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Abstract

A Computational Theory of Laurent Polynomial Rings and Multidimensional FIR

Systems

by

HYUNG-JU PARK

Doctor of Philosophy in Mathematics

University of California at Berkeley

A Laurent polynomial ring is a natural ground ring for the study of FIR (Finite Impulse

Response) systems in signal processing sincean FIR filter bank can be seen as a matrix over

this ring, and the notion of perfect reconstruction is represented by the unimodularity of

the corresponding multivariate Laurent polynomial matrices. Contrary to the conventional

affine approach to the theory of multidimensional FIR filter banks as a linear algebra

over polynomial rings, the toric approach based on Laurent polynomial rings offers a more

adequate framework. In connection with these applications, we look at the computational

aspects of the theory of modules over Laurent polynomial rings, and develop a few of their

applications to signal processing:

• A new, computationally effective algorithm for the Quillen-Suslin Theorem is found,

and implemented using the computer algebra package SINGULAR.

• An algorithmic proof of Suslin's Stability Theorem is found, which gives an analogue

of Gaussian Elimination over a polynomial ring.

• An algorithmic process of converting results over polynomial rings to their counter

parts over Laurent polynomial rings is developed. With the help of this process, we

extend the above two algorithms, the Quillen-Suslin Theorem and Suslin's Stability

Theorem, to the case of Laurent polynomial rings.

• A notion of inner product spaces over Laurent polynomial rings is introduced, and a

theoretical framework for this notion is developed.



• A few outstanding problems in multidimensional perfect reconstructing filter banks

are shown to be solvable with the aid of the above algorithms. Explicit examples are

included that are worked out by SINGULAR.
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Part I

Modules over Laurent Polynomial

Rings



Chapter 1

Introduction to Part I: History

and Problems

The theory of ideals and (finitely generated and projective) modules over polyno

mial rings and Laurent polynomial rings1 has been studied in various contexts. Geometri

cally, such ideals and modules correspond to affine and toric varieties, and vector bundles

over them, respectively. And algebro-geometric results concerning algebraic vector bundles

over an algebraic torus directly affect the FIR filter bank theory since finitely generated

projective modules over a Laurent polynomial ring are represented by such vector bundles.

Computational aspects of this theory, however, have a relatively short history, and

Grobner bases theory provides the foundation for them, with the Buchberger algorithm

acting as the universal engine that drives many computations. In Chapter 2, we will review

this Grobner bases theory in a brief and self-contained manner.

In 1955, Jean Pierre Serre made a conjecture regarding the triviality of algebraic

vector bundles over an affine space. This problem became a daunting task for many mathe

maticians, and was fully solved only in 1976, 20 years after the question was raised. Serres

conjecture, which is now known as the Quillen-Suslin theorem after the two mathematicians

whoindependently solved this longstanding problem, states that any finitely generated pro

jective module over a polynomial rings is free. And in 1978, R.G. Swan [Swa78] extended

this result to the case of Laurent polynomial rings.

'Unless otherwise specified, we will generally assume throughout this thesis that the coefficient rings of
these polynomial rings and Laurent polynomial rings are fields even though many results can be readily
extended to more general kinds of coefficient rings.



While the original proofs byQuillen [Qui76] and Suslin [Sus76] are nonconstructive,

new constructive proofs were found lately [LS92], [Fit93], [FG90], which give us algorithmic

ways offinding a free basis ofany given (f.g. and projective) module over a polynomial ring.

In Chapter 3, we give a new, and readily implementable algorithm for the same purpose,

that is based on a syzygy computation. This algorithm is very easily implementable since

syzygy computation is already a standard part of many computer algebra packages, e.g.

Macaulay* and SINGULAR3. We present a few examples which are worked out in detail by
the computer algebra package SINGULAR.

Immediately after proving the Serre Conjecture, A.A. Suslin went on to prove the

following A'i-analogue of Serre's conjecture [Sus77, Thm. 6.3].

Suslin's Stability Theorem. Let R be a commutative Noetherian ring and
t? > max(3,dim(i?) + 2). Then, any n x n matrix A = (/tJ) of determinant
1, with fij elements of the polynomial ring 7?[ii,...,arm], can be written as a
product of elementary matrices over /?[ii,..., xm].

In Chapter 4, we develop an algorithmic proofof the above assertion over a field R = Jfc,

which gives an analogue of the Gaussian elimination algorithm over a multivariate polyno

mial ring fc[a?i,...,xm]. Our method is inspired by the Logar-Sturmfels algorithm. [LS92],
for the Quillen-Suslin Theorem.

For a given A € SL^A;^,. ..,xj) with n > 3, the algorithm of this chapter

produces elementary matrices Ei,...,E, € En{k[x1,...,xm]) such that A = E! ---E,, and
implementation of this algorithm involves use of Grobner bases.

Suslin's stability theorem established in Chapter 4 fails for 7? = 2, and a counter

example was constructed by P.M. Cohn in [Coh66]. In Chapter 5, we will develop an

algorithm determining precisely when a given matrix in SL2(fr[:r1 xm]) allows such a
factorization into elementary matrices, and if it does, expressing it as a product of elemen
tary matrices.

In Chapter 6, we extend our algorithm for the Quillen-Suslin Theorem to the case

of Laurent polynomial rings. For a commutative ring /?, we call v = (vt rn) € R"
unimodular if its components generate R, i.e. if there exist g\,...,gn € R such that

Macaulay is a computer algebra system for algebraic geometry and commutative algebra, developed by
M. Stillman and D. Bayer. It is available freely by anonymous ftp from ftp.math.harvard.edu. For more
information, see [BS].

SINGULAR is a computer algebra system for singularity theory and algebraic geometry, developed in
the University ofKaiserslautern, Germany. It is still being alpha-tested, and isfreely available by anonymous
ftp from helios.mathematik.uni-kl.de. For more information, see [GPS95].



*>i<7i H Kun0n = 1. And in this chapter, we develop a systematic process of converting

Laurent polynomial vectors to polynomial vectors while preserving unimodularity. The

same process will be used in Chapter 11 to extend our algorithm for the Suslin's Stability

Theorem to the case of Laurent polynomial rings. A similar idea of changing variables was

used by A. Suslin in [Sus77].

In Chapter 7, we develop the notion of inner product spaces over Laurent polyno

mial rings, and study the unitary group with respect to the canonical group ring involution

over Laurent polynomial rings.

Notations

• A field is typically denoted by k while R,C denote the field of real numbers and the

field of complex numbers.

• A ring always means a commutative ring with identity unless otherwise specified, and

is denoted by roman characters: e.g. A, i?, etc.

• Modules over a ring are denoted by M,N, etc.

• Elements of a module are denoted by bold-face characters: e.g. f, v, etc.

• Matrices over a ring are denoted by bold-face characters: e.g. A,B,E, etc.



Chapter 2

Grobner Bases (Standard Bases)

"• •• In view of the ubiquity of scientific problems modeled by polynomial equa
tions, this subject is of interest not only to mathematicians, but also to an
increasing number of scientists and engineers. In this context, Grobner bases
theory provides the foundation for many algorithms in algebraic geometry and
commutative algebra, with the Buchberger algorithm acting as the engine that
drives many computations. •" (B. Sturmfels, [Stu94]).

2.1 Brief History

The Hilbert Basis Theorem states that any ideal ofa polynomial ring isfinitely gen

erated. However, Hilbert's original proof is nonobstructive and does not offer an effective

way offinding a finite setofgenerators for a given ideal ofa polynomial ring. Determining if
a given polynomial belongs to a particular ideal is not an easy problem, either. Even when

we have an explicit (and finite) set of generators for the ideal and a polynomial known to

be a member of the ideal, writing this polynomial as a linear combination with polynomial
coefficients of the given generators could already be a daunting task.

In his celebrated 1964 paper [Hir64], H. Hironaka1 answered this ideal membership

question by introducing special kinds ofideal generators called standard bases. Slightly later,

B. Buchberger independently and effectively addressed the same problem in his Ph.D the

sis [Buc65], but used the name Grobner bases in honor of his thesis advisor \V. Grobner. It

was mainly Buchberger's continued works that inspired far more research on the theoretical

and computational aspects of Grobner bases and their applications to various mathematical

'According to D. Eisenbud [Eis95], earlier mathematicians like P. Gordan. F. Macaulay. and VV. Grobner
already had found the notion of Grobner Bases, and used them for their respective problems.



and scientific problems.

Nowadays, Grobner bases have become a very important tool in computational

algebra and computational algebraic geometry, and are implemented in many commercial

and noncommercial computer algebra packages.

The explicit Grobner basis computations for the examples in the remaining chap

tersof this thesis were carried out by using two noncommercial computer algebra packages:
Macaulay (see [BS]) and SINGULAR (see [GPS95]).

[CL092], [Mis93], [BW93], [Eis95] areexcellent references for more information on

Grobner bases and their applications.

B. Sturmfels' unpublished lecture notes [Stu94] from New Mexico State Univer

sity Holiday Symposium 94 offers a state-of-the-art exposition on relatively new polytope

theoretic aspects of Grobner bases and their application to integer programming.

2.2 Monomial Order

From now on, we will use the following shorthand notations.

• x := (»!,...,a?m),

• For d = (<*!,.. .,rfm) €Z£0, xd := xf1 •••**».

Definition 2.2.1 Let M be afinitely generated free module over k[x] = k[xi,..., xm] with
basis e,-, 1 < i < n.

1. A monomial in M is an element of the form

m = a;det-, 0 < d{ e Z,

and Mono(.A'f) is the set of all the monomials in M.

2. A term2 in M is a monomial multiplied by a scalar.

3. A monomial order is a linear order •< on Wlono(M) such that, */ti,t2 € M.ono{M)

and l^se Mono(fc[a:]), then ti •< t2 implies tx < ti •s -< t2 •s.

The definitions of term and monomial vary in the literature, e.g. our term (resp. monomial) is
monomial (resp. term) in [Mis93].



4. Letc = (cu..., cm), d = (a*!,...,dm) € Z£0. Then for two monomials 1= a:cet and

m = ajde,, we say 1divides m t/1 = j and 0< c8 < d9 Vs. In this case, we define

m/1 := xd-cet.

Now, fix a monomial order -< on Mono(Af). Any nonzero term t € M can be

uniquely written in the form t = am for some nonzero a € k and m € Mono(X), and for

two nonzero terms ti = aimi and t2 = a2m2, we loosely say 0 < ti -< t2 if mi -< m2.

This is obviously an abuse of notation because it implies, for example, 2x2y < Sx2y and

3x2y X2x2y at the same time. Note also that any f e M can be uniquely written as

f = ti+t2 + --- + tj

where t1?..., t/ are nonzero terms in M such that ti -< t2 -<•••-< t/. The term t/ = a/m/

is called the leading term or initial term off and is denoted as lt(f) or in(f). We call a/ and
m/ the leading coefficient and the leading monomial off, respectively, and denote them by
lc(f) and lm(f). For f,g € At, we say f -< g if lm(f) < lm(g). It should be noted that,

if we change the monomial order on Mono(jVf), then we may have a different lt(f) for the
same f G M.

Throughout this thesis, we will use the word leading interchangeably with the word
initial Also, by a fc[a:]-module, we will always mean a finitely generated fc[x]-module. and
thus, is actually a submodule of a finitely generated free module over k[x]. Since monomials
in a finitely generated free /r[a:]-module were defined in the above, we can now talk of

monomials in an arbitrary finitely generated fc[x]-module by regarding them as elements
in a fixed ambient free module. In the following subsections, we will describe some of the

most commonly used monomial orders in practice: lexicographic, degree lexicographic, and
reverse degree lexicographic order.

2.2.1 Univariate Case

There is a natural (and in fact unique) monomial order on Mono(A*[j]), that is,

1 -< x •< x2 -< x3 -< • • •.

IfAT is a submodule of a free module {k[x])n with ei,.. .,e„ being the free basis, then for
two monomials x°ei,x(3ej € A/",

x°e,- -< x0ej <?=$> i > j or a < 13.



2.2.2 Lexicographic Order

When the ambient free module is k[x]% for a = {au..., o/m) and /3 = (ft,..., /?m),

*a -<lex *0<=» 31<i <m:ax =ft,.. .,(*,_! =ft^a,- <ft.

When the ambient free module is (A:[a:])n with ei,.. .,en being the free basis, for
a and /3 same as in the above,

«Qe,- ^iex x@ej «=!• i >j or xa -<iex x&.

Example 2.2.2 Let M = (*[z,t/,*])2 with fc[x, j/, z]-basis ei,e2. Then, with respect to the
lexicographic order, *V^ >lex x2yz2e1 Hex y3z4ei ylex e] y]ex x5e2 ^,ex zt/22e2 ylex
*5e2 >-jex e2. Also, note that

lt(2ar2y3^e1+3y324e1) = 2x2y3ze1

lt(-ei +ye2 + xze2) = -e2.

Proposition 2.2.3 (Characteristic property of lex order) If f e k[xi xm] satisfies
lt/er(/) € k[x8,xa+ll...,xm] for some s, then /€ k[xs,x3+iy.. .,xm].

•Proof: An easy exercise. •

2.2.3 Degree Lexicographic Order

When the ambient free module is k[x], for a = (q-j, ..., am) and /3 = (ft ,Jm).

xa -<dlex x& <=> deg(a5Q) <deg(a^), where deg(a;Q) =q, +•.. +Qm, or
deg(a;Q) = deg(a^) and 3 1< i < m:
Qi =ft,...,a,_, =ft_1,Q, < ft.

When the ambient free module is (k[x])n, we extend above ideal-case order to this
module case in the same way as in the previous subsections.

Proposition 2.2.4 /// € k[xu...txn] is homogeneous with ltd/er(/) € k[xa%xa+1 xn]
for some s, then f € k[xa, xs+1,..., xm].

Proof: An easy exercise. •
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2.2.4 Reverse Degree Lexicographic Order

When the ambient free module is k[x], for a = (ai,..., am) and ,3 = (ft,..., ft,),

xQ -Crdiex x& <=* deg(xQ) <deg(^), where deg(xa) =ai +•••+am, or
deg(a;a) = deg(x^) and 3 1< i < m:

Q'n = An •••, ^i+l = A+lt <*i > A-

Again, we can extend this ideal-case order to the general module case in the same
way as in the previous subsections.

This reverse degree lexicographic order (or simply reverse lexicographic order) is
the monomial order that we will use for most of our computations throughout this thesis.
As Bayer and Stillman showed in [BS87a] and [BS87b], the use of this monomial order
sometimes improves the efficiency of the computation enormously.

Example 2.2.5 Consider the two monomials Xix3%xl € k[xux2>x3]. Then, xix3 ydlex x\
while XiX3 -<rd]ex x\. D

Proposition 2.2.6 /// €*[*, i„] is homogeneous with ltrfr/«,(/) € {x9. r5+1 jm>
for some s. then / € <*„ x5+1 xm).

Proof: An easy exercise. •

2.3 Grobner Bases and Division Algorithm

Definition 2.3.1 1. Ak[x]-module is called amonomial module //;'/ is generated by
a finite number of monomials.

2. For a subset S of afree k[x].moduk M with afixed monomial order, wc denote by
in(5) (orh(S)) the set ofthe initial terms (or leading terms) of elements ofS, i.e.

in(S):={lt(/)|/€S}.

3. The initial module associated to a subset S of a free k[x]-modulc M with a find
monomial order is the module generated by the elements of'm[S). i.e.

<in(5))=({lt(/)|/€5}).
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Remark 2.3.2 By Dickson's Lemma, any fr[a:]-module generated by monomials is actually

generated by a finite number of monomials, and henceforth a monomial module. Therefore

the finiteness condition in the above definition of a monomial module is not necessary, and

the initial module (lt(5)) associated to any subset S of a free fc[x]-module is a monomial

module. For a proofof Dickson's Lemma, see [CL092] or [Mis93].

Let {f\,.. .,f/} be a set ofgenerators for Af. Then, since each lt(ft) € lt(Af), the
monomial module (lt(fi),...,lt(ff)) is clearly contained in the monomial module (lt(AO).
Now one can ask when these two monomial modules coincide.

First note that Af is the set of all the linear combinations (with coefficients from

k[x]) of£'s. Therefore, ifone can form a linear combination (with coefficients from k[x])
of f,'s so that the resulting combination has the leading term not divisible by any oflt(fj),
1 < ; < /, then (lt(fi),... ,lt(f,)) is a proper submodule of (lt(AO).

Example 2.3.3 Fix the degree lexicographic order on k[x,y], and let 2 = (f,g), with
/ = 1 - xy and g = x2. Then the relation

{l + xy)f + y2g = 1

implies that we can form a linear combination of/ and g so that the resulting combination

is strictly smaller than / and g (w.r.t. the monomial order), i.e. the resulting combination

has the leading term 1 which is not divisible by either of lt(/) or It(^), and thus not in
(lt(/),lt(p)>. Therefore, (lt(/),h%)) is a proper submodule of (lt(J)).

Actually, I = k[x, y], and therefore (lt(J)> = k[x, y] while

(W)M9)) = (-xy,*2) c (x).

a

Definition 2.3.4 Let Af be a submodule of a a free k[x)-module M. Then w.r.t. a fixed
monomial order on M,

1. G = {fi,..., f/} C N C M is called a Grobner basis of Af if

<lt(f,),...,lt(ii)> = <lt(A0)

i.e. if the submodule generated by lt(fi),...,lt(fj) coincides with the initial module

(It{Af)) associated to Af.
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2. G= {fi,..., f/} C Af is called a minimal Grobner basis ofAf ifG is a Grobner basis
with lc(fj) = 1 Vt, and no monomial in this set is redundant.

3. G= {fi,...,f/} C Af is called a reduced Grobner basis ofAfifG is a Grobner basis
with lc(f,) = 1Vi, and for any two f,,f, € G, no term offj is divisible by lt(f,).

Remark 2.3.5 It actually turns out that Af always has a unique reduced Grobner basis.

Example 2.3.6 The computation done in the previous example shows that {1 - art/, x2} is
a not a Grobner basis. •

Before proceeding to the multivariate division algorithm, let us take a look at the

univariate polynomial case: For any given polynomials /, g € k[x] with g ^ 0, the Euclidean
Division Algorithm constructs an expression of the form

/ = gg-rr

with deg{qg) = deg(/) and deg(r) < deg(#). With respect to the usual univariate monomial

order, we can restate these conditions on qand r by saying that lt(/) = It{qg) and none of
the monomials of r is in the monomial ideal (\l[g)).

Now, we define a natural multivariate analogue of Euclidean Division.

Definition 2.3.7 Let M be a free k[x]-module with a fixed monomial order -<. and F =

{fi ,f/} be an ordered subset of M. Then for a nonzero f £ M, astandard expression
off in terms of F (or ft 's) is an expression

I

f = X>«'f' +r' hi€k[x],r€M
«=i

such that lt(/) >: lt^,/,) V?\ and r € k[x] is a k-linear combination of monomials not in
<lt(fi) lt(f/)>.

Example 2.3.8 Let /i = 1- xy, f2 = x2e k[x,y]. Then, w.r.t. the lex order with x y y.

x3y-l = -a^/j + ^-l

is a standard expression while

l = (l + *y)/i + y2/2

is not. Actually, the unique standard expression of1 in terms of fuf2 is 1 = 0-/i + 0-/2-f 1.

and thus 1 is not divisible by {/i,/2}. D
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Theorem 2.3.9 Let M be a free k[x]~module with a fixed monomial order -<, and F =

{fi,...,f/} be an ordered subset of M. Then there is an algorithm that yields a unique
standard expression in terms of f, 'sfor any given nonzero f € M.

Proof: We have to construct the following Division Algorithm.

Algorithm 2.1: Division Algorithm

Input: fi,...,f/,f eM withf ^0

Output: hi,...,hi e k[x], r 6 M

Specification f = ^t=i h& + r is a standard expression

Initialize i = 0 and let r0 := f.

WHILE r, :=f - £j>=1 mpfSp / 0 DO
IF no lt(fj) divides a monomial of f,

THEN for each j = 1,...,/, set

f := f,

hj := ]£ mP
{p\sP=j}

ELSE let f be the maximal term off, that is divisible by some lt(fj), and let

s.'+i '•— J

f.+l := f/H(fi)

i := i + l

The termination of this algorithm is guaranteed since the maximal term of r, divisible by
some lt(fj) decreases at each step. D

Definition 2.3.10 1. The unique polynomial vector r GM in the above Division Algo
rithm is called the remainder or normal form of f on division by F, and denoted

byN(t,F).

2. If the Division Algorithm applied to f yields zero as its remainder, then we say f is

divisible by F, or f reduces to zero on division by F.
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Remark 2.3.11 The Division Algorithm depends on the ordering of the elements of F =

{fi,...,f/}, i.e. changing the order of f,'s will produce different standard expressions for
the same f.

Example 2.3.12 Let / = 2x2y - 3xy2 + y2, fx = xy - 1, f2 = y2 - 1€ k[x, y], and use the
lex order with x y y as the fixed monomial order on k[x,y]. Apply the Division Algorithm
to find a standard expression of / in terms of f\ and /2:

We note first that lt(/i) = xy and lt(/2) = y2.

• ?' = 0: Since lt(/i) = xy divides lt(r0) = 2x2y,

r0 = / = 2x2y - 3xy2 + y2

m = 2x2y

3 = 1

«i = 1

mi = m/\t{fj) = 2x2y/(xy) = 2x.

• i=l:

r, = f-mifS} ={2x2y-Zxy2 + y2)-2x{xy-l) = -3xy2 + 2x + y2

m = —3xy2

j = 1

52 = 1

m2 = m/hifj) = -3xy2/{xy) = -3y.

• i = 2:

r2 = f-mifax -m2fS2 = r, - m2fi = (-Zxy2 + 2x + y2) + Zy{xy - 1)

= 2x + y2-3y

m = y2

j = 2

s3 = 2

m3 = m/lt(/j) = y2/y2 = l.
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i = 3:

r3 = f-mifai-m2f$2-m3fS3=r2-m3f2 = (2x + y2-Zy)-(y2-l)

= 2x-3y+l.

Now, note that neither of lt(/x) nor lt(/2) divides a monomial of r3. Therefore the

process terminates here, and

r = r3 = 2x-3y+l

hi = ^ mp = mi + m2 = 2x - 3y
{P|ap=i>

h2 = 2J mp = m3 = 1-
{p|sp=2}

Finally, we get the following standard expression of / in terms of /i and f2:

f = hifi+h2f2-\-r

= (2x-3y)/1 + /2 + 2x-3y+l.

The following corollary, together with the above Division Algorithm, shows why a

Grobner basis is so special among many sets of ideal generators.

Corollary 2.3.13 (Submodule Membership Algorithm) Suppose Af is a submodule

of a free k[x]-module M with a fixed monomial order -< and G = {fi,.. .,f/} C N is a

Grobner basis of Af. Then, there is an algorithm for writing any f € M in the form

f = /i1f1 + ... + /l/f/ + p1 hiek[x],reM

such that f € Af if and only ifr = 0.

Proof: One direction (<=) is obvious.

If f € Af and r ^ 0, apply the Division Algorithm to get a standard expression of

f in terms of f,'s: f = hifi -\ \- h\i\ + r. Note that the Division Algorithm necessarily

requires lt(r) £ (lt(fi),..., lt(f/)).

Now, noting r = f - £i=i /itf,- € Af and (lt(Af)) = (lt(fi),..., lt(f/)>, we get

lt(r) € <lt(^)> = <lt(f,) lt(fi)>,

which is a contradiction. D
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Theorem 2.3.14 (Buchberger Algorithm) Any submodule of a free k[x]-module has a

Grobner basis w.r.t. an arbitrary fixed monomial order.

