy, Vo € C — {0} can satisfy this mutual

orthogonality.

Theorem 7.7.1 The 2 x 2 paraunitary matrices of type (n,1) or (1,n) are completely
separable.

Remark 7.7.2 This theorem was first observed and proved in [LV90]. We present here a

new proof based on our convex geometric method.

Proof: Suppose that
1k
v = Z Zv,'jx’yf.
1=0 j=0
Write v = vi—o(y) + vi=1(y)z. Then it is easy to verify that the two face components.
Vi=o(y). Vi=1(y) € Cly]. of v are of unit norm and orthogonal to each other since v is of

unit norm. And from the orthogonality of these two vectors;

i

fi=o(¥) fiz1(¥) + Gimo () giz1 (y)
= [fi=o(1/§) fi=1(y) + 9i=0(1/9)gi=1(y)
= 0,

(vi=0(y), Vi=1 (y) >

one deduces that, if u € C is a zero of f;—¢ but not a zero of g;=o, then 1/4 is a zero of g;—;.

There are the following two cases to consider:
1. when f;=0 and g;=¢ have no common root

2. when f;=0 and g;=0 have a common root.
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Case 1: When f;=o and g;=¢ have no common root.

In this case, we can write

fi=o(y) = aj=0(y-0) |
gi=o(y) = bj=o(y—B), a#p.

Using the orthogonality of v;=o and v;=x, we see that

fi=e(¥) = aj=(y-1/B)
gi=k(y) = bj=k(y—1/&).

where @j=08;=ra + bj=0b;j=k = 0. Now the convex hull generated by the exponent vectors

of v has the structure shown in the Figure 7.2.

bj=k

a0
-(s2)
kO \%*/ o (aj=k)

k-1

19 (aj=0)
bj=o

0 '_<“J'=°“) 1
bj:Oﬂ

Figure 7.2: The convex hull of the exponent vectors of v

oD

Letting ¢;’s and d;’s, 1 < i < I, be the common roots of {fi=o(y),gi=o(y)} and
{fi=1(y), 9i=1(y) }, respectively, one gets the following representation.

fizo(y) = -T(y— a)-(y—a) (y—w) - (y— ur-)

Gimoly) = ~ZZE(y—cr)-(y-c) - (v =) (y = vics)
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SN
[}
-
o)
3
N’
il

aj:k(y—dl)---(y—dz)-(y—%) (y- m)

9i=1(y) = bj=k(y-di)---(y-d)-(y- ﬁil) (y- —_,)-
Now note in Figure 7.2 that
1. at (0,0), constant coefficient of v;=¢ = constant coefficient of v;o,
2. at (1,0), leading coefficient of v;=9 = constant coefficient of v;=;,
3. at (0, k), constant coefficient of v;= = leading coefficient of v;—o,

4. at (1, k), leading coefficient of v;=; = leading coefficient of v;=;.

Comparing the coefficients of the polynomials involved, we get the following relations.

a;=
—JT—(_I)kCl"'Cl'ul"'uk—l = —gj=0a
bi=
_%(—l)kcl"'cl'vl"'vk—l = —bj=0f
. 1 1
aj=k(_1)kd1...dl.71...5k._l = aj=o
1 1
bok(=1)dy - odyr — oo —— = qi_q.
y=k(=1)"d, l 0 T aj=0
Therefore, we have
Gj=k Uy - - -Uk-l Q=0
bjzk v1 -+ vk bi=o
Let
J‘-k
A = H(y—cz

i=1

;=
B = (-)* J.,k-H(y )

i=1 Vi i=1

b o k=l

F —4 i l
k-1

G = Jlw-w).
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B AF + z - BGy*-!
—AG + z - BFy*-!

Now (v,v) =1 translates into
AAFF + BBGG + AAGG + BBFF
= (AA+BB).(FF +GG)
= 1
From the last expression, we conclude that both of AA + BB and FF + GG are nonzero

constants since they are involution invariant monomials. By dividing by their norms if

necessary, we may assume that AA + BB = FF + GG = 1. In this case, we have

Y

AF + z - BGyF!
—AG + z - BFyk-

(L 8)66G)

This shows the separability.

Case 2: When f;—o and g;=¢ have a common root.

In this case, we can write

fi=o(y) = aj=o(y—17)

gi=0(y) = bj=o(y-7)
fi=k(y) = aj=k(y-9)
9i=k(y) = bj=k(y-9)

where @j=08;=k + bj=0b;j=k = 0. Now the convex hull generated by the exponent vectors of
v has the structure shown in the Figure 7.3. Now we can proceed in the same fashion as in

the previous case. O

Now we will construct a nonseparable paraunitary matrix of type (2,2). And in

doing this, we will actually construct a continuously parametrized family of nonseparable
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b,=0

Figure 7.3: The convex hull of the exponent vectors of v

paraunitary matrices of type (2,2). Let

2 2
v = TS v
i=0 j=0
2 2
ai;\ .
- 23 ()
- i=0,;=0 \ bij
be a nonseparable vector of unit norm. As we observed in the Equation 7.7 of the previous
section, the separability (or nonseparability) of a vector of type (2,2) is characterized by
the following.

2 2
w =3 wiz'y is separable

1=0 j=0
<= Wgp, Wj0, W2p are all paralle]l or wgg, wg;, Wo, are all parallel.

Assuming vgg # 0, define parameters r € Rso and & € [0,27) by agy = rcos(8),bgo =

rsin(f). Now introduce two new parameters s and ¢ by

s = (Voo,V20) = agoazo + boob2o

t = [0,0,2]; = det[vgo, V20] = agob20 — a20bo0o

where the bracket notation is defined by [7, 7, k], = det[vji, vi;] and [i, j. k], = det[v;;. v.4].
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2 p Vo2 O V12 o V22
1 o Vo1 o) Vi o V21

) Voo N Vio N V2o
0 1 2

Figure 7.4: The exponent vectors of v of type (2,2)

The above relation can be rewritten in matrix form,
s ago boo aso
t —boo  @go bao

_ cos(f) sin(8) ao
| =sin(8) cos(8) / \ by |

Inverting this relation, we can express asg, by in terms of r, 0, s, t.

az0 | _ 1/ cos(f) —sin(6) s
b2 sin(f) cos(f) t ]’

Now vgo L va2 and vyo L vy imply that

(_d)
Vo2 = u
c

Va2

]
<
N
s L
~—

for some u,v € C. Now we will further assume that, on each of the 4 faces of the convex
hull in the Figure 4, the corresponding face components of f and g have a common root.
In this case, on the face j = 0, the fact that fj=o = ago + @107 + azor? and

gi=0 = boo + 10z + b20z? have a common root is equivalent to the vanishing of the Bezéut
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resultant of fj=o and g;=o, which is [0, 0,2]2-[0,0,1],-[0, 1, 2],. Therefore we can introduce

two new parameters w and z by letting

w = [0,0,1],/[0,0,2}, = [0,0,2],/[0,1,2],

z [0,0,1])./[0,0,2]. = [0,0,2)./[0,1, 2],

Now we claim that these 8 parameters (r,6, s,t, u,v,w, z), subject to 2 polynomial rela-
tions among them, determine all the possible nonseparable unit norm vectors of type (2,2)
satisfying the above boundary conditions. This means that the set of the nonseparable
paraunitary vectors of type (2,2) with the additional boundary conditions is a variety of
dimension 6. For this purpose, we only need to express vjo, Vo1, V12, V21, V1; in terms of
these parameters, and describe all the relations among these parameters. Actually, from

the vanishing of the 4 face-resultants, it is not hard to derive the following relations.

