
 

 

 

 

 

 

 

 

 

Copyright © 1995, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



LOSSY COMPRESSION OF INDIVIDUAL

SIGNALS BASED ON ONE PASS CODEBOOK

ADAPTATION

by

Christopher Chan

Memorandum No. UCB/ERL M95/58

1 July 1995



LOSSY COMPRESSION OF INDIVIDUAL

SIGNALS BASED ON ONE PASS CODEBOOK

ADAPTATION

by

Christopher Chan

Memorandum No. UCB/ERL M95/58

1 July 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



LOSSY COMPRESSION OF INDIVIDUAL

SIGNALS BASED ON ONE PASS CODEBOOK

ADAPTATION

by

Christopher Chan

Memorandum No. UCB/ERL M95/58

1 July 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



ABSTRACT

Lossy Compression of Individual Signals based on

One Pass Codebook Adaptation

Christopher Chan

Universal lossless codes have been proven to exist [5], and practical universal

lossless coding schemes have been constructed [27, 6]. Given the attractive property

of a universal code, namely that it can achieve an asymptotic rate approaching the

entropy of the source, without knowledge about the source distribution a priori, a

lossy counterpart of a universal code is highly desired. In this work, our objective

is to develop a practical one pass lossy compression algorithm that approaches this

universality property.

We have addressed the problem within the framework of vector quantization

(VQ). Traditionally, vector quantization relies on a codebook that has to be "trained"

in advance on a set of signals, called the training sequence, generated from the target

source. This assumes knowledge of the source distribution a priori. To release this

restrictive assumption, we have investigated on methods to adapt the VQ codebook

to the actual signal to be coded.

In the lossless domain, Ziv and Lempel have introduced a simple schemefor uni

versal data compression, which later gives rise to a whole class of algorithms. This

class of algorithms is based on a dynamic dictionary of source sequences parsed as

strings, and replacing subsequent occurrences of these strings by pointers. Gener

alizing such exact string matching to approximate string matching, i.e. one with

distortion, we have incorporated the Lempel-Ziv idea into adaptive VQ, and devel

oped a universal lossy compression algorithm.

The essence of the adaptive algorithm is the criterion it uses to encode the

source vectors and adapt the codebook. A source vector can be simply encoded by a



codevector in the current codebook, or it can invoke the addition of a new codevector.

Current codevectors can be moved around or even be deleted as the source distribution

varies. These actions are taken to minimize the Lagrangian R + A£), where R is the

bit rate involved in taking an action, D is the distortion it introduces, and A is a

parameter chosen to control the operating point of the algorithm on the operational

rate-distortion curve. In a sense, bits are "traded" for a reduction in distortion by

modifying the codebook. Hence, the technique is called rate-distortion Lempel-Ziv

(RDLZ).

Experiments are performed on various sources, namely stationary Gaussian sources,

"switching" (time-varying) Gaussian sources,standard test images, and composite im

ages. Advantages of adaptation using the RDLZ algorithm are demonstrated in these

experiments. When a VQ codebook is mismatched with the actual source signal,

significant improvement in rate-distortion performance is achieved with the adaptive

algorithm. Empirical evidenceon the universality of the algorithm is also given.
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Chapter 1

Introduction and Motivation

1.1 Universal Lossy Source Coding

Rate distortion theory has provided a theoretical framework that defines the

achievable optimality of lossy source coding, and establishes the existence of source

codes performing near the optimum. These codes, however, assumes a priori the

knowledge of the source distribution. And even with this assumption, the design of
the code is a non-trivial process.

For instance, in the vector quantization (VQ) framework, some necessary opti

mality conditions have been proved [9]. If a vector quantizer Q* is optimal over any
vector quantizer Q with a particular vector dimension £, then it must satisfy these

conditions. Two well known optimality conditions are the nearest neighbor condition
and the centroid condition. Based on these conditions, various versions of an itera

tive method for designing quantizers have been introduced. They are called variably

the generalized Lloyd algorithm [9], k-means algorithm [17], or the Linde-Buzo-Gray

(LBG) algorithm [14]. These iterative algorithms, although guaranteed to converge,
do not always converge to the optimal quantizer. More likely than not, they will go
to some local minima. Hence, additional techniques have been introduced to evade

local minima, such as simulated annealing [8, 21], but they add to the computational
complexity significantly.

Another problem in designing the quantizer using these iterative algorithms is



that the distribution of the source X is unknown. Hence, the designer has to rely

on a training sequence (X\,..., Xm) of vectors, where the X^s are assumed to have

the same distribution as X. In coding of portrait images, for instance, a large set of

portrait images will be used as the training sequence. However, it is not difficult to

conceive of situations where this assumption is too restrictive and unreasonable. In

our example, the images to be coded may be landscapes, or brain CATs.

This motivates the work on developing universal codes for lossy source coding.

A block code is universal if it achieves the rate-distortion bound as the blocklength

approaches infinity, on all sources from a class of sources. In other words, the code

"learns" from the actual source signals and adapts to them. Consider a stationary

non-ergodic source, where the actual signal can be generated from one of several

stationary ergodic sources chosen arbitrarily at the beginning. Asymptotically, the

code should achieve the optimal performance of the corresponding stationary ergodic

source.

Previous works in this area fall into two categories: 1) existence proof and code

construction, and 2) practical, computationally efficient algorithms. In works by Ziv

[25], Neuhoff et al. [18], MacKenthun and Pursley [16], Kieffer [11], Linder et al.

[15], Yu and Speed [22] and others, the existence of universal lossy source codes

is established under various assumptions about the class of sources, the distortion

measure, and the type of convergence of the rates to the rate-distortion bound. The

codes constructed in these proofs, however, cannot be implemented in practical coding

situations, due to their high computational complexity and/or intensive memory re

quirements. Hence, work is still in progress towards the goal of developing a practical

algorithm for finding a universal lossy code.

