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Abstract

Current approaches tocompute and exploit the flexibility ofa component in an FSM network are allat the symbolic level
[32,42,44,43]. Conventionally, exploitation of this flexibility relies on state minimizers for incompletely specified FSM's
(ISFSM's) or pseudo non-deterministic FSM's (PNDFSM's) [44]. However, state-of-the-art state minimizers cannothandle
large ISFSM's orPNDFSM's [19,21,45,14, 22]. In addition, these exploitation techniques are at the symbolic level, not
directly at the net-list logic level. We present a general approach to exploit exact orapproximate flexibility directly at the
net-list logic level, and we demonstrate that many sequential logic optimization techniques can beapplied inexploitation.
Moreover, we propose a new procedure for input don't care sequences. As a result, both computation and exploitation of
input don't care sequences inlarger FSM networks can be made efficient and effective. Finally, we give preliminary results
on some artificially constructed FSM networks. Preliminary results indicate that our approach can beeffective inreducing the
size of a componentof an FSM network.

•This projectwassupported by NSF undercontract numberMIP-8719546.



1 Introduction

As digital system design complexity increases, hierarchical specification becomes vital. For example, hardware description
languages, such as Verilog orVHDL, are typically used tospecify industrial designs. Once the design isverified, logic synthe
sis tools are used tooptimize the circuit implementation with respect to some objective. The objective can be minimum area,
minimum delay, maximum testability, minimum power consumption, orany combination ofthese. An underlying model for a
hierarchical specification inthesynthesis andverification community isa network of interacting finite statemachines (FSM's).
In this paper, synchronous FSM networks with known initial states areconsidered. A severe limitation of current synthesis
tools for sequential circuits is thatonlya single FSM is considered ata time, e.g., SIS [36].

Theoretically, wecan collapse an FSM network intoa single FSM. However, thisis notpreferred, because of the follow
ing reasons. (1) This singleFSM may be too big to be handled by synthesis tools, e.g., stateencoding programs. (2) Some
components in the network may be non-deterministic FSM's which are not synthesizable, e.g., an abstract description of the
environment. (3) Thehierarchy specified by designers maycontain important information which is useful foran efficient im
plementation. (4) Some modulesmay alreadybe synthesized welland shouldnot be touched. With hierarchical specification,
each component is likely specified in a reasonable size. Therefore, another approach to synthesizing an FSM network is to
synthesizeone componentat a time. Due to interactionwithothercomponents, thecontrollabilityand observabilityof a com
ponent are reduced, so the flexibility for implementing this component increases. By exploiting this flexibility, the quality of
the implementation may be improved. Therefore, a key to logic optimization in a hierarchical specification is to consider the
interaction between components.

The flexibility in the context of an isolated combinational circuits can be expressed by don't cares, and for an individ
ual component in a hierarchically specified combinational circuit, a Boolean relation [5] (observability relation [8, 33]) or
symbolic relation [28] is required to express all its flexibility. Similarly,exploitation of flexibility is important for sequential
circuits. Several approaches have been proposed. For example, in [29], unreachable or equivalent states are used in the op
timization of an isolated sequential circuit. Damiani and De Micheli [15] introduced synchronous relations to deal with the
logic optimization of sequential circuits with pipelined latches. In these approaches, a circuit implementation is given as the
starting point.

In the case of an individualcomponent in an FSM network,there are several approaches. The firstapproach [44] used a
pseudo non-deterministic FSM (PNDFSM), called the E-machine, to express all flexibility. Later, [25,1] proposed different
construction methods for the E-machine,but subset construction [31] is required in the general case. The exploitationof the
E-machine usually is done by state minimization of PNDFSM's [45,14, 22].

Another approach (which is an approximate one) is based on the notion of don't care sequences [32]. There are two kinds;
input and output don't care sequences. Consider the cascade machine in Figure 1(a), where M\ is the driving machine and
Mn the driven machine. Unger [40] observed that Mn, when driven by M\, may possess more unspecified transitions than as
an isolatedmachine, and proposeda method to approximate and exploita subsetof this information. Devadas [16]proposeda
differentbutsimilarprocedure. Kimand Newborn[23]proposedan elegantcompletesolution.Fora two-way-communication
network of FSM's,No, as shown in Figure1(b),Wang and Brayton [42] gaveanefficient computation, anddemonstrated that
state minimization for incompletely specified FSM's (ISFSM's) [19, 21] can be used to exploit input don't care sequences in
general FSM Networks.

On the other hand, the flexibility in implementing M\ when cascaded with M2 is called output don't sequences. Devadas
[16] proposeda method to exploitsequential output don't cares, and laterRho et al. [32] generalized Devadas' procedureto
computefixed-length output don't caresequences. Another approach based on FSM equivalence checking for approximating
the set of output don't care sequences was proposed in [43].

The above algorithms for computing the flexibility of an individual component in an FSM network are all based on the
manipulation of transitionrelationsof FSM's, i.e., symbolicinformation is manipulated. Currently, exploitationof this flexi
bility hingeson state minimizersfor ISFSM's [19,21] or PNDFSM's [45,14,22]. Afterwards, state encodingand sequential
optimization techniques are applied to the state-minimized machine. Presently, no existing state minimizer can handle large
ISFSM's or PNDFSM's [19, 21,45, 14, 22]. For example, the computation of input don't care sequences in FSM networks
can be efficiently done; however, the exploitationof them usingstate minimization is difficult [42] since the problemof exact
state minimization of ISFSM's is NP-hard. To circumvent this, approximations are required to trade off between quality and
efficiency [32,42]. As a result, much flexibility may be lost.

Furthermore, in contrast to net-list logic optimizationtechniques for sequential circuits, thesealgorithmsdo not use a cir
cuit implementation as the startingpoint; the exploitation is not performed at the net-list logic level. In terms of efficiency,
effectiveness, and the sizeof circuits, optimization techniques for sequential net-list logiccircuits are in a moremature stage
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Figure 1: (a)M : A cascade circuit of two FSM's. (b)^ : A two-way-communication networkof FSM's.

than symbolic methods, since mostare able to produce acceptable results in larger circuit designs. However, manipulating
symbolic information is indispensable for computing the flexibility ofacomponent in an FSMnetwork.

With thismotivation, we propose a general approach which takes acircuit implementation as thestarting pointand com
putesthe flexibility atthe symboliclevel,butexploitation isdirectly atthenet-listlogiclevel. In addition, we discuss thediffi
culties inprevious approaches [23,42], and then we propose anewprocedure which makes bothcomputation and exploitation
of inputdon'tcare sequences more efficient and effective. Thisprocedure does notrequire asubset construction [31] asin the
Kim and Newborn's procedure [23]. As a result, this procedure look promising for larger FSM networks. Finally, we give
preliminary resultson some artificially constructed FSM networks.

