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Chapter 1

Introduction

1.1 Overview

Linear transforms and expansions are the fundamental mathematical tools of signal process
ing. Yet the properties of linear expansions in the presence of coefficient quantization are
not yet fully understood. These properties are most interesting when signal representations
are with respect to redundant, or overcomplete, sets of vectors. Exploring the effects of
quantization in overcomplete linear expansions is the unifying theme of this work.

The core problem ofChapter2 isdepicted in Figure 1.1. Avector x € RN is leftmultiplied
by a matrix F to get y € RM. For M > A/", we havean overcomplete expansion. The problem
is to estimate x from a scalar quantized version of y. To put this in a solid framework, we
introduce the concept of frames and prove some properties of frames. We then show that the
quality of reconstruction can be improved by using deterministic properties of quantization,
as opposed to considering quantization to be the addition of noise that is independent in
each dimension.

In Chapter 3, focus shifts to the problem of compression, i.e. finding efficient represen
tations. Vector quantization and transform coding are the standard methods used in signal
compression. Vector quantization gives better rate-distortion performance, but it is difficult
to implement and is computationally expensive. The computational aspects make transform
coding very attractive. For this reason, transform coding is ubiquitous in image compression.

For fine quantization of a Gaussian signal with known statistics, the Karhunen-Loeve
transform (KLT) is optimal for transform coding [13]. In general, signal statistics are chang
ing or not known a priori. Thus, one must either estimate the KLT from finite length blocks
of the signal or use a fixed, signal-independent transform. The former case is computa
tionally intensive and transmission of the KLT coefficients can be prohibitively expensive.1
The latter option is most commonly used, often with the discrete cosine transform (DCT).
As with any fixed transform, the DCT is nearly optimal for only a certain set of possible
signals. There has been considerable work in the area of adaptively choosing a transform
from a library of orthogonal transforms, for example, using wavelet packets [29].

All varieties of transform coding represent a signal vector as a linear combination of

JIn practical adaptive transform coding system, 20 to 40 percent of the available bit rate is assigned to
side information [21, §2.3].

1
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x€SRN y€<RM y€SRM xe9tN

Figure 1.1: Block diagram of reconstruction from quantized frame expansion.

basis vectors. Notice that in Figure 1.1, y is a representation of x in terms of the rows
of F. But y is generally not an efficient representation of a;. A method that adaptively
chooses a basis set from a finite dictionary given a signal vector is presented in Chapter 3.
The representation is generated through a greedy successive approximation algorithm called
matching pursuit. Much as the KLT finds the best representation "on average," this method
finds a good representation for the particular vector being coded. Since it does not depend
on distributional knowledge, matching pursuit can be viewed as a "universal transform" for
transform coding.2

Some of the results of this report appeared earlier in [14].

2The phrase "universal lossy coder" is avoided because we assume a separation into a transform, fol
lowed by scalar quantization and universal lossless coding. This separation is not necessarily optimal but is
motivated by complexity considerations.
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1.2 Notation

The notation used throughout the report is summarized in Table 1.1 below.

Symbol Definition Reference
_ Conjugation
*

H

Conjugate transpose
Cardinality of a set

(-> Inner product; for finite dimensional vectors, (x, y) = xTy
Ml Norm (derived from inner product through ||x|| = (x, x)1/2)

Ran(-) Range of an operator

a* A coefficient in a linear expansion §3.1, §3.2.1
A A lattice Appendix C
$ A frame in H §2.1.1
$ The dual frame of $ §2.2.1

Wk An element of $ §2.1.1

<Pk An element of $ §2.2.1
A Lower frame bound §2.1.1
B Upper frame bound §2.1.1
C Complex numbers
V A dictionary in an adaptive expansion §3.1, §3.2.1

El) Expectation operator
F Frame operator associated with $ §2.1.1
H Hilbert space RN or C^
In n x n identity matrix (n is omitted if it is clear from context)
3 S=i
K A countable index set

L2(R) Space of square-integrable functions over R §2.1.2
t2(K) Space of square-summable sequences indexed by K §2.1.1

M Cardinality of $ or V §2.1.1, §3.2.1
N Dimension of H

M{», A) Normal distribution with mean /i and covariance matrix A
R Real numbers

r M/N, the redundancy of $ or D §2.1.1
Z Integers

Z+ Positive integers
• End of a proof
D End of an example

Table 1.1: Summary of notation



Chapter 2

Non-adaptive Expansions

Orthogonal transforms are ubiquitous in mathematics, science, and engineering. The basis
functions used in these transforms do not depend on the particular signal being analyzed
and hence the resulting expansions can be considered non-adaptive.

For electrical engineers, frequency domain techniques based on Fourier transforms and
Fourier series are second-nature. This chapter describes frames, which provide a general
framework for understanding non-orthogonal transforms. Frames were introduced by Duffin
and Schaeffer [10] in the context of non-harmonic Fourier series. Recent interest in frames
has been spurred by its utility in analyzing discrete wavelet transforms [5, 6, 15] and time-
frequency decompositions [22]. We are motivated by a desire to understand quantization
effects and efficient representations in a general framework.

To put this chapter in context, we will give a particular interpretation of Fourier analysis
and discuss a sense in which it can be generalized. Since we are limiting our attention
to finite dimensional spaces, consider the Discrete Fourier Transform (DFT) of a length-N
sequence x[n]. We can interpret the DFT as giving a set of N coefficients1

XW =E -4=x[n)e->2wkntN =/s[n], -i=ei27r*n/Ar\ , for 0<k<N- 1. (2.1)
n=0 v^V \ v N I

Then the original sequence can be reconstructed as

x[n] =f] * ^[fcW^WN =£ (xlnl -±=ei2*knlN\ -LeJ'2*fcn/N, for 0<n<N- 1.
J £0 VN [ J to \ VN I y/N ~ ~

(2.2)
In this manner, the DFT gives a linear expansion of a vector in terms of the set of vectors

* .gJ^fe/N ## * ci2nk(N-l)/N
iT

y/N \/N y/N

}N-1

k=0

(2.3)

where the coefficients in the expansion are formed by taking inner products with the same
set. Similar expansions can be found by replacing (2.3) by other sets of vectors. Note that

1The -fa term that generally appears in the inverse DFT formula has been distributed between the DFT
and the inverse DFT. This is gives unit-norm basis vectors for analysis and synthesis.
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the set need not have only N elements and that the sets used in analysis (2.1) and synthesis
(2.2) may be different. We will see in §2.2.1 that the analysis and synthesis sets must be
dual frames.

Section 2.1 begins with definitions that will be used throughout the chapter and examples
of frames. It concludes with a theorem on the tightness of random frames and a discussion
of that result. Section 2.2 begins with a review of reconstruction from exactly known frame
coefficients. The remainder of the section gives new results on reconstruction from quantized
frame coefficients. Most previous work on frame expansions is predicated either on exact
knowledge of coefficients or on coefficient degradation by white additive noise. For example,
Munch [22] considered a particular type of frame and assumed the coefficients were subject
to a stationary noise. This report, on the other hand, is in the same spirit as [4, 32, 33, 35]
in that it utilizes the deterministic qualities of quantization.

2.1 Frames

2.1.1 Definitions and Basics

The material in this subsection is largely adapted from [6, Ch. 3]. We are limiting our
attention to Hilbert spaces H of dimension N.

Definition. Let $ = {<^jfc}jfc€A: C i/, where K is a countable index set. $ is called a. frame
if there exist A > 0 and B < oo such that for all / € H,

A\\f\\2 < E l(/. ¥*>l2 < B\\f\\\ (2.4)

A and B are called the frame bounds.

Throughout we will denote \K\, the cardinality of AT, by M and allow M = oo. The
lower bound in (2.4) is equivalent to requiring that $ span H. Thus a frame will always
have M > N. We will refer to r = ^ as the redundancy of the frame. Also notice that one
can choose B = J2keK WfkW2 whenever M < oo.

DEFINITION. Let $ be a frame in H. $ is called a tight frame if the frame bounds can be
taken to be equal.

It is easy to verify that if $ is a tight frame with ||v?jk|| = 1 for all k € K, then A = r.

Proposition 2.1. Let $ = {<Pk}keK be a tight frame with frame bounds A = B = 1. If
\\ifk\\ = 1 for all k 6 K, then $ is an orthonormal basis.
Proof: See §A.2. •

DEFINITION. Let $ = {¥?*}*€# be a frame in H. The frame operatorF is the linear operator
from H to C^ defined by2

(Ff)k = (/, Vk)- (2-5)

2We should denote the codomain by ^(#) to properly include the case M —oo; however, for notational
simplicity we will not.
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Note that when H is finite dimensional, this operation is a matrix multiplication where F is
a matrix with kth. row equal to (p%. Using the frame operator, (2.4) can be rewritten as

AIN < F*F < BIN, (2.6)

where In is the N x N identity matrix. (The matrix inequality AIn < F*F means that
F*F —AIn is a positive semidefinite matrix.) In this notation, F*F = AIn implies that $
is a tight frame.

From (2.6) we can immediately conclude that the eigenvalues of F*F lie in the interval
[A, B\\ in the tight frame case, all of the eigenvalues are equal. This gives a computational
procedure for finding frame bounds. Since it is conventional to assume A is chosen as large
as possible and B is chosen as small as possible, we will sometimes take the minimum and
maximum eigenvalues of F*F to be the frame bounds. Note that it also follows from (2.6)
that F*F is invertible because all of its eigenvalues are nonzero.

Let $ = {<fk}k€K be a frame in H. Since Span($) = H, any vector / € H can be written
as

/ = £ «*¥>* (2-7)
k£K

for some set of coefficients {a*} CM. If M > N, {a*} may not be unique. We refer to (2.7)
as a redundant representation even though it is not necessary that more than N of the ajt's
be nonzero.

2.1.2 Examples

The question of whether a set of vectors form a frame is not very interesting in a finite-
dimensional space; any finite set of vectors which span the space form a frame. Thus if
M > N vectors are chosen randomly with a circularly symmetric distribution on H, they
almost surely form a frame. An infinite set in a finite-dimensional space can form a frame
only if the norms of the elements decay appropriately, for otherwise a finite upper frame
bound will not exist.

Heuristically, we expect tight frames to have a certain degree of uniformity or regularity.
This is illustrated by the following examples.

