

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

LOGIC OPTIMIZATION OF FSM NETWORKS

USING INPUT DON'T CARE SEQUENCES

by

Huey-Yih Wang and Robert K. Brayton

Memorandum No. UCB/ERL M95/42

8 June 1995

LOGIC OPTIMIZATION OF FSM NETWORKS

USING INPUT DONT CARE SEQUENCES

by

Huey-Yih Wang and Robert K. Brayton

Memorandum No. UCB/ERL M95/42

8 June 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Logic Optimization of FSM Networks Using Input Don't Care
Sequences *

Huey-Yih Wang Robert K. Brayton
Departmentof Electrical Engineering and Computer Sciences

University of Californiaat Berkeley
Berkeley, CA 94720

Abstract

Current approaches tocompute and exploit the flexibility ofa component inan FSM network are all at the symbolic level
[30,40,42,41]. Exploitation of this flexibility relies on state minimizers for incompletely specified FSM's (ISFSM's) or
pseudo non-deterministic FSM's (PNDFSM's) [42]. However, state-of-the-art state minimizers cannot handle large ISFSM's
orPNDFSM's [18, 20,43, 13,21]. In addition, these exploitation techniques are at the symbolic level, not directly at the
net-list logic level. In this paper, we present an approach toexploit exact orapproximate input don't care sequences direcUy
atthe logic level. We demonstrate that many sequential logic optimization techniques can beemployed toexploit input don't
caresequences. Asa result, computation andexploitation of input don't care sequences in larger FSM networks canbemade
efficient and effective. Finally, we give preliminary results onsome artificially constructedFSM networks. Preliminary results
indicate thatourapproach is effective in reducing thesizeof a component of anFSM network.

•This project wassupported by NSFundercontract numberMIP-8719546.

1 Introduction

As digital system design complexity increases, hierarchical specification becomes vital. For example, hardware description
languages, such as Verilog or VHDL, are typically used tospecify industrial designs. Once the design is verified, logic
synthesis tools areused tooptimize the circuit implementation with respect tosome objective. The objective can beminimum
area, minimum delay, maximum testability, minimum power consumption, orany combination ofthese. An underlying model
for a hierarchical specification in the synthesis and verification community isa network ofinteracting finite state machines
(FSM's). In this paper, synchronous FSM networks with known initialstatesare considered. A severe limitationof current
synthesis tools for sequential circuits is that only a single FSM isconsidered ata time, e.g., SIS [34].

Theoretically, we can collapse an FSM network into asingle FSM. However, this isnotpreferred, because ofthe following
reasons. (1) This single FSM may be too big tobe handled by synthesis tools, e.g., state encoding programs. (2) Some
components inthe network may benon-deterministic FSM's which are not synthesizable, e.g., an abstract description ofthe
environment. (3)The hierarchy specified by designers may contain important information which is useful for an efficient
implementation. (4) Some modules may already synthesized well and should not be touched. With hierarchical specification,
each component is likely specified ina reasonable size. Therefore, another approach tosynthesizing an FSM network is to
synthesize one component at a time. Due to interaction with other components, the controllability and observability ofa
componentarereduced, sotheflexibility forimplementing this component increases. By exploiting this flexibility, thequality
of the implementation may be improved. Therefore, a key tologic optimization ina hierarchical specification is toconsider
the interactionbetween components.

The flexibility in thecontext ofan isolated combinational circuits can beexpressed bydon'tcares, and for an individual
component in a hierarchically specified combinational circuit, a Boolean relation [4] (observability relation [7, 31]) or
symbolic relation [26] is required toexpress allitsflexibility. Similarly, exploitation of flexibility isimportant for sequential
circuits. Several approaches have been proposed. For example, in [27], unreachable or equivalent states are used in the
optimization ofan isolated sequential circuit. Damiani and De Micheli [14] introduced synchronous relations to deal with
the logic optimization ofsequential circuits with pipelined latches. In their approach, acircuit implementation isgiven as the
starting point.

In the case ofan individual component inan FSM network, there are several approaches. The first approach [42] used
a pseudo non-deterministic FSM (PNDFSM), namely an E-machine, toexpress all flexibility. Later, Lin [24] proposed a
different construction method for the E-machine, but subset construction [29] isrequired in the general case. The exploitation
ofE-machine usually isdonebystateminimization of PNDFSM's [43,13,21].

Figure 1: M : A cascadecircuit of two FSM's.

Another approach (which isan approximate one) isbased onthe notion ofdon't care sequences [30]. There are two kinds;
input and output don't care sequences. Consider the cascade machine in Figure 1,where Afi is the driving machine and M2
the driven machine. Unger [38] observed that M2, when driven by M\, may possess more unspecified transitions than asan
isolated machine, and proposed a method toapproximate and exploit a subset ofthis information. Devadas [15] proposed a
differentbut similar procedure. Kim and Newborn [22] proposed an elegant complete solution. Foratwo-way-communication
network ofFSM's, M, as shown in Figure 2, Wang and Brayton [40] gave an exact computation, and demonstrated that
state minimization for incompletely specified FSM's (ISFSM's) [18,20] can be used to exploit input don't care sequences in
general FSM Networks.

On the other hand, the flexibility in implementing Mi when cascaded with M2 iscalled output don't sequences. Devadas
[15] proposed a method toexploit sequential output don't cares, and later Rho et al. [30] generalized Devadas' procedure to

M

Figure 2: A/^: A two-way-communication network of FSM's.

computefixed-length outputdon't caresequences. Anotherapproach based on FSM equivalence checking forapproximating
the set of output don't care sequences was proposed in [41].