2 Preliminaries

2.1 Finite Automaton

A deterministic finite automaton (DFA), A, is a quintuple (K, E, S, q0) F) where K is a finite set of states, E an alphabet,
go € K the initial state, F C K the set of final states, and 6 the transition function, S : K x E -» K. A non-deterministic
finite automaton (NFA), A% is a quintuple {K, E, 6,g0, F) where 6, thetransition relation, is a finite subset of K x E* x A',
and E* thesetof allstrings obtained by concatenating zero ormore symbols from E. An inputstring is accepted by A if it
ends upin oneof final states of A. The language accepted by A, C(A), is thesetof strings it accepts.

2.2 Finite State Machine

A finite state machine (FSM), M, isaquintuple (/, 0, Q,T, gQ) where lis a finite inputalphabet, Oa finite outputalphabet, Q
afinite setof states, T, thetransitionrelation, afinite subset ofJxQxQxO,and q0 theinitial state. AnFSM can berepresented
byastate transition graph (STG). AnFSMis input-complete if for allinputsymbolsfrom everystate, thetransitionsare defined;
otherwise, it isinput-incomplete. A deterministic FSM (DFSM) isan FSM inwhich for all transitions (t,p,n, o) G7\ (i, p)is
associated withaunique (n,o). Otherwise, anFSMiscalled anon-deterministic FSM(NDFSM). Apseudo non-deterministic
FSM (PNDFSM) isan input-completeFSM and inwhich for all transitions (i,p,n, o) £ T, (i,p,6) isassociated with aunique
next state n. A completely specified FSM (CSFSM) is an FSM whichis input-complete anddeterministic. An incompletely
specified FSM (ISFSM) is either an NDFSM oran input-incomplete FSM, and in which for all transitions (i,p,n, o) e T,



(i, p) is associated with aunique next state n. ACSFSM isofMoore type if the output value does not depend on inputs, and
Mealy otherwise.

Adistinguishingsequence for two states qi,q2 GQisasequence ofinputs such that when applied toamachine M, the last
input produces different outputs depending on whether M started at q\ or q2. In aCSFSM, two states 91 and q2 are equivalent
if there isno distinguishing sequence. In an ISFSM, two such states q\ and q2 are compatible. Asequence Si issaid to contain
another52 if 52 appears in Si.

A cascade of FSM's Mi and M2, denoted Mi -» M2, isshown inFigure 1(a). Mi iscalled thedriving machine, M2 the
driven machine.

2.3 Sequential Testing and Redundancy

Thesingle stuck-at fault model assumes that asingle fault atagiven wire inthecircuit causes that wire tobepermanently ata
high voltage level (stuck-at-1), oralow-voltage level (stuck-at-0). LetM bealogic implementation ofaCSFSM. A sequence
of inputvectors is a test fora fault / of M if it causes outputvalues different from thoseof the fault-free machine whenit is
appliedto machine M with the single fault / starting fromthe resetstate. If a fault / hasno test, it is redundant.

2.4 Set Computation and Operators

Let B designate the set {0,1}.

Definition1 LetE bea setandS C E. The characteristicfunctionofS is thefunction xs : E -» B defined byxs{x) = 1
ifx G S, andxs(x) = 0, otherwise.

Definition2 Let f : Bn -> Bbea Booleanfunction, andx = {x\,..., x*} a subset of the input variables. The existential
quantification (smoothing) offbyx, withfa denoting thecofactor off by literala is defined as :

^XiJ = JXi + fxi

3XJ = 3Xl ...3Xkf .

Definition 3 Let f : Bn -¥ Bm bea Booleanfunction, S\ C Bn and S2 C Bm. The image 0/S1 byf is /(Si) = {y G
Bm U = /(*),* GSi}. f{Bn)istherangeoff. The inverse imageofS2byfisf~1{S2) = {x GBn \f{x) = y,y GS2).

Definition 4 Let f : Bn -» B bea Booleanfunction, only depending ona subset of variables y = {yi,.... y/J. Let x =
{xi,..., x*} 6e another subset of variables, describing another subspace ofBn of the same dimension. The substitution of
variables y byvariables x in f is thefunction of x obtained bysubstituting xtfor yi inf:

Wy,*f){y) = /(«) if *f = Vi for all 1 < i < k.

Definition 5 Let f : Bn -> Bm bea Booleanfunction. The relation (characteristic relation) associated with f,F : B" x
Bm -> B, is defined as F(x, y) = {(x, y) G Bn x Bm \y = f{x)}. Equivalently, in terms ofBoolean operations:

F(x,y)= I] to =/<(*))•
l<«<m

We canuse F to obtainthe imageby / of Si CB", by computing the projection on Bm of the set F n (Si xflm):

/(Si)(y)=3x(F(x,y)Si(x)).

Similarly,the inverse image by fofS2C Bm canbe computedas:

r1(S2)(x) = 3y(F(x)y).S2(y)).

Reduced ordered binarydecisiondiagrams (BDD's) [6] arewell suited to represent the characteristic functionsof subsets
of a set, and efficient algorithms [3,6] exist to manipulate them to perform all standard Booleanoperations. As a result,the
above set operations can be done efficiently.



2.5 Multiple-Valued Functions

Let X\, X2, ••>Xn bemultiple-valued variables ranging over sets P\, P2, •••, P„ respectively, where P< = {0,....p, - 1},
and Pi are positive integers. A multiple-valued function / is a mapping

f :Pi xP2 x ... xPn4B.

Let St be asubset of P,, and Xt5' represent the characteristic function

H?
ifX.gS,-.
if X, G Si.

X?* iscalled a///era/ of the variable Xi. If |S,| = 1, this literal isaminterm of A',. A product term or acube isaBoolean
product(AND) ofliterals. A sum-of-productsis a Booleansum (OR) ofproductterms. An implicantofa function / is aproduct
term which does notcontain anyminterm in theOFF-set (/"1 (0)) of the function. A prime implicant of / is an implicant not
contained in any other implicant of /.

Let a symbolic variable s assume values from S = {s0,..., sm_i}. It can be represented by a multiple-valuedvariable,
X, restricted toP = {0,...,m-l}, where each symbolic value of s maps ontoa unique integer in P.

We canuse multiple-valued decisiondiagrams (MDD's) [37] to manipulate multiple-valuedfunctions just like BDD's for
Boolean functions. Furthermore, similaroperations, suchasexistential, anduniversal quantification, andsubstitution,etc.,are
welldefined in the MDD framework [37]. In the sequel, we just use the termBDD to interchangeably referto characteristic
functions of multiple-valued variables.

2.6 Implicit State Reachability Computation

Thereachable states can becomputed efficiently usingimplicit state enumeration techniques introducedbyCoudert etal. [12].
These techniques are widely usedin FSM verification [12,13,39],and in design verification [7,38]. This approach is based
onrepresenting asetof states by acharacteristic function which can bemanipulatedeffectivelyusingBDD's. Inthe following,
we represent a finitestatemachineimplicitly by a characteristic function usingBDD's.