s a w
ne = (t b)(l/w)
-t a uz
w = (00 ()
t -=b —vu
W= (40) ()
-s b uvs
va = (—t —a) (l/u:)'

Therefore, we only have to express the interior coefficient v;, in terms of these parameters.
Consider the A;;’s defined by the expansion (v,v) = Y2 _, }:§=_2 A;;jz'yl. Then since

(v,v) =1, we have to have A4;; = 0 for any i # 0 or j # 0. In particular,

Aor = (voo, Vo) + (Vo1, Vo2) + (Vio, vi1) + (V11, v12) +
(va0,v21) + (va1,v2) =0
Ao = (Voo,V10) + (Vi0,V20) + (Vo1, v11) + (Vi1, va1) +

(vo2, Vi2) + (Vi2,v22) =0

A = (vie,va1) + (Yoo, vi1) + (Vi1,v22) + (Vo1,vi2) =0
A_nn = (viosvor) + (Vao. vii) + (vi1, vo2) + (v21, vi2) = 0.
From A;; = A_;; = 0, we get an expression of v;; in terms of our parameters. and

Aor = Ao = 0 gives the relations among the parameters. One verifies easily that {r =
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2,0=m/2,s=1t=1,u=1v=2,w=/20/7,z = 2/3} is a legitimate set of values for
the parameters, i.e. satisfies the two constraint equation Ag; = A;9 = 0. And specializing

at these values gives the nonseparable example introduced at the beginning of this section.
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Part 11

Applications to Signal Processing
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Chapter 8

Introduction to Part 11

While there has been much recent research done on multidimensional (MD) mul-
tirate systems, some basic questions have been left untouched. In the following, we will
describe some of the basic problems arising from the multidimensional multirate systems,
and all the systems, henceforth, will be assumed to be FIR (Finite Impulse Response).

In many applications, the design and analysis of invertible MD multirate schemes

boil down to the following mathematical question:

Given a matriz of polyphase components, can we effectively decide whether or
not that matriz has a left inverse, and give a complete parametrization of all the
left inverses of that matriz?

In order to show how the various problems are reduced to the above simple form,
the following three problems will be used as demonstrating examples. The same three
problems were used in [KPV95] to show the relevancy of Grébner bases in the theory of

multidimensional FIR systems.

1. Given an MD FIR low-pass filler G(z), decide effectively whether or not G(z) can oc-
cur as an analysis filter in a critically downsampled, 2-channel, perfect reconstructing
(PR) FIR filter bank. When this decision process yields a positive answer, find all
such filter banks.

2. Given a sample rate conversion scheme consisting of upsampling by p, fillering with
an MD FIR filter U(z) and downsampling by q, decide effectively whether or not this

scheme is FIR invertible.
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3. Given an oversampled MD FIR analysis filter bank, decide effectively whether or not
there is an FIR synthesis filter bank such that the overall system is PR. When this
decision process yields a positive answer, provide a complete parametrization of all
such FIR synthesis filier banks.

In the following chapters, we will show how these problems are reduced to the
above simple form, and how our previous results on unimodular polynomial matrices are
relevant to these problems in MD systems. The reason unimodularity comes in can be seen

easily from the following statement whose proof will be given in Chapter 10:

A (not necessarily square) Laurent polynomial matriz has a left inverse if and
only if it is unimodular.

Therefore, mathematically, we are dealing with the problem of determining if a
given Laurent polynomial matrix is unimodular, and in case it is, if we can explicitly
find all the (not unique in non-square cases) left inverses for it. This allows us to see the
study of perfect reconstructing FIR filter banks as the study of unimodular matrices over
Laurent polynomial rings [KPV95).

Exploiting the results developed mainly for polynomial rings, we immediately see
that the answers to these questions are positive over polynomial rings, i.e. when the matrices
involved are unimodular polynomial matrices rather than Laurent polynomial matrices.
In system theoretic terminology, causal invertibility of causal filters are therefore covered
by these methods. Geometrically, this demonstrates the relative simplicity associated with
affine systems compared to toric systems.

The situation, however, is more complicated partly because an FIR-invertible

causal filter may not be causal-invertible.

-

‘2) € (k[z))2. While the re-
b4
lation 3= -z + 3l - 22 = 1 clearly shows the FIR-invertibility of this vector, it is not

For an example, consider the polynomial vector (

causal-invertible since there are no polynomials f(z), g(2) € k[z] satisfying
f(z)-z49(2)-2% = 1

as we can see easily by evaluating both sides at z = 0.
Now, in order to extend our affine results (i.e. causal cases) to general FIR systems.

we need an effective process of converting a given Laurent polynomial matrix to a polynomial
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matrix while preserving unimodularity. A systematic process to that effect was developed
in Chapter 6, and will be used through the remaining chapters.

In Chapter 9, the above three problems are thoroughly examined in the transparent
one-dimensional (1-D) causal setup.

In Chapter 10, we will get to the same problems in MD multirate signal processing,
for which our main tools are the Syzygy-based algorithm for the Quillen-Suslin Theorem
developed in Chapter 3.

There are far more classes of MD problems for which Grébner bases are an essential
tool. For example, in obtaining the Realization Algorithm in Chapter 4, we relied on the
Grobner bases method to determine the termination of the subprocesses. And in Chapter 11,
we will give a complete parametrization (in terms of ladder structures) of MD bi-orthogonal

filter banks with 3 or more channels by using this Realization Algorithm.
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Chapter 9

One-dimensional Multirate

Systems

9.1 Reduction to Causal Systems

Many problems in signal processing give rise to Laurent polynomial matrices, and
perfect reconstructing filter banks are represented by the unimodularity of these matrices.
A preparatory process to be carried out first in this case is to apply the algorithm Lau-
rentToPoly that will allow us to apply the techniques known for polynomial matrices to

this situation. Let us recall the algorithm LaurentToPoly.

Input: v(z) € (k[z*'])", a Laurent polynomial column vector

Output: x — y, a change of variables
T(z) € GL,(k[z*']), a square unimodular Laurent polynomial matrix

Specification: (1) V(y) := T(z)v(z) € (k[y])" is 2 polynomial column vector in
the new variable y
(2) v(x) is unimodular over k[z*'] if and only if ¥(y) is unimodular
over k[y]

A graphical demonstration of this process is shown in the Figure 9.1.
Now finding an FIR inverse S to the given FIR filter A is equivalent to finding a

causal inverse S to the causal filter A.