The above algorithms for computing the flexibility of an individual component in an FSM network are all based on
the manipulation of transition relations of FSM's, i.e., symbolic information is manipulated. Currently, exploitationof this
flexibility hinges on state minimizers for ISFSM's [18, 20] or PNDFSM's [43, 13, 21]. Afterwards, state encoding and
sequential optimizationtechniques areappliedto the state-minimized machine. Presently, no existing state minimizers can
handlelarge ISFSM's or PNDFSM's [18,20,43,13,21]. The problemof state minimization of ISFSM's is NP-hard. The
computation of exact input don't care sequences in FSM networkscanbe efficientlydone; however, the exploitationof them
using state minimization is difficult [40]. To circumvent this,approximations are required to trade off between quality and
efficiency [30,40]. As a result, much flexibility may be lost.

Furthermore, in contrast to logic optimization techniques in sequential circuits, these algorithms do not use a circuit
implementation as the starting point; the exploitation is not performed at the logiclevel. In termsof efficiency, effectiveness,
and the size of circuits, optimization techniques for sequential logic circuits (net-lists) are in a more mature stage than
symbolic methods, since most are able to produce acceptable results in larger circuit designs. However, manipulating
symbolicinformation is indispensable forcomputingthe flexibility of a componentin anFSM network.

With thismotivation, we propose analgorithm which takesa circuitimplementation as the starting pointandcomputesthe
flexibility at the symbolic level,but exploitation is directly at the logic level. We concentrate on inputdon't care sequences
sincethey can be computed more efficientlyand thus are more promising for large FSM networks. We give an overview
anddiscuss the difficulties in exploitingthem. Then, we propose an approach based on [22,40], anddemonstrate thatinput
don't care sequences can be exploited using existing sequential optimization techniques. Ouralgorithm does not require a
subsetconstruction [29] as in the Kim andNewborn'sprocedure [22]. Finally, we give preliminary resultson some artificially
constructed FSM networks.

2 Preliminaries

2.1 Finite Automaton

A deterministic finite automaton (DFA), A, is a quintuple (A", I, S, g0, F) where A is a finite set of states, I an alphabet,
go € K the initial state, F C A the set of final states, and 6 the transition function, S : K x E -• K. A non-deterministic
finite automaton (NFA), A% is a quintuple (A',I, <5, go, F) where <J, the transition relation, is a finite subset of A' x E* x A,
and I* the setof all strings obtained by concatenating zero ormore symbols from I. An inputstring is accepted by A if it
endsup in one of final statesof A. The language accepted by A, C{A), is the set of stringsit accepts.

2.2 Finite State Machine

A finite state machine (FSM), M, isa six-tuple (/, O, Q,6,A,go), where / isa finite inputalphabet, O a finite outputalphabet,
Q a finite setof states, S the transition function, Athe output function, and go the initial state. A machine is of Moore type
if A does not depend on the inputs, andMealy otherwise. An FSM can be represented by a state transition graph (STG). A
machine in which transitions under all inputsymbols from every state are defined is a completely specified machine; in other
words, both Sand Aarecomplete functions. Otherwise, a machine is incompletely specified.

A cascade of FSM's Mi and M2, denoted M\ -t M2, is shown in Figure 1. Mi is called the driving machine, M2 the
driven machine.

2.3 Sequential Testing and Redundancy

The single stuck-at fault model assumes that a single fault existing at a given wire in the circuit causes that wire to be
permanently at a high voltage level (stuck-at-1), or a low-voltage level (stuck-at-0). Let M be a logicimplementation of an
FSM. A test for a fault / of M is a sequence of inputvectors that,when applied to machine M with fault / starting from the
reset state, causesoutput valuesdifferentfrom thoseof the fault-free machine. If a fault / is untestable, it is redundant.

2.4 Set Computation and Operators

Let B designatethe set {0,1}.

Definition 1 LetE beasetand S C E. The characteristic function ofS isthefunction xs : E -> B defined by xs{x) = 1
ifxeS, and xs{x) = 0, otherwise.

Definition 2 Let f : Bn -> B bea Booleanfunction, and x —{x\,..., z*} a subset ofthe input variables. The existential
quantification (smoothing) offbyx, with fa denoting the cofactor off by literal a is defined as:

^i,/ = fxi + JxT

^xf = 3X, ...3XkJ .

Definition 3 Let f : Bn -» Bm bea Booleanfunction, Sx C Bn and S2CBm. The imageof Si by f is /(Si) = {y 6
Bm \y = f(x),x € Si}. f(Bn) is the range off. The inverse image ofS2by f is f~l (S2) = {x € Bn \f(x) = y,y€S2}.

Definition 4 Let f : Bn -> B be a Boolean function, only depending on a subset of variables y = {ja,.... jfc}. Let
x= {xi,..., Xk} beanother subset ofvariables, describing another subspace ofBn ofthe same dimension. The substitution
of variables y byvariables x in f is thefunction ofx obtained by substituting Xifor y, inf:

[Oy,*f){y) = fix) if Xi = yt for all \<i< k.

Definitions Let f : Bn -* Bm be a Boolean function. The relation (characteristic relation) associated with f, F :
Bn x Bm -> B, is defined as F(x, y) = {{x, y) € Bn x Bm \y = f{x)}. Equivalently, in terms ofBoolean operations:

F(x,y)= [J (*• =/<(*))•
l<i<m

Reduced orderedbinary decision diagrams (BDD's)[5]are wellsuited to represent thecharacteristic functions of subsets
of a set, andefficient algorithms [2,5] exist to manipulate them toperform allstandard Boolean operations. Asa result, the
aboveset operationscan be doneefficiently.

2.5 Multiple-Valued Functions

Let Xx, X2} • •Xn be multiple-valued variables ranging over sets Pi, P2, •••,Pn respectively, where P, = {0,...,p, - 1},
andpi arepositive integers. A multiple-valued function / isa mapping

/ : Pi x P2 x ... x Pn -» B .