Example 1 [6]. In H= K2, let iPl = [0 1]T, y>2 = [-^ - |]T, and v>3 = [# - \]T-
These are vectors on the unit circle uniformly spaced by 120°. For any / = [f\ f^ 6 H,

Ei</,v*>i2 = \f2\2+~fi-h
fc=i L L

= §[/?+/?] = In/ii

2

+
y/3 1

Thus {^15^2^3} is a tight frame with frame bound | = ^. •
EXAMPLE 2 [37]. Consider the space of continuous-time signals that are bandlimited to
[—7r,7r]. This is a subspace of the Hilbert space L2OR). By the Nyquist Sampling Theorem
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[26, §3.2], Si = {sinc(* - k)}k€z, where

sinc(tf) =
sin(7rt)

irt

forms a basis for this space. Notice that Si is the basis set for ideal 7r-bandlimited interpo
lation. For n € Z+, the set

S„ =|sinc(*--)j
fc€Z

forms a tight frame with redundancy n. An expansion with respect to S„ corresponds to
sampling at n times the Nyquist rate. •

EXAMPLE 3. Oversampling of a periodic, bandlimited signal can be viewed as a frame
operator applied to the signal, where the frame operator is associated with a tight frame. If
the samples are quantized, this is exactly the situation of oversampled A/D conversion [33].
Let x = [Xi X2 -" Xn]t € IRN, with N odd. Define a corresponding continuous-time
signal by

2nkt v /- . 2nkt
+ A2jb+iv2sin

w

xe(t) = xx + £ X2kV2 COS (2.8)
k=l

where W = Nj^. Any real-valued, T-periodic, bandlimited, continuous-time signal can be
written in this form. Let M > N. Define a sampled version of xc(t) by Xd[m] = £0(77-) and
let

y=[xd[0] xd[l] ... xd[M-l]]
Then we have y = Fa;, where

F =

V2
V^cos^

0

>/2sin^
V2

V^cosW^^
0

\/2siniy^

1 y/2cos{M'0) y/2sm(M'6) .-• y/2cos(WM'0) y/2sm(WM'0)

(2.9)

M' = M —1, and 0 = |J. Using the orthogonality properties of sine and cosine, it is easy
to check that F*F = MIn, so F is an operator associated with a tight frame. Pairing
terms and using the identity cos2fc0 + sin2&0 = 1, we find that each row of F has norm
y/N. Dividing F by y/N normalizes the frame and results in a frame bound equal to the
redundancy ratio r. Also note that r is the oversampling ratio with respect to the Nyquist
sampling frequency. D

2.1.3 Tightness of Random Frames

Tight frames constitute an important class of frames. As we will see in §2.2.1, a tight frame
is self-dual and hence has some desirable reconstruction properties. These reconstruction
properties indeed extend smoothly to nearly tight frames, i.e. frames with -j close to one.
Also, for a tight frame (2.4) reduces to something similar to Parseval's equality. Thus, a
tight frame operator scales the energy of an input by a constant factor A. Furthermore,
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it is shown in §2.2.4 that some properties of "typical" frame operators depend only on the
redundancy. This motivates our interest in the following theorem.

Theorem 2.2: Tightness of Random Frames

Let {$m}m=n De a sequence of frames in IRN such that $m is generated by choosing M
vectors independently with a uniform distribution on the unit sphere in RN. Let Fm be the
frame operator associated with $m« Then, in the mean squared sense,

-tjFm*Fm —> tt^n elementwise as M —> oo.
M N

Proof: See §A.3. •

Theorem 2.2 shows that a sequence of random frames with increasing redundancy will
approach a tight frame. Note that although the proof in Appendix A uses an unrelated
strategy, the constant l/N is intuitive: If $m is a tight frame with normalized elements,
then we have Fm*Fm = j^In because the frame bound equals the redundancy of the frame.

Numerical experiments were performed to confirm this behavior and observe the rate
of convergence. Sequences of frames were generated by successively adding random vectors
(chosen according to the appropriate distribution) to existing frames. Results shown in
Figures 2.1 and 2.2 are averaged results for 200 sequences of frames in IR4. Figure 2.1 shows
that jj and j^ converge to jj. Figure 2.2 shows that j converges to one.

In Theorem 2.2, the uniformity of the frame elements over the unit sphere is a necessary
condition. This is illustrated by the following example.

EXAMPLE 4. Suppose sequences of frames in E2 is generated by choosing vectors </?* =
[cos0 sin#] , where 0 is uniformly distributed on [0, f]. Then

i rl - 1—Fm*Fm -> i 2i elementwise as M —¥ oo.
M [ 27 2 .

Thus the sequence of frames does not approach a tight frame. We can make a few additional
observations. The eigenvalues of

I 2r
. 2n 2

are Ai = |(1 -}- J) and A2 = |(1 —£), with corresponding eigenvectors /i = 4=[1 1]T and
f2 = -t?[1 —1]T, respectively. The eigenvectors f\ and f2 are the vectors that maximize
and minimize, respectively,

e £l(/,v*>l:
Jfc=l

over all unit-norm /. This example reinforces the notion that tightness of frames corresponds
to directional uniformity. D

2.2 Reconstruction from Frame Coefficients

At this point, the usage of frames in signal analysis is not yet justified because we have not
considered the problem of reconstructing from frame coefficients.
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Figure 2.1: Normalized frame bounds for random frames in ]R4.
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In §2.2.1, we review the basic properties of reconstructing from (unquantized) frame coef
ficients. This material is adapted from [6]. The subsequent sections consider the problem of
reconstructing an estimate of an original signal from quantized frame coefficients. Classical
methods are limited by the assumption that the quantization noise is white. Our approach
uses deterministic qualities of quantization to arrive at the concept of consistent reconstruc
tion. Consistent reconstruction methods yield smaller reconstruction errors than classical
methods.

2.2.1 Unquantized Case

Let $ be a frame, assuming the notation of §2.1.1. In this subsection, we consider the
problem of recovering / from {(/, ipk)}keK•

Recall that F*F is invertible. We can say furthermore that

B~lIN < (FT)"1 < A~lIN. (2.10)

DEFINITION. The dual frame of $ is $ = {<Pk}keKi where

^ = (F*F)-V*, \/k€K. (2.11)

For a tight frame, (2.11) simplifies to

<^ = yrV*, VkeK. (2.12)

PROPOSITION 2.3. $ is a frame with frame bounds B~l and <A_1, i.e.

B-'ll/ll2 < £ K/> &>l2 < A-l\\ff.
keK

The associated frame operator F : #-• C* satisfies F = F(FmF)~\ F*F = (F*F)~\ and
F*F = IN = F*F. Also, FF* —FF* is the orthogonal projection operator, in CM, onto
Ran(F) = Ran(F).
Proof: See [6, p. 59]. •

A consequence of FmF = (FmF)~1 is that the dual of $ is $. Another of the conclusions
of Proposition 2.3 gives us the desired reconstruction formula: Namely, F*F = In implies

/ = F'Ff = £ {/, v*)vi. (2.13)

This formula is reminiscent of (2.2). The difference is that in (2.2), one set of vectors plays
theroles ofboth $ and $. This isbecause the set in (2.3) is atight frame inC^. In analogy
to (2.13), since FmF = In, we can also write

f=F'Ff='£(f,fi:)<pk. (2.14)
k€K

Comparing (2.13) and (2.14) emphasizes the "dual" nature of $ and $.
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The derivation of (2.14) obscures the fact that, when M > N, there should be many
ways to write / as a linear combination of vectors from $. After all, there is an Af-element
subset of $ that spans H. What is special about the expansion in (2.14)? This question is
partially answered by the following proposition.

PROPOSITION 2.4. If / = Y^keK Ck<pk for some set of coefficients {ck}keK, then

£k|2>£l</,&>|2, (2-15)
keK keK

with equality only if c* = (/, (pi) for all A; € A".
Proof: See [6, p. 61]. •

The norm-minimizing property of (2.15) holds in the "dual" sense also: If

keK

then

£ IK s)l2 > £ m, g)\2
keK keK

for all g € H. Also, using (2.13) has advantages over other possible reconstruction formulas
when the frame coefficients are not known exactly (see §2.2.2).

Sometimes we can reconstruct, or approximately reconstruct, without explicitly finding
the dual frame through (2.11). For example, if $ is a tight frame, by substituting (2.12)
into (2.13), we can write / = A'1 ]£fc€tf (/, Vfc)^*- It ls interesting to see how this extends
smoothly to the case that $ is close to tight, i.e. A is close to B.

Let p= f - 1. If0</9< 1, F*F « ^In, so (F*F)~l w^In- Precisely,

/ = TTrE(/^^ + ^ (2-16)
A + ti keK

where R= In —-A^F*F. (This is valid for any p.) Let

/o=7IiE(/>^ (2-17)
A + B keK

It can be shown that \\R\\ < |^ = ^ therefore ||/ - f0\\ < ^\\f\U so (2.17) gives an
estimate for / with bounded error. The iteration

2

}n = /n-1 + A• p £ [(/' V*} " (/»-!> ^*)1 ^
A + d keK

gives a sequence of estimates satisfying

11/ - /„n <(2T7J Im|- (2-18)
The dependence on p in (2.18) shows that for a fixed error tolerance, less computation is
required for reconstruction in a tight or nearly tight frame.
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2.2.2 Classical Method

We now turn to the question of reconstructing when the frame coefficients {(/, y>k)}keK are
degradedin some way. Any mode of degradation is possible, but the most practical situations
are additive noise due to measurement error or quantization. We are most interested in the
latter case because of its implications for efficient storage and transmission of information.

Suppose we wish to approximate / given Ff + /?, where j3 € C^ is a zero-mean noise,
uncorrelated with /. The key to finding the best approximation is that FH = Ran(F) is
an iV-dimensional subspace of C^. Hence the component of (3 perpendicular to FH should
not hinder our approximation, and the best approximation is the projection of Ff + (3 onto
Ran(F). By Proposition 2.3, this approximation is given by

f=F(Ff + 0). (2.19)

Furthermore, because the component of f3 orthogonal to Ran(F) does not contribute, we
expect ||/ - f\\ = \\F*/3\\ to be smaller than ||/?||.

To make this more precise, recall Example 1 of §2.1.2. If (3 = \j3\ (32 (33] , where the ft's
are independent random variables with mean zero and variance <72,

£?(||/-F"(F/+/9)12)

= E

= E

2 3

6 k=i

2 3

6 ^=1

= Jfi(^ +^ +ifl|-AA-AA-AA) = \c'
Here we have used the fact that

VkVt -{-'.
k = e

k±i '

Notice that this mean-squared error (MSE) is | of the 2a2 MSE that would appear in an
orthogonal basis representation. The MSE reduction is by a factor of 1/r, where r is the
redundancy of the tight frame. Having 0(1 /r) MSE behavior is a general phenomenon
for reconstruction by projection in a tight frame representation. It is a special case of the
following proposition.

Proposition 2.5: Noise Reduction in Classical Reconstruction

Let $ = {y?Jt}jJii be a frame of unit-norm vectors with associated frame operator F and let
/? = [01 (32 -•- (3m] , where the ft's are independent random variables with mean zero and
variance a2. Then the MSE of the classical reconstruction (2.19) satisfies

MSE<
M(7;

A2
(2.20)
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Furthermore, if the frame is tight, (2.20) holds with equality, giving

MSE=^f! =̂ . (2.21)
M r

Proof: See §A.4. •

Now consider the case where the degradation is due to quantization. Let x € KN and
y = Fx, where F € mMxN is a frame operator. Suppose y = Q(y), where Q : RM -• KM is
a scalar quantization function, i.e. Q(y) = [q(yi) <j(y2) ••• 9(j/m)]T» where g : IR —• K is a
scalar quantization function.

One approach to approximating x given y is to treat the quantization noise y —y as ran
dom, independent in each dimension, and uncorrelated with y. These assumptions make the
problem tractable using statistical techniques. The problem reduces to the previous prob
lem, and x = F*y is the best approximation. Strictly speaking, however, the assumptions
on which this reconstruction is based are not valid because y —y is a deterministic quantity
depending on y, with interplay between the components.

2.2.3 Consistent Reconstruction

The shortcoming of the classical reconstruction method is that it disregards deterministic
properties of quantization. As a result, the reconstruction may have a different quantized
value than the original. Using the term introduced by Thao and Vetterli [33], we say that
the reconstruction may be inconsistent.

DEFINITION. We say that x is a consistent estimate o/iora consistent reconstruction if
Q(Fx) = Q(Fx). A reconstruction that is not consistent is said to be inconsistent.

