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Abstract

Recent work has identified the notion ofsafe replacement for sequential synchronous designs
which may not have reset states. It has also been illustrated that many popular sequential
resynthesis techniques, such as retiming, may cause unsafe replacements. However, this happens
only due to changes in the transient behavior during the first few cycles after powering up
the design. Some knowledge about the environment could then be used to show that these

changes may be acceptable for a sequential replacement. We present a spectrum ofreplaceability
notions which address these issues. Finally, we present experimental results to demonstrate that

significant optimizations can be gained by using these new notions of replaceability, and that
there is a trade-off" between delaying safeness in replaceability and the degree of optimization
that can be obtained.

1 Introduction

The problem ofdesign replacement for gate-level synchronous, sequential circuits is to replace a given
design with another (hopefuUy, optimized in some respect) without making any assumptions of the
interactions of the designs with its environment. The sequential nature of the design comes from
the use of memory elements (like latches and flip-flops). A large number of real industrial circuits

contain many latches with no reset lines. Instead the whole design is somehow reset probably with

some kind of implicit or explicit synchronizing sequence. Also, as in real designs, we cannot assume
that a particular component ofdesign is always initialized with a given initializing sequence. Such a

•Research supported by NSF/DARPA Grant MIP-8719546 and SRC Grant 94-DC-324
department ofEECS, University ofCalifornia at Berkeley, Berkeley, CA 94720
^Motorola Inc., MD OE321, 6501 William Cannon Drive West, Austin, TX 78735
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sequence is often undetermined and may change at a later stage in the design process, so we would

like to optimize our design without placing any restrictions on the ways the environment of the

component can interact with it.

Previous efforts have been made to tackle this problem1. A notion of design equivalence was

defined in [Pix92]. Another notion of equivalence was suggested in [Che93] which was used for

sequential resynthesis by redundancy removal in [EC93]. Other sequential resynthesis techniques

relevant to our model are retiming and resynthesis [MSBS91] and synchronous recurrence equations

[DD92]. In [PSAB94], it was shownthat all the abovenotions of equivalence make some assumptions

about the environment. There, a stronger notion of design replaceability was presented which does

not make any assumptions of the environment. However, for many designs, this notion may be too

strong as seen by the low amount of optimization obtained by using this notion. In this paper,

we provide a parametrized notion of replacement, where the "safeness" of the replacement can be

traded off for more flexibility (and hence more optimizations) by the designer. The parameter is

based on the number of clock cycles that elapse between the time when a design is powered up and

when it is used. Any realistic design will be used only after some cycles have elapsed after power-up;

these cycles are necessary for the voltages and current to settle in immediately after power-up.

We have implemented these new notions of design replacement, and through experiments, show

that there is significant optimization to be gained from using this notion. We alsoshowthe trade-off

between the degree of safeness of the replacement and the amount of optimization.

2 Terminology

A gate-level synchronous design consists of a set of interconnected memory elements and hardware

gates. The memory elements assume the next state value at the start of the clock cycle. For

simplicity, we consider edge-triggered latches (simply called a "latch") clocked with a single phase

clock. We assume that memory elements do not have reset lines, since those with reset lines can

easily be transformed into ones without [PSAB94]. Consider a design D with n input wires, m output

wires and t memory-elements. Let Id and Od represent the input values and output values of the

design. Thus, Id consists of 2n values and 0D consists of 2m values. The design D also has 2* states

In this paper, we will not discuss other sequential resynthesis techniques which use the information of a designated
start state of the circuit to extract flexibility and use this for optimization. These methods cannot be applied to the
case where memory elements do not have reset lines.



(since it has t latches); we use D to denote thestate space ofthe design D also— it will be clear from
the context if we are talking about the design or the statespace. Input sequences will denote a finite
sequence ofinput values (for example, input sequence 7r = a\-a2 ••-ap € lp). Thenextstatefunction
specified by design D is denoted by the completely-specified function 6d:DxId->D. Similarly, the
output function of design D is denoted by the completely-specified function \d : DxId -+ Od- We

also use 6d and A^ to denote functions on input sequences, for example, 0£>(s, it) = £jd(£d(s, ai), it')
and Ap(5,7r) = \d(s->o-i) ♦ A(£(s,ai),7r') where n' = a2 -az---ap.

