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Abstract

In this paper, we address the problem of Engineering Change in a non-deterministic finite state

machine framework. We are given a deterministic implementation FSM, and a non-deterministic spec

ification FSM, such that the implementation does not meet the specification. The problem consists of

controlling the implementation FSM in such a way that for all possible sequences of external inputs, the

generated outputs are allowed in the specification.

We propose a new formalism for the Engineering Change problem which is applicable to non-

deterministic specifications. We use the notion of Simulation Relations from the theory of concurrent

systems, to develop this new formalism. Our method is cast in the form of a simulation of the imple

mentation by the specification. We prove the necessary and sufficient condition for the existence of a

solution to the problem. We also provide an algorithm to obtain all possible solutions under this setting.

We have implemented this algorithm, using implicit state enumeration and Reduced Ordered Binary

Decision Diagrams (ROBDDs).

An important feature of our method is that the algorithm gives us a solution which is correct by

construction, and accordingly we do not need to perform a separate verification step in the design.



1 Introduction

We address the problem of Engineering Change (henceforth EC) [5] in a non-deterministic Finite State

Machine (henceforth FSM) setting. We are given a specification, described as a FSM. Further, we are given

an implementation, also a FSM, with a different set of inputs. The goal is to create a Controller FSM, which,

when composed with the implementation, generates the same output sequence (for a given input sequence)

as the specification. In other words, we desire that the composed machine has the same output language as

the specification.

In integrated circuit design practice, one often encounters a situation where it is found that the circuit

implemented on silicon does not perform according to the specification. The designer would like to alter the

functionality of a single die, on an experimental basis, and see if the altered circuit performs according to the

specification. If it does, the change is incorporated in the next mask revision. This capability significantly

reduces the cost of EC, by reducing the number of EC iterations, and also reduces turnaround time between

mask revisions.

In current day technology, this experimental change in the functionality of a single die is done by a

Focussed Ion Beam (FIB) apparatus. The operator has the capability to view a section of the die under

an electron microscope, identify the wire on the die that is to be cut, perform the cut, and deposit new wires

on the die. These wires contact both the endpoints of the cut wire, and run over the passivation layer to an

uncommitted gate. The wire is cut by bombarding the passivation layer and the wire with a focussed beam

of ions. In the pit that is thus formed, new wires can be deposited and run to an uncommitted gate. There

are regions of the layout that contain a variety of different uncommitted gates. In this way, the new gate is

introduced in the circuit.
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Figure 1: Changing circuit functionality with FIB operations

The FIB operations are illustrated in figure 1. In this figure, it was determined that an inversion was

required between signals a and 6. The wire between a and 6 is cut by a FIB, and new wires are deposited

and run to a spare inverter, shown on the right side of the figure.

In practice, this process is mainly used to alter combinational circuit functionality. The changes are

usually performed in an ad-hoc manual fashion. Recent research [6] addresses this problem, and an algorithm

is provided which determines whether a given function is implementable using an array of gates. This array



could be the gates of the implementation, along with the spare gates. For sequential circuits, however, we

need to come up with a new FSM, such that the combined behavior of the old FSM and the new one meets

the specification. This is too difficult to be done manually; it is for this reason that sequential circuits are

not effectively handled in the engineering change scenario. Our paper provides an automated approach to

engineering change in a sequential, non-deterministic setting.

In the engineering change scenario outlined above, it is important to keep the number of wires to be

cut and re-routed to a minimum. The cost of a FIB cut is greater than that of opening up the passivation

layer to form a contact. For this reason, the FSM configuration in figure 6 is a preferred one, since the

outputs of the implementation are unaltered in this formalism. Accordingly, in our discussion, we focus on

this configuration alone.

We prove the necessary and sufficient condition for the existence of a solution to the EC problem.

Further, we present an algorithm to construct a maximal solution called the "controller", and prove that it

contains all the feasible solutions. The advantage of our approach is that the maximal controller is verified

by construction, so a separate design phase is not required.