Example 9.1.1 Consider the unimodular Laurent polynomial vector v = (z. z%)" € k[z*!).

Convert v to a unimodular polynomial vector.
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A S

Figure 9.1: Conversion of an FIR system A to a causal system A

In this case, the transformation matrix is
1/2 0
T = / .
0 =z
And the converted unimodular polynomial vector is

V= (1,23)t.

9.2 Applications of Euclidean Division Algorithm

In this section, we will derive a mathematical formulation for the three problems
described in the Introduction and show how unimodularity is involved, and how to solve

them in the 1-D case.

Problem 1: Given a 1-D FIR low-pass filter G(z), decide effectively whether or not G(z)
can occur as an analysis filter in a critically downsampled, 2-channel, perfect reconstructing

(PR) FIR filter bank. When this decision process yields a positive answer, find all such
filter banks.

To answer this question, we decompose G(z) into its polyphase components:
G(z) = Go(2?) + 2G1(z?).

As noted in [VH92], the filter G(z) occurs as the low-pass filter in a 2-channel PR filter

bank if and only if there exist Laurent polynomials a(z) and #(z) such that

a(2)Go(2) + B(2)G1(2) = 1. (9.1)
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First, by conducting the preparatory step outlined above, we assume Go(z), G, (z)
and a(z), B(2) are polynomials. Then the condition and the construction of the polynomials

a(z) and B(z) can be siinultaneously solved by the Euclidean Division Algorithm: apply a

Go(z
succession of elementary row operations to the polynomial vector (G (@) to reduce it to
12

(G(()z)) where G(z) := ged(Go(2), G1(2)), i.e. find a E € Ey(k[z]) such that

E(Go(Z)) _ (G(Z)).
Gl(z) 0

If the greatest common divisor of Go(z) and G)(2) is not 1 (up to multiplication by con-
stants), then G(2) can not act as the low-pass filter in a 2-channel filter bank. If the greatest

common divisor is indeed 1, then the first row
(a0(z),Bo(z)) = (1,0)E

of the unimodular polynomial matrix E € E,(k[z]) can be a choice for (a(z).8(z)), thereby
yielding a filter bank with G(z) as its low-pass filter. To find all the filter banks having
G(z2) as its low-pass filter, let u(a, 8) := —foa + aoB. Then,

(GO(Z) G](Z)> (a) (1)
—ﬂo - Qp ,‘3 u
( ) (’0 I(Z)) (1)
B Bo Go(z) u)’

Now, regarding u as a free parameter ranging over the Laurent polynomials in k[z*!], we
get all the possible FIR filter banks with G(z) as its low-pass filter.

Therefore,

In the following examples, to illustrate the method of consecutive elementary oper-
ations, we will first consider a simple FIR filter which is actually not a lowpass filter, but is
easy to handle. A real-world lowpass filter for which the construction of the corresponding

synthesis filters involves more computational steps will be treated in the second example.

Example 9.2.1 Consider a simple FIR filter G(z) given by

1
G(z) = ;+l+2z—2:2+5:3—6:5
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This G(z) is decomposed into polyphase components as
G(2) = Go(2?) + 2G1(2%),
where Go(2) and G;(z) are found as

Golz) = %+1—2z
Gi(z) = 2+45z-62%

Now we apply the preparatory algorithm LaurentToPoly to A(z) := (Go(z), G1(2))*:

e Preparatory Step 1:

z 0\ [Go(2) 3 1+z—222)
(0 -i-) (Gl(z)) B (§+5—6z '

e Preparatory Step 2:

Therefore, we have

where the converted causal filter A(z) = (Go(z),G1(z))! and the transformation ma-

14 2z-222
( -5z + 622 )
92 [z
T(Z) = E21(—3)E21(—-z-) (O

z 0
-2-3: L)

Now we apply the Euclidean Division Algorithm to A(z) = (Go(z), G1(2))".

trix T(z) are given by

>

—_
™

~—
I

Ni= O
SNSe——
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o Step 1: Since Euclidean Division yields Go(z) = —1G1(2) + 1 ~ %z, we have

l éo(z) _ 1—%2 )
E12(3) (G’l(z)) - (—52+6z2 '

e Step 2: Since Euclidean Division yields -5z + 622 = (—6 — 9z)(1 — 2z) + 6,

E (6+9)( Lo g 1_%2)
F4 .
4 -5z + 622 6

e Step 3:

- : [1-2 0
25 (1) - ()

Combining these together, we have

_ . Golz
Ej2( 31-; 2~)E21(6 + 9—’)E12(%) (G?E”;)
e e o

6+9: 3+3: Gi(z)

(o)

(6+92)-Go(z) + (3+32)-Gi(z) = 6,

which implies

i.e.

3 .
1+ §z) -Go(z) +

Therefore, S := (1 + %z,-‘—}i) is a left inverse to A, and changing back to the

original system, we get the corresponding left inverse S to A:

S = SB
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Figure 9.2: Frequency Response of the Lowpass Filter H(z2)

This gives a synthesis filter

S(z) = -1—gz2+z(1+1/z2)/2
_ 1 b4 3 2
5—1-{- 2 22

Now, the one-parameter family of Laurent polynomials

() = (i e ()
8)  \i+L Go2) /\u
(—1—%z—u(2+52—622)
ITtE+ul+1-22)

) . u € k[z¥")
cover all the possible Laurent polynomial solutions to a(z)Go(z) + 8(2)G1(2) = 1. o

Example 9.2.2 Consider a causal lowpass filter H(z) given by

H(z) = 0.1605+ 0.41562 + 0.459222 4+ 0.1487z% — 0.1643z% — 0.124525 + 0.08252:°% +
0.0887z7 — 0.050822 — 0.06082° + 0.03512'° + 0.0399z!! — 0.02562'2 -
0.02442z'3 + 0.01862'* + 0.01352"° — 0.01312*® — 0.007427 + 0.0129z'® —
0.00502'°

whose lowpass characteristic is shown in the Figure 9.2.

This is decomposed into polyphase components as
H(z) = Ho(z%) + zH;(2%),
where Ho(z) and H,(z) are

Ho(z) = 0.1605+ 0.4592z — 0.1643z% + 0.08252z% — 0.05082" + 0.0351:° — 0.0256:% +
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Figure 9.3: Frequency Response of the Synthesis Filter F(z)
0.0186z" — 0.01312® + 0.01292°,

Hy(z) = 0.4156+ 0.1487z — 0.12452% 4+ 0.0887z3 — 0.06082* + 0.03992z° — 0.0244 25 +
0.0135z7 — 0.00742% — 0.0050:°.

Euclidean Division yields
Ho(z) = -2.5893H,(z)+r(z)
with the remainder

r(z) = 1.2367+ 0.8442z — 0.4867 22 4+ 0.3123 z® — 0.208349 z* + 0.138472 =5
—0.0888109 z® + 0.0536797 =7 — 0.0323696 z5.

