

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

COMPOSITIONAL TECHNIQUES FOR MIXED

BOTTOM-UP/TOP-DOWN CONSTRUCTION

OF ROBDDS

by

Amit Narayan, Sunil P. Khatri, Jawahar Jain,
Masahiro Fujita, Robert K. Brayton, and
Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M95/51

10 June 1995

COMPOSITIONAL TECHNIQUES FOR MIXED

BOTTOM-UP/TOP-DOWN CONSTRUCTION

OF ROBDDS

by

Amit Narayan, Sunil P. Khatri, Jawahar Jain,
MasahiroFujita, Robert K. Brayton, and

Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M95/51

10 June 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Compositional Techniques for Mixed Bottom-Up/Top-Down

Construction of ROBDDs

Amit Narayan1 (anarayan@ic.eecs.berkeley.edu)

Sunil P. Khatri1 (linus@ic.eecs.berkeley.edu)

Jawahar Jain2 (jawahar@fla.fujitsu.com)

Masahiro Fujita2 (masahiro@fla.fujitsu.com)

Robert K. Brayton1 (brayton@ic.eecs.berkeley.edu)

Alberto Sangiovanni-Vincentelli1 (alberto@ic.eecs.berkeley.edu)

1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
tel: (510)-642-5048
fax: (510)-643-5052

2Fujitsu Laboratories of America, San Jose, CA 95134

Abstract

Reduced Ordered Binary Decision Diagrams (ROBDDs) have traditionally been built in a bottom-up

fashion, through the recursive use of Bryant's apply procedure [4], or the ITE [2] procedure. With these

methods, the intermediate peak memory utilization is often larger than the final ROBDD size. This peak

memory requirement limits the complexity of the circuits which can be processed using ROBDDS.

Recently it was shown in [9] that for a large number of applications, the peak memory requirement

can be substantially reduced by a suitable combination of bottom-up (decomposition based) and top-

down (composition based) approaches of building ROBDDs. This approach consists of selecting suitable

decomposition points during the construction of the ROBDD using the apply procedure, followed by a

symbolic composition to obtain the final ROBDD.

In this paper, we focus on the composition process. We detail four heuristic algorithms for finding

good composition orders, and compare their utility on a set of standard benchmark circuits. Our schemes

offer a matrix of time-memory tradeoff points.

1 Introduction

In the last decade, CAD tools have permeated the field of digital design. Reduced Ordered Binary Decision

Diagrams (ROBDDs) [4] are frequently used to solve variousCAD problemssuch us synthesis, digital-system

verification and testing. Many solution techniques for combinational and sequential optimization problems

use ROBDDs as the Boolean representation of choice.

Since the construction of ROBDDs is often a time and memory intensive process, techniques that can help

in a quicker construction of ROBDDs are of practical significance. ROBDDs are canonical given a variable

ordering, and hence the final size of the representation is a constant, regardless of the sequence of boolean

operations by which the ROBDD was constructed. In the traditional {apply based) scheme of constructing

ROBDDs, the peak intermediate memory requirement often far exceeds the final (canonical) representation

size of the given function. Although we are solely interested in obtaining the ROBDD of the output, the

intermediate peak memory requirement often limits our ability to construct the output ROBDD. Hence the

peak memory requirement places a limit on the complexity of circuits that can be processed using ROBDDs,

and also usually dictates the time required for ROBDD construction. It would therefore be very desirable

to construct ROBDDs in a fashion which reduces the intermediate peak memory requirement. This has an

attendant benefit of a reduction in the time required to construct the ROBDD.

The presence of an intermediate peak followed by a subsequent reduction in the memory requirements

indicates that Boolean simplification has occurred in the circuit. We attempt to capture this Boolean

simplification so as to circumvent the peak memory requirement. To achieve this goal, we follow the general

procedure outlined in [9]. We introduce suitable decomposition points, and perform all computations on

smaller decomposed graphs. Thus, we get a decomposed representation of the output function, which

captures the Boolean simplification occurring in the circuit. Finally, we compose the decomposition functions

into the ROBDD of the output, to obtain the canonical output ROBDD.