Two different approaches have been taken in constructing the practical universal

code. The first approach involves iterations on the source signal, requiring the encoder

to look at the source signal more than once in determining the adaptation of the

code. Algorithms taking this approach are called two pass algorithms. In [10], a

VQ codebook is modified by splitting codevectors with the largest partial distortion

in encoding a source signal, and running the LBG algorithm on the same signal

to determine the final locations of the new codevectors. In [7], the encoder finds



the optimal codebook for the part of the source signal seen thus far at increasing

intervals, and refines its initial codebook by transmitting codebook changes with

increasing accuracy. The tradeoff between spending bits on transmitting updates of

the codebook and specifying codevector index is addressed in [23], which also involves

finding the optimal codebook periodically. Lightstone and Mitra [13] then addressed

the rate-distortion tradeoff by using the entropy-constrained framework. One common

characteristic of these algorithms is that some kind of iterative techniques, such as

the LBG algorithm, is involved at certain steps of the algorithms.

The second approach, described as one pass, adapts the code as encoding pro

ceeds without using iterative techniques. The source signal is hence parsed through

just once. Steinberg and Gutman [20] proposed an algorithm based on string match

ing with distortion, which achieves R(D/2) for a large class of stationary sources

and distortion measures. Zhang and Wei [24] introduced the "gold-washing" method,

which sequentially updates the set of codevectors. In [19], the source distribution

function is estimatedbased on the occurrence counts of the scalar quantizer bins, and

the quantizer adapts without requiring side information. Our work adopts the one
pass approach.

Advantages of one pass algorithms include simplicity, computational efficiency,

and low encoding delay. In lossless source coding, a family of universal coding algo
rithms which exhibits these advantages is Lempel-Ziv coding [26, 27]. It is proved to

be asymptotically optimal, and because of its speed and efficiency, it has become the

standard algorithm for file compression on computers.

1.2 Lossy Counterpart of Lempel-Ziv Coding

Since Lempel-Ziv coding provides an elegant and simple way for doing universal

source coding in the lossless domain, it is natural to ask the question: is there a lossy
counterpart of Lempel-Ziv coding? This work is motivated by this question.

The basic idea behind Lempel-Ziv (LZ) coding is to replace a repeated block of

source symbols, or phrase, by a reference to a previous occurrence. Particularly, in

the approach proposed by Ziv and Lempel in 1978, labelled LZ78, the source sequence



seen thus far is parsed into phrases, where each phrase is the longest matching string

seenpreviously plus one extra source symbol. Thesephrasesconstitute the dictionary.

To extend this idea to lossy source coding, phrases from the source are matched

to the dictionary with distortion. Along these lines, Steinberg and Gutman proposed

an algorithm that achieves a rate of R(D/2) given an average distortion D > 0 for

a large class of sources and distortion measures [20]. Koga and Arimoto [12] further

proved that the algorithm achieves the rate-distortion bound asymptotically for cer

tain sources and fidelity criteria. These works establish the theoretical foundation

and motivation for a lossy version of LZ coding.

In this work, a lossy coding algorithm that has the flavor of LZ coding is devel

oped. The algorithm, which we call the rate-distortion Lempel-Ziv (RDLZ)algorithm,

is developed using the framework of adaptive vector quantization. LZ coding involves

building a dictionary by parsing in phrases from the source sequence, and replacing

subsequent occurrences of the phrases (via string matching) by pointers to the dic

tionary. If now we constrain the phrases to be of constant length I, and if string

matching with distortion is performed, then the problem can be translated to a VQ

context. The LZ dictionary is analogous to the VQ codebook. Phrases in the dictio

nary are the codevectors. Approximate string matching becomes quantization, where

an ^-block of source symbols is replaced by the "best" codevector according to some

cost function. Here, the cost function we have adopted is the Lagrangian J = R+XD,

where R and D are the bit rate and distortion respectively. The essence of the prob

lem is to construct the codebook in a one pass manner, based on the actual signal to

be encoded. This point will be further elaborated in Chapter 2.

1.3 Vector Quantization

Quantization, in its simplest, is to approximate a single number by the "nearest"

number (according to some distortion measure) from a predetermined finite set. If this

quantization process is performed on each sample from a signal sequence separately,

then it is called scalar quantization. Consider analog-to-digital conversion, which is

basically scalar quantization of real values onto a finite set of numbers. The real line



(or a closed interval on it) is partitioned into cells, and each of the cells is mapped to

a reproduction point within the cell.

Vector quantization is a generalization of scalar quantization. A vector is an

ordered set of numbers, which is typically a block of source symbols. Instead of the

real line, the multi-dimensional Euclidean space is being partitioned. Mathematically,

the problem is formulated as follows. A vector quantizer Q of dimension £ and size

M is a mapping from V} into a finite set Ccontaining M reproduction points, called

codevectors. That is,

Q : Hl -+ C,

where C = {ci,...,cM}, cx,...,cm € Hl. The set C is called the codebook. A

quantizer Q is defined by a codebook, and associated with it, a partition of Ke into

cells d = {x € TV : Q(x) = a}, i = 1,..., M. Each codevector in the codebook is

encoded by a source code which maps its index i e {1,..., M} into a binary string
Si e {0,1}*, where {0,1}* denotes the setoffinite length binary sequences. The code

is fixed rate or variable rate depending on whether si,... ,5m have the same length
or not. For the latter case, the code has to be prefix free.

The average rate per vector is defined to be

M

t=i

where p{ - ?r{Q(X) = c,} for a random source X. Let de(x,y) be the distortion
between vectors x and y, where x,y € Ke. Then the average distortion per vector
between the source and its reproduction is

D = E[de(X,Q(X))}.