Let Si bea subset of P„ and Xf' represent the characteristic function

s, _ / 0 HXitSi.
*< -\ 1 XXi€Si.

Xf' is called a literal ofthe variable X,. If |5, | = 1, this literal is aminterm ofA',. Aproduct term or acube is a Boolean
product (AND) of literals. A sum-of-products is a Boolean sum (OR) of product terms. An implicant of a function / is a

Figure 3: A part of the STG of M2.

product term which does not contain any minterm in the OFF-set (/-1 (0)) of the function. Aprime implicant of / is an
implicant notcontained in any otherimplicant of /.

Let a symbolic variable s assume values from S = {s0,..., sm_i}. It can berepresented bya multiple-valued variable,
X, restricted toP = {0,...,m- 1}, where each symbolic value ofs maps onto a unique integer in P.

We can use multiple-valued decision diagrams (MDD's) [35] tomanipulate multiple-valued functions justlike BDD's for
Boolean functions. Furthermore, similaroperations, such asexistential, and universal quantification, and substitution, etc., are
well defined inthe MDD framework [35]. In the sequel, we just use the term BDD tointerchangeably refer tocharacteristic
functionsof multiple-valued variables.

2.6 Implicit State Reachability Computation

The reachable states can be computed efficiently using implicit state enumeration techniques introduced by Coudert et al.
[11]. These techniques are widely used in FSM verification [11,12,37], and indesign verification [6,36]. This approach is
based on representing a set ofstates by a characteristic function which can be manipulated effectively using BDD's. In the
following, we represent a finite state machine implicitly by a characteristic function using BDD's.

Definition 6 The transition relation ofafinite state machine M = (/, O,Q,S, A, g0) isafunction T.IxQxQxO-^
B such that T(i,p, n,o) = 1 ifand only ifstate n can be reached in one state transition from state pand produce output o
when input i is applied.

3 Previous Work

First we discuss input don't care sequences. Consider the cascade machine Mi -> M2 inFigure 1. Part ofan STG of M2 is
shown inFigure 3. Consider the transitions from sx tos2 and from s2 tos3. When M2 does notinteract with other machines,
(sis2ss) is a possible sequence of transitions. However, when M2 isdriven by Mi, this sequence may not happen. Thus,
we can regard the input string (aia2) causing these transitions asa don'tcare sequence starting at si. We cannot determine
whether (si s2s3) isa possible sequence by looking at M2 inisolation, but such information isuseful; we may get a smaller
number of statesfor M2 in the cascadeMi -• M2, thanwhen M2 is in isolation.

Unger [38] observed that when one FSM is driven by another, there are more input-incompletely-specified don't cares
(unspecified transitions) than for an isolated machine, and proposed a method toapproximate and exploit a subset of this
information, i.e., limited length of inputdon'tcare sequences areconsidered.

3.1 K-N Procedure

Kim and Newborn [22] proposed an elegant approach which solves the problem ofcomputing input don't care sequences for
a driven machine ina cascade. The procedure is:

1. Construct an NFA A' to accept the language produced by machine Mi. This can be achieved by removing the input
part in the STG of Mi,and assigning every state of Mi asa final state. For a state s, if there are output symbols not

(a)

(b)

(c)

M

x ^

Mi M2
1 1 Io

y

L.

Figure 4: (a). Atwo-way-communication circuit N2. (b). M2 : An equivalent one-way-communication FSM network tojV2.
(c). An equivalent one-way-communication circuit for computing input don'tcare sequences of M2.

emitted from it, a transition is inserted from s to the dead state d with those symbols. The dead state d is the only
non-accepting state. Thus A' is completelyspecified but non-deterministic.

2. Convert A' to a minimized completely specified DFA A. This can be done by using the subset construction [29]
and then state minimization for DFA [19]. Note that efficient (nlogn) state minimization for completely specified
machines can beused, since thesubset construction produces a completely specified deterministic machine. (Actually,
state minimization is notnecessary here butdesirable since this isa n logn operation.)

3. Amodified machine M2 isconstructed asfollows: construct M2 x A and delete any transition toa state that contains
the dead state d in its subset. M^ is deterministic but possibly incompletely specified. Thus state minimizers for
ISFSM's must be used to minimize M2\

Thekey idea is thatsequences notproduced byMi aretheinputdon'tcare sequences forM2, and these areconverted into
unspecified transitions ofa modified machine M{. The K-N procedure indeed captures allinputdon'tcare sequences for M2.
It can beseen that methods in [38,15] are a subset ofthis, they are explicit and length limited, whereas the K-N procedure is
implicitand not length limited.

3.2 Input Don't Care Sequences in FSM Networks with ArbitraryTopologies

Intuitively, computation ofinput don'tcare sequences for acomponent inan FSM network ofarbitrary topology ismuch more
complicated than fora cascade circuit. Nevertheless, it is nottheoretically harder.

Wang and Brayton [40] demonstrated that the problem of computing and exploiting input don't care sequences for a
component in an FSM networks with an arbitrary topology can be reduced to one for a cascade circuit. They derive an
abstract driving machine inthe computation ofinput don't care sequences inan FSM network. The pictorial explanation is
shown inFigure 4. For example, the abstract driving machine toM2 inFigure 1isMi,while the abstract driving machine to
M2 inFigure 4(a) is Mi x M2. The abstract driving machine for a component inan FSM network isthe composite machine

ofall components in thisnetwork, i.e., thenetwork itself. However, if a component M2 is ina one-way communication with
othercomponents as inFigure1,itsabstract driving machine willreduce to M\. Then steps 1and2 of theK-Nprocedure can
be used to compute the exact inputdon't care sequences. Thecorrectness of the exploitation of inputdon't care sequences
was proved in [40]. Therefore, with the notion of the abstract driving machine, the K-N procedure works in general FSM
networks. In addition, in [40] an efficient implementation of theK-N procedure using BDD'swasproposed.