A design can also be represented by state transition graphs (STG's) denoting the deterministic

finite state machine (DFSM) encoded by the design. A t-bit binary-valued label on a state de

notes that, in the design, the state is implemented by that assignment of the t latches. Note that

because a combinational function can be implemented in many different ways, the design-to-STG

transformation is a many-to-one mapping.

Conversely, given a DFSM (a set of states closed under any input), we use the term "design"

to denote any gate-level implementation which encodes this DFSM. Notice that even though the

number of states in the DFSM may not equal to 2* for some natural number t, we can always use

more than one encoding of the t latches to denote the same state in the DFSM, thus realizing a

gate-level implementation for the DFSM.

3 Notions of Sequential Replaceability

A safe replacement condition is design such that if the original design is replaced with the new

design, there is no way the environment can detect the replacement by looking at the input-output

behavior of the design.

The precise condition for safe replacement was presented in [SP94]:

Definition 1 Design D\ is a safe replacement for design Dq (denoted by D\ •< Do) if given any

state s\ € D\ and any finite input sequence ir € /*, there exists some state $o € Do such that the

output behavior \di($i,k) = ^D0(so,x)-

As, an example of safe replacement, consider design P and Q in Figures 1 and 2, respectively.

It can be seen that Q •< P.

It was shown there that the above condition is the weakest possible (allows maximum flexibility

for replacement) which guarantees that the environment cannot detect the replacement.



(J
Figure 1: Example design P

Figure 2: Replacement design Q

We frequently use the following two observations from [SP94]:

• If each state of design C is equivalent to a state in design D, then C •< D.

• The relation •< is transitive.

Other notions of replacement have been presented and used for sequential synthesis. It is shown

in [PSAB94] thatall ofthese notions, like retiming/resynthesis [MSBS91], design equivalence [Pix92],
synchronous recurrence equations [DD92], sequential redundancy removal [Che93] do make use of
some information from the environment and the replacements may not be safe if the environments

are allowed to be arbitrary.

Unfortunately, the notionof safe replacement was shown to be quite stringent to achieve sufficient

flexibility for any significant optimizations. This motivated our current work, where based on the

number of clock cycles between the power-up and when a design is actually is used, sufficient
flexibility can be extracted from a design.



4 Delayed replacements

Definition 2 Given a design D, an n-cycle delayed design (denoted by Dn) is the set of states
{s\3w € In,s' e D : tfi>(s',7r) = s}, i.e. a state s belongs to Dn iff there exist a power-up state
s' in D and an input sequence of length n which drives s' to s. Let D°° denote the set of states
{s|Vw : 3n € In,s' € D : 6d{&',*) = s], i.e. a state s belongs to D°° ifffor each natural number n
there exist a power-up state s' in D and an input sequence of length n which drives s' to s.

Dn is thes set of states into which any state must fall when clocked n times with any sequence
of inputs. It is easy to see that the set of states in Dn is closed under all inputs; also that the set

of states in Dm is a subset of the states in Dn if m > n. The design D°° can be obtained by a

fixed-point operation starting from D, because D°° = Dn, where n is the smallest number such that

Dn~l = Dn. Using theterminology in [Jeo92, PSAB94], this number n is the number ofonion rings
of the design D.

We call the set of states in D°° as the stable states of £>, and the states in D\D°° as the transient

states of D. If, after powering up a design, we pass an arbitrary set of inputs through the design

for a long enough number of clock cycles we will be left with the stable set.

For example, consider the design shown in Figure 1. For this design P, the various n-delayed de

signs are: P = {111, 100,001,110,010,000,101, Oil}, P1 = {110,010,000,101,011}, P2 = {010,000,

101,011}, P3 = P4 = ••= P°° = {000,101,011}.
Now, we give two parameterized definitions for safe replacement:

Definition 3 Given a design D, a new design C is an n-delay-preserving replacement for D, if

Cn < Dn.

The intuition behind this definition is that the environment of the replaced design is willing to

ignore an arbitrary set of outputs for n clock cycles after power-up. This may be the case when it is

known that the synchronizing sequence for the entire system will not reach the target design for the

first n clock cycles. Or, alternately, the designer is prepared to accept that for at least n clock cycles

after power-up the design is allowed to stabilize and its outputs are not used; any synchronizing

sequence is applied to the system only n cycles after the power-up.