Carrying out the corresponding elementary operation gives

E15(2.5893) (H°(z)) (;(())) .
1z

H,(z)
. . r(2)
Repeating the same procedure to the polynomial vector

Hy( ), we eventually
1\2

get A € Ey(C[z]), a product of 10 elementary matrices, such that

A(Ho(z)) _ (0.7661).
HI(Z) 0

Let B := 'c#eeiA' Then
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An explicit computation shows

By1(2) = —0.4138+0.5743 z — 0.3989 z% + 0.2652 z° — 0.1667 z* + 0.0960 2° —
0.0478 2® + 0.0164 27 + 0.0154 z®

Bj3(2) = 2.5658 - 0.6827 z + 0.3689 2% — 0.2369 23 + 0.1658 2* — 0.1189 2% +
0.0839 2® — 0.0572 27 + 0.0398 z®

By (z) = -0.7081 — 0.2533 z + 0.2121 2% — 0.1512 2° + 0.1036 z* — 0.0679 z° +
0.0416 2° — 0.0231 27 + 0.0127 28 + 0.0085 2°

Bg(2) = 0.2735+ 0.7824 z — 0.2799 22 + 0.1406 23 — 0.0865 z* + 0.0599 2° —
0.0436 26 +0.0317 27 — 0.0223 2® + 0.0220 2°.

Hence, we have
B Ho(z) + BioHy(2) = 1.
Now, the filter

F(z) = Bn(zh)+ 2B1,(2%)
= —0.4138 + 2.5658 z + 0.5743 22 — 0.6827 z° — 0.3989 2* + 0.3689 =° +
0.2652 2% — 0.2369 27 — 0.1667 2° + 0.1657 z° + 0.0960 z'° — 0.1189 21! —
0.0478 ' + 0.0839 23 4 0.0164 2z'* — 0.0572 215 + 0.0154 216 + 0.0398 z!7

is a desired synthesis filter, whose frequency response is shown in the Figure 9.3. Actually,
what we get is a 1-parameter family of synthesis filters, and making a good choice of

u € k[2*1] will give us a synthesis filter with a more desirable frequency response. m]

Problem 2: Given a sample rate conversion scheme consisting of upsampling by p, filtering
with a 1-D FIR filter U(z) and downsampling by q, decide effectively whether or not this

scheme is FIR invertible.

To answer this question, we may assume that the numbers p and g are coprime,
p>gq. Let U(z) = Zf’i;l 2'U;(2P9) be its polyphase decomposition with respect to pg. Let
the expression Uii(z), 0 < k < p, 0 < ! < g, be the polyphase component U;(z) such that

t =k (mod p) and i = ! (mod g¢). Invertibility of the sample rate conversion scheme can
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then be formulated as the existence of a Laurent polynomial matrix D = (Dy, £(z)) which
is a left inverse of U = (Un(2)).

Since a Laurent polynomial matrix has a left inverse if and only if it is unimodular
(Theorem 10.1.3), there exist ! := (*) polynomials D;(z) such that

{
Y Di(z)Mi(z) = 1,

i=1
where M;(z) ranges over the maximal minors of U.

So, the second question is about determining the unimodularity of the Laurent
polynomial matrix U, or equivalently, the unimodularity of the Laurent polynomial vector
(M, ..., M) € ((z21])).

This unimodularity determination problem can be readily solved once we no-
tice that, due to the the Laurent polynomial analogue of Hilbert Nullstellensatz over C.
2.i Di(z)M;(z) = 1 is possible if and only if the Laurent polynomials M;(z)'s, 1 < i < (;’).
have no nonzero common roots, i.e. no roots in C. Since each univariate Laurent polyno-
mial M;(z) has only finitely many zeros which can be explicitly found using any existing
computer algebra packages, we can tell if M;(z)’s have a nonzero common root or not, and

thereby determining if U is unimodular.

Example 9.2.3 Consider a sample rate conversion scheme consisting of upsampling by
p =3, filtering with an FIR filter U(z) and downsampling by ¢ = 2, where U(z) is given by

Uz) = %+%+%+%—-2+29:+2533+225—226—4z7+228-2339—2:l°+
r4 4 z 4

4z + 2212 - 20212 - 162% 4 2027 + 20271,
Then we get the polyphase decomposition U(z) = T2_ 2'U;(28) of U(z) where U;(z)'s are
found as

Us(z) = %—2—2z+222

U(z) = §+29—4z-—20:2

Up(z) = 2z

Us(z) = §+25—23z—1632+20:3
Us(z) = --22

Us(z) = 244242022
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Now, note that Ujo(2) = Uy(z) since i = 4 is the only integer in [0, 5] such that

?

1 (mod 3)
0 (mod 2).

t

Continuing in this way, we get

U = U4(Z) Ul(z)

The three maximal minors of U are

Uo(z) Us(z
i = P B
Us(z) Ui(2)
U Us(z
Ma(z) = o(z) Us(2) =§_4_22+222
Ua(2) Us(z)| =
U Ui(z
Ms(z) = «2) Uil2) =8 -2z
Ux(2) Us(2)| =
which obviously don’t have any common roots.
Consequently the given scheme is FIR invertible. m]

Problem 3: Given an oversampled 1-D FIR analysis filter bank, decide effectively whether
_or not there is an FIR synthesis filter bank such that the overall system is PR. When this
decision process yields a positive answer, provide a complete parametrization of all such FIR

synthesis filter banks.

An oversampled filter bank corresponds to a non-square polyphase matrix, and the
problem is asking whether or not we can find a left inverse for this non-square polyphase
matrix. Let the polyphase matrix be A, a p x ¢ Laurent polynomial matrix, p > ¢. Since
this polyphase matrix has a left inverse if and only if it is unimodular, we can first determine
its unimodularity by the method outlined for the second problem. If this test shows the
unimodularity of A, we first apply the algorithm LaurentToPoly to A converting A to
a unimodular polynomial matrix A. Then, by using the Euclidean Division Algorithm, we

apply a succession of elementary operations to A to reduce it to the following p x ¢ matrix
L

€ Mpq(k),
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where I, is the ¢ x ¢ identity matrix, and 0 is the g-dimensional zero row vector.
This means that we can find E € E,(k[2]), a product of elementary matrices, such
that
I,
EA = |°

0

Now take the first ¢ rows of E to make a ¢ x p matrix F, i.e.

F := (I,0,...,0)E.

Then F is a desired left inverse of A. Note here that A = E-'| | | implies E-! €
0
GLp(k[z]) is a unimodular completion of A.
To get a complete parametrization of all the possible left inverses of A, let B €
Mgp(k[2]) an arbitrary left inverse of A. Then

Now. since E~! is a unimodular completion of A,
-1
BE™ = (I,u,...,u,_y)

for some uy,...,up_4 € (k[2%'])9. Now, regarding u;,.. .y Up_q as free parameters ranging
over g-dimensional Laurent polynomial vectors, we get a complete parametrization of the

left inverses to A in terms of (p — g)g parameters ranging over the Laurent polvnomials in
k[z*1):

B = (I,w,...,u_,)E.