In this scheme, we are able to build ROBDDs even when the intermediate memory requirement using

traditional techniques is larger than can be handled by existing ROBDD packages. Keeping the peak memory

requirements low has the added advantage that the ROBDD is usually built in less time, since operations

on large ROBDDs are avoided.

In the first phase of this method, a bottom-up construction of the ROBDD is attempted. Decomposition

points are introduced when the output ROBDD and / or the ROBDD manager grows beyond a user-

defined threshold. Just as in [9], we introduce decomposition points "functionally", in the sense that the

decomposition pointsdo not necessarily correspond to structural nodes in the circuit. Thus, a decomposition

point may be introduced when some operation on the cubes within a node causes the threshold to be exceeded.

In this case, there is no physical correspondence between decomposition points and circuit nodes.

In the second phase, the decomposition functions are composed back into the output ROBDD, to get

the monolithic ROBDD of the output in terms of the primary inputs. In this paper, we focus our attention

on this phase. We discuss and demonstrate various heuristic algorithms to perform this compositionstep;

therein lies our contribution.

In Section 3, we discuss the basic definitions and terminology that we use throughout this paper. In

Section 4 wediscuss the decomposition procedure. Wedescribe our composition techniques in Section 5, and

discuss the results obtained in Section 7. We conclude with Section 8 where we summarize our contributions,

and give directions for future research in this area.

2 Previous Work

Though ROBDDs have been researched for about four decades [12, 1], they found widespread use only after

Bryant [4] showed that such graphs, under some conditions, can be easily manipulated. These conditions

are that the graph is reduced (i.e. no two nodes have identical subgraphs), and that a total ordering of

the variables is enforced. The resulting ROBDD is called a Reduced Ordered BDD. Bryant introduced two

symbolic manipulation procedures - apply and compose, which are used to combine two identically ordered

ROBDDs. Apply allows ROBDDs to be combined under some Boolean operation, and compose allows the

composition of one ROBDD into another. Both algorithms require the ROBDD variables to have an identical

order.

Another important development in this area is the work on Dynamical Variable Ordering [16]. Local

alterations are performed on the existing variable order, and a change in the variable order is accepted if it

results in a reduced ROBDD manager size. This scheme was shown to require reduced amounts of memory

for most circuits, at the cost of increased execution time.

ROBDDs are typically constructed using some variant of Bryant's apply procedure [4]. The gates of the

circuit are processed in a depth-first manner until the ROBDDs of the desired output gate(s) are constructed.

However, an exclusively bottom-up approach is often not the most computationally efficient technique

for constructing ROBDDs, as discussed in [9]. The primary focus of [9] was on finding good decomposition

techniques. A purely structural method was discussed and a functional method proposed for finding these

decomposition points. The functional method was shown to have moreflexibility in choosing decomposition

points, encompassed the structural method in its scope, and obtained better results. Accordingly, we use

the functional decomposition method in our work.

In our opinion, while the overall procedure of [9] is sound, insufficient attention was given to the problem

of composing the decomposed variables back into the ROBDD of the decomposed output function. This is

where we focus our attention. We propose various composition schemes and compare their effectiveness.

3 Preliminaries

In this section we provide the definitions and terminology for rest of the paper. In the sequel, we restrict

our discussion to Reduced Ordered Binary Decision Diagrams (ROBDDs) alone. However, the work is

equallywell applicableto other graph based representationschemes which are an improvementover ROBDDs

[13, 10, 3] as well as other representation schemes such as FDDs [11], OKFDDs [6] and Typed-Free BDDs

[7]. For details on ROBDDs, please refer to [3, 4,5]. For anefficient implementation ofthe ROBDD package,

[3] is an excellent reference.