In words, we would say that an estimate is consistent if it is the same as its quantized
version. Another way to understand consistency is in terms of partitions. Q induces a
partitioning of RM. (We can temporarily remove the restriction that Q is a scalar quantizer
and require only that the partition regions are convex.) This quantization also induces a
partitioning of RN through the inverse image of QoF. The partition of 1&N can be viewed in
another way: Since Q partitions KM, it also partitions the TV-dimensional subspace F(RN).
Mapping back to RNusing F" gives the partition of RN induced by Q. A consistent estimate
is simply one that falls in the same partition region as the original.

All of these concepts are illustrated for N = 2 and M = 3 in Figure 2.3. The ambi
ent space is RM. The cube represents the partition region in RM containing y = Fx and
has codebook value y. The plane is F(lRN) and hence is the subspace within which any
unquantized value must lie. The intersection of the plane with the cube gives the shaded
triangle within which a consistent estimate must lie. Projecting to F(RN), as in the classical
reconstruction method, removes the out-of-subspace component of y —y. As illustrated, this
type of reconstruction is not necessarily consistent. For further geometric interpretation of
quantized frame expansions, refer to Appendix B.

With no assumptions on Q other than that the partition regions be convex, a consistent
estimate can be determined using the projection onto convex sets (POCS) algorithm. In this
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out-of-sub-

space error

F(W)

Figure 2.3: Illustration of consistent reconstruction

case that implies generating a sequence of estimates by alternately projecting on F(RN) and
0-'(y).

When (J is a scalar quantizer, a linear program can be used to find consistent estimates.
For i = 1, 2, ..., M, denote the quantization stepsize in the zth component by A,-. For
notational convenience, assume that the reproduction values lie halfway between decision
levels. Then for each z, \yi —yt| < 4*-. To obtain a consistent estimate, for each i we must
have

\(Fi){ - fc| <£.
Expanding the absolute value, we find the constraints

Fx < -A + y and Fx > --A + y

where A = [Ai A2 ... Am]t, and the inequalities are elementwise. These inequalities can
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be combined into
F

-F
x<

£A + y
fA-y

(2.22)

The formulation (2.22) shows that x can be determined through linear programming [31].
The feasible set of the linear program is exactly the set of consistent estimates, so an arbitrary
cost function can be used.

A linear program always returns a corner of the feasible set [31, §8.1], so this type of
reconstruction will not be close to the centroid of the partition cell. Since the cells are
convex, one could use several cost functions to (presumably) get different corners of the
feasible set and average the results. Another approach is to use a quadratic cost function
equal to the distance from the projection estimate given by (2.19). Both of these methods
will reduce the MSE by a constant factor. They do not change the asymptotic behavior of
the MSE as the redundancy r is increased.

2.2.4 Error Bounds

In this subsection, we concern ourselves with bounds on the MSE in estimating x from y.
Our fundamental premise is that any reconstruction method that gives consistent estimates
is asymptotically (in the redundancy r) optimal. We now prove two bounds that support
this conviction: first, an 0(l/r2) MSE lower bound for any reconstruction algorithm; and
second, an 0(1/r2) MSE upper bound for consistent reconstruction. Since we are varying r,
we must consider sequences of frames with growing redundancy.

Theorem 2.6: MSE Lower Bound

For any set of quantized frame expansions, any reconstruction algorithm will yield an MSE
that can be lower bounded by an 0(l/r2) expression.3
PROOF: The proof of this general result is given under the guise of a more restricted result
in [35]. There it is proven that when the frame operators correspond to oversampled A/D
conversion (see §2.1.2), any reconstruction algorithm will yield an MSE that can be lower
bounded by an 0(l/r2) expression. The proof is based on counting the number of cells in
the partition of RN and using Zador's formula. The only frame-specific property that is used
corresponds to requiring that elements of the frame not be parallel. Having parallel frame
elements would reduce the number of cells in the partition and hence increase the MSE.
Therefore the proof extends to the general case. •

Proposition 2.7: MSE Upper Bound (Restricted Case)
Let x be such that it has a probability density.4 Consider quantized frame expansions of
x with frame corresponding to the frame operator (2.9) and quantization stepsize A. For
sufficiently small (fixed) A, a consistent reconstruction algorithm will yield an MSE that can
be upper bounded by an 0(l/r2) expression.
PROOF: The proof is based on a correspondence between vectors in RN and periodic, ban
dlimited, continuous-time signals. Let xc(t) be defined as in (2.8), where T is arbitrary. Then

3Actually, we must exclude the case where x has a degenerate distribution that allows for perfect recon
struction. This point is not emphasized in [35].

4This is to eliminate degenerate distributions for x.
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quantized frame expansion of x is equivalent to oversampled A/D conversion of xc(t). Ac
cording to Thao and Vetterli [33, Thm. 4.1], the MSE can be upper bounded by an 0(l/r2)
expression. One requirement in applying their result is that xc(t) must have sufficient quan
tization threshold crossings. In our more general framework, this corresponds to requiring
that the distribution of x not be overly concentrated inside a sphere of radius A.5 Since x
has a probability density, this can be assured by choosing A sufficiently small. •

Conjecture 2.8: MSE Upper Bound

Under very general conditions, for any set of quantized frame expansions, any algorithm
that gives consistent estimates will yield an MSE that can be upper bounded by an 0(1/r2)
expression.

For this general upper bound to hold, some sort of non-degeneracy condition is required
because we can easily construct a sequence of frames with increasing r for which the frame
coefficients give no additional information as r is increased. For example, we can start with
an orthonormal basis and increase r by adding copies of vectors already in the frame. Putting
aside pathological cases, simulations for quantization of a source uniformly distributed on
[—1, 1]" support this conjecture. Simulations were performed with three types of frame
sequences:

I. A sequence of frames corresponding to oversampled A/D conversion, as given by
(2.9). This is the case in which we have a provable 0(1/r2) MSE upper bound.

II. For N = 3, 4, and 5, Hardin, Sloane and Smith have numerically found arrange
ments of up to 130 points on iV-dimensional unit spheres that maximize the
minimum Euclidean norm separation [16].

III. Frames generated by randomly choosing points on the unit sphere according to
a uniform distribution.

Simulation results are given in Figure 2.4. The dashed, dotted, and solid curves correspond
to frame types I, II, and III, respectively. The data points marked with -l-'s correspond
to using a linear program based on (2.22) to find consistent estimates. The data points
marked with o's correspond to classical reconstruction. The important characteristics of
the graph are the slopes of the curves. Note that 0(1/r) MSE corresponds to a slope of
-3.01 dB/octave and 0(l/r2) MSE corresponds to a slope of-6.02 dB/octave. The consistent
reconstruction algorithm exhibits 0(l/r2) MSE for each of the types of frames. The classical
method exhibits 0(1/r) MSE behavior, as expected. It is particularly interesting to note
that the performance with random frames is as good as with either of the other two types
of frames.

Note that in light of Theorem 2.2, it may be useful to try to prove Conjecture 2.8 only
for tight frames.

5In most cases, we assume quantizer offsets such that zero is either a reconstruction value or a boundary
value. By randomizing the quantizer offset, we can remove this condition.
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Figure 2.4: Experimental results for reconstruction from quantized frame expansions. Shows
0(l/r2) MSE for consistent reconstruction and 0(l/r) MSE for classical reconstruction.

2.2.5 Rate-Distortion Tradeoffs

Our discussion of quantized frame expansions has focused on expected distortion without
concern for rate. In this subsection we begin consideration of rate-distortion tradeoffs.

We have demonstrated that optimal reconstruction techniques give an MSE proportional
to 1/r2. It is well known that in orthogonal representations the MSE is proportional to
A2. This extends to the frame case as well. Thus we have two ways to reduce the MSE by
approximately a factor of four:

• double r;

• halve A.

A priori, there is no reason to think that these options each have the same effect on the
rate. As the simplest possible case, suppose a frame expansion is stored (or transmitted)
as M B-h\t numbers, for a total rate of MB bits per sample. Doubling r gives 2M B-bit
numbers, for a total rate of 2MB bits per sample. On the other hand, halving A results in
M (B + l)-bit numbers for a rate of only M(B + 1) bits per sample.

This argument suggests that halving A is always the better option, but a few comments
are in order. One caveat is that in some situations, doubling r and halving A may have
very different costs. For example, in oversampled A/D conversion, the monetary cost of
halving A is much higher than that of doubling r because it requires precision trimmed
analog electronics. This is a major motivating factor for oversampling.
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Also, if r is doubled, storing the result as 2M B-bit values is far from the best thing to
do. This is because many of the M additional numbers give little or no information on x.
A conclusion of Zamir and Feder [38] was described by Zamir as, "one good measurement
is better than many noisy ones" [39]. It is important to note that although they consider
quantization noise, they do not consider consistency. These topics are discussed further in
Appendix B; Appendix C explores the use of quantized frame expansion as the first stage in
a lattice quantizer.

We conclude this chapter by noting that it is complicated to get efficient signal rep
resentations from highly redundant quantized frame expansions. Because of redundancy,
each frame coefficient does not give the same amount of information on x; one way to get
an efficient representation would be to retain only the frame coefficients that give a lot of
information on x. This is essentially the theme of the next chapter.



Chapter 3

Adaptive Expansions

In this chapter, we broaden our approach to finding linear expansions by allowing the basis
functions of the expansion to vary depending on the signal. However, we are not adapting in
the traditional sense of making fine adjustments depending on an error signal. Instead, our
basic tool is the matching pursuit algorithm of [20] in which the adaptation is in the choice
of basis functions from a fixed dictionary (frame).

In §3.1, we introduce the optimal approximation problem in order to establish its com
putational intractability. The matching pursuit algorithm, described in §3.2, is a greedy
algorithm for finding approximate solutions to the approximation problem. Quantization of
coefficients in matching pursuit leads to many interesting issues; some of these are discussed
in §3.3. Along with exploring general properties of matching pursuit, we are interested in its
application to compressing data vectors in MN. A general vector compression method based
on matching pursuit is described in §3.4.

3.1 The Optimal Approximation Problem

At the end of the previous chapter, we noted that the set of coefficients from a highly
redundant frame expansion are, without sophisticated coding, an inefficient representation
of a signal. We expect to find more efficient representations by forming a linear expansion
with respect to a subset of the original frame. This problem is formalized below.

DEFINITION [7, Ch. 2]. Let a dictionary V be a frame in H. Let e > 0 and L € Z+. For
/ € H, an expansion

/ = X>Wc(, (3.1)
*=1

where a, € C and y>*, G £>, is called an (e, L)-approximation if ||/ —/|| < c. An expansion
(3.1) that minimizes ||/— /|| is called an L-optimal approximation.

Since the a,-'s are not subject to quantization, these approximation problems do not
exactly correspond to finding rate-distortion optimal representations for fixed L. Also, this
formulation does not account for the fact that, with entropy coding, the rate associated with
Wk^iLi mav depend on the choice ofdictionary elements. Nevertheless, we are discouraged

19
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from attempting to find optimal quantized representations by the following theorem.

Theorem 3.1: Intractability of Optimal Approximation [7]
Let k > 1 and let V be a dictionary that contains 0(Nk) vectors. Let 0 < 71 < 72 < 1 and
let L GZ+ such that jiN < L < j2N. For any given e > 0 and / GH, determining whether
an (e, L)-approximation exists is NP-complete. Finding the L-optimal approximation is
NP-hard.