Remark 9.2.4 If p = g, i.e. if the polyphase matrix A is a square unimodular matrix.
then the number of free parameters is (p — g)g = 0. This coincides with the fact that a

square unimodular matrix has a unique inverse.
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Example 9.2.5 Consider an oversampled 1-D FIR analysis filter bank whose polyphase
matrix is the matrix U of the previous example. We already saw in that example that
8-2-2:+222 £425-232-162% +202°
U = 3_2; € +29 - 42 — 2022
2z 2+ 4z 4 2022
is unimodular, so there is an FIR synthesis filter bank such that the overall system is PR.
Now we want to find all such FIR synthesis filter banks.

Closely following the algorithm outlined in the above, we get
10
EU=|0 1],
00

where the 3 X 3 matrix E is found as

2 3 4
T(—18-1252-18827+25223 21529417825 4625)  §(~2-272+30z247%) [(12=80:45127 60 =27)
£(3+192-322%+232% -9z -825 4.628) 2(4-3z-2242%) 9/2—42432% /2423 —24

2(—4242322 /3-523 429 +82% /3-225) 2z(—3422422 —23%) ~6+4+62—22 —22% 4224

Now a general left inverse of U is in the form

(1 0 u
E,
0 1 v

where u, v are arbitrary Laurent polynomials in k[z%!]. w
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Chapter 10

Multidimensional Multirate

Systems

10.1 Unimodularity and Left Inverses

For p > ¢, let A € My, (k[z*']), and B € M,,(k[z*!]). Denote the i-th column
vectors of the ¢ X p matrices B and A" by v; and w;, respectively. For a sequence of integers
i=(i,...,4) with1 <4 <--0 < iq < p, take the g column vectors v, .. .+ Vi, from B,
and g row vectors w{ , ..., wfq from A to define ¢ x ¢ square matrices B; and Al

Then BA € M, (k[z*!]) is a square matrix and its determinant can be computed

from the maximal minors of A and B by the following formula:

Lemma 10.1.1 (Binet-Cauchy Formula) With notations in the above.

det(BA) = Y det(B;)det(Al),
iel

where]:={(ilv°--1i‘q)llsil <"'<iqSP}-

Proof: See [Gan77]. Q
1 3
2 11
Example 10.1.2 Let A=} 2 1 ,andB:( 1 9 1).Then,
4 -1
8 6
det(BA) =
7 -2

= -58.
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Since the index set is I = {(1,2),(1,3),(2,3)}, the right hand side of the Binet-Cauchy

Formula reads as

3 det(B;) det(Al)
iel
= det(B1,7)) det(A1?) + det(B; 5)) det(A1:Y) 4 det(Byy,5)) det(A(23)
2113+2113+1121
Co-1 o2) |2 1| -1 1| |4 -1 |2 1) |4 -1
= 5.(=5)+3-(-13) + (-1)- (-6)
= -—58.
This coincides with the prediction of the Binet-Cauchy Formula. O

The following theorem has many important consequences as mentioned in Chapter

8, and has been already used in the previous chapter.

Theorem 10.1.3 A p x g Laurent polynomial matriz A (p > q) has a left inverse if and

only if it is unimodular.

Proof: (=>:) Suppose B € M, (k[z*']) is a left inverse of A. Then the Binet-Cauchy
Formula applied to BA = I, implies

)" det(B;) det(A}) ='1.

ies
Hence, the maximal minors of A, {det(Af) | i € I}, generate the unit ideal in k[z*!], i.e.
A is unimodular.
(<=:) By using the Unimodular Completion Algorithm for Laurent polynomial rings de-
veloped in Corollary 6.1.1, we can complete the unimodular matrix A € M, (k[z%!]) to a
square unimodular matrix A € GL,(k[z*!]). Now, from A~1A = I, one sees easily that
the ¢ X p matrix B made from the first g rows of A~! is a left inverse of the p x ¢ matrix

made from the first ¢ columns of A, i.e. BA = I,. a

10.2 Two Methods of Causal Reduction

If we consider the three problems in their MD versions, the conditions which need

to be satisfied resemble their 1-D counter parts Eq. (9.1) and Eq. (9.2). The only difference
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is that we have to replace the variable z by z := (2;,--+,2,). However, the Euclidean
Division Algorithm is no longer valid, and thus the coefficients a(z), #(z) and D;(z) and
their existence have to be found in another way.

Naturally, the Grobner bases techniques offer a solution in this MD set-up, and
we should be able to apply Grobner bases computations to solve our three problems.

However, since our questions involve Laurent polynomials, we have to perform a
preparatory process to convert the problems to causal problems.

While we already have presented a systematic method to this effect in Chapter
6. there is an alternative method for this causal reduction outlined in [KPV95]: for every
variable z; we introduce two new variables z; and y;. Substituting zI* for every positive

power z and yf‘ for every negative power z; k

, we transform the original set of Laurent
polynomials into a set of regular polynomials. We then enlarge this set by adding the poly-
nomials z;y; — 1. One verifies that the constant 1 is a linear combination of the original
set of Laurent polynomials if and only if the same is true for the constructed set of regular
polynomials. Moreover, given a linear combination of polynomials , we find a linear combi-
nation of Laurent polynomials by back substitution: z; and y; are replaced by z; and 27!
respectively.

There are, however, some drawbacks with this method. First, it significantly
increases the complexity of the problem by introducing extra variables and by enlarging the
size of the given polynomial vector. Also, a complete parametrization of solutions needs
separate computation.

Therefore, we will mainly use the algorithm LaurentToPoly for the purpose of
our causal reduction.

In the following, we give an example in which we apply the algorithm Laurent-
ToPoly to reduce the given multidimensional FIR systems to causal systems of the same
dimension.

1,z
. y + y +z ) € (k[x*l,yil])z.
»t 1+y+zy
e Step 1: Write v; in terms of , i.e. express it as a polynomial in S[z] where S :=

kly*'): v = % + (% + 1)z. One sees that the leading coefficient -:; +1of v; is not a

v
Example 10.2.1 Let v := ( l) = (
U2

unit in S. So we apply the algorithm LaurentNoether to v;.

Define a new variable z by putting y = zz' where the integer [ is to be determined.

With respect to the new variables z and z, v; becomes v} = §;+ ;ll-.—l +xr. Letl=1.
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Then v; =
coefficients of v; € S’[z*!] are units of §'.

£ + 1+ 2 € S'[z%!] where S’ := k[z*!] and the leading and the lowest

e Step 2: We have

1 1

wtztz

v = (1 zz z 2)€(Sl[$il])2-
s t1l+zz+ 22

zz 0
V] = 0 ﬁ v

( 14+ 2+ 222 )
St it/

Now we apply elementary operations to v; to make its second component a polynomial

Then

in £ whose constant term is zero.

