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Abstract

Modern techniques for A/D conversion exploit the trade-off between resolutions of
discretization in time and discretization in amplitude for improvements of conversion
accuracy. For implementation reasons, oversampling is used to compensate for the loss
of information induced by quantization. Classical reconstruction reduces variance of
quantization error, usually modeled as a white noise [1], by a factor which is equal to the
oversampling ratio r. However, it does not fully exploit the information contained in the
digital representation. It wasdemonstrated in [2-4] that periodic bandlimited signals can
be reconstructed with error whose squared norm decays as 0(l/r2) rather than 0(l/r).
In this paper, the error in oversampled A/D conversion of bandlimited signals in L2(R)
is studied using a deterministic approach. The deterministic analysis demonstrates that
under certain reasonable assumptions, the error squared norm behaves as 0(l/r2).

Another instance of the redundancy-robustness interplay has been observed with
frame expansions in L2(R). For a given accuracy of reconstruction, frame expansions
allow for a progressively coarser coefficient quantization as the redundancy is increased.
Error analysis, based on the white noise model, indicates that the squared norm of the
quantization error decreases inversely to the frame redundancy factor r [7. 8]. As a gen
eralization of results on oversampled A/D conversion, this paper gives a deterministic
analysis of quantization error in Weyl-Heisenberg frame expansions. It shows that in
cases when either the frame window functions or input signals have a compact support
in time or frequency, under certain assumptions, the accuracy of the reconstruction af
ter coefficient quantization can be further improved, giving the error which decays as
0(l/r2).

'This research is supported in part by the NSF Award MIP-93-21302.
*The authors are with Department of Electrical Engineering and Computer Sciences, University of Cali

fornia, Berkeley, CA 94720, USA.



1 Introduction

Analog to digital (A/D) conversion involves discretization of an analog signal in time
followed by discretization in amplitude. A block diagram of the converter together with a
classical reconstruction scheme is illustrated in Figure 1. The discretization in time, imple
mented as sampling with a time interval r, amounts to signal expansion in terms of a family
of sine functions,

{stnc(7r(*-nr)/r)}n€Z (1)

According to the sampling theorem, this family is complete in any space of c-bandlimited
functions with a < k/t. Hence, <7-bandlimited signals sampled at or above the Nyquist
rate, ryv = tt/<t, can be reconstructed perfectly after the time discretization. On the other
hand, the discretization of amplitude, that is quantization, induces an irreversible loss of
information.
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Figure 1: Block diagram of simple A/D conversion followed by classical reconstruction.
Input a-bandlimited signal f(t) is first sampled at a frequency fs = 1/r. which is above the
Nyquist frequency fy = (t/k. Sequence of samples f[n] is then discretized in amplitude with
a quantization step q. Classical reconstruction gives a signal fr{t), which is obtained as a
low-pass filtered version ofsome signal having thesame digital version as the original f(t).

Accuracy of the conversion can be improved by reducing the quantization interval q.
Statistical analysis [1], which models the quantization error as a zero mean white noise
independent of the input, shows that the quantization error variance. o\. is proportional to
q2. However, circuit complexity and precision of analog components impose limits on the
quantization step rather than on sampling interval refinement. Modern techniques for high
resolution A/D conversion are therefore based on oversampling (in this paper, weconcentrate
on simple oversampled A/D conversion as opposed to AS modulation). Sampling a signal at
a rate higher than the Nyquist rate, means expanding in termsof sine functions (as given in
(1)) which are an overcomplete set for the signal space. Redundancy of the expansion can be
exploited for error reduction. Error analysis, based on the white noise model, indicates that
this method used with classical linear reconstruction (see Figure 1) gives an error with the
variance which decreases proportionally to the sampling interval, o* = 0(t) [1, 2], or inversely
to theoversampling ratio r, o\ = 0(l/r). This result isin accordance with measured data [1],
under conditions suchasa large number of quantization levels and small quantization step size
compared to the input amplitude range, so that the quantization error can be satisfactorily
approximated by a uniformly distributed white noise. However, it wasshown in [2, 3, 4] that
signals in the space of periodic bandlimited functions, i.e. trigonometric polynomials, can
be reconstructed with error which behaves as0(l/r2) rather than 0(l/r), provided that the
number of their quantization threshold crossings is greater or equal to the dimension of the
space. The error measure considered in [2, 4, 3] was its squared norm, ||e||2, that is, energy
in an interval equal to the signal period. An experimental evidence of the 0(l/r2) result
was also reported in [5, 6]. The reason for suboptimality of the classical reconstruction is the
fact that in the presence of oversampling it does not fully exploit the information contained
in the digital signal. Any consistent reconstruction scheme, that is a scheme which yields
a signal which has the same digital version as the original, gives ||e||2 = 0(l/r2) [2]. The



scope of this result is limited to spaces of trigonometric polynomials, and the purpose of this
paper is to find an upper bound of the quantization error in the case of bandlimited signals
in L2(R).