Definition 6 The transitionrelationofafinite state machine M = (J, O, Q,T,q0) is afunction T: I xQ xQxO->B
such that T(i, p, n, o) -1 ifand only ifstate n can bereached inone state transitionfrom state pandproduce output owhen
inputi is applied.

A predicate transformer is a monotone function operating on the power setof a finite set For example, the setof states
R(p) containing thestates reachable from a given setof initial states I(p) can be viewedas the least fixed pointcontaining
I(p) of the function:

T :c{p) >-> c{p) + 0niP3$>,o(:T(i,p, n, o) •c{p)).

At a fixed point, R(p) satisfies:

R(p) = R(p)+ 0niP3t>iO(r(z\p,n,o) •R{p)).

The least fixed pointof T can becomputed as thelimitof the following sequences:

Mv) = Up) (l)
Rm+i{p) = Rm{p) + 9niP3itPt0{T(i}p,nto)-Rm{p)) (2)

Rooip) = Rm{p) if Rm+l(p) = Rm{p) . (3)

2.7 Compatible Projection Operator

The compatible projection operator is defined in [27] and can be manipulated efficiently usingBDD's.

Definition7 Letyi -< • • -<ynbean ordering ofBoolean variables. The distance between twovertices a G Bn and/? G Bn
is defined as [12,39]

n

d(aj) = £K--#|2n-''.



Figure 2: (a)APNDFSM Mi. (b)AM*.

Using the above distance metric, a total ordering of all the verticesof a Boolean space relative to some reference vertex a
can be defined; order(x) = d(a, x).

Definition 8 Given a G Bn, C C Bn, theclosest interpretation of a in Cfor a givenvariable ordering is defined as [27]

V{a,C) = argminxeCd{a,x).

The closest interpretation V, relative to a reference vertex a, is unique for a given variable ordering.

Definition 9 For a relation, H C Br x Bn, and a G Bn,the closestinterpretation of a relative to 11 (calledcompatible
projection in [27]) is :

L{a,n) = {(x,y)|(x,y)G^,y = 'P(a,7ex)}.

Conceptually, the J. operator selects a unique minterm y for each minterm x defined in the relation H. Thus, A.(a,H)
results in thecharacteristic function of a function defined onthedomain 3y7£(x, y); X(a, H): 3yH{x,y) x Bn -¥ B. Also,
the 1 operator can be generalized to symbolic relations representedby MDD's.

3 Logic Optimization of FSM Networks : General Approach

3.1 Permissible Behaviors

Current approaches for synthesizinga component in an FSM networkhave two steps : (1) computing the flexibility (i.e., a
collection of permissible implementations),and (2) findinga permissible implementation, with respect to some optimization
objective, using the flexibility.There are many studies [23,16,32,42,44,45,14,43,22,25,1] in computing and exploiting
the flexibility. A key idea of these approachesis to implicitlyexpressa collectionof permissibleimplementations of a com
ponent in an FSM network using some variants of FSM's. A permissible implementation is called a permissible behavior.
Watanabe and Brayton [44] demonstrated that an E-machine (a PNDFSM) can express the whole set of permissible behaviors
of a component in an FSM network and then proposed a method to compute it. Later, [25,1] proposed different methods for
computing the E-machine. The fact that the set of permissible behaviors due to input don't care sequences can be expressed
using an ISFSM was demonstrated in [42]. That is, a PNDFSM or an ISFSM can be used to implicitly express a collection of
permissible behaviors. They are defined as follows and are consistent with the definitions of [44,42].

Definition 10 The defined behavior ofanFSM M = (/, O, Q,T, q0), a setofsequences C (J x O)*, is the language ofa
finite automaton VM = (A', E,S, q0, F), where K = QU{d},£ = / x O, F = Q.andS = {(p, (i,o),n)\ (i,p, n, o) G
T} U{(p, (i, o),d)\ (i,p, o) are unspecified in T) U{(d, («, o),d) \ (i, o) G / x O). The defined behavior ofanFSM M is
denoted as C(VM). Ingeneral, VM may beanNFA.



(a) (b)

Figure 3: (a) An ISFSM M2. (b) AM*.

Definition 11 The set ofpermissible behaviors expressed by a PNDFSM (ora CSFSM) M = (I,O,Q,T,q0),a set of se
quences C (/ x O)*, is the language ofafinite automaton, AM, where AM = VM. That is, the setofpermissible behaviors
expressed by a PNDFSM M is equivalent to its defined behavior. Note that AM is a DFA.

The construction of AM ofaPNDFSM (or aCSFSM) M can bedirectly derived from M. Thealphabet of AM isIxO.
Everystate of M isa final state, andtheinitial state isthesame. For those (i, o) symbolswhichdonothavespecified transitions
from astate p,atransition isadded from state p to thedead state d, theonlynon-accepting state. Thisconstruction is pictorially
explained in Figure2.

Definition 12 The setofpermissible behaviors expressed byanISFSM M —(I,O,Q,T,q0),aset ofsequences C (/ x 0)\
is the language ofafinite automaton AM = (A', E,6, q0, F), where K = Q U{u,d}, E = / x O, F = Q U {u}, and
&= {(P. (*, o), n) | (i,p, n, o) G T} U {(p,(i,o),u) | ((t,p) are unspecified in T) A (o G O)} U {(tx, (i, o),u) | (i,o) G
/ x 0} U{(p, (», o),rf) | ((i,p) are specified in T)A ((i,p, o)are unspecified in T)} U{(d, (i, o),<f) | (t, o) G / x O}. 7Vo/e
?/wr>lMwaDFA

The set of permissible behaviors expressed by an ISFSM may not be equivalent to the defined behaviorof an ISFSM,
sinceanISFSMmaybe input-incomplete, i.e., having unspecified transitions. By definition, an unspecified transition never
happens, so itcan bearbitrarilyassociated withanyoutputvalue from thattransition on. Consequently, unspecified transitions
should be interpreted to be permissible. We pictorially explain the construction in Definition 12in Figure 3. For the restof
thepaper, thesetof permissible behaviors expressed byaPNDFSM M (aCSFSM, oran ISFSM) is denoted asC{AM).

Definition 13 A CSFSM R is a permissible realization (implementation; of a PNDFSM M (oranISFSM) ifC{AR) C
C(AM).

Theorem 3.1 UtM- (/, OtQ,Tt q0) be a PNDFSM. An FSM R = (/, O, Q,V, q0), where

T'(i,p,nyo) = l(a0,r(»,p,n,o))

and ato is a minterm in (n, o) space, is a permissible realization ofM.