We can weakenthe abovereplacement requirement in Definition 3 even further (by compromising

"safeness") to get the following definition:



Definition 4 Given a design D, a new design C is an w-delay-accumulating replacement for D, if

Cn <D.

The intuition behind this is that if the original design worked in an environment, the replaced

design will work in the same environment if it is allowed to settle for an extra n cycles after the

power-up. This might be the case when the designer knows that the environment around the design

is flexible enough to wait for n extra clock cycles and then use whatever input/output behavior

from the design it was expecting. This definition requires delaying the interaction of the design with

the environment for a fixed number of clock cycles with arbitrary inputs. On the other hand, the

delay preserving definition (Definition 3) uses some knowledge about the interaction of the design

with the environment and does not necessarily mean an extra wait after the power-up. The more

important difference is explained in Propositions 4.4 and 4.5 which show that delay-accumulating

replacements accumulate delays whereas delay-preserving do not. Also, we can show that n-delay
preservingimplies n-delay accumulating (Proposition 4.1). Later on in this section weshow examples

of the two kinds of delay replacements.

Proposition 4.1 If Cn X Dn, then Cn < D.

Proof: Since the set of states of Dn is a subset of the set of states in D, it follows that Dn •< D.
[SP94] shows that < is transitive, and this proves that Cn < D. m

As the delay parametern (we will call it slack) increases, the corresponding replacements impose
strictly weaker restrictions, as the following two results show:

Proposition 4.2 If Cn < Dn, and m > n, then Cm <Dm.

Proof: By contradiction. Suppose Cn < Dny and m > n, and Cm £ Dm. Without loss of

generality, m = n + 1. There exists a state s e Cm and an input sequence 7r such that for every
state t e Dm: A(s,?r) / A(t,7r). Since s GCn+1, there must be a state s' € Cn and an input a such
that 6(s\a) = s. Now, consider the state s 6 Cn+1, and the input sequence a •tt. Since, for every
state t' e Dn: 6(t',a) € Dn+1, it is true that for every state t' e Dn: \(s',a- tt) ^ X(t\a •tt). This
contradicts the fact that Cn < Dn. m

Proposition 4.3 IfCn ^ D, and m> n, then Cm < D.



Proof: The proof follows from the fact that the set of states in Cm is a subset of the set of states
in C\ •

The above results about the relative strengths of the replaceability notions are illustrated in
Figure 3.

Proposition 4.4 (each delay-preserving replacement preserves power-up delay) IfCn-<
Dn and Bm <Cm, and p = max(ro,n), then B? <DV.

Proof: Suppose m > n. Then Cm < Dm, from Proposition 4.2. Since •< is transitive, Bp * D*.
The proof is similar if m < n. •

Proposition 4.5 (each delay-accumulating replacement adds to power-up delay) IfCn<
D and Bm X C, then Bm+n ^ D.

Proof: From Proposition 4.2, Bm+n < Cn. Since < is transitive, we have Bm+n <D. •

Thus, the nice property about delay-preserving replacements is that if many design changes or

optimizations are made in succession, the final design is still as safe as one of the replacements in

the chain; for example, if the designer makes a series of 1-delay-preserving replacements, knowing
that the first input vector to the design can be arbitrary, the final design is still a 1-delay-preserving
replacement.

On the other hand, the delay-accumulating replacements add to the delays after power-up; for

example, three 1-delay-accumulating replacements would lead to a 3-delay-accumulating replace

ment. However, if the designer is initially given a total slack allowed for the replacements, many

delay-accumulating replacements can be made in succession, as long as the total delay does not

exceed the slack.

It is interesting to note that as the slack is increased, in the limit both delay-preserving and

delay-accumulating replacements become identical concepts (see Figure 3 for the complete picture
of the safeness/flexibility tradeoff's):

Proposition 4.6 C°° < D°° if and only if C°° X D.

Proof: (Only if part) Assume that C°° ^ D°°. Since, D°° is a closed subset of states in D, it

follows that D°° X D. From the transitivity of ^ [SP94], we have C°° < D.

(If part) Assume that C°° X D. but C°° £ D°°. Then there exists a state s e C°° and an input
sequence tt such that for any state t 6 D°°: A(s,7r) ^ A(i,tt) (Claim 1). Suppose n is the number
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C2<D2

C-<D (C°° •< D°°) = (C°° ^ D)

C^D •

Figure 3: The safeness/flexibility tradeoff between the various replaceability notions. The arrows
point towards a strictly safer notion which will afford strictly smaller flexibility for resynthesis. The
arrows are transitive. The C°° •< D°° notion is the least safe among those shown.