We will prove this theorem in the next section by giving an algorithm that con

structs a Grobner basis for any given submodule of a free &[x]-module.

Definition 2.3.15 Let Af be a submodule of a free k[x]-module M. Then the monomials

of M which do not lie in the initial module (lt(/)) := <{lt(f) | f € S}) associated to Af are

called the standard monomials w.r.t. Af.

Corollary 2.3.16 (Macaulay) Let Ar be a submodule of a free k[x]-module M. Then the

(images of the) standard monomials w.r.t Ar form a k-vector space basis for M/A'.

Proof: In order to show that the standard monomials span M/A1" as a k-vector space, let

{gi g/} be a Grobner basis for Ar whose existence is guaranteed by the Theorem 2.3.14.

Now choose an arbitrary g € M/A'. and use the above Division Algorithm to write g € M

in the form g = /*igH 1- higi + r. Then g = r (mod /), where r € M is a fc-linear

combinations of monomials not in <lt(gi) lt(g/)) = (lt(Ar)>. Therefore, g € M/X is a

fc-linear combination of standard monomials w.r.t A'.

To show the linear independence, assume we have nonzero standard monomials.

nvs, 1 < i < /, w.r.t. Ar such that

f=£c,m, e X,

for some nonzero ct's in k. Then lt(f) € (It(A')). But this is a contradiction since lt(f) is
one of c,m,'s and m, is a standard monomial, i.e. not in (It(A')). D

2.4 Buchberger Algorithm

By the Hilbert Basis Theorem, any submodule X of a f.g. free module M over

k[x] isgenerated by finitely many elements, say, fi,..., f/ € X. Now, we intend to construct

a Grobner basis for A'' out of these generators.

Definition 2.4.1 Let X be a submodule of a free k[x]-module M and fi%f2 be elements of

X such that lt(fi) and lt(f2) involve the same basis element ej ofM. Then the 5-pair of
fi and f2 is defined by

S(f!,f2) := A,fi-M2.
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where hi,h2 Gk[x] are the smallest degrees terms making the cancellation

lt(Mi) = IMMb).

(One finds that fc,-ej = lt(f,)/gcd(lt(f1),lt(f2)).; If \t(fi) and lt(f2) involve distinct basis
elements of M, we set 5(fi,f2) := 0.

The following theorem offers an important algorithmiccriterion in terms of S-pairs

to test if a given set of generators for X is in fact a Grobner basis.

Theorem 2.4.2 (Buchberger's Criterion) The set G = {fi,.. .,f/} is a Grobner basis

ifffor allpairs i ^ j, the remainder on division of the S-pair S(f,, f,) by G is zero.

Proof: See the Theorem 15.8 of [Eis95]. •

Now above theorem allows us to construct a Grobner basis for AT in a finite number

steps by the following algorithm. Again we let X be a submodule of a free &[aj]-module M.

Algorithm 2.2: Buchberger Algorithm

Input: G = {fi,..., f/}, a set of generators for Af

Output: {gi,...,gp}, a Grobner basis forX

• Step 1: If all the 5(f,,fj)'s, i ^ j, have zero remainders on division by G, then G is

a Grobner basis by the Theorem 2.4.2. Give G as the output.

• Step 2: If some 5(f„fj) has a nonzero remainder Stj := N(5(ft-,f,),G), then replace

G by the enlarged set {fi,.. .,f/,StJ}, and go back to Step 1:.

Since the submodule generated by the leading terms of flt.. .,f/,S,j is strictly

larger than (lt(fi),.. .,lt(f/)), this process must terminate after finitely many steps.

The Buchberger Algorithm outlined in the above does not necessarily yield a min

imal Grobner basis, and the following lemma lets us eliminate some redundant generators.

Lemma 2.4.3 Let G be a Grobner basis for a submodule X of a free k[x]-module. If there

isfeG such that lt(f) <E (lt(G - {f})), then G - {f} is also a Grobner basis for X.
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Proof: Bydefinition, (lt(G)> = (lt(/)>. If lt(f) € <lt(G-{f})>, then (lt(G-{f})> = (lt(G)>.

Now by definition, it follows that G - {f} is a Grobner basis. D

Example 2.4.4 Find a minimal Grobner basis for G = {1 - xy,x2} € k[x,y] using the

Buchberger Algorithm, and express each element of the Grobner basis as a linear combina

tion (with coefficients from &[x,y]) of 1 - xy,x2:

• Step 1: The remainder of 5(1 - xy,x2) = x • (1 - xy) + y • x2 = a: on division

by {1 - xy,*2} is simply itself, x, which is nonzero. Hence, we have to enlarge G
to {1 - xy,x2,x}. But x2 is redundant since it is divisible by x. Therefore, let
Gi = {1- xy,x}.

• Step 2: The remainder of 5(1 - xy,x) = 1 • (1 - xy) + y • x = 1 on division by

{1 - xy.x} is 1, which is nonzero. Hence, we have to enlarge Gi to {1 - xy.x.l}.

Now, note that 1-xy, x are redundant since each of them is divisible by 1. Therefore.

{1} is a Grobner basis for G = {1 - xy.x2} € k[x,y].

Since (1 - xy, x2) = (1). we should be able toexpress 1as a linear combination of1- xy. x2.
For this purpose, we retrace the above process ofgetting to {1}:

1 = 5(1-xy,x)= (1-xy) + y-x

= (l-xy)-fy5(l-xy,x2)

= (l-xy) + y(x(l-xy) + y-x2)

= (l + xy)(l-xy) + y2x2.

Example 2.4.5 (Ideal Membership) Let / = 2x2y - 3xy2 + y2, fx = xy - 1, f2 =

y2 - 1 € k[x,y]. Determine if / belongs to the ideal (/i,/2) C A*[x,y].

We will use the lex order with x y y as our fixed monomial order on A-[x,y]. In

order to apply the Corollary 2.3.13, we first have to find a Grobner basis for G = {/i, /2}:

• Step 1: The remainder of 5(/i,/2) = y{xy - 1) - x(y2 - 1) = x - y on division by

{xy - l,y2 - 1} is simply itself, x - y, which is nonzero. Hence, we have to enlarge
G to {xy - l,y2 - l,x - y}. But according to the Lemma 2.4.3, xy - 1 is redundant
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since its leading term xy is divisible by the leading term of x - y. Therefore, let

Gi = {y2-l,x-y}.

• Step 2: S(y2 - l,x - y) = x • (y2 - 1) - y2 • (x - y) = -x + y3 is divisible by

{xy - 1,y2 - 1} since the Division Algorithm yields

-x-ry3 = y.(y2-l)-l.(ar-y).

Hence, Gi = {y2 - 1,x - y} is a minimal Grobner basis for G = {/i,/2} (one checks

easily that this is actually the unique reduced Grobner basis for G = {/i,/2}).

Now apply the Division Algorithm to find a standard expression of / in terms of Gi. One

finds that the remainder is y + 1, which is nonzero. Therefore, we conclude from the

Corollary 2.3.13 that

ft(fuf%).

2.5 Syzygy Computation

Let M be a free fc[a?]-module of rank q with free basis {ei,...,e9}. We will

occasionally identify an element of M with a q dimensional column vector with entries

from k[x] by writing it as a unique linear combination (with coefficients from k[x]) of the
given basis elements.

Now let vi,..., vp be elements of M = (fc[a>])9.

Definition 2.5.1 A syzygy of the ordered set F = {vi,...,vp} is a polynomial vector
h = (hi,..., hp) e {k[x])p such that

A1vi + ---+fcpvp = 0€ {k[x])q.

Consider the homomorphism a of free fc[a:]-modules defined as follows:

a: (Afc*1])* —* (*[*="])«

(hi,..., hp) h* hiVi + hftpVp.

Then a syzygy of F = {vi,..., vp} is simply an element of Ker(a), and we see that the set

of all the syzygies of F coincides with Ker(a), thus makes a fc[x]-module itself.
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Now the Hilbert Basis Theorem tells us that Ker(a), the module of syzygies of F,

has a finite number ofgenerators, but it does not give us an effective way of finding them.

Actually, when Vi,..., vp 6 (k[x])q satisfy an additional condition called unimod

ularity condition, then Ker(a) turns out to be free, and thus an arbitrary syzygy can be

written as a unique linear combination (with coefficients from k[x]) of the elements of a

free basis of Ker(a). This result is a consequence of the Quillen-Suslin Theorem, and will

be studied in more detail in the next chapter.

Since the Buchberger Algorithm ofthe previous section gives usa way ofexpressing

each remainder StJ := N(5(f,-, f,),G) as a linear combination offt's, iftheremainder S„ = 0,
then we get a linear combination among the f,'s being equal to zero, i.e. a syzygy. Now a

theorem ofSchreyer states that these syzygies generate the entire module ofsyzygies. For
a more detailed exposition, see the section 15.5 in [Eis95].



21

Chapter 3

A Syzygy-based Algorithm for the

Quillen-Suslin Theorem

3.1 A Conjecture of Serre

In FAC ([Ser55], 1955), J.-P. Serre pointed out that no example was known of a

nontrivial algebraic vector bundle over an affine space, and this observation became a fact

when D. Quillen and A. Suslin proved it as a theorem in 1976.

Definition 3.1.1 Let R be a commutative ring with identity. Then a module M over R is

called projective if it is a direct summand of a free module over R.

Since locally trivial algebraic vector bundles are interpreted as locally free coherent sheaves,

we can reformulate the Serre's Conjecture as

[1] Any finitely generated projective module over a polynomial ring (with coeffi
cients from a field) is free.

Definition 3.1.2 Let R be a commutative ring.

1. Let v = (vi,. ..,vny 6 Rn for some n € N. Then v is called a unimodular column

vector if its components generate R, i.e. if there exist gi,...,gn € R such that

vigi + '- + vngn = 1.

2. A matrix A € Mpq(R) is called a unimodular matrix if its maximal minors generate

the unit ideal in R.
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Remark 3.1.3 When R = k[xi,.. .,xm] is a polynomial ring and v £ Rn is a unimodular

vector, we can explicitly find these gfs either by using the effective Nullstellensatz (see

[FG90]) or by retracing the steps in computing a Grobner basis G = {1} for (vu..., v„).

The following lemma gives an important property of a unimodular vector.

Lemma 3.1.4 Let R be a commutative ring and v e Rn. Then, Rv C Rn splits as a direct
summand if and only ifv£Rn is unimodular.

Proof: Suppose Rv is a direct summand of Rn and v = JTJLj t>tet-. Write Rv®X = Rn for

some submodule Ar of Rn. Then any element of Rn can be written uniquely in the form,

av + w, for some a 6 fi and w 6 X. Define an fl-module homomorphism / : Rn -> R by

f(av + w) = a. Then since /(v) = 1 = £?=1 u,/(et), v is unimodular. Conversely, if v =

E?=i v&i € i?n is unimodular, then there exists gx,.. .,gn e Rsuch that J^JLj u^,- = 1e R.
Defining an i?-module homomorphism a : Rn -4 R by a(e,) = p,-, we get the following short
exact sequence:

0 —• Ker(a-) —> Rn -^ 7? —> 0.

Defining an i?-module homomorphism f3 : R-> Rn by /3(a) = av, we see that the

above short exact sequence splits. Hence, Rv is a direct summand of Rn. D

Actually, this lemma is a special case of the following well known result whose
proof is essentially same as in the above proof.

Lemma 3.1.5 Let R be a commutative ring, and M € MP9(i?) for p > q. Then M is
unimodular if and only if its q column vectors form a free basis of a rank q submodule of
Rp that splits as a direct summand.

Now consider the following statement over polynomial rings.

[2] (Unimodular Completion) Let A be a p x q unimodular matrix. p> q.
with polynomial entries, i.e. a matrix over k[x] := k[xu...,xm]. Then A can
be completed to a square px p unimodular matrix A € GLp(A-[<r]) by adding
p - q columns to the matrix A.
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p-q

A =

Figure 3.1: Unimodular completion of A to A

We claim that Serre's Conjecture [1] is equivalent to the above elementary linear

algebraic statement [2], which is actually the form Quillen and Suslin used to prove Serre's

Conjecture.

Theorem 3.1.6 The statement [1] is equivalent to the statement [2]

Proof: [1] => [2]: Consider the submodule X of the free Ar[aj]-module (&[a:])p, generated

by the q columns of A. Then the unimodularity of A implies that X separates as a direct

summand of (&[ai])9, i.e.

X®T = (k[x])p

for some submodule T of (k[x])p. Since T is a direct summand of (k[x])p, it is a projective

&[a;]-module. We can, therefore, apply the statement [1] to conclude that T is free. Let

vi,..., vp_9 € (&[a:])p be a free basis for T, i.e.

r = ®p:qik[x)vi.

Now regarding vt's as p dimensional column vectors, add them to the matrix A to make a

p x p matrix. The resulting square matrix is unimodular since its column vectors form a

basis for (fc[a;])p.

[2] => [1]: First, we need to establish the fact that every projective module X over a

polynomial ring k[x] is stably free, i.e. X® (fc[x])9 =* (k[x])p for somep,q e Z>0.



24

To see this, consider a free resolution of the projective module

0 -> Tm -> Tn-i -> >T0 -> T-i = AT -> 0.

Note here that we are using the Hilbert Syzygy Theorem to obtain a free resolution of X

whose length is bounded by m, the number of variables. Then, denoting the kernel of the

module homomorphism F, —> /%_! by A/J, we have

ro^x®xQ,Ti^Xo®Xi,T2 = Xi<$)X2,''',rn^xn-i.

Therefore we get

A'a^e^e--- * x®(Ar0@Ari)®(Ar2®x3)®--

=- (AreA/'o)0(A/i©A^2)e---

which implies that Ar is stably free.

Now that we haveX& (k[x])q = (k[x])p, we can make a p x q unimodular polyno

mial matrix whose column vectors form a free basis for (/r[a?])9 C (k[x])p. Then apply the

statement [2] to complete this pxq matrix to a squarepxp unimodular matrix. Then the

last p - q columns of this square matrix form a free basis for A'. D

Remark 3.1.7 The second part of the proof is based on the Hilbert Syzygy Theorem in

assuming the existence of a finite free resolution of a projective module over a polynomial

ring. An algorithmic construction ofsuch a free resolution can be found in [LS92].

In the following section, we will attempt to develop an effective algorithm for

Unimodular Completion. By using this algorithm, one not only knows the freeness of a

given f.g. projective fc[a:]-module but also can find a free basis for that module.

While there are recent algorithmic proofs of Unimodular Completion. ([LS92] and

[Fit93]), our algorithm based on a syzygy computation using Grobner basis seems to offer

a very effective algorithm which can be easily implemented since syzygy computation is al

ready a standard part of many computer algebra packages, e.g. Macaulay and SINGULAR.

3.2 A Syzygy-based Algorithm for Unimodular Completion

In the following, we will present an effective algorithm for Unimodular Completion

based on a syzygy computation using Grobner bases.



Algorithm 3.1: UnimodCompletion

Input: A = (fij) € Mpq(k[x]), p>q,& unimodular polynomial matrix

Output: A 6 GLp(fc[a:]), a square unimodular matrix

Specification: the p x q matrix made of first a columns of A is A
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This will by no means replace the proof of Unimodular Completion given in Chap

ter 4 as the Corollary 4.3.6, since we need to assume the validity of the statement of the

Quillen-Suslin Theorem to deduce the right size of a minimal syzygy basis.

Also, the first step in the algorithm is about finding a particular left inverse of

A € Mpq(k[x]), and our method for this step is due to A. Logar and B. Sturmfels [LS92].

• Step 1: Find a qx p matrix B € Mqp(k[x]) such that BA = Iq in the following way:

The column vectors of the unimodular matrix A' = (/Jt) € Mqp(k[x]) span the free

Ar[aj]-module (A:[a;])9. Therefore, we can use Grobner bases to express the standard
basis vectors ei,.. .eq 6 (k[x])g as linear combinations (with polynomial coefficients)
of the column vectors of A1.

More explicitly, denoting the i-th column vector of A* by w„ 1 < i < p, we have

. Now, use Grobner basis to find <7,j's such thatw, :=

\fij

ej :=

efl :=

/1\
0

W

0

= 01lW1 + -.. + 0lpWp = 011

= tfglWi + •••+ o9pwp = gqi

//ll\ //pi\
+ "- + <7i.

\flj \fpj

//ll\ //*\
+ • • •+ 9qp

\/l9/ \fpj

Denoting the q x p matrix (a,j) by B, we can rewrite the above set of equations as

l9\\ 9\P\ lhli

I, =

\#gi ••• gqp) \fp\
= BA.

fpq/
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• Step 2: Again, let Wi,...,wp € (M®])9 be the column vectors of A*. Now, find a

syzygy basis Si,...,sp_9 € (fc[s])p for the set {wi,.. .,wp} in the following way:

Consider the fc[x]-module homomorphism a : (fc[a;])p —• (A:[x])9 defined by A', i.e. for

any p-dimensional column vector v € (fc[x])p,

a(v) := A*v.

First, note that a is surjective due to the unimodularity of A. More explicitly, let B

be the left inverse of A found in the Step 1. Then, for any w e (k[x])q, B'w € (k[x])p

and

a(B'w) = A'(B'w)

= (BA)'w

= I„w = w.

Thus we get the following short exact sequence:

0 —4 Ker(a) —> (k[x])p -^ (k[x])q 0. (3.1)

Defining a A:[x]-module homomorphism (5 : (k[x])q -> (fr[x])p by /?(w) = B'w, we

see that the above short exact sequence splits. Hence, Ker(a) is a direct summand

of (fc[x])p, i.e. a projective module over k[x], and therefore free of rank p - q by the

Quillen-Suslin Theorem. Now find the reduced Grobner basis Si sp_g € (A*[x])p
of Ker(a).

Note that a : (A:[x])p ->• (k[x])q satisfies the following property:

/M

a( ) = hiWi + h/ipWp,

\hPJ
where wx,..., wp € (&[x])9 are the column vectors of A'.

Therefore, Ker(a) is precisely the (first) module ofsyzygies of the vectors wj,..., wp €
(k[x])q.

• Step 3: Let

s, = (sn,...,sipY, 1 <i <p- q

S = (*i) € M(p_,)g(*[x])



and define a square polynomial matrix C € Mp(k[x]) by

C =

/ 011

9q\

Sll

\S(p-q)l ••

Now, let A := C-1, and terminate the process

9\p \

9qp

S\p

S(p-q)p/
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To verify the validity of this algorithm, it remains to show, (1) that the polynomial

matrix C € Mp(k[x]) is unimodular, and (2) that A ia really a unimodular completion of

A, i.e. the first q columns of A := C-1 make A.

To show (1), just note that the row vectors of C span the free module (A:[x])p =

Im(/3) e Ker(a) ~ (k[x])q ® (k[x])p~q since the first q rows span Im(/?) and the rest of the

rows span Ker(o').

implies

To show (2), note that

CA =
B

X
e MP9(fc[x])

_ n-i x9

0

Therefore, for each 1 < i < q,

i-th column of A = Ae,

= i-th column of C -l

i.e. the first q columns of A := C 1 are same as the q columns of A as desired.
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3.3 Examples

Example 3.3.1 Define four polynomials in k[x,y,z] by

/i = 1 - xy - 2z - Axz - x2z - 2xyz + 2x2y2z - 2xz2 - 2x2z2 + 2x2yz2

f2 = 2+ 4x + x2 + 2xy-2x2y2 + 2xz + 2x2z-2x2yz

f3 = 1+ 2x+ xy - x2y2 + xz + x2z - x2yz

f\ = 2 + x + y - xy2 + z- xyz.

Verify that the polynomial vector v := (fi,f2,f3J4Y € (k[x,y,z])4 is unimodular and
find a unimodular completion of v. Defining a projective module M C (k[x, y, z])4 by
(v)^-M = (k[x, y. z])4, find a free basis ofM whose existence is guaranteed by theQuillen-
Suslin Theorem.

• Step 1: The following SINGULAR script computes a Grobner basis Gof the ideal

{f\-.f2,fz,U) w.r.t. the reverse degree lexicographic order, and the transformation

matrix T such that G= (fiJ2.f3J4)T. and a syzygy basis Gof {/1./2./3./4}.

ring r=0,(x,y,z),(c,dp);

poly f(1)=l-x*y-2*z-4*x*z-x2*z-2*x*y*z+2*x2*y2*z-2*x*z2-2*x2*z2
+2*x2*y*z2;

poly f(2)=2+4*x+x2+2*x*y-2*x2*y2+2*x*z+2*x2*z-2*x2*y*z;
poly f(3)=l+2*x+x*y-x2*y2+x*z+x2*z-x2*y*z;
poly f(4)=2+x+y-x*y2+z-x*y*z;

ideal I=f (1) ,f (2) ,f (3) ,f (4);

ideal G=std(I); matrix T=lift(I,G); module S=syz(I);

Now SINGULAR responds with

> G;

G[l]=l

> T;

T[1,1]=0



29

T[2,l]=-lz+l

T[3,l]=2z-1

T[4,l]=-lx

The relation G= (fi,f2, f3,/4)T = 1 implies T'v = 1, and thus v is unimodular, and

B = T' = (0,-2+l,2z-l,-a;)

is a particular left inverse.

• Step 2: In order to find a unimodular completion of the column vector v, we need

to find a syzygy basis of {fi,f2, f3, /4}.

> S;

S[l]=[0,x2z-lx2+l,-2x2z+x2-2,x3]

S[2] =[1,-lxyz+xy+2z-l,2xyz-lxy-2z+l,-lx2y+x]

S[3]=[-ly-lz,xz-lyz-lz2-lx+2z-2,-2xz+x-4z+2,x2+2x+l]

Therefore,

c-C)
/ 0 -z + 1 2z-l -x \

0 x2z-x2 + l -2x2z-rx2 -2 x3

1 -xyz + xy + 2z - 1 2xyz - xy - 2z + 1 -x2y + x

\-y-z xz-yz-z2-x-r2z-2 -2xz + x-Az + 2 x2 + 2x + \)

• Step 3: One checks easily that det(C) = -1, i.e. C is unimodular, and the resulting

unimodular completion of v is

A = C_1
I fi z-2z2 1- 2xyz - 2xz2 -2xz \

f2 -1 + 22 2xy-\-2xz 2x

h -1 + 2 xy + xz x

\f4 0 y + z 1 J

The three column vectors of A other than the first make a free basis of the rank

3 free module M C (k[x,y,z])4 which is the complement of the rank 1 submodule

<v> := k[x,y,z]v C (k[x,y,^])4, i.e. (v)$M = (k[x,y,z])4.
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Example 3.3.2 Consider the two polynomial vectors Vj, v2 € (k[x,y, z])3 given by

fxy-y+l\

vi := yz + w

\ -y I
n-x\

v2 := -z

\ 1 /

Verify that the fc[x,y,z]-module M C (k[x,y,z])3 generated by V! and vx splits as a rank

2 direct summand of the free module (k[x, y, z])3. Also, find the k[x, y, 2]-module X C
(k[x, y, z])3 such that M e X = [k[x, y, ^])3.

/xy-y + 1 l - x\
We have to show the unimodularity of the matrix A := yz+ w

\ -y i /
and find a unimodular completion A ofA. Then the last column vector ofA generates A'

Our SINGULAR script for this purpose goes as follows.

ring r=0,(x,y,z,w),(c,dp);

vector v(l)=[xy-y+l,l-x];vector v(2)=[yz+v,-z];vector v(3)=[-y,l];
module M=v(l),v(2),v(3);

module G=std(M); matrix T=lift(M,G); module S=syz(M);

And the results are

> G;

G[1]«[0,1]

G[2] = [l]

> T;

T[l,l]=y

T[l,2]=l

T[2,l]=0

T[2,2]=0

T[3,l]=xy-ly+l

T[3,2]=x-1

D



> S;

S[l] = [w,-l,xw-lz-lw]
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Since {(1,0), (0,1)} is a Grobner basis of the row vectors of A, A is unimodular, and the
relation G = MT translates to

0 1

1 0
= A<T.