Proof M is a PNDFSM, so for every (i, o) e {I x O), there is at least corresponding one (n, o) specified in T. Since
T'(t, p,n, o) = i.(ao, T(i, p,n, o))and c*o is a minterm in (n,o) space, the ± operator willassociate each (i, p) with a
unique (n, o) for all (», p,n, o) GT. Consequently, R isaCSFSM, and C(AR) C C(AM). •

In thissection, we do notconcentrate oncomputing the flexibility which can be found in [42,44,25,1]. Aftercomputing
the flexibility, the optimizationproblemreduces to finding a permissible realization from a PNDFSM or an ISFSM with re
spectto someobjective, suchasarea, testability, timing,power and etc. Conventional approaches employstate minimizers for



Figure4: The FSM observability networkM of A(r with a flexibility M.

PNDFSM's or ISFSM's [19,21,45,14,22] to explore such a permissible realization. However, no existing state minimizer
can efficiently handlelargePNDFSM's or ISFSM's. For example,the problemfor exact state minimization of ISFSM's is NP-
hard. To trade off betweenquality and efficiency, approximations on PNDFSM's and ISFSM's may be needed; consequently,
muchflexibility may be lost. Howmuch approximation is neededhingeson the abilityof state minimizers, sinceapproxima
tion needs to be performedso that the state minimization can be completed. If too muchapproximation is performed, it may
turn out that very limited information can be actually exploited. This becomes a problem when we consider optimization of
large FSM networks.

Furthermore, these state minimizersexplore a permissiblerealizationat the symbolic level where the logic implementation
objective is hard to estimate. The optimizationobjective of standard state minimizers is to find an FSM with die minimum
numberof states. State minimalityis only a heuristicand does not imply that the resultant logiccircuitafter state encodingis
optimized.In fact, it isjust regardedas a goodstartingpointforstateencoding. In addition,if a circuitimplementation is given
as the starting point which may be useful for further optimization,state minimizerswill completely ignore it. In this sense,
state minimization techniques are 'distant' to optimalityat the net-list logic level. In comparison, sequential optimization
techniques at the net-list logic level are more maturein termsof their efficiency and effectiveness; hence the size of circuits
theycanhandleis larger. Moreover, theyworkmuchcloserto theoptimalityat thenet-listlogiclevel. In therestof thissection,
we propose a general approach to exploit PNDFSM's and ISFSM's directly at the net-list logic level.

3.2 FSM Observability Networks

In [33], the observability network AT of a combinational Boolean network A/7 was proposed for logic optimization of M'
witha flexibility, say 0(i, o) whichisa Boolean relation (observability relation). Initially, A/7 is compatible with0(i, o). The
observabilitynetwork M isa derived network of A/7 byadding a Boolean node0 toA/7; thelogicfunction ofnodeO is equal
to 0(i, o). With thenotion of theobservability network, optimizationof A" withflexibility 0(i, 6) is reduced tooptimization
ofM. Asa result, nospecial logic optimization techniques arerequired tooptimizea combinational circuit W with flexibility
0{i, o), e.g., observability don't cares of nodes in A/7 with respect to a flexibility 0(i, o) can be computed from A/". In the
following, we generalize the notion of observability network to sequentialcircuits.

Definition 14 Let M = (/, 0, Q, T, qQ) be a PNDFSM (anISFSM), and theDFA accepting theset ofpermissible behav
iors expressed by M be AM = {K, E,6, q0, F) asdefined in Definition 11 (Definition 12). The observability FSM of M
isaCSFSMO(M) = (E,£, KtT',qo), where B = {0,l}andT* = {((t»,p,n,l) | (»,p,n,o) G T,n G F} U
{((i,o),p,n,0) | {i,p,n,o) GT,n <£ F}.

LetRbea permissible realization of M, i.e., R isa CSFSM and C(AR) C £{AM), and Nr bea net-list logic implemen
tation(i.e., a Booleannetwork)of R. The FSM observability network N is derivedby addingan additionalBooleannode
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Oto Mr, and Oisalogic implementation ofobservability FSM ofM,O(M). This isshown inFigure4. Observability FSM
0(M) isanalogous tothe Boolean relation (observability relation) inthe case ofcombinational circuits. Mhas many inter
esting properties that can beused for optimization and verification ofMr with a flexibility M. This isstated inthe following
theorem.

Theorem 3.2 The output ofMisa tautology ifand only ifRisapermissible realization ofM, i.e., C(AR) C C(AM).

Proof (Only if part): Ifthe output ofMisa tautology, itmeans that the defined behavior ofR, C(AR) isaccepted byAM,
and thus £{AR) C C(AAf). (If part): If£{AR) C C(AM), AM will accept the language C(AR), and thus the output of
O(M) is alwaysa tautology. •

Theorem 3.2gives anapproach to explore a logically optimized implementation of M. Consider theFSM observability
network of M inFigure 4. Ourgoal is tooptimize Mrwhile theO(M) is keptintact. Thisis thesame as forcombinational
circuits; observability don'tcares ofnodes inMrwith respect totheflexibility M can becomputed from M.

Theorem 33 Astuck-at-fault f inMris redundant with respect totheflexibility M ifand only iff is redundant inM.

Proof Let Mr> bethe Boolean network after setting / inMr. If/ isredundant inA/", the outputofMisstill a tautology after
removing /. Thus, Mr> isapermissible realization ofM by Theorem 3.2. Hence, / isredundant with respect tothe flexibility
M. Conversely, if / is redundant with respect totheflexibility M, Mr> isa permissible realization of M. Hence, the output
ofthe FSM observability network for Mrwith the flexibility M isa tautology byTheorem 3.2. Consequently, / isredundant
in A^. •

Theorem 3.3 implies that sequential ATPG techniques can directly exploit theflexibility M. Astuck-at-fault / inMrmay
betestable, butifforevery testsequence of / itscorrespondingoutputsequence isaccepted byAM, then / becomes untestable
in M% and thus redundant. Thus, with the flexibility M,itislikely that Mr has more sequential redundancies. In the following,
we considerthreesets of logicoptimization techniques in moredetail.

1. Don't-care-based approach. Thisis theconventional approach [4,2], widely used in logic synthesis. Thissetof tech
niques includes kernel extraction* re-substitution, elimination, and node simplification [4]. These techniques normally
canmake a large improvement from a given initial circuit [4,35,36]. Note thatunreachable states canbe regarded as
don'tcares during node simplification. Besides the node simplification method, another powerful approach to exploit
don't cares is Muroga's transduction methods [30].