In Section 2 we give an analysis of oversampled A/D conversion based on a study of
the structure of reconstruction sets. That analysis provides an intuitive explanation of the
idea that in terms of error reduction oversampling should not be inferior to quantization
refinement. Section 3 gives a proof of the fact that bandlimited signals in £2(R) can be
reconstructed after A/D conversion with an error which depends on the oversampling ratio
as ||e||2 = 0(l/r2). The proof uses in an essential manner the condition that samples taken
at the points of quantization threshold crossings of a considered signal provide a complete
and stable characterization of a given space of bandlimited signals. This is in analogy to the
requirement for a sufficient number of quantization threshold crossings in the case of periodic
bandlimited signals [3, 4].

A more general form of oversampled A/D conversion would be to use expansions other
than those based on the sine functions for the discretization in time. In the past decade,
signal expansions in terms of overcomplete families of vectors, in particular wavelet and
Weyl-Heisenberg frames, received considerable attention. Motivation for the study of the
overcomplete expansions stems mainly from the fact that by relaxing the requirement for
orthogonality or linear independence, a certain design freedom can be attained, but it has
also been observed that increased redundancy can be exploited for gaining robustness. It was
first pointed out by Morlet (as reported in [7, pp. 97-99J). that it was possible to reconstruct
signals from their wavelet frame coefficients with a precision much higher than the precision
with which coefficients were known.

An intuitive explanation of this effect has been given by Daubechies [7, pp. 97-99]. The
range of a frame expansion, V^, is asubspace of some £2{J) space, and quantized coefficients,
{cj}j€j, are usually not inside this subspace. Starting with the quantized family of coeffi
cients, another set of coefficients which is closer to the originals is the orthogonal projection
of {cj}j€j onto VV As the redundancy of the frame is increased, the subspace V$ becomes
more and more constrained ("smaller'' in some sense), so that on average, the projection ap
proaches the original values, giving progressively better reconstruction results. Daubechies
further showed, using a heuristic argument and the white noise model for the quantization er
ror, that in this way expected value of error energy, £(||e||2), decreases in inverse proportion
to the oversampling ratio, E(||e||2) = 0(l/r), for signals which are "essentially localized"
in a bounded region of the time-frequency plane. A rigorous treatment of the frame noise
reduction property was given by Munch [8], for the case of tight Weyl-Heisenberg frames and
integer oversampling ratios. Munch showed that by projecting noisy coefficients onto V^ the
average noise power is reduced by the factor 1/r2. The effect on the error energy, which is
considered here, is that it decays as 1/r, on any given region of the phase space. Note that
this is a result on a localerror behavior, and that the white noise model generally gives a total
error of infinite norm regardless of the oversampling ratio. Besides, reconstruction precision
reported by Morlet was higher than it could be expected even from the EdleH2) = 0{h/r)
result, indicating that the error in some cases decays faster.

Analogously to the case of oversampled A/D conversion, one may argue that the linear
reconstruction, which amounts to projecting {cj}j€j ontoV^ and then finding the inverse of
the frame transform, does not utilize all available information and is therefore suboptimal.
More specifically, the reconstructed signal and the original need not have the same set of
quantized coefficients. It can be expected that a consistent reconstruction, that is a recon
struction which always restores a signal which has the same set of quantized coefficients as
the original, should give an error with a faster decay. Section 4 of this paper gives a deter
ministic analysis of the quantization error of Weyl-Heisenberg frame expansions in L2(R),
as a generalization of results on simple oversampled A/D conversion. The cases which are
considered are: 1) frames with bandlimited window functions, 2) timelimited signals, 3)
frames with timelimited window functions, 4) bandlimited signals. The analysis shows that
for instance in the first case, under certain conditions, signals can be reconstructed from the



quantized coefficients with an error ||e||2 = 0(l/r2), if the oversampling ratio is increased
by decreasing the frame time step for a fixed frequency step. Analogous results hold in the
other three cases.

Notations

The convolution of two signals f(t) and g(t) will be denoted as

f(t)*9(t)= f°° f(s)g(t-s)ds.

The Fourier transform of a signal f(t), F{f(t)}, will be written as /(u>). We say that a signal
f(t) is a-bandlimited if

/(u>) =0 for M><r, and ||/||2 = f°° \f(t)\2dt <oo.
J—oo

Similarly, a signal f(t) is said to be T-timelimited if

f(t) =Q for |*| >7\ and ||/||2 = f° \f(t)\2dt <oo.
J—oo

A sequence of vectors {y>i, y?2i <r3» •••} in an infinite-dimensional Banach space $ is said
to be a Schauder basis for $ if to each vector <p in the space, there corresponds a unique
sequence of scalars {ci, 02,03,...} such that v? = £!Li cupi. The term basis will here mean
Schauder basis.

A basis for a Hilbert space is a Riesz basis if it is obtained from an orthonormal basis
by means of a bounded invertible operator.