By taking transpose of both sides, we get T*A = i i, i.e.
Vl 0/

0 1

1 0 x-1

y 0 xy-y + 1
A = I2.

(I 0 x-1 \
Hence, B := I is a left inverse of A, and

VyOzy-y + 1/

C =

/l 0 x- 1 \

= y 0 xy-y+1

\w —1 xw —z —w)

The resulting unimodular completion of A is

A = (u_1
/1-y + xy 1- x 0

= w + yz —z -l

\ -y i 0

•
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Chapter 4

An Algorithmic Proof of Suslin's

Stability Theorem

Over a field k, Gaussian elimination tells us that we can repeatedly apply

elementary row and column operations to reduce any matrix in SLn(A:) to the identity
matrix I„, where the standard linear group SL„(k) denotes the group of all the n x n

matrices of determinant 1 whose entries are elements of k.

Less obvious but still true is that, due tothe Euclidean Division Algorithm for k[x],
this elementary reduction is also possible for the matrices with entries from the univariate

polynomial ring k[x].

Even more strikingly, while the Euclidean Division Algorithm is not valid any more
for the multivariate polynomial ring k[x] := k[xu.. .,zm], Suslin's Stability Theorem states
that the same is true for SLn(/:[a;]) with n > 3 and m > 1.

Definition 4.0.3 Asquare matrix A over a ring R iscalled realizable, ifA can be written
as a product of elementary matrices over R.

Recall that for any ring R, an n x n elementary matrix EtJ(a) over R is a matrix
of the form In + a •E,j where i ^ j,a£ Rand E,j is the nx n matrix whose (ij) entry is
1 and all other entries are zero. Now letting En(R) be the subgroup of SLn(R) generated

After it was discovered that Cynthia Woodburn [Woo94] obtained the result ofthis chapt erindependent ly
of the author at the same time, she and the author started collaborating and wrote a joint paper [PVV'94]
based on thecollaboration. Theresult of this section will be extended, in Chapter 11. to the case ofLaurent
polynomial rings.
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by the elementary matrices, for a commutative coefficient ring R, Suslin's stability theorem

can be expressed as

SLn(R[xi,...,xm]) = En(R[xi,...,xm]) for all n > max(3,dim(#) + 2).

When the coefficient ring is a field R = k, this is equivalent to saying that any nxn(n>3)

unimodular matrix is realizable. Therefore, the algorithm to be developed in this chapter

could be called a realization algorithm.

This chapter is organized as follows.

• In Section 4.1, an algorithmic proof of the normality of En(fc[a:]) as a subgroup of

SLn(fc[a;]) for n > 3 is given. Nonconstructive proofs of the results in this section can

be found elsewhere, e.g. [Sus77] or [Vas81].

• In Section 4.2, we give an algorithm for the Quillen Induction Process, a standard

way of reducing a given problem over a ring to an easier problem over a local ring.

Using this Quillen Induction Algorithm, we reduce our realization problem over the

polynomial ring R[xm] to one over #flji[a:m]'s, where R = k[xi,..., xm_i] and VJl ranges
over a finite set of maximal ideals of R.

• In Section 4.3, an algorithmic proof of the Elementary Column Property, a stronger

version of the Unimodular Column Property, is given, and we note that this algorithm

gives another constructive proofof the Quillen-Suslin theorem. Using the Elementary

Column Property, we show that a realization algorithm for SLn(fc[a;]) isobtained from

a realization algorithm for matrices of the special form

(v q o\

r s 0 eSL3(k[x]),

\0 0 1/

where p is monic in the last variable xm (note x := (xi,..., xm)).

• In Section 4.4, in view of the results in the preceding two sections, we note that a

realization algorithm over k[x] = k[xi,...,xm] can be obtained from a realization
(p q 0\

0algorithm for the matrices of the special form over R[X], where R is now

\0 0 1/
a local ring and p is monic in X. A realization algorithm for this case found by M.P.

Murthy in [GM80] is reproduced in this section.



34

4.1 En is normal in SL„, for n > 3

/l + xy x2 \ (A 0\
Lemma 4.1.1 The Cohn matrix A = I is not realizable, but

\ -y2 1-xyJ \0 l)
€ SL3(Ar[ar,y]) is.

Proof: The nonrealizability of A was first proved by P. M. Cohn in [Coh66], and a complete

algorithmic criterion for the realizability ofmatrices in SL2(k[xi,.. .,xm]) will bedeveloped
in Chapter 5.

Now noting that

/l + xy x2 0\ / x \
-y2 1-ij/ 0 =I3 +

\ 0 0 1/

we see that the realizability of this matrix is a special case of Lemma 4.1.3 below. •

Definition 4.1.2 Let n > 2. A Cohn-type matrix is a matrix of the form

In + av(t»iel- - ViejY, i < j € {1,..., n},

wherev = (t'i,...,un)< € (k[x])n, a € k[x], and et = (0,.. .,0,1,0,...,0)' with 1 occurring
only at the i-th position.

Lemma 4.1.3 (Mennicke) Any Cohn-type matrix for r? > 3 is realizable.

Proof: First, consider the case i = 1,j = 2. In this case,

A 0

0 1

B = In + a

/«i\

\vnJ
(1 + aviv2

avt

av3v2

\ at?nt'2

/1 + avi t'2

avt

(t'2,-U!,0,...,0)

-av{ 0

1 —auii»2 0

-av3vi

—avnv\

-avr 0

1 - av\v2 0

0

In-:

In-:

0\

0

/
0\

0

-y

Vo/

{y,x,o),

Y[En(aviv2)E[2(-av,vi).
1=3
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So, it is enough to show that

A =

/l + aviv2 -av2 0\

A = av 1 - aviv2 0

\ 0 0 1/
is realizable for any a, Vi,v2 € k[x]. Let "->" indicate that we are applying elementary

operations, and consider the following:

1 -\-aviV2 —av2 0

av2 1 —aviv2 0

k 0 0 1,

/ 1
0 1 —avi v2 v2

\ -av2 0 1 /

1 -raviv2 -av2 vi

1 —a^i v2 v2

0 l)

(l 0

0 1 v2

^0 avi l-\-aviv2J

av*

\ °

-av2 vx\ ( 1 0 vi\ / 1 0
0 1 v2

\ -av2 avi 1 /

0 \ (1 0 0 \
0 1 v2

\0 0 1/

Keeping track of all the elementary operations involved in 4.1, we get

A = Ei3(-u1)E23(-U2)E3i(-au2)E32(aui)Ei3(u1)E23(v2)E3i(au2)E32(-at;1).

In general (i.e., for arbitrary t < j),

/vi\

fl 0 0>

0 1 0

^0 0 l)

B = In + a (0,...,0,Vj,0,...,0,-Vi,0,...,0)

\VnJ

vi

0 1 v2

\0 avi l + aviv2j

(4.1)

with Vj occurring at the t'-th position and -ut- occurring at the j-th position. Therefore, we

have

/l ••• aviVj •" -aviVi ••• 0\

: : 0

1 + av^j —av:

B =

av\ 1 —av{Vj

vnvn"j -VnV{ 1/
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Z1

1 + aviVj

av^

avi

1 —av^j

0\

0

V 0 0 1/
= E^-^E^-u^E^-at^E^^^

• JJ Ei^aviv^Eij^aviVi),
l<J<n

Y[ Eu(aviVj)Eij(-aviVi)
KKn

¥«7i

where /: € {1,..., n] can be chosen to be any number other than ?or .;'. D

Since a Cohn-type matrix is realizable, any product ofCohn-type matrices is also

realizable. This observation motivates the following generalization of the above lemma.

Lemma 4.1.4 (Suslin) Suppose that A € SLn(*[a:]) with n > 3 can be written in the form
A = I + vw* for unimodular column vectors v,w 6 (k[x])n such that w'v = 06 k[x].
Then A is realizable.

Proof: Since v = (vu...,vn)1 is unimodular, we can use the effective Nullstellensatz or

Grobner bases to find gu .. .,gn £ k[x] such that v\gi + 1- vngn = 1.
This, combined with w'v = wjr, + \-wnvn = 0, yields a new expression for w:

where atJ = w.pj - Wjg{. Now,

w = Hfl«j(l;je,-r,ej)
«<j

A = In + v ]T aij(vjei - v{ej)
.«<J

= In + ]T va,-j,(Vje{ - v{ej)f
«<j

Each factor on the right hand side of thisequation isa Cohn-type matrix and thus realizable,
so A is also realizable. •
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Corollary 4.1.5 BEtj(a)B_1 is realizable for any B € GL„(fc[a:]) with n > 3 and a e k[x].

Proof: Note that i ^ j, and

BEij(a)B~1 = I„ + (i-th column vector ofB)a(j-th row vector ofB"1).

Let v be the z'-th column vector of B and w* be a times the j-th row vector of B"1. Then

(z-th row vector ofB"1)•v = 1 implies v is unimodular, and w'v is clearly zero since i ^ j.
Therefore, BEtj(a)B_1 = In + vw' satisfies the condition of the above lemma, and is thus
realizable. •

Corollary 4.1.6 E„(A;[aj]) is a normal subgroup ofGLn(k[x]), for n > 3.

Proof: Let A 6 GLn(A:[a;]) and E e En(k[x]). Then the above corollary gives us an

algorithm for finding elementary matrices Ei,..., Et such that A_1EA = Ei •••Et. D

4.2 Gluing of Local Realizability

Let R = k[xi,...,xm_i], X = xm and M 6 Max(R) ={maximal ideals of R}.
For A € SLn(R[X]), we let AOT € SLn(Rm[X]) be its image under the canonical mapping

SLn(R[X]) -t SLn(Rm[X]). We will occasionally write A = A(X) to emphasize that we

are viewing the entries of the matrix A as polynomials in one variable. Now consider the

following analogue of Quillen's patching theorem for elementary matrices:

Suppose n > 3 and A € SLnfflpf]). Then A is realizable over R[X] if and only
if Asr 6 SLn(Rm[X]) is realizable over i?nn[A'] for every 9Jt € Max(i?).

While a non-constructive proof of this assertion is given in [Sus77] and a more general

functorial treatment ofthis Quillen Induction Process can be found in [Knu91], we will give

a constructive prooffor it here, thus providing a patching algorithm with input certain local

factorizations of a given matrix A and output a global factorization of A into elementary
matrices. Since the necessity of the condition is clear, we have to prove the following
theorem.

Theorem 4.2.1 (Quillen Induction Algorithm) Let A € SLn(#[A']). IfAm € En(Rm[X])
for every m € Ma.x(R), then A € En(R[X]).
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Proof: Let ai = (0,...,0J € fcm_\ and let Mi = {g € k[xi,...,xm-1] \g(ai) = 0} be the

corresponding maximal ideal. Then by assumption, Arm, is realizable over Rmi[X]> Hence,
we can write

a^=iie^(|) (4.2)
where cj, dj € R, dj g mx. Letting rx = ^ dj g mu we can rewrite 4.2 as

Aan, =nEV, rjUk*jdk) €En(/?n) CEn(flOTl).

Denote an algebraic closure of k by k. Inductively, let a; € km~l be a common zero of
rx ,rj_! and Stt,- = {g £ k[xi,.. .,xm_i] | g(aj) = 0} be the corresponding maximal

ideal of R for each j > 2. (See Chapter 3 of [CL092] for details and references for using
Grobner bases to find a common zero ofa finite set ofpolynomials.) Define rj £ VJlj in the
same way as ri above, so that

AmjeEn(Rrj[X)).

Since a; is a common zero of ri,...,rj_i in this construction, we immediately see that

ri,...,rj_! e Wlj = {g € R | g(aj) = 0}. But noting rj $ JDlj, we conclude that r, £
riR-{ \-rj_iR. Now, since R is Noetherian, we will get to some / after a finite number

of stepssuch that rYR + \-riR = R. (We can use Grobner bases to determine when In
is in the ideal rtR+ •••+ rtR. e.g. see [CL092, p. 94].)

Let dbe a natural number. Then since rdR+- •-+rfR = R, we can find gx gt €
Rsuch that rfa + •••+ rfgt = 1. Now, we express A(A') 6 SLn(fl[A']) in the following
way:

A(A') = A(.Y-Xr^1)'[A-,(A'-A>^1).4(A')]

= A(X - Xrigi - Xrd2g2) •[A"1^' - Xrdl9i - Xrd2g2)A(X - Xrd9l)]

.[A-*(X-Xrdgi)A(X))

= A(X - £*rfo)•[A"1 (A - £*r?*)A(* -JTXrfgi)] •••
t'=l i=l i=l

-•[A-1(X-Xrigl)A(X)).
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Note here that the first matrix A(X-£j=1 Xrfgi) = A(0) on the right hand side is in En(R)
by the induction hypothesis. We will nowshow that for a sufficiently large d, each bracketed

expression in the above equation is actually in En(R[X]), so that A itself is in En(R[X]).

To this end, we let A^, = A, and identify A € SLn(R[X]) with At- € SLn(Rmi[X]). Then

each bracketed expression is of the form

A-1(cX)Ai((c+rig)X).

Claim: For any c,g € R, we can find a sufficiently large d such that Af1(cX)A{((c +
rfg)X) e En(R[X]) for i = l /.

Let

Di(X,Y, Z) = Af1 (Y •X)A{((Y + Z) •X) € En(Rrt[X, Y, Z])

and write D, in the form
h

where bj € Rn[X,Y] and fj e Rr,[X,Y,Z]. From now on, the elementary matrix ESjtj(a)
will be simply denoted as EJ(a) for notational convenience. For p = 1,..., h, define Cp by

Cp =f[Ei(bj)eEn(Rrt[X,Y]).
j=i

Then the Cp's satisfy the following recursive relations:

E!(6i) = C„

= C"1

ch = I.

Ep(6p) = C^Cp (2<p<h),

Hence, using the fact that E,j(a + 6) = E,j(a)E,j(6), we have

Dt- = f[W(bj +Zfj)
h

= Y[EHbj)&(zfj)
3=1

= [E1(61)E1(Z/1)][E2(62)E2(Z/2)] ••• [Eh(bh)Eh(Zfh)]

= [C1E1(Z/1)][Cr1C2E2(Z/2)] -.. [Cj^CfcE^ZA)]

= f[ CjE^Zfj)CJ1.
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Now in the same way as in the proof of Lemma 4.1.4 and Corollary 4.1.5, we can write

CjEP(Zfj)C~l as a product of Cohn-type matrices, i.e. for any given j 6 {l,...,h}, let
/»i\

be the Sj-th column vector of Cj. Thenv =

w

CjEMj (Zfj)Cj1 = J] [I +v •Zfj •«MKe« - vse^]]
K-y<S<n

for some a^s € Rr,[X, Y]. Also, we can find a natural number d such that

_ < _ <* , _ /j
i i i

for some t'^.a^ € R[X,Y], fj € i?[A',V,Z]. Now, replacing Z by r?dy, we see that all
the Cohn-type matrices in the above expression for CjE^(Zfj)C~l have denominator-free
entries. Therefore.

CjE^r^gf^Cj1 £En(R[X.Y]).

Since this is true for each j, we conclude that for a sufficiently large d,

h

Di(X^rfg) =J! Cj-E^rf^Cj1 € En(fl[A',Y']).
3=1

Now, setting Y = c proves the claim, and completes the proofof the theorem. D

4.3 Reduction to SL3

Let A € SLn(k[x]) with n > 3, and let v be its last column vector. Then v is

unimodular. (Recall that the cofactor expansion along the last column gives a required re

lation.) Now, if we can reduce v to en = (0,0,..., 0,1)* by applying elementary operations,

i.e. if we can find B € En(fc[aj]) such that Bv = en, then

/ 0\

BA =
0

\Pl ... Pn.-i 1/
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for some A € SLn_i (k[x]) and pi e k[x] for i = 1,..., n - 1. Hence,

BAEnl(-Pl)...£„<„_!>(-?„_!) =(q J-
Therefore, our problem of expressing A € SLn(k[x]) as a product of elementary matrices

is now reduced to the same problem for A € SL„_i(k[x]). By repeating this process, we
(p q 0\

get to the problem of expressing A = r s 0

\0 0 l/
matrices, which is the subject of the next section.

In this section, we will develop an algorithm for finding elementary operations

that reduce a given unimodular column vector v € (fc[a;])n t0 en- Also, as a corollary to

this Elementary Column Property, wegive an algorithmic proof of the Unimodular Column

Property which states that for anygiven unimodular column vectorv e (k[x])n, there exists

a unimodular matrix B, i.e. a matrix with constant nonzero determinant, over k[x] such

that Bv = en. Therefore, our algorithm gives another constructive proof of the Quillen-

Suslin theorem.

Definition 4.3.1 For a ring R, \Jmn(R) = {n-dimensional unimodular column vectors
over R}.

As in Section 4.2, let R = k[xi,.. .,zm_i] and X = xm. Then k[xi,...,xm] =

R[X]. By identifying A€ SL2(R[X]) with ( | 6 SLn(R[X]), we can regard
\ 0 7n_2 /

Sh2(R[X]) as a subgroup of SLn(R[X]). As before, we use the notation A = A(A') and

v = v(A") to emphasize that we are viewing the entries of a matrix A or a vector v as

polynomials in one variable. Now consider the following lemma and theorem, which will be

used to prove the Elementary Column Property.

Lemma 4.3.2 Let fi,f2,b,d € R[X] and let r € R be the resultant of fi and f2. Then

there exists B 6 SL2(i2[A']) such that

B/7.(f>)\ = (h(b +rd)\

Proof: By a property of the resultant of two polynomials, we can find <7i,<72 € R[X] such

that figi + /202 = r. (See [CL092, Prop. 3.5.9] or [GM80, p. 28] for details.) Let

€ SLa(A:[x]) as a product of elementary
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si,s2,ti,t2 € R[X,Y,Z] be the polynomials defined by

Now, define

fi(X + YZ)

f2(X + YZ)

gi(X+YZ)

g2(X-rYZ)

fi(X) + Ysi(X,Y,Z),

f2(X) + Ys2(X,Y,Z),

gi(X)-rYti(X,Y,Z),

g2(X) + Yt2(X,Y,Z).

Bn = l + si(b,r,d).gi(b) + t2(b.r.d)-f2(b),

Bi2 = si(b,r,d).g2(b)-t2(b,r<d)-fi(b),

B2i = s2(b,r,d)-gi(b)-ti(b,r,d)-f2(b),

B22 = l + *2(6,r1rf).^(6) + /1(6,r1rf)./1(6).

Then one checks easily that B := I 1 satisfies the desired property and that
\ £21 B22 /

B € SL2(R[X]). D

(MX)\
Theorem 4.3.3 Suppose v(X) = € Umn(/?[A']), and t'i(A') is monic in X.

\Vn(X)J
Then there exists Bi € SL2(i?[A']) and B2 € En(R[X}) such that B{B2 •v(A") = v(0).

Proof: Let a2 = (0 0) € km~\ and mx = {g € k[xu...,xn-i] | p(a,) = 0} be
the corresponding maximal ideal. We identify residue field R/Wli with k. By hypothesis

v € (R[X])n is a unimodular column vector, so its image v in (fc[A'])n = ((R/VJli)[X])n is
also unimodular. Since k[X] is a principal ideal ring, the ideal (v2,..., vn) is generated by a

single element, Gi = gcd(t>2,..., vn). Then vi and d generate the unit ideal in A*[A'] since

f'i,i'2,...,Dn generate the unit ideal. Using the Euclidean division algorithm for k[X], we

can find Ei e E„_i(&[A']) such that

I 02 \
0

E,

\»W v o;
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Since we may regard Ei as an element ofEn(R[X]) and Gx as an element ofR[X]. Then,

1 0

0 E,
v =

/
Vi

G\ + 9i2

013

\

V *» /

for some qx2,..., qXn e Wli[X]. Now, define ri € R by rx = Resx(t;i,6fi + gi2), the resultant
of vi and Gi + 912 with respect to X, and find fi,hx£ R[X] such that

/1 -i>i+fci .(C?i + 9i2) = ri.

Since vi is monic, and Ui and Gi e ki[X] generate the unit ideal, we have

n = Resx(vi,Gi+qn)

= Resx(v!,Gi)

* 0.

Therefore, n g Mi. Denote an algebraic closure of k by k. Inductively, let aj € k™'1 be

a common zero of r2,.. .,rj_i and 371, be the corresponding maximal ideal of R for each

j > 2. Define rj £ Qttj in the same way as above. Define also Ej e En-i(kj[X]),Gj €

fcj'Wi fj, hj € R[X], and qj2, ...,qjn € 9K;[A] in an analogous way. As we saw in the proof

of Theorem 3.1, there is a finite / such that riR -\ 1- r\R = R. Find gfa in R such that

ng\ + r rtgi = 1. Now, define 60,61,..., 6/ € R[X] by

60 = 0

bi = rigiX

62 = rxgxX + r2g2X

bl = riflfi X + r202A + •••+ rigiX = X.

Then these 6,'s satisfy the recursive relations:

60 = 0

b{ = 6,_i + rigiX for i = 1,..., /.
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Claim: For each i € {1,...,/}, there exist B< € SL2(J2[A]) and BJ € En(R[X]) such that

v(6t) = BiBM*.-.,).

Using this and the fact that En(R[X]) -SI^A]) C SL2(R[X]) >En(R[X]) (Corol

lary 4.1.5), we get inductively

v(A) = v(bt)

= B/Bjvf^!)

= BB'v(60)

= BB'v(O)

for some B € SL2(/?[A*]) and B' € En(i?[A']). Therefore, it is enough to prove the above
claim.

Proof of claim: Let G, = Gt- + g,2. Then

For 3 < j < n, we have

1 0

0 E.(A')
v(A) =

/vi(X)\

Gi(X)

9.3(A)

\Vin(X)J

9ij[bi) - qij(bi-i) € (6, - 6,-_1) •R[X] = ri9iX •R[X].

Since r,- € R doesn't depend on A, we have

rt- = fi(X)vi(X) + hi(X)Gi(X)

= Mbi-iMbi-i) + hiibi-ifaibi-i)

= a linear combination of vi(6,_i) and G,(6,_i) over R[X].

Therefore, we see that for 3 < j < n,

Qijibi) = qij(bi-i) + a linear combination of t'i(6,_i) and G,(6,_1) over i?[A"].



Hence we can find C € En(R[X]) such that

cG B-doK^0

/ wi(6,-_i) \

&i(bi-i)
9i3(i>i-i)

\qin(bi-i)J \ qin(bi) /

Now, by Lemma 4.3.2, we can find B € SL2(R[X]) such that

U.'(fc-i)/ \Gi(bi))'
Finally, define B € SLn(i2[A']) as follows:

B =

Then this B satisfies

0 B 0

0 E,(6t)-1/ \0 In-2

/»i(6,--i)\

<5.-(6,--i)
9t3(6.)

1 0

0 Ei(bi)

Bv(bi-i)=v(bi),

and, by using the normality of En(i?[A']) again, we see that

B € SL2(R[X])En(R[X]),

which proves the claim and completes the proof of the theorem.
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D

Remark 4.3.4 Note that the groups GLn(fc[a;]) and En(k[x]) act on the set Um„(ifc[a>]) by

matrix multiplication. If the group action of E„(fc[a:]) on Vmn(k[x]) is transitive, then we

get a desired algorithm in the following way: For any n-dimensional unimodular column

vectors v, v; over k[x], we can find B € En(fc[a:]) such that Bv = v;. Now, let v' = en.