1.
1
vy = E21(‘-‘z_3?)vl
( 1+ +z%2 )
I R N ey
2.
1 1
V3 = Ezl((__—s—;)z)VQ
( 14z 4222 )
Lob-iiies
3.
- 1 1 1
Vo= Bul-g+5+--1)vs

14z+ 222
= ﬂ—l+22—rz+22 +z22 234228 —:x:z‘) .
23

The transformation matrix is

1—-2-2%242% 1 1 1 zz 0
—— Ballz - 2)9)Bul-5=) ( 0 ),

T = E21(— 23

and the converted vector is

. 14z +222
v = Tv= T (-l+'2z-z‘z+22 4x22—234228 —:rz‘) .
po)
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e Now we make another change of variables. Define a new variable w by z = w - 2/

where the integer ! is to be determined.

Then w.r.t. the new variables z, w, ¥ becomes

A 14wzl + w2z

Vo= (wz"a (—1 + 2z — w2t 4 22 4 w22 — B 4 w3 - wz"“) ) '

Let I = 3 since it is the smallest integer that makes the components of ¥ polynomials

in z and w. Then

14 wzd 4 w2’
T \w (-142:+22 - 28 w2 w2l + wzb - wz?) )

Now the unimodularity of v as a Laurent polynomial vector in k[z%!, y*'] is equivalent to
the unimodularity of ¥ as a polynomial vector in k[z, w).
Now a computation with SINGULAR shows that the reduced Grébner basis of

{t1. %2} C k[w. z] w.r.t. the reverse degree lexicographic order is
{-2"+8lw+17z - 11, - 21wz — 422 + Qw+ 52 — 2, —56Tw? — 116wz — 22 + 77w — 2 + 4).

Therefore v is not unimodular over k[w, z], and neither is v over k[z%!, y*!]. 0

10.3 Syzygies and Parametrization of Filter Banks

For any given multidimensional FIR filter which can be the analysis filter of an
MD perfect reconstructing FIR filter bank, we can find a corresponding synthesis filter by
using the the method of Grébner basis as was demonstrated in the proof of Theorem 10.1.3.
But this particular filter is by no means unique. And the nonuniqueness of solutions is
measured by syzygy.

In this section, for an arbitrary Laurent polynomial matrix, we will attempt to
give a complete and canonical parametrization for all of its left inverses if there is any.

In matrix terminology, we will find some free parameters in terms of which an
arbitrary left inverse of the given unimodular Laurent polynomial matrix can be uniquely
written. Because of the uniqueness here, the number of such free parameters is an invariant

for the given matrix and represents the degree of freedom obtaining its left inverses. It
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will be shown that, for a p x ¢ unimodular matrix, the degree of freedom associated to
finding its left inverses is ¢ X (p — ¢).

In [KPV935), a complete parametrization formula was achieved with which we
can express any synthesis filter corresponding to the given analysis filter. While this
parametrization is complete in the sense that it exhausts all the possible synthesis fil-
ters corresponding to the given analysis filter, it is not canonical, i.e. the expression of a
synthesis filter in terms of the parameters is not unique. We will remedy this situation here
with the aid of the Quillen-Suslin Theorem.

For a simple example, consider an invertible FIR filter whose polyphase matrix is
(fiy--+s fn)! € k[z*!). In order to find its left inverses, we have to consider all the solutions

to the following equation:

n

Y M@ = 1. (10.1

=1

If {\i(z) € k[z*'] | i = 1,...,n} is a solution to this equation, then {u;(z) € k[z*!]|i =
1,...,n} is also a solution if and only if (u1(z) — Ai(2), - - ., n(2) — An(z)) belongs to the
syzygy module S := {(hy,...,h,) € (k[z*'])" | =%, hifi(z) = 0}.

Therefore the problem of giving a complete parametrization for the solutions to
Eq. 10.1 is equivalent to finding a finite basis for the syzygy module S.

In the 1-D case, an explicit process of finding such a basis using the Euclidean
Division Algorithm was shown in detail in the previous chapter.

In the MD case, the syzygy module
n
S = {(h1y-- -, hn) € (k[E])™ | Y ki fi(z) = 0}
i=1

ia a free module of rank n — 1 by the Laurent polynomial analogue of the Quillen-Suslin
Theorem, and its free basis {s;(z),...,s,-1(z)} can be found by the algorithm developed
in Chapter 6, i.e. convert the problem to the case of polynomial rings by using the algorithm
LaurentToPoly and then compute its reduced Grébner basis w.r.t. any fixed rrklonomial
order.

Then {u;(x) | i=1,...,n} is a solution to the Eq. 10.1 if and only if there exist
{ua(z),..., un-1(z)} C k[z*!] such that

(11(@),. . ypn(®)) = (A1(@),- -, Mn(@) + wa(2)81(2) + - - + Unoy (2)Snoi ().
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So, there are n — 1 free parameters involved as in the 1-D case.

For the general case, consider an invertible FIR filter whose polyphase matrix is
A = (fij) € Mpy(k[z*']), p > ¢, which is unimodular due to the FIR invertibility of the
filter it represents. In order to find its left inverses, we have to consider all the g x p Laurent

polynomial matrices that are solutions to the following equation:
BA = I,. (10.2)
Denote the p row vectors of A by

vy = (flla-'-,fUJ)

Vp = (fp],...,qu).

If Bpare € Myp(k[z®']) is a particular solution to the above Equation 10.2, then B €
Mgp(k[z*1]) is also a solution to it if and only if (B — Bpqr)A = 0 € M, (k[z£!]).

Foreachi=1,...,q, let w; := (wy,.. .+ Wiq) € (k[z])? denote the i-th row vector
of B — Byor¢. Then

(w“ oWy fll f]q
(B-B,u)A = | : : :

\wa trr Wep for oo S
[ W11Vy+ - wpvy

\ WqVy + -+ WepVp

Therefore, B € Mg, (k[z%')) is a a solution to the Equation 10.2 if and only if each row of

B — By, belongs to the kernel of the following k[z]-module homomorphism:

a: ()P — (ka*])?

h=(h1,...,hp) > h]V1+“‘+thp.

Due to the unimodularity of A, a is onto and the kernel of this homomorphism a is a
direct summand of (k[z*'])” i.e. projective and therefore free of rank p — ¢ by the Laurent
polynomial analogue of the Quillen-Suslin Theorem. And its free basis s, (z)... ., Sp—q(T) €

(k[z%1])? can be explicitly found using the algorithm of Chapter 6.
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Since each row of B — B,,,; is a unique linear combination (with Laurent poly-

nomial coefficient) of s;(x)’s, we have

wy = up(a)s(z)+---+ ul(p_q)(m)sp_q(m)

Wo = up(x)si(z) + - + Ug(p—q) (T)Sp—g(),
for some Laurent polynomials u;j, 1 < i< ¢, 1< j < p— q. Therefore,
u(®) ... Up-g)() s1(x)
B- Bpart = '
Uq1 () ... uq(p-—q)(m) SP-q(m)
where each s;(z) is regarded as a p-dimensional row vector. Therefore the general solution
to Eq. 10.2 can be expressed in terms of (p — ¢)g free parameters:
u(z) ... U(p—q)(E) s1(x)
B = Bpart + : :
Uq1 (m) see uq(p—q)(m) SP—Q(m)
Note that this is a minimal complete parametrization in the sense that any complete

parametrization of the left inverses of A always involve at least (p — q)q free parameters.