Assume we are given a circuit representing a boolean function F = F : Bn -t B°, with n primary inputs

zi,..., xn, and o primary outputs. To simplify the discussion, we will focus our attention on a single output

G. Let Gd{y) represent the ROBDD of G expressed in terms of a variable set tf = {^i, V'2, •••, i>m}- Each

rpi G # has a corresponding ROBDD, il>i,,dd, in terms of primary input variables as well as (possibly) other

i}>j € V, where Vj # V'i- Elements of * can be ordered such that ^>jbdd depends on Vi only if i < j. These

ij>i G $ are called Decomposition points of G. G^^) is the decomposed ROBDD of G in terms of the

decomposition points.

The composition [4] of Vi in Gd(\P) is denoted by Gd(V).(1>i «- ^ibdd) where Gd(*).(V'« «- tfiMJ =

G<f(fl*)^, represents the restriction of Gd(^) at ^i = 1, and is obtained by directing all the incoming

edges to the node with variable id ipi to its fa = 1 branch. Gd(^)^, is also referred to as the V't-cofactor of

Gd(*).

Other techniques for ROBDD composition have been proposed [15, 8]; for our purpose we will consider

the approach described above.

4 Decomposition Strategy

We use the functional decomposition technique reported in [9].

We introduce a decomposition variable at points where the ROBDD size and / or the ROBDD manager

size increases by a large measure. ROBDDs of the remaining circuit are now built in terms of primary

inputs, previously introduced decomposition variables as well as the newly introduced decomposition variable.

Accordingly, the ROBDD of the output is built in a decomposed manner. In this scheme no decomposition

is performed when the function can be processed without any memory explosion.

In our implementation, we decompose a function when the total ROBDD manager size increases by

more than a user-specified threshold, as a result of some Boolean operation. This check is only done if the

manager size is larger than a user-specified minimum. Additionally, a decomposition point is added when

an individual ROBDD grows beyond another threshold value, also provided by the user.

Note that this decomposition scheme may introduce decomposition variables that do not physically

correspond to any circuit node, hence it has a large flexibility in the choice of decomposition points. Results

on the ISCAS85 benchmarks showed a great improvement in time and memory, over the traditional bottom-

up method of building the ROBDDs [9]. In numerous cases, the output ROBDD could be built only by the

new scheme. The improvements were especially significant for circuits for which the ROBDD is known to

be difficult to build. A significant improvement was demonstrated for different variable ordering schemes,

including Dynamic Variable Reordering [16].

5 Our Approach

In this section we describe our algorithms for finding good composition orders. As we have already discussed,

decomposition points are introduced purely based on the growth of the ROBDDs. No topological analysis

of the circuit is required to identify these points. As such, every new decomposition point (il>ibdd) may have

in its support set some V'j's, where j < i. We store this dependency information in the form of a dependency

graph. After analyzing this graph, we choose the best ipi to be composed. The choice of the V»» to compose is

made on the basis of some cost function, which tries to estimate the resulting graph size after composition.

Once a variable V*i is composed in Gj, we update the dependency graph for subsequent compositions. So

the algorithm consists of three main parts:

• Initializing the dependency graph

• Selection of the Vt to be composed

• Updating the dependency graph after composition.

In the following section we describe each of these steps in some detail.

5.1 Initializing the dependency graph

The dependency graph is a directed acyclic graph. For every decomposition point (say Vi)» there is a

corresponding node in the dependency graph (node,/,,). There is one additional node corresponding to G<*,

called nodecd- There is an edge from node^t to node^>i if and only if Vt is present in the support of if>jbdd.

Similarly an edge from node$t to nodeod represents that Gd depends on Vt- This graph is guaranteed to be

acyclic as ip{ is present in tpj only if j > i.

If an edge goes from nodei to nodej then nodej is called the parent of nodci and noda is called the child

of nodej. A node nodei is called the immediatechildof nodej if nodei is a childof nodej and no other path

exists between nodei and nodej.

Figure 1: Dependency Graph, showing changes after an update

Figure 1(a) shows a dependency graph. Note that nodes 3, 4 and 5 are immediate children of the Gd

node, while 2 is not, even though it is a child of G<*.