Theorem 4.3.5 (Elementary Column Property) The group En(k[x]) acts transitively

on the set Um„(fc[a:]), for n > 3.

Corollary 4.3.6 (Unimodular Column Property) The group GLn(fc[a:]) acts transi
tively on the set Umn(k[x]), for n>2.

Proof: For n > 3, the Elementary Column Property clearly implies the Unimodular Column

Property since a product of elementary matrices is always unimodular, i.e. has a constant

nonzero determinant.
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If n = 2, for any v = (vi,v2)f € Un^fcfc])* by using Buchberger's algorithm for

computing a Grobner basis, we can find gi,g2 € k[x] such that v^i + v2g2 = 1. Then the
(v2 -Vi \

) satisfies Uv -v = e2. Therefore we see that, for any
9\ 92 J

v, w € Um2(k[x]), U^Uy •v = w where U^Uy € GL2(k[x]). •

Proof of Theorem 4.3.5: Since the Euclidean division algorithm for k[xi] proves the

theorem for m = 1, we may assume by induction the statement of the theorem for R =

k[xi,.. .,xm-i]. Let X = xm and v = € Um„(/?[A]). We may also assume that ui

\VnJ
is monic by applying a change of variables (as in the proof of the Noether Normalization

Lemma). Now by Theorem 4.3.3, we can find Bj € SL2(R[X]) and B2 € E„(J?[A']) such
that

BjBj-v^Y) = v(0)eR.

Then by the inductive hypothesis, we can find B' e En(R) such that

B'-v(O) = eB.

Therefore, we get

v = B^Bj^B^e,,.

By the normality of En(i?[A']) in SLn(i?[A']) (Corollary 4.1.5), we can write B^B'"1
B'^1 for some B" € En(R[X]). Since

(p q 0 ... 0^

,-i
Bp =

for some p,q,r,s€ R[X], we have

r s 0 ... 0

0 0

: : In-2

0 0

v = B^B^B'-^

= (B^B'OBr^



= (B^B")

(P
r

0

9

s

0

0

0

= (B^B'Oen

0

In-:

o\

0

/0\

0

0

M/
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where B2 'B" 6 E„(/2[A]). Since we have this relationship for any v 6 Umn(R[X]), we get
the desired transitivity. D

4.4 Realization Algorithm for SL^(R[X])

Now, we give a realization algorithm for the matrices of the form:

p q 0\

r s 0 € SL3(&[a;]).

0 0 1/

Again, by applying a change of variables, we may assume that p £ k[x] = k[xi,. ..,xm] is

a monic polynomial in the last variable xm. In view of the Quillen Induction Algorithm

developed in Section 4.2, we see that it is enough to develop a realization algorithm for
(p q 0\

matrices of the form r s 0

c d 0

\ 0 0 1/

€ SL3(i?[A]), in the case where R is a commutative local

\0 0 1/
ring and p GR[X] is a monic polynomial. A realization algorithm for this case wasobtained

by M.P. Murthy [GM80, Lemma 3.6]. We present below a slightly modified version.

Lemma 4.4.1 Let L be a commutative ring, anda, a',b € L. Then, the following are true.

1. (a,b) and (a',b) are unimodular over L if and only if (aa',b) is unimodular over L.

2. For any c,d € L such that aa'd - be = 1, there exist Ci,c2,dlyd2 G L such that

adi —bci = 1, a'd2 —bc2 — 1, and

(aa! b 0\ (a 6 0\

ci di 0

(a' b 0\

C2 d2 0

\0 0 1/ \0 0 1/

(mod E3(L)).
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Proof: (1) If (aa',b) is unimodular over L, then (a, b) and (a',b) are clearly unimodular.

Suppose, now, that (a,b) and (a',b) are unimodular over L. Then, we can find

hi,h2,h\,h2 e Lsuch that hia + h2b= 1, h[a' + h2b= 1. Now, by letting pi = hih\, g2 =
h2 + a'h2h'i, we get giaa' + g2b = 1.

(2) If c, d £ L satisfy aa'd - be = 1, then (aa',b) is unimodular, which in turn implies
that (a,b) and (a',b) are unimodular. Therefore, we can find Ci,di,di,d2 € I such that

adi —bci = 1 and o'efc —bc2 = 1. For example, we can let

Now. consider

laa! b 0\

c d 0

\ 0 0 1/

c d 0

0 0 1/

Ci = c2 = c, di = a'd, d2 = ad.

/ aa' 0\

= E2i(cdid2 - d(c2 + a'cid2)) C2 + a/cia'2 did2 0

\ 0 0 1/
= E2i(cdid2 - d(c2 + a'ad2))E23(d2 - 1)E32(1)E23(-1)

a b 0\ fa' b 0\
ci rfi 0 E23(1)E32(-1)E23(1) c2 d2 0

0 0 1/ \0 0 1)
•E23(-l)E32(l)E23(a - l)E3i(-a'c1)E32(-rfi).

This explicit expression shows that

aa' 6 0\ (a b 0\ (a' b 0\

ci di 0

\0 0 1/
C2 <^2 0

Vo o 1/

(mod E3(L)).

Theorem 4.4.2 Suppose (R, 1D1) is a commutative local ring, and A =

SL3(J?[A']) where p is monic. Then A is realizable over R[X].

D

Proof: We induct on deg(p). If deg(p) = 0, then p = 1, and A is clearly realizable. More
explicitly, we have

A = E21(r-l)E2i(l)E12(l-/> + ?).
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Now, suppose deg(p) = d > 0 and deg(o) = /. Since p € R[X] is monic, we can find

/,(/€ fl^Jsuch that

9 = fP + 9, deg(g)<d.

Then,

P 9-fP 0\

r s - fr 0

>0 0 1/

Hence we may assume deg(o) < d. Now, we note that either p(0) or o(0) is a unit in

R, otherwise, we would have p(0)s(0) - q(0)r(0) G M, which contradicts the fact that

ps- qr = p(0)s(0) - q(0)r(0) = 1. Consider these twocases separately.

• Case 1: Suppose that q(0) is a unit.

We have

(p-QW-'pWq q 0\
AE2i(-9(0)-V(0)) = r - g(0)"V(0)s s 0 .

\ 0 0 1/

So, we may assume p(0) = 0. Now, write p = Xp'. Then, by Lemma 4.4.1, we can

find ci,di, c2, d2 GR[X] such that Xdi - qci = 1, p'd2 - qc2 = 1 and

(P 9 0\ (X q 0\ /V q 0\

AE12(-/) =

r 5 0

\0 0 1/

Ci di 0

\0 0 1/

(P 9 0\
r s- fr 0

\0 0 1/

C2 C?2 0

\0 0 1/

(mod E3(fi[A])).

Since p' ismonic anddeg(//) < d, thesecond matrix on the right hand side is realizable

by the induction hypothesis. As for the first matrix, we may assume that q is a unit of

R since we can assume deg(g) < deg(A) = 1 and q(0) is a unit. Then invertibility of
(X q 0\

q leads easily to an explicit factorization of ci di 0

V0 0 1/

into elementary matrices.

• Case 2: Suppose that q(0) is not a unit.

First we claim that there exist p',q' G R[X] such that deg(p') < i,deg(g') < d and

P'P - 9'9 = 1- To prove this claim, we let s GR be the resultant of p and q. Then

there exist /, g G R[X] with deg(/) < /, deg(g) < d such that fp-\-gq = s. Since
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p is monic and p,q G R[X] generate the unit ideal, we see that s $ DJl, hence s
is a unit in R. Now, setting p' = f/s, q' = -g/s proves the claim. Also note that

p'(0)p(0) - q'(0)q(0) = 1and q(0) Gtm implies p'(0) $ art. This means that o(0) +p'(0)
is a unit. Now, we have that

0\ lp q 0

0 = E2i(rp'-s0') q' p' 0

\0 0 1

(P+9' 9 + p' 0

q' p' 0

0 0 1

Note that the last matrix on the right hand side is realizable by Case 1, since q(0) +
lp q 0\

IP

r

\0 0 1/

p'(0) is a unit and deg(p+ q') = d. Thus, r s 0

Vo 0 1/

is also realizable.

4.5 Eliminating Redundancies in the Realization Algorithm

W7hen applied to a specific polynomial matrix, the realization algorithm obtained

in this chapter will produce a factorization into elementary polynomial matrices, but this

factorization may not have minimal length. The Steinberg relations [Mil71, p. 39] from

algebraic A'-theory provide a method for improving a given factorization by eliminating

some of the unnecessary factors. The Steinberg relations which elementary matrices satisfy
are

1. E0(0) = /;

2. E{j(a)Eij(b) = Eij(a-rb);

3. For i ? I, [E^o), £,,(&)] = Eij^Ej^E^-a^-b) = Et/(a6);

4. For j ± I, [EtJ(a), E,,(6)] = Ei>(a)Ew(6)El-i(-a)Ew(-6) = E0(-a6);

5. For *# p, j ^ I, [E0(a),E/p(6)] = E0(a)E/p(6)E0(-a)E/p(-6) = /.

The realization algorithm developed in this chapter can be implemented together with a re

dundancy elimination algorithm based on the above set of relations using existing computer
algebra systems.
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Chapter 5

A Realization Algorithm for

SL2(k[xi,...,xm])

5.1 Introduction

Suslin's stability theorem established in the previous chapter fails for n = 2,

and a counter-example was constructed by P.M. Cohn in [Coh66], i.e. the Cohn matrix,
ll-rxy x2 \

9 € SL2(C[x,y]), was shown to be nonrealizable. On this matter, L. Tol-
\ -y1 1-xyJ
huizen, H. Holmann and A. Kalker have developed an algorithm in [THK95] that determines

precisely when a given matrix in SL2(k[x]) :=SL2(k[xi,.. .,xm]) is realizable, and if it is,

expresses it as a product of elementary matrices.

In this chapter, we will develop another algorithm for the same task based on

degree lexicographic order on the polynomial ring k[x]. Actually, usual lexicographic order

doesn't work for our purpose since it does not necessarily guarantee the termination of our

algorithm in a finite number of steps.

5.2 Main Theorem

For anpxg matrix A = (atJ) G Mpq(k[x]), we can define its rank, viewing it

as a matrix over k(x), the field of quotients of k[x]. Also, for a fixed monomial order on

Mono(fc[a:]), we define the matrix of its leading terms as lt(A) := (lt(atJ)).

Now, the following theorem gives a characterizing property for the realizable 2x2
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matrices.

Theorem 5.2.1 Suppose that A= I JGSL2(k[x]) ** realizable, and fix amonomial
order on Mono(k[x]). Then, either the matrix of its leading terms, lt(A), is of rank 2, or
one of its row vectors is a monomial multiple of the other row.

(1 + xy x2 \
, note that lt(A) =

-y2 l-xyj
I xy * \ .

9 is of rank 1, but neither of the two row vectors (xy, x2) = x • (y, x) and
\-y* -xy)
(-y2, -xy) = -y •(y, x) is a monomial multiple ofthe other.

Proof: Since A is realizable, we can write A as a product of elementary matrices. Let

A = Ei •• -E/ be such a representation without a trivial factor , i.e. for each i = 1, /,

E, is either Ei2(/) or E2i(/) for some / # 0 Gk[x]. Now, we will do an induction on /.

If / = 1, the statement of the theorem is trivial since we haveeither A = [ |
\0 1/

(1 0\
or A = I I for some q,r Gk[x], and in both cases, It(A) is of rank 2.

Now let

A' = E,...E*_,

= (° ^GSL2(%]).
Suppose that the rank of It(A') is 1. Then by the induction hypothesis, we may assume
without loss of generality that

(lt(a),lt(6)) = Mlt(c),lt(</))

for some nonzero monomial h Gib[aj].

Now, we have two cases:

lp q\ , (a b+ fa\

or

* =(::)—(:;;:::
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In the first case, det(A) = 1 implies

lt(c).lt(6 + /a) = lt(a)-lt(d + /c)

= />.lt(c)-It(d+/c).

Therefore, lt(6+ fa) = h •\t(d+fc).

Now,

(lt(r).lt(fi)) = (lt(c),lt(rf + /c))

and

(lt(p),ltfa)) = (lt(a),lt(6 + /o))

= (h-\t(c),h>\t(d + fc))

= h.(h(c),\t(d + fc))

= h-(\t(r),\t(s))

as desired.

The same method gives the same conclusion in the second case.

Now, to complete the proof, we have to consider the case when

,t(A<) = flt(0) U(6)V
\lt(c) lt(d))

is of rank 2.

In this case, note that both ad and be are constants, otherwise, det A(') = 1implies

det(lt(A')) = 0 contradicting rank(lt(A')) = 2. So, let us assume a is a constant. If one
la b+ fa\ la + fb b\

of b or d is also a constant, then A'Ei2(/) = and A'E2i(/) =
\c d+fcj \c-rfd d)

always have at least one constant entry, so we are done. Hence we assume that both of b

and d are nonconstants.

In this case, note that a ^ 0 and c ^ 0, otherwise det(A') = ad - be = 1 can not

be satisfied.

Claim: lt(6) | lt(rf)

det(A) = 1 implies a • lt(rf) = lt(6)lt(c), and a ^ 0. So, lt(rf) = (a-!lt(c)) • lt(6).

There are two cases to consider, again.

(p q\ , (a b+ fa\

r sj \c d+fcl
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or

* - (: :)-«•«>-(::;::)
In the first case, p = a is a constant entry of A, so we are done.

In the second case, note that lt(a) < lt(c) < \t(d) since a • \t(d) = lt(6)lt(c) and

b is not a constant. Hence, we have lt(c+ fd) = \t(fd). Recall we are assuming / ^ 0.
Therefore,

(lt(r), lt(*)) = (lt(/) •11(d), lt(rf)) = lt(rf) • (lt(/), 1)

and

(lt(rt, ltfo)) = (lt(/) •lt(6), lt(6)) = lt(6) •(lt(/), 1) = h • (lt(r), lt(s))

as desired. •

5.3 Realization Algorithm for SL2(A:[xi,..., xm])

Now. let us see how to obtain a realization algorithm for E2(fc[a:]) from the Theo
rem 5.2.1 of the previous section.

(P 9\If one of the entries of A := I I GSL2(A*[je]), say p, is a constant, then A is

always realizable in the following way.

• If p = 0, then det(A) = -rq = 1 necessarily implies r, q are invertible. Using the
invertibility of r, we easily get

A = ( g) =Ei2(-r-1)E2i(r)Ei2(q+r-1s).

• If p t£ 0, then using the invertibility of p, we get

A = E21(p-1(r-l))E12(p-l)E21(l)E12(p-1(l-p + 9)).

Definition 5.3.1 For B= (6tJ) GSL„(*[a:]), we define deg(B) G (Z>o)m by

deg(B) = max {deg(6IJ)} G (Z>0)m.
l<t,j<n —

Remark 5.3.2 If deg(B) = (0,...,0) G (Z>0)m, then clearly all the entries of B are

constants.
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Now, out of a given A G SL2(fc[a>]), we try to make a matrix with a constant entry by
IP ?\

applying elementary operations. If A = G SL2(/z[a:]) doesn't have any constant
\r s)

entries, then compare the two vectors (lt(p),lt(g)) and (lt(r),lt(s)).

• Step 1: If neither of them is a monomial multiple of the other, then by the Theo

rem 5.2.1, A is not realizable. Otherwise, go to step 2.

• Step 2: Assume without loss of generality that

(\t(p),\t(q)) = Mlt(r),lt(s))

for some monomial h G k[x]. There are two cases to consider. If h is a constant,

replace A by Ei2(-h)A and go to step 1. Otherwise, go to step 3.

(p —hr q —hs\
1 has a strictly smaller

degree than A. Now replace A by Ei2(-h)A, and see if it has a constant entry. If it

does, then terminate the process. Otherwise go to step 1 with the new A.

If any intermediate matrix in the above process is not realizable by step 1, then A

itself is not realizable. Otherwise, since the above procedure strictly reduces the degree of

A each time and there are only finitely many elements of (Z>0)m between 0 G (Z>0)m and

deg(A) G (Z>0)m, we get a matrix in SL2(A:[a;]) with a constant entry after a finite number

of steps. By keeping track of all the intermediate matrices, we find elementary matrices

Ei,..., Ei over k[x] such that A = Ei •••E/.

Remark 5.3.3 With respect to lexicographic order, there are infinitely many elements of

(Z>0)m between 0 G (Z>0)m and deg(A) G(Z>o)m for a nonconstant matrix A GSL2(it[a;]).

Therefore, even though the above procedure strictly reduces the degree of A each time, we

may not get to a matrix with constant entry in a finite number of steps.
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Chapter 6

Extensions to Laurent Polynomial

Rings

6.1 Polynomial Rings and Laurent Polynomial Rings

So far, we have studied unimodular matrices exclusively over polynomial rings.
We now want to study unimodular matrices over Laurent polynomial rings, and see the
possibility ofextending the results of the preceding chapters to the case ofLaurent polyno
mial rings. Therefore, in this chapter, we develop an algorithm that transforms a Laurent

polynomial column vector to a polynomial column vector while preserving unimodularity.
Let n > 2 be a nonzero integer.

Algorithm 6.1: LaurentToPoly
InPut: v(x) G(fcfc*1])", a Laurent polynomial column vector

Output: x —• y, a change of variables
T(x) GGLn^a?*1]), a square unimodular Laurent polynomial matrix

Specification: (1) v(y) := T(x)v(x) G(k[y])n is a polynomial column vector in
the new variable y

(2) v(x) is unimodular over Arfaj*1] if and only if v(y) is unimodular
over k[y]

This process is very powerful essentially because the unimodularity of the Laurent

polynomial vector v(x) G (k[x±l])n is converted to the unimodularity of the polynomial
vector v(y) G (k[x])n.



Algorithm 6.2: ReduceToSingle

Input: An Algorithm for the Unimodular Column Property,
i.e. an algorithm that completes any unimodular column vector
v = (/i> •••>fpY € (A;[a;:tl])p to a p x p unimodular matrix over ^[a;*1]

Output: A general Unimodular Completion Algorithm
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Now we can use this process to give an algorithmic proof of the following important

result.

Corollary 6.1.1 (Laurent polynomial analogue of Quillen-Suslin Theorem) Let

B be a p x q unimodular matrix, p > q, with Laurent polynomial entries. Then B can be

completed to a square pxp unimodular matrix B by adding p —q columns to the matrix B.

Proof:

Single Column Case: For a given unimodular Laurent polynomial vector v G(^[aj*1])",

one can use the algorithm Unimod Completion to complete the unimodular polynomial

vector ir(y) G (fc[s/])n to a square unimodular polynomial matrix A G Mn(k[y]). Then.

T"1A G^[aj*1] expressed in terms of the original variables x := (x\,.... xm) is a unimod

ular completion of v G (Ar[aj±1])n.

General Case: We reduce this to a single column case.

For a given p x q (p > q) unimodular matrix A, consider its first column vector

v := A
0

By using the input algorithm, we can complete v to a p x p unimodular

\o/

0
matrix B and from B = v, we have

0
B^v =

\oJ
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This implies

B-JA =

/l h2

0

Vo

ha\

/

for some h2,...,hq£ k[x±l], and a (p- 1) x (q- 1) matrix C.

Now, C, the cofactor of (B-1A)n = 1, is also unimodular, and by induction, we

can complete C to a (p- 1) x (p- 1) unimodular matrix C. Then the p x p matrix

A = B

is a unimodular completion of A.

/I h2

0

Vo

hq 0 0\

We start with generalizing the Noether Normalization Lemma to the case of Lau

rent polynomial rings.

6.2 Laurent analogue of Noether Normalization

The Noether Normalization Lemma states that, for any given polynomial / Gk[x],

by defining new variables t/j,..., ym by xY = y,,x2 = y2 + y[,..., xm = ym + y[m~} for a
sufficiently large / GN and regarding / as a polynomial in the new variables y2 ym. we

can make / a monic polynomial in the first variable yj.

Now, we extend this to the Laurent polynomial ring kfa*1] = k[xf\..., ar*1].

Algorithm 6.3: LaurentNoether

Input:

Output:

/ G ^[x±J]

x —> y, a change of variables

Specification: the leading and the lowest coefficients of / Gkfy*1] with respect to
the first variable yi are units in the ring &[y*!,. .-ly*1]

Theorem 6.2.1 (Laurent polynomial analogue of Noether Normalization) Let

f G^[a:*1] be a Laurent polynomial, and define new variables y\ ym by X\ = yi,x2 =
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y2y[,...,xm = ymy1™ . Then, for a sufficiently large I G N, the leading and the low
est coefficients of f G ^[a:*1] with respect to the first variable yi are units in the ring

Proof: Since / is a finite sum of monomials, we can write

/ = 2-*t ah,—,imxl '"xm
(*li-..|tm)e/

where / is a finite index set.

Defining new variables yu..., ym by xx = yu x2 = y2y[,. ..,xm = ymyl™~1, and
letting i = (t'i,..., im) and 1= (1,1,12,..., /m_1), we have

i€/

= Eai^Wyi2/)---(yirylm'm"1)
i€/

= Eaiy\1+i2l+''imlm~1y?'--yi?
ie/

= Y,aiyilyi2 •••yir.
ie/

Now, as in the proof of the usual Noether Normalization Lemma, by choosing a

sufficiently large /, we can make the integers i •1for i G / all distinct. Let

p = min{i-l \i € 1}

q = max{i-l | i G /}.

Then we can write

/ = 6pyS> +6p+iyf+1 + -.. +6gyf

where all the 6,-'s are units ofkfyf1,..., y^1], i.e. monomials. D

6.3 Description of the Algorithm

Let n > 2,S = k[x2tl,...,x±1), and v = (vu.. .,vnY G(^a:*1)" = (S[xi])n. By
using the algorithm LaurentNoether, we may assume that the leading and the lowest

coefficients of vi w.r.t. Xi are invertible elements of S. Write

vi = apxPi + ap+i x^+1 + \- aqx\

where ap and aq are units of S.
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• Step 1: Using the invertibility ofap GS, define D GMn(S[xf*]) and v' G(Sbf1])11
by

/V*rp 0 \

D :=

\

Ev' = v =

anxp-j

In-2J
v' = («{,...,<)' :=Dv.

Note here that the matrix

D = E21(apa-f)E12(l-a-1a:rP)E2i(l)E12(l-apa:P)

is realizable over S[xf*], and

v[ = a-lXiVVi = 1+ ap+i/apxi + •••+ aq/apx\~p

is a polynomial in S[xi).

• Step 2: Since the constant term of t'J GS[xx] is 1, by adding suitable multiples of

v[ to t'J's, ?' = 2 ,n, we can make v2 v'n polynomials in S[xi] whose constant
terms are zero, i.e. find E GEn(k[x±l]) such that

/«i\

€ (5[xi])",

\VnJ
where i'! = 1 mod xt and £', = 0 mod xx for all i = 2,

• Step 3: Choose a sufficiently large number / GNso that, with the following change
of variables,

*i = y\'(y2'-ym)1

*2 = y2

Xm — J/mi

all the t','s become polynomials in k[y]. Then t^ = 1 mod yj ••-yr

Now give the transformation matrix T := ED as the output.
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Lemma 6.3.1 With the notations as in the above, v(x) is unimodular over k[x±x] if and

only ifv(y) is unimodular over k[y].

Proof: (<$==) The unimodularity of v(y) over k[y] trivially implies the unimodularity of

v(x) over ^[sc*1]. This, together with the unimodularity of T GMn(k[x±x]) immediately
implies the unimodularity of v(x) = T_1v(a;) over Jbfx*1].

(=>) Since v is a unimodular column vector over ^[y*1], we can use Grobner bases to find

hi,...,hn € k[y] and k GN such that

Mi + "* + Mn = (yi---ym)fc.