2. Sequential ATPG-based techniques. This isa greedy method and needs a good starting point, so thefirst setof tech
niques may be employed first. There aremany existing efficient and effective techniques based on sequential ATPG
to improve thequality of circuits. Forexample, techniques in [10,11] arebased onredundancy removal. Entrena and
Cheng [18] proposed anapproach based on redundancy addition and removal, and demonstrated encouraging results.
Their method cleverlyadds some redundancies in the Booleannetworkso that more redundancies can be removed later.
This idea issimilar totransduction methods in [30] butfor sequential circuits. Techniques proposed in [9,24] forcom
binational circuits are extensions of these ideas.

3. Re-encoding and re-synthesis. After a few iterations of theabove two optimization techniques, Mr may have been
simplified to a reasonable size forre-encoding, e.g., thenumber of states may have been reduced. We may then be
able to re-encode and re-synthesize Mr. There aregood encoding algorithms forboth two-level andmulti-level logic
implementations [41,26,17] when the circuits are reasonably small. Although state encoding does notguarantee more
improvement than previously optimized results, it is likely tobea new good starting point for performing re-synthesis
using the above two techniques.

It iseasy todesign a local search (steepest decent) algorithm which iteratively runs these logic optimization techniques in
some orderbeforea CPU run-timelimit isreached oranacceptable logic realization isachieved. Re-encoding andre-synthesis
can beused tojump outofa local optimum. Like state minimizers, ourapproach isalso a heuristic ofexploiting PNDFSM's
and ISFSM's to find a good permissible realization with respect tosome optimization objective. However, ourapproach has
the following main advantages.



• Theflexibility canbe exploitedusingexistingstate-of-the-artsequential net-listlogicoptimization techniques. Mostcan
dealwith largersequentialcircuitsandproducegoodresults. Incomparison,state minimizersforISFSM's orPNDFSM's
can only handle much smaller circuits.

• Circuit implementationobjectives,such as area, timing,poweretc., can be considereddirectlyduring the exploitation.
In comparison,it is muchharder to estimatetheseobjectives at the symboliclevel.

• Even if state minimization and stateencodingare firstused,our approach can still be applied.

The computationstep for E-machines [25,1] and inputdon't care sequences [23,32,42] requiressubsetconstruction in
the general case. The worst case complexity of subsetconstruction is exponential in the numberof states [31]. To tradeoff
between qualityand efficiency, approximations can be madeusing techniques in [32,42]. However, some flexibility may be
lost. Witha similar formulation to the FSM observabilitynetwork, in the next section we present a new procedure for input
don't care sequences in general FSM networks. This new proceduredoes not use an ISFSM to expressthe flexibility due to
inputdon't caresequences,and no subsetconstruction is required. Theexploitationis also performed at thenet-listlogiclevel.
As a result, both computationand exploitationof input don't care sequences can be made efficientand effective.

4 Logic Optimization of FSM Networks Using Input Don't Care Sequences

In this section, we concentrateon both computationand exploitationof input don't care sequencesin generalFSM networks.
First, we give an overview of previous work, and then discuss difficulties in computing and exploiting input don't care se
quences. Afterwards, we present a new procedure for input don't care sequences in general FSM networks.

4.1 K-N Procedure

Consider the cascade machine Mi -> M2 in Figure 1(a). Kim and Newborn [23] proposed an elegant approach which solves
the problem of computing input don't care sequences for a driven machine in a cascade. The procedure is:

1. Construct an NFAA' to accept the languageproducedby machineM\. This can be achieved by removing the input part
in the STG of M\, and assigning every state of Mi as a final state. For a state s, if there are output symbols not emitted
from it, a transition is inserted from s to the deadstated with those symbols. The dead state d is the only non-accepting
state. Thus A' is completely specified but non-deterministic.

2. ConvertA' to a minimized completelyspecified DFA A. This can be done by using the subsetconstruction [31]and
then state minimization for DFA [20]. Note that efficient(n log n) state minimization for completelyspecifiedmachines
can be used, since the subset construction produces a completelyspecifieddeterministic machine. (Actually,state min
imization is not necessary here but desirable since this is a n log n operation.)

3. A modifiedmachine M2 is constructedas follows: constructM2 x A and delete any transitionto a state that contains
the dead state d in its subset. M2 is deterministic but possibly incompletely specified. State minimizers for ISFSM's
are used to minimize M2.

The key idea is that sequencesnotproducedby Mi are the inputdon't care sequencesfor M2,and theseare convertedinto
unspecified transitionsof a modified machineM'2. TheK-N procedure indeedcapturesall inputdon't care sequences for M2.

4.2 Input Don't Care Sequences in General FSM Networks

Intuitively,computationofinput don't care sequencesfor a componentin an FSM network ofarbitrary topology is much more
complicated than for a cascade circuit. Nevertheless, it is not theoretically harder.

Wangand Brayton [42] demonstrated that the problemof computingand exploiting input don't care sequences for a com
ponent in an FSM networks with an arbitrary topology can be reduced to one for a cascade circuit. They derive an abstract
driving machine in the computationof input don't care sequences in an FSM network. The pictorialexplanationis shownin
Figure 5. For example, the abstract driving machine to M2 in Figure 1(a) is Mi, while the abstract driving machine to M2 in
Figure 5(a) is Mi x M2. The abstract driving machine for a component in an FSM network is the composite machine of all
components in this network, i.e., the network itself. However,if a component M2 is in a one-way communication with other
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Figure 5: (a). A two-way-communication circuitM2. (b). M2 : An equivalent one-way-communication FSM networkto M2.
(c). An equivalentone-way-communication circuit forcomputing inputdon't caresequencesof M2.

componentsas in Figure 1(a),its abstractdriving machinewill reduceto Mi. Then steps 1 and 2 of the K-N procedurecan be
used to compute the exact input don't care sequences. The correctness of the exploitation of input don't care sequences was
proved in [42]. Therefore, with thenotionoftheabstract drivingmachine, theK-N procedure works in general FSM networks.
In addition, in [42] an efficient implementationof the K-N procedure using BDD's was proposed.

An abstract drivingmachineitself may be anon-deterministic FSM whichcanbe a collectionof permissibleFSM's; how
ever,thisdoesnot affect the computation andexploitation of inputdon't care sequences in the K-N procedure. Consequently,
we may startwith a network of machines some of which arenon-deterministic (e.g., the environment may be one of the ma
chines).

4.3 Practical Issues of the K-N Procedure

Unfortunately, the worstcasecomplexity forthe transformation from anNFAto a DFA(i.e., fromA' to .4) using subsetcon
struction is exponential in the numberof states [31]. Further, even if A canbe built in areasonable time, the resultant product
machine M2 may have a large numberof states before state minimization. Therefore, therearetwo purposes forapproxi
mationsof input don't caresequences. (1) Control the possiblestateexplosion in the subset construction. (2) The resultant
modified machine M2 should be small enough for state minimizers.

