Copyright © 1995, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MULTI-LEVEL LOGIC OPTIMIZATION
OF FSM NETWORKS

by

Huey-Yih Wang and Robert K. Brayton

Memorandum No. UCB/ERL M95/66

7 August 1995

MULTI-LEVEL LOGIC OPTIMIZATION
OF FSM NETWORKS

by

Huey-Yih Wang and Robert K. Brayton

Memorandum No. UCB/ERL M95/66

7 August 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

MULTI-LEVEL LOGIC OPTIMIZATION
OF FSM NETWORKS

by

Huey-Yih Wang and Robert K. Brayton

Memorandum No. UCB/ERL M95/66

7 August 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Multi-level Logic Optimization of FSM Networks *

Huey-Yih Wang Robert K. Brayton
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

August 7, 1995

Abstract

Current approaches to compute and exploit the flexibility of a component in an FSM network are all at the symbolic level
[32, 42, 44, 43]. Conventionally, exploitation of this flexibility relies on state minimizers for incompletely specified FSM’s
(ISFSM’s) or pseudo non-deterministic FSM’s (PNDFSM’s) [44]. However, state-of-the-art state minimizers cannot handle
large ISFSM’s or PNDFSM’s [19, 21, 45, 14, 22]. In addition, these exploitation techniques are at the symbolic level, not
directly at the net-list logic level. We present a general approach to exploit exact or approximate flexibility directly at the
net-list logic level, and we demonstrate that many sequential logic optimization techniques can be applied in exploitation.
Moreover, we propose a new procedure for input don’t care sequences. As a result, both computation and exploitation of
input don’t care sequences in larger FSM networks can be made efficient and effective. Finally, we give preliminary results

on some artificially constructed FSM networks. Preliminary results indicate that our approach can be effective in reducing the
size of a component of an FSM network.

*This project was supported by NSF under contract number MIP-8719546.

1 Introduction

As digital system design complexity increases, hierarchical specification becomes vital. For example, hardware description
languages, such as Verilog or VHDL, are typically used to specify industrial designs. Once the design is verified, logic synthe-
sis tools are used to optimize the circuit implementation with respect to some objective. The objective can be minimum area,
minimum delay, maximum testability, minimum power consumption, or any combination of these. An underlying model for a
hierarchical specification in the synthesis and verification community is a network of interacting finite state machines (FSM’s).
In this paper, synchronous FSM networks with known initial states are considered. A severe limitation of current synthesis
tools for sequential circuits is that only a single FSM is considered at a time, e.g., SIS [36).

Theoretically, we can collapse an FSM network into a single FSM. However, this is not preferred, because of the follow-
ing reasons. (1) This single FSM may be too big to be handled by synthesis tools, e.g., state encoding programs. (2) Some
components in the network may be non-deterministic FSM’s which are not synthesizable, e.g., an abstract description of the
environment. (3) The hierarchy specified by designers may contain important information which is useful for an efficient im-
plementation. (4) Some modules may already be synthesized well and should not be touched. With hierarchical specification,
each component is likcly specified in a reasonable size. Therefore, another approach to synthesizing an FSM network is to
synthesize one component at a time. Due to interaction with other components, the controllability and observability of a com-
ponent are reduced, so the flexibility for implementing this component increases. By exploiting this flexibility, the quality of
the implementation may be improved. Therefore, a key to logic optimization in a hierarchical specification is to consider the
interaction between components.

The flexibility in the context of an isolated combinational circuits can be expressed by don’t cares, and for an individ-
ual component in a hierarchically specified combinational circuit, a Boolean relation [5] (observability relation [8, 33]) or
symbolic relation [28] is required to express all its flexibility. Similarly, exploitation of flexibility is important for sequential
circuits. Several approaches have been proposed. For example, in [29], unreachable or equivalent states are used in the op-
timization of an isolated sequential circuit. Damiani and De Micheli [15] introduced synchronous relations to deal with the
logic optimization of sequential circuits with pipelined latches. In these approaches, a circuit implementation is given as the
starting point.

In the case of an individual component in an FSM network, there are several approaches. The first approach [44] used a
pseudo non-deterministic FSM (PNDFSM), called the E-machine, to express all flexibility. Later, [25, 1] proposed different
construction methods for the E-machine, but subset construction [31] is required in the general case. The exploitation of the
E-machine usually is done by state minimization of PNDFSM’s [45, 14, 22].

Another approach (which is an approximate one) is based on the notion of don’t care sequences [32]. There are two kinds;
input and output don’t care sequences. Consider the cascade machine in Figure 1(a), where M, is the driving machine and
M3 the driven machine. Unger [40] observed that M», when driven by M;, may possess more unspecified transitions than as
an isolated machine, and proposed a method to approximate and exploit a subset of this information. Devadas [16] proposed a
different but similar procedure. Kim and Newborn [23] proposed an elegant complete solution. For a two-way-communication
network of FSM’s, AV, as shown in Figure 1(b), Wang and Brayton [42] gave an efficient computation, and demonstrated that
state minimization for incompletely specified FSM’s (ISFSM’'s) [19, 21] can be used to exploit input don’t care sequences in
general FSM Networks.

On the other hand, the flexibility in implementing M; when cascaded with M, is called output don't sequences. Devadas
[16] proposed a method to exploit sequential output don't cares, and later Rho et al. [32] generalized Devadas’ procedure to
compute fixed-length output don't care sequences. Another approach based on FSM equivalence checking for approximating
the set of output don’t care sequences was proposed in [43].