Since t>i = 1 mod yi ••-ym, we can find g Gk[y] such that

vi = l+g-{yi--ym)'

Now, define recursively a sequence of polynomials {/,• Gk[y] \ i GN} in the following way:

/i = l-fl"(yi"-ym)

/t+1 = (l-y2,-(yi-.-ym)2i)-/.-.

Then the /,'s defined in this way satisfy the following property:

hvi = (l-g-(yi--ym))'(l + g'(yi--ym)) = l-g2'(yi--ym)2

f2Vi = (l-p2-(yi---ym)2)-/ii)i = l-y4.(yi.--ym)4

fidi = l-y^fyi-'-ym)2'.

Let r G N be the smallest number such that 2r > k, and define h G k[y] by h =

<72r(yi---ym)2r-fc. Then,

1 = /rt>i+y2r(yi---ym)2r

= frvi + gr(yi •-ym)2r-k •(Mi + •••+ hnvn)

= frvi + h(hivi H \-hnvn)

= (fr + hhi)vi + hh2v2 + h hhnvn.

This gives a required unimodular relation. D
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Chapter 7

Parahermitian Modules and

Paraunitary Groups

7.1 Introduction

Let R be a commutative ring with an involution a, and

G = K1*;2...^ |n,,n2,...nm€Z}

be the free abelian group with m generators Xi,x2,...xm. Then the Laurent polynomial
ring over R,

R[x±l] := i?[zf x*1] = R[xuxT1,...,xm,x-1],

as viewed as a group ring R[G], has a natural involution ap that is compatible with a. i.e.

for / = £aM...tmx" ...x*" with alr..tm Gfl, ap(/) = E^aii-im)*-'1 ••-or'-. One can
consider other (actually 2 more) involutions on J2[aj±!] that extends a, for one thing. Oh

defined by 0h(f) = IC^Kr-im)*11 •••z,m- Over the polynomial ring R[x], this polynomial
involution ah \r[x] has been studied in hermitian K-theory for various reasons.

To distinguish the hermitian structure associated with the involution av from the

one associated with ah, we use the term parahermitian in the first case, following its usage

in electrical engineering. The unitary group associated with the involution av is called the

paraunitary group. The coefficient ring R for us will mainly be R or C. Among the signal

processing researchers, it is well recognized that an element of this paraunitary group rep

resents a lossless or energy-preserving system. When m = 0, paraunitary matrices are just
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ordinary unitary matrices and, over E, they are simply a product of rotations (up to sign).

When m = 1 (1-D case), a classification theorem on the paraunitary group was obtained by

P. P. Vaidyanathan [Vai93], which, over K, asserts that rotations (constant unitary matri

ces) and delays (diagonal matrices with monomial entries) generate the paraunitary group

Un(M[a;±1]). As for its multivariate analogue, while there was a conjecture asserting the
existence of a similar factorization in the multivariate case (e.g. [HP94]), S. Venkataraman

and B. Levy ([VL94]) successfully used the theory of 2-D state space to construct a nu

merical example of a paraunitary matrix in M2(QX,Y]) that is not factorizable into any

smaller paraunitary polynomial matrices.

In the following section 2, the general aspect of the hermitian modules over the

Laurent polynomial ring ^[x*1] arising from the involution ap isstudied. In the remaining
sections, we study the structure of the paraunitary group U„(C[x:fc1]), n > 2, in particular,

its subgroup of the completely separable paraunitary matrices, i.e. those that can be written

as a product of constant unitary matrices and delays. We do this by giving a convex

geometric look at the system of polynomials involved. As an application of these techniques,

we will construct a closed form 2x2 paraunitary matrix that is not factorizable into rotations

and delays.

7.2 Orthogonal Summands of Parahermitian Modules

Definition 7.2.1 Suppose M is a finitely generated projective module over a Laurent poly-

nomial ring R[x±l], and (,) is a hermitian sesquilinear form on M w.r.t the involution a

We call a pair (M, (,)) a parahermitian space over ^[x*1] if (,) is nonsingular, i.e. if

its adjoint h : M -> M* defined by h(v) = (v, •) for v GM is an isomorphism.

On R = C, we take a to be the usual complex conjugation, i.e. a(a) = a for any

a GC . For any / GCfsc*1], we simply denote ap(f) by /.

Definition 7.2.2 For a matrix H = (/i,j) GMjt/(C[x±1]), its parahermitian conjugate

H = (K,j) € Mi^Qx*1]) is defined by h\j = hj%i. We call a square matrix H GMn(C[x±1])
parahermitian if it satisfies H = H.

(1-x 2 + l/y\
Example 7.2.3 Let Hi = G M2(S\x±x ,y±1]). Then one gets H, =

\ y/x 1+ i J

p-
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ll-l/x x/y\ lx-rl/x y+l/x \
I ^ . I • ror H2 = I ), one checks easily that H2 =
\2+y 1-tJ U/y + x xy-l + l/xyj'
H2. Therefore, H2 is parahermitian while Hi is not. D

Definition 7.2.4 A square matrix H GMnfCfc*1]) is called paraunitary if it satisfies
H •H = H •H = /. The paraunitary group, \Jn(<[{x±l]), is the group of all the n x n
paraunitary matrices in Mn(C[x±1]).

Remark 7.2.5 Let H(xu.. .,xm) G M^Qx*1]) be paraunitary, and (ai,...,am) be a
point on the topological torus S1 x •••x S1 . Then H(ci,.. .,am) GM„(C) is just unitary
as a matrix over C (because a~ = a"1 for any at GS1). This shows that a paraunitary
matrix is a natural Laurent polynomial analogue of a unitary matrix.

Remark 7.2.6 For the free C[x±1]-module (Clx*1])", define a sesquilinear form (,) on
(Cfx*1])" by (v,w) = E"=i vtwi where v = £?=1 i?,e,.w = £?=1 «W G(Cfc*1])" with
{ei,.. .,en} being the standard basis of (Cjx*1])71. Then, ((Cfx*1])", (,» becomes a para
hermitian space, and a paraunitary matrix H G U„(C[x:fc1]) defines an isometry from
((Cfx*1])"^,)) onto itself.

One deduces easily that an nxnmatrix H over C[x±l) is paraunitary ifand only if
its column vectors (or row vectors). Vi vn, satisfy the usual orthonormality condition:
(v„vJ) = <5li.

2
xz xExample 7.2.7 Consider H=^ I _2J €JvMCtx^.y*1]). Then, one verifies

easily that H •H = H •H = /. So, H is paraunitary. Let v = -±=(x2.xy2y and w =
7f(*«-y2)' be the column vectors of H. Then,

.<v,v>=^.*)(£)-!
•<w.w>= |(1,^) (_*J=l

•^>=!**).>»

This shows that v and w are unit norm vectors in C^r*1, y±l]2 that are orthogonal
to each other. •
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Remark 7.2.8 Let M be a submodule of Mx*1])" that splits as a direct summand. Then

M is projective. Now by the theorem of R. G. Swan [Swa78] that generalizes the Quillen-

Suslin theorem overpolynomial rings to the samestatement over Laurent polynomial rings,

M is free.

Let {vi,...,vjt} be a free basis of M, k < n. Then the adjoint of (,) \M is
described by the k x k matrix ((v,-,Vj)). Therefore, (M, (,) \M) is nonsingular if and only

if det((vt-, Vj >) is a unit of Qx±l]. In this case, (M,(,)\M) itself forms a parahermitian
space.

Conversely, if (M,(,) \M) C ((<$x±x])n, (,)) is a parahermitian subspace, then
the following proposition states that M C (tfx±l))n is a projective submodule that splits
as an orthogonal summand.

Proposition 7.2.9 1. Let (U, (,)) be a parahermitian module over C[x±1] and M be a
submodule ofU which is finitely generated and projective.

If(M,(,) \m) is nonsingular, then

(U,{,)) = (M,(,)\M)±(M±,(,)\MJ.).

2. If there exist parahermitian modules (£/,-, (,),-), i = 1,2, such that

(U,(,))~(Ui,(,)i)L(U2,(,)2),

then (,){, i= 1,2 are nonsingular if and only if (,) is nonsingular.

Proof: See Lemma 3.6.2 in [Knu91]. •

From now on, we will identify v = £?=i ^e,- G(Cfx*1])" with the column vector
(vi,. ..,vny. Also, we will denote the Laurent polynomial ring Cfx^] by A.

Corollary 7.2.10 Let (M,(,) \M) C (An,(,)) be a parahermitian subspace, and v GM.
Consider the submodule Av C M of rank 1.

1. Av C M splits as a direct summand if and only ifv£An is unimodular.

2- (^v> (>) Uv) C (M, (,)) splits as an orthogonal summand ifand only if(v, v) GR>q.
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Proof: (1) This is the Lemma 3.1.4.

(2) If (v,v >> G R>0, then v is clearly unimodular, and thus by the first part of this
Corollary, Av is a direct summand ofM. Hence, in view of Proposition 7.2.9, we only
need to check if (,) Uv is nonsingular. As we observed in the Remark 7.2.8, (,>Uv is
nonsingular since det((v, v)) = (v, v) GA*.

Conversely, if (Av, (,) \Av) C (M,(,)) splits as an orthogonal summand, then

(,) Uv is nonsingular, which occurs precisely when det((v,v» = (v,v) G A". Now, the
following Lemma gives the result. D

Lemma 7.2.11 Let A = C[x±l]}, and v GAn. Then,

(v,v) £ A* <*=» (v,v) GR>0.

Proof: One direction (<=) is obvious.

If (v,v) G-4*, then (v,v) is a nonzero monomial in A= C[x±l] satisfying (v,v) =
(v, v). Involution invariant nonzero monomials in Aarejust nonzero real numbers. To show

that (v,v) isa positive real number, write v = £ v,-,...,-„,ar'1 ••-x,m with vfl...,m G?:". Then,
by an explicit computation, we see that the constant term of(v,v) is equal to £ || vt]...,m ||2
which must be same as the nonzero real number (v,v). D

Example 7.2.12 Let A = Cfcr^.y*1], M = A2. Vl = (1 - xy,x2)< GM, and v2 = (1 -
xy, l+xy)' GM. Then both ofvi and v2 areunimodular since (l+xy)-(l-xy)+y2-x2 = 1

and | •(1 - xy) + \ •(1 + xy) = 1. Therefore, both ofAvi and ,4v2 are direct summands
of M. However, since

<Vi,Vl> = (l-l-)(l-Xy) +±ix2tA-,
xy x*

<v2,v2) = (1 )(i-a:y)+ (! +-!)(1 +xy) =4G.4",
xy xy

wesee that Avi is not an orthogonal summand of M while i4v2 is. Actually, we claim that

wi = (-y2,1 + xyY and w2 = (1 + xy, 1- xy)1 satisfy

v4vi©>lwi = M

Av2 _L .4w2 = M.

First, in order to show ,4vi ©4wi = «M, it is enough to show that any (/. g)* G M

can be uniquely written in the form, f'v1 + g'v/i, for some f',g' G A. This translates into
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i-*y -y2 \/r\ = f/\
x2 l+xy/Uv \9j'
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(1 - xy —y2 \
1=1, i.e.

x2 l + xy/

11 —xy —y2 \
* " )€GL2(A).

\ xl l + xy J

To show 4v2 -L Aw2 = M, first verify in the same manner that Av2 ®Aw2 = M,

and then note that

(v2,v2) = 4 G Am,

(w2,w2) = 4eA*,

(v2,w2> = (l-l/xy)(l + xy) + (l + l/xy)(l-xy) = 0.

7.3 Paraunitary Completion

Suppose that H (n > k) is an n x k paraunitary matrix over A := Cfx*1], i.e. a
rectangular matrix with entries in A whose column vectors are orthonormal to each other.

Now the question is,

Can we complete this matrix to a square nxn paraunitary matrix by adding more
columns to it?

Let vi,..., Vk G An be the column vectors of H, and V C An be the submodule

of An generated by these vectors. Then since Vis an orthogonal summand of An, we have

V _L V = An. Now the above question can be rephrased as,

Can we find an orthonormal basis of V1?

If the answer to this question is positive, then the members of this orthonormal

basis will be the extra column vectors we can add to H to make a square paraunitary
matrix.

Let Vn(,4) be the set of the n-dimensional vectors over A of unit norm, and Wn(.4)

be the subset of Vn(A) consisting of the vectors of norm equal to 1. Note that, according

to the Corollary 7.2.10 and Lemma 7.2.11,
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Vn(A) = {v G>T | <v,v>G>n

= {veAn | <v,v>GK>o}

= {v GAn | Av separates as a 1-dimensional orthogonal

summand of An). (7.1)

The paraunitary group Vn(A) acts on the set Wn(,4) by matrix multiplication,

and the above problem of paraunitray completion can also be expressed in terms of the

transitivity of this group action. For v, w G W„(>1), we will denote v ~ w if there exists

U G Vn(A) such that v = Uw.

Proposition 7.3.1 The paraunitary completion problem has a positive answer if and only

if the above group action of\Jn(A) on Wn(A) is transitive.

Proof: An easy exercise. D

Lemma 7.3.2 Anyparaunitary matrix H GV2(A) can be written uniquely in the form

»- C "J)
for a vector I 1 G.42 of norm 1, and a monomial a GA.

\9/

Proof: Let the first column of H be v = j, which is clearly of unit norm. Then by

Corollary 7.2.10, ,4v splits as an orthogonal summand of A2. And its orthogonal comple

ment (,4V)1 is a free submodule of ,42 of rank 1 whose generator can be any ofits elements

of unit norm. We easily see that w= j . j is one such element of (Av)1. Since the
second column vector of H is in (Av)1, it can be written as av for some a GA, and since

it is also of unit norm, a should be a unit of A = Cfx*1] which must be a monomial. D

Proposition 7.3.3 \}2(A) acts transitively on W2(j4).

Proof: It's enough to show that v ~ (1,0)' for any v = (vi,v2Y G Wn(,4). For this

purpose, define U G M2(,4) by

u = f ""' *V
\ ~V2 Vi I
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Using (v,v) = tTiUi + v2v2 = 1, one easily checks that U is paraunitary i.e.

UU = / and satisfy Uv = (1,0)*. D

Remark 7.3.4 It is still an open problem to determine if the group action of Vn(A) on

Wn(i4) is transitive for n > 3. The transitivity can be deduced if the parahermitian ana

logue of Serre's conjecture is true, that is, if any parahermitian space is isometric to a free

module with trivial inner product. This problem will be more carefully analyzed elsewhere.

However, when m = 1, more can be said without this conjecture. Actually, it will be shown

in the next section that the separable subgroup S„(C[x±1]) of UnfCfx*1]) generated by

constant unitary matrices (elements of Un(C)) and delays (diagonal matrices with mono

mial entries) already acts transitively on WnjCj^1]). This means that any rectangular

paraunitary matrix over Cfx*1] can be completed to a square paraunitary matrix.

We will need the following lemma later.

Lemma 7.3.5 The determinant of a paraunitary matrix H GUn(,4) is a monomial of the

form axn for some n = (m,..., nm) GZm and a GC with \\a\\ = 1.

Proof: From H • H = /, we see that det(H) •det(H) = 1, i.e. det(H) is an invertible

element ofCfx*1], which must be a monomial. Let det(H) = axn. Then det(H) = ax~n.
.Now, det(H) •det(H) = 1 gives ad = 1. D

7.4 Paraunitary Groups over (T[x:tl]

If v G WnfCtx*1]) is a monomial vector, i.e. v = v0x* for v0 GC" and k GZ,

then it is easy to see that v ~ (1,0,.. .,0)*. That is, since v GW„(4), we have

(v, v) = 1= < x*v0,xfcvo > = (v0,v0 > = || v0 ||2 .

Now find an orthonormal basis {wi,...,w„_i} of (Cvq)1 C C1 (the standard Gram-

Schmidt process will do this). Then the matrix

U = (vo,Wi,...,wB_i) GM„(C)

is clearly unitary. Denoting the delay, diag(x, 1,..., 1) GM„(C[x±1]), by D, we have

D"fcUv = (1,0,...,0)'.

Since D"*U GSn^x^]), this implies v h (1,0,...,0)'.
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Lemma 7.4.1 Ifv GW^Cfc*1]) isa binomial vector, i.e. v = v0xA:+v1x/ forv0,vi GC1
andk<lez, thenv~ (1,0,. ..,0)'.

Proof: Since the monomial case is considered above, assume that v0 ^ 0 and vi ^ 0.

1 = (v,v)

= (v0x* + vix', v0x* + vix; >

= II vo ||2 + || Vj ||2 + (v0, Vj > x'"* + (Vi, Vo > X*"'.

Therefore, we have || v0 ||2 + || vj ||2= 1and (v0, vj > = (vi,v0 > = 0. Now find
an orthonormal basis {wj,.. .,wn_!} of (Cvo)1 C C1, and define Ui GM„(C) by Ui =

(f|viJlT'Wl'"->wn-i) wnicn is clearly unitary. Denote the delay diag(x~*,x_/,.. .,x_/) G
M„(.4) by D, and let v' = DUiV. Since

( W%f\\
Wi

UlV =

\wn_i/

/ II vo || x
(W!,Vi > X1

(v0x* + vix')

V(wn_!,Vi > X1 J

we see that v' = DUiV = (|| v0 ||, (w,, Vl >,..., (wn-lf v, >)', and ||v'||= 1.
Now find an orthonormal basis {wj,...,!^..,} of (Cv')1 C C\ and define U2 G

Mn(C) by U2 = (v',wj,..., W;_,). Then U2v' = (1,0,.. .,0)' = U2DU,v. D

Lemma 7.4.2 Ifv GWn(C[x±1]) nMn(C[x]), i.e. a polynomial vector ofunit norm, then
there exists S GSnfCfx*1]) nM„(C[x]), aproduct ofconstant unitary matrices and negative
delays, such that Sv = (1,0,..., 0)*.

Proof: Multiplying by a negative delay if necessary, we may assume without loss ofgener
ality that

v = vo + ViX + '-. + v/x', v,-G C1, vo^O, v/^0.

Now the condition (v, v) GC implies (v0, v/ > = 0, which means v0 + v/.r' is a

unit norm vector. By the proof of Lemma 7.4.1 above, we can find Ui,U2 GVn(C), and
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vq + v/x' = Uidiag(l,x/,---,ar/)U2
0

Vo/

From this representation, letting v,- = UiVj, we deduce that

vo + v/x' = Uidiag(l,x', •••,xi)Ui(v0 + v/_ix/ *)

= Uidiag(l, x', •••,x')(v0 + v/_ix/_1).

Also, note that

/-iVixH hv/_ix

= Uidiag(x, x, •••,x)(vi + •••+ vj-ix'"2)

= Uidiag(l, x, ••., x)diag(x, 1, ••-, l)(v2 + •••+ v/_ix/-2).

Therefore, we get

v = (V0 + ViX1) + (ViX + •••+ V;_ix'_1)

Uidiag(l, x', •••,x')(v0 + v/_ix/_1) +

Uidiag(l,x, ••-,x)diag(x, 1, •••, l)(vi +

Uidiag(l,x', •••,x'){v0 + v,_ix/-1 +

diag(x, 1,••-, l)(vi + •••+ vt-ix1-2)}.

/-2>+ vl-ix'-')
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Since the degree of the vector polynomial v0 + v/_ix/-1 + diag(x,1,•••, l)(vi +
.1-21- v/_ix' z is / - 1, by induction on the degree, the lemma is proved. D

Now we can use the above lemmas to show the transitivity of Sn(C[x±1]) on
WnOCfx*1]).

Proposition 7.4.3 Ifm=l, SnfCfx*1]) acts transitively on Wn(C[x±1]).

Corollary 7.4.4 Ifm = 1, UnfQx*1]) acts transitively on Wn(C[x±1]).
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Proof of Proposition: Le.t v G WnfCfx*1]) . Multiplying by a delay if necessary, we

may assume that v is a polynomial vector, i.e. has no negative exponents involved. Write

v = v0 + Vix + ... + v/x', Vi eC1, v0 7*0 v* 7*0.

Now the proposition follows from the Lemma 7.4.2. D

Theorem 7.4.5 (P. P. Vaidyanathan) Sn^x*1]) = Un^x*1]) for any n > 2, i.e. any
paraunitary matrix H GU„(C[x±1]) can be written as aproduct ofconstant unitary matrices
and delays. J/H GUnfCfx*1]) DM„(C[x]) is a polynomial matrix, then it can be written as
a product of constant unitary matrices and positive delays.

Proof: Let vj = H(1,0,.. .,0)' GWnfC^1]) be the first column vector of H. Then by
Proposition 7.4.3, there exists Si GS„(C[x±1]) such that

Siv, = (1,0 0)'.

Since the matrix SiH is again paraunitary, it must be of the following form:

SiH = f* ° )
\0 Hi/

where Hi eHn-iM^1]).

Now apply the same procedure to the first column vector of Hi. Repeating this
procedure, we find Si....,S„ GS^Clx*1]) such that

Sj-.-SnU = /.

This implies that H = S»---Si € SnO^x*1]), i.e. H is a product of constant

unitary matrices and delays. When H is a polynomial matrix, the statement follows from

the Lemma 7.4.2 since all the S,'s involved can be chosen to be products ofconstant unitary
matrices and positive delays. D

(y/2 _ fa /fi J_ /o \

afi a£ i£ r J € U2WX±1J)- 0ne checks
*T X ~~ X "•" * /

easily that H is paraunitary. Applying the above algorithm, we get the factorization.

H=D0 •(R, •D,) •(R2 •D2) where D0 = f * J,D,=D2= ' ° 1are delavs.

andR,-^^ !j.R*=if 1 y/S\
_ I are rotations.

y/5 1 /
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Definition 7.4.7 1. The standard delay in UnfCtx*1]) is the diagonal matrix D de
fined byD = diag(l,...,l,x).

2. The i-th standard delay in UnfC^xf1,.. .,x^]) is the diagonal matrix D, defined
6yDt=diag(l,...,l,xt).

A slight variation ofthe above theorem over the polynomial ring C[x] (rather than

over Cjx*1]) which is often used in many applications in 1-D filter banks and wavelets is
the following.

Theorem 7.4.8 (P. P. Vaidyanathan) LetK(x) GVn(C[x±l]) DMn(C[x]) be paraunitary
with det(H) = xd. Then it can be written in the form, H = Vd(x)V£f_i(x) ••-Vi(x)H0,
where Ho is a constant unitary matrix, and for each 1 < i < d, ,(x) = / - v,v, + xv,v, for
certain constant unit norm vector v,-.

( /n-2 )Proof: Consider the rotation matrix R = 0 1 GU„(C). Then,

V -1 oy
RMiag(l,...,l,x,l)R = diag(l,...,l,x).

Therefore, the unitary polynomial matrix H G U„(C[x]), which is a product of

constant unitary matrices and delays, can be rewritten as a product of constant unitary

matrices and standard delays, i.e.

H = U0DUi- ..Vd-iDVd

where D is the standard delay diag(l,..., 1,x).

Note here that det(H) = xd was used to deduce the right number offactors. Now
rewriting H as

H = (UoDUoHUoUiDt^Uo)---

we see that it is enough to show the theorem for H = Udiag(l,..., l,x)U, where U =

(uij) G Un(C).