A sequence of real numbers {A„} is separated if there is an i > 0 such that |A„ - Am| > €
if m ^ n. It is said to have uniform density rf, d > 0, if it is separated and there exists a
constant L such that

|A„-^|<I, n=0,±l,±2 (2)

2 Reconstruction Sets of Oversampled A/D Converters

The digital version of an analog signal is traditionally viewed as representation bearing
information on its amplitude, with the uncertainty determined by the quantization step q, at
the sequence of time instants t = ..., -r, 0, r, 2r,... . Oversampled A/D conversion refers
to the case when the signal is in a space of a-bandlimited functions and is sampled at a rate
higher than the Nyquist rate. The knowledge on the signal, contained in its digital version,
defines a set of signals which can not be distinguished from the original based on the output-
of the A/D converter. This set is called a reconstruction set [2], Qr, and can be represented
as the intersection of two sets (see Figure 2),

Qr^VrCiCiq), (3)

one of which is the space of a-bandlimited signals, Vff, while the other is a convex set, C(q),
consisting of signals in L2(R) which have amplitudes within the same quantization intervals
as the original at all sampling instants.

The size the reconstruction set can be considered as a measure of the uncertainty about
the original analog signal. Hence, one way to obtain more accurate representation, or equiva
lent^ to reduce the size of the reconstruction set, is to refine the quantization by decreasing q.
As an illustration, let us assume that the quantization step is decreased by an integral factor,
m. As the result, the reconstruction set becomes smaller, since C{q/m) is a proper subset of



reconstruction set

Figure 2: Structure of the reconstruction set of simple oversampled A/D conversion and
classical reconstruction scheme. The reconstruction set is the intersection of two sets. One
of them is the set of signals which have the same digital representation as the original,
and is denoted by C, while the other is the space of bandlimited signals V0. The classical
reconstruction schemegives a signal fr which is the orthogonalprojection of some Jq € C onto
Va. The figure illustrates a case when the reconstructed signal fr is not in the reconstruction
set, i.e. it is not a consistent estimate of the original.

C{q) (see Figure 3). In the limit, when q -» 0, there is no uncertainty about the amplitude
values, and the signal can be perfectly reconstructed, which means that the reconstruction
set reduces to a single point.

An alternative interpretation comes into play if the quantization threshold crossings
are separated and sampling is sufficiently fine so that at most one quantization threshold
crossing can occur in each of the sampling intervals. If this is satisfied, quantized samples
of the signal are uniquely determined by the sampling intervals in which its quantization
threshold crossings occur, and vice a versa. So, we can think of the digital representation as
carrying information on the instants, with uncertainty r in time, when the signal assumes
values ..., -q, 0, q, 2q,... . Hence, the reconstruction set can also be viewed as lying in the
intersection,

ftrCVffnD(r), (4)

where V(t) is the set of all signals in I2(R) which have the same quantization threshold
crossing as the original, in all of the sampling intervals where the original goes through a
quantization threshold. If in addition we require that signals in V(t) can not have more than
one quantization threshold crossing per sampling interval, then in (4) equality holds.

This approach indicates that instead of refining the quantization step, a higher accu
racy of the digital representation can be achieved by decreasing the sampling interval. For
instance, if we reduce the sampling interval by an integral factor, m, the set of signals shar
ing the sampling intervals of quantization threshold crossings with the original, for this new
sampling interval, is a proper subset of V(t), V(T/m) C £>(r). As a result, the size of the
reconstruction set is also reduced, and the situation seems to be analogous to the one with
quantization step refinement. In this perspective the result about 0(t) error variance behav
ior is disappointing, compared to improvements of accuracy achieved through quantization
interval reduction, which gives a2 = 0(q2). However, this lower gain oftime-resolution refine
ment compared to amplitude-resolution refinement has no origin in fundamental phenomena,
but is rather a consequence of inadequate reconstruction.

It has been observed that the classical reconstruction is not consistent in the presence
of oversampling [2-6]. It does not necessarily give a signal in the reconstruction set. Figure
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Figure 3: The effect of the quantization refinement on the reconstruction set. The set of
signals which share the same digital version with the original. C{q), becomes smaller as the
result of quantization refinement. C{q/m) C C{q). Consequently, the reconstruction set is
also reduced giving a higher accuracy of the representation

2 depicts such a scenario. The reconstructed signal, /r(f)» ls obtained by low-pass filtering
of an initial estimate, fo(t), which has the same digital representation as the original. This
gives the orthogonal projection of fo{t) onto the space of bandlimited signals, V0. This
projection is closer to the original than fo{t) itself, but need not lie in C[q), even if fo{t)
does. By further alternating projections of the initial estimate onto C(q) and Va, the accuracy
of the reconstruction is improved and the reconstruction set is asymptotically reached [3, 4,
5]. Any such reconstruction algorithm, which gives a signal in the reconstruction set, is
called consistent reconstruction, while the signals in the reconstruction set are denoted as
consistent estimates of the original [2]. It is shown in [3, 4] that consistent reconstruction
of trigonometric polynomials gives an error which decreases as ||e||2 = 0(t2). In the next
section we consider the error of consistent reconstruction in the case of bandlimited signals
in I2(R).

3 Deterministic Analysis of Error in Oversampled A/D Con
version

3.1 Asymptotic Behavior and FVames of Complex Exponentials in L2\—a, <r]

The representation of the reconstruction set of the oversampled A/D converter in (4) indicates
that its size gets smaller with higher oversampling. Quantization refinement, which also
improves the accuracy of the reconstruction, asymptotically gives the reconstruction set
reduced to a single point, which is the original signal itself. Does this also happen in the
former case, when the sampling interval goes to zero? In other words, is it possible to
reconstruct perfectly an analog c-bandlimited signal after simple A/D conversion in the case
of infinitely high oversampling?