First consider a vector quantizer using a fixed rate code for the codevector indices.

The quantizer is optimal if the average distortion D is minimized. Some necessary
conditions for a quantizer to be optimal have been proposed and proved. Given a

fixed decoder, the optimal encoder would partition 1le such that the mapping from
vectors in each cell to the reproduction point is a minimum distortion, or nearest



neighbor mapping. That is,

d((x,Q(x)) = mmdi(x,Ci).

If an input vector does not have a unique nearest neighbor, it can be assigned arbi

trarily to any of its nearest neighbors.

Now, given a fixed encoder, which specifies the partition of TZ£, the optimal

decoder would place the reproduction points at the centroid of each cell, so that

distortion is minimized. Hence,

et = E[x\x e d].

Based on these two optimality conditions, iterative codebook improvement algo

rithms have been developed [9, 17, 14]. Starting from an arbitrary initial quantizer,

they alternately optimize the encoder and decoder using the nearest neighbor and

centroid conditions respectively.

For a variable rate vector quantizer, codes for the codevector indices are not of

the same length, hence the strategy mentioned above that only minimizes distortion

may not be optimal in the rate-distortion sense. Using entropy-constrained vector

quantization (ECVQ) [4], vector quantizers can be designed which have minimum

distortion subject to an entropy constraint. It is based on minimizing the Lagrangian

cost function J = R-\- XD. The two step iterative codebook improvement algorithm

for fixed rate VQ becomes a three step process:

1. Given the variable rate index codes {s,} and codevectors {ct}, i = 1,...,M,

find the partition of Re that minimizes J.

2. Given the updated partition of Re, find the optimal lossless codes {s,} for the

codevector indices.

3. Given the updated partition of Re, find the reproduction codevectors {ci} that

minimizes J.

Note that if codevector updates do not have to be transmitted, Step 3 is simply the

centroid condition that minimizes distortion for each cell C,.



As mentioned earlier, a problem with these iterative quantizer design methods

is that the source distribution is typically unknown. Hence, a training sequence

(Ai,...,Xm) generated from source X has to be used to design the VQ codebook.

If the actual signal to be encoded has a source mismatch with X, then modifying

the codebook to adapt to the actual source would improve performance in the rate-

distortion sense. A one pass algorithm to adapt the codebook by "trading" bit rates

for distortion will be presented in this work.

1.4 Outline of the Report

Chapter 2 describes the practical one pass algorithm we propose. Sections 2.2

and 2.3 give the basic definitions and notations, and an overview of the algorithm.

Section 2.4 describes the algorithm in detail, particularlyon how codebook adaptation

is carried out. Somedetailed issues of the algorithm are then explained in Sections 2.5

and 2.6, followed by a discussion on the algorithmic complexity in Section 2.7.

Chapter 3 presents experimental results of the algorithm on various sources.

Section 3.1 demonstrates the benefits of adaptation on stationary sources with mis

matched initial codebook, as well as time-varying sources. Section 3.2 provides em

pirical evidence on the universality of the algorithm. Section 3.3 discusses the per

formance penalty due to adaptation on a stationary source. Results on images are
given in Section 3.4.

Finally, Chapter 4 gives the conclusion, and states the future directions for this

project.



Chapter 2

Practical One Pass Algorithm

2.1 One Pass Adaptive Vector Quantization

When there is a mismatch between the statistics of the source and that of the

training sequence from which the VQ codebook is derived, or when the source statis

tics is slowly varying in time, adapting the codebook to local statistical characteristics

of the source signal is likely to improve the coding performance. Such a vector quan

tizer is described as adaptive.

In most cases, modifying the codebook involves transmission of side information,

which costs bits. Hence, the idea is that bits can be spent wisely to result in an overall

reduction in distortion which is worthwhile in the rate-distortion sense (Fig. 2-1).

Our objective is to develop a codebook adaptation scheme which is simple, com

putationally efficient, and one pass. This is in line with the spirit of Lempel-Ziv

coding as mentioned in the previous chapter. Being one pass, it introduces minimal

encoding delay. In fact, without looking ahead into the future during encoding, the

delay is just the vector dimension £. Codebook adaptation is based on "learning"

from the encoding history of the source signal, which is characterized by a small set

of statistical measures (Fig. 2-2).
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Figure 2-1: Adaptation of the quantizer can achieve better R-D performance.

2.2 Definitions and Notations

Let x = (x1,x2,... ,x;v), Xi € A1, be a realization of the random ^-dimensional

vector source X. The source alphabet A can be finite or continuous. In the discussion

given in Chapter 1, A was taken to be the set of reals Tl. Also define A to be the

reconstruction alphabet, which may or may not be the same as A. Let dt(x,y) be a
distortion measure on A1 x A1. The codebook Cis a set of reproduction codevectors
icj € Ae,j = 1,..., M}, each of which is associated with a cell Cj = {x{\xi = Cj},
where x{ is the quantized version of x{, i.e. x{ = Q(xi). Each codevector is also
associated with an index code Sj, of rate r5 = \sj\ (length of the index codes in bits).

To estimate the empirical distribution of the source, non-overlapping windows
rk, k = 1,2,... of size L are defined. L is the update interval, at which the local
empirical distribution of the source is re-evaluated, to trace the variation of the source

statistics in time. During rk, the count of samples that fall in each codevector cell

is recorded. This is denoted by nf\ the occurrence count for the j-th codevector
during the k-th update window. In the same way, the empirical centroid cf] and
average distortion D^k)(Cj,Cj) of cell Cj with respect to codevector Cj for each j are
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Figure 2-2: Schematic of the codebook adaptation. The decoder keeps track of the
encoder codebook changes through side information and nj, the count of samples that
fall in each codevector cell over a period of time.

estimated.