Proof: See [7, Ch. 2]. •

3.2 Matching Pursuit

The intractability of L-optimal approximation stems from the number of ways to choose L
dictionary elements. The complexity is reduced if the dictionary elements are chosen one at a
time instead of L at once. This reduction of a "global" problem to simpler "local" problems
is the defining characteristic of a greedy algorithm. Matching pursuit is a greedy algorithm
for finding approximate solutions to the L-optimal approximation problem. It progressively
refines a signal estimate instead of finding L components jointly.

Matching pursuit was introduced to the signal processing community in the context of
time-frequency analysis by Mallat and Zhang [20]. Mallat and his students have uncovered
many of its properties [7, 8, 9, 40].

3.2.1 Algorithm

Let V = {<Pk)kL\ C H be a, frame. We impose the additional constraint that \\ifik\\ = 1
for all k. We will call V our dictionary of vectors. Matching pursuit is an algorithm to
represent / G H by a linear combination of elements of V. Furthermore, matching pursuit
is an iterative scheme that at each step attempts to approximate / as closely as possible in a
greedy manner. We expect that after a few iterations we will have an efficient approximate
representation of /.

In the first step of the algorithm, k0 is selected such that |(<£>*<,, /)| is maximized. Then
/ can be written as its projection onto tpko and a residue R\f,

f = (<Pko, f)<fko + Rif-

The algorithm is iterated by treating Rif as the vector to be best approximated by a multiple
of (pin- At step p+ 1, kp is chosen to maximize |(<pjkp, Rpf}\ and

Rp+1f = Rpf- (w Rpf)<pkp. (3.2)

Identifying Rof = /, we can write

/=E<^.^/>Vik,+^/. (3.3)
t=0

Hereafter we will denote (<pkn Rif) by a,-.
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3.2.2 Discussion

Matching pursuit is similarto a class of algorithms usedin statistics called projection pursuits.
The proof of the convergence of projection pursuits given in [18] can be used to prove
the convergence of matching pursuit in infinite dimensional spaces. In infinite dimensional
spaces, the convergence can be quite slow. However, the convergence is exponential in finite
dimensional spaces [7, §3.1].

Since at- is determined by projection, anp^ X Ri+if- Thus we have the "energy conser
vation" equation

||ft/||2 = ||iW||2 + a?. (3-4)
This fact, the selection criterion for fc,-, and the fact that T> spans H, can be combined for
a simple convergence proof for finite dimensional spaces. In particular, the energy in the
residue is strictly decreasing until / is exactly represented.

In the language of §3.1, matching pursuit can be viewed as finding a 1-optimal approx
imation and then iteratively finding 1-optimal approximations on the resulting residues. If
V is an orthonormal basis, matching pursuit finds the optimal expansion. For an arbitrary
dictionary, however, matching pursuit does not generally find optimal expansions. In fact, if
no two elements of the dictionary are orthogonal, matching pursuit expansions are not only
not optimal, but they do not converge in a finite number of steps except on a set of measure
zero [7, §3.1].

In the following, detailed operation counts and other measures of complexity will not be
given since the emphasis is not on implementation details. One point to note is that the full
set of inner products {(</?,-, Rpf)}iii need not be computed at each iteration. By (3.2),

(tpu Rp+i) = (V>« Rp) ~ {<Pkp, Rp)(<Pi, <Pkp). (3.5)

In (3.5), (<£>,-, Rp) and (y?fcp, Rp) are known from the previous iteration, so only (v?,-, ipkp)
must be computed. Depending on the dictionary structure, this may involve a table lookup
or a simple calculation. Alternatively, the dictionary can be structured so that only a few
such inner products are nonzero.

Note that the output of a matching pursuit expansion is not only the coefficients (ao, ai,
...), but also the indices (fco, &i, •••)• For storage and transmission purposes, we will have
to account for the indices.

3.2.3 Orthogonalized Matching Pursuits

It was noted that, even in a finite dimensional space, matching pursuit is not guaranteed to
converge in a finite number of iterations. This is a serious drawback when exact (or very
precise) signal expansions axe desired, especially since an optimal algorithm would choose a
basis from the dictionary and get an exact expansion in N steps. The cause of this drawback
is that at step p-f 1, ipkp is not necessarily chosen orthogonal to Span({y>fci}J>~0).

The matching pursuit algorithm can be modified to insure that at each iteration the
contribution to the linear expansion is orthogonal to all previous terms. Convergence in N
steps is then guaranteed. A simple method of accelerating convergence through orthogonal-
ization is described below [28]. The selection of dictionary elements is the same as before.
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After adictionary element (pkp is chosen, it is orthogonalized with respect to {^}& before
the residue Rpf is calculated. (Because of the orthogonalization, no dictionary element is
chosen twice.) This insures that Rp+if is orthogonal to <£>*,. for t = 0,1,...,p. A better
orthogonalization method is presented by Kalker and Vetterli in [19].

It has been noted by several authors [7, 19, 36] that for a small number of iterations, or
thogonal matching pursuit does notconverge significantly faster than the non-orthogonalized
version. For this reason, orthogonal matching pursuit is not considered hereafter.

3.2.4 Relationship to the Karhunen-Loeve Transformation

In this section, we forge an analogy between matching pursuit and the Karhunen-Loeve
transform (KLT). Our aim is to show that matching pursuit has some of the properties
that make the KLT useful in transform coding. We assert that matching pursuit acts as a
universal transform for transform coding.

For a stationary, vector-valued random process X, the Karhunen-Loeve transform is the
unique orthogonal transform U such that Y = C/X has a diagonal covariance matrix with the
eigenvalues appearing in descending order on the diagonal [21, §1.2.4]. Note that determining
the KLT requires knowledge of the distribution of X. Approximating the KLT from data is
essentially the same as principal component analysis [17].

It is well known that the KLT is the optimal transform for transform coding. Since the
limitations to this result are not as well known, we state the following theorem paraphrased
from [13]:

Theorem 3.2: Optimality of the Karhunen-Loeve Transform

Consider the transform coding of a jointly Gaussian random process. Suppose the quanti
zation is fine enough to use high resolution approximations, and that arbitrary real (non-
integer) values can be allocated to the resolution of each (scalar) quantizer. Then the KLT
achieves the lowest overall distortion of any orthogonal transform.
Proof: See [13, §8.6]. •

Two properties of the KLT that make it good for transform coding are qualitatively
mimicked by matching pursuit:

1. Energy compaction: For 1 < i < N - 1, the energy in {yi, y2, ..., yi} is
maximum over all orthogonal transforms. For this reason the KLT is said to give
optimal energy compaction.

2. Principal axes: If X has an ellipsoidal distribution (as when X is Gaussian), the
ith transformed variable yj corresponds to the tth principal axis of the ellipsoid.
This is closely coupled with energy compaction, since the ith principal axis is the
direction in which there is the ith largest energy.

We first explore the energy compaction properties of matching pursuit. The criterion
for the choice of &, makes some degree of energy compaction obvious. Since we only solve
1-optimal approximation problems, matching pursuit does not always give optimal energy
compaction when more than one iteration is performed. However, in matching pursuit we are
optimizing on a sample-by-sample basis, as opposed to looking at average performance with



CHAPTER 3. ADAPTIVE EXPANSIONS

1

' ' • ' i «

y^~
0.99 y

-

♦* w

c /
CD fl

|5 II

©0.98 - * /' _

8 * /'\ /I
1 * /'
.£ 0.97 ss j 1 correlated source

o / V
c /

®0.96 / -

o /
c /
o /
33 /

2 0.95 / -

u.

0.94

n oq

I uncorrelated source

. ... .... i . ..... ^—.—^_ .... i . ._

10" 10 10'

23

Redundancy r

Figure 3.1: Energy compaction achieved using matching pursuit on an IR2-valued source.

a fixed transform. Therefore matching pursuit generally gives much more energy compaction
than the KLT. In particular, matching pursuit will give energy compaction even if X has a
diagonal covariance matrix, in which case the KLT gives no energy compaction.

Energy compaction performance was assessed by simulation. In M2, two sources were
used:

An uncorrelated zero-mean Gaussian source X ~ .A/^O, /).

• A Gaussian source

X~Af (., Al
1 0

0 0.2
Ae

where Ae is a Givens plane rotation matrix (6 = |).

Dictionaries of the form

..{ 27rfc . 2?rfc
cos

M
sin

M

}M-\

fc=0

(3.6)

(3.7)

were used. The results are shown in Figure 3.1. Using matching pursuit, more than 93%
of the energy is captured in the first coefficient, and the energy compaction increases with
increasing dictionary redundancy. The KLT would give \ and | of the energy in the first
coefficient for the uncorrelated and correlated sources, respectively.

Simulations were also performed for K4-valued sources. Two sources were used:



CHAPTER 3. ADAPTIVE EXPANSIONS

0.9

c
©
o

3=
at

8
15 0.8

>»

<D

I 0.7

0.6

0.5

10

/ / uncorrelated source

correlated source

10'

24

Redundancy r
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• An uncorrelated zero-mean Gaussian source X ~ A/"(0, /).

• A correlated zero-mean Gaussian source formed by placing a first-order autoregressive
source with correlation 0.9 in blocks of length 4.

Dictionaries were generated from maximally spaced points on the unit sphere [16]. The
results are given in Figure 3.2. As expected, the energy compaction in the first component
increases with r, ranging from about 0.55 to 0.96. In this case, the KLT would give \ and
» 0.8817 of the energy in the first coefficient for the uncorrelated and correlated sources,
respectively. So in this experiment, matching pursuit always gives better energy compaction
for the uncorrelated source, and also does so for the highly correlated source when r > 8.

When X has an ellipsoidal distribution, geometric intuition suggests that (pko will more
likely be close to the principal axis than far from it. Similarly, given that <£>*<, is nearly
parallel to the principal axis, the distribution of Rqx will be ellipsoidal with principal axis
equal to the second principal axis of the distribution of x. (Since the most we can possibly
say is that tp^ usually is nearly parallel to the principal axis, this reasoning is somewhat
weak.) We would like to formalize this intuition. In particular, we attempt to demonstrate
that the indices fct- can be used to estimate the principal axes and that the algorithm is likely
to choose indices that correspond to the KLT. We are however not asserting that it would
be ideal for the algorithm to choose indices corresponding to the KLT; matching pursuit is
acting locally, while the KLT is based on global stationary statistics.

Methods for estimating the principal axes arenot immediately obvious. We cannot simply
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"average the <Pko's to estimate the first principal axis" because, with a sufficiently regular
and dense dictionaxy and an ellipsoidal distribution, Eipko = 0.

For example, consider quantization of the K2-valued source from (3.6), expanded using
a dictionary as in (3.7) with M = 199. Figure 3.3 shows histograms of k0 and fci for 10000
samples. The peaks of the histograms are at fc0 = 33 and k\ = 83. These correspond to
angles (modulo ir) of||| and 1^, respectively. These are very close to angles ofthe principal
axes of the distribution, which are | and ^. Unfortunately, looking at peaks of histograms
is not very robust and is limited by the redundancy and regularity of the dictionary. Thus we
would like to use a method that involves averaging. As we noted, averaging (p^s and y^'s
is meaningless. Referring to Figure 3.3, this is because of the bimodality of the histograms.
It also makes no sense to average the index numbers because this would not be invariant to
renumberings of the dictionary, even those renumberings that maintain the natural order.1
Using a dictionary that is spread along half of the unit circle instead of the whole unit circle
would bias the estimates toward the center of the half-circle chosen. The proposed solution
is to use the histogram peaks as initial estimates of the principal axes and then "center" the
dictionary around the corresponding vectors. For concreteness, suppose we are estimating
the first principal axis. Suppose we have used matching pursuit to expand a set of samples.
Let ko denote the histogram peak of the fco's. For the mth sample, we increment the principal
axis estimate by <P(k0)m ^ (^)m) Vz) ^ 0» an^ by "V^Mm otherwise. This procedure can be
applied in any dimension because it does not depend on an ordering of dictionary elements.
A potential pitfall is that if the dictionary is not uniform, the histogram peak may be a poor
initial estimate.