5.2 Cost Function Heuristics

We implement four separate heuristics for cost function evaluation. For every candidate variable that can

be composed into Gd, we assign a cost which estimates the size of the resulting composed ROBDD. The

variable with the lowest cost estimate is composed.

In all our heuristics, the candidate nodes for composition are the immediate children of Gd- This choice

ensures that we never need more compositions than the cardinality of the set of decomposition variables.

Without this restriction, the composition process was found to take an inordinately long time.

Our four heuristics are detailed below.

5.2.1 Bound of the Size of the Composed ROBDD

For any boolean operation on ROBDDs f\ and fa it is well known that the resulting ROBDD is bounded in

size by | /i | x | /2 |, where | / | represents the number of nodes in the ROBDD of /.

With this result, it is easy to show that the composed ROBDD G«f(*).(^, 4- i\bdd) is bounded by

8

I Gd(tf) |2 x | il>ibdd |. Bryant conjectures in [4] that this bound is actually | Gd{V) | x | rf>ibdd |. The

size of the composed ROBDD | Gd(*).(^ «- rfribdd) | is equal to | ^Gd(tf)^- + rl>iGd{*)rp, |. The size of

GdWj-^i and Gd{V)tp,i>i are bounded by | Gd | x | $ibdd |. This bound is strong for the product operation.

If Bryant's conjecture is true, then the reason why the resulting composition doesn't blow up is that the OR

operation doesn't blow up. If this is the case then the bound for the size of the composed ROBDD would be

(| Gd(*)^- | + | Gd(^)tp, |)x | ipibdd |. We use this bound as our first cost function to select thecomposition

variable.

5.2.2 Support Set Size of the Composed ROBDD

A good rule of thumb for the size of an ROBDD is the size of its support set. As our second cost function,

we use the increase in the support size of the composed ROBDD to select the decomposition point to be

composed. We choose that decomposition variable which leads to the smallest increase in the size of the

support of the composed ROBDD. This method works well, as we will see in the results section.

5.2.3 Sum of the sizes of Gd(*)^ Gd{V)rp, and ipi ROBDD

In most cases, the product of sizes of two functions as an estimate for the size of their resulting ROBDD is

very loose. Instead of taking the products as the cost function, we take the sum of the sizes of the ROBDDs

as a measure of cost of composing a decomposition point. So we compose a variable ^,- whose estimate of

I Gd{V)^ I + I Gd{^)x(,t | + | tpibdd I 's minimum. In essence this scheme favors variables 0,- which have

smaller ipibdds and result in smaller cofactors Gd{W)jr and Gd{^)tf,

5.2.4 Size and Number of Occurrences of ip

Our final cost function counts the number of nodes in Gd that correspond to a variable rf>. This is a measure

of the number of times each instance of the composition willhave to be done on the graph, and is a reasonable

estimate of the complexity of composing ip into Gd- This count is multiplied by the size of ipibdd, which serves

as an estimate of the complexity of each instance of composition. It can be shown that if the supports of

il>ibdd and Gd are disjoint, then V»'6dd can be composed in Gd by replacing all occurrences of 0, in Gd by

i>ibdd. The resulting graph size, in this case, would be the same as the estimate.

5.3 Updating the dependency graph

Suppose a decomposition point, tpi, is composed in il>kM4- Now the dependency graph needs to be updated.

This is done by removing the edge from node^, to node$k and adding new edges from the children of node

i to the node k. Also, if node t (corresponding to ^i) does not fan out to any other node after composition

then we remove node i and all the edges coming into node i. Figure 1(b) shows the result of composing ^4Md

in Gd-

In Section 6 we discuss the algorithm and implementation details, including the data structure used for

the dependency graph.

6 Algorithm and Implementation Details

Figure 2 shows the complete algorithm schematically.