When a new codevector is introduced, or an existing codevector is modified

(as will be described in Section 2.4), side information about the position of that

codevector has to be sent. The total number of bits spent on encoding the codevector

position is denoted B(v), wherev is the codevector position, or if differential encoding

is used, the positional difference between the new and the original codevectors.

2.3 Overview of the Algorithm

Encoding a source signal x using a fixed codebookdesigned on a training sequence

gives an operating point on the R-D plane. We want to adapt the codebook so

that the operating point moves towards the R-D bound for that source. This can

be formulated as minimizing a cost function, which in the current context is the

Lagrangian J = R+ XD. Fig. 2-3 illustrates the idea of minimizing the Lagrangian

as the codebook adaptation criterion.

Being one pass, the algorithm "learns" from the source signal as encoding pro-
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Figure 2-3: Minimizing the Lagrangian J = R + XD as the codebook adaptation
criterion.

ceeds to streamline the codebook. Hence, codebook modification occurs continuously

during encoding, and it is crucial that the decoder can keep track of the codebook

dynamics from the encoded bitstream. As shown in Fig. 2-4, the bitstream is consists

ofcodevector indices (sj, to be precise) and side information regarding codebook up
dates, in the chronological order as codebook adaptation occurs. This is somewhat

similar to Lempel-Ziv coding, where the encoding history is recorded in the bitstream.
As an overview, the algorithm goes as follows:

1. Start with an initial codebook.

2. For each source vector x,-, decide whether it should initiate a new codevector to

the codebook. If so, describe the new codevector in the bitstream. If not, send
the index code of the nearest codevector.

3. At intervals of L, decide which existing codevectors should be moved towards

their respective empirical centroids Cj, and which should be deleted from the

codebook. Send side information for codevector movements.

4. Also at intervals of L, update the index codes Sj for the codevectors.
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Figure 2-4: The encoded bitstream consisting of codevector indices as well as code-
book updates.

2.4 Codebook Adaptation

In [4], Chou et al. introduced the entropy-constrainedvector quantization (ECVQ)

algorithm to design vector quantizers that minimize average distortion subject to an

entropy constraint. Refer back to Section 1.3 for the three steps involved in each

iteration of the algorithm. The algorithm iterates these three steps until convergence

is reached.

For a stationary ergodic source, x can be divided into blocks of length L, i.e.

(Xi . . . Xl), (XL+l •••X2l), •••, (Z(A'-1)L+1 •••Xkl),

assuming that N = KL for some integer A'. Steps 1, 2 and 3 can then be applied

to these blocks in turn. In other words, instead of iterating on the same signal many

times, this scheme "iterates" on different parts of the signal, updating the codebook

one step at a time. As L, K -> oo, convergence to the optimal quantizer is expected.

One observation is that the overhead in sending the codebook update is negligible as

L —> oo.

However, if the source exhibits non-stationary behavior, or if the source signal

is of finite duration, such a naive one pass block updating scheme is no longer fea

sible. It fails to consider the tradeoff between the overhead in terms of bit rate and

the resulting effects on distortion, and it does not adapt to variations in the source

statistics adequately. We have hence studied the effects of adapting the codebook
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Figure 2-5: Several ways of codebook adaptation: Add, Split, Move and Delete.

by "trading" bit rates for distortion, through adding, splitting, deleting and moving
codevectors (Fig. 2-5).

2.4.1 Adding Codevectors

For a signal x = (xi,x2,... ,xn), there may be times when a source vector x,

is too far from any existing codevector. This may reflect a mismatch between the

statistics of the source and that of the training sequence, a change in the source

distribution in time, or simply a rare event. In any case, xt- is a candidate for being
a new codevector.

The adaptation criterion, as mentioned above, is to minimize R+AD. A greedy
approach is adopted to decide whether to add a new codevector or not. That is, for

each t, Xi is encoded in such a way which gives the smallest Ri+ AA, where Ri is the

number of bits to encode x„ and Di is the distortion thus introduced, i.e. <fc(xt-,x,).
Two options are available to encode xt: 1) use the nearest codevector, or 2) send a
quantized version of x,- as a new codevector.
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For 1),

Ri = Tj. (2.1)

Dt = de(xi,cj.) (2.2)

where

j* = arg min rj + Xde(xi,Cj).
j€{l,...,M>

For 2), differential coding is used to describe the new codevector Cnew. In Sec

tion 2.5, issues on quantizing X{ to Cnew will be discussed, which we will skip over

for the time being. An escape code is needed, to distinguish it from an ordinary

codevector index, followed by the index code of the nearest existing codevector Cj<

and the offset v = Cnew —cy. Let E be the length of the escape code, then we have

Ri = rr + B(v) + E (2.3)

Di = dt(xi,cnew) (2.4)

where

f = arg min dt{xi,Cj).
j€{l,...,M}

Now, define AR to be the increase in bit rate if adaptation (i.e. adding Cnew

for this case) is taken as opposed to no adaptation, and AD to be the reduction in

distortion in doing so. Based on the criterion to minimize J = R + XD, adaptation

is taken if

XAD > AR. (2.5)

To estimate AR and AD for adding codevectors, we need to consider some

further details. Since the index code for cnew does not exist before, the index code of

the nearest codevector, i.e. Sj>, is appended an extra bit to accommodate for snew.