The above algorithms for computing the flexibility of an individual component in an FSM network are all based on the
manipulation of transition relations of FSM’s, i.e., symbolic information is manipulated. Currently, exploitation of this flexi-
bility hinges on state minimizers for ISFSM’s [19, 21] or PNDFSM'’s [45, 14, 22]. Afterwards, state encoding and sequential
optimization techniques are applied to the state-minimized machine. Presently, no existing state minimizer can handle large
ISFSM’s or PNDFSM’s [19, 21, 45, 14, 22]. For example, the computation of input don’t care sequences in FSM networks
can be efficiently done; however, the exploitation of them using state minimization is difficult [42] since the problem of exact
state minimization of ISFSM’s is NP-hard. To circumvent this, approximations are required to trade off between quality and
efficiency [32,42]. As a result, much flexibility may be lost.

Furthermore, in contrast to net-list logic optimization techniques for sequential circuits, these algorithms do not use a cir-
cuit implementation as the starting point; the exploitation is not performed at the net-list logic level. In terms of efficiency,
effectiveness, and the size of circuits, optimization techniques for sequential net-list logic circuils are in a more mature stage

| |
Lo]
b
o v
i |
| x '
™ M, M2 _:_.
l et
| y |
L

Figure 1: (a) M : A cascade circuit of two FSM’s. (b) V> : A two-way-communication network of FSM’s.

than symbolic methods, since most are able to produce acceptable results in larger circuit designs. However, manipulating
symbolic information is indispensable for computing the flexibility of a component in an FSM network.

With this motivation, we propose a general approach which takes a circuit implementation as the starting point and com-
putes the flexibility at the symbolic level, but exploitation is directly at the net-list logic level. In addition, we discuss the diffi-
culties in previous approaches [23, 42], and then we propose a new procedure which makes both computation and exploitation
of input don’t care sequences more efficient and effective. This procedure does not require a subset construction [31] as in the
Kim and Newborn’s procedure [23). As a result, this procedure look promising for larger FSM networks. Finally, we give
preliminary results on some artificially constructed FSM networks.

2 Preliminaries

2.1 Finite Automaton

A deterministic finite automaton (DFA), A, is a quintuple (K, X, 4, go, F) where K is a finite set of states, T an alphabet,
go € K the initial state, F C K the set of final states, and 4 the transition function, § : K x ¥ — K. A non-deterministic
finite automaton (NFA), A, is a quintuple (K, I, 4, go, F') where 4, the transition relation, is a finite subset of K x * x K,
and 2 the set of all strings obtained by concatenating zero or more symbols from X. An input string is accepted by A if it
ends up in one of final states of .A. The language accepted by A, £(.A), is the set of strings it accepts.

2.2 Finite State Machine

A finite state machine (FSM), M, isaquintuple (1, 0, Q, T, go) where I is a finite input alphabet, O a finite output alphabet, Q
afinite set of states, T, the transitionrelation, a finite subset of x @ x Q@ x O, and g the initial state. An FSM can be represented
by a state transition graph (STG). An FSM is input-complete if for all input symbols from every state, the transitionsare defined;
otherwise, it is input-incomplete. A deterministic FSM (DFSM) is an FSM in which for all transitions (i, p, n, o) €T, (i,p)is
associated with a unique (n, o). Otherwise, an FSM is called a non-deterministic FSM (NDFSM). A pseudo non-deterministic
FSM (PNDFSM) is an input-complete FSM and in which for all transitions (¢, p, n, 0) € T, (4, p, 0) is associated with a unique
next state n. A completely specified FSM (CSFSM) is an FSM which is input-complete and deterministic. An incompletely
specified FSM (ISFSM) is either an NDFSM or an input-incomplete FSM, and in which for all transitions (i, p, n,0) € T,

(i, p) is associated with a unique next state n. A CSFSM is of Moore type if the output value does not depend on inputs, and
Mealy otherwise. '

‘ A distinguishing sequence for two states q;, g € Q is a sequence of inputs such that when applied to a machine M, the last
input produces different outputs depending on whether M started at ¢, or ¢2. Ina CSFSM, two states ¢, and g, are equivalent

if there is no distinguishing sequence. In an ISFSM, two such states g, and g, are compatible. A sequence S is said to contain
another S, if S> appears in S;.

A cascade of FSM’s M, and M, denoted M; — M, is shown in Figure 1(a). M, is called the driving machine, M, the
driven machine.
2.3 Sequential Testing and Redundancy

The single stuck-at fault model assumes that a single fault at a given wire in the circuit causes that wire to be permanently at a
high voltage level (stuck-at-1), or a low-voltage level (stuck-at-0). Let M be a logic implementation of a CSFSM. A sequence
of input vectors is a test for a fault f of M if it causes output values different from those of the fault-free machine when it is
applied to machine M with the single fault f starting from the reset state. If a fault f has no test, it is redundant.

24 Set Computation and Operators

Let B designate the set {0, 1}.

Definition 1 Let E bea setand S C E. The characteristic function of S is the functionxs : E — B defined by xs(z) = 1
ifz € S,and xs(z) = 0, otherwise.

Definition 2 Let f : B — B be a Boolean function, and z = {z,, ..., zx} a subset of the input variables. The existential
quantification (smoothing) of f by z, with f, denoting the cofactor of f by literal a is defined as :

ar,f = f-‘:.‘"’f’z—i
3/ = 3.3 .