Anabstract driving machine itselfmaybea non-deterministic FSM which canbea collection of permissible FSM's;how
ever, thisdoes notaffect thecomputation andexploitation of input don'tcare sequences in theK-N procedure. Consequently,
we may start with a network of machines some of which are non-deterministic (e.g., the environment may be one of the
machines).

4 Practical Issues of the K-N Procedure

Unfortunately, theworst casecomplexity for thetransformation from an NFA toa DFA (i.e., from A' to A) is exponential in
thenumber of states [29]. Further, even if A can be built ina reasonable time, theresultant product machine M2' may have
a large number of states before stateminimization. Therefore, there are twopurposes for approximations of inputdon't care
sequences. (1) Controlthe possiblestateexplosionin thesubsetconstruction. (2) The resultantmodified machine M2 should
be small enough for state minimizers.

Consider thecascade machine Mi -»• M2 in Figure 1. Note that Mi may be the abstract driving machine for M2. Let
outputsequences produced by Mi be C(M{), a regular language overalphabet I2. For computing and exploiting only a
subsetof inputdon't care sequences, any regular language C such that

C{M{) C C C /2* (1)

gives rise toa feasible subset C of inputdon't caresequences. Approximation methods in [30,40] can be used.
How much approximation is needed hinges on theability ofstate minimizers, since approximation needs to beperformed

so thatthestate minimization of M2 can be completed. Thus even if theexact input don't caresequences canbe efficiently
computed in an FSM network, afterapproximation it may turn out that very limited information can be actually exploited.
Thisbecomes a problem whenweconsideroptimization of largeFSMnetworks.

Moreover, even if a circuit implementation is given as the starting point, the K-N procedure willcompletely ignore it.
Further, state minimality isonly a heuristic anddoes notimply that theresultant logic circuitafterstate encoding isminimized.
Infact, it isjustregarded asa good starting point forstate encoding. In thissense, state minimization techniques are 'distant'
to optimality at the logic level. In comparison, optimization techniques in sequential circuits which work directly at the
logic level, aremore mature in terms of their efficiency and effectiveness; hence thesizeofcircuits they can handle is larger.
Moreover, they work much closer totheoptimalityat thelogic level. However, computing inputdon'tcare sequences requires
symbolic manipulation. In thenext section, wepropose anapproach toexploit input don'tcaresequences directly at thelogic
level.

5 Exploitation of Input Don't Care Sequences

5.1 Logic Optimization of the Driven Machine in a Cascade Circuit

Consider a cascade circuit M = Mi -• M2 as shown in Figure 5(a), where Mi is thedriving machine, and M2 thedriven
machine. Mi and M2 arelogic implementations. Our goal is tooptimize M2 while the behavior of Mi iskept unchanged.

Weconsiderthreesets of logicoptimizationtechniques.

1. Don't-care-based approach. This is the traditional approach [3, 1], and widely used in logic synthesis. This set
of techniques includes kernel extraction, re-substitution, elimination, and node simplification [3]. These techniques
normally cangeta large improvement from a given initial circuit [3,33,34]. Besides thenodesimplification method,
another powerful approach to exploit don't cares is Muroga's transduction methods [28]. Output values notgenerated
by Mi areexternal don't cares to M2. These canbeexploited using node simplification technique in [32,27] to further
the improvement.

2. Sequential ATPG-based techniques. This is a greedy method and needs a good starting point, so the first set of
techniques may beemployed first. There aremany existing efficient andeffective techniques based on sequentialATPG

I—" -y J I

Figure 5: (a). M = Mi ->• M2, where / is input and Ooutput, (b). M, where / isinput, and X, Ooutputs.

to improve the quality ofcircuits. For example, techniques in[9,10] are based onredundancy removal. Entrena and
Cheng [17] proposed an approach based onredundancy addition and removal, and demonstrated encouraging results.
Their method cleverlyadds some redundancies in the Booleannetworkso that more redundanciescan be removedlater.
This idea is similar totransduction methods in[28] but for sequential circuits. Later, techniques proposed in[8,23] for
combinational circuits are extensions of these ideas.

We require that the behavior of Mi be kept unchanged and X the only communicating variable between Mi and
M2. That is, we are only concerned about the logic optimization of M2. Therefore, this setof techniques needs to
be modified to optimize M2 only. For example, a simple modification to the redundancy removal method is to set
X as observableoutputs. This guarantees that the behavior of Mi is the same as before. That no internal nodes in
Mi are allowed to connect to M2 guarantees that .Y is the only communicating variable. With this setting, we can
perform redundancy removal onM and then disassemble Mi from M afterwards. This results inan optimized circuit
of M2 using redundancy removal. This is illustrated in Figure 5(b). Note that Mi need not be deterministic. If it
is non-deterministic, it can be input determinized by adding additional inputs controlling the non-determinism. The
resulting network be fed into SIS.

3. Re-encoding and re-synthesis. After a few iterations ofthe above two optimization techniques, M2 may have been
simplified toa reasonable size for re-encoding, e.g., the number ofstates may have been reduced. We may then be
able tore-encode and re-synthesize M2. There are good encoding algorithms for both two-level and multi-level logic
implementations [39,25,16] when the circuits are reasonably small. Although state encoding does not guarantee more
improvement than previously optimized results, it islikely tobe a new good starting point for performing re-synthesis
usingthe above two techniques.