Figure 3.4 shows simulation results for principal axis estimation using .the methods dis
cussed above. The source is as given by (3.6) and the dictionary is as in (3.7) with M = 399.
The error is measured as an angular error in radians. The figure shows that both methods
(looking only at histogram peaks and averaging using a peak as an initial estimate) give
increasingly good estimates as data accumulates. The averaging method gives MSEs that
are lower by about a factor of ten.

Simulations were also conducted with the same IR4-valued autoregressive source as before.
A dictionary of 130 maximally spaced unit vectors from [16] was used. The results are shown
in Figure 3.5. The three pairs of curves correspond to estimating the first three principal axes
of the distribution. The solid and dashed curves correspond to the averaging and histogram
peak methods, respectively. In this case the error is measured as Euclidean distance between
a unit vector in the true axis direction and the estimated axis direction. The results show
that while the first axis can be well-estimated, it is much harder to estimate the subsequent
principal axes. The principal axes are probably easier to estimatewhen the eigenvalue spread
of the covariance of the source is large, but this is not explored further in this discussion.

Before movingon to study the effects of coefficient quantization, we would like to explore
the dependence of index entropy on r. We have seen that increasing dictionaxy redundancy
increases energy compaction. The price to pay is that the entropy of the indices goes up.
We explore this tradeoff through an example. This time we consider a non-ellipsoidal source
generated by equally mixing sources of the form (3.6) with $ equal to \ and -\. Figure 3.6
shows 1000 samples from this source. Notethat the KLT for this source is simplythe identity

1In higher dimensions, there would generally be no natural ordering to dictionary elements.
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Figure 3.3: Histograms of indices chosen by matching pursuit
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transformation. The samples were expanded using dictionaries of the form

M-\
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V =
wk

M
cos

tt/c

M
sin (3.8)

k=0

Figure 3.7 shows the resulting energy compactions and index entropies as functions of r.
(The index entropy should rightly be called a sample entropy. One must be very careful
to use large sample sizes to get relevant sample entropies.) We see that the entropy of the
first index is proportional to logr, but the energy compaction levels off rather quickly. So as
logr is increased, there are diminishing returns in energy compaction, but the cost increases
linearly.

3.3 Quantized Matching Pursuit

Although matching pursuit has been applied to low bit rate compression problems [19, 23,
24, 25, 36], which inherently require coarse coefficient quantization, little work has been
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Figure 3.6: One thousand samples from a non-ellipsoidal source

10
Redundancyr

28

Figure 3.7: Energy compaction and index entropy as functions of redundancy r for a non-
ellipsoidal source.

done to understand the qualitative effects of coefficient quantization in matching pursuit. In
this section we explore some of these effects. In §3.3.2, application of matching pursuit to
compress an Revalued source is considered in great detail. The highlight of the subsection
is the generation of intricate partition diagrams. These partition diagrams demonstrate
that matching pursuit expansions can be inconsistent. The issue of consistency in these
expansions is explored in §3.3.3. The relationship between quantized matching pursuit and
other vector quantization methods is discussed in §3.3.4.

3.3.1 Discussion

Coefficients are quantized in any computer implementation of matching pursuit. When the
quantization is fine, it is generally safe to ignore this fact. For example, in all the simulations
of §3.2, coefficient quantization does not makeany qualitative differences. If the quantization
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is coarse, as it must be for moderate to low bit rate compression applications, the effects of
quantization may be significant.

Define quantized matching pursuit to be matching pursuit with non-negligible quantiza
tion of the coefficients. We will denote the quantized coefficients by al = Q[a,]. Note that
quantization destroys the orthogonality of the projection and residual, so the analog of (3.4)
does not hold, i.e.

lift/iiViMWi*+s?.
Also, (3.5) does not hold.

We areassuming that the quantization of a, occursbefore the residual Ri+if is calculated,
and that the quantized version is used in determining the residual so that quantization errors
do not propagate to subsequent iterations. Since al must be determined before at+i, it is
implicit in this assumption is that the coefficient quantization is scalar.

For any particular application, there are several design problems: a dictionary must be
chosen, scalar quantizers must be designed, and the number of iterations (or a stopping
criterion) must be set. In principle, these could be jointly optimized for a given source
distribution, distortion measure, and rate measure. In practice, this is an overly broad
problem. In the following subsection, we will make several choices, some of them arbitrary.

3.3.2 A Detailed Example

Consider quantization of a source with a uniformdistribution on [—1, l]2. Assume distortion
is measured by squared Euclidean distance and rate is measured by codebook size. (Measur
ing rate by codebook size is natural when a fixed rate coder will be applied to the quantizer
output, i.e. no entropy coding is used.) Also assume that two iterations will be performed
with a four element dictionary. Other constraints will be set as needed.

We first choose a dictionary. Guided by symmetry, we choose

A first impulse may be to use

V =

(2k-l)n . (2fc-l)7r
cos sin I) fc=i

fr (* - 1)* (fc-lfrfl
\[COS 4 Sm_4 J J_'

(3.9)

(3.10)

In a detailed analysis, (3.9) was determined to lead to a better design. Also, (3.10) is not
symmetric with respect to the region of support of the distribution.

To begin with, assume that the quantization of coefficients will be fine. Then, since the
dictionary is composed of pairs of orthogonal vectors, <pko _L ipkx • Thus once we have coded
A?o, k\ is determined for free. (As long as we are using a fine quantization assumption, we
will actually force the k\ to be selected such that ipi^ -L ¥>*!•) It is easy to see that ko will
be uniformly distributed on {1, 2, 3, 4}; thus, with or without entropy coding, ko requires 2
bits.
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We now design the quantizers. The p.d.f. of a0 can be explicitly calculated as

Pa0(y) = <

(2(V2-l)|y| M<|y/2 +^
-2(\y\-y/l+ y/2) \y/2 +V2 < \y\ < y/l + y/2

fc 0 otherwise

30

(3.11)

If the dictionary was not symmetric, (3.11) would have to be conditioned on k0. Since we
are assuming fine quantization, the best codebook constrained quantizer for a0 can be found
analytically using a compandor model [13]. The optimal quantizer is

o3 = G o Qu o G(a0),

where

G(y) = <

2l/3(iWfjT76Sgn(2/)y4/3

sgn(y) V/r +̂ " (i^Sji* (wM" v7^
4/3'

otherwise

•\/2+v/2
2

and (Ju is a uniform quantizer.
Given ao> the distribution of a\ is uniform on [—|Qo|» |ao|]« Since the quantization of oo

is fine, the distribution given So is approximately the same. Thus the optimal quantizer for
ai is uniform.

We have yet to decide how to divide our bit rate between a^ and 6^. Since y?^ J_ </?&,,
the total distortion is simply the sum of the distortions created by each quantization. We
can thus minimize distortion for a fixed rate by Lagrangian methods.

If we impose the constraint that the rate for a[ must be constant, we get a codebook as
in Figure 3.8(a). On the other hand, if we allow the rate for a[ to be conditioned on So,
we get a codebook as in Figure 3.8(b). (Actually, these codebooks are for the dictionary
(3.10), but the observations and conclusions are still clear.) The two codebooks have 906
and 900 elements, respectively, so they give approximately equal rates. The codebook in
Figure 3.8(b) gives lower distortion, as is clear from the more uniform distribution of code
vectors.

When the rate for ai depends on So, the Lagrangian optimization implies that the number
of quantization levels for a\ should be proportional to p^Q. Using a codebook size of 304
and choosing the proportionality constant appropriately yields the codebook and partition
shown in Figure 3.9. This codebook gives approximately 0.1561 bits worse performance than
simple uniform scalar quantization. (Recall that this includes two bits for ko.) Of course,
this should not be too discouraging because the region of support and distribution of the
source in this simulation are tailor-made for uniform scalar quantization. As we will see in
§3.4, matching pursuit tends to be effective when the number of iterations is less than the
dimension of the space.

Figure 3.9 should be seen as a first approximation to the type of partition created by
matching pursuit because we forced ipko -L V^i• (This was part of the fine quantization
assumption.) Let us now remove the fine quantization assumption and allow the source to
have an arbitrary distribution on E2. Even with a known distribution, it is difficult to find
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(a) 0»)

Figure 3.8: Codebook elements for quantization of a source with uniform distribution on
[—1, l]2. (a) Fixed rate for ai. (b) Rate for a[ conditioned on 6^.

1

0.8

0.6

0.4 f-

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
-1

• \• \»\*J\*\* \ s^-L \^\' >l*/L*aj7• /* Z•

\ *^A • iC * /"^^^ / ♦7V^V • • V^a* \^*^\ * 3c * t^_ /
• \ J^ I ^^S^/ * /^>w / \ _^r^\ * \**\ \ _^^V Z *

-0.5 0.5

Figure 3.9: Partitioning of [-1, l]2 by matching pursuit with four element dictionary. A fine
quantization assumption is used.
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analytical expressions for optimal quantizers without using a fine quantization assumption.
Since we wish to use fixed, untrained quantizers, we will use uniform quantizers for a0 and
ot\. Since it will still generally be true that y?^ ± tp^, it makes sense for the quantization
stepsizes for ao and a\ to be equal.

The partitions generated by matching pursuit are very intricate. Figure 3.10 shows
the partitioning of the first quadrant when zero is a quantizer boundary value, i.e. the
quantizer boundary points are {mA}m€z and reconstruction points are {(m + |)A}m€z for
some quantization stepsize A. The yellow lines denote the partitions induced by selection
of ko. Then ao is quantized, giving the cyan boundaries. Recall that the residue R\f is not
necessarily orthogonal to y^. Thus the selection of k\ introduces the magenta boundaries.
Finally, the red boundaries come from quantizing a\. In Figure 3.10, most of the cells are
squares, but there are also some smaller cells. Unless the source distribution happens to have
high density in the smaller cells, the smaller cells are inefficient in a rate-distortion sense.
The fraction of cells that are not square —> 0 as A —y 0.

The partition is qualitatively different when the quantizer boundary points are
{(m + |)A}m€Z and reconstruction points are {mA}m€j. The partition is shown in Fig
ure 3.11. The colors are the same as in Figure 3.10. The dotted magenta lines show bound
aries that are created by choice of k\ but are not important because 5?i = 0. (Similarly for
the dotted yellow line.) This partition also has mostly square cells. Compared to Figure 3.10,
there are fewer of the "bad" small cells. As before, the fraction of non-square cells vanishes
as A -> 0.

The qualitative difference between Figure 3.9 and Figures 3.10-3.11 is due to the fact that
the latter result from more constraints. The partition of Figure 3.9 arises from specifying ko,
a^ and 5}, with k\ = k0 + 2 (mod 4). The partitions of Figures 3.10-3.11 show the result
of adding an additional degree of freedom in k\.