Definition 3 Let f : B® — B™ be a Boolean function, Sy C B" and S, C B™. The image of S, by fis f(S1) = {y €
B™ |y = f(z),z € S$1}. f(B")istherange of f. Theinverse imageof S; by f is f~1(S:) = {z € B" | f(z) = y,y € S2}.

Definition4 Let f : B® — B be a Boolean function, only depending on a subset of variables y = {y,...,yx}. Let z =
{z1,...,zx} be another subset of variables, describing another subspace of B of the same dimension. The substitution of
variables y by variables z in f is the function of = obtained by substituting x; for y; inf :

(Oy,=f)(y) = f(z) if zi =y forall 1<i<k.

Definition 5 Let f : B® — B™ be a Boolean function. The relation (characteristic relation) associated with f, F : B" x
B™ — B, isdefined as F(z,y) = {(z,y) € B" x B™ | y = f(z)}. Equivalently, in terms of Boolean operations :

Fiz,9)= [] w=fi@).

1<i<m
We can use F to obtain the image by f of S; C B", by computing the projection on B™ of the set F N (S; x B™):
f($1)(¥) = 3:(F(z,9) - Si(z)) .
Similarly, the inverse image by f of S, C B™ can be computed as :
F7(S2)(2) = 3y(F(=z,) - S2(y)) -
Reduced ordered binary decision diagrams (BDD’s) [6] are well suited to represent the characteristic functions of subsets

of a set, and efficient algorithms [3, 6] exist to manipulate them to perform all standard Boolean operations. As a result, the
above set operations can be done efficiently.

2.5 Multiple-Valued Functions

Let X1, X2, - - Xn be multiple-valued variables ranging over sets Py, Ps, - - -, P, respectively, where P; = {0,...,p;i — 1},
and p; are positive integers. A multiple-valued function f is a mapping

f:Pl)(PzX...XPn—)B.

Let S; be a subset of P;, and X;** represent the characteristic function

XSi = 0 ifX;¢65;.
i T11 ifX;€eS;.

X7 is called a literal of the variable X;. If |S;| = 1, this literal is a minterm of X;. A product term or a cube is a Boolean
product (AND) of literals. A sum-of-productsisa Boolean sum (OR) of product terms. An implicant of a function f isa product
term which does not contain any minterm in the OFF-set (f~!(0)) of the function. A prime implicant of f is an implicant not
contained in any other implicant of f.

Let a symbolic variable s assume values from S = {so, ..., sm-1}. It can be represented by a multiple-valued variable,
X, restricted to P = {0, ..., m — 1}, where each symbolic value of s maps onto a unique integer in P.

We can use multiple-valued decision diagrams (MDD’s) [37] to manipulate multiple-valued functions just like BDD’s for
Boolean functions. Furthermore, similar operations, such as existential, and universal quantification, and substitution, etc., are

well defined in the MDD framework [37]. In the sequel, we just use the term BDD to interchangeably refer to characteristic
functions of multiple-valued variables.

2.6 Implicit State Reachability Computation

The reachable states can be computed efficiently using implicit state enumeration techniques introduced by Coudert et al. [12].
These techniques are widely used in FSM verification [12, 13, 39}, and in design verification (7, 38]. This approach is based
on representing a set of states by a characteristic function which can be manipulated effectively using BDD’s. In the following,
we represent a finite state machine implicitly by a characteristic function using BDD’s.

Definition 6 The transition relation of a finite state machine M = (1,0,Q,T, qo) isafunctionT : I x @ x @ x O = B

such that T (i, p, n, 0) = I if and only if state n can be reached in one state transition from state p and produce output o when
input i is applied.

A predicate transformer is a monotone function operating on the power set of a finite set. For example, the set of states

R(p) containing the states reachable from a given set of initial states I(p) can be viewed as the least fixed point containing
I(p) of the function :

F: c(p) — c(p) + aﬂ,pai,p,o(T(i)p: n, 0) : c(p)) .
At a fixed point, R(p) satisfies :
R(p) = R(p) + 0n,p3ip,o(T(i,p,n,0) - R(p)) .
The least fixed point of F can be computed as the limit of the following sequences :

Ro(p) = I(p) ¢))
Rm+l (P) = Rm(p) + 0n,pai,p,o(T(i:p» n, 0) * Rm(p)) (2)
Reo(p) = Rm(p) if Rmy1(p) = Rm(p) . (3)

2.7 Compatible Projection Operator
The compatible projection operator is defined in [27] and can be manipulated efficiently using BDD’s.

Definition 7 Let y) < - - - < yn be an ordering of Boolean variables. The distance between two vertices o € B" and 3 € B"
is defined as [12, 39]

d(a,B) = Z|ai-ﬂil2""-

(a) (b)

0N 0/0
O =0
i

Figure 2: (a) A PNDFSM M;. (b) AM:,

Using the above distance metric, a total ordering of all the vertices of a Boolean space relative to some reference vertex o
can be defined; order(z) = d(a, z).

Definition 8 Given a € B", C C B", the closest interpretation of « in C for a given variable ordering is defined as [27]
P(a,C) = argmingecd(a,z).
The closest interpretation P, relative to a reference vertex a, is unique for a given variable ordering.

Definition 9 For a relation, R C B" x B™, and a € B™, the closest interpretation of « relative to R (called compatible
projection in [27]) is :

L(e,R) = {(=,9)l(z,¥) ER,y =P(a,R,)}.