Figure 4: Example design R

of onion rings of D, (i.e. D°° = Dn). Then, since s € C°°, there exists a state s' G C°° and an

input sequence p such that \p\ > n and 6(s',p) = s (Claim 2). Now consider the input string p •7r
applied to state s' £C°°. For any state t GD, 6(t,p) GD°° since \p\ > n. From Claims 1 and 2, it
follows that for any state t GD: A(s',/t> •tt) ^ \(t,p •tt). Since s' GC°° and t is any state in D this
contradicts that C°° < D. Thus by contradiction, C°° <D°°. •

We call such a replacement, a self-stabilizing replacement, i.e. if C°° X D°° then C is a self-

stabilizing replacement for D. Intuitively, C can replace D the designer has sufficient control over

the environment so that it can wait for a sufficient number (finite and bounded by a function of the
design) of clock cycles after the power-up. So, we can replace design D with design C if we can
afford to run enough cycles through the design after the power-up so that the transient behavior of
the design disappears.



o
Figure 5: Example design S

As examples of delay-replacements consider designs R and 5 in Figures 4 and 5. It can be seen
that Rl <P1\ however, R-£P (the state 111 Gii and input sequence 0-0-0 cannot be simulated by
any state in P). From Proposition 4.1, R1 < P. It can also be seen that 51 ^ P; however S1 j< P1
(the state 111 G51 and input sequence 0-1-0 cannot be simulated by any state in P1).

Compositionality of Delayed Replacements

If a delayed replacement (delay-preserving or delay-accumulating) of a component of a large design

is used, it is desirable to characterize the compositional effects of the above notions for design

replacement.

Denote a composition of two designs A and B by A ® B. Some of inputs of A will be outputs

of B\ the remaining inputs of A will be primary inputs of the composed design A ® B\ Similarly,

some of the outputs of A will be inputs of B and the remaining outputs of A are primary outputs

of A ® B. Similarly for design B.

The following result follows from the definition of safe replacement (^):

Proposition 4.7 (compositionality of safe replaceability) IfC<D, then (R®C)-< (R&D),
for any composed design R® D.

Proof: Consider any input sequence it to the design R&D, and any state (r,d) G (R® D). If

we simulate the design (R® D) starting from the state (r,d) and inputing the sequence it, we will

observe a sequence p which in the input to the sub-design D, and an output sequence a which is

the output of D. Since C •< D, there must be a state c G C such that the design C outputs o on

the input sequence p. Now, consider the state (r,c) G (R ® C). Clearly, on the input sequence tt,



the composed design (R ® C) will produce the same output sequence from state (r, c) as the design

(R ® D) would from state (r, d). u

The above result means that a series of safe replacements of any component results in a safe

replacement of the composed design.

Proposition 4.8 (compositionality of delay-accumulating replacement) If Cn < D, then
for any composed design R&D, (R& C)n -<(R&D).

Proof: Consider the composed design (R &Cn), which represents design R composed with the

n-delayed design Cn. Clearly, every state in the design (R&C)n is also present in design (R&Cn)
(the converse may not be true). Thus (R&C)n * (R&Cn). Now, since Cn < D, byProposition 4.7,
(R&Cn) 1(R& D). From the transitivity of <, (R&C)n <(R& D). m

This result implies that if a component is replaced with an rc-delay-accumulating replacement,
the same behavior of the composed design is obtained after a delay ofn clock cycles after powering
up the design.

Unfortunately, the compositionality result does not work for delay-preserving replacements, that
is, if Cn •< Dn, then there might exist a composed design R&D such that (R&C)n £(R&D)n.
We can see this by the simple example in Figure 6. (R&C)1 consists of states {(r0,ci),(ri,ci)}
and (R &D)1 is {(n,d0)}. Clearly (R &C)1 £(R® D)1.

However, by Proposition 4.1, an w-delay-preserving replacement implies an n-delay-accumulating
replacement. Thus if we replace a sub-design C by an n-delay-preserving replacement D, the entire
design displays the same input/output behavior as the original after an extra n clock cycles delay
after powering up.