10.4 Unimodular Completion and Parametrization of Filter
Banks

Since our Unimodular Completion Algorithm developed in Chapter 3 already con-
tains a syzygy computation as its central ingredient, it’s natural to ask if one could obtain
the parametrization outlined in the previous section from the Unimodular Completion Al-
gorithm. It turns out that this is indeed the case.

Suppose A € My, (k[z*!]) is unimodular and A € GL,(k[z%1]) is a unimodular
completion of A. If S € My, (k[z*!]) is an arbitrary left inverse of A, then

SA=1, = SA=(I,up...,up)

= S=(Iuy,..., u,,_,,)f&'l

for some uy,...,u,—4 € (k[z*!])e.
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Now regarding u;,...,up_, as free vector parameters ranging over (k[z%1])?, we

get a complete parametrization involving ¢ x (p — ¢) free parameters. More explicitly,

S = (I,uy...,up_g)A"! (10.3)
10 o 0wy oo upy
0 1 .- 0 u cvr Unfpo _
R a I T (10.4)
0 0 R | uql e uq(p_q)

Note that any complete parametrization involving g X (p — ¢) parameters gives a

syzygy basis since the degree of freedom associated to finding the left inverses of a p x ¢

unimodular matrix is precisely g x (p — ¢). Therefore the above parametrization obtained

from the Unimodular Completion Algorithm is a complete and canonical parametrization.

Example 10.4.1 Define four polynomials in Cz*!, y*!, z¥!] by
h = 1—.’cy—2z—4:¢:z—:zzz-2:cyz+2a:"’y"’z—29:2"’—2:0222+2:¢:2yz2
fa = 2+4:c+:c2+2.1:y—2:z:2y2+2:rz+2x'zz-—2x2yz
fi = 142z+zy—22y’+z242%2-2%y:
fa = 24z+y-zy?+z-zy-2.
h
Find a complete parametrization for all the left inverses of the 4 x 1 matrix A := ?
3
fa

The unimodularity of the matrix A was shown in the Example 3.3.1. and an

explicit unimodular completion A of A was also constructed there:

A

fi —y-zz422y%2-222242zy2% 1- 2zyz— 2222 z - 2:2

fa T - 2zy? + 22z — 2zy2 2zy + 22z -142:z
A - (zy?) + 22 - zyz Ty+zz -14:z
fa 1-y? - yz y+z 0

Therefore, an arbitrary left inverse S of A is of the form

S = (1,

A -1
uy, Uz, uz)A
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Y —z+1 2z-1 -z
~y—z z2—yz—2% —24+22-2 —2z24+T-42+42 z242r4+1
= (1, Uy, U2, uS)
—y?-yz4+l  —yPz-yz?+2yz-2y+2z-1 —dyz42y—2:+1 2zYy+ 2T+ Yy
zy+zz zyz4zz? —222422+1 4r2-2x-2 -2z
= (0,-z+4+1,22-1,-2)
tui(—~y—z,22-yz -2 —242:-2,-2z24+z-42+2,2°+ 2z + 1)
tug(—y? —yz + 1, -2z —y2®4 2y2—2y+ 221, ~dyz + 2y — 2z + 1, 2zy+z+y)

+uz(zy + zz,zyz + 22 — 222+ 22 + 1,422 — 2z — 2, —22% — z).

Note here how unimodular completion is closely related to syzygy basis. D

10.5 Grobner Bases and Multidimensional Filter Banks

We now consider the first question: We can check whether or not a given MD low-
pass G(z) can act as an analysis filter in a 2-channel filter bank by decomposing G(z) into
polyphase components, and checking the unimodularity of the resulting polyphase matrix by
combining the algorithm LaurentToPoly and a Grébner basis computation. Moreover, if
the answer is yes, we explicitly find a particular low-pass synthesis filter Hp,r¢(2) by tracing
the steps in the Grobner basis computation. We also derive a complete parametrization of

“the synthesis filters by the syzygy basis computation outlined in the previous section.

Example 10.5.1 Consider the filter G(zy, z2) with impulse response

( 0 o0 0 8 0 0 o\
0 o0 24 -96 24 o o0
0 24 -192 456 -192 24 O
1
—— | 8 -96 456 3200 456 -96 8
4096

0 24 -192 456 -192 24 O

0 24 -96 24 0 0

0
\0 0 0 8 0 o o

The filter G (2, 22) is designed to have a diamond-shaped low-pass frequency re-
sponse. It is flat of order 2 at DC, and vanishing at the aliasing frequencies of the quincunx
sampling lattice (see Fig. 10.1). These properties make it a likely candidate for the low-pass
analysis filter of a 2-channel, PR filter bank (downsampling on the quincunx lattice). Ap-

plying the Grébner bases computation, we indeed find that this is the case, and the filter
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Frequency response for Analysis Filter

Horizontal

Figure 10.1: The frequency response of G(z;. z9).

Hpari(z1, 22) with impulse response

0 o0 48 0 0
0 9 576 96 0
1
—— | 48 576 4288 576 48
3585

o
3
w
=1
a
©0
D
o

is found as a particular solution for the synthesis filter. By choosing appropriate values
for the parameters in the parametrization outlined in the previous section. we can modify

Hyart(z1, 22) in order to meet or approximate extra conditions. O

We will now consider the second question and show how Grobner bases can be

used in 2D sample rate conversion schemes.

Example 10.5.2 Consider the 2D sample rate conversion scheme which consists of vertical
upsampling by a factor 3, filtering with a filter H(z) = H(z;, 23) and horizontal downsam-
pling with a factor 2. We assume that H is FIR, and we would like to know if this scheme
has an FIR inverse. To be more precise, we are looking for an FIR filter (/(z). such that
horizontal upsampling by a factor 2, filtering with G(z) and vertical downsampling with a

factor 3, cancels the effect of the first sample rate conversion scheme.
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Let the filter H(z) be given by H(z) =Y h;.jzfzg. Following the method outlined
in Section 9.2, but now for this 2D case, we construct the 3 x 2 polynomial matrix Hy(z) =
Zh3;+k,2j+zz{z§i, where 0 < k<2and 0<I< 1.

Assume momentarily that H(z) is a separable filter H"*(z,) H"(z;). It is easily seen
that in this case the filters Hj (z) are products of 1D polyphase components, i.e. Hy(z) =
H ,f(zl)H,"(ZQ). Consequently, all the maximal minors of Hj;(z) have determinants equal
to 0. Therefore the 2D analogue of Eq. 9.2 cannot be satisfied, and inversion is impossible.