Consider the cascade machine Mi -> M2 in Figure 1(a). Note that Mi may be the abstract drivingmachinefor M2. Let
outputsequences produced by Mi be C(M°), aregular language overalphabet I2. For computingandexploitingonly asubset
of input don't care sequences, any regularlanguageC such that

£(M?) C £ C I2m (4)

givesriseto a feasible subsetC of inputdon't care sequences. Approximation methodsin [32,42] canbe used.
Approximation needs to be performed so that the stateminimization of M2 canbe completedin the K-N procedure. As a

consequence, even if input don't caresequencescanbe efficientlycomputed in an FSM network, after approximation it may

11
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Figure 6: (a). M = Mi -* M2, where / is inputandO output, (b). M, where / is input, and X, O outputs.

turn out thatvery limited informationcan be actuallyexploited. Also, even if we use the exploitationapproach in Section 3,
we stillhave the problemin the subsetconstruction. In the restof this section,we propose a new procedure to circumventthe
subset construction;as a result, both computation and exploitationcan be made efficient and effective.

4.4 Logic Optimization of the Driven Machine in a Cascade Circuit

Consider a cascade circuitM = Mi -¥ M2 as shownin Figure 6(a), where Mi is the driving machine, and M2 the driven
machine. Mi and M2 are logic implementations. Ourgoal is to optimize M2 while the behavior of Mi is kept unchanged.
We canemploy logic optimization techniquesin Section 3.2 to optimize M2.

We require thatthebehaviorof Mi be kept unchanged andthatX is theonlycommunicating variable between Mi and M2.
Thatis,we areonly concerned aboutthe logicoptimization of M2. Therefore, somelogicoptimization technique asdescribed
in Section 3.2 may needto be modifiedto optimize M2 only. For example, a simplemodification to the redundancy removal
method is to set X as observable outputs. This guarantees that the behavior of Mi is the same as before. That no internal
nodes in Mi areallowed to connect to M2 guarantees that X is the only communicating variable. With this setting,we can
perform redundancy removal on M andthendisassemble Mi from M afterwards. This results in anoptimized circuit of M2
usingredundancy removal. This is illustrated in Figure 6(b). Note that Mi neednotbe deterministic. If it is non-deterministic,
it can be inputdeterminized by adding additional inputscontrolling the non-determinism. The resulting networkcan be fed
into SIS where sequential redundancy removalcanbe performed.

Fromthe K-N procedure [23], the flexibilityofimplementing M2 comes frominputdon't caresequences. Logic optimiza
tiontechniques in Section3.2 exploit input don't caresequences in differentways. In the next subsection, this is discussed in
more detail.

4.5 External Don't Cares and Sequential Redundancies vs. Input Don't Care Sequences

Let outputsequences generated by Mi be C{Mf). Basedon the K-N procedure, the flexibilityof M2 when cascaded by Mi
is dueto outputsequences not generated by Mi, i.e., C(Mf). In the following, we investigate therelationship between this
flexibilityand logic optimization techniquesas described in Section 3.2.

We considertwo exploitationtechniques. Node simplification can exploit external don't cares both effectively and effi
ciently[34]. Outputvalues not generated by Mi are external don't cares to M2. Therefore, nodesimplification only exploits
partial flexibility; nevertheless, when combined with otheroptimization techniques, such as kernel extraction, elimination
etc., we canefficientlyget a good starting point forsequential ATPG-based techniques. Let the transition relation of Mi be
Ti (t, pi, ni, x), the output valuesnot generated by Mi are

EDC(x) = 3ilPll„iri(t,pi,nil*). (5)

Outputsequences not generated by Mi are inputdon't care sequences to M2. We provethatthey are precisely whatis
exploitedby sequential ATPG-based techniques. Consider the cascade machine in Figure 6(a). We assumethat Mi is deter
ministic.

Lemma 4.1 Fora stuck-atfaultf in M2, if there is a test sequencefrom I, then there isa test sequence S € C{M?)from X.
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Figure 7: (a). Thespecified behavior of M with restricted input sequences C(A). (b). Construction of a driving machine D
to M. The set of output sequencesof D is equivalentto C{A).

Proof Mi is a logicimplementation, so thebehavior isdeterministic. Therefore, foran inputsequence in J, Mi produces a
unique sequence 5 € C(M{) in X. •

Lemma42 Fora stuck-atfault f in M2, if there is a test sequence S € C(M{)from X, then there exists a test sequence
from I.

Proof Since Mi is deterministic, foran outputsequence S e C{M£), there mustexistan inputsequence which drives Mi
to produce 5. •

Theorem 43 Let A beafinite automaton which accepts £(Mf), i.e., C{A) = C(Mf). Astuck-atfaultf inM2 is redundant
with respect toinput sequences C(A) if andonly if it is redundant in M = Mi -> M2 as shown inFigure 6(a).

Proof Directly from Lemma 4.1 and 4.2. •

Theorem 4.3 implies that sequential redundancies in M2 when cascaded by Mi are because there is no test sequence
S e C{Mf) from X. Astuck-at fault / inM2, may have a test sequence 5 from Xtbutif5 g jC(Mf), f becomes untestable,
andthusredundant. Thatis,withlimitedinputsequences, it islikely tohavemoresequential redundancies in M2.Thisdemon
strates thatsequential ATPG-based techniques inSection 3.2candirectly exploit theflexibility of M2 coming from inputdon't
care sequences.

Theorem 4.4 Let Mi' and Mi both generate the same set ofoutput sequences, i.e. ,C{Mi'°) = C{M%), and fbea stuck-at
faultin M2. Then f is redundant in Mi -^ M2 ifand only if it is redundant in M/ -¥ M2.

Proof Directly from Theorem 4.3. •

Theorem 4.4 implies that any sequential circuit Mi' with itsset ofoutput sequences equivalent to£(Mi°), can beused to
replace Mi as thedriving machine to M2. This means that we have freedom to select such a machine M\ thatcan expedite
sequential ATPG-based algorithms,e.g., construction of BDD'setc.

4.6 Logic Optimization of an FSM with Input Don't Care Sequences

Theorems 4.3and4.4lead toa method tooptimize a machine M with inputdon'tcaresequences which, say, arenotaccepted
byA. Figure 7(a) shows conceptually thespecified behavior of M with input sequences £{A). When an input sequence S is
accepted byA, there is a corresponding output sequence. If S is notaccepted byA* there is nooutput.
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In practice, £(A) must be produced by another FSM (deterministic or non-deterministic) such that it can be the set of
inputsequences to M. Therefore, by the K-Nprocedure, wecanassume that theonlynon-accepting stateof A is the dead
stated,andanytransitions to dcorrespond to theunspecified behavior. Therefore, to exploitthisflexibility, wecanconstruct
a CSFSM D whose setof outputsequences is C(A)as thedriving machine. Thisis shown in Figure 7(b).

There are many construction methods from A to such a deterministic FSM D. Automaton A can be deterministic or non-
deterministic. Wegive one simpleconstructionmethod.