In the limit, when the sampling interval assumes an infinitely small value, the time
instants in which the signal goes through the quantization thresholds are known with infinite
precision. The information on the input analog signal, in this limiting case, is its values at
a sequence of irregularly spaced points {An}, which are its quantization threshold crossings.
If {cjAnU'} is complete in L2[—a, &], then the reconstruction set asymptotically does reduce
to a single point, giving the perfectly restored input analog signal. Completeness of {ejAnU;}
in L2[—<r,o\ means that any a-bandlimited signal f(t) is determined by the sequence of
samples {/(An)}. However, this does not necessarily mean that f(t) can be reconstructed
in a numerically stable way from the samples {/(An)}, unless another constraint on {An} is



introduced which would ensure that any two <r-bandlimited signals which are close at points
{An} are also close in L2 norms. A precise formulation of the stability requirement is that
there exists a constant A > 0 such that for any a-bandlimited signal f(t)

•4ii/n2<Ei/(A»)iJ- (»)
n

In the subsequent analysis of the quantization error we shall also assume that the quantization
threshold crossings satisfy

£i/(a„)i2<bh/u2, («)
n

for any a-bandlimited f(t). Note, that (6) is satisfied for any reasonable sequence of quan
tization threshold crossings. For instance, it holds for any separated sequence {An} [9, pp.
162-166]. These two conditions together, (5) and (6), mean that {e*XnU>} is a frame in
L2[-o< a] [10] (see Appendix A). For such a sequence {An} we shall say that it is a frame
sequence for the space of a-bandlimited signals, with bounds .4 and B. Problems such as
completeness of complex exponentials {ejAnU/} in L2[—cr, a], as well asconditions under which
bounds in (5) and (6) are satisfied, are the core issues of nonharmonic Fourier analysis. An
excellent introductory treatment of this subject can be found in [9]. Here, only a few illu
minating results are discussed in order to provide some intuition about frames of complex
exponentials.

An interesting point is to see what are "minimal" frames. The removal of a vector from
a frame leaves either a frame or an incomplete set [10]. A frame which ceases to be a frame
when any of its elements is removed is said to be an exact frame. A remarkable fact is that
a sequence of vectors in a separable Hilbert space is an exact frame if and only if it is a
Riesz basis [9, pp. 184-189]! Supplementing a Riesz basis {ejAna/} by another set of complex
exponentials still gives a frame unless there are too many vectors in excess so that the upper
bound in (6) can not be satisfied for any finite B. Are there any bases {e->AnU/} which are not
Riesz bases: This is still an open problem. Every example of a basis of complex exponentials
for L2[-a,a] so far has been proven to be a Riesz basis [9. pp. 190-197]. For the end of this
subsection we review two results on frame sufficient conditions.

If a sequence of real numbers {An} satisfies

|A„-n-|<L<±-, n=0,±l,±2 (7)

then {ejAnu;} is a Riesz basis for L2[-a%a]. This condition is known as Kadec's 1/4 Theorem
[11]. How realistic is this condition in the quantization context? For a quantization step
small compared to a signal amplitude, a sufficiently dense sequence of quantization threshold
crossings could be expected, thus satisfying (7), at least on a time interval before the signal
magnitude eventually falls below the lowest nonzero quantization threshold. Suppose that
the analog signal /(£), at the input of an A/D converter satisfies: f(u>) is continuous on
[-0",<7] and f(a) ^ 0. Such a signal f(t), in terms of its zero-crossings, asymptotically
behaves as sinc(<rt). So, if one of the quantization thresholds is set at zero, then for large n,
quantization threshold crossings should be close to points mrjo.

Another criterion was given by Duffin and Schaeffer [10]. It states that if {An} has a
uniform density d > a/if, then for any <r-bandlimited signal f(t)

Miff < £ i/(A»)i2 ^ bii/ii2. w
n

for some positive constants 0 < A < B < oo. Feasibility of a <r-bandlimited signal with
a sequence of quantization threshold crossings having uniform density greater than a/ir is



unlikely for a quantization scheme with a fixed quantization step. Amplitude of a bandlimited
signal f(t) decays at least as fast as 1/t, and outside of some finite time interval, [-T,T],
it is confined in the range between the two lowest nonzero quantization thresholds. Zero-
crossings are the only possible quantization threshold crossingsof f{t) on (-00, -T]u[T, 00).
However, it doesn't seem to be plausible that zero-crossings of a <7-bandlimited signal can
have a uniform density greater than the density of zero-crossings of sinc(crt), which is a/ir.
Therefore, in order to meet this criterion the quantization step has to change in time following
the decay of the signal. One way to achieve this is a scheme with quantization steps which
are fixed on given time segments but eventually decrease with segment order.