Our problem formulation makes for easier understanding oftheproofs and, we believe, isa good launching

point for future research in the field.

2 Previous Work

Previous work in the EC for FSMs has been mainly in two directions. We briefly discuss these, and indicate

how our approach is different.

The area of Model Matching within the area of Discrete Event Dynamical Systems (DEDS) has

recently received attention in the Control Systems Engineering area. Here, the specification (called a Model)

and the implementation (called a Plant) are given. A Controller FSM is to be synthesized, such that the

composed behavior ofthe controller and the plant "matches" the behavior ofthe model in some specialized

sense.

Recent developments in this area include the Strong Model Matching [4] (henceforth SMM) and



Generalized Strong Model Matching [3] (henceforth GSMM) works. In these works, the implementation

and the specification are assumed deterministic, and the desired goal is output language equality. In SMM,

the controller is free to alter the inputs from the environment to "trick" the specification into behaving

appropriately. But, unlike GSMM, the controller cannot alter the outputs of the specification.

We propose a more general approach than SMM by relaxing the requirement of determinism on the

specification. In addition, our approach can also handle a restricted notion of non-determinism (known as

pseudo non —determinism), in the implementation FSM.

In another work, Watanabe and Brayton [13] addressed the problem of finding the "maximum set of per

missible behaviors" for a component FSM in a system of interacting FSMs. They derive a non-deterministic

FSM called the E —machine which "captures" this maximal set of permissible behaviors.

We utilize the notion of a simulation relation [8] from concurrency theory to develop a simpler and more

elegant treatment of the EC problem, and find a "correcting" FSM which minimally restricts the behavior

of the implementation when composed with it. In this way, we derive an alternate characterization of the

"maximal set of permissible behaviors"; we show that there exists a simulation relation from any admissible

FSM into the non-deterministic FSM representing the set of all permissible behaviors.

3 Preliminaries and Definitions

We represent a set by an upper case English letter; an element of a set is represented by a lower case English

letter.

Definition 1 A Finite State Machine (FSM) is a 5-tuple M(I, 0, S, R, r) where I is the input alphabet,

O the output alphabet, S a finite set of states, RC S x S x / x O the output and transition relation, and r

the initial state. In some cases, the relation R is alternately represented as a output relation 7 C S x / x O

and a state transition relation A C S x S x /.

If the output and the next state are uniquely defined for a given input and present state, then the FSM

is called a Deterministic Finite State Machine (DFSM), else it is called a Non-deterministic Finite

State Machine (NDFSM). Examples are shown in figures 2 and 3.



Figure 2: Deterministic FSM

Figure 3: Non-deterministic FSM

If the next state is uniquely defined for a given present state, input and output, then the FSM is called

Pseudo Non-deterministic. An example is shown in figure 4.

Figure 4: Pseudo Non-deterministic FSM

If the relations 7 and Aare total, then M is said to be completely specified, else it is incompletely

specified. If an input i E I is not applicable at state s, then A(s,t) is empty. In such a situation, we assign

A(s, i) = 0, where 0 is the dead state.

Definition 2 There exists a Simulation Relation (abbreviated SR) from a FSM Mi to a FSM M2 if there

exists a relation ip C S\ x 52 such that

1- (ri,r2) e rj>



Figure 5: Example FSM

2. (8i,a2) € V=» V»,Vo,V«i[(i?i(si,*i,t,o) = 1) =» 3s2((fl2(s2,4*» = 1) A(V(s'i>4) = 1))]

We denote the above condition M\ < M2. We alternately denote R\ (s\,s\, i,o) = 1 by s\ -^-A s[. This

means that there is a transition from state s\ to state s1 under an input i which produces output o.