Conceptually, the L operator selects a unique minterm y for each minterm = defined in the relation R. Thus, L(a,R)
results in the characteristic function of a function defined on the domain 3,R(z, y); L(a,R) : 3,R(z,y) x B" — B. Also,
the L operator can be generalized to symbolic relations represented by MDD’s.

3 Logic Optimization of FSM Networks : General Approach

3.1 Permissible Behaviors

Current approaches for synthesizing a component in an FSM network have two steps : (1) computing the flexibility (i.e., a
collection of permissible implementations), and (2) finding a permissible implementation, with respect to some optimization
objective, using the flexibility. There are many studies [23, 16, 32, 42, 44, 45, 14, 43, 22, 25, 1] in computing and exploiting
the flexibility. A key idea of these approaches is to implicitly express a collection of permissible implementations of a com-
ponent in an FSM network using some variants of FSM’s. A permissible implementation is called a permissible behavior.
Watanabe and Brayton [44] demonstrated that an E-machine (a PNDFSM) can express the whole set of permissible behaviors
of a component in an FSM network and then proposed a method to compute it. Later, [25, 1] proposed different methods for
computing the E-machine. The fact that the set of permissible behaviors due to input don’t care sequences can be expressed
using an ISFSM was demonstrated in [42]. That is, a PNDFSM or an ISFSM can be used to implicitly express a collection of
permissible behaviors. They are defined as follows and are consistent with the definitions of [44, 42].

Definition 10 The defined behavior of an FSM M = (1,0,Q, T, qo), a set of sequences C (I x O)*, is the language of a
finite automaton DM = (K,X,6,q90, F),where K = QU {d},Z = I x O, F = Q,and § = {(p, (¢,0),n) | (,p,n,0) €
T} u{(p, (¢, 0),d) | (¢, p, o) are unspecified in T} U {(d, (i,0),d) | (i, 0) € I x O}. The defined behavior of an FSM M is
denoted as L(DM). In general, DM may be an NFA.

(@) (b)
0/1
0/0

1/-

Figure 3: (a) An ISFSM M,. (b) AM2,

Definition 11 The set of permissible behaviors expressed by a PNDFSM (or a CSFSM) M = (1,0,Q,T, qo), a set of se-
quences C (I x O)°, is the language of a finite automaton, AM , where AM = DM . That is, the set of permissible behaviors
expressed by a PNDFSM M is equivalent to its defined behavior. Note that AM is a DFA.

The construction of .AM of a PNDFSM (or a CSFSM) M can be directly derived from M. The alphabet of AM is I x O.
Every state of M is a final state, and the initial state is the same. For those (7, 0) symbols which do not have specified transitions
from a state p, a transition is added from state p to the dead state d, the only non-accepting state. This construction is pictorially
explained in Figure 2.

Definition 12 The set of permissible behaviors expressed by an ISFSM M = (1,0,Q, T, o). a set of sequences C (I x O)*,
is the language of a finite automaton AM = (K,X,8,90,F), where K = QU {u,d}, £ = I x O, F = QU {u}, and
d = {(p,(3,0),n) | (i,p,n,0) € T} U {(p, (¢,0),u) | ((i,p) are unspecified in T) A (0 € 0)} U {(u, (3,0),4) | (,0) €
I x O}U {(p, (¢,0),d) | (¢, p) are specified in T)A ((i, p, 0) are unspecified in T)} U {(d, (i, 0),d) | (i,0) € I x O}. Note
that AM is a DFA.

The set of permissible behaviors expressed by an ISFSM may not be equivalent to the defined behavior of an ISFSM,
since an ISFSM may be input-incomplete, i.e., having unspecified transitions. By definition, an unspecified transition never
happens, so it can be arbitrarily associated with any output value from that transition on. Consequently, unspecified transitions
should be interpreted to be permissible. We pictorially explain the construction in Definition 12 in Figure 3. For the rest of
the paper, the set of permissible behaviors expressed by a PNDFSM M (a CSFSM, or an ISFSM) is denoted as £(AM).

Definition 13 A CSFSM R is a permissible realization (implementation) of a PNDFSM M (or an ISFSM) if L(AR) C
L(AM),

Theorem 3.1 Let M = (1,0,Q, T, qo) be a PNDFSM.An FSM R = (1,0,Q,T', q0), where
T’(i:P,n, 0) = -L(ao,T(i,P,ﬂ,O))

and ay is a minterm in (n, 0) space, is a permissible realization of M.

Proof M is a PNDFSM, so for every (i,0) € (I x O), there is at least corresponding one (n, o) specified in 7. Since
T'(3,p,n,0) = L(ao,T(i,p,n,0))and ag is a minterm in (n, o) space, the L operator will associate each (i, p) with a
unique (n, o) forall (¢, p, n, 0) € T. Consequently, R isa CSFSM, and £L(AR) C £(AM). »

In this section, we do not concentrate on computing the flexibility which can be found in [42, 44, 25, 1]. After computing
the flexibility, the optimization problem reduces to finding a permissible realization from a PNDFSM or an ISFSM with re-
spect to some objective, such as area, testability, timing, power and etc. Conventional approaches employ state minimizers for

Figure 4: The FSM observability network A of Mg with a flexibility M.