3.2 0(l/r2) Error Bound

Consider a a-bandlimited signal, f(t), at the input of an oversampled A/D converter with
a sampling interval r. Suppose that its sequence of quantization threshold crossings, {in},
is a frame sequence for the space of a-bandlimited signals. If g{t) is a consistent estimate
of f(t), there exists a sequence {yn\ of quantization threshold crossings of g(t), such that
every xn has a corresponding yn in the same sampling interval. Hence, for each pair (xn, y„),
f(Xn) = g(yn) and \xn - yn\ < r.

g(x„)'g(y„)

m+3 m+4

Figure 4: Quantization threshold crossings ofan analogsignal f(t) and its consistent estimate
g{t). The sequence of quantization threshold crossings, {xn}, of f(t), uniquely determines
its digital version and vice versa, provided that all the crossings occur in distinct sampling
intervals. If f(t) goes through a certain quantization threshold at the point xn, then g(t) has
to cross the same threshold at a point yn which is in the same sampling interval with xn. At
a point xn, the error amplitude is equal to \g(xn) - f(xn)\ = \g{yn) - g{xn)\-

At the points {xn}, the error amplitude is bounded by the variation of g(t) on the interval
[yn, xn] (without loss of generality we assume that y„ < a;n), as shown in Figure 4. Since
g(t) is bandlimited, which also means that it has finite energy, it can have only a limited
variation on [yn,£n]- This variation is bounded by some value which is proportional to the
sampling interval, so

8



!*(*»)-0(v»)I<c„-t. (9)

The constant c„ in this relation can be the maximum slope of g{t) on the interval [yn,£n]i
c„ = supt€(lto<Xn)p'(t). The error signal, e(t) = g(t) - f{t). is itself a <7-bandlimited signal.
At the points {xn} its amplitude is bounded by values which are proportional to r (9). If
the sequence {c„} is square summable, it can be expected that the energy of the error signal
is bounded as ||e||2 < const •r2, or in terms of the oversampling ratio r,

• IHIJ<^. do)
This result is the content of the following theorem.

Theorem 1 Let f(t) be a reala-bandlimited signal at the input of an A/D converter with a
sampling interval t < ir/cr. If the sequence of quantization threshold crossings of f(t), {xn},
forms a frame sequencefor the space of a-bandlimited signals, then there exists a positive
constant 8 such that ifr<Sf for every consistent estimate of f{t), g{t) € C1,

\\f(t) - 9(t)\\2 < k\\Ht)\\2r\ (11)

where k is a constant which does not depend on t.

Proof Let A and B be bounds of the frame {eJXnu;} in L2[-a,a], so that for any a-
bandlimited s(t)

4W0II2 <D'(*")l2 * filMOIf- (12)
n

At the points xn, the error amplitude is bounded by the variation of the reconstructed signal
on corresponding sampling intervals, as described by the following relations:

W*»)l = l/(*»)-*(*»)|
= \f{xn)-g(yn)+g{yn)-g{xn)\
= \9(yn) - g(xn)\
< T-g'{en), min{xn,yn) < en < max{xn,yn). (13)

Here, en denotes a point on the interval [yn,xn]. The error norm then satisfies

IK')H2 < 7£|e(*„)|2

< jEls'WI2- (14)

If t is smaller than 6 = <J1/4 ({xn},a) (see Appendix A, Lemma 3), then |€n - x„| < S and
consequently

ElsWl'̂ lls'WII2. (15)
This gives



ikWll' < ^jflls'wil2
<rV2|||,(t)||» (16)

so that energy of the error can be bounded as

MOB* <-^-h(t)\?. (17)
It remains to find a bound for the norm of g(t).

According to Lemma 3, since |xn - yn\ < r < 8XjA {{xn},a), the following holds

HrtOII2 < tE^J/")2
n

= iE/(-")2

< ^fll/WII2- (18)
As the consequence of the last inequality and the error bound in (17) we obtain

\\e(t)\\2<9a2^\\f(t)\\2T2. (19)
QED

An extension of the result of Theorem 1 to complex bandlimited signals is straightfor
ward, provided that the real and imaginary parts are quantized separately.

Corollary 1 Let the real and imaginary parts of a complex a-bandlimited signal f(t), at the
input of an A/D converter with the sampling interval r < ir/o. be quantized separately. If
sequences of quantization threshold crossingsof both Re/(f) and lmf{t) form frame sequences
for the space ofa-bandlimitedsignals, then there exists a positive constant 8 such that ifr<8
thenfor every consistent estimate g(t) € C1

11/(0-»MII2<*II/MI|V. (20)
for some constant k which does not depend on r.

Kyn) and {*•) b , , „
real and imaginary parts of f(t), respectively, and 0 < Ar < Br < oo, 0 < Ai < B{, < oo the
corresponding frame bounds. Then the relation (20) holds for

Proof Let {xrn} and {x* \ be the sequences of quantization threshold crossings of the
of f(t), respectively, and 0 < Ar < Br <
ids. Then the relation (20) holds for

r <min (6l/4 ({xrn},a) ,8l/A ({xj,},*))
and

k = 9o2ti, /i = max(3r,^L]. (21)[avai)
QED

In Appendix B we give another, more intuitive error bound for the case when quantization
threshold crossings form a sequence of uniform density greater than a/n.