Noting that

H = Udiag(l,...,l,x)U

= U(/ + diag(0,...,0,x-l))U

= 7 + Udiag(0,...,0,x- 1)U,
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and

(x-l)«nl«nl ••• (x-l)w„iunn\

Udiag(0,...,0,x-l)U =

(x - l)u„„u„i (X - 1)«„„U„„ /

= (x-1)
Un2

(«nl,Wn2, •••,«nn)i

\UnnJ

we prove the theorem. D

Remark 7.4.9 If H GMA(C[x]) is paraunitary with det(H) = xn, then according to the

above theorem, we can write it as a product of V,(x)'s, 1 < t < n. Now, it is easy to see

that the highest degree term appearing in the expansion of this product could be at most

xn. Note that this means, any paraunitary matrix H GMjv(C[t]) with det(H) = ±lxn can
be written uniquely as

H = h0 + hix + -- + hkxk, k<n,

i.e. the order fc of a paraunitary matrix H GMa'(C[x]) is bounded by the degree 7? of its
determinant.

7.5 The Structure of U2((T[xf\ •••, x^1])

Again, multiplying by a delay if necessary, we assume that all the paraunitary

matrices being considered are polynomial matrices. First, we need a few lemmas.

Proposition 7.5.1 Let H(x) G M2(C[x]) be a paraunitary polynomial matrix of deter
minant ex6xn. Then it can be written uniquely in the following form:

h(«) = EE-E*'.-*.*i,*?-*sr
tj=0i2=0 i'm=0

where 0 < kj < nj for each j = l,...,m, and Ai,...,-m G M2(C) for all (/"i, ••-./„,) G

{0,...,*,}x...x{0,...,*m}.
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Proof: Since we can always write uniquely

h(x)= £ a.-,-*.*}'*?—*Sr
(*l»...,»m)€/

fora finite index set /, we have only to show that /&tl .-.»„, = 0 if ik > nk forany k = 1,..., m.

Suppose 6 = max{ii | /i,-,...If71 ^ 0 for some (i2 ••-im)} > nY. Then we can write

H(xi,...,xm) = h0(x2,...,xm) + hi(x2,...,xm)xi H f- hs(x2,• ••,xm)xl

for some polynomial matrices h{(x2,..., xm) GM2(C[x2,...,xm]) with hs(x2,..., xm) being

not identically zero. Now, let (a2,a3,. ..,am) be any fixed point on the torus S1 x ••• x

S1. Then H(xi,a2,a3,...,am) is a paraunitary matrix in M2(C[xi]) whose determinant
has degree t^. Therefore, by Remark 7.4.9, the highest degree term in the expansion of

H(xi, a2, a3,..., am) with respect to xi can be at most x"1. This means hs(a2, a$,..., am) =

0 since 6 > ni. Now that this is true for any (a2, a3,..., am) on the torus S1 x •••x S1, the

polynomial matrix hs(x2,...,xm) must be a zero matrix, which contradicts the definition

of<5. Therefore, /itr..,m = 0 for any %i > nj. And thesame method gives hix...{m = 0for any
ik > nk, k = l,...,m. D

Definition 7.5.2 For any polynomial matrix G GM/m(C[oj]) with the minimal representa

tion G= Ef11=oE?22=o"^••Eb=o^V--.n,^142---*^^ayGz5oftype(^i,...,fcm)G2-
and we call k = ki H \-km the total order of G.

Using this new terminology, the above Proposition 7.5.1 can be rephrased as "the type

of a paraunitary polynomial matrix is bounded by the exponents of its determinant'. An

immediate but very useful corollary of this lemma is,

Corollary 7.5.3 Let H G M2(C[xi,.. .,xm]) be a paraunitary polynomial matrix. If the

determinant o/H doesn't involve a variable Xk, then

HGM2(C[x!,...,x£,...,xm]),

i.e. H is a polynomial matrix not involving the variable xjt at all.

Remark 7.5.4 Any paraunitary polynomial matrix H GM2(C[jc]) whose determinant in

volves only one variable must have all of its components involving only one variable by

Corollary 7.5.3 above, and is trivially factorizable by Theorem 7.4.5.
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Lemma 7.5.5 Suppose H GM2(€[x]) with det(H) = a:n = xj1 ••-x£" isfactorizable into
(constant) unitary matrices and delays, and n= nx + \-nm is the total degree o/det(H).
Then H has a canonical factorization into n + 1 unitary matrices and n standard delays,
i.e.

H = UnDnU^Dn^.-'UiDjUo (7.3)

for some unitary matrices U0,...,Un G U2(C) and standard delays Di,...,D„'s with
the number of i-th standard delays appearing in this expression being precisely nt- for each
l<i<n.

lcos(B) -sin(0)\
Proof: Let R($) = be the rotation matrix. Since a delay is a product

\sin(0) cos(0) /

of (1 !,)'s and (o i)'Sl by noting (oi) =R{~K/2) {I I) R(,r/2)'we see
that any delay can be expressed as a product of unitary matrices and standard delays.

Therefore, H itself can be written as a product of unitary matrices and standard delays,

i.e. H = U/D/U/_iD/_i ••-UiDiU0, for some unitary matrices U,-'s and standard delays
D,'s. To see that / = n, take the determinant of both sides:

det(H) = x?1...x^ = ndet(Di),
*=i

From this expression, we see that the number of t-th standard delays appearing in this
product must be n,-, and the / must be equal to the total degree ofdet(H) = n. D

Let H GM2(C[aj]) be a paraunitary polynomial matrix, and let v be its first column

vector. Then the separability of H clearly implies the separability of v: if H = HiH2 for

two paraunitary polynomial matrices Hi,H2 GM2(C[aj]), then v = H2V2 where v2 is the
first column vector of H2.

Now, the following lemma asserts that the converse is also true, thereby relating
the separability of a paraunitary matrix with that of a unit norm vector. Since, from

a computational point of view, the unit norm vectors are easier to deal with than the

paraunitary matrices, we will actually consider the separability of the polynomial vectors

of unit norm rather than that of the paraunitary matrices.

Lemma 7.5.6 Let H G U2(C[jc]) be paraunitary with det(H) = xn, and v be its first
column vector of type k := (ki,..., fcm). Suppose v is perfectly separable, i.e.

v = UdDdU(/_iDt/_1.-.U1D1vo (7.4)
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for some unitary matrices Ui,..., Uj GU2(C), a constant unit norm vector v0 GC2, and

standard delays Di,..., D<* with the number of the i'th standard delays appearing in this

expression being precisely k{. Then H is also perfectly separable.

Proof: Write v0 = ( Jfor a, bGCwith a2 +b2 =1. Then one checks easily that

H = UdDdUd.iDd.! ..-UiDi

= UdDdUd_1Dd.1...U1Di

a -a;n-k6\

.6 xn~ka )
a -b\ (1 0

b a ) VO xn"k

7.6 Computational Aspects

Consider a vector v = I J G(K[x,y])2 of unit norm. Then its component
polynomials f,g G U[x] are constrained by the unit norm condition vv = 1, and this

constraint can be described by a system of quadratic polynomials in the coefficients of f,g.

Now we would like to see when these algebraic relations describing the unit norm condition

on v guarantee the decomposition of v into the form 7.4.

Let v= f J G(R[x,y])2 be of unit norm of type (kuk2) with total order 2,
and let a = xklyk2 GM[x,y]. Then av becomes a polynomial vector. Define a paraunitary
matrix H G M2(U[x,y]) by

- - C :;)•
in which we get the following three cases to consider; det(H) = x2, xy,y2.

In terms of v, we see that v is of type (2,0), (1,1) and (0,2), in respective cases.

The two cases when v is of type (2,0) and of type (0,2) are trivial by Corol
lary 7.5.3.

Suppose, therefore, v is of type (1,1), i.e. det(H) = xy. In this case, by Proposi

tion 7.5.1, we can write

H = h00-\-hiox +h0}iy +huxy
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for some hoo, hto, /*o,i, hu GM2PR]. The corresponding expression for v is,

v = voo + v10x + vo,iy + vnxy

for some vooiVio,vo,i,vn GK2. Define the real numbers a,v,-,6,j, 0 < i,j < 1, by v,-j =

(I and consider

Iti)
1 = vv

= (voo + vio^_1 + v0ily_1 + v'uX-'y-'Hvoo + vi0x + v0,iy + vuxy).

Equating the respective coefficients ofx and y, we get the following set of relations:

0 = vnVoo = Goi Gio + &oi bio

0 = viovoi = aooflii -rboobu

0 = viovoo + vnv0i = flooflio + aoi an +600^10 + 601 6n

0 = v0iV0o + vnvio = aooaoi+010^11+ 600601+610611

1 = V00Vo,0 + V01V0,1 + v|0V1|0 + v'jjVh

= ooo2 + aoi2 + aio2 + an2 + 6oo2 + 6oi2 + 6102 + 6ii2. (7.5)

Note here that the above set of relations gives defining equations for a unit norm

vector oftype bounded by (1,1), that is, ifwe choose any real numbers at/s and 6a/s satisfy

ing above set of relations, and define apolynomial vector vby v=£,-_0 £j=0 ( \\ )x(yj,
then v will be a unit norm vector of type < (1,1).

Therefore, we can view above set of relations as quadratic polynomials /,, 1 < i < 5

in the polynomial ring R[a0o,aio,aoi,an1600,610,60i,6n] defining a variety which we may

call the Paraunitary Variety of type (1,1). The real valued points on this subvariety

of affine 8-space are in one-to-one correspondence with the unit norm polynomial vectors

of type < (1,1), and thus paraunitary matrices of determinant xniy"2 with (ni,n2) <
(1,1). Therefore, this variety precisely parametrizes all the paraunitary matrices whose
determinant is a factor of xy.

Tosee what type ofalgebraic relations on the a,'s and 6,'s assure the factorizability

of v as in 7.4, assume

v = R(0)D(x)v' (7.6)
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for a certain rotation matrix R(9), the first standard delay D(x) = I j, and a poly-
Vo xj

nomial vector v' G (M[x,y])2. Letting v0(y) = v0o + v0iy and v2(y) = vi0 + vny, we now
get

R(0Yv = R(e)i(v0(y)-rvi(y)x)

= R(0)tvo(y)-rR(e)tVi(y)x

= D(x)v'
11 0

v'
\0 x)

Since the second component of the vector R(0)'v is divisible by x, its constant term,

that is, the second component of the vector R(0)*vo(y), should be zero. So, we get

(-sin(0),cos(0))vo(y) = O, i.e.

(-sin(0),cos(0))voo = (-sin(0),cos(0))vOi = 0

Conversely, if there exists a nonzero constant vector (a,6) such that (a,6)v0(y) = 0, then v
, f b a\splits as in 7.6, with R(0) = ^a2 ^ I I. We can do the same to see when v splits

with the factor R(0)D(y). What we get is the following:

The vector v splits as in 7.4

"(a, 6)v00 = (a,b)v01 = 0" or "(a, 6)v00 = (a,b)vw= 0" has a

nontrivial solution (a, 6).

(aoo boo\ Ia\ Ia00 6oo\ Ia\
1(1=0 or )( 1=0 has a nontrivial solution

aoi boij \bj \aio hoj \bj

floo6oi —600^01 = 0 or aoo6io —600^10 = 0.

/ := (000601 - 6ooaoi)(ooo6io - 600^10) = 0. (7.7)

Let 7(1,1) C R[aoo,aio,aoi,aii,boo,bio,boi,bii] be the ideal generated by the 5 quadratic

polynomials /,-, 1 < i < 5. Since any point in the variety V(7(l,l)) defines a unit norm

vector of type < (1,1) and an arbitrary point in V(f) defines a vector decomposable into

the form in 7.4, showing V(7(l,l)) C V(f) is equivalent to showing that any unit norm

vector of type < (1,1) is factorizable as in 7.4. Therefore, our question has boiled down to:
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V(/(l,l))cV(/)?

The following lemma gives a sufficient condition for the above question to have a positive

answer.

Lemma 7.6.1 Let k be an arbitrary field. Then,

geVl =* V(I)CV(9) (7.8)

Now the following radical ideal membership algorithm can be used for our computational
test of / G v7(l,l).

Lemma 7.6.2 (Radical Ideal Membership) f G\fl iff the ideal (fi,f2, f3, f4, f5,1 - t •/)
of the rm^M[a00,aio,a0i, an, 600,610,601,611,/] is the unit ideal, i.e. 1 belongs to the ideal
(/l,/2,/3,/4,/5,l -t-f).

Remark 7.6.3 Note here that we have introduced a new variable t.

Noting that the ideal (fi,f2, /3, /4, /5,1 - t •/) is a unit ideal iff its Grobner bases is {1}.
we can use any existing computer algebra packages to compute the Grobner bases of the

six polynomials /i, f2, f3, /4, /5,1 - *•/ in 9 variables. We used Macaulay and SINGULAR

for this computation, which gave us the positive answer for the above case (d = 2), that is,
it showed that the Grobner bases of fu f2,f3, /4, /5,1 - / •/ is just 1.

For higher rf's, the corresponding radical ideal membership can be checked in the

same fashion even though the involved Grobner bases computation takes much more time.

For d = 3, there are 4 types of Paraunitary Variety; of type (3,0), (2,1). (1.2).
and (0,3). The (3,0), (0,3) cases are trivial by Corollary 7.5.3, and by symmetry, we have

only to consider type (2,1) case. The Paraunitary Variety of type (2,1) is defined by 8

quadratic polynomials in the affine 12-space, and there are 3 polynomials ofdegree 4 whose

radical ideal membership is to be checked. Hours ofGrobner bases computation in this case
confirmed that the answer is still positive.

For the d = 4 case, there are two nontrivial cases to consider; of type (3,1) and of

type (2,2). The Paraunitary Variety of type (3,1) is defined by 11 quadratic polynomials in

the affine 16-space, and there are 6 polynomials ofdegree 4 whose radical ideal membership

is to be checked. For the type (2,2) case, which is defined by 13 quadratic polynomials in

the affine 18-space, there are 9 polynomials of degree 4 whose radical ideal membership is
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to be checked. The computation showed that the the Paraunitary Varieties of type (3,1)
and (1,3) are completely separable while the Paraunitary Variety of type (2,2) is not. So
the first counter-example may occur at type (2,2).

7.7 Convex Geometric Approach

The computation done in the preceding section shows the peculiar behavior of the

Paraunitary Varieties of type (n, 1) or (l,n), and that the first nonseparable example may

be found in (2,2) case. With the convex geometric approach to be taken in this section, we

will actually construct the following nonseparable unit norm vector V of type (2,2).
_,/Ir _ *1_ H_ 22xy • llx7y _ j£ _ 17gy2 _ 4r2fl2 \

13 I 2+1^ + 4 + ^-- $±2L - !&-- £ - 2^xv2 I

First, to understand the convex geometry behind our parahermitian structure, consider a

vector

= voo + viox + v0iy, Vij GC2 - {0}.

Then the convex hull of its exponent vectors is spanned by {(0,0), (1,0), (0,1)}.

implies

1

1<
Vol

>

1
voo \Vio

0 1

Figure 7.1: The convex hull of the exponent vectors of v

Now we claim that v GC[x, y] isnotofunit norm. Tosee this, notethat (v, v) € C

(v,v) = (voo + v10x + voiy,voo + viox + voiy)
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= (voovoo + vi0v10+ voivoi) + (vooviox + V10V00-) +
X

1 XV
(voovoiy + voivoo-) + (v0ivi0- + vi0v0i-)

y y *
G C.

From the fact that the last expression has to be a constant, we deduce that

voo -1- vio

voo -L voi

vio -L voi.

Quite clearly, no three vectors v0o,vi0,v0i G C - {0} can satisfy this mutual
orthogonality.

Theorem 7.7.1 The 2x2 paraunitary matrices of type (n,l) or (l,n) are completely
separable.

Remark 7.7.2 This theorem was first observed and proved in [LV90]. We present here a
new proof based on our convex geometric method.

Proof: Suppose that
l k

i=0 j=0

Write v = vt=0(y) + vt=1(y)x. Then it is easy to verify that the two face components.
Vt=o(y), vt=i(y) GC[y], of v are of unit norm and orthogonal to each other since v is of
unit norm. And from the orthogonality of these two vectors;

<v,=o(y),vt=1(y) > = /,=o(2/)/,=i(y) +y^olt/)^=i(y)

= /,=o(i/y)/,=i (y) + gi=o(i/y)gi=i (y)

= o,

one deduces that, if u GC isa zero of /t=0 but not a zero ofgi=0, then 1/u is a zero ofgi=1.
There are the following two cases to consider:

1. when fj=o and gj=0 have no common root

2. when fj=o and gj=o have a common root.
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Case 1: When /J=o and yJ=o have no common root.

In this case, we can write

fj=o(y) = dj=Q(y-a)

gj=o(y) = 6i=0(y-/?), a^p.

Using the orthogonality of vJ=0 and Vj=k, we see that

fj=k(y) = aj=k(y-i/P)

gj=k(y) = 6j=fc(y-l/d).

where aj-odj-ka + bj=obj=kfi = 0. Now the convex hull generated by the exponent vectors

of v has the structure shown in the Figure 7.2.

k<>

k-lO

1<>

0

O laj=k

aj-o

6j=o

_laj=Qa\ 1
\bj=o0J

Figure 7.2: The convex hull of the exponent vectors of v

Letting c,'s and d,'s, 1 < i < I, be the common roots of {fi=o(y),gi=o(y)} and

ifi=i(y),gi=i(y)}, respectively, one gets the following representation.

«i=Jt/i=o(y) = —3-Q-(y - ci) •••(y - ct) •(y - wi) •••(y - uk-i)

gi=o(y) = —^-(y - cx) •••(y - c,) •(y - t>i) •••(y - ujt_/)
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/fci(y) = aj=k(y-di)-.-(y-dt)'(y-—)...(y--—)
«i VJk-/

<7,=l(y) = 6i=Jfc(y-rfi)...(y-d/).(y-l)...(y-J_).
Ui Uk-l

Now note in Figure 7.2 that

1. at (0,0), constantcoefficient of v,-o = constant coefficient of vt=0,

2. at (1,0), leading coefficient ofv,=0 = constant coefficient of vt-i,

3. at (0,A:), constant coefficient of Vj-k = leading coefficient of v,=0,

4. at (l,fc), leading coefficient of vJ=jt = leading coefficient of v,-=1.

Comparing the coefficients of the polynomials involved, we get the following relations.

aj—k. *k
j-(-l) ci'-'Q •«!•••!£*_/ = -aj=0a

•(-l)kci--cl-vi--vk-i = -bj=0(3

Therefore, we have

Let

bJ=*< i\k.
Q

kfc.. • 1 1aj=k(-l)kdi-'-dr —•••-— = aj=0
Vi vk-i

>*.• • 1 1bJ=k(-l)kd1'"dr- -— = a,=0.
«i uk-i

aj=k Mi • • •Uk-l _ flj=Q

bj=k vi •••vk-i ~ 6J=0 '

i=i

b = (-ir^rn*-*)
iit=i u« t=i

<? = ri(v-«,-).
t=i

Then using the above relations, one obtains

v =



Now (v,v) =1 translates into

AF+x-BGyk-!

-AG + x-BFyk-1
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AAFF + BBGG + AAGG + BBFF

= (AA + BB).(FF + GG)

= 1

From the last expression, we conclude that both of AA + BB and FF + GG are nonzero

constants since they are involution invariant monomials. By dividing by their norms if

necessary, we may assume that AA + BB = FF + GG = 1. In this case, we have

v =

This shows the separability.

Case 2: When /j=o and yJ=o have a common root.

In this case, we can write

/i=o(y) = flj=o(y-7)

9j=o{y) = 6i=0(y-7)

fj=k(y) = aj=k(y-S)

9j=k(y) = bj=k(y-S)

where aj=odj=k + bj=obj=k = 0. Now the convex hull generated by the exponent vectors of

v has the structure shown in the Figure 7.3. Now we can proceed in the same fashion as in

the previous case. •

Now we will construct a nonseparable paraunitary matrix of type (2,2). And in

doing this, we will actually construct a continuously parametrized family of nonseparable
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k

k-ld)

!> V6j=o/ o /ai=/

1<>

-0'
a>=o

6j=o

6j=Jk

flj=o

6j=o

Figure 7.3: The convex hull of the exponent vectors of v

paraunitary matrices of type (2,2). Let

2 2

v = EEW
i=0 j=0

2 2 /Q..\

*v
t'=0 j=0 \ yJJ /

be a nonseparable vector of unit norm. As we observed in the Equation 7.7 of the previous

section, the separability (or nonseparability) of a vector of type (2,2) is characterized by
the following.

2 2

w = ^JZwjjx'y-7 is separable
i=o j=o

<=> w0o,wio, w2o are all parallel or w0o,woi,w02 are all parallel.

Assuming v0o ^ 0, define parameters r G !>o and 9 G [0,27r) by a0o = rcos(0),6Oo =
rsin(0). Now introduce two new parameters 5 and / by

s = (v0o,v2o) = aoofl20 + 600620

t = [0,0,2]r = det[v0o, v2o] = 000620 - ^20600

where the bracket notation is defined by [i,j,k]y = det[vj,-, v*,-] and [/,j. k]T = det[v,;. vlA.].



2 ()V02 o V12 QV22

1()
voi vn V21

voo
<h

vio V20

Figure 7.4: The exponent vectors of v of type (2,2)

The above relation can be rewritten in matrix form,

GOO 6oO | / «20 \
-6oo aoo / \ 620 /

/ cos(0) sin(0) \ / 020
= r

y-sin(0) cos(B) I V620 /

Inverting this relation, we can express 020,620 in terms of r, 9, s, t.

= l/r:

Now voo -L V22 and v2o J- v02 imply that

cos(0) -sin(^)

sin(^) cos(0)

V02 = u
-d

c

-6"

a

V22 = v
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for some u, v G C. Now we will further assume that, on each of the 4 faces of the convex

hull in the Figure 4, the corresponding face components of / and g have a common root.

In this case, on the face j = 0, the fact that fj-o = aoo + 010* + a2ox2 and

<7j=o = 600 + biox + 620a:2 have a common root is equivalent to the vanishing of the Bezout
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resultant of/J=0 and gj=0, which is [0,0,2]J- [0,0, l]y• [0,1,2]y. Therefore we can introduce
two new parameters w and z by letting

«> = [o,o,iy[o,o,2]y = [o,o,2y[o,i,2]y

* = [o,o,iy[o,o,2]x = [o,o,2y[o,i,2]x.

Now we claim that these 8 parameters (r,9,s,t,u,v,w,z), subject to 2 polynomial rela

tions among them, determine all the possible nonseparable unit norm vectors of type (2,2)

satisfying the above boundary conditions. This means that the set of the nonseparable

paraunitary vectors of type (2,2) with the additional boundary conditions is a variety of

dimension 6. For this purpose, we only need to express Vi0,v0i,vi2, v2i, vn in terms of

these parameters, and describe all the relations among these parameters. Actually, from

the vanishing of the 4 face-resultants, it is not hard to derive the following relations.

vi°= 0 !)dJj

*-- ' "6)(7)\ -s a ) \ u/w )

\-t -a) \l/uz)'
Therefore, we only have to express the interior coefficient vn in terms of these parameters.

Consider the .4,/s defined by the expansion (v,v) = £2=-2£j=-2'40JV- Then since
(v, v) = 1, we have to have Aij = 0 for any i ^ 0 or j ^ 0. In particular,

^01 = <VoO,Voi) + (Voi,Vo2) + (Vio,Vi1) + (Vn,V12) +

<V20,V2l) + (V2i,V22) =0

^10 = (VoO,Vio) + (vio,V2o) + (Voi,Vii) + (Vii,V2i) +

<V02,Vi2) + (v12,V22) =0

Ml = (VlO,V2l) + (Voo,Vii) + (vn,V22) + (voi,Vi2) =0

A-n = (Vio,Voi) + <V20<Vi,)-|-(v1i,Vo2) + (V2i,Vi2) = 0.