PNDFSM’s or ISFSM’s [19, 21, 45, 14, 22] to explore such a permissible realization. However, no existing state minimizer
can efficiently handle large PNDFSM’s or ISFSM’s. For example, the problem for exact state minimization of ISFSM’s is NP-
hard. To trade off between quality and efficiency, approximations on PNDFSM’s and ISFSM’s may be needed; consequently,
much flexibility may be lost. How much approximation is needed hinges on the ability of state minimizers, since approxima-
tion needs to be performed so that the state minimization can be completed. If too much approximation is performed, it may
turn out that very limited information can be actually exploited. This becomes a problem when we consider optimization of
large FSM networks.

Furthermore, these state minimizers explore a permissible realization at the symbolic level where the logic implementation
objective is hard to estimate. The optimization objective of standard state minimizers is to find an FSM with the minimum
number of states. State minimality is only a heuristic and does not imply that the resultant logic circuit after state encoding is
optimized. In fact, it is just regarded as a good starting point for state encoding. In addition, if a circuit implementation is given
as the starting point which may be useful for further optimization, state minimizers will completely ignore it. In this sense,
state minimization techniques are ‘distant’ to optimality at the net-list logic level. In comparison, sequential optimization
techniques at the net-list logic level are more mature in terms of their efficiency and effectiveness; hence the size of circuits
they can handle is larger. Moreover, they work much closer to the optimality at the net-list logic level. In the rest of this section,
we propose a general approach to exploit PNDFSM’s and ISFSM’s directly at the net-list logic level.

3.2 FSM Observability Networks

In [33], the observability network A of a combinational Boolean network A" was proposed for logic optimization of A"
with a flexibility, say O(i, o) which is a Boolean relation (observability relation). Initially, N is compatible with O(3, o). The
observability network A is a derived network of A’ by adding a Boolean node O to A’; the logic function of node O is equal
to O(i, o). With the notion of the observability network, optimization of A with flexibility O(i, o) is reduced to optimization
of M. Asaresult, no special logic optimization techniques are required to optimize a combinational circuit N with flexibility
O(i, 0), e.g., observability don’t cares of nodes in N’ with respect to a flexibility O(i, o) can be computed from A. In the
following, we generalize the notion of observability network to sequential circuits.

Definition 14 Let M = (I1,0,Q,T, qo) be a PNDFSM (an ISFSM), and the DFA accepting the set of permissible behav-
iors expressed by M be AM = (K,X,4,qo, F) as defined in Definition 11 (Definition 12). The observability FSM of M
isa CSFSM O(M) = (%,B,K,T',q0), where B = {0,1} and T' = {((i,0),p,n,1) | ({,p,n,0) € T,n € F} U
{((i,o),p,n,O) I (iap)n’o) €T,n¢ F}'

Let R be a permissible realization of M, i.e., Risa CSFSM and L(AR) C £(AM), and Mg be a net-list logic implemen-
tation (i.e., a Boolean network) of R. The FSM observability network A is derived by adding an additional Boolean node

O to Ng, and O is alogic implementation of observability FSM of M, O(M). This is shown in Figure 4. Observability FSM
O(M) is analogous to the Boolean relation (observability relation) in the case of combinational circuits. A’ has many inter-

esting properties that can be used for optimization and verification of Mg with a flexibility M. This is stated in the following
theorem.

Theorem 3.2 The output of N is a tautology if and only if R is a permissible realization of M, i.e., L(AR) C L(AM).

Proof (Only if part): If the output of A is a tautology, it means that the defined behavior of R, £(AF) is accepted by AM,
and thus L(AR) C L(AM). (f part): If L(AR) C L(AM), AM will accept the language £(.AF), and thus the output of
O(M) is always a tautology. m

Theorem 3.2 gives an approach to explore a logically optimized implementation of M. Consider the FSM observability
network of M in Figure 4. Our goal is to optimize Az while the O(M) is kept intact. This is the same as for combinational
circuits; observability don’t cares of nodes in Mg with respect to the flexibility M can be computed from A,

Theorem 3.3 A stuck-at-fault f in N is redundant with respect to the flexibility M if and only if f is redundant in N'.

Proof Let Mg be the Boolean network after setting f in Mg. If f isredundantin V, the output of A is still a tautology after
removing f. Thus, Vg is a permissible realization of M by Theorem 3.2. Hence, f is redundant with respect to the flexibility
M. Conversely, if f is redundant with respect to the flexibility M, Mg is a permissible realization of M. Hence, the output
of the FSM observability network for N with the flexibility M is a tautology by Theorem 3.2. Consequently, f is redundant
inN.u

Theorem 3.3 implies that sequential ATPG techniques can directly exploit the flexibility M. A stuck-at-fault f in N’z may
be testable, but if for every test sequence of f its corresponding output sequence is accepted by AM , then f becomes untestable
in V, and thus redundant. Thus, with the flexibility M, itis likely that V'r has more sequential redundancies. In the following,
we consider three sets of logic optimization techniques in more detail.

1. Don’t-care-based approach. This is the conventional approach [4, 2], widely used in logic synthesis. This set of tech-
niques includes kernel extraction, re-substitution, elimination, and node simplification [4). These techniques normally
can make a large improvement from a given initial circuit (4, 35, 36]. Note that unreachable states can be regarded as
don’t cares during node simplification. Besides the node simplification method, another powerful approach to exploit
don’t cares is Muroga’s transduction methods [30).

2. Sequential ATPG-based techniques. This is a greedy method and needs a good starting point, so the first set of tech-
niques may be employed first. There are many existing efficient and effective techniques based on sequential ATPG
to improve the quality of circuits. For example, techniques in [10, 11] are based on redundancy removal. Entrena and

" Cheng [18] proposed an approach based on redundancy addition and removal, and demonstrated encouraging results.
Their method cleverly adds some redundancies in the Boolean network so that more redundancies can be removed later.
This idea is similar to transduction methods in [30] but for sequential circuits. Techniques proposed in [9, 24] for com-
binational circuits are extensions of these ideas.