10



4 0(l/r2) Behavior of Error in Quantization ofWeyl-Heisenberg
Frame Expansions

An immediate generalization of the results on oversampled A/D conversion is in error
analysis in the case of quantization of coefficients of Weyl-Heisenberg frame expansions (see
Appendix C). The two cases which are considered first are: 1) frames derived from bandlim
ited window functions without restrictions on input signals, except that they are in L2(K),
2) timelimited input signals, and no restrictions on the window function in addition to the
requirement that it is in £2(R).

CASE 1. a-bandlimited window function

Let

{<Pm.n(t) :*«.»(*) =<p(t - nto)^"} (22)

be a Weyl-Heisenberg frame in L2(R), with the bounds

-4||/ll2< E K*»,„./>I2<B||/||2. (23)
m.n€Z2

Frame coefficients {cm,n : cm,n = (v>m,m/)} of a signal / can be expressed in the Fourier
domain as

cm,n = r f(u, - mu)Q)P{u)ei«nt°duj. (24)
J—oo

The system which for an input signal gives these coefficients can be viewed as a multichannel
system, containing a separate channel for each frequency shift mu>o, such that the m-th
channel performs modulation of an input signal with e^mwQt, then linear filtering with <p{-t)
and finally sampling at points {nto}. Such a system is shown in Figure 5. For a fixed m,
coefficients cm,n are samples of the signal

/mW^/W^j^H), (25)

which will be called m-th subband component of f(t). In the sequel, the m-th subband
component of a signal s(t) will be denoted by sm(t) and the sequence obtained by sampling
Sm(t) with the interval to will be denoted by Sm[n], Sm[n] = sm(nto). Using this notation,
frame coefficients of f(t) are given by cm,n = Fm[n\.

Such an interpretation of Weyl-Heisenberg frame coefficients of the signal f(t) means
that their quantization amounts to simple A/D conversion of the subband components of
f(t). Note that these coefficients are in general complex, and it is assumed here that real
and imaginary parts are quantized separately. If the frame window, v?(0<1S a <7-bandlimited
function, each of the subband components is also a a-bandlimited signal. In this context, a
signal g(t) is said to be a consistent estimate of f{t) if they have the same quantized values
of the frame coefficients and each subband component of g(t) is continuously differentiate,
9m(t) 6 C1 (note that the subband signals, being bandlimited, are continuouslydifferentiable
a.e.). In the light of the results of the previous section, this indicates that if the frame
redundancy is increased by decreasing the time step t0 for a fixed u>0, the quantization error
of consistent reconstruction should decay as O(to). This result is established by the following
corollary of Theorem 1, and can be expressed in terms of the oversampling ratio, r = ^j-,
as ||e||2 = 0(l/r»).
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&- <p (-0

4-i(0
£5(f-nf,) — cm-l,n

«*w((w-l)<o00

/(')

exp(Jm(0 t)

9(-0

/«(')m

£8(f-nf0) —cm,n

-&— <p(-o

expC/C"+l)cooO

/«+!<'>
^8(r-nro) — cm+l,n

Figure 5: Evaluation of Weyl-Heisenberg frame coefficients. For a fixed m. coefficients cm<n
are obtained as samples, with to sampling interval, of the signal /m(f), which is the result of
modulating the input signal with ejmu,°', followed by filtering with <f{-t).

Corollary 2 Let {s?m,n(0} be a Weyl-Heisenberg frame in L2(R), with a time step to anda
frequency stepuq, derived from a a-bandlimited window function ^{t). Consider quantization
of the frame coefficients of a signal f(t) € L2(R) and suppose that for a certain u>0 the
following hold:

i) quantization threshold crossings of both real and imaginary parts of all the subband
components fm(t) = (f(t)ejmuJot) * <p{-t) form frame sequences for the space of a-
bandlimited signals, with frame bounds 0 < c/m < 0rm < oo and 0 < a* < /?* < oo;

H)

suPm€Z max M < oo.

Then there exists a constant 8, such that if to < 8, for any consistent estimate g(t) of f(t),
the reconstruction error satisfies

ii/w-s(oir<*ii/wii2t2,

where k is a constant which does not depend on to.

(26)

Proof Let f(t) be reconstructed from its quantized coefficients as g{t). Suppose that g(t)
is a consistent estimate of f{t), that is, frame coefficients of g{t) are quantized to the same

12



values as those of f(t). Under the bandlimitedness condition on <p{t), all subband signals
/mffV, are also a-bandlimited, and each gm(t) is a consistent estimate of the corresponding
fm[t), in the sense discussed in Section 2.