Definition 3 Given FSMs Mi(U, Y,Si,Run) and M2((V, Y),U,S2,R2,r2), thecomposition M(V, Y, S,

R, f) = Mi o M2 satisfies the following properties:

1. S = Si x S2

2. f= (ri,r2)

3. R(s, s,v,y) = l iff3u[[Ri(si,s'1,u)y) = \]A[R2(s2,s'2,(v,y)yu)] = l)

The composed machine S makes a transition s -^-A s iff 3u[(«i -^-4 s\) in Mi A$2 "-^-r s2]

4 Problem Statement

The EC problem is stated formally as follows:

Problem Statement 4.1 Given FSMs Mi(U,Y,Si,Ri,rj) andM(V,Y,S,R,r), the specification matching

problem of EC consists of finding a FSM M2((V,Y), t/.&.-fo,^) such that MioM2< M.

For our purpose, we assume that Mi is deterministic, and M2 is non-deterministic. The configuration of

Mi and M2 is as in [4], and is shown in figure 6. We borrow the terminolgyof [4] and call Mi as plant, M2

as the controller and M as the model.
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Figure 6: EC - Configuration of FSMs

5 Our Approach

In this paper, we assume that M is non-deterministic, and that Mi is deterministic. The assumption that

Mi is deterministic is reasonable, since in most real problems, the implementation is a deterministic one.

However, M can be non-deterministic in real problems. This corresponds to the designer of the system

providing multiple acceptable specification behaviors. The designer would like the implementation to match

any acceptable specification behavior.

We would like to do output language equality if possible, otherwise we perform output language contain

ment. In a sense, we are trying to match as much of the specification's behavior as possible.

Our formulation of the problem is a Simulation Relation from the implementation into the specification.

We define a relation Hmax, which extracts the "maximal" behavior of the specification that can be matched

by the implementation. Also, it "removes" behaviors of the implementation that are not contained in the

specification.

u/sDefinition 4 («,, s) € Hm„ <* Vv3uVyVs[ [{8l ^ s\) =» 3s'[(s ^ s') A(s'^s) GHmax\]

Intuitively, «i can simulate s if and only if for all v that the environment can produce, the controller can

give the plant an input u such that both Mi and M produce the same output and the next state of Mi can

simulate the next state of M.

Intuitively, the above definition is like a simulation relation with different labels on the transitions. The

above definition suggests a symbolic greatest fixed point implementation [7] of Hmax.

In the following theorem weprovide the necessary and sufficient condition for the solution of the problem

to exist. We prove that the problem of EC is solvable if and only if the initial states ri and r of Mi and M
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respectively are related in Hmax.

Theorem 5.1 The specification matching problem has a solution iff(ri,r) G Hmax

Proof: Only if part: Given that (ri,r) € Hmax- We have to show that for any arbitrary k and for

all sequences VQVi....Vk there exists a sequence «o«i-—«* such that the outputs i/oi/i-lte produced by both

implementation and the specification are the same. We prove this by induction on the length of the sequence.

• length = 1: By the definition of Hmax, Vvo 3«o s.t. if ri U-M>° si in Mi, then r v^-%? s in M, and

(Si, s) G Umax

• Induction Hypothesis: Assume, for any sequence v$viv2...Vk 3uo«i....«/t s.t. if ri —Y si ^-$ s\ ^-42

.... ^ si in Mi then, r ^ s^ s1 ^ .... ^ s* and (s{,S*) Gtfma, in M

• length = k+1: By definition of Hmax, for an arbitrary Vk+i 3uk+i s.t. if sf fc+J_^.*+I s*+1, then

sk Vk+^+1 sk+\ and tf+V") GHmax

Therefore, the claim follows by induction on the length of the sequence.

If part: Since the specification matching problem is solvable, we know that 3M2 such that Mi 0M2 •< M.

We need to show that (ri}r) G Hmax.

From the definition of SR, we know that there exists a relation <p relating state (ri, r2) of Mi o M2 with

state r of M, such that

• ((n,r2),r) e<p

• ((si.*2))S) G<p=> VuVy if [(si,s2) ^-4 (*'i.4)l tnen ^s s.t. [s-^4s'].