Now we consider a non-separable case, where the filter H(z) is given by the 4 x 6
(horizontal x vertical) impulse response

2 3 2 1 3 2
3531 3 2
1 1 1 1 1 1
2 2 2 1 1 1
The polyphase component matrix H, = (Hy;) of H(z) is defined by

1

H(z) = ) ) xmHu(,2),

k=0 =0
which is found as
242142042120 342z 4+ 20+ 2129
Hyo=|34+21+3224+ 2122 5422 +3204+ 212
2+ 21+ 2204 2122 342214222+ 2122

Computing the determinants of the maximal minors we find Dy(z) = -1 — z.
D\ (z) = —z3 — 2123 and Dy(z) = 1~ 25— 2, 2. These determinants are proper multivariable
expressions and the Euclidean algorithm will therefore not work. In this case one easily
verifies that Dy — D) = 1, and therefore H, is unimodular and there exist an inverse FIR
filter G(z). To find G(z) we first need to find a left inverse G, to H,.

We apply the Unimodular Completion Algorithm developed in Chapter 3 to H,,
now, and the following is the SINGULAR script we used. For notational convenience, we
let = := z;, y = z,.

ring r=0,(x,y),(c,dp); option(redSB);
vector v(1)=[2+x+y+xy,3+2*x+y+xy];
vector v(2)=[3+x+3*y+xy,5+2*x+3*y+xy];
vector v(3)=[2+x+2*y+xy,3+2%x+2¢y+xy];

module M=v(1),v(2),v(3);
module G=std(M); matrix T=1ift(M,G); module S=syz(M);
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The output from SINGULAR is as follows:

> G;
G[1]=[0,1]
G[2]=[1]

>T;
T[1,1]=0
T[1,2]=1
T[2,1]=x+2
T[2,2]=-2x-3
T[3,1])=-1x-3
T[3,2])=2x+4

> S;
S[1]=[y+1,-1xy-1y,xy+y-1]

Since {(1,0),(0,1)} is a Grébner basis of the row vectors of A, A is unimodular, and the

01
= A'T.
10

0 1
By taking transpose of bothe sides, we get T'A = (1 0), i.e.

relation G = MT translates to

1l -2z-3 2244
A=1,.
0 z4+2 -z-3

1 -22,-3 2z 44
0 Z]+2 —21—3

( )
C =
S
1 —221—3 221+4

0 21 +2 -2 -3

22+1 —21272 — 22 2122+22—1

Hence, B := < ) is a left inverse of A, and

The resulting unimodular completion of A is

A = CcL.
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Now the most general form of G, is given by the Formula 10.3:
1 0 u -
G, = ( '1A-
01 U2

1 0 u
1)0
1 —221—3 221+4

10 /3]
= 0 2142 -2 -3
01

Z+]l —z1z2—22 ziz2+22-1
1 -22,-3 2z1+14
0 zn+2 —z- 3)
(U1(22+1) u(-2122-23) wm(z1z2+ 22 - 1)) (10.5)
uz(z2+1) uz(-z122— 22) w2(z1z22+ 22~ 1)

where u;, up are arbitrary Laurent polynomials. '

Finally, the matrix G, = (Gu) is related to the inverse filter G(z) as the set of
backward polyphase components. To be precise, G(z) is given by G(2) = ¥ 2524G (23, 23).

Working out these formulas one finds the following impulse response for the filter G(z):

Again, one can change the values for u; and u; in the Eq. 10.5 to adjust to some specific

needs. ]
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Chapter 11

Ladder Decomposition of
Multidimensional Perfect

Reconstructing Filter Banks

11.1 - Introduction

In Chapter 4, we obtained a realization algorithm that lets us write a given square
unimodular polynomial matrix as a product of elementary polynomial matrices. As sug-
gested in [THK95], such an algorithm has application in signal processing since it gives a
way of expressing a given multidimensional biorthogonal filter bank as a cascade of simpler

filter banks called elementary ladder steps.

Mathematically, representing a perfect reconstructing FIR filter bank as a cascade
of elementary ladder steps is equivalent to expressing a unimodular Laurent polynomial
matrix as a product of elementary matrices over Laurent polynomial ring. Since we already
obtained a Realization Algorithm over polynomial rings and the algorithm Laurent-
ToPoly for transforming a noncausal system to a causal system, we can readily develop a

realization algorithm for an arbitrary unimodular Laurent polynomial matrix.



123

11.2 Elementary Column Property over Laurent polyno-

mial rings

(1
In Chapter 6, for any given v=| : | € Um,(C[z*"]), we found E € E,(Clz*!))
\ vs
such that
(o
Ev=w=| : | € (S[z)"
\ w,
And with the change of variables:
=y (%20 Ym)s T2 =20 oo ey Tm = Ym,

we showed that w is unimodular over the polynomial ring Cly]. Now we can apply the
Elementary Column Property of Chapter 4 to w, if n > 3, to reduce it to e, using elementary
operations. Since we used only elementary operations to reduce v to w, by changing
variables back to z, we have reduced v to e, by applying elementary operations. This

proves the following Laurent analogue of the Elementary Column Property.

Theorem 11.2.1 (Elementﬁry Column Property for Laurent polynomial rings) The group
E.(Clz*')) acts transitively on the set Um,(Clz*!)) when n > 3.

11.3 Realization Algorithm over Laurent Polynomial Rings

Now, the desired realization algorithm for SL,, (Clz*!]), n > 3, proceeds as follows:

e Step 1: Use the Elementary Column Property provided by Theorem 11.2.1 to reduce
the problem of obtaining a general realization algorithm over the Laurent polynomial
ring Cz*!] to the problem of finding a realization algorithm for the matrices of the

following special form:

0
0 | € SL3(dz*!)).
1

[T - |
(== S



124

That is, for a given unimodular matrix A € SL,(CJz*!)), find elementary matrices
Ei,...,E; such that

p g O
E.---E;JA = r s O
0 0 I,,

Step 2: Since (p
r

) is a unimodular column vector over Cjz*'}, by following the

. . . P\. .
procedure outlined in the previous section, we can assume that is a unimodular
r

column vector over the polynomial ring Clz], p=1 (mod z;---z,) and r = 0

(mod zy---2nm).

Step 3: Now, consider the unimodular row vector (p,g) over S[z¥!] with the coeffi-
cient ring S being C[z¥',...,z£!]). Since p is a polynomial in S[z;] and its constant
term is 1, by adding a suitable multiple of p to g and by noting that this elementary

column operation does not change r, we can assume that g is a polynomial in S[z,]

. . - P q
and its constant term is zero. Then the condition, = 1, forces s to be also a
r s

polynomial in §[z;] whose constant term is 1. Now, using the new variables y;..... Ym

defined by z; = y1 - (2 Ym)"s T2 = y2r.... T = ym for a sufficiently large | € K.

we see that ,
p g0
r s 0| €SL3(Cly)).
0 0 1
Step 4: Use the Realization Algorithm over polynomial rings developed in the chapter
p g0
4towrite | r s 0| € SL3(Cly]) as a product of elementary matrices over Cy] and
0 01

then change the variables back to z;,...,zp.
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