From j4h = A-u = 0, we get an expression of vn in terms of our parameters, and

^01 = -4io = 0 gives the relations among the parameters. One verifies easily that {r =
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2,9 = tt/2,s = 1,t = 1,u = 1,v = 2,w= ^20/7,z = 2/3} is a legitimate set of values for

the parameters, i.e. satisfies the two constraint equation Aoi = 4io = 0. And specializing

at these values gives the nonseparable example introduced at the beginning of this section.
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Part II

Applications to Signal Processing
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Chapter 8

Introduction to Part II

While there has been much recent research done on multidimensional (MD) mul

tirate systems, some basic questions have been left untouched. In the following, we will

describe some of the basic problems arising from the multidimensional multirate systems,

and all the systems, henceforth, will be assumed to be FIR (Finite Impulse Response).

In many applications, the design and analysis of invertible MD multirate schemes

boil down to the following mathematical question:

Given a matrix of polyphase components, can we effectively decide whether or
not that matrix has a left inverse, and give a complete parametrization of all the
left inverses of that matrix?

In order to show how the various problems are reduced to the above simple form,

the following three problems will be used as demonstrating examples. The same three

problems were used in [KPV95] to show the relevancy of Grobner bases in the theory of
multidimensional FIR systems.

1. Given an MD FIR low-pass filter G(z), decide effectively whether or not G(z) can oc
cur as an analysis filter in a critically downsampled, 2-channel, perfect reconstructing
(PR) FIR filter bank. When this decision process yields a positive answer, find all
such filter banks.

2. Given a sample rate conversion scheme consisting of upsampling by p, filtering with
an MD FIRfilter U(z) and downsampling by q, decide effectively whether or not this

scheme is FIR invertible.
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3. Given an oversampled MD FIR analysis filter bank, decide effectively whether or not

there is an FIR synthesis filter bank such that the overall system is PR. When this

decision process yields a positive answer, provide a complete parametrization of all

such FIR synthesis filter banks.

In the following chapters, we will show how these problems are reduced to the

above simple form, and how our previous results on unimodular polynomial matrices are

relevant to these problems in MD systems. The reason unimodularity comes in can be seen

easily from the following statement whose proofwill be given in Chapter 10:

A (not necessarily square) Laurent polynomial matrix has a left inverse if and
only if it is unimodular.

Therefore, mathematically, we are dealing with the problem of determining if a

given Laurent polynomial matrix is unimodular, and in case it is, if we can explicitly

find all the (not unique in non-square cases) left inverses for it. This allows us to see the

study of perfect reconstructing FIR filter banks as the study of unimodular matrices over

Laurent polynomial rings [KPV95].

Exploiting the results developed mainly for polynomial rings, we immediately see

that the answers to these questions are positive over polynomial rings, i.e. when the matrices

involved are unimodular polynomial matrices rather than Laurent polynomial matrices.

In system theoretic terminology, causal invertibility of causal filters are therefore covered

by these methods. Geometrically, this demonstrates the relative simplicity associated with
affine systems compared to toric systems.

The situation, however, is more complicated partly because an FIR-invertible

causal filter may not be causal-invertible.

For an example, consider the polynomial vector I j G(fr^])2. While the re

lation £ •z + ^ • z2 = 1 clearly shows the FIR-invertibility of this vector, it is not
causal-invertible since there are no polynomials f(z),g(z) € k[z] satisfying

f(z)'Z + g(z)-z2 = 1

as we can see easily by evaluating both sides at z —0.

Now, in order to extend our affine results (i.e. causal cases) to general FIR systems,

weneed an effective processofconvertinga given Laurent polynomial matrix to a polynomial
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matrix while preserving unimodularity. A systematic process to that effect was developed

in Chapter 6, and will be used through the remaining chapters.

In Chapter 9, the abovethree problems arethoroughlyexamined in the transparent

one-dimensional (1-D) causal setup.

In Chapter 10, we will get to the sameproblems in MD multirate signal processing,

for which our main tools are the Syzygy-based algorithm for the Quillen-Suslin Theorem

developed in Chapter 3.

There are far more classes of MD problems for which Grobner bases are an essential

tool. For example, in obtaining the Realization Algorithm in Chapter 4, we relied on the

Grobner bases method to determine the termination of the subprocesses. And in Chapter 11,

we will give a complete parametrization (in terms of ladder structures) of MD bi-orthogonal

filter banks with 3 or more channels by using this Realization Algorithm.
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Chapter 9

One-dimensional Multirate

Systems

9.1 Reduction to Causal Systems

Many problems in signal processing give rise to Laurent polynomial matrices, and

perfect reconstructing filter banks are represented by the unimodularity of these matrices.

A preparatory process to be carried out first in this case is to apply the algorithm Lau-

rentToPoly that will allow us to apply the techniques known for polynomial matrices to

this situation. Let us recall the algorithm LaurentToPoly.

Input: v(x) G (^[x*1])", a Laurent polynomial column vector

Output: x —f j/, a change of variables
T(x) GGL„(/:[a;±1]), a square unimodular Laurent polynomial matrix

Specification: (1) v(y) := T(x)v(x) G (k[y])n is a polynomial column vector in
the new variable y

(2) v(x) is unimodular over ^[a:*1] if and only if v(y) is unimodular
^ over k[y]

A graphical demonstration of this process is shown in the Figure 9.1.

Now finding an FIR inverse S to the given FIR filter A is equivalent to finding a

causal inverse S to the causal filter A.

Example 9.1.1 Consider the unimodular Laurent polynomial vector v = (z. z2)* G^[c*1].
Convert v to a unimodular polynomial vector.



A T-i T S

Figure 9.1: Conversion of an FIR system A to a causal system A

In this case, the transformation matrix is

T = (1/Z °
V 0 z,

And the converted unimodular polynomial vector is

v = (i,z3y.
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9.2 Applications of Euclidean Division Algorithm

In this section, we will derive a mathematical formulation for the three problems

described in the Introduction and show how unimodularity is involved, and how to solve

them in the 1-D case.

Problem 1: Given a 1-D FIR low-pass filter G(z), decide effectively whether or not G(z)
can occur as an analysis filter in a critically downsampled, 2-channel, perfect reconstructing

(PR) FIR filter bank. When this decision process yields a positive answer, find all such
filter banks.

To answer this question, we decompose G(z) into its polyphase components:

G(z) = G0(z2) + zGi(z2).

As noted in [VH92], the filter G(z) occurs as the low-pass filter in a 2-channel PR filter

bank if and only if there exist Laurent polynomials a(z) and fi(z) such that

a(z)G0(z) + /3(z)Gi(z) = l. (9.1)
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First, by conducting the preparatory step outlined above, we assume Go(z),Gi(z)
and a(z),fi(z) are polynomials. Then the condition and the construction of the polynomials

a(z) and P(z) can be simultaneously solved by the Euclidean Division Algorithm: apply a
. r , fG0(z)\

succession of elementary row operations to the polynomial vector I 1 to reduce it to

fG(z)\
I I where G(z) := gcd(G0(z),Gi(z)), i.e. find a E GE2(k[z]) such that

B/ftW\ = (G(z)\
\Gi(z)J \ 0 J

If the greatest common divisor of G0(z) and Gi(z) is not 1 (up to multiplication by con

stants), then G(z) can not act asthe low-pass filter in a 2-channel filter bank. If the greatest

common divisor is indeed 1, then the first row

(ao(z)^o(z)) := (1,0)E

of the unimodular polynomial matrix E GE2(k[z]) can be a choice for (a(z),(3(z)), thereby-

yielding a filter bank with G(z) as its low-pass filter. To find all the filter banks having

G(z) as its low-pass filter, let u(a,0) := -j30a + a0(3. Then,

IGo(z) Gi(z)\la\ = /l\

Therefore,

l*\ = /q0 -Gi(z)\ ll\
U/ \Po Go(z))\u)'

Now, regarding u as a free parameter ranging over the Laurent polynomials in k[z±l], we
get all the possible FIR filter banks with G(z) as its low-pass filter.

In the following examples, to illustrate the method of consecutive elementary oper

ations, we will first consider a simple FIR filter which is actually not a lowpass filter, but is

easy to handle. A real-world lowpass filter for which the construction of the corresponding

synthesis filters involves more computational steps will be treated in the second example.

Example 9.2.1 Consider a simple FIR filter G(z) given by

G(z) = -^ +l+2^-222 +5;3-6r5
z*
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This G(z) is decomposed into polyphase components as

G(z) = G0(z2)-rzGi(z2),

where Go(z) and Gi(z) are found as

G0(z) = i +1-2*
z

Gi(z) = 2+ bz-6z2.

Now we apply the preparatory algorithm LaurentToPoly to A(z) := (G0(z),Gi(z))t:

• Preparatory Step 1:

(z 0\ lG0(z)\ _ ll +z-2z2\
VO \)\Gi(z)j ~ {2- +5-6z)'

• Preparatory Step 2:

« \f+5-62/ V 3-22 J

• Preparatory Step 3:

E21(-3) (1 +'-^) = f1 +-^Uf^WV
Therefore, we have

A(z) = T(z)A(z)

where the converted causal filter A(z) = (Go(z),Gi(z)Y and the transformation ma

trix T(z) are given by

ll + z-2z2\

MZ) = [_bz +6z2)
T(z) := E21(-3)E21(-I) f 1

V-2-3, lj-
Now we apply the Euclidean Division Algorithm to A(z) = (G0(z),G1(z))t.
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• Step 1: Since Euclidean Division yields G0(z) = -^Gi(z)+ 1- \z, we have

Ei2(HSw)= (-L~+.L>)-
• Step 2: Since Euclidean Division yields -5* + 6z2 = (-6 - 9z)(l - \z) + 6,

• Step 3:

-^('V) • C
Combining these together, we have

I 6+9* 3+3z )\G,(z))

0-
which implies

(6 + 9s).60(2) + (3 + 3i)-G,(2) = 6,

i.e.

(l +^J.GoW +ii^.GjW = 1.
Therefore, S := (1 + fz,1^) is a left inverse to A, and changing back to the

original system, we get the corresponding left inverse S to A:

S = SB

- ohj^u* ;)



Figure 9.2: Frequency Response of the Lowpass Filter H(z)

This gives a synthesis filter

S(z) := -l-lz2 +z(l +l/z2)/2
1 , z 3 2

= Tz-1+2~r-
Now, the one-parameter family of Laurent polynomials

N U +* GoW ,
3

2'

2 ^ 2z

-l-fz-w(2 + 5z-6z2)
w

i + & + «(i + l-2*)
u GJfcfz*1]
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cover all the possible Laurent polynomial solutions to a(z)Go(z) + /?(z)Gi(z) = 1. I

Example 9.2.2 Consider a causal lowpass filter H(z) given by

H(z) = 0.1605 + 0.4156z + 0.4592z2 + 0.1487z3 - 0.1643z4 - 0.1245z5 + 0.0825z6 +

0.0887z7 - 0.0508z8 - 0.0608z9 + 0.0351zlo + 0.0399*11 - 0.0256z12 -

0.0244z13 + 0.0186z14 + 0.0135*15 - 0.0131z16 - 0.0074z17 + 0.0129z18 -

0.0050z19

whose lowpass characteristic is shown in the Figure 9.2.

This is decomposed into polyphase components as

H(z) = H0(z2)-rzHi(z2),

where Hq(z) and Hi(z) are

H0(z) = 0.1605 + 0.4592s - 0.1643z2 + 0.0825z3 - 0.0508z4 + 0.035U5 - 0.0256z6 +
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Figure 9.3: Frequency Response of the Synthesis Filter F(z)

0.0186z7 - 0.013U8 + 0.0129z9,

Hi(z) = 0.4156 + 0.1487* - 0.1245*2 + 0.0887*3 - O.O6O824 + 0.0399z5 - 0.0244z6 +

0.0135z7 - 0.0074z8 - 0.0050z9.

Euclidean Division yields

H0(z) = -2.5893/f,(z) + r(z)

with the remainder

r(z) = 1.2367 + 0.8442 z - 0.4867 z2 + 0.3123 z3 - 0.208349 z4 + 0.138472 z5

-0.0888109 z6+ 0.0536797 z7- 0.0323696 zs.

Carrying out the corresponding elementary operation gives

Ho(z)\ I r(z) \
E12(2.5893)

Hi(z) Hi(z)

Repeating the same procedure to the polynomial vector I |, we eventually
\Hi(z)J

get A GE2(€[z]), a product of 10 elementary matrices, such that

Let B := otWa- Then

H0(z)

Hi(z)

B
Ho(z)

Hi(z)

0.7661

0

r(z)
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An explicit computation shows

Bn(z) = -0.4138 + 0.5743 z - 0.3989z2 + 0.2652 z3 - 0.1667z4 + 0.0960z5 -

0.0478 z6+ 0.0164 z7+ 0.0154z8

Bi2(z) = 2.5658- 0.6827 z + 0.3689 z2 - 0.2369 z3 + 0.1658z4 - 0.1189z5+

0.0839z6 - 0.0572z7+ 0.0398z8

#2i (z) = -0.7081 - 0.2533 z + 0.2121 z2 - 0.1512 z3+ 0.1036 z4 - 0.0679 z5 +

0.0416z6 - 0.0231 z7+ 0.0127 z8+ 0.0085 z9

£22(z) = 0.2735 + 0.7824 z - 0.2799 z2 + 0.1406 z3- 0.0865 z4 + 0.0599 z5 -

0.0436z6+ 0.0317 z7 - 0.0223 z8+ 0.0220 z9.

Hence, we have

BuHoW + B12i?i(z) = 1.

Now, the filter

F(z) = Bn(z2) + zBi2(z2)

= -0.4138 + 2.5658 z + 0.5743 z2 - 0.6827 z3 - 0.3989 z4 + 0.3689 z5 +

0.2652 z6 - 0.2369 z7 - 0.1667 z8 + 0.1657 z9 + 0.0960 z10 - 0.1189 z11 -

0.0478 z12 -f 0.0839 z13 + 0.0164 z14 - 0.0572 z15 + 0.0154 z16 + 0.0398 z17

is a desired synthesis filter, whose frequency response is shown in the Figure 9.3. Actually,

what we get is a 1-parameter family of synthesis filters, and making a good choice of

uGk[z±l] will give us a synthesis filter with a more desirable frequency response. •

Problem 2: Given a sample rate conversion scheme consisting of upsampling by p, filtering

with a 1-D FIR filter U(z) and downsampling by q, decide effectively whether or not this

scheme is FIR invertible.

To answer this question, we may assume that the numbers p and q are coprime,

p > q. Let U(z) = X2f=o zlU{(zpq) be its polyphase decomposition with respect to pq. Let

the expression Uki(z), 0 < k < p, 0 < / < q, be the polyphase component. Ui(z) such that

i = k (mod p) and i = / (mod q). Invertibility of the sample rate conversion scheme can
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then be formulated as the existence of a Laurent polynomial matrix D = (Dm,fc(z)) which

is a left inverse of U = (Uki(z)).

Since a Laurent polynomial matrix hasa left inverse if and only if it is unimodular

(Theorem 10.1.3), there exist / := (J) polynomials D,(z) such that

£A(*)M,(z) = 1,
»=i

where M{(z) ranges over the maximal minors of U.

So, the second question is about determining the unimodularity of the Laurent

polynomial matrix U, or equivalently, the unimodularity of the Laurent polynomial vector

(A/i Mi) G(Cfz*1])'.

This unimodularity determination problem can be readily solved once we no

tice that, due to the the Laurent polynomial analogue of Hilbert Nullstellensatz over C

Ei Di(z)M{(z) = 1 is possible if and only if the Laurent polynomials A/,(z)'s, 1 < i < (p),
have no nonzero common roots, i.e. no roots in C. Since each univariate Laurent polyno

mial M{(z) has only finitely many zeros which can be explicitly found using any existing
computer algebra packages, we can tell if A/,(z)'s have a nonzero common root or not, and

thereby determining if U is unimodular.

Example 9.2.3 Consider a sample rate conversion scheme consisting of upsampling by
p= 3, filtering with an FIR filter U(z) and downsampling by q= 2, where U(z) is given by

o c f> o

U(z) = -6 + "5 + ^ + -2-2 + 29z + 25z3 + 2z5-2z6-4z7 + 2z8-23z9-2z10 +
z° z° z^ zl

4zn + 2z12 - 20z13 - 16z15 + 20z17 + 20z21.

Then we get the polyphase decomposition U(z) = £?=0 z't/t(z6) of U(z) where Ui(s)%s are
found as

U0(z) = 2_2-2z +2z2

Ui(z) = - + 29-4z-20z2

U2(z) = 2z

U3(z) = - + 25-23z-16z2 + 20z3

U4(z) = \-2z
z

U5(z) = 2 + 4z + 20z2.



Now, note that Uio(z) = U4(z) since i = 4 is the only integer in [0,5] such that

i = 1 (mod 3)

i = 0 (mod 2).

Continuing in this way, we get

(Uo(z)
U = U4(z)

\U2(z
The three maximal minors of U are

U0(z) U3(z

U4(z) Ui(z
U0(z) U3(z

U2(z) U5(z

U4(z) Ui(z

U2(z) U5(z

which obviously don't have any common roots.

Consequently the given scheme is FIR invertible. D

Problem 3: Given an oversampled 1-D FIR analysisfilter bank, decide effectively whether

or not there is an FIR synthesis filter bank such that the overall system is PR. When this

decisionprocess yields a positive answer, provide a complete parametrization of all such FIR

synthesis filter banks.

An oversampled filter bank corresponds to a non-square polyphase matrix, and the

problem is asking whether or not we can find a left inverse for this non-square polyphase

matrix. Let the polyphase matrix be A, a p x q Laurent polynomial matrix, p > q. Since

this polyphase matrix has a left inverse if and only if it is unimodular, we can first determine

its unimodularity by the method outlined for the second problem. If this test shows the

unimodularity of A, we first apply the algorithm LaurentToPoly to A converting A to

a unimodular polynomial matrix A. Then, by using the Euclidean Division Algorithm, we

apply a succession of elementary operations to A to reduce it to the following px q matrix

o

Mi(z) =

M2(z) =

M3(z) =

Us(z)\

Ui(z)

Us(z)J

= -1

= - - 4 - 2z + 2zl
z

= --2z
z

G Mpq(k),

Vo/

105
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where Ig is the q x q identity matrix, and 0 is the ^-dimensional zero row vector.

This means that wecan find E GEp(fc[z]), a product of elementary matrices, such
that

EA =
0

Vo/

Now take the first q rows of E to make a q x p matrix F, i.e.

F := (I9,0 0)E.

Then F is a desired left inverse of A. Note here that A = E"1

GLp(k[z]) is a unimodular completion of A.

To get a complete parametrization of all the possible left inverses of A, let B G

Mqp(k[z]) an arbitrary left inverse of A. Then

BA = L

Now. since E 1 is a unimodular completion of A,

o

Vo/

implies E"1 G

«-iBE"J = (Ig,Ul up_9)

for some m,..., up_9 G(k[z±l])q. Now, regarding ui,..., up_9 as free parameters ranging
over g-dimensional Laurent polynomial vectors, we get a complete parametrization of the

left inverses to A in terms of (p - q)q parameters ranging over the Laurent polynomials in
k[z±l]:

B = (I9,ui,...,up_9)E.

Remark 9.2.4 If p = q, i.e. if the polyphase matrix A is a square unimodular matrix,

then the number of free parameters is (p - q)q = 0. This coincides with the fact that a

square unimodular matrix has a unique inverse.
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Example 9.2.5 Consider an oversampled 1-D FIR analysis filter bank whose polyphase

matrix is the matrix U of the previous example. We already saw in that example that

/ f - 2- 2z + 2z2 f + 25 - 23z - 16z2 + 20z3\
f - 2z §+ 29 - 4z - 20z2

2z 2 + 4z + 20z2

is unimodular, so there is an FIR synthesis filter bank such that the overall system is PR.

Now we want to find all such FIR synthesis filter banks.

Closely following the algorithm outlined in the above, we get

(1 0\

U =

V

EU = 0 1

Vo o/

where the 3x3 matrix E is found as

/^(-18-125z-188z2+252z3-215z4+178z5+6z6) |(_2_27z+30z2+z3) (-'2-«9'+5l*2-60z3-2*4) ^

f(3+19z-32z2+23z3-9z4-8z5+6z6) z(4-3z-z2+z3) 9/2-4z+3z2/2+z3-z4

z(-4z+23z2/3-5z3+z4+8z5/3-2z6) 2z(-3+2z+z2 -z3)V

Now a general left inverse of U is in the form

11 0 u

U 1 v.
where u,v are arbitrary Laurent polynomials in ^[z*1].

E,

/

-6+6z-z2-2z3+2z4 /
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Chapter 10

Multidimensional Multirate

Systems

10.1 Unimodularity and Left Inverses

For p > q, let A GMpq(k[x±1]), and B GM^^x*1]). Denote the z-th column
vectors ofthe qxp matrices B and A1 by v, and w,-, respectively. For a sequence of integers

i = (ii,..., iq) with 1< h < -•• < iq < p, take the qcolumn vectors vtl,..., vl<? from B,
and qrow vectors w^,..., w^ from A to define qxq square matrices Bj and A1.

Then BA GM,(A"[as±1]) is a square matrix and its determinant can be computed
from the maximal minors of A and B by the following formula:

Lemma 10.1.1 (Binet-Cauchy Formula) With notations in the above.

det(BA) = ^TdettBOdetfA1),
i€/

where I := {(ii,...,iq) | 1 < ix < •••< iq < p}.

Proof: See [Gan77]. D

1 3 \

, and B= | " "I. Then,Example 10.1.2 Let A = | 2 1

-1/

det(BA) =

_ / 2 11
~ V-l 2 1

8

7 -2

= -58.
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Since the index set is / = {(1,2), (1,3), (2,3)}, the right hand side of the Binet-Cauchy

Formula reads as

^detJBiJdetJA1)
i€/

= det(B(lf2)) detfA*1'2)) +det(B(1|3)) det(A '̂3)) +det(B(2f3)) det(A<2>3>)
2 1

.

1 3
+

2 1 1 3
+

1 1 2 1

-1 2 2 1 -1 1 4 -1 2 1 4 -1

= 5-(-5)+ 3-(-13)+ (-1). (-6)

= -58.

This coincides with the prediction of the Binet-Cauchy Formula. D

The following theorem has many important consequences as mentioned in Chapter

8, and has been already used in the previous chapter.

Theorem 10.1.3 A px q Laurent polynomial matrix A (p > q) has a left inverse if and
only if it is unimodular.

Proof: {=>:) Suppose B G M9P(fc[o;±1]) is a left inverse of A. Then the Binet-Cauchy
Formula applied to BA = I9 implies

£det(Bi)det(AJ) = l.
ie/

Hence, the maximal minors of A, {det(Aj) | i G/}, generate the unit ideal in J^a?*1], i.e.
A is unimodular.

(*=0 By using the Unimodular Completion Algorithm for Laurent polynomial rings de
veloped in Corollary 6.1.1, we can complete the unimodular matrix A GMP9(/?[x±1]) to a

square unimodular matrix A GGLp^a;*1]). Now, from A"1A = Ip, one sees easily that
the q x p matrix B made from the first q rows of A"1 is a left inverse of the p x q matrix

made from the first q columns of A, i.e. BA = I9. •

10.2 Two Methods of Causal Reduction

If we consider the three problems in their MD versions, the conditions which need

to be satisfied resemble their 1-Dcounter parts Eq. (9.1) and Eq. (9.2). The only difference
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is that we have to replace the variable z by z := (zi,--,zn). However, the Euclidean

Division Algorithm is no longer valid, and thus the coefficients a(z), (3(z) and Di(z) and
their existence have to be found in another way.