By definition of composition, if [(si,S2) —• (*i»«2)l i° Mi oM2 then 3w such that «i —> s1 in Mi. Now

we define a new relation <j> relating these states of M and Mi such that

• (r,ri) e<f>

• (s,si) e<f>=> (s ,s\)e4>

Hence for any infinite sequence vqViv2...., 3uqUiu2... s.t. if ri -^-}0 si -^-* s\ —? .... in Mi, then

"o/yo t/i/y! , w2/ya . .,
r —• s —> s1 —> .... in M,
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Therefore, by definition of Hmax, we have (ri,r) G Hn

5.1 Deriving the Maximal Controller

In this section we characterize all the possible solutions to the engineering change problem by an NDFSM

Mc called the controller. This controller is maximal in the sense that any FSM which is a solution to the

problem will have a simulation into Mc and any FSM which has a simulation into Mc will be a solution of

the problem. The maximal controller MC((V, Y), U, Sc,Rc, rc) is constructed as follows:

• ScCSiXS= {(Si,s) | (Si,s) eHmax)

• rc = (ri,r)

• Rc((si,s),(s\,s'),(v,y),u) = 1iff [(Ri(si,s\,u,y) = 1) A(R(s,s,v,y) = 1)]

The states of the controller are those in the cross product of the set of states of the plant and the

specification which are present in Hmax. There is a transition in the controller from (si,s) to (*'i,*') on

(v,y) with an output u if and only if there is a transition from si to sx on u in Mi and a transition from s

to s on v in M, both producing the same output y

In the following theorems, we claim the maximality of Mc by

• showing that Mc composed with M has a simulation into M,

• showing that any solution of the problem has a simulation into Mc, and

• any FSM that has a simulation into Mc is a solution.

Theorem 5.2 Let MxoMc = M(V,Y,S,R,r). Then M <M.

Proof: By the definition of composition, for s = (si, (Si,s)) and s = (s\, (s[,s)), if [i, -^ s], then

3« such that [si ^-4 a'j in Mi and [(s"i,s) (v-lH2(u (s'̂ s')] in Mc.

11



Similarly, if (s~i, s) ^-4 (s1,s ) in Mc then, by definition of Rc

[si -^-4 Si] in Mi and [s -^-4 s] in M.

Now, we define a relation <j> such that for all s —(si, (Si, s)), (s, s) G <f>.

Clearly,

• (*S r) G 0, since r = (r>i, (ri, r)), and

• (s,s)6^=> [VvVyV(S = (s^, (S'i,s')))s —> s] in Mc => 3s [s —• s'] in M and («',$') G$]

Accordingly, there is a simulation from M to M.

Theorem 5.3 M2 < Mc & Mi o M2 < M.

Proof: Only if part: Since M2 •< Mc, and Mi o Mc •< M (by theorem 5.2), it follows that Mi o M2 •< M.

If part: Given that Mi o M2 X M, there exists a relation <p such that

• ((ri,r2),r) G <p

• ((*ii«2)is) G <p =» (Vv,Vy,V(si,s2) if [(si,S2) ^4 (s'i,s2)] m Mi o M2 => 3s'[s -^-4 s'] in M and
* '» '

((si,s2),s)e<p]

Also, [(si,S2) —> (si»s2)] in Mi o M2 implies, from the definition of composition,

3u[s2 -^ s2] in M2 and [si —• sj

Since (ri,r) G /fmoi and Mi is deterministic, by definition of Hmax; sc = (si,s) G Hmax and sc =

(Sj, S ) € Hmax-

Also, since [$1 —> s'j in Mi and [s ^-4s'] in M, then by definition of Rc, [(si, s) "^4" (s'j, s).

So, define a relation r such that

• (r2, rc) G r

• («2,sc) G r ^ (s2, sc) € r where s2, sc denote the same states that are referred before.