3. Re-encoding and re-synthesis. After a few iterations of the above two optimization techniques, Mz may have been
simplified to a reasonable size for re-encoding, e.g., the number of states may have been reduced. We may then be
able to re-encode and re-synthesize Ar. There are good encoding algorithms for both two-level and multi-level logic
implementations [41, 26, 17] when the circuits are reasonably small. Although state encoding does not guarantee more
improvement than previously optimized results, it is likely to be a new good starting point for performing re-synthesis
using the above two techniques.

It is easy to design a local search (steepest decent) algorithm which iteratively runs these logic optimization techniques in
some order before a CPU run-time limit is reached or an acceptable logic realization is achieved. Re-encoding and re-synthesis
can be used to jump out of a local optimum. Like state minimizers, our approach is also a heuristic of exploiting PNDFSM’s

and ISFSM’s to find a good permissible realization with respect to some optimization objective. However, our approach has
the following main advantages.

o The flexibility can be exploited using existing state-of-the-art sequential net-list logic optimization techniques. Most can
deal with larger sequential circuits and produce good results. In comparison, state minimizers for ISFSM’s or PNDFSM'’s
can only handle much smaller circuits.

« Circuit implementation objectives, such as area, timing, power etc., can be considered directly during the exploitation.
In comparison, it is much harder to estimate these objectives at the symbolic level.

o Even if state minimization and state encoding are first used, our approach can still be applied.

The computation step for E-machines (25, 1] and input don’t care sequences [23, 32, 42] requires subset construction in
the general case. The worst case complexity of subset construction is exponential in the number of states [31]. To trade off
between quality and efficiency, approximations can be made using techniques in [32, 42]. However, some flexibility may be
lost. With a similar formulation to the FSM observability network, in the next section we present a new procedure for input
don’t care sequences in general FSM networks. This new procedure does not use an ISFSM to express the flexibility due to
input don’t care sequences, and no subset construction is required. The exploitation is also performed at the net-list logic level.
As a result, both computation and exploitation of input don’t care sequences can be made efficient and effective.

4 Logic Optimization of FSM Networks Using Input Don’t Care Sequences

In this section, we concentrate on both computation and exploitation of input don’t care sequences in general FSM networks.
First, we give an overview of previous work, and then discuss difficulties in computing and exploiting input don’t care se-
quences. Afterwards, we present a new procedure for input don’t care sequences in general FSM networks.

4.1 K-N Procedure

Consider the cascade machine M; — M- in Figure 1(a). Kim and Newborn [23] proposed an elegant approach which solves
the problem of computing input don’t care sequences for a driven machine in a cascade. The procedure is :

1. Constructan NFA A’ to accept the language produced by machine M, . This can be achieved by removing the input part
in the STG of M,, and assigning every state of M, as a final state. For a state s, if there are output symbols not emitted
from it, a transition is inserted from s to the dead state d with those symbols. The dead state d is the only non-accepting
state. Thus .4’ is completely specified but non-deterministic.

2. Convert A’ to a minimized completely specified DFA A. This can be done by using the subset construction [31] and
then state minimization for DFA [20]. Note that efficient (r log n) state minimization for completely specified machines
can be used, since the subset construction produces a completely specified deterministic machine. (Actually, state min-
imization is not necessary here but desirable since this is a n log n operation.)

3. A modified machine M.’ is constructed as follows: construct M x A and delete any transition to a state that contains
the dead state d in its subset. M.’ is deterministic but possibly incompletely specified. State minimizers for ISFSM’s
are used to minimize M-'.

The key idea is that sequences not produced by M, are the input don’t care sequences for M», and these are converted into
unspecified transitions of a modified machine M. The K-N procedure indeed captures all input don’t care sequences for Ms.

4.2 Input Don’t Care Sequences in General FSM Networks

Intuitively, computation of input don’t care sequences for a component in an FSM network of arbitrary topology is much more
complicated than for a cascade circuit. Nevertheless, it is not theoretically harder.

Wang and Brayton [42] demonstrated that the problem of computing and exploiting input dont care sequences for a com-
ponent in an FSM networks with an arbitrary topology can be reduced to one for a cascade circuit. They derive an abstract
driving machine in the computation of input don’t care sequences in an FSM network. The pictorial explanation is shown in
Figure 5. For example, the abstract driving machine to M, in Figure 1(a) is M;, while the abstract driving machine to M; in
Figure 5(a) is M, x M,. The abstract driving machine for a component in an FSM network is the composite machine of all
components in this network, i.e., the network itself. However, if a component M- is in a one-way communication with other

10

(a) M

(b)

(c)

—_— M
2 _’y

Figure 5: (a). A two-way-communication circuit N2. (b). N2 : An equivalent one-way-communication FSM network to V5.
(c). An equivalent one-way-communication circuit for computing input don’t care sequences of Mo,

components as in Figure 1(a), its abstract driving machine will reduce to M;. Then steps 1 and 2 of the K-N procedure can be
used to compute the exact input don’t care sequences. The correctness of the exploitation of input don’t care sequences was
proved in [42]. Therefore, with the notion of the abstract driving machine, the K-N procedure works in general FSM networks.
In addition, in [42] an efficient implementation of the K-N procedure using BDD’s was proposed.