Since Sj is prefix free, so appending a bit does not affect its decodability. Visualize

this as splitting a leaf node of the Huffman tree. Hence, the vectors mapped to Cj>

subsequently will suffer from an increase of index code length by 1. Denote this effect

by hji, which is an estimation of ny during the current update window. As a rule of

thumb, hji can be taken to be nj> in the previous update window.
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Adding Cnew will reduce the distortion in encoding x,-, as well as other subsequent

source vectors mapped to c„eu,. To derive an operating formula for AR and AD, we

need to estimate the occurrence count nnew for the new codevector in the current

update window. Since there is no basis for estimating this, we take a conservative

approach, and assume it to be small. In our experiments, we have used nnew = 1 or

2. We also assume that Cnew gives the same reduction in distortion for all subsequent

cases as in encoding Xj. With these assumptions,

AR * rf_ri. +M +B+«, (26)
rinew

AD = deixiiCj^-dtixiiCnw) (2.7)

2.4.2 Splitting Codevectors

In [10], it is proposed that the codevector with the highest partial distortion

should split into two codevectors. The partial distortion of the j-th. codevector is

defined to be PjD(Cj,Cj), where pj is the probability that xt- is mapped to Cj. In our

work, since the criterion is to minimize R + XD, a different approach is taken.

At the end of an update window r*, the empirical partial distortion of a codevec

tor is estimated via nj ' and D^(Cj,cj). The codevectors (there can beseveral, e.g.
10) with the highest empirical partial distortion are potential candidates to split, but

we also need to consider the tradeoff between AR and AD.

Consider the source vectors that are mapped to Cj. Let Rj be the rate to encode

the source vectors mapped to Cj, and Dj be the average distortion thus introduced.

Without splitting,

Ri = rj (2.8)

Dj = D(Cj,cj) (2.9)

Upon splitting, the codevector index code is lengthened by 1 bit, in the same

way as adding a codevector. Hence, assuming that the combined occurrence counts

of the two children codevectors is the same as that of the original codevector, then Rj

becomes rj+1+overhead. Using the same scheme to transmit overhead as described
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in 2.4.1,

Rj = rj + 1 + t£t— (2.10)

where v is the offset between the new codevector cnew and the original codevector Cj,

and Uj is the empirical occurrence count of Cj before splitting.

The average distortion will drop, but the extent to which it drops is not obvious.

This depends on the geometry of the cell Cj, and how Cnew is placed relative to Cj. A

heuristic estimate is given by

Dj = kD(Cj,cj) (2.11)

where k < 1. In our experiments, 0.5 < k < 0.75.

Hence,

A* * !+°2£* (2.12)
AD = (\-k)D(Cj,cj) (2.13)

and Cj is a candidate for splitting if (2.5) holds.

After determining Cj to be a candidate for splitting, it is not actually split until

a subsequent source vector x, mapped to c, is at a distance within a range from

it, which is not too close nor too far. Heuristically, we have taken the range to be

D(Cj,Cj) < d((xi,Cj) < 4D(Cj,Cj). Then, a quantized version of xt- is treated as a

new codevector and is transmitted in the bitstream. Cj is unchanged in the process.

2.4.3 Moving Codevectors

The empirical centroid cj is calculated for each codevector during rk. At the
end of Tit, decisions are made as to which Cj should be moved towards cy. They
do not necessarily move to exactly c] ', since codevector offsets are quantized before
transmission.

Let Cj be the quantized version of cj- , and let v be the offset Cj —Cj. Hence,
B(v) bits are required to encode the offset. Moreover, since not all codevectors are

always updated, the codevector indicesmust be specifiedalso. This overhead is shared

among nj- source vectors which will be mapped to dj. At the moment the decision
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is made, however, nj is unknown. As an estimate, it can be taken to be nj- \
Given these considerations, for each codevector Cj,

A*=*±gv). (2.14)
If Cj is exactly the centroid of the source vectors mapped to Cj during rk, then

the average reduction in distortion if Cj were the codevector instead of Cj is simply

d((cj,Cj). Then, for each Cj,

AD = de(Cj,Cj). (2.15)

As mentioned earlier, Cj may not be exactly the centroid. In that case, the equality

in (2.15) no longer holds. In our experiments, however, (2.15) is still being used.

In Section 3, we will show that the exact formulation of these decision equations is

relatively unimportant.

As before, a codevector is updated if (2.5) holds.

2.4.4 Deleting Codevectors

In [4], codevectors whose cells are unpopulated after several iterations are ef

fectively deleted from the codebook, since the entropy coder will assign an infinite
length code to its index. For our purpose, it may be worthwhile to keep the code-
vectors around, even though they are unpopulated for a period of time, since adding
them later on will cost considerable overhead. At the end of Tk, codevectors with

(k)n) = 0 will be assigned a count of 1 before updating the index codes for rJ+1. A
more detailed discussion on this will be given in Section 2.4.5.

If the codebook is growing too large, and memory is running low, then it is

inevitable that unpopulated codevectors are deleted. In that case, some of the un

populated codevectors are flushed out at the end of Tk for each k. Note that codevector

deletion is an adaptation that comes for free with the encoded bitstream, since the

necessary information for deletion is just nf\ which can be calculated at the decoder
based on the stream of codevector indices sent by the encoder. No side information

has to be transmitted, and hence no rate-distortion tradeoff is considered here.
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2.4.5 Updating the Index Codes

As mentioned before, index codes are updated at the end of rk based on n) ',
j = l,...,Af, gathered during Tk. {n[k\...,n$} gives an estimate of the local
statistics of the source, hence an entropy coder that updates the lossless code based

on {n[ '/L,..., n\J/L} adapts to local statistics of the source. (Note that the update

interval L is equal to YljLi nj •) Since both the encoder and decoder have access to
(k)n) , updates of the index codes do not have to be transmitted. Entropy codes such

as Huffman code, Shannon-Fano-Elias code, or arithmetic code can be used for this

purpose.