Make Gd and V-array
Initialize the dependency graph
while (no. of decomp. points > 0)

Select the minimum cost immediate child of nodeod
Compose the selected ip in Gd
Update the dependency graph

repeat

Figure 2: Algorithm: Functional Decomposition and Composition

First the decomposed version of the output node is built in a bottom-up fashion. Starting from the

primary inputs, the nodes are visited in depth-first order and their ROBDDs built in terms of primary

inputs. Once the manager size becomes bigger than a user-specified threshold, a decomposition point is

introduced. A new variable is created and subsequent ROBDDs are created in terms of this variable.

The ROBDD corresponding to this decomposition point is stored in an array denoted by tf'-array. At

the end of the decomposition procedure, we get the ROBDD of the output in terms of primary inputs and

intermediate variables V'iS. We also get an array containing the ipibdds.

10

The dependency graph is maintained in the form of an adjacency matrix. This matrix has n rows and

(n+1) columns where n is the number of decomposition points introduced during the bottom-up phase of the

algorithm. This is a 0 —1 matrix. A "1" bit present in ith row and jth column, where 1 < i, j < n indicates

that tpjbdd depends on ^>,-. A "1" entry in the ith row and (n+ l)tA column indicates that Gd depends on V>i.

By looking at the support set of fold's and Gd we can easily initialize the dependency graph.

We select the node from the immediate children of nodead that has the minimum cost of composition.

The strategy is greedy in nature as it picks the best solution at each stage. By restricting the choice of

decomposition points to immediate children of nodecd we make sure that a decomposition point has to

be composed only once in the final graph. This results in minimum number of compositions to get the

monolithic representation of the target function. The while loop has to be executed only n times. If we do

not restrict the choice to immediatechildren, then in the worst case we will need 0(n2) compositions. Since

composition is the most time-consuming operation in the entire algorithm, this reduction in the algorithm

complexity is of significance.

To check whether a given tp is the immediate child of Gd, we need to check if the (i, (n + I))** entry is

a "1" and all the other entries in the ith row are 0. To update the graph after Vi is composed in Gd, we

change the {i,n 4- 1) entry to a "0", and for rows having a non-zero ith entry, we change the ith column to

"0" and (n + \)th column to "1".

7 Results

We implemented the algorithms in the C language, under the SIS [17] programming environment. Our

results were run on a DECsystem 5900/260, with 440MB memory. We ran our experiments on the ISCAS85

benchmark circuits, for outputs which are considered hard for traditional ROBDD packages [17].

In the tables below, COMP-SIZE corresponds to the method which estimates cost by the bound on

the size of the composed ROBDD shown in Section 5.2.1. SUP-SIZE refers to the support set heuristic of

Section 5.2.2, while SUM-SIZE uses the size estimate of Section 5.2.3 for the composed ROBDD. Finally.

NUM-PSI uses the number of occurrences of ^,- variable in Gd times the size of i>ibdd as the cost function

11

(Section 5.2.4).

For each scheme, we have two sets of experiments. In the first set, we use Natural Ordering with and

without Dynamic Variable Reordering [16]. These results are summarized in Tables 1, 3, 5 and 7. The

results with Dynamic Variable Reordering are shown under the heading 'DR'. The second set of experiments

uses Malik's Ordering [14]. These results are presented in Tables 2, 4, 6 and 8.

Tables 2 and 1 report the size of the maximum ROBDD encountered during the run. Methods COMP-

SIZE and SUM-SIZE do very well under Natural Ordering both with and without DR but not so well

under Malik's Ordering. SUP-SIZE and NUM-PSI do better under Malik's Ordering as compared to the

other two schemes. SUP-SIZE and NUM-PSI give similar results without DR. With DR, NUM-PSI slightly

outperforms SUP-SIZE in the results shown here.