An abstract driving machine itself may be a non-deterministic FSM which can be a collection of permissible FSM’s; how-
ever, this does not affect the computation and exploitation of input don’t care sequences in the K-N procedure. Consequently,
we may start with a network of machines some of which are non-deterministic (e.g., the environment may be one of the ma-
chines).

4.3 Practical Issues of the K-N Procedure

Unfortunately, the worst case complexity for the transformation from an NFA to a DFA (i.e., from .4’ to .A) using subset con-
struction is exponential in the number of states [31]. Further, even if A can be builtin a reasonable time, the resultant product
machine M>' may have a large number of states before state minimization. Therefore, there are two purposes for approxi-
mations of input don’t care sequences. (1) Control the possible state explosion in the subset construction. (2) The resultant
modified machine M,’ should be small enough for state minimizers.

Consider the cascade machine M; — M in Figure 1(a). Note that M, may be the abstract driving machine for M. Let
output sequences produced by M; be £(M7), aregular language over alphabet I>. For computing and exploiting only a subset
of input don’t care sequences, any regular language £’ such that

LMy € L' ch? @

gives rise to a feasible subset £ of input don’t care sequences. Approximation methods in [32, 42] can be used.
Approximation needs to be performed so that the state minimization of M>’ can be completed in the K-N procedure. As a
consequence, even if input don’t care sequences can be efficiently computed in an FSM network, after approximation it may

11

Figure 6: (a). M = M, — M>, where I is input and O output. (b). M, where I is input, and X, O outputs.

turn out that very limited information can be actually exploited. Also, even if we use the exploitation approach in Section 3,
we still have the problem in the subset construction. In the rest of this section, we propose a new procedure to circumvent the
subset construction; as a result, both computation and exploitation can be made efficient and effective.

4.4 Logic Optimization of the Driven Machine in a Cascade Circuit

Consider a cascade circuit M = M; — M, as shown in Figure 6(a), where M, is the driving machine, and M the driven
machine. M, and M are logic implementations. Our goal is to optimize M, while the behavior of M, is kept unchanged.
We can employ logic optimization techniques in Section 3.2 to optimize M.

We require that the behavior of M, be kept unchanged and that X is the only communicating variable between M; and M,.
That is, we are only concerned about the logic optimization of M. Therefore, some logic optimization technique as described
in Section 3.2 may need to be modified to optimize M, only. For example, a simple modification to the redundancy removal
method is to set X as cbservable outputs. This guarantees that the behavior of M, is the same as before. That no internal
nodes in M are allowed to connect to M, guarantees that X is the only communicating variable. With this setting, we can
perform redundancy removal on M and then disassemble M; from M afterwards. This results in an optimized circuit of M,
using redundancy removal. This is illustrated in Figure 6(b). Note that M; need not be deterministic. If it is non-deterministic,
it can be input determinized by adding additional inputs controlling the non-determinism. The resulting network can be fed
into SIS where sequential redundancy removal can be performed.

From the K-N procedure [23], the flexibility of implementing M» comes from input don’t care sequences. Logic optimiza-

tion techniques in Section 3.2 exploit input don’t care sequences in different ways. In the next subsection, this is discussed in
more detail.

4.5 External Don’t Cares and Sequential Redundancies vs. Input Don’t Care Sequences

Let output sequences generated by M, be £(M7). Based on the K-N procedure, the flexibility of M> when cascaded by M,
is due 1o output sequences not generated by M,, i.e., L(M7?). In the following, we investigate the relationship between this
flexibility and logic optimization techniques as described in Section 3.2.

We consider two exploitation techniques. Node simplification can exploit external don’t cares both effectively and effi-
ciently [34]. Output values not generated by M, are external don’t cares to M,. Therefore, node simplification only exploits
partial flexibility; nevertheless, when combined with other optimization techniques, such as kernel extraction, elimination
etc., we can efficiently get a good starting point for sequential ATPG-based techniques. Let the transition relation of M, be
Ti(¢, p1, n1,), the output values not generated by M, are

EDC(x) = ai,pg,anl(iaply nl!z) . (5)

Output sequences not generated by M, are input don’t care sequences to M,. We prove that they are precisely what is

exploited by sequential ATPG-based techniques. Consider the cascade machine in Figure 6(a). We assume that M, is deter-
ministic.

Lemma 4.1 For a stuck-at fault f in Mo, if there is a test sequence from I, then there is a test sequence S € L(M7) from X.

12

| T T T T T } F——————————— |
| |
X o |
1 I
| . >+>| | !
| | | [X | (o)
| l |
| | | |
: - '
| - | B B -
| | A 1
—a
.- _—_—"— _____ tautology

Figure 7: (a). The specified behavior of M with restricted input sequences £(.A). (b). Construction of a driving machine D
to M. The set of output sequences of D is equivalent to £(.A).

Proof M, isalogic implementation, so the behavior is deterministic. Therefore, for an input sequence in I, M, produces a
unique sequence S € L(M?)in X. »

Lemma 4.2 For a stuck-at fault f in My, if there is a test sequence S € L(MY) from X, then there exists a test sequence
fromI.

Proof Since M, is deterministic, for an output sequence S € £(MY), there must exist an input sequence which drives M,
to produce S. =

Theorem 4.3 Let A be a finite automaton which accepts L(M?), i.e., L(A) = L(MY). A stuck-atfault f in M, is redundant
with respect to input sequences L(A) if and only if it is redundant in M = My — M as shown in Figure 6(a).