From the K-N procedure [22], the flexibility of implementing M2 comes from input don't care sequences. In fact, input
don'tcare sequences are exploited by the above techniques indifferent ways. Inthe next subsection, this isdiscussed inmore
detail.

5.2 External Don'tCares andSequential Redundancies vs. Input Don'tCare Sequences
Let output sequences generated by Mi be C{M{). Based on the K-N procedure, the flexibility ofM2 when cascaded by Mi
isdue tooutput sequences not generated by Mi, i.e., C{M{). In the following, we investigate the relationship between this
flexibility andlogic optimization techniques as described inSection 5.1.

We consider two exploitation techniques. Node simplification can exploit external don't cares both effectively and
efficiently [32]. Output values not generated by Mi are external don't cares to M2. Therefore, node simplification only
exploits partial flexibility; nevertheless, when combined with other optimization techniques, such as kernel extraction,
elimination etc., we can efficiently get agood starting point for sequential ATPG-based techniques. Let the transition relation
of Mi beTi (iy pi,nu x), the output values not generated byMi are

EDC{x) = 3,lPl,„1Ti(i,pi,ni,x) (2)

Output sequences not generated by Mi are input don't care sequences to M2. We prove that they are precisely what
is exploited by sequential ATPG-based techniques. Consider the cascade machine in Figure 5(a). We assume that Mi is
deterministic.

Lemma 5.1 For astuck-atfault f in M2, ifthere isa test sequencefrom I, then there isa test sequence S € C(M{)from X.

Proof Mi isa logic implementation, sothe behavior isdeterministic. Therefore, for an input sequence in /, Mi produces a
unique sequence S G £(M,°) in X. •

Lemma 5.2 For a stuck-atfault f in M2, if there is a test sequence S € C[M?)from X, then there exists a test sequence
from I.

Proof Since Mi isdeterministic, for anoutput sequence S € C{M{), there must exist aninput sequence which drives Mi
to produce S. •

Theorem 53 Let Abe afinite automaton which accepts £{M{),i.e., £{A) = C{Mf). Astuck-atfault f in M2 isredundant
with respect to input sequences C(A) ifand only ifitisredundant in M = Mi -> M2as shown in Figure 5(a).

Proof Directly from Lemma 5.1 and 5.2. •

Theorem 5.3 implies that sequential redundancies in M2 when cascaded by Mi are because there is no test sequence
S e £(M,0) from X. Astuck-at fault / in M2, may have a test sequence S from A', but ifS $ C{Mf), f becomes untestable,
and thus redundant. That is, with limited input sequences, there are likely to be more sequential redundancies in M2. This
demonstrates that sequential ATPG-based techniques in Section 5.1 can directly exploit the flexibility of M2 coming from
input don't care sequences.

Theorem 5.4 Let Mi'and Mi both generate the same set ofoutput sequences, i.e., C(Mi'°) = £(A/,°), and f be astuck-at
fault in M2. Then f is redundant in Mi ->• M2 ifand only ifit is redundant inMi' -> M2.

Proof Directly from Theorem 5.3. •

Theorem 5.4 implies that any sequential circuit Mi' with its set ofoutput sequences equivalent toC(Mf),can be used to
replace Mi as the driving machine to M2. This means that we have freedom toselect such a machine Mi' that can expedite
sequential ATPG-based algorithms, e.g., construction of BDD's etc.

5.3 Logic Optimizationof an FSM with Input Don't Care Sequences

Theorems 5.3 and 5.4 lead toa method tooptimize a machine M with inputdon't care sequences which, say, are not accepted
by A. Figure 6(a) shows conceptually the specified behavior ofM with input sequences C{A). When an input sequence S is
accepted byA, there isa corresponding output sequence. IfS isnot accepted byA, there isnooutput.

In practice, C{A) must be produced by another FSM (deterministic or non-deterministic) such that it can be the set of
input sequences to M. Therefore, by the K-N procedure, we can assume that the only non-accepting state ofA is the dead
state d, and any transitions todcorrespond tothe unspecified behavior. Therefore, toexploit this flexibility, we can construct
adeterministic FSM D whose set ofoutput sequences is£{A) asthe driving machine. This isshown inFigure 6(b).

There are many construction methods from A to such a deterministic FSM D. Automaton A can be deterministic or
non-deterministic. Wegiveone simpleconstruction method.

• Case 1: -4 is deterministic. The construction is as follows. In automaton A, the dead state d is removed, and any
transitions edges todare deleted. The remaining states inA are final states. For each transition edge outofa state s,
the output oisset equal toinput i. For any unspecified input instate s,we arbitrarily assign ittoany one ofthe specified
transitions from s with the corresponding output. The resultant FSM D iscompletely specified and deterministic, and
itssetofoutput sequences isequivalent to £{A).

(a)
(b)

tautology

Figure 6: (a). The specified behavior of M with restricted input sequences £{A). (b). Construction ofadriving machine D
to M. The setof output sequences of D is equivalent to C{A).

• Case 2: A is non-deterministic. In automaton A, the dead state d is removed, and any transitions edges to d are
deleted. Theremaining states in A are final states. Letthe maximum number of transitions from any state in A be L,
and 2k > L. We choose k Boolean variables as new inputs to machine D. For each transition edge out ofa state
s, itsoutput value is set tobe itsold input value, and then a distinct value from Bk is assigned tobethe new input
value. Afterwards, for any unspecified value in Bk, wearbitrarily assign it toany one of the specified transitions from
s with the corresponding output. The resultant FSM D iscompletely specified and deterministic, and itsset of output
sequences is equivalent to C(A). This is a form of "inputdeterminization".

Based on the discussion in Section 5.2, we can assign arbitrary state encoding to FSM D, and then have a logic
implementation of FSM D. Subsequently, the methods inSection 5.1 can beemployed tooptimize M.