Ckt Out COM]P-SIZE SUP-SIZE SUM-SIZE NUM-PSI

w/oDR with DR w/oDR with DR w/oDR with DR w/oDR with DR

C880 26 42623 2395 42623 2395 42623 2395 42623 2395

C1908 24 8519 4032 8519 4032 8519 4032 8519 4032

C1908 25 4032 3978 4032 3978 4032 3978 4032 3978

C2670 140 - 30063 - 19341 - 48689 - 30421

C3540 22 127916 28755 259859 40969 126297 28755 267589 37079

C6288 12 56267 29954 61685 30126 61685 26849 61685 26353

C6288 13 122797 48954 150788 71705 150788 69135 150788 79841

C6288 14 302716 183314 367730 183298 367730 152002 367730 130860

Table 1: Max. ROBDD Size, Natural Ordering, 1M limit

Ckt Out COMP-SIZE SUP-SIZE SUM-SIZE NUM-PSI

w/o DR with DR w/oDR with DR w/oDR with DR w/oDR with DR

C880 26 1081 1081 1081 1081 1081 1081 1081 1081

C1908 24 1735 1735 1735 1735 1735 1735 1735 1735

C1908 25 1044 1044 1044 1044 1044 1044 1044 1044

C2670 140 78523 37542 12183 5494 78523 37542 78523 26199

C3540 22 - 71278 - 44418 - 87604 - 41212

C6288 12 68709 22788 69856 38467 68709 52265 69856 43499

C6288 13 239991 115439 195175 99536 195175 98056 195175 72673

C6288 14 - 300231 483822 212648 352499 184150 483822 183675

Table 2: Max. ROBDD Size, Malik Ordering, 1M limit

Tables 4 and 3 report the maximum size of the ROBDD manager at any given point in the computation.

12

In these tables, the SUP-SIZE heuristic does well in almost all cases on average. Forsome examples, NUM-

PSI outperforms SUP-SIZE under Malik's Ordering and DR. The reason for this is that SUP-SIZE requires

just two support set computations, and NUM-PSI requires the number of nodes of the variable & present

in Gd- No cofactor operations are needed for calculating the cost, as is the case in COMP-SIZE and SUM-

SIZE, where the computation of positive and negative cofactorsof Gd with the variable under consideration

increases the total memory usage.

Ckt Out COMP-SIZE SUP-SIZE SUM-SIZE NUM-PSI

w/oDR with DR w/oDR with DR w/oDR with DR w/oDR with DR

C880 26 49405 10002 49405 10002 49405 10002 49405 10002

C1908 24 45072 11237 44082 10888 45072 11237 39168 10886

C1908 25 44448 11970 28282 11884 44448 11970 28282 11884

C2670 140 - 59441 - 35230 - 99889 - 51486
C3540 22 442478 130819 684133 93160 413262 140495 435012 103270

C6288 12 191047 131515 111809 76881 159144 87911 111809 70649

C6288 13 460666 100312 324514 135923 362562 155589 324514 189991

C6288 14 933533 341926 764686 216267 838597 391903 764686 261911

Table 3: Max. ROBDD Manager Size, Natural Ordering, 1M limit

Ckt Out COM]P-SIZE SUP-SIZE SUM-SIZE NUM-PSI

w/oDR with DR w/oDR with DR w/oDR with DR w/oDR with DR

C880 26 6468 6468 6468 6468 6468 6468 6468 6468

C1908 24 13800 13800 10628 10628 13800 13800 10628 10628

C1908 25 16669 9992 13091 9795 16669 9992 13091 9795

C2670 140 160625 79082 15590 9578 160625 79082 106165 32215

C3540 22 - 217532 - 159691 - 207927 - 118776

C6288 12 301873 66350 167242 77790 301873 88657 167242 72343

C6288 13 719791 242289 378995 202737 511168 202903 378995 136456

C6288 14 - 610310 878639 410622 992463 335467 878639 424327

Table 4: Max. ROBDD Manager Size, Malik Ordering, 1M limit

Tables 5 and 6 report the total runtime for each example, while tables 7 and 8 report the time spent in

the cost estimation routines. Without DR, SUP-SIZE and NUM-PSI are about as fast and are much faster

than the other two schemes. This is primarily due to the difference in the time taken for cost estimation.