These examples illustrate that there are many design parameters within the matching
pursuit framework. Optimizing these parameters requiresa measure of optimality and knowl
edge of the source p.d.f. Figures 3.9-3.11 show that the partitions generated by matching
pursuit look quite different than those generated by a quantized frame expansion (see Fig
ure B.l), of which independent scalar quantization is a special case.

3.3.3 Consistency in Quantized Matching Pursuit

When consistency was previously considered in §2.2.3, the problem arose from having a
representation in C** and attempting to estimate a reconstruction in C^. There is a possi
bility of inconsistency in any framework with non-orthogonal linear constraints. We will see
that a matching pursuit representation implicitly contains many linear constraints and that
inconsistency is not uncommon.

Suppose p iterations of matching pursuit are performed with the dictionary V. The
output of the (quantized) matching pursuit algorithm is

{ko, aQ, h, a{, ..., fcp_i, dpi}. (3.12)
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Figure 3.10: Partitioning of R2 by matching pursuit with four element dictionary. Zero is a
quantizer boundary value.
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Figure 3.11: Partitioning of K2 by matching pursuit with four element dictionary. Zero is a
quantizer reconstruction value.
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(There is nothing consistent or inconsistent about this set.) The standard reconstruction is

(3.13)
P-i

i=0

Denote the output of matching pursuit (with the same dictionary and quantizers) applied
to/by

{/Cq, ao, k[, ai', ... ,/Cp_1? ap/}.

If

k{ = k'{ and al = al' (3-14)

for i = 0, 1, ..., p —1, we say that / is a strictly consistent estimate. If (3.14) holds
except possibly that k{ ^ k[ for some i for which 3} = al' = 0, we say that / is a loosely
consistent estimate. The second definition is included because a reasonable coding scheme
might discard &,- if Si = 0.

The crucial point is that there is more information in (3.12), along with V and knowledge
of the working of matching pursuit, than there is in /. In particular, (3.12) gives a set of
linear inequality constraints that defines a partition cell in which / lies. / is an estimate of
/ that does not necessarily lie in this cell.

Let us now list the complete set of constraints implied by (3.12). For notational con
venience, we assume uniform scalar quantization of the coefficients with stepsize A and
midpoint reconstruction. The selection of ko implies

KW.,/>I>I<9,/>I, V ¥>€!>. (3.15)

For each element of V \ {y^K (3.15) specifies a half-space constraint with boundary plane
passing through the origin. The intersection of these constraints is thus two infinite pyramids
situated symmetrically with their apexes at the origin. The value of oq gives the constraint

(<^o,/>€
_ A _ A
«o-y,ao +y

This specifies a pair of planes, perpendicular to y>*0, between which / must lie. At the
(i —l)st step, the selection of /:,• gives the constraints

t t-i '

tpkuf-J^^Wkt
i t=0 i k *=0 /

, v<pev. (3.16)

This defines M —1 linear half-space constraints with boundaries passing through £J=o <xi<pkr
As before, these define two infinite pyramids situated symmetrically with their apexes at

EEqO'W Tnen 5 gives

t-i

<Pk» f -Ys^Wkt) e
t=0

_ A _ A

Qi~rai + -2 (3.17)

This again specifies a pair of planes, this time perpendicular to <p*., between which / must
lie.



CHAPTER 3. ADAPTIVE EXPANSIONS 36

(a) (b)

Figure 3.12: (a) Portion of partition of Figure 3.10 with reconstruction points marked, (b)
Portion of partition of Figure 3.11 with reconstruction points marked.

By being explicit about the constraints, we see that all of the constraints are linear, so the
partition cell defined by (3.12) is convex. Thus by using an appropriate projection operator,
one can find a strictly consistent estimate from any initial estimate. In practice, finding such
a projection operator may be difficult.

The quantization of M2 considered in §3.3.2 gives concrete examples of inconsistency.
Recall the partitions of Figures 3.10 and 3.11. The reconstruction points were not marked on
these diagrams because the correspondence between cells and reconstruction points would
not have been clear. Figures 3.12(a) and 3.12(b) depicts parts of these partitions with
reconstruction points marked with circles. These show that matching pursuit reconstructions
are not always consistent. Figures 3.13(a) and 3.13(b) axe copies of Figures 3.10 and 3.11
with cells that lead to inconsistent reconstructions marked with x 's.

Experiments were performed to assess how the probability of an inconsistent estimate
depends on 2>, r, and A. The loose sense of consistency was used in all the experiments.

The first set of experiments involved quantizing an Revalued source with the A/*(0, /)
distribution. With V as in (3.8), M was varied between 2 and 256 while A was varied
between 10~19 and 100*3. Figure 3.14 shows the probability of inconsistency as a function of
M and A. The probability of inconsistency is significant! The surface is rather complicated,
but we can identify two trends: the probability of inconsistency goes to zero as M is increased
and as A —> 0. This can be more clearly seen from two "slices" of a similar surface obtained
with V as in (3.7). The slices are shown in Figure 3.15.

To explore the dependence on V, experiments were performed for quantizing an Un
valued source with the ^f(0,1) distribution. The consistency of reconstruction was checked
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(a) (b)

Figure 3.13: (a) Partition of Figure 3.10 with regions leading to inconsistent reconstructions
marked, (b) Partition of Figure 3.11 with regions leading to inconsistent reconstructions
marked.

for two iteration expansions. Dictionary sizes of M = 25, 50, 75, 100, and 125 were used.
The results are shown in Figures 3.16 and 3.17. In Figure 3.16, the dictionaries used
are those corresponding to oversampled A/D conversion as given in (2.9). Figure 3.17 was
generated using dictionaries of maximally spaced points [16]. For both types of dictionaries,
the probability of inconsistency goes to one for very coarse quantization and goes to zero as
A —> 0. The qualitative difference between the curves indicates that there are complicated
geometric factors involved that are at this time beyond our understanding.

3.3.4 Relationship to Vector Quantization

Given a vector in EN, quantized matching pursuit produces anestimate from a countable set.
(If the quantizers have bounded ranges, the estimate is from a finite set.) Hence quantized
matching pursuit can be described as a vector quantization (VQ) method; we would like to
understand its place among the many existing VQ methods.

A single iteration of matching pursuit is very similar to shape-gain VQ, which was intro
duced in [2]. In shape-gain VQ, a vector x 6 RN is separated into a gain, g = ||a:|| and a
shape, s = x/g. A shape s is chosen from a shape codebook C8 to maximize (x, s). Then a
gain g is chosen from a gain codebook Cg to minimize (g —(x, s)) . The similarity is clear
with Cs corresponding to T> and Cg corresponding to the quantizer for ao- Obtaining a good
approximation in shape-gain VQ requires that Cs forms a very dense subset of SN~*, the
surface of the unit sphere in MN. The area of SN~* increases exponentially with N, making
it difficult to use shape-gain VQ in high dimensional spaces. A multi-iteration application
of matching pursuit can be seen as a cascade form of shape-gain VQ.
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300

Figure 3.14: Probability of inconsistent reconstruction for an R2-valued source as a function
of M and A.

(a)

Figure 3.15: Probabilities of inconsistentreconstruction for an K2-valued source, (a) M = 11,
A varied, (b) M varied, A = 0.1.
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Figure3.16: Probabilities of inconsistent reconstruction for an Revalued source. Dictionaries
correspond to oversampled A/D conversion.
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Figure 3.17: Probabilities of inconsistent reconstruction for an E5-valued source. Dictionaries
composed of maximally space points on the unit sphere.
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Although our discussion has been in the language of linear expansions, matching pursuit
can be seen to give partition cells and reconstruction points. For an optimal VQ codebook,
the centroid condition must hold: the reconstruction value for a partition cell must be
the centroid of the cell with respect to the probability density of the source. Even if we
make a simplifying assumption such as a uniform distribution of the source, the codebook
given by matching pursuit (assuming reconstruction according to (3.13)) does not satisfy
the centroid condition. This is shown in Figures 3.9 and 3.12, where inconsistency is an
extreme case of non-centroid reconstruction. Viewed in this way alone, matching pursuit is
a bad vector quantization method. However, recall that if optimal trained VQ is used, the
centroid values (reconstruction points) must all be stored. By basing the codebook on linear
expansions, we are considerably lowering the storage requirements. Referring to Figures 3.9
and 3.12, centroids could be calculated with respect to a uniform distribution and used
as reconstruction points, replacing (3.13). The structure of the partition would allow the
reconstruction points to be stored efficiently.

3.4 A General Vector Compression Algorithm Based
on Frames

This section explores the efficacy of using matching pursuit as an algorithm for lossy com
pression for vectors in RN. Most lossy compression can be viewed as compressing vectors in
RN, although the source distribution will depend on the application. The application may
also give coding constraints (such as requiring a fix bit rate) and complexity constraints,
and may suggest a relevant distortion metric. Here we will measure rate by entropy, thus
implicitly allowing variable bit rates, and measure distortion by MSE. Experimental results
will be given for autoregressive sources, but distributional knowledge will not be used in the
design.

3.4.1 Design Considerations

With no distributional assumptions, we expect the best performance with a dictionary that
is "evenly spaced" on the unit sphere or a hemisphere. We are purposely vague about the
meaning of evenly spaced, since the importance of this is not clear. For simplicity, the inner
product quantization is uniform. It is unlikely that any other fixed quantization would do
better over a large class of source distributions. Furthermore, the quantization stepsize A is
constant across iterations. This is consistent with equal weighting of error in each direction.

In our earlier examples, three methods for generating dictionaries have been used. In
R2, dictionaries were formed from roots of unity as in (3.7) and (3.8). In higher dimensions,
dictionaries were formed from sets of maximally spaced points on the unit sphere [16] or
from a Fourier transform-like set as in (2.9). We introduce one more method for generating
dictionaries. The corners of the hypercube [— -7=, -tW]N form a set of 2N symmetric points
on the surface on the unit sphere in RN. Taking the subset of points that have a positive
first coordinate gives a frame of size 2N_1. Properties of the dictionaries that will be used
in the remainder of the section are summarized in Table 3.1.
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I. DFT-like set given by (2.9)
Advantages:
• Inner products can be found with an FFT-like algorithm
• No need to store dictionary
Comment:

• Dictionary elements lie in the intersection of the unit sphere with the
plane xi = ^.

II. Maximally spaced points on the unit sphere from [16]
Disadvantages:
• Dictionary must be stored.
• Known only for N = 3,4, 5, and M < 130.

III. Corners of hypercube
Advantages:
• Inner products can be found with additions and subtractions only

(no multiplications).
• Can choose k{ without calculating any inner products. (Signs of

components of Rif determine which dictionary element should be chosen.)
• No need to store dictionary
Disadvantage:
• No flexibility in choice of M for fixed N.

Table 3.1: Summary of dictionaries used in compression experiments

3.4.2 Experimental Results

The experiments all involve quantization of a zero mean Gaussian AR source with correlation
coefficient p = 0.9. Source vectors are generated by forming blocks of N samples. Rate is
measured by summing the (scalar) sample entropies of ko, k\, ..., fcp_i and oo, ai, ..., 6tp~2\,
where p is the number of iterations of the algorithm.

Figure 3.18 shows the D(R) points obtained using Method I with N = 9. The dictionary
redundancy ratio is r = 8. The dotted curves correspond to varying p, with the leftmost
and rightmost curves corresponding to p = 1 and p = 3, respectively. The points along each
dotted curve correspond to various values of A. The solid curve shows the performance of
independent quantization in each dimension.