5.4 Logic Optimization of FSM Networks

Based on the discussions in Sections 5.1, 5.2 and 5.3, we propose an approach for logic optimization of a component ina
general FSM network. Given alogic implementation ofacomponent M2 inan FSM network, our procedure works as follows.

1. Construct theabstract driving machine Mi, same in [40]. Itmay benon-deterministic.

2. Construct an NFA A' toaccept the language produced bymachine Mi,as inthe first step of the K-N procedure.

3. Asdescribed inSection 5.3, construct adeterministic FSM D whose set of output sequences isequivalent toC(A').
Then derive a logic implementation of FSM D.

4. Usethevarious optimization techniques inSection 5.1 tooptimize M2.

Note that if Mi isdeterministic, it can behandled bysequential optimization, hence wemay use itdirectly instep 3.
Our approach can beregarded as a generalization of the K-N procedure. The advantages are:

• No subset construction is needed.

• Input don't care sequences are exploited using existing state-of-the-art sequential optimization techniques. Most can
deal with larger sequential circuits and produce good results. In comparison, state minimizers for ISFSM's can only
handle much smaller circuits.

• Circuit implementation objectives, such as area, timing, power etc., can beconsidered during the exploitation of input
don't care sequences. In comparison, it ismuch harder tooptimize these objectives atthe symbolic level.

10

circuit I X 0 Si s2 M2
initial

literals

K-N procedure Our procedure
opt + redSM enc + opt

Si' cpu final lits cpu Si' final lits cpu

exl-s510 9 19 7 20 47 248 7 0.2 95 8.9 12 37 20.4
ex7-dkl6 2 2 3 8 27 348 15 0.1 63 3.7 16 75 19.0
s820-s510 18 19 7 25 47 248 8 0.3 39 2.4 16 34 29.2
s832-s510 18 19 7 25 47 248 4 0.1 14 1.0 5 15 17.3

bbsse-keyb 7 7 2 16 19 314 18 1.3 193 53.2 18 170 40.3
keyb-dkl6 7 2 3 19 27 348 19 0.1 120 11.7 20 94 41.4
s510-keyb 19 7 2 47 19 314 15 7.5 178 41.5 16 93 107.4
sand-ex1 11 9 19 32 20 280 8 83.8 239 59.3 9 66 552.5

bbsse-planet 7 7 19 16 48 617 - spaceout - - 44 454 169.6
planet-s510 7 19 7 48 47 248 - timeout - - 35 165 534.7
s510-planet 19 7 19 47 48 617 - timeout - - 45 441 438.0
sand-styr 11 9 10 32 30 596

- timeout
- -

27 375 405.6

Table 1: Experimental results of one-way-communcation circuits.

Mi (Mi): driving machine (driven machine).
h O,X: number of Pi's, PO's, interacting signals of Mi -• Mi, respectively.
•Si (Si): number of states of Mi (Mi), respectively.
Mi initialliterals: number of literals (in factored form) of theinitial Mi.
final lits: number of literals (in factored form) of Mi after optimization.
Si: number of states of Miafter exploiting input don't care sequences.
SM: result for STAMINA.

enc +opt: encodedby JEDI andthenoptimizdby running script. rugged twice.
opt +red: optimized by runnig (script. rugged +red_removal) twice.
cpu: CPU time in seconds on aDEC 3000/500 AXP with 160MB memory.
timeout: set to 20,000 seconds of CPU time.

• If M2 isexploited using the K-N procedure and then state-encoded, our approach can still beapplied.

In addition, based on Equation (1), exact input don't care sequences can be approximated. Many approximation methods
for dealing with large FSM networks have been proposed in [40]. There are many other approximation methods, e.g„ hiding
some state variables from A', and grouping states of A' etc. With our approach and powerful state-of-the-art sequential
optimization techniques, less approximation isrequired, i.e., more input don't care sequences can be exploited.

6 Experimental Results

We present preliminary results on small networks. Due to the lack ofFSM network benchmark examples, most of the
examples here are obtained by connecting FSM's from MCNC benchmarks. These FSM's are completely specified and
state-minimal.

Table 1shows experimental results for some cascade circuits consisting of two FSM's. The circuit topology of these
examples isshown in Figure5(a). We employ both the K-N procedureand ourprocedure tooptimize M2 and then compare their
results. The logic optimizer used isSIS [34], and its standard optimization procedure iscalled script. rugged [33] which
includes kernel extraction, re-substitution, elimination and node simplification. In this experiment, we use unreachable states
asdon't cares which are exploited innode simplification. The initial circuit ofM2 isobtained by running script. rugged
once. FortheK-N procedure, we use thebounded subset construction in [40]; thebound on thenumber of statesis set to 64.
The state minimizer used here isSTAMINA [18]. Afterwards, the state-minimized machine isencoded using JEDI [25], and
thenoptimized by runningscript. rugged twice.

Our procedure takes the given circuit implementation ofM2 as the starting point. External don't cares, i.e., output values
not generated by Mi, are extracted and exploited in script. rugged. This corresponds to the first set ofoptimization
techniques inSection 5.1. We then use the construction inFigure 5(b), and apply the red-removal command in SIS to

11

circuit Mi
after K-N procedure

opt + red
after (opt + red)

re-encoding + (opt + red)
initial lits final lits cpu initial lits final lits cpu

exl-s510 95 74 13.2 37 26 9.0

ex7-dkl6 63 63 4.0 75 58 4.7

s820-s510 39 33 15.8 34 33 17.5

s832-s510 14 12 7.1 15 14 7.5

bbsse-keyb 193 152 48.9 170 124 20.9

keyb-dkl6 120 101 34.9 94 75 27.6

s510-keyb 178 108 62.5 93 70 14.9

sand-ex1 239 113 323.0 66 56 111.2

bbsse-planet* - - - 454 396 1243.1

planet-s510
- - - 165 186 512.2

s510-planet*
- - - 441 377 1154.9

sand-styr *
- - - 375 312 1826.3

Table 2: Experimental resultsfor re-encoding and re-synthesis.