When estimating the distribution from {n\ ,..., nM }, the zero frequency prob
lem [1] arises: if nj- = 0 for some j, should we infer that the j-th. cell is of zero
probability, and assign an infinite length index code to it (or simply delete it)? Or

should we assume that the set of samples is not of sufficient size? In Section 2.4.4, a

way to circumvent the zero frequency problem is presented. The occurrence counts of

unpopulated codevectors are set to one automatically, to avoid the codevectors from

being virtually flushed out of the codebook when the index codes are updated. This,

however, still poses a problem. In the algorithm, x, is encoded by the codevector that

incurs the least R -f XD. The longer a codevector index code is, the less likely that

codevector is going to be chosen. Hence, if the codebook size Mis large, setting nj- '
to 1 does not save Cj from being phased out. Moreover, if the update interval L is not

much larger than the codebook size M, the occurrence counts suffer from insufficient

statistics. Losing codevectors just because they have not experienced much usage

during Tk should be avoided.

To overcome this, the codebook can be divided into two parts. The first part

Chot contains the most popular codevectors. This is the hotlist of the codebook. The

second part Ccoid contains the rest of the codebook. Let n[Jld = 12{j\c eccold} nj •
Then the entropy coder will design the index codes for {nf^\cj e Chot} U{"iJL}- The
codevectors in Ccoid will then be distinguished by a fixed length code appended to scoid

assigned by the entropy coder. In other words, {sj\cj € Chot} are optimal variable

length codes, whereas {sj\cj € Ccoid} are fixed length codes (Fig. 2-6). This prevents
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any particular index code from being extraordinarily longer than the others, and also

reduces the amount of computation of the entropy coder.

0 1

1 0

0 1 0 1 s6

0A1 0A1 s4 s5
/ \ / \

sO si s2 s3
000

sll

s7 s cold s8 s9 slO

111

sl8

Figure 2-6: Modified entropy coding of the codevector indices. In this example,
Huffman coding is used for codevectors in the hotlist plus the prefix of the rest of
the codebook (sco/d). Fixed length codes then append scoid. Chot = {so>«.-,Sio},
Ccoid = {Sn,...,Si8}.

2.5 Quantization Issues

When adding, splitting and moving codevectors, offsets are sent as overhead.

Hence, there is a tradeoff in the precision with which the offsets are described, and

the number of bits that they cost. For simplicity, independent scalar quantization is

performed on each component of the offset. The scalar quantizer is pre-designed and

fixed rate at the current stage of our work.

As the codebook adapts to a stationary source and converges to the optimal

codebook, the size of the codevector offsets become smaller and smaller. Hence, the

quantizer is designed to be adaptive to the dynamic range of offset powers. Given
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a fixed rate of b bits, bo bits are allocated to specify the gain, and the remaining

6q = b —be are allocated for the quantization levels of a uniform quantizer. Hence,

26<? levels are available, and they are scaled by one of 2b° gain values. For a codevector

offset, the gain is determined by its largest component. Hence, the total number of

bits to quantize an offset of dimension £ is bo + £bq. The gain varies from one

codevector offset to another.

There are several alternatives to encoding (quantizing) the offsets:

1. Scalar quantization of each component with several scalar quantizers of differ

ent resolutions. The quantized version with the best rate-distortion tradeoff is

selected, and a selector code that specifies that resolution is transmitted.

2. Vector quantization of the offset.

[13] has given a more detailed treatment of quantization strategies for this purpose.

The interested reader is referred to it.

2.6 Syntax of the Encoded Bitstream

Encoding of the source is done in a manner similar to Lempel-Ziv coding, that

for each i, xt- is encoded either by the index code of an existing codevector, or by the

description of a new codevector. An escape code is used to distinguish the two cases.

Moreover, at the end of each Tk, whose size L is predetermined, codevector updates

are transmitted in a batch, trailed by the escape code. Hence, the encoded bitstream

contains all the information the decoder needs to reconstruct the codebook and its

dynamics.

The syntax of the bitstream is summarized as follows:

{index}{index} ... {index} ... ^ plain index encoding
{esc}{index}{offset} ... <- new codevector

{index}{index} ... {index} <_ plain index encoding up to end of rk
{index}{offset} ... {index}{offset}{ esc} ... *- codevector updates, trailed by {esc}

where
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{index} = index code of the "nearest" existing codevector,

{esc} = escape code, and

{offset} —offset between the new/updated and original codevectors.

2.7 Complexity of the Algorithm

Finally, a brief note on the complexity of the algorithm. For each source vector

Xi of dimension £, encoding it with an existing codevector involves M distortion

calculations c^(x,-, Cj), j = 1,..., M, and finding the minimum rj-f Xd((xi, Cj). Hence,

the per source symbol complexity is 0(M/£). At the same time, evaluating whether

adding or splitting a codevector is worthwhile involves comparing AR with XAD,

as described in Sections 2.4.1 and 2.4.2. Using fixed scalar quantization for the

codevector offsets, this is an 0(1) per source symbol operation. Moreover, several

book-keeping operations, such as incrementing occurrence counts, updating centroids

and average distortions, are involved. These are also 0(1/£) operations, and hence

the overall per source symbol complexity is 0(M/£) for large M.

Once every L vectors, new index codes are computed, which can be computation

ally quite intensive for large M. With the modified entropy coding scheme described

in Section 2.4.5, where the hotlist is kept reasonably small, this task becomes much

less computationally intensive. Codevector deletion and batch codevector updates

towards centroids are also performed, but they are relatively simple operations. In

any case, for large L (such as a few thousands source vectors in practice), these com

putational overheads become insignificant. Note that the choice of L is a balance of

accurate estimation of source statistics (large L) and adaptability to local variations

of it (small L).