Naturally, the Grobner bases techniques offer a solution in this MD set-up, and

we should be able to apply Grobner bases computations to solve our three problems.

However, since our questions involve Laurent polynomials, we have to perform a

preparatory process to convert the problems to causal problems.

While we already have presented a systematic method to this effect in Chapter

6, there is an alternative method for this causal reduction outlined in [KPV95]: for every
variable Z{ we introduce two new variables X{ and y,. Substituting xj" for every positive

power zf1 and yf for every negative power zf*, we transform the original set of Laurent
polynomials into a setof regular polynomials. We then enlarge this set by adding the poly
nomials xty, - 1. One verifies that the constant 1 is a linear combination of the original

set of Laurent polynomials if and only if the same is true for the constructed set of regular

polynomials. Moreover, given a linear combination of polynomials , we find a linear combi

nation of Laurent polynomials by back substitution: *, and y, are replaced by z, and z"1
respectively.

There are. however, some drawbacks with this method. First, it significantly

increases the complexity ofthe problem by introducing extra variables and by enlarging the

size of the given polynomial vector. Also, a complete parametrization of solutions needs
separate computation.

Therefore, we will mainly use the algorithm LaurentToPoly for the purpose of
our causal reduction.

In the following, we give an example in which we apply the algorithm Laurent

ToPoly to reduce the given multidimensional FIR systems to causal systems of the same
dimension.

Example 10.2.1 Let v := ( ' )= ( *+*+* )€ tux±i y±u\2m

• Step 1: Write vi in terms of x, i.e. express it as a polynomial in S[x] where 5 :=

My*1]: ui = y+ (y + !)*• One sees that the leading coefficient ±+ 1of r, is not a
unit in S. So we apply the algorithm LaurentNoether to v\.

Define a new variable z by putting y = zxl where the integer / is to be determined.

With respect to the new variables x and z, t>j becomes t>] = -!-,. + r-/rT + x. Let / = 1.
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Then Vi = ^-fJ + a;G 5/[x±1] where S' := k[z±l] and the leading and the lowest
coefficients of vi GS'fa:*1] are units of S'.

• Step 2: We have

•1- + - + x

7- + 1 + ZX + ZXl J
> Z'X

Then

zx 0

j_
zx

1 + X + X2Z

Vl := o ± v

r-7 + —+ 1+ x )

Now we apply elementary operations to vi to make its second component a polynomial

in x whose constant term is zero.

1.

3.

v2 := E2i(-?pr)v1
3*2

1 + X+ X2Z

-^ + i + l-z"2 + x

V3 := E2i((-^ --)x)v2

I l-\-X + X2Z
1 1 1 I III
73--77-- + 1 + 75-

v := E2i(-- + - + --l)v3

I l-fz + x2z \
= I X(-1+2Z-XZ+Z7 +XZ2 -z3+xz3 -xzA ) I •

The transformation matrix is

T := E2l(-i^±i!)E2l((^IWE2l(-^,(- °),
\ w ZX '

and the converted vector is

/ l-\-x-\-x2z \
V = TV = I x^i+^-xz+z^+x^-^+xz^-xz*) j •
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• Now we make another change of variables. Define a new variable w by x = w • zl

where the integer / is to be determined.

Then w.r.t. the new variables z, w, v becomes

. _ / 1+ wzl + w2z2l+l \
\wz1-3 (-1 +2z - wzl+1 +z2 +wzl+2 - z3 +wzl+3 - wz'+4) )'

Let / = 3 since it is the smallest integer that makes the components of v polynomials

in z and w. Then

♦ - (:)
_ / 1+ wz3 + W2Z7 \

\w (-1 +2z +z2 - z3 - wz4 +WZ5 +WZ6 - wz7) ) '

Now the unimodularity ofv as a Laurent polynomial vector in A-[a,±1,y±1] is equivalent to
the unimodularity of v as a polynomial vector in k[z,w].

Now a computation with SINGULAR shows that the reduced Grobner basis of

{*-'!< v2] C k[w. z] w.r.t. the reverse degree lexicographic order is

{-z2 +81 u» + 17z - 11, -21irz - 4z2 + 9w +5z - 2, -567u»2 - 116u'z - z2 + 77u- - 2z +4}.

Therefore v is not unimodular over k[w, z], and neither is v over k[x±l, y±l]. D

10.3 Syzygies and Parametrization of Filter Banks

For any given multidimensional FIR filter which can be the analysis filter of an

MD perfect reconstructing FIR filter bank, we can find a corresponding synthesis filter by
using the the method ofGrobner basis as was demonstrated in the proof of Theorem 10.1.3.

But this particular filter is by no means unique. And the nonuniqueness of solutions is

measured by syzygy.

In this section, for an arbitrary Laurent polynomial matrix, we will attempt to

give a complete and canonical parametrization for all of its left inverses if there is any.

In matrix terminology, we will find some free parameters in terms of which an

arbitrary left inverse of the given unimodular Laurent polynomial matrix can be uniquely

written. Because of the uniqueness here, the number of such free parameters is an invariant

for the given matrix and represents the degree of freedom obtaining its left inverses. It
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will be shown that, for a p x q unimodular matrix, the degree of freedom associated to

finding its left inverses is q x (p - q).

In [KPV95], a complete parametrization formula was achieved with which we

can express any synthesis filter corresponding to the given analysis filter. While this

parametrization is complete in the sense that it exhausts all the possible synthesis fil

ters corresponding to the given analysis filter, it is not canonical, i.e. the expression of a

synthesis filter in terms of the parameters is not unique. We will remedy this situation here

with the aid of the Quillen-Suslin Theorem.

For a simple example, consider an invertible FIR filter whose polyphase matrix is

(/i> •••»/*»)* € A^as*1]. In order to find its left inverses, we have to consider all the solutions
to the following equation:

n

Em*)/***) = i. (10.1)
t=i

If {Xi(x) Gkfe*1] | i = 1,..., n} is a solution to this equation, then {w(x) G^[a;*1] | i =
1,..., n} is also a solution ifand only if (//i (x) - Xi(x),..., fin(x) - \n(x)) belongs to the

syzygy module S := {(hx,..., hn) G(M**1])" IE?=i **/*(*) = 0}.

Therefore the problem of giving a complete parametrization for the solutions to

Eq. 10.1 is equivalent to finding a finite basis for the syzygy module 5.

In the 1-D case, an explicit process of finding such a basis using the Euclidean

Division Algorithm was shown in detail in the previous chapter.

In the MD case, the syzygy module

S:= {(hi,...,hn) G(*[*±1])n \J2hifi(x) =0}
»=i

ia a free module of rank n - 1 by the Laurent polynomial analogue of the Quillen-Suslin

Theorem, and its free basis {si(aj),.. .,sn_i(a;)} can be found by the algorithm developed

inChapter 6, i.e. convert the problem to thecase ofpolynomial rings by using the algorithm

LaurentToPoly and then compute its reduced Grobner basis w.r.t. any fixed monomial
order.

Then {^(x) \ i = 1,..., n} is a solution to the Eq. 10.1 if and only if there exist

{^(a;),...,^..!^)} C A;[a;±1] such that

(Vi(x),...,fj,n(x)) = (Xi(x),..., Xn(x)) + m(x)si(x) -{-'" + un.i(x)sn.1(x).
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So, there are n —1 free parameters involved as in the 1-D case.

For the general case, consider an invertible FIR filter whose polyphase matrix is

A = {fij) € Mpq(k[x±1])% p> q, which is unimodular due to the FIR invertibility of the
filter it represents. In order to find its left inverses, we have to consider all the qxp Laurent

polynomial matrices that are solutions to the following equation:

BA = L (10.2)

Denote the p row vectors of A by

vi := (/n,...,/i,)

vp •— (/pl> • • 'ifpq)'

If Bpart G Mqp(k[x±l]) is a particular solution to the above Equation 10.2, then B G
Uqp(k[x±l}) is also a solution to it if and only if (B - Bpart)A = 0 GUq(k[x±l]).

For each i = 1,..., q, let wt := (wu,..., wiq) G (k[x])p denote the *-th row vector
of B-Bpar(. Then

(B-Bpar()A =
/wu wh

\W91

If11

\/pl
/W11V1 + ••• + w?ipvp\

fpj

\WqlVl + '--+WqpVp/

Therefore, B GM9P(/r[a;:fc1]) is a a solution to the Equation 10.2 if and only if each row of
B - Bpart belongs to the kernel of the following fc[a;]-moduIe homomorphism:

q: (*[arfcl])> -» (*[**])•

h = (hi,...,hp) »-> /11V1 + Yhpvp.

Due to the unimodularity of A, a is onto and the kernel of this homomorphism o is a

direct summand of (k[x±1])p i.e. projective and therefore free of rank p- q by the Laurent

polynomial analogue ofthe Quillen-Suslin Theorem. And its free basis Si (a;) sP_9(x) G
(fc[x±1])p can be explicitly found using the algorithm of Chapter 6.
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Since each row of B —Bpor* is a unique linear combination (with Laurent poly

nomial coefficient) of sj(a;)'s, we have

wi = un(a;)si(x) + ---+ u1(p_9)(a5)sp_9(x)

w9 = w9i(a5)si(aj) + |-w9(p-9)(aj)sp_9(a;),

for some Laurent polynomials wtj, 1 < i < q, 1 < j < p —q. Therefore,

lun(x) ... uHp_q)(x)\ / Sl(x) \

B - Bpart = : : : ,

\w9i(a;) ... w9(p_9)(a;)/ \sp_9(aj)/

where each s,-(as) is regarded as a p-dimensional row vector. Therefore the general solution

to Eq. 10.2 can be expressed in terms of (p— q)q free parameters:

lun(x) ... u1(p_9)(a;)\ / Sl(aj) \

B = Bpart + : • :

\w9l(a;) ... uq{p_q)(x)J \sp_9(a;)/
Note that this is a minimal complete parametrization in the sense that any complete

parametrization of the left inverses of A always involve at least (p- q)q free parameters.

10.4 Unimodular Completion and Parametrization of Filter

Banks

Since our Unimodular Completion Algorithm developed in Chapter 3 already con

tains a syzygy computation as its central ingredient, it's natural to ask if one could obtain

the parametrization outlined in the previous section from the Unimodular Completion Al

gorithm. It turns out that this is indeed the case.

Suppose A GM,,)!:^1]) is unimodular and A GGLp^a:*1]) is a unimodular
completion of A. If S GM^kfe*1]) is an arbitrary left inverse of A, then

SA = L

for some ui,...,up_9 G (^[a;*1])9.

SA= (I9,U!,...,up_9)

S = (^^^...jUp^jA-1
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Now regarding m,..., up_, as free vector parameters ranging over (A^a*1])9, we

get a complete parametrization involving q x (p - q) free parameters. More explicitly,

S = (I9,u1,...,up.9)A-1
/l 0 - 0 un

0 1 ... 0 «21
•* wi(p-?)\

*• U2(p-q)

(10.3)

\0 0

-1 (10.4)

1 uqi ••• «9(p_9)/

Note that any complete parametrization involving q x (p - q) parameters gives a

syzygy basis since the degree of freedom associated to finding the left inverses of a p x q
unimodular matrix is precisely q x (p- q). Therefore the above parametrization obtained

from the Unimodular Completion Algorithm isacomplete and canonical parametrization.

Example 10.4.1 Define four polynomials in £[x±l,y±l, z±x] by

/i = l-sy-2z-4sz-z2z-2zyz + 2z2y2z-2:rz2-2z2z2 + 2:r22/z2

f2 = 2+ 4z + s2 + 2a:i/-2a;2y2-t-2*z + 2:r2z-2:r2?/z

h = l + 2x + a:y-x2j/2-|-arz + a,2z-x2yz

f4 = 2+ x + y-xy2 + z-xyz.

lh\

Find a complete parametrization for all the left inverses of the 4 x 1 matrix A :=
h

The unimodularity of the matrix A was shown in the Example 3.3.1, and an

explicit unimodular completion A of A was also constructed there:

/ h -y-xz-r2xy2z-2xz2-\-2xyz2 1- 2xyz - 2xz2 z - 2z2 \
f2 x- 2xy2 + 2zz - 2zyz 2xy + 2xz -1 + 2z

h - (xy2) -\-xz- xyz xy + xz -1 + z

V/4 l-y2-yz y + z 0 /

Therefore, an arbitrary left inverse S of A is of the form

A =

-1S = (l,w1,u2,w3)A



= (l,«i,«2,t£3)

/ 0 -2+1 2z-l -x

-y-z xz-yz-z2-x+2z-2 -2xz+x-4z+2 ar2+2x+l

-y2-yz+l -y^z-yz2+2yz-2y+2z-l -4yz+2y-2z+l 2xy + X + y

\ xy+xz xyz+xz2-2xz+2x+l 4xz-2x-2 -2x2-x /
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= (0,-z+l,2z- 1,-x)

+wi (-y - z,xz - yz - z2 - x+ 2z - 2, -2xz + x - Az + 2, x2 + 2x + 1)

+u2(-y2 - yz + 1, -y2z-yz2+2yz-2y+2z-1, -4yz+ 2y - 2z + 1,2xy + x+ y)

+w3(a:y + xz, xyz + xz2 - 2xz + 2x + 1,4xz - 2x - 2, -2x2 - x).

Note here how unimodular completion is closely related to syzygy basis. D

10.5 Grobner Bases and Multidimensional Filter Banks

We now consider the first question: We can check whether or not a given MD low-

pass G(z) can act as an analysis filter in a 2-channel filter bank by decomposing G(z) into

polyphase components, and checking the unimodularity of the resulting polyphase matrix by

combining the algorithm LaurentToPoly and a Grobner basis computation. Moreover, if

the answer is yes, we explicitly find a particular low-pass synthesis filter Hpart(z) by tracing

the steps in the Grobner basis computation. We also derive a complete parametrization of

the synthesis filters by the syzygy basis computation outlined in the previous section.

Example 10.5.1 Consider the filter G(zi,Z2) with impulse response

/o o o 8 o o o\

1

4096

0 0 24 -96 24 0 0

0 24 -192 456 -192 24 0

8 -96 456 3200 456 -96 8

0

0

o)

0 24

0 0

\0 0 0 8 0 0

The filter G(zi,Z2) is designed to have a diamond-shaped low-pass frequency re

sponse. It is flat of order 2 at DC, and vanishing at the aliasing frequencies of the quincunx

sampling lattice (see Fig. 10.1). These properties make it a likely candidate for the low-pass

analysis filter of a 2-channel, PR filter bank (downsampling on the quincunx lattice). Ap

plying the Grobner bases computation, we indeed find that this is the case, and the filter

-192 456 -192 24

24 -96 24 0
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Frequency response for Analysis Filter

0 Vertical

Horizontal

Figure 10.1: The frequency response of G(zi<z2).

Hpart(zi,z2) with impulse response

3585

/ 0 0 48 0 0 \

0 96 576 96 0

48 576 4288 576 4£

0 96 576 96 0

\ 0 0 48 0 0 /

is found as a particular solution for the synthesis filter. By choosing appropriate values

for the parameters in the parametrization outlined in the previous section, we can modify

Hpart(zi, z2) in order to meet or approximate extra conditions. D

We will now consider the second question and show how Grobner bases can be

used in 2D sample rate conversion schemes.

Example 10.5.2 Consider the 2D sample rate conversion scheme which consists of vertical

upsampling by a factor 3, filtering with a filter H(z) = H{zuz2) and horizontal downsam

pling with a factor 2. We assume that H is FIR, and we would like to know if this scheme

has an FIR inverse. To be more precise, we are looking for an FIR filter G(z), such that

horizontal upsampling by a factor 2, filtering with G(z) and vertical downsampling with a

factor 3, cancels the effect of the first sample rate conversion scheme.
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Let the filter H(z) be given by H(z) = ^2hijz[z(. Following the method outlined
in Section 9.2, but now for this 2D case, we construct the 3 x 2 polynomial matrix Hk,i(z) =

Tlhzi+ktj+lZizli, where 0 < k < 2 and 0 < / < 1.

Assume momentarily that H(z) isa separable filter Hh(zi)Hv(z2). It iseasily seen

that in this case the filters Hk,i(z) are products of ID polyphase components, i.e. Hk,i(z) =

Hk(zi)Hi(z2). Consequently, all the maximal minors of Hkj(z) have determinants equal

to 0. Therefore the 2D analogue of Eq. 9.2 cannot be satisfied, and inversion is impossible.

Now we consider a non-separable case, where the filter H(z) is given by the 4x6

(horizontal x vertical) impulse response

(2 3

3 5

1 1

V2 2

2

1

1/

The polyphase component matrix Hp = (Hu) of H(z) is defined by

which is found as

H„ =

*=0 J=0

/ 2 + zj + z2 + zjz2 3 + 2zj + z2 + zxz2 \

3 + zi + 3z2 + zi z2 5 + 2z] -I- 3z2 + zxz2 .

\2 + zj +2z2 + ziz2 3+2z! +2z2 -rZiz2)
Computing the determinants of the maximal minors we find Dq(z) = -1 - z2.

^i(^) = -Z2-Z1Z2 and D2(z) = 1-z2-ziz2. These determinants are proper multivariable

expressions and the Euclidean algorithm will therefore not work. In this case one easily

verifies that D2 —Di = 1, and therefore Hp is unimodular and there exist an inverse FIR

filter G(z). To find G(z) we first need to find a left inverse Gp to Hp.

We apply the Unimodular Completion Algorithm developed in Chapter 3 to Hp

now, and the following is the SINGULAR script we used. For notational convenience, we

let x := zi, y := z2.

ring r=0,(x,y),(c,dp); option(redSB);
vector v(l)=[2+x+y+xy,3+2*x+y+xy];
vector v(2) =[3+x+3*y+xy,5+2*x+3*y+xy] ;
vector v(3) =[2+x+2*y+xy,3+2*x+2*y+xy] ;
module M=v(l),v(2),v(3);
module G=std(M); matrix T=lift(M,G); module S=syz(M);
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The output from SINGULAR is as follows:

> G;

G[1] = [0,1]
G[2] = [l]

> T;

T[1,1]=0
T[l,2]=l
T[2,l]=x+2
T[2,2]=-2x-3

T[3,l]=-lx-3
T[3,2]=2x+4

> S;

S[l]=[y+l,-lxy-ly,xy+y-l]

Since {(1,0), (0,1)} is a Grobner basis of the row vectors ofA, A is unimodular, and the
relation G = MT translates to

0 1

1 0
= A'T.

By taking transpose of bothe sides, we get T'A = | I, i.e.
VI 0/

1 -2x - 3 2x + 4

0 i+2 -x-3
A = I2.

/I -2zj-3 2z! + 4\
rlence, B := is a left inverse of A, and

\0 Z!+2 -^-37

C =
B

/ 1 -2zj - 3 2zj + 4 \

0 zj+2 -zj-3

\ z2 + 1 -ZiZ2- z2 ziz2 + z2-l)

The resulting unimodular completion of A is

A = CT1.



Now the most general form of Gp is given by the Formula 10.3:

1 0 ui

0 1 u2

1 0 tii

0 1 u2

1 0 «i

0 1 u2

G„ =

-(

-l

C

/ -2z! - 3 2zx + 4 \

zi + 2 -zx - 3

Vz2 + 1 -ziz2 - z2 ziz2+ z2 - 1/
/l -2z!-3 2z!+4\

\0 zi+2 -zi-3/

/w1(z2 + l) Ui(-ZiZ2- z2) Ui(ZiZ2 + Z2- 1)\

\u2(z2-\-l) u2(-ziz2- z2) u2(ziz2 + z2 - 1)J

where ui, u2 are arbitrary Laurent polynomials.

Finally, the matrix Gp = (Gui) is related to the inverse filter G(z) as the set of

backward polyphase components. To be precise, G(z) is given byG(z) = £ z$z2Gki(z2, zf).

Working out these formulas one finds the following impulse response for the filter G(z):

1-2 2 -1 -1 1 -l\

3 -3 2 1 -1 1

-1 1 0 -1 1 0

U -2 0 1 -1 •o/
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(10.5)

Again, one can change the values for Ui and u2 in the Eq. 10.5 to adjust to some specific

needs. •
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Chapter 11

Ladder Decomposition of

Multidimensional Perfect

Reconstructing Filter Banks

11.1 Introduction

In Chapter 4, we obtained a realization algorithm that lets us write a given square

unimodular polynomial matrix as a product of elementary polynomial matrices. As sug
gested in [THK95], such an algorithm has application in signal processing since it gives a
way ofexpressing a given multidimensional biorthogonal filter bank as a cascade ofsimpler
filter banks called elementary ladder steps.

Mathematically, representing a perfect reconstructing FIR filter bank as a cascade

of elementary ladder steps is equivalent to expressing a unimodular Laurent polynomial

matrix as a product ofelementary matrices over Laurent polynomial ring. Since we already

obtained a Realization Algorithm over polynomial rings and the algorithm Laurent

ToPoly for transforming a noncausal system to a causal system, we can readily develop a

realization algorithm for an arbitrary unimodular Laurent polynomial matrix.
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11.2 Elementary Column Property over Laurent polyno

mial rings

In Chapter 6, for any given v =

such that

IvA

W

Wi\

Ev = w =

€ UmnOCfc*1]), we found E € E^x*1])

e (S[xi})\

WnJ

And with the change of variables:

*i -y\ -fa'-ym)1, x2 = y2, ..., xm = ym,

we showed that w is unimodular over the polynomial ring C[y]. Now we can apply the

Elementary Column Property ofChapter4 to w, ifn > 3, to reduce it to en using elementary

operations. Since we used only elementary operations to reduce v to w, by changing

variables back to x, we have reduced v to en by applying elementary operations. This

proves the following Laurent analogue of the Elementary Column Property.

Theorem 11.2.1 (Elementary Column Property for Laurent polynomial rings) The group
En(C[jc±1]) acts transitively on the set Umn(C[a;±1]) when n>3.

11.3 Realization Algorithm over Laurent Polynomial Rings

Now, the desired realization algorithm for SL^Clx*1]), n > 3, proceeds as follows:

Step 1: Use the Elementary Column Property provided by Theorem 11.2.1 to reduce

the problem of obtaining a general realization algorithm over the Laurent polynomial

ring C[x±1] to the problem of finding a realization algorithm for the matrices of the
following special form:

lp q 0\

r 5 0

Vo 0 l)
€ SLafCfc*1])
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That is, for a given unimodular matrix A € SLnJQa:*1]), find elementary matrices
Ei,.. .,£/ such that

Ef-EiA

Iv q o \

r s 0

U 0 In_2>

• Step 2: Since I J is a unimodular column vector over Cfsc*1], by following the

procedure outlined in the previous section, we can assume that I J is a unimodular

column vector over the polynomial ring C[sc], p = 1 (mod Xi--xm) and r = 0

(mod xi'--xm).

• Step 3: Now, consider the unimodular row vector (p, q) over SIxf1] with the coeffi
cient ring S being C[xfl,..., x*1]. Since p is a polynomial in S[xi] and its constant
term is 1, by adding a suitable multiple of p to q and by noting that this elementary

column operation does not change r, we can assume that q is a polynomial in S[xi]

and its constant term is zero. Then the condition,

polynomial in S[xi] whose constant term is1. Now, using t

defined by xx - yl • (y2 .. -ym)', x2 = y2 xm = ym for a sufficiently large / € N.
we see that

Iv q o\

r * 0 €SL3(C[y]).

\o 0 1/

• Step 4: Use the Realization Algorithm over polynomial rings developed in the chapter
Iv q o\

p q

r s

= 1, forces 5 to be also a

ie new variables t/i ym

4 to write 0 € SL3(C[y]) as a product ofelementary matrices over C[y] and

\0 0 1/
then change the variables back to xi,..., x,
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