The lower boundary of the region bounded below by one or more dotted curves is the
best R-D performance that can be achieved with this dictionary through the choice of p
and A. The simulation results show that matching pursuit performs as well or better than
independent scalar quantization for rates up to about 2.2 bits per source sample.

The simulation described above does not explore the significance of the r parameter.
Simulations as above were performed with r ranging from 1 to 256. Redundancy factors
between 2 and 8 resulted in the best performance.

A large fraction of the rate comes from coding the indices. In an attempt to exploit the
fact that <pki and V'Jfc.+i are often nearly orthogonal, experiments were also performed where
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Rate (bits/source sample)
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Uniform scalar quantization
Matching pursuit data points
Attainable with MP

Figure 3.18: R-D performance of matching pursuit quantization with one to three iterations.
(N = 9, r = 8, dictionary of type I.)

a single entropy code was applied for (ko, k\, ..., fcp_i). We refer to this as vector entropy
coding of the indices. The entropy coding of the coefficients remained scalar. Figure 3.19
shows the results of experiments with a dictionary of type II. A dictionary of size M = 8
is used in R4. The dashed curve results from using matching pursuit with scalar entropy
coding of the indices. The dash-dot curve shows the improvement resulting from vector
entropy coding of the indices. The "knees" in these curves correspond to rates at which the
optimal number of iterations changes. For comparison, the solid curve gives the performance
of scalar quantization with scalar entropy coding. Replacing the scalar entropy coding by
vector entropy coding gives the dotted curve.

At rates up to about 1.4 bits per source sample, matching pursuit quantization out
performs scalar quantization, even with vector entropy coding. (At these rates, the index
entropy coding method is immaterial because it is best to have only one iteration.) Com
paring to simple scalar quantization with scalar entropy coding, matching pursuit performs
about as well or better over the range of rates considered, up to 3.5 bits per source sample.

This simulation shows that vector entropy coding of indices gives modestly improved
performance at high rates. At high rates it may at first appear that independent quantization
with vector entropy coding is far superior to other methods, but we must consider the
complexity involved in the entropy coding. Consider operation at 2 bits/sample. The optimal
number of matching pursuit iterations is two, so the vector entropy code for the indices has
82 = 64 symbols. The entropy codes for ao and a\ have 20 and 6 symbols, respectively.
On the other hand, the vector entropy code for the independently quantized vectors has
144 = 38416 symbols. Thus with limited computational resources, the matching pursuit
quantizer may be the best choice.

Figure 3.20 shows simulations results using the type III dictionary with N = 8 (M = 27).



CHAPTER 3. ADAPTIVE EXPANSIONS

1

•

KT1

\
> '-.

:

\ ,

0} \ .

S

c '•. A >v
.

o * >v
=e ^ \
q X >v

"Km"2 * >vS 10

V^ *N

m"3 . i— i i

43

Quantization Coding
Scalar

Scalar

Matching pursuit
Matching pursuit

Scalar

Vector

Scalar

Vector

0.5 1 1.5 2 2.5 3 3.5
Rate (bits/source sample)

Figure 3.19: Simulation results for N = 4, M = 8 with dictionary of type II.

The curve types have the same correspondence as in Figure 3.19; the results are qualitatively
similar.

3.4.3 A Few Possible Variations

The experiments of the previous subsection are the tip of the iceberg in terms of the pos
sible design choices. In this subsection, a few possible variations are presented along with
plausibility arguments for their application.

An obvious area to study is the design of dictionaries. For static, untrained dictionaries,
issues of interest include not only R-D performance, but also storage requirements, complex
ity of inner product computation, and complexity of largest inner product search.

Looking at the dictionary design problem from a VQ standpoint, the first impulse is to
train the dictionary using given training data. Davis [7, Ch. 8] has applied a Lloyd-type
algorithm to optimize a dictionary to minimize

D = E

L-l

/ ~ E aWki
*'=0

21

for some fixed L. We would be interested in the case where the coefficients are quantized and
the minimization is of D + XR, where R is a rate measure and A is a Lagrange multiplier.
The result of such an optimization must have worse performance than a general entropy-
constrained VQ design because the matching pursuit algorithm imposes a constraint on the
codebook structure. However, the codebook structure may provide computational advan
tages, so this is worthy of investigation.

Another possibility in dictionary design is to adapt the dictionary by augmenting it with
samples from the source. (Dictionary elements might also be deleted or adjusted.) This
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Figure 3.20: Simulation results for N = 8 with dictionary of type III.

would be in the spirit of the Lempel-Ziv algorithm. The decoder would have to be aware
of changes in the dictionary, but depending on the nature of the adaptation, this may come
without a rate penalty.

There is no a priori reason to use the same dictionary at every iteration. Given a p
iteration estimate, the entropy of kp becomes a limiting factor in adding the results of an
additional iteration. To reduce this entropy, it might be useful to use coarser dictionaries as
the iterations proceed.

In our experiments, we averaged results for quantizing many samples with some fixed
number of iterations. Instead of having a fixed number of iterations, it may be useful to
use a stopping criterion based on the energy of the residue. This would create a guaranteed
upper bound on the error and might have a favorable impact in an R-D sense.

The experimental results that have been presented are based on entropy coding each al
independently of the indices, which are in turn coded either separately or as a vector. There
are at least three other ways to entropy code:

1. Separately code the pair (&,-, a,-) for each i;

2. Jointly code all of the indices and jointly code all of the coefficients;

3. Jointly code all of the indices and coefficients together.

Joint entropy coding of vectors increases complexity and, because of problems of statistical
significance, makes simulating very time-consuming. A final coding variation, which was
mentioned in §3.3.3, is to discard the indices that correspond to zero quantized coefficients.
This should give a modest reduction in rate.

For a broad class of source distributions, the distributions of the at's will have some
common properties because they are similar to order statistics. For example, the probability
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density of a0 will be small near zero. This could be exploited in quantizer design in future
work. Finally, rate-distortion performance might be improved by using quantizers with
overload regions.



Chapter 4

Conclusions

This report has considered the effect of coefficient quantization in overcomplete expansions.
Two classes of overcomplete expansions were considered: fixed (frame) expansions and ex
pansions that are adapted to the particular source sample, as given by matching pursuit.

We first considered frame expansions. In Theorem 2.2, we proved that a certain type of
sequence of frames approaches a tight frame. Along with being an interesting result in its
own right, this may help in understanding asymptotic properties of frame expansions.

We defined the concept of consistency. Along with giving computational methods for
finding consistent estimates, we asserted that consistency is the essential criterion for good
reconstruction. For an expansion with redundancy r, we proved that any reconstruction
method will give MSE that can be lower bounded by an 0(l/r2) expression. Backed by
experimental evidence and a proof of a restricted case, we conjecture that any reconstruction
method that gives consistent estimates will have an MSE that can upper bounded by an
0(1 jr2) expression.

After reviewing the matching pursuit algorithm, we showed that it shares some important
properties with the Karhunen-Loeve transform (KLT). For an ellipsoidal source distribution,
matching pursuit in some sense finds the principal axes. Also, it gives better energy com
paction than the KLT.

We showed that the partitions generated by quantizing the coefficients in matching pur
suit are very intricate. We also showed that consistency is an issue in this type of rep
resentation and gave explicit conditions for consistency. The potential lack of consistency
shows that even though matching pursuit is designed to produce a linear combination to esti
mate a given source vector, optimal reconstruction in the presence of coefficient quantization
requires a nonlinear algorithm.

Finally, we considered applying matching pursuit as a general vector compression method.
The overhead in using this method is coding the indices of the dictionary elements used.
Therefore, in choosing a dictionary size there is a tradeoff between increasing overhead and
enhancing the ability to closely match signalvectors with a small number of iterations. Since
it is a successive approximation method, matching pursuit may be useful in a multiresolution
framework. The inherent hierarchical nature of the representation is amenable to unequal
error protection methods for transmission over noisy channels.

Matching pursuit acts as a "universal transform," giving good energy compaction without
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knowledge of source statistics. This method gets much of its compression gain from entropy
coding. Thus, by coupling it with adaptive and/or universal lossless coding, it could work
well as an adaptive and/or lossless vector compression scheme. We make no optimality
claims and do not address the issues of "redundancy" and "estimation noise," as defined
in the universal lossy coding literature. Accordingly, our usage of "universal" refers to the
properties of the transform as opposed to the properties of the entire compression system.



Appendix A

Proofs

A.l Spherical Coordinates in Arbitrary Dimension

Since the usage of spherical coordinates in dimensions greater than three is not common, a
review is presented here. Spherical coordinates will be useful in the proof of Theorem 2.2
(SA.3).

In R3, the standard way to define a transformation between rectangular coordinates
(x, t/, z) to spherical coordinates (p, $, u>) is through

x = p cos 0 sin u

y = p sin 0 sin u?

z = p cos u>,

where p G [0, oo), 0 G [0, 27r), and u G [0, n]. It is instructive to notice that to go from
polar coordinates

x = pcos0

y = p sin 0

to spherical coordinates, one defines a new angular variable u G [0, n], multiplies the existing
coordinate definitions by sinw, and sets the new coordinate variable z to pcosu. Continuing
this process inductively gives spherical coordinates in arbitrary dimension.

For N > 3, define spherical coordinates (p, 0, u\, ..., WN-2) implicitly from rectangular
coordinates (xi, x2, ..., xpj) as follows:

£1 = pcos0sino>isinu>2 ...sinu>;v_2
x2 = p sin 0 sin u>i sin u2 ... sin u>at_2

#3 = p cos Ui sin u>2... sin un-2

X4 = p cos u>2 sin u>3... sin u>at_2

xtv-i = p cos cc>w_3 sin UJN-2

XN — Pcos wN-2
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Here p G [0, oo), 0 G [0, 27r), and u>t G [0, 7r] for i = 1, 2, ..., N - 2. Note that this can be
viewed as a way to parameterize vectors of length p in RN.

By direct calculation, the Jacobian of the transformation is

8(xi,x2,...,xn)
d(p,0,uu...,uN-2)

N-l • • 2 • N-2
= p sin u>i sin u>2 ... sin o;7v_2.

A.2 Proposition 2.1

A condition for $ to span i7 is that

/ = o.

(A.l)

This is immediate from (2.4). It remains to show that the <pk are orthonormal. For any
keK,

Now \\<pk\\ = 1 implies (<pk, ft) —0 for all £ ^ k.

A.3 Theorem 2.2

Let {$m} = {v'fcljkti- The corresponding frame operator is given by

so

F =

r T n

T
V2

T

J

F*F =[<pi ip2 ••• ipM]

r w i
T

V>2

T
1<Pm J

The (i, j)th element of jtF'F is given by

M M A/

(¥™)o- =JEW =ffS^ =ffg(»Mw)i.
where (</?*),• is the ith component of (pk-

First consider the diagonal elements (i = j). Since the (y>fc);'s are independent, identically
distributed, zero-mean random variables, we find that

E

Var

thF'F* = (7

£">•] =i^-fcr-)-

(A.2)

(A.3)
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where a2 = E[(<pk)2] and p,A = E[(ipk)4] [27, §8-1]. For the off-diagonal elements (t ^ j),

E[(jjF*Fh] =° (A'4)
Var (^P-F)j =^MM]. (A.5)

Noting that a2 and ^4 are independent of M, (A.3) shows that Var [(A/^*-F)tt| —• 0 as
M -• oo, so (jjF*F)u -> <r2 in the mean-squared sense [27, §8-4]. Similarly, (A.4) and (A.5)
show that for i ^ j, (jjF*F)ij —• 0 in the mean-squared sense. This completes the proof,
provided a2 = jj.