• Case 1: A is deterministic. The construction is as follows. In automaton A, the dead state d is removed, andany tran
sitionsedges to d are deleted. The remaining statesin A are final states. For each transition edge out of a state s, the
outputo is set equal to input i. For any unspecified inputin states, wearbitrarily assign it to any one of the specified
transitionsfrom s with the corresponding output. The resultantFSM D is completelyspecified and deterministic, and
its setof outputsequences is equivalent to C(A).

• Case2: A is non-deterministic. Inautomaton A, thedead stated is removed, andanytransitions edgesto daredeleted.
Theremaining states inA arefinal states. Letthemaximum numberoftransitions from anystateinA beL,and2k > L.
WechoosekBoolean variables as newinputsto machine D. Foreachtransition edgeoutof a states, itsoutputvalueis
settobeitsoldinput value, and then a distinct value from Bk isassigned tobethe new input value. Afterwards, for any
unspecified value in Bk, we arbitrarily assign it toany one of the specified transitions from s with the corresponding
output. The resultantFSM D is completelyspecified and deterministic, and its set of output sequencesis equivalentto
C(A). This is a form of "input determinization".

Sincethe above construction needsexplicitenumeration which may notbe efficient, in the following, we providean im
plicitmethodforconstructing sucha CSFSMD directlyfromA. NotethatA has thefollowingproperties—every stateexcept
thedeadstate d is a final state, the inputstringin each transition is of lengthone,and thereare no e-transitions. Thus,we do
not need to explicitlyexpressthe dead state d in the transition relation, sinceit is implicitfromall unspecified transitions. We
do notneedto specify thesetof final states,sinceeverystateisa final state. Asa consequence, we canrepresent the transition
relations of A in thesamewayas FSM's. Let thetransition relation of A beTA (p, t, n). Todetectif A is deterministic iseasy
using BDD's; wecompute TV(p, i, n) as follows:

TA'{p,i,n) = ±(a, TA{p,itn))

where a isareference nextstatevertex. Foreach pair(p, i) defined inTA (p,i, n), JL assigns a unique n. However, ifTA'(p, i, n)
equals TA(p, t, n), nothing was changed, implying that T already had only onesuch candidate. Hence, TA(p, i, n) is deter
ministic; otherwise nondeterministic.

Theorem 4.5 IfA is deterministic, the transition relation ofonepossible CSFSM D, Td(i, p,n,o) can bederived asfollows:

7b,(*\p,n,o) = TA{p,i)n)-(i = o). (6)
TD3{iyp,n}o) = {3„T>1(p,i,n)-^>r>l(p,i,n)} + Tl?1(i,p1n)o). (7)
TD(i,pfn,o) = ±(Qo,Tb3(t,p,n,o)) (8)

where c*o is a minterm in (n, o) space.

Proof WeconstructD\ by setting the output oequal to input i for each transitionin A; as a result, D\ is deterministic since
A isdeterministic. Thiscorresponds toEquation (6). In Di, it ispossible thatthetransition is notspecified for every inputof
a state p. For any unspecified input in state p, we associateit withall specified transitionsfrom p. This results in an NDFSM
D2 (Equation (7)). Afterwards, we use thecompatible projection operator J. to pickupa unique (n, o) for each (p, t) in D2
as shown in Equation (8) which results in a CSFSM D. •

Theorem 4.6 If A is non-deterministic, the transition relation ofonepossible CSFSM D, To{i',p, n, o) can be derived as
follows:

TDl(i!,p,n,o) = TA{piiin){i = o)-(n = i1). (9)
7b3(i',P,n,o) = {3n,oTDl{i,ipln>o)'3i>TDl{i,,p1nio)} + TDl(i'ip,n,o). (10)
rp(i',p,n,o) = J.(a0,7ba(i'lp>nlo)) (11)

where V= (i,i\) anddo is a minterm in (n, o) space.
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Proof We construct D\ by setting theoutputoequal to inputi foreach transition in A andaddinga newpart, t'i, to theinput,
which is set equal to thenext state n; as a result, D\ is deterministic sincefor eachnew input (i' - (i, i\)) its corresponding
transitionis uniquely specified. This construction is shown in Equation (9). In D\, it is possible that the transition is not
specified for every inputof a statep. For any unspecified inputin statep, weassociate it withall specified transitions from p,
resulting in an NDFSM D2. Thiscorresponds to Equation (10). Afterwards, we use the compatible projection operatorX to
pick up a unique (n, o) for each (p, i') in D2 as shown in Equation(11) which results in a CSFSM D. •

Based on the discussion in Section4.5, we can assign arbitrary stateencoding to FSM D, and then have a logic imple
mentation of FSM D. Subsequently, the methods in Section 3.2 can be employed to optimize M. Theoretically, the logic
implementation of D will not affecttheoptimality of M. However, efficiency may be affected. For example, state-of-the-art
sequential ATPG algorithms are basedon BDD's,and stateencoding of D will affect the size of BDD's for constructing the
transitionfunction of D. Currently, we are investigating this effect.

4.7 Generalized K-N Procedure in Logic Optimization of FSM Networks

Based on the discussionsin Sections4.5 and 4.6, we proposean approach for logicoptimizationof a componentin a general
FSM network using input don't care sequences. Givena logic implementation of a component M2 in an FSM network,our
procedure works as follows.

1. Constructthe abstractdrivingmachineMi, same in [42]. It maybe non-deterministic.

2. Construct an NFAA' to accept the language produced by machine Mi, as in the firststep of the K-Nprocedure.

3. Asdescribed in Section 4.6,construct a CSFSM D whose setof outputsequences is equivalent to C(A'). Then derive
a logic implementation of CSFSM D.

4. Use the variousoptimization techniques in Section3.2 to optimizeM2.

Note that if Mi is deterministic, it can be handled by sequential optimization, hence we may use it directly in step 3. Our
approachcan be regardedas a generalization of the K-Nprocedure,but no subsetconstructionis needed. This is because,in a
sense, wedo notusean ISFSM M2 to express the flexibility due to inputdon't care sequences. Basedon Equation (4),exact
input don't caresequences can be approximated. Many approximation methods for dealing withlarge FSMnetworks have
been proposed in [42]. Thereare many otherapproximation methods, e.g., hiding somestatevariables from A', andgrouping
states of A' etc. With our approach and powerful state-of-the-art sequential optimization techniques, less approximation is
required,i.e., more input don't care sequencescan be exploited.

5 Experimental Results

Wepresent preliminary results on small networks. Dueto the lackof FSM network benchmark examples, mostof the
examples hereareobtained by connecting FSM'sfrom MCNC benchmarks. TheseFSM's arecompletely specified andstate-
minimal. Wehave implemented the newprocedure for inputdon't caresequences as described in Section 4.7.