12



Accordingly, M2 ^ Mc

6 Implementation and Results

The approach presented in the section 5 has been implemented (about 1500 lines of C) in the SIS [10]

environment. The implementation assumes a fully specified NDFSM description for the specification and an

incompletely specified DFSM description for the implementation.

About 1500 lines of C code has been written. Starting with an FSM description in the kiss format,

the program builds the transition relation [12], performs the fixed point computation for Hmax and checks

that (ri,r) G Hmax, i.e. the problem is solvable. If so, then the transition relation for Mc is built. All

computations are done implicitly using ROBDDs [2] [1],

We present the results of our experiments below. In Table 1, 'Controllable' represents that the implemen

tation can be controlled to match the specification's behavior for all inputs and 'Not Controllable' represents

that the implementation cannot match the specification's behavior. Figure 7 shows two example machines

from Table 1.

7 Conclusions

We have addressed the problem of EC of FSM's in a non-deterministic setting. This problem consists

of synthesizing a finite state controller for a implementation such that the closed loop behavior of the

controller composed with the implementation can be simulated in the specification. Both implementation

and specification are represented as FSM's. Our contributions are as follows:

• A new formalism for the EC problem was proposed. Our formalism handles both deterministic and

non-deterministic specifications.

• The problem is cast as a simulation of the implementation into the specification.

13



Result Implementation Specification Controller Time

Inputs Outputs States Inputs Outputs States States (sec)
oexl Controllable 2 2 2 0.004

oex2 Controllable 2 2 2 0.008
oex3 Not Controllable 3 3 - 0.011
oex4 Controllable 5 5 11 0.024
oex5 Not Controllable 3 2 - 0.004

oex6 Controllable 5 5 11 0.023

oex7 Controllable 3 3 7 0.008

oex9 Controllable 5 8 10 9 0.097

oex8 Controllable 5 20 2 21 14 1.988

ex7 Not Controllable 3 3 4 1 3 10 - 0.039

ex6 Not Controllable 6 2 13 3 2 16 - 0.235

ex5 Not Controllable 5 3 8 2 3 13 - 0.137

ex4 Not Controllable 5 3 20 2 3 12 - 0.266

exl4 Controllable 3 1 20 1 1 11 15 0.312

exl3 Controllable 3 1 22 1 1 7 12 0.140

exl2 Not Controllable 3 1 19 2 1 7 - 0.340

exl Not Controllable 2 2 20 1 2 8 - 0.113
ax9 Controllable 5 1 8 1 1 9 9 0.078

ax6 Not Controllable 6 2 13 3 2 7 - 0.070

ax4 Not Controllable 5 3 30 2 3 3 - 0.079
exlO Not Controllable 3 3 19 1 3 3 - 0.055

Table 1: Implementation Results

<yi

X3
i/o\

Mi

-/-

Figure 7: Examples oex4 and oex5 from table of results
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• A necessary and sufficient condition for the solvabilty of the problem is given.

• A procedure to construct the 'maximal' controller Mc was presented.

• We prove that any FSM which has a simulation into Mc is a solution to the problem and all the

solutions to the problem are contained in Mc.

• It can be shown easily that the strong model matching problem [4] is a special case of this formulation.

• The entire code has been implemented in SIS. All computations are done implicitly using BDDs for

greater efficiency.

8 Future Work

There are some definite directions that remain to be explored as a sequel to this work. We would like to

use our formulation to address the problem of stochastic languages [9]. Currently, in our work, we do not

consider the infinitary properties of the FSMs. This work has received some interesting treatment in [11],

and warrants study in our framework.

We see many opportunities to improve the code that has been written so far. For example, we could

explore the use of partitioned transition relations. Various heuristics for ROBDD variable ordering are

available; weneed to find out the most suitable one in the context of specification matching. Other techniques

to improve efficiency, like early quantification of variables and the use of different encoding techniques for

FSMs have to be fully investigated. The code needs to be interfaced with an FSM determinization program

to select the minimum state controller contained in Mc.
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