Proof Directly from Lemma 4.1 and4.2. =

Theorem 4.3 implies that sequential redundancies in M, when cascaded by M, are because there is no test sequence
S € L(M?) from X. A stuck-at fault f in M2, may have a test sequence S from X, butif S & L£(M?), f becomes untestable,
and thus redundant. That is, with limited input sequences, it is likely to have more sequential redundancies in M,. This demon-
strates that sequential ATPG-based techniques in Section 3.2 can directly exploit the flexibility of M2 coming from input don’t
care sequences.

Theorem 4.4 Let My’ and M, both generate the same set of output sequences, i.e., L(My'°) = L(M?),and f be a stuck-at
faultin M. Then f is redundantin My — M, if and only if it is redundant in M,' = M.

Proof Directly from Theorem 4.3. =

Theorem 4.4 implies that any sequential circuit M;’ with its set of output sequences equivalent to £(M?), can be used to
replace M) as the driving machine to M. This means that we have freedom to select such a machine M’ that can expedite
sequential ATPG-based algorithms, e.g., construction of BDD’s etc.

4.6 Logic Optimization of an FSM with Input Don’t Care Sequences

Theorems 4.3 and 4.4 lead to a method to optimize a machine M with input don’t care sequences which, say, are not accepted
by A. Figure 7(a) shows conceptually the specified behavior of M with input sequences £(.A4). When an input sequence S is
accepted by A, there is a corresponding output sequence. If S is not accepted by .4, there is no output.

13

In practice, £(.A) must be produced by another FSM (deterministic or non-deterministic) such that it can be the set of
input sequences to M. Therefore, by the K-N procedure, we can assume that the only non-accepting state of A is the dead
state d, and any transitions to d correspond to the unspecified behavior. Therefore, to exploit this flexibility, we can construct
a CSFSM D whose set of output sequences is £(.4) as the driving machine. This is shown in Figure 7(b).

There are many construction methods from A to such a deterministic FSM D. Automaton .A can be deterministic or non-
deterministic. We give one simple construction method.

o Case 1: A is deterministic. The construction is as follows. In automaton .4, the dead state d is removed, and any tran-
sitions edges to d are deleted. The remaining states in .A are final states. For each transition edge out of a state s, the
output o is set equal to input i. For any unspecified input in state s, we arbitrarily assign it to any one of the specified
transitions from s with the corresponding output. The resultant FSM D is completely specified and deterministic, and
its set of output sequences is equivalent to £(A).

¢ Case 2: Ais non-deterministic. In automaton .4, the dead state d is removed, and any transitions edges to d are deleted.
The remaining states in .4 are final states. Let the maximum number of transitions from any state in A be L,and 2% > L.
We choose k Boolean variables as new inputs to machine D. For each transition edge out of a state s, its output value is
set to be its old input value, and then a distinct value from B* is assigned to be the new input value. Afterwards, for any
unspecified value in B*, we arbitrarily assign it to any one of the specified transitions from s with the corresponding
output. The resultant FSM D is completely specified and deterministic, and its set of output sequences is equivalent to
L(A). This is a form of “input determinization”,

Since the above construction needs explicit enumeration which may not be efficient, in the following, we provide an im-
plicit method for constructing such a CSFSM D directly from .A. Note that A has the following properties — every state except
the dead state d is a final state, the input string in each transition is of length one, and there are no e-transitions. Thus, we do
not need to explicitly express the dead state d in the transition relation, since it is implicit from all unspecified transitions. We
do not need to specify the set of final states, since every state is a final state. As a consequence, we can represent the transition
relations of A in the same way as FSM’s. Let the transition relation of A be T4 (p, 7, n). To detect if A is deterministic is easy
using BDD’s; we compute 74’ (p, ¢, n) as follows:

TA'(pr iv n) = l(av TA(P, 1, n))

where « is areference next state vertex. For each pair (p, i) defined in T4 (p, 7, n), L assigns a unique n. However, if T4’ (p, i, n)
equals T4 (p, i, n), nothing was changed, implying that T already had only one such candidate. Hence, T4 (p, i, n) is deter-
ministic; otherwise nondeterministic.

Theorem 4.5 If A is deterministic, the transition relation of one possible CSFSM D, Tp (i, p, n, o) can be derived as follows:

Tp, (i’Pan’ 0) = TA(P,i,n) . (1 = O). 6)
TD:(i!prn’o) = {HHTA(pl i n) 'o‘.oTA(p) i n)} +TDI (i,p,n,o). @)
Tp(i,p, n, O) = l(ao,TD,(i,p, n, 0)) ®

where o is a minterm in (n, o) space.

Proof 'We construct D, by setting the output o equal to input ¢ for each transition in .4; as a result, D, is deterministic since
A is deterministic. This corresponds to Equation (6). In D, it is possible that the transition is not specified for every input of
a state p. For any unspecified input in state p, we associate it with all specified transitions from p. This results in an NDFSM
D, (Equation (7)). Afterwards, we use the compatible projection operator L to pick up a unique (n, o) for each (p, #) in D,
as shown in Equation (8) which results in a CSFSM D. =

Theorem 4.6 If A is non-deterministic, the transition relation of one possible CSFSM D, Tp (i, p, n, 0) can be derived as
follows:

TDI (i’ap’n) 0) = TA(P; i: n) ’ (z = O) ' (n = il)' (9)
Tp,(¥,p,n,0) = {3a,Tp,(¥,p