Decoding is basically a table look-up plus some book-keeping for codebook mod

ifications. Index codes computation is the same as that at the encoder, which as

mentioned earlier, becomes insignificant for large L. Hence, the algorithm is of the

same order in complexity as static codebook full-search VQ in terms of source encod

ing and decoding. This is more attractive than two-pass adaptive algorithms, which

require more computation per source vector due to their iterative nature.
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With the concern for lower encoding complexity, tree-structured VQ (TSVQ) [9]

provides an effective way to reduce the search complexity to 0(log M/£) per source

symbol. A one pass adaptive version of TSVQ would therefore be highly desirable.

Work in this direction will be pursued.
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Experimental Results
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In this chapter, the performance of the RDLZ algorithm described in Chapter 2

on various sources is evaluated. Sources that are stationary or time-varying, synthetic

or real, are considered. In particular, we are concerned with two issues: (1) the

performance gain achieved by adaptation for sources that are mismatched with the

training sequence on which the codebook is designed, as well as nonstationary sources,

and (2) the performance penalty caused by adaptation for stationary sources with

optimal initial codebook. Moreover, effects of the choice of parameters such as L

(update interval) and A will be discussed.

3.1 Performance Gain with Adaptation

In the first experiment, the adaptive algorithm is applied on a stationary Gaus

sian source mismatched with the initial codebook. The distribution of the source and

the initial codebook are shown in Fig. 3-1. The length of the source is 160000 samples.

Vector dimension is 4, but only the first two components are plotted on the Cartesian

plane for easy visualization. Update interval L is 2000 vectors. Fig. 3-2 shows the

results of the adaptive algorithm initialized with a mismatched codebook, as com

pared to static codebook vector quantization. The curve is obtained by varying Xand

initial codebook size, and then finding the convex hull. Significant improvements are

achieved with adaptation. When compared to the performance of the optimal vector
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quantizer, however, the adaptive algorithm is suboptimal. This is due to the static

nature of L, which will be discussed in Section 3.2.

Source dntribution
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Figure 3-1: Source mismatched with the initial codebook. (a) Distribution of the
source. Signal source is correlated Gaussian source with p = 0.95, a2 = 1. (b)
Initial codebook designed on training sequence from an i.i.d. Gaussian source with
a2 = 0.25.

Next, a time-varying source is considered. It is a source which is switching back

and forth between two stationary Gaussian processes at random times. This can still

be a stationary source if the switching process is stationary, but over a small window

of interest, the source exhibits non-stationary behavior. Fig. 3-3a shows the source

distribution at two different time instants t\ and t2. We start with an initial codebook

which is the optimal for the "average" of the two processes. Results (Fig. 3-4) again

show the advantages of adaptation, although they are quite marginal as compared

to the previous case. Fig. 3-3b plots the codevectors with the shortest index codes

at time instants t\ and t2. Clearly, the codebook (the codevector index codes, to be

precise) is adapting to changes in the source distribution.

3.2 Universality of the Algorithm

From Fig. 3-2, it appears that although the adaptive algorithm achieves signifi

cant improvements over static codebook VQ with mismatched codebook, it is still a
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Figure 3-2: Comparison of RDLZ and static codebook VQ on a source mismatched
with the initial codebook. Performance with optimal codebook is also shown.

step away from the performance of the optimal VQ codebook. This is due to the fact

that L remains constant throughout. As codevectors are moved towards their opti

mal locations, offsets of codevector updates become smaller and smaller. At some

point, the updates are deemed unworthwhile in the rate-distortion tradeoff by the

algorithm, and adaptation ceases. For stationary sources, this can be fixed by ex

panding the update window as offsets to empirical centroids cj- ' decrease. Updating

becomes cheaper, since the bits spent are spread among more vectors.

The experiment on stationary source with mismatched initial codebook is re

peated with some modifications. At the end of Tk, if the number of codevectors that

are updated towards cj ' is less than 2, then Lwill be doubled for Tk+i. Fig. 3-5 shows
the convergence of the modified adaptive algorithm to the optimal VQ performance.

This gives an empirical evidence of the universality of the algorithm.
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Figure 3-3: (a) Source distribution at two different time instants t\ and t2. (b)
Codevectors with shortest index codes at t\ and t2.

3.3 Performance Penalty on Stationary Sources

Given stationary sources, it is expected that adaptation actually hurts the per

formance, since bits may be unnecessarily spent for marginal reduction in average

distortion. In our experiment, we start with the optimal vector quantizer for a sta

tionary memoryless (i.i.d.) Gaussian source. Since the initial codebook is optimal

for that particular source, any loss in performance is due to adaptation. The vector

dimension is 4, which in this case is irrelevant due to the memoryless nature of the

source. There is one trickiness in performing the experiment though, which is the
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Figure 3-4: Comparison of RDLZ and static codebook VQ on a time-varying source.
The source is switching back and forth between correlated Gaussian sources with 1)
p = 0.3, and 2) p = 0.95.

freedom in choosing A, a parameter that controls the degree of adaptation. From

Fig. 2-1, we know that Ashould be chosen as the negative of the slope of the tangent

to the operating point on the rate-distortion curve. Hence, a smaller |A| should be

chosen at a lower bit rate. This is taken into consideration in the experiment. Fig. 3-6

shows that performance penalty due to adaptation is minimal.
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3.4 Results on Images

We then compress test images using the adaptive algorithm. Initial codebooks

are trained on the image "Barbara" (Fig. 3-7), of size 512x 512. In these experiments,

the vector dimension is 4 x 4. The "Barbara" codebooks are then used to compress

the test image "Ariel", also of size 512 x 512. Result of RDLZ encoding at 0.5 bpp is

shown in Fig. 3-8. Fig. 3-9 compares the performance of RDLZ and static codebook

VQ at different bit rates.
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Figure 3-5: Universality of RDLZ. The source and initial codebook are identical to
that in Fig. 3-1. Results on 160k and 800k samples from the source are shown.