What happens when two delay-replacements are made in different parts of the design? For safe
replacement, it is easy to see that such design replacements do not cause problems:

Proposition 4.9 IfQ<RandC <D, then (Q®C)<(R® D), for any composed design R&D.

Proof: From Proposition 4.7, we have (Q ®C) < (R®C) as well as (P® C) ^ (R&D). The result
follows from the transitivity of < •

For delay-accumulating replacements, it isfortuitous that for the composed design the total slack
in just the largest of the individual replacement slacks (i.e. the individual slacks on the different
components do not accumulate):
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Figure 6: Delay-accumulating replacement does not preserve compositionality. The input and output
wires for the composition are shown at the top left. The labels on R denote x2x3/xi, those on C or
D denote /x3, and those on (R &D) or (R &C) denote x2/xi. Note that design D and C do not
have any inputs.

Proposition 4.10 If Qm < R and Cn •< D, then for any composition R&D, it is true that
(Q &Cy <(R& D), where p = max(m, n).

Proof: Since each state in (Q &C)p is also in Qp &Cp, then (Q &C)p * (Qp &Cp). Each state in
Qp is in Qm and each state in Cp is in Cn; thus, (Qp &Cp) X(Qm &Cn). From Proposition 4.7,
(Qm &Cn) < (R &Cn), and similarly (R &Cn) < (R& D). Thus, the required result by the
transitivity of ^. •.

This means that delay-accumulating replacements can be made in different parts of the design,
and the resulting overall design is as safe as weakest individual replacement (the replacement with
the greatest slack). Since, delay-preserving implies delay-accumulating, the above result also holds
for delay-preserving replacements.
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5 Resynthesis for Delay-Preserving Replaceability

Here we describe how to extract the flexibility for delay-preserving replaceability inorder to do multi
level resynthesis on sequential designs. The objective of this synthesis could be an area reduction or

speed-up of the design. The experiments performed in Section 6 target area reduction. The methods
described in the following are based on the multi-level resynthesis algorithm described in [PSAB94].

A sequential gate-level design can beviewed as a connection between a purely combinational part

and memory elements. The inputs to the combinational part are the primary inputs to the design,
denoted by t, and the outputs of the memory elements are denoted by the present state vector x.
The outputs of the combinational part are the primary outputs of design are denoted by o, and

the inputs to the memory elements, denoted by the next state vector y. For safe replaceability,

[PSAB94] described a Boolean relation 7l(i, x,o, y) such that any function / : (i,x) -> (o, y) which
belongs to this relation is a safe replacement to the given design. Once this relation is obtained,

multi-level resynthesis techniques can be used to exploit the flexibility afforded by this relation to

optimize the given design.

To do resynthesis for delay-preserving replaceability, we describe how to obtain a relation

Q(i,x,o,y) which describes the flexibility for replacement. This can then be used in exactly the

same way as in [PSAB94] to do multi-level synthesis for this relation.

First, we review the concept of onion rings [Jeo92, PSAB94]. Given a design D, the i-cycle

delayed design Dx denotes the i-th onion ring of D. Suppose D has (k + 1) onion rings, i.e. for all

i > k: D% = Dl+1. We partition the state space of D into (k + 1) partitions, Bo,Bi,.. .,P*. For

0 < i < k —1, B{ is defined as Dx \ Di+1; also, P* is defined as Dk (Figure 7). For example, for the

design in Figure 1, B0 = {111, 100,001}, Bx = {110}, B2 = {010}, Bz = {000,101,011}.

Clearly any state reachable from itself under some input sequence belongs to each Dl, and thus

the innermost onion ring P*. We will not alter the behavior of any such state (a "stable" state).

All the flexibility for resynthesis comes from the states not reachable from themselves, the set of

"transient" states, i.e. D\Bk.

Recall that an n-delay preserving replacement allows the new design to have some flexibility over

the first n clock cycles after the power-up, and after that it in indistinguishable from the original

design. Based on how many cycles the design is allowed to stabilize, the designer supplies the slack

n to be used for resynthesis— the higher n is, the greater the flexibility allowed for resynthesis, at

the cost of a lower degree of safeness. A value of n = 0 implies safe replaceability. Resynthesis for

12



Figure 7: The onion ring structure for the design D. The bullets denote states in the state space of
D, and the labels on the edges denote the input vector for the state transition.

this is described in [PSAB94].