Under assumption i), and as a consequence of Corollary 1, for each m there is a 8m such
that the m-th subband error component, fm(t) - gm(t), satisfies

H/mW - SmMII2 <9<7^m||/ra(0||2«g, Mm =max I (jj&j , I£f I I. (27)

For a sampling interval to < ir/a, and any s € L2(R) we have that norms of subband signals
sm and their sampled versions satisfy:

IWIa = to||Sra||2. (28)

The frame condition (23) then implies

11*11' < ^EllSmll2
m

= ^"ElKII2. (29)
and

IWI2 > ±£||sm||2
to

=^EH^II2- (30)
From assumption ii) and Lemma 3 in Appendix A, it follows that 8 = infm€z8m is strictly
greater than zero, 8 > e > 0. For to < 8, we have the following as a consequence of relations
(27). (29) and (30):

ll/«-f(0ll2 < JfEHfmit) ~9m(t)\\2

< -^E^Vmll/mWII2^
< 9<72M2|||/||̂ . (31)

This finally gives

ll/W - «(0ll2 <WWII** (32)

which for w0 = const can be expressed as ||/(t) - g{t)\\2 = 0(l/r2).
QED

CASE 2.. T-timelimited signals

Another way to interpret expansion coefficients of f(t) with respect to the frame (22) is to
consider them as samples of signals

13



V»M=(9Me"iilt0W)*/M. (33)
with u;q sampling interval. This is illustrated in Figure 6. Suppose that f{t) is a T-timelimited

/(©)

'J $„-,««»
V8((0-mODo) cm,n-l

exp{-j(n-\)t co) ;

$(©)-

ti /(to)
$„(co)

^8(co-mcoo) — 'm,n

exp (-jnt0(0)

V /(co)

«p(-y(i+l)^«) :

ti^) V8(co-mcoo)— cm,n+l

Figure 6: Evaluation of Weyl-Heisenberg frame coefficients. For a fixed n, coefficients cm,„
are obtained as samples, with u;0 sampling interval, of the signal £n(c)« which is itself result
of modulating <p(u) by €-J'n*0U\ followed by filtering with /(a;).

signal. Then /" {£„(«*/)} is also T-timelimited for each n, which makes all subband signals
<pn(w) bandlimited. From an argument completely analogous to the one in the previouscase,
it can be concluded that if for some fixed £0, sequences of quantization threshold crossings
of subband signals ip(v) satisfy certain frame properties the quantization error of consistent
reconstruction can be bounded as ||e(*)||2 < &||/(*)||2u;g. Since we consider the case when
to = const and u>0 -• 0, this can be alsoexpressed as ||e||2 = 0(l/r2). The precise formulation
of this result is established as follows.

Corollary 3 Let {(pm,n{t)} be a Weyl-Heisenberg frame in L2(R), with a time step to and
a frequency step w0> derived from a window function <p(t). Consider quantization of the
frame coefficients of a T-timelimited signal f(t) e L2(R). Suppose that for a certain to the
following hold:

i)

»)

quantization threshold crossings of both real and imaginary parts of all the subband
components <pn[u) = (<£(u>)e~«,nt°u') * f{uj) form frames for the space of T-timelimited
signals, with frame bounds 0 < arn < 0„ < oo and 0 < a{n < fixn < oo;

suPn€Z max M < oo.
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Then there exists a constant 8. such that ifuo < 8, for any consistent estimate g(t) of f(t),
the reconstruction error satisfies

II/«-*MII2<WWII2"?m (34)

where k is a constant which does not depend on w0.

If the Weyl-Heisenberg frame is redefined as

{*m,»M :Vm,n(t) =<p{t - nto)*™**""*)} ,
then analogous results hold for the cases when input signals are bandlimited or the window
function has a compact support in time.

The assumptions on bounded support of frame window functions or input signals in
either time or frequency, introduced in the above considerations, are natural assumptions of
time-frequency localized signal analysis. A question which naturally arises is whether in the
case when both the window function is bandlimited and the considered signals have finite
support, we have that the error decays as ||e||2 = 0{uM). Another interesting case is the
one when none of these assumptions is introduced. Is then also possible to exploit frame
redundancy for quantization error reduction so that the error norm tends to zero as the
redundancy is increased, or even more ||e||2 = 0(1/V2)? These are still open problems.

5 Conclusion

The error of oversampled A/D conversion was studied here using deterministic analysis.
The analysis showed that for signals with quantization threshold crossings which form frame
sequences of the corresponding space of bandlimited signals, the information contained in
the digital version allows for reconstruction with an error which decreases in inversely to
the square of the oversampling ratio. ||e||2 = 0(l/r2). This result was generalized giving a
quantitative characterization of redundancy-robustness interplay in Weyl-Heisenberg frame
expansions. The deterministic analysis showed again that in cases when either the frame
window function or input signals are bandlimited or timelimited, under certain reasonable
assumptions, thequantization error ofconsistent reconstruction is reduced as ||e||2 = 0(l/r2)
rather than ||e||2 = 0(l/r) which is expected with the linear reconstruction.
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Appendix A

The results of nonharmonic Fourier analysis, reviewed here, are adapted from [10].

Definition 1 A set offunctions {exp(j\nu)} is a frame in L2[-y,y] if there exist positive
constants A and B which depend exclusively on 7 and the set offunctions {exp(jAnu;)} such
that

A< =-7r2 <B (35)
11 \t(->)f
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for every function g(u) € L2[-y,y]. Constants A and B are calledframe bounds of the frame
{exp(jAnu;)}.