We now derive explicit formulas (depending on N) for a2, /z4, and E I(¥>*){(¥>*)jI- For
notational convenience, we omit the subscript k and use subscripts to identify the components
of the vector.

To compute expectations, we need an expression for the joint probability density of
(v?i>¥,2) ••• ,¥>n)- Denote the n-dimensional sphere centered at the origin with radius p by
S". Since (p is uniformly distributed on the surface of S^, the p. d. f. of <p is given by

f(?) = —, VipedS?, (A.6)
cn

where cn is the surface area of S^. We can compute cn as follows:

cn = / dA where dA is a differential area element
Jas^

r2ir tit rir tit

= / / '"I sinwi sin2u>2 ...sin 2un-2o!l>n-2 . ,.a\t)\d0 (A.7)

= f / d0) I I sin ui duj\ J f / sm2u2du2) •**( / sin^-2 u^-2 dupj-2 J (A.8)

In (A.7) we have parameterized the surface of the sphere with spherical coordinates and used
the differential area segment given by (A.l). Using

fn • 2n/1J/1 l-3-5---(2n-l) ,
L Sm ed° = 2-4-(fc») ' ***

Jo l-3-5---(2n + l)

we can simplify (A.8) to get the following familiar result [3, §1.4]:

_ NnN'2 _ N2Nir(N-iy2(^)\
°N" (35/2)! ~ N\ ' (A,9)

Using (A.6), we can make the following calculation:

<r2 = E[vj\ = E[fN]
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= / —<p2N dA where dA is a differential area element
Jas? cn"

J r2ir rir tit
= — / / •••/ (cosu>w_2)2sinu;isin2u;2...sin UN-2duN-2.. .du)id0(A.lO)

cn Jo Jo Jo

= — II d0) I I sinwi dw\ J( / sin2 u2 du2 J•••

( / sinN~3 u>jv_3 duj^-z) ( / cos2 wjv-2 sinN~2 u>n-2 duJN-2)

= f / sinN~2 un-2 djLO^-2) ( / cos2 u>n-2 sinN~2 u>jv_2 du>N-2)

cosu/jyr-2 sin^-1 u>n-2
N

l nr„:~N-2+ jj Jq sin""2 uN-2 dwN-2

fo*s\vT 2uN-2duN-2

N

(A.ll)

(A.12)

In this calculation, (A.10) results from using spherical coordinates and (A.ll) follows from
substituting (A.8) and cancelling like terms. The simplification (A.12) is due to a standard
integration formula [30, #323]. Similar calculations give

and, for i / j,

/i4 =E[pi] =
N(N + 2)

2 2] _ *
^ij N(N +E

N(N-r2)

A.4 Proposition 2.5

Subtracting
M

from

gives

Then we can calculate

/ = £«/,¥>*> +&)&
fc=l

M

f=YKf>W)lPk
k=i

M

f-f = -Efo&«
k=l

MSE = E\\f-f\ = E

M

YLPWk
k=\

M

= E (eaw")(eas)

(A.13)

(A.14)
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•M M

-tssl fc=l

M M

= 5Z5Z '̂fc^2?i*^fc
t=l fc=l

Af

fc=l

M .1
= *2£ (*"*rV*

Ar=l

M

k=l

= E

— Il2

k-1

-l= Ma2\\(FmF)
Ma2

' A* '

ll^ll2
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(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

where (A.15) results from evaluating expectations using the conditions on /?, (A.16) uses
(2.11), (A.18) uses the normalization of the frame, and (A.19) follows from (2.10).

If $ is a tight frame, equality holds in (A.17) and (A.19). Also, due to the normalization
of the frame, A= ^. Thus

MSE =
Ma2

(M/Nf
N2a2 _ Na2

M r



Appendix B

Frame Expansions and Hyperplane
Wave Partitions

This appendix gives an interpretation of frame coefficients as measurements along different
directions. This allows us to understand the partitioning of RN induced by frame coefficient
quantization without appealing to intersections with the partitioning of RM. We will also
touch on efficient coding of frame coefficients.

Given a frame $ = {¥>*}jfeii, the kth component of y = Fx is yk = (x, <pk). Thus y* is a
measurement of x along y?*. We can thus interpret y as a vector of M "measurements" of x
in directions specified by $. Notice that in the original basis representation of x, we have N
measurements of x with respect to the directions specified by the standard basis. Each of the
N measurements is needed to fix a point in RN. On the other hand, the M measurements
given in y have only N degrees of freedom.

Now let's suppose y is scalar-quantized to give y by rounding each component to the
nearest multiple of A. Since yjt specifies the measurement of a component parallel to <pk,
yk = (i-f |)A specifies a hyperplane (N—l dimensional manifold) perpendicular to <pk. Thus
quantization of y* gives a set of parallel hyperplanes spaced by A, called a hyperplane single
wave. The M hyperplane single waves give a partition with a particular structure called a
hyperplane wave partition [35].

Examples of hyperplane wave partitions are shown in Figure B.l. Figure B.l (a) shows
a frame in R2 composed of three vectors. Suppose x G R2 is specified by quantized inner
products with each of the three frame vectors. The quantization of the inner product with
the black vector gives the black hyperplane single wave. Similarly for the red and blue frame
vectors. Figure B.l(b) gives an example with M = 5.

We can now interpret increasing the redundancy r of a frame as increasing the number
of directions in which x is measured. It is well-known that MSE is proportional to A2.
Section 2.2.4 presents a conjecture that MSE is proportional to 1/r2. This conjecturecan be
recast as saying that, asymptotically, increasing directional resolution is as good as increasing
coefficient resolution. This is shown in Figure B.2. The initial partition is in black, increasing
coefficient resolution is shown in blue and increasing directional resolution is shown in red.

In §2.2.5 it was mentioned that coding each component of y separately is inefficient when
r > 1. This can be explained by reference to Figure B.l. Specifying yi and y2 defines a
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(a) (b)

Figure B.l: Examples of hyperplane wave partitions in IR2: (a) M = 3. (b) M = 5.

(a)

Figure B.2: Two ways to refine a partition: (a) Increasing coefficient resolution, (b) Increas
ing directional resolution.
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parallelogram within which x lies. Then there are a limited number of possibilities for £3.
(In Figure B.l(a), there are exactly two possibilities. In Figure B.l(b), there are three or
four possibilities.) Then with yi, y2, and yz specified, there are yet fewer possibilities for y4.
If this is exploited fully in the coding, the bit rate should only slightly exceed the logarithm
of the number of partition cells.



Appendix C

Lattice Quantization Through Frame
Operations

A lattice A is a set of points consisting of sums of the form DkLi $kVk, where the £k are
integers and the vectors v\, ..., vn are called a basis of the lattice [3].1 A lattice vector
quantizer is a nearest-neighbor quantizer whose reproduction values form a lattice. This
appendix establishes a relationship between lattice vector quantization and quantized frame
representations. We will see that in certain circumstances lattice vector quantization can be
achieved by quantized frame expansion followed by operations on discrete variables.

Given a lattice A, the basis is not unique. For example, given a basis {v\, v2, ..., vn}, we
can form another basis through W{ = Tvi, where T is any invertible element of Znxn. Without
loss of generality, we will assume that the basis {v\, v2, ..., v„} is one that minimizes the
norms of the basis elements such that

£<W > IM (CI)

for all nontrivial sets of integer coefficients and for all k.2 Such a basis exists because if (C.l)
does not hold for some A;, Vk can be replaced in the basis by £, atv,-.

We would like to describe the partition cells of the lattice vector quantizer associated with
A. Since a lattice is invariant to any shift that moves the origin to another lattice point, the
Voronoi cells are congruent. For notational convenience, we will consider the region mapped
to the origin by the quantizer. Nearest-neighbor encoding implies that the region mapped
to the origin is3

Re ={x GRN : ||x|| <||z - A|| VAGA\ {0}} . (C.2)
This is an infinite number of half-space constraints. It is shown in [12, §VI. A.] that by
removing redundant constraints (those corresponding to hyperplanes far from the origin),
(C.2) can be replaced by a finite number of constraints. The number of remainingconstraints

1It is implicit that the origin is an element of the lattice.
2This does not uniquely describe the basis. It is equivalent to choosing a basis which minimizes the

surface area of the fundamental parallelotope. (The volume of the fundamental parallelotope is fixed by A.)
See [3, §1.2 of Ch. 1].

3The boundaries can be arbitrarily defined.
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depends on the lengths of the basis vectors; enforcing (C.l) minimizes the number of hyper
plane constraints. Denote the minimum number of half-space constraints to describe Ro by
L. There exists correspondingly Ax, C A such that

Ro = {x€RN : ||*|| <||*-A|| VAgAl}.

By symmetry, A € Al implies —A G Al. Thus the constraints are in the form of L/2 pairs
of parallel hyperplanes.

To describe the entire lattice partition requires not only the L hyperplanes, but also those
hyperplanes translated to every lattice point. For some lattices, some of the hyperplanes will
coincide, resulting in a hyperplane wave partition. In these cases, the lattice VQ partition
cells are unions of hyperplane wave partition cells, so lattice VQ can be achieved by a
quantized frame expansion followed by the discrete operation of cell unioning.

The familiar hexagonal tiling of R2 is an example of a lattice VQ partitioning that can
be derived from a hyperplane wave partition. Figure C.l shows the lattice generated by
vi = [\/3 1]T and v2 = [0 2]T. In this case, discarding remote hyperplanes as in [12,
§VI. A.] leaves six half-space constraints for Rq. Furthermore,

A6 = {vi, v2, v2 - Vi, -vu -v2, Vi - v2}.

The solid, dashed, and dotted curves correspond to the nearest-neighbor conditions for ±t>i,
±v2, and ±(vi —v2), respectively. The hyperplane wave partition shown in Figure C.l is
equivalent to that generated by a quantized frame expansion with

f t>2 Vi -v2 _v±\
12' 2 ' 2/

and A = 1. (The choice of $ is not unique.)
The cells in the hyperplane wave partition are equilateral triangles. By joining the cells

in the hyperplane wave partition in groups of six, one generates the desired lattice partition
of IR2. For concreteness, the sequence of operations is shown in Figure C.2. T is a frame
expansion by multiplication with

T =

0 1
\/Z _i

2 2
V3 _1

2 2 J

Q represents a uniform quantizer which outputs the odd multiple of | nearest to

- f2* +l . I3

Let

V= <

1 • 1 - 1 - • 1 - • 1 •

? ,2 .2 \ \
I2

»

\
1

?
>

\
?

!2
?

L 2 J L 2 J L 2 J L 2 J L 2 J L

2*. Hence
A
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-4-3-2-1

Figure C.l: A lattice in IR2 shown with the corresponding half-space constraints for nearest-
neighbor encoding.

g U

xe$R: yeSR3 ye<R3 xeW

Figure C.2: Block diagram for hexagonal lattice quantization of R2 through scalar quantiza
tion and discrete operations.

Block g represents a selection function that forms groups of six cells from the hyperplane
wave partition associated with T and Q. Denote the output of g by s = [si s2]T GZ2. Then
s is determined by the constraints

and

Finally, x = Us, where

3 v G V such that v —y =
si
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-Si - s2

2si +s2 =0 (mod 3)

Si -\-2s2 =0 (mod 3).
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