For an n-delay-preserving replacement, we will express the flexibility to obtain a new design C
such that Cn = Dn. Note, that this is a conservative algorithm, since only Cn < Dn is needed.

First, we informally describe the flexibility which will be specified later using the a Boolean
relation Q. We note here that techniques for using a Boolean relation to do multi-level synthesis
[SB91] require the Boolean relation to be such that the starting design satisfies the relation. The
behavior of the states in Bn (the "stable" states) is preserved. For 0 < i < n, we allow a state in
B{ to transition to any state in Uj=»+i Bj on any input. Clearly, the original design satisfies this
flexibility relation. Also, any design C that satisfies the relation satisfies Cn = Dn. Also note that

for all states in \J>~Ql B{, the outputs can be arbitrarily chosen without affecting Cn.
Formally the Boolean relation Q(t, x,o, y) which characterizes this flexibility is:

Q(lx,o,y) =£££[(* € Bi) A(y e Di+1)] + [(x e P„) A(y =6D(x,i)) A(o = XD(x,T))]

The intuition for the above relation Q is that given n, we choose to preserve the behavior of all
states in the set Pn, i.e. states in this set have the same output and next-state functions as in the

given design D. For states outside of Bn, if the state lies in Pt, we allow the next state of such a

state to be any state in Di+1. We do not care about the output from this state. All this ensures

13



that n cycles after power-up, the new design would be in a state in Bn and thus the new design
would be an n-delay-preserving replacement for the original design.

Notice that for any integer m > k, where (k+ 1) is the number of onion rings of the design D,
the delayed design Dm is the same as D°°, i.e. the setof stable states. Thus, the flexibility described
by the relation Q for m-delayed replacement is the same as that for fc-delayed replacement.

Once we have the Boolean relation Q(i, x,o, y) we can use standard multi-level synthesis tech
niques to propagate this flexibility to individual nodes in the network and then minimize the networks

[PSAB94, SB91].

6 Experiments

In this section we report experimental results using the algorithm described in Section 5 on ISCAS85

sequential circuits. We focused on the area reduction for n-delay-preserving replacements. We report
results for various values of n.

The experimental results, obtained using a DECstation5900 are shown in Table 1. The start

ing circuits were obtained from ISCAS89 benchmark circuits with the SIS commands (sweep;

eliminate -1) applied. These eliminate single-input and constant nodes and collapse nodes which

do not fan out to more than one node. First we show the optimizations obtained by just doing

the standard multi-level combinational optimization [SBT91] using observability don't cares (ODC)

propagated to the individual nodes in the network. We also show the optimizations obtained by

the safe replacement resynthesis method described in [PSAB94]. Then, we show the results of the

method presented in this paper for n-delay preserving replacements for slacks of 1, 2, 5 and oo. The

table show that for many examples, significant additional optimizations are obtained by delaying

"safeness" by using delay preserving replacements. Even for n = 1, we see good results for some

example, e.g. s386, si488, sl494. Also, in most cases the CPU times for n-delay preserving

replacements are within an order of magnitude from the CPU time for combinational resynthesis.

The much larger CPU times for pure safe replaceability can be attributed to the rigid conditions

for safe replacements which require placing constraints on the outputs from the "transient" states

as well as correlating the next states of "transient" states with the inputs [PSAB94]. Both these

constraints are avoided by the resynthesis method presented in Section 5. This leads to a much

smaller BDD to express the relation Q and thus, faster multi-level resynthesis.

We performed an experiment on one of the benchmark circuit with large number of onion rings

14
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n-delay-preserving
replacement for s526;

initial size = 283 literals

n reduction time

1 43 5.93

100 54 22.47

200 58 29.24

300 70 34.52

400 69 38.60

500 69 44.05

600 72 48.78

667 95 68.14

Table 2: Safeness/flexibility tradeoff" for s526; reduction is in number of literals

(s526) to explore the tradeoffs between flexbility and sacrificing "safeness". The results are in

Table 2. The table shows that by allowing more delay n we do get additional flexibility. Also, the

CPU times increase with higher values of n, partly because the time taken to compute the Boolean

relation Q goes up with higher n.