Lemma 1 .4 system of complex exponentials {exp(jA„u;)} is aframe in L2[-y,y] with frame
bounds 0 < A < B < oo if and only if

>l||/(*)ll2 < D/(A»)I2 ^ WWII2 (36)
n

for every entire function f(z) of exponential type 7 which is square integrable on the real
axis, f(x) e L2(R).

Note that if f(x) is a 7-bandlimited function, then f(z) is an entire function of exponential
type 7. Conversely, if f(z) is an entire function of exponential type 7, which is square
integrable on the real axis, then f(x) is a 7-bandlimited function.

Estimates of bounds on the quantization error (Section 3) are derived based on the next
two lemmas.

Lemma 2 Let {exp(jAnu;)} be a frame in L2[-7,7]. If M is any constant and {//„} is a
sequence satisfying |/x„ - An| < M. then there is a number C = C{M, 7, {An}) such that

E i/("»)i2
^ 5 < C (37)
£i/(a„)|2

n

for every entire function f(z) of of exponential type 7.

Lemma 3 Let {exp(.;Anu;)} be a frame in I2[-7,7], with bounds 0 < A < B < 00 and 8 a
given positive number. If a sequence {/zn} satisfies |An - //n| < 8 for all n, than for every
entire function f(z) of exponential type 7 which is square integrable on the real axis

A(l - VcfUftf <£ |/(/*„)|2 < BU + ^)2||/||2, (38)
n

where

C=f(e*-l)2. (39)

Remark

If <5 in the statement of Lemma 3 is chosen small enough, so that C is less then 1, then
{exp(jnnu)} is also a frame in L2[-y,y]. Moreover, there exists some 8X/A ({An}, 7), such
that whenever 8 < 8X/A ({An},7), {exp(jfinw)} is a frame with frame bounds A/4 and 9B/4.
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Appendix B

Recall that in orderto havea sequence of quantization threshold crossings of a <7-bandlimited
signal f(t), having a uniform density d > a/n, the quantization step q must change in time
following the decay of the signal. Since f(t) is square integrable, q = q(t) has to decay at
least as fast as 1/t, although it can be fixed on a given set of time segments.

Let A and B denote again the lower and the upper bound, respectively, of the frame
determined bythequantization threshold crossings, {xn}, of f(t), and let g{t) be aconsistent
estimate of f(t). Following the discussion in the proofof Theorem 1 (see (14)), the error
norm is bounded as

H£(0II2<tI>'(£»)I2- <4°)A
n

Since r is smaller then the Nyquist sampling interval, |in - £„| < n/o for all n. According
to Lemma 2, there exists a constant C = C({xn},a) such that for all sampling intervals
T < 7r/<7

£ls'(<»)|2<C£|S'(*„)|J. (41)
n n

This gives

imoii2 <-^-wmf. (42)
Being a consistent estimate of f{t), g(t) can not differ from fit) by more than q{nr), at

time instants {nr}. The energy of g(t) can be bounded, by considering its samples at these
points, as

HsWII2 = r£|9(nr)p (43)
n

< '•E(l/("'-)l2 +2l?('"-)/(n'-)l +l9('"-)l2) («)
n

= ||/«)||2+ £,(r). (45)

Note that

E.(r) =r£ (2|»(«r)j(»r)| +|?(nr)|2)
converges to

bound

limE.(r) =j_2 (2|?(%(«)| +|«(«)l2) dt, (46)
which has to be finite since q(t) = 0(f(t)) and f(t) is square integrable. Therefore, Ea(r)
has to be bounded by some E which does not depend on r. This gives the following error

IkWH'S^Ol/MlP +s)'*. (47)
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Appendix C

The notion of frames has been extended by Duffin and Schaeffer beyond the context of
nonharmonic Fourier expansions [10]. It is given by the following definition.

Definition 2 A family offunctions {<pj}jej in a Hilbert space % is called a frame, if there
exist two constants 0 < A < B < oo such that for all f in V.

^ii/ii2<Ek^/)I2^5ii/ii2- <48)

Constants A and B are called frame bounds. If they are equal,

Dte./>la = 4i/na. <49)

and the frame is called tight frame. The frame condition (48) ensures that any / in Wcan
be reconstructed in a numerically stable way from coefficients {cj :Cj = (<Pjyf)]jeJ' We will
refer to these coefficients as coefficients of frame expansion, or frame coefficients.

A frame {<r>t,i}(t,j)€Z2 in £2(R) issa-id to be aWeyl-Heisenberg frame if the frame vectors
are obtained by translating a window function <p(t) in time and frequency with steps to and
u;0. The frame vectors then have the form:

fm,n(t)=<p(t-nto)ejm^t. (50)

If a Weyl-Heisenberg frame is tight and its window function is normalized to unit energy,
then the frame bound is equal to 2ir/u0to [7, pp. 81-83]. A limitation of Weyl-Heisenberg
frames is that no frames exist for u>0t0 > 2ir [7, pp. 81-83], which actually means that the
frame vectors have to be distributed in the time-frequency plane with a sufficient density in
order to span the whole space. The critical density is given by uoto = 2a\ which corresponds
to bases. For u0to < 2k the frame is redundant, so that the ratio r = 2tt/u>o, *o can be
interpreted as its redundancy factor, or oversampling ratio.
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