Mi:
initial lits:

final lits:

opt -i- red:
re-encoding + (opt + red):
cpu:

driven machine.

initial number of literals (in factored form) of Mi.
finalnumberof literals (in factored form) of Mi afteroptimization.
optimized by runnig (script. rugged + red-removal) twice.
encodedusingJEDI and then optimizdby running opt + red.
CPU timein secondson a DEC3000/500AXPwith 160MBmemory.
* f ull.simplify in script. rugged is limited to 500 seconds.

remove sequential redundancies. This corresponds to the second set of optimization techniques in Section 5.1. The results
shown inTable 1areobtained by running these twosetsof optimization techniques twice.

Ourprocedure achieves better results except forexamples ex7-dkl6 and s 832-s510. For thethird set of examples
(bbsse-planet, planet-s510, s510-planet and sand-styr), STAMINA cannot efficiently exploit input don't
care sequences computedby the K-N procedure. As shown in Table 1, notonly the factored literalcount is reduced,but also
thenumber of states is reduced. Most of CPU time forourprocedure is spent either in node simplification or in removing
sequential redundancies.

We also conducted thefollowing experiments: (1) Apply ourprocedure ontheresults obtained bytheK-N procedure. (2)
Perform re-encoding andre-synthesis on theresults obtained byourprocedure. We compare these results inTable 2. Forthe
first experiment, improved results areobtained, buthalf are still inferior to the results obtained byourprocedure alone (see
Table 1). Forthesecond experiment, re-encoding andre-synthesis produce thebestresults except forexamples s832-s5l0
andplanet-s510.

In our experiments, only redundancy removal is used, and weexpect thatbetter results can be achieved if redundancy
addition and removal in [17] is employed. Ourpreliminary results indicate that our approach together with the notion of
abstract driving machines [40] ispromising forcomputing and exploiting inputdon'tcare sequences ingeneral FSM networks.

7 Conclusion

We presented a novel approach toexploit exact orapproximate inputdon'tcare sequences fora component inanFSM network
directly at the logic level. Thisapproach is based on theK-N procedure [22] and thenotion of theabstract driving machine
[40]. With ourapproach, many existing sequential logic optimization techniques can bedirectly applied toexploit inputdon't
caresequences. Logicoptimization of largeFSMnetworks canthen beachieved. Ourpreliminary results lookpromising but
more FSM networksmust be experimentedon.

12

References

[1] K. Bartlett, R. K. Brayton, G. D. Hachtel, C. R. Jacoby, C. R. Morrison, R. L. Rudell, A. Sangiovanni-Vincentelli, and A. Wang.
Multi-level Logic Minimization Using Implicit Don't Cares. InIEEE Transactions onComputer Aided Design ofIntegrated Circuits
and Systems, pages 723-740, June 1988.

[2] K. L. Brace, R. E.Bryant, and R. L. Rudell. Efficient Implementation of aBDD Package. In27th ACM/IEEE Design Automation
Conference,pages 40-45, June 1990.

[3] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: Multiple-Level Logic Optimization System. In IEEE
Transactions onComputer AidedDesign ofIntegrated Circuits andSystems, pages 1062-1081, November 1987.

[4] R. K.Brayton and F. Somenzi. Boolean Relations and theIncomplete Specification of Logic Networks. In VLSI'89, August 1989.

[5] R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEE Transactions onComputers, C-35(8):677-691,
August 1986.

[6] J. R.Burch, E.M.Clarke, K. L. McMillan, and D. L. Dill. Sequential Circuit Verification Using Symbolic Model Checking. In27th
ACM/IEEE DesignAutomation Conference, pages46-51, Orlando, June1990.

[7] E.Cerny and M. A. Marin. An Approach to Unified Methodology of Combinational Switching Circuits. In IEEE Transactions on
Computers, pages745-756, August 1977.

[8] S.-C. Chang and M. Marek-Sadowska. Perturb and Simplify : Multi-level Boolean Network Optimizer. In IEEE International
Conference onComputer-Aided Design,pages2-5, November1994.

[9] K.-T. Cheng. OnRemoving Redundancy in Sequential Circuits. In28th ACM/IEEE Design Automation Conference, pages 164-169,
June 1991.

[10] H. Cho, G. D. Hachtel, and F. Somenzi. Redundancy Identification/Removal and Test Generation for Sequential Circuits Using
Implicit State Enumeration. In IEEE Transactions onComputer Aided Design ofIntegrated Circuits and Systems, pages 935-945,
July 1993.

[11] O. Coudert, C.Berthet, and J. C. Madre. Verification of Sequential Machines Based onSymbolic Execution. InProceedings ofthe
Workshop onAutomatic Verification Methodsfor Finite State Systems, Grenoble, France, 1989.

[12] O.Coudert and J.C. Madre. A Unified Framework for the Formal Verification ofSequential Circuits. InIEEE International Conference
on Computer-Aided Design, pages 126-129, November 1990.

[13] M. Damiani. Nondeterministic Finite State Machines and Sequential Don't Cares. In The European Design and Test Conference,
pages 192-198, February 1994.

[14] M. Damiani and G. DeMicheli. Recurrence Equations and the Optimization of Synchronous Circuits. In 28th ACM/IEEE Design
AutomationConference,pages 556-561, June 1992.