In the experiments above, the initial nodes of the circuits have been collapsed minimally. We see

that safe replaceability gives very marginal improvements over pure combinational reductions, and

at a much larger CPU time cost. For this reason, it was suggested in [PSAB94] that we might get

better use of the safe replaceability notion by using larger node sizes in the circuits. They increased

the node sizes in these benchmark circuits by using SIS commands eliminate 10 or collapse. For

the sake of completeness, we ran our algorithm on these starting points also. Results are reported

in Table 3. Once again, we see that using n-delay replacements instead of safe replacements allows

us greater flexibility for resynthesis and gives better optimizations. Also, the CPU times are once

again much better than those for safe replacements.

7 Conclusions

We presented the notions of delay-preserving and delay-accumulating replacement, which allow

additional degree of flexibility over safe replacement by letting the design settle in for a few more

clock cycles after power-up. The number can be controlled by the designer and specified to our

synthesis tool, and then we can use the maximum flexibility while guaranteeing the degree of safeness
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Ckt. Initial

size

ODC only Safe n -delay-preserving replacement
replacement n = 1 n = 2 n = 5 n = 00

r time r time r time r time r time r time

s349 173 16 1.43 16 177.79 16 3.93 22 6.29 22 11.48 24 20.93

s386 205 53 1.22 67 2.61 107 2.08

s444 236 65 1.76 65 17.25 67 11.61 67 41.15 67 63.91 70 185.09

s510 307 52 2.94 52 4.43 54 3.34 53 3.75 56 3.07

s526

s713

s832

323

285

470

79

83

110

7.93

5.59

4.64

90 14.26 90

83

138

10.67

28.16

8.23

90 14.56 91 12.81 115 52.57

timeout

119 17.93

s953 700 98 20.42 103 51.78 110 42.51

sl238 882 246 133.14 246 1060.94 246 412.69 246 429.11

sl494 896 352 38.69 354 78.04 372 45.11

Table 3: Experimental results with the starting netlist identical to that in [PSAB94].

the designer desires. We have shown experimental results to illustrate that we obtain significant

optimizations at affordable CPU costs ny using our notions of replacement.

References

[Che93]

[DD92]

[EC93]

[Jeo92]

[Pix92]

[PSAB94]

K.-T. Cheng. Redundancy Removal for Sequential Circuits Without Reset States. IEEE Trans

actions on Computer-Aided Design of Integrated Circuits, 12(l):13-24, January 1993.

M. Damiani and G. De Micheli. Recurrence Equations and the Optimization of Synchronous Logic

Circuits. In Proc. of the Design Automation Conf, pages 556-561, June 1992.

L. Entrena and K.-T. Cheng. Sequential Logic Optimization by Redundancy Addition and Re

moval. In Proc. Intl. Conf. on Computer-Aided Design, pages 310-315, November 1993.

Seh-Woong Jeong. Binary Decision Diagrams and their Applications to Implicit Enumeration
Techniques in Logic Synthesis. PhD thesis, Department of Electrical and Computer Engineering,
University of Colorado, Boulder, CO 80309, 1992.

[MSBS91] S. Malik, E. M. Sentovich, R. K. Brayton, and A.L.Sangiovanni-Vincentelli. Retiming and Resyn
thesis: Optimization of Sequential Networks with Combinational Techniques. IEEE Transactions

on Computer-Aided Design of Integrated Circuits, 10(l):74-84, January 1991.

C. Pixley. A Theory and Implementation of Sequential Hardware Equivalence. IEEE Transactions
on Computer-Aided Design of Integrated Circuits, 11(12):1469-1494, December 1992.

C. Pixley, V. Singhal, A. Aziz, and R. K. Brayton. Multi-level Synthesis for Safe Replaceability.
In Proc. Intl. Conf. on Computer-Aided Design, November 1994.

17



[SB91] H. Savoj and R. K. Brayton. Observability Relations and Observability Don't Cares. In Proc.
Intl. Conf. on Computer-Aided Design, pages 518-521, November 1991.

[SBT91] H. Savoj, R. K. Brayton, and H.Touati. Extracting Local Don't Cares for Network Optimization.
In Proc. Intl. Conf. on Computer-Aided Design, pages 514-517, November 1991.

[SP94] V. Singhal and C. Pixley. The Verification Problem for Safe Replaceability. In D. L. Dill, editor,
Proc. of the Conf. on Computer-Aided Verification, volume 818 of Lecture Notes in Computer

Science, pages 311-323. Springer-Verlag, June 1994.

18


	Copyright notice 1995
	ERL-95-5