A more illustrative example is when the test image is a composite of subimages

with drastically different characteristics. Here, the image "Barbara" is appended with

a piece of textual image (Fig. 3-10). Using an initial codebook of size 512 trained on

"Barbara", static codebook VQ works very poorly on the textual part, where the text

is illegible (Fig. 3-11). On the other hand, RDLZ adapts to the image and modifies

the codebook accordingly, giving much more acceptable results (Fig. 3-12).

By varying Aon initial codebooks (trained on "Barbara") of different size, a set

of operational rate-distortion curves are obtained. The convex hull of these curves

gives the rate-distortion performance of RDLZ. Fig. 3-13 compares the rate-distortion

performance of RDLZ and static codebook VQ in encoding the composite image. As

a remark, for most A, a smaller initial codebook gives a rate-distortion performance

closer to that of the vector quantizer trained on the composite image itself, but also

gives poorer visual quality in the "Barbara" part of the image. This is because with a

smaller initial codebook, i.e. shorter average index code length, more bits can be spent

on adapting to the textual part of the image, resulting in a better "average" codebook.
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Figure 3-6: Performance penalty due to adaptation on an i.i.d. Gaussian source.
is the performance of the optimal vector quantizer, x are operating points of RDLZ
with initial codebooks of different size.

Note that the VQ codebook trained on the composite image is the optimal "average"

codebook. With less codevectors optimized for "Barbara", the visual quality in that

part is thus affected.
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Figure 3-7: "Barbara"
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Figure 3-8: (a) Original "Ariel", (b) "Ariel" RDLZ encoded at 0.5 bpp. PSNR =
23.5 dB.



24
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Figure 3-9: Comparison of RDLZ and static codebook VQ on "Ariel". Vector dimen
sion is 4 x 4. Codebooks trained on "Barbara".



Since we arc considering mobile channels, wc need to take care of fading. Assuming an urban
cellular envimnmem. where the communication between the ccJJlite and mobile it not only by
direct path (sometimes the direct path is not available), but also via many paths. Under these
assumptions, each signal path undergoes: i) an attenuation due to path loss obeying the fourth-
po wcr law. ii) a log-norm aJ slow shadowing due to terrain features, iii) Raylcigh fading due to

|«nultipath withdifferent DoppJcr shifts. Firstconsiderdie case where the delayspread of the dif
ferent paths is small (narrow-band model). A conceptual model of this fading channel under the
narrow-band model is as follows:

{Attenuation) (Log-normal
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in arts ran co)

Fij;iirvl: Fading channel mvdiH

The transmitted signal is u (/) . The channel output is v{/) . A is the attenuation on ihc domi

nant path, whichobeysthe fourth-power Jaw. T is the propagation delay. jJ(/) is a random pro
cess with a Jog-normal distribution, with a standard deviation of 4 dR for typical urban areas

Figure 3-10: Original composite image
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Figure 3-11: Composite image coded with static codebook VQ at 0.43 bbp.
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Figure 3-13: Comparison of RDLZ and static codebook VQ on composite image.
Vector dimension is 4x4. Initial codebook trained on "Barbara". —x— is the
performance of static codebook VQ, is the operational rate-distortion curves of
RDLZ with the labelled initial codebook size, —o— is the convex hull of these curves.
As a comparison,—I— is the performance of static codebook VQ with codebook
trained on the composite image.
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Chapter 4

Conclusion and Future Work

We have presented an adaptive lossy compression algorithm which is one pass

and computationally efficient. A lossy version of Lempel-Ziv coding is formulated

as a one pass adaptive vector quantization technique. The codebook is modified

on line as encoding of the source signal proceeds, and updates are transmitted as

side information, so that the decoder can reconstruct the dynamics of the codebook.

Codebook adaptation is based on the principal adaptation criterion (2.5), which is

to minimize the Lagrangian J = R + XD. Since the algorithm is one pass, evalua

tion of the adaptation criterion involves causal learning and estimating of the source

distribution.

Experimental results demonstrate the merits of the adaptive algorithm, in that

it improves rate-distortion performance over static codebook VQ in practical situa

tions where the codebook is trained on something other than the source signal. For

some cases, improvement is marginal, especially if the initial codebook is reasonably

matched to the source distribution. However, in certain cases, improvement can be

substantial, as shown in Sections 3.1 - 3.4. Moreover, with slight modifications, the

algorithm is shown to converge to the optimal VQ performance on stationary source

with mismatched initial codebook.

There are some issues that require further work. The choice of X and update

interval L is currently determined more or less by trial and error. An automatic, or

learning mechanism to determine these parameters would be advantageous.
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As mentioned in Section 2.7, tree-structured codebook provides a way to reduce

the search complexity for encoding. In full search VQ, to encode a source vector, the

whole codebook has to be searched to find the best codevector. In tree-structured

VQ, the search is performed in stages. For an m-ary tree-structured codebook, the

source vector is compared with at most m codevectors at each stage. This gives an

order of 0(log M/£) instead of 0(M/£) per source symbol, which can be a signifi

cant reduction in search complexity for large codebook size M. Hence, a one pass

adaptive tree-structured VQ algorithm would be an interesting and worthwhile en

tity to pursue. The structure of the codebook, however, poses new complications

to the problem. Some previous works of this flavor are [2, 3], which reorganize the

structure of the codebook subtree selected from a large pre-designed fixed complete

tree-structured codebook at an update interval. These works do not involvesending

of side information.

Another direction of future work is a vector quantization scheme with variable

vector dimensions. This is even closer in essence to Lempel-Ziv coding, where the

dictionary phrases are of variable lengths. Design of the initial codebook, encoding of

source signals by the variable dimensional codevectors, adaptability of the codebook,

and considerations on visual qualities when applied to image coding are intriguing

problems to investigate.
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