In COMP-SIZE and NUM-PSI, we actually take the cofactors of Gd for estimating the cost. This is a time

consuming process, requiring the allocation of new ROBDD nodes. With DR, the time taken by reordering is

13

the dominating factor, hence none of thescheme performs consistently better in the presence ofDRalthough

the time taken for cost estimation is still more for COMP-SIZE and SUM-SIZE.

Ckt Out COM!P-SIZE SUP-SIZE SUM[-SIZE NUM-PSI

w/oDR with DR w/oDR with DR w/oDR with DR w/oDR with DR

C880 26 2.28 2.20 2.00 2.18 2.30 2.22 2.09 2.12

C1908 24 13.36 10.10 6.73 11.13 13.10 10.24 6.64 11.28

C1908 25 12.94 4.25 12.22 4.26 12.98 4.13 12.75 4.26

C2670 140 - 882.08 - 345.09 - 2293.22 - 572.12

C3540 22 536.61 417.72 144.26 504.34 574.35 384.74 178.27 375.60

C6288 12 111.48 183.05 13.32 243.10 65.56 263.59 13.38 594.58

C6288 13 337.33 775.39 36.14 1088.12 99.00 1458.55 36.10 816.77

C6288 14 877.60 3849.23 89.32 3787.94 270.35 3313.25 94.41 2279.89

Table 5: Total Time (sec), Natural Ordering, IM limit

Ckt Out COM]P-SIZE SUP-SIZE SUM-SIZE NUM-PSI

w/oDR with DR w/oDR with DR w/oDR with DR w/oDR with DR

C880 26 0.18 0.16 0.16 0.15 0.13 0.17 0.15 0.15

C1908 24 3.40 3.10 1.16 1.17 3.07 3.15 1.25 1.24

C1908 25 3.51 4.05 2.68 3.49 3.44 4.06 2.68 3.45

C2670 140 13.84 50.94 1.41 21.45 13.38 51.46 5.85 46.96

C3540 22 - 783.06 - 826.49 - 986.51 - 849.76

C6288 12 112.50 339.33 20.44 483.42 105.94 384.53 20.15 431.65

C6288 13 367.39 1054.64 48.05 861.05 418.49 557.62 50.90 961.91

C6288 14 - 4443.96 139.14 2099.95 1523.63 3331.66 132.74 2974.57

Table 6: Total Time (sec), Malik Ordering, IM limit

Ckt Out COMP-SIZE SUP-SIZE SUM-SIZE NUM-PSI

w/oDR with DR w/oDR with DR w/oDR with DR w/oDR with DR

C880 26 0.13 1.74 0.01 0.01 0.13 1.76 0.01 0.01

C1908 24 7.52 0.24 0.53 0.03 7.27 0.24 0.52 0.03

C1908 25 2.09 0.09 1.13 0.02 2.11 0.09 1.11 0.01

C2670 140 - 388.34 - 0.35 - 1738.51 - 0.59

C3540 22 451.69 178.36 21.84 4.33 492.72 173.28 35.72 4.90

C6288 12 101.53 134.71 0.88 0.93 54.35 217.77 0.84 1.75

C6288 13 312.96 296.42 2.76 4.35 70.06 106.09 2.64 3.92

C6288 14 830.12 2045.58 8.79 7.80 200.21 1951.14 8.42 13.72

Table 7: Time for cost estimation (sec), Natural Ordering, IM limit

14

Ckt Out COMP-SIZE SUP-SIZE SUM-SIZE NUM-PSI

w/oDR with DR w/oDR with DR w/oDR with DR w/oDR with DR

C880 26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C1908 24 2.42 2.16 0.11 0.11 2.13 2.21 0.11 0.12

C1908 25 1.16 0.90 0.26 0.25 1.13 0.88 0.26 0.24

C2670 140 8.48 2.96 0.05 0.03 8.20 3.03 0.29 0.08

C3540 22 - 437.56 - 10.37 - 817.31 - 18.77

C6288 12 93.24 8.05 1.21 1.34 86.10 134.35 1.22 4.55

C6288 13 322.55 58.08 4.14 7.93 370.47 39.88 4.25 8.27

C6288 14 - 674.32 14.52 21.94 1358.28 324.22 15.33 23.55

Table 8: Time for cost estimation (sec), Malik Ordering, IM limit

8 Conclusions

In this paper, we have focussed on the composition process of a mixed apply/compose based scheme for

building ROBDDs. Given a set of decomposition points and the decomposed version of the 'target' ROBDD,

we tried different heuristics to determine the order in which the decomposition points should be composed

to avoid intermediate memory blow-up. The main conclusions of our work are as follows:

• We showed that the intermediate memory requirement is very sensitive to the order of composition. A

bad order of composition may utilize up to twice the memory of a good order.

• We showed that SUP-SIZE and NUM-SIZE are reasonable heuristics for guiding the composition

process for cases where the maximum manager size is of concern.

• In cases where the maximumROBDD sizeis of importance, COMP-SIZE and SUM-SIZE often perform

as well as or better than the other two methods when Natural Ordering is used.

• COMP-SIZE and SUM-SIZE require significantly larger cost estimation time, which sometimes offsets

the composition time gains.

• Under Dynamic Variable Reordering, none of the schemes performs consistently better than the others

in runtime. This is because Dynamic Variable Reordering is the dominating factor in the runtime.

References

[1] Sheldon B. Akers. Binary decision diagrams. IEEE Transactions on Computers, C-27:509-516, June
1978.

15

[2] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of a BDD Package. In Proc. of
the Design Automation Conf, pages 40-45, June 1990.

[3] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD package. 27th Design
Automation Conference, pages 40-45, 1990.

[4] R. E. Bryant. Graph based algorithms for Boolean function representation. IEEE Transactions on
Computers, C-35:677-690, August 1986.

[5] R. E. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams. ACM Computing
Surveys, 24:293-318, September 1992.

[6] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski. Efficient representation and
manipulation of switching functions based on ordered kronecker functional decision diagrams. 31st
Design Automation Conference, pages 415-419, 1994.

[7] J Gergov and Ch. Meinel. Efficient analysis and manipulation of typed free bdds can be extended to
read-once-only branching programs. Tech. Report 92-10, University of Trier. Also to appear in IEEE
Transaction on Computers, June 1995, 1992.

[8] J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham. Probabilistic verification of Boolean functions.
Formal Methods in System Design, 1, 1992.

[9] J. Jain, A. Narayan, C. Coelho, S. Khatri, A. Sangiovanni-Vincentelli, R. Brayton, and M. Fujita. Com
bining Top-down and Bottom-up Approaches for ROBDD Construction. Technical Report UCB/ERL
M95/30, Electronics Research Lab, Univ. of California, Berkeley, CA 94720, April 1995.

[10] Kevin Karplus. Using if-then-else dag's for multi-level minimization. Decennial Caltech Conference on
VLSI, May 1989.

[11] U. Kebschull, E. Schubert, and W. Rosenstiel. Multilevel logic synthesis based on functional decision
diagrams. European Design Automation Conference, pages 43-47, 1992.

[12] C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell Syst. Tech. </.,
38:985-999, 1959.

[13] J. C. Madre and J. P. Billon. Proving circuit correctness using formal comparison between expected
and extracted behavior. 25th Design Automation Conference, pages 205-210, 1988.

[14] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Logic Verification using Binary
Decision Diagrams in a Logic Synthesis Environment. In Proc. of the Intl. Conf. on Computer-Aided
Design, pages 6-9, November 1988.

[15] K. L. McMillan. Symbolic model checking: An approach to the state explosion problem. Ph.D Thesis,
Dept. of Computer Sciences, Carnegie Mellon University, 1992.

[16] R. L. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams . In Proc. of the Intl.
Conf. on Computer-Aided Design, pages 42-47, November 1993.

[17] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan,
R. K. Brayton, and A. L. Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis.
Technical Report UCB/ERL M92/41, Electronics Research Lab, Univ. of California, Berkeley, CA
94720, May 1992.

16

	Copyright notice 1995
	ERL-95-51