Table 1 showsexperimental resultsfor somecascade circuits consisting of twoFSM's. The circuit topology of theseex
amples is shown in Figure6(a). Weemploy both the K-Nprocedure and our procedure to optimize M2 and thencompare
theirresults. Note that Mi is a CSFSM,so in our approach we don't use the methodsin Section4.6 to constructa CSFSM D
whose setofoutput sequences isequivalent tothatof Mi. Thelogic optimizer used is SIS [36], andits standard optimization
procedure is called script. rugged [35] which includes kernel extraction, re-substitution, elimination and node simplifi
cation. In thisexperiment, we use unreachable states as don't cares which are exploited in node simplification. The initial
circuitof M2 is obtained by runningscript. rugged once. For the K-Nprocedure, we use the bounded subset construc
tion in [42];the boundon the numberof states is set to 64. The stateminimizerused here is STAMINA [19]. Afterwards, the
state-minimized machineis encodedusingJEDI [26],and thenoptimizedby running script. rugged twice.

Ourprocedure takesthegiven circuitimplementation of M2 as thestarting point.External don't cares, i.e.,outputvalues
notgenerated by Mi, are extracted and thenexploited in s c r ipt. rugged. Thiscorresponds to the firstset of optimization
techniques in Section 3.2. We then use the construction in Figure 6(b), and apply the red-removal command in SIS to
remove sequential redundancies. This corresponds to the second set of optimization techniques in Section3.2. The results
shownin Table1 are obtainedby runningthese two setsof optimization techniques twice.

15



circuit I X 0 5, s2 M2
initial

literals

K-N procedure Our proced
opt + red

ure

SM enc + opt

s2' cpu final fits cpu S2' final lits cpu

exl-s510 9 19 7 20 47 248 7 0.2 95 8.9 12 37 20.4

ex7-dkl6 2 2 3 8 27 348 15 0.1 63 3.7 16 75 19.0

s820-s510 18 19 7 25 47 248 8 03 39 2.4 16 34 29.2

s832-s510 18 19 7 25 47 248 4 0.1 14 1.0 5 15 173

bbsse-keyb 7 7 2 16 19 314 18 13 193 53.2 18 170 403

keyb-dkl6 7 2 3 19 27 348 19 0.1 120 11.7 20 94 41.4

s510-keyb 19 7 2 47 19 314 15 7.5 178 41.5 16 93 107.4

sand-ex1 11 9 19 32 20 280 8 83.8 239 59.3 9 66 552.5

bbsse-planet 7 7 19 16 48 617 - spaceout - - 44 454 169.6

planet-s510 7 19 7 48 47 248 - timeout - - 35 165 534.7

s510-planet 19 7 19 47 48 617 - timeout - - 45 441 438.0

sand-styr 11 9 10 32 30 596 - timeout - -
27 375 405.6

Table 1: Experimental results of one-way-communicationcircuits.

Mi (M2):
I,0,X:
Sx (s2y.
M2 initial literals:
final lits:

S2':
SM:

enc + opt:

opt + red:
cpu:

timeout

driving machine (driven machine).
number of Pi's, PO's, interactingsignals of Mi -i M2, respectively.
number of states of Mi (M2), respectively.
number of literals (in factored form) of the initial M2.
number of literals (in factored form) of M2 after optimization.
number of states of M2 after exploiting input don't care sequences.
result for STAMINA.

encoded by JEDI and then optimized by running script. rugged twice.
optimized by running (script. rugged + red-removal) twice.
CPU time in secondson a DEC3000/500AXPwith 160MB memory.
set to 20,000 seconds ofCPU time.

Our procedure achievesbetterresultsexcept forexamples ex7-dkl6 and s832-s510. For the third set of examples
(bbsse-planet, planet-s510, s510-planet and sand-styr), STAMINA cannotefficiently exploit input don't
care sequences computed by the K-N procedure. As shown in Table 1, not only the factored literal count is reduced, but also
the numberof statesis reduced. Most of CPU time for our procedure is spenteither in node simplification or in removing
sequential redundancies.

We alsoconductedthe followingexperiments: (1) Apply our procedure on the resultsobtainedby the K-N procedure. (2)
Perform re-encoding andre-synthesis on the results obtained by ourprocedure. We compare theseresults in Table 2. For the
first experiment, improvedresults areobtained, but half arestill inferior to the results obtained by our procedure alone(see
Table 1). Forthe secondexperiment,re-encoding andre-synthesis produce thebest resultsexcept forexamples s832-s510
andplanet-s510.

In our experiments, only redundancy removal is used, and we expect that better results can be achieved if redundancy
addition andremoval in [18] is employed. These preliminary results indicate thatour approach together with the notionof
abstract drivingmachines [42] is promising forcomputing andexploitinginputdon'tcare sequences in general FSMnetworks.

We plan to integrate thealgorithm forcomputing E-machines in [1] andourapproach in Section3, andthenstudy various
trade-offs aboutefficiency andeffectivenessbetweeninputdon't care sequences andE-machines in FSM networks.

6 Conclusion

We presented a novel approach for exploiting exact or approximate flexibility fora component in an FSM network directly
at the net-list logic level. With our approach, many existing sequential net-list logic optimizationtechniques canbe applied
to exploit the flexibility. Moreover, we proposed a new procedure to facilitate both computation and exploitation of input
don't care sequences in general FSM networks. Multi-level logicoptimization of larger FSM networkscanthenbe achieved.
Preliminary resultslook promising but moreFSM networksmust be experimented on.
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circuit M2
after K-N procedure

opt + red
after (opt + red)

re-encoding + (opt + red)
initial lits final lits cpu initial lits final lits cpu

exl-s510 95 74 13.2 37 26 9.0

ex7-dkl6 63 63 4.0 75 58 4.7

s820-s510 39 33 15.8 34 33 173

s832-s510 14 12 7.1 15 14 15

bbsse-keyb 193 152 48.9 170 124 20.9

keyb-dkl6 120 101 34.9 94 75 27.6

s510-keyb 178 108 62.5 93 70 14.9

sand-ex1 239 113 323.0 66 56 111.2

bbsse-planet * - - - 454 396 1243.1

planet-s510
- - - 165 186 512.2

s510-planet*
- - - 441 377 1154.9

sand-styr *
- - - 375 312 18263

Table2: Experimental results forre-encoding andre-synthesis.

M2:
initial lits:

final lits:

opt + red:
re-encoding + (opt + red):
cpu:

driven machine.

initial number of literals (in factored form) of M2.
final numberof literals (in factored form) of M2 afteroptimization.
optimized by running(script. rugged + red-removal) twice.
encoded using JEDI andthen optimized by running opt + red.
CPUtime in secondson a DEC3000/500AXP with 160MB memory.
* full.simplify in script. rugged is limited to 500 seconds.
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