[15] S. Devadas. Optimizing Interacting Finite State Machines Using Sequential Don't Cares. InIEEE Transactions onComputer Aided
Designof Integrated CircuitsandSystems, pages1473-1484,December 1991.

[16] X. Du, G.D. Hachtel, B. Lin, and A. R.Newton. MUSE: A Multilevel Symbolic Encoding Algorithm for State Assignment. InIEEE
Transactions onComputer Aided Design ofIntegrated Circuits andSystems, pages 28-38,January 1991.

[17] L.Entrena andK.-T. Cheng. Sequential Logic Optimization By Redundancy Addition and Removal. InIEEE International Conference
on Computer-Aided Design, pages310-315, November 1993.

[18] G.D.Hachtel, J. K. Rho, F. Somenzi, and R. Jacoby. Exact and Heuristic Algorithms for theMinimization of Incompletely Specified
StateMachines. In TheEuropean Conference onDesignAutomation, 1991.

[19] J. E. Hopcroft. Annlog(n) Algorithm for Minimizing the States inaFinite Automaton. InThe Theory ofMachines and Computation,
ed.Z. Kohavi, 197'1.

[20] T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli. A Fully Implicit Algorithm for Exact State Minimization. In31st
ACMlIEEE DesignAutomation Conference, pages683-690, June 1994.

[21] T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit State Minimization of Non-Deterministic FSM's. In
International Workshop onLogicSynthesis, May 1995.

[22] J. Kim and M.M.Newborn. TheSimplification of Sequential Machines With Input Restrictions. InIEEE Transactions onComputers,
pages 1440-1443, December 1972.

[23] W. Kunz and P. R. Menon. Multi-Level Optimization by Implication Analysis. InIEEE International Conference onComputer-Aided
Design, pages 6-13, November 1994.

[24] B. Lin, G.deJong, and Kolks T. Modeling and Optimization of Hierarchical Synchronous Circuits. InThe European Desgin and Test
Conference,p&ges 144-149, Paris, March 1995.

13

[25] B.Lin and A. R.Newton. A Generalized Approach tothe Constrained Cubical Imbedding Problem. In International Conference on
Computer Design, October 1989.

[26] B. Lin and F. Somenzi. Minimization of Symbolic Relations. In IEEE International Conference on Computer-Aided Design, pages
88-91, November 1990.

[27] B. Lin, H. Touati, and A. R. Newton. Don't Care Minimization of Multi-Level Sequential Logic Networks. Li IEEE International
Conference onComputer-Aided Design, pages 414-417,November 1990.

[28] S.Muroga, Y. Kambayashi, H. C.Lai, and J. N.Culliney. TheTransduction Method - Design ofLogic Networks Bases onPermissible
Functions. In IEEE Transactions onComputers, October 1989.

[29] M. Rabin and D. Scott. Finite Automata and Their Decision Problems. In IBM Journal ofResearch andDevelopment, pages 114-125,
1959.

[30] J. K.Rho, G. D. Hachtel, and F. Somenzi. Don't Care Sequences and die Optimization of Interacting Finite State Machines. LiIEEE
International Conference onComputer-Aided Design, pages 418-421, November 1991.

[31] H. Savoj and R. K. Brayton. Observability Relations and Observability Don't Cares. In IEEE International Conference on Computer-
Aided Design, pages 518-521, November 1991.

[32] H. Savoj, R.K. Brayton, and H. Touati. Extracting Local Don't Cares for Network Optimization. Li IEEE International Conference
onComputer-Aided Design,pages514-517, November1991.

[33] H. Savoj, H.-Y. Wang, and R. K. Brayton. Improved Scripts in MIS-II for Logic Minimization of Combinational Circuits. In
International Workshop onLogic Synthesis, May 1991.

[34] E. M. Sentovich, K. J. Singh, L. Lavagno, R. Moon, C. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis. Technical Report Memorandum UCB/ERL M92/41,
University of California, Berkeley, May 1992.

[35] A.Srinivasan, T. Kam, S.Malik, and R. K. Brayton. Algorithms for Discrete Function Manipulation. In IEEEInternationalConference
onComputer-Aided Design, pages92-95, November 1990.

[36] H. Touati, R. K. Brayton, and R. Kurshan. Testing Language Containment for w-Automata using BDD's. In Proceedings of
ACMISIGDA International Workshop on Formal Method s in VLSI Designs, Miami, January 1991.

[37] H. Touati, H. Savoj, B.Lin, R.K. Brayton, and A.Sangiovanni-Vincentelli. Implicit State Enumeration ofFinite State Machines using
BDD's. InIEEE International Conference on Computer-Aided Design, pages 130-133, November 1990.

[38] S. H. Unger. AsynchronousSequential Switching Circuits. John Wiley, 1969.

[39] T. Villa and A.Sangiovanni-Vincentelli. NOVA: State Assignment for OptimalTwo-level Logic Implementations. LiIEEE Transactions
on Computer Aided Design ofIntegrated Circuits and Systems, pages 905-924, September 1990.

[40] H.-Y. Wang and R. K. Brayton. Input Don't Care Sequences in FSM Networks. Li IEEE International Conference on Computer-Aided
Design, pages 321-328, November 1993.

[41] H.-Y Wang and R. K. Brayton. Permissible Observability Relations in FSM Networks. Li 31st ACM/IEEE Design Automation
Conference,page$ 677-683, June 1994.

[42] Y. Watanabe and R. K. Brayton. The Maximum Set ofPermissible Behaviors for FSM Networks. In IEEE International Conference
onComputer-Aided Design, pages316-320, November 1993.

[43] Y. Watanabe and R. K. Brayton. State Minimization of Pseudo Non-r>eterministic FSM's. In The European Design and Test
Conference, pages 184-191, February 1994.

14

	Copyright notice 1995
	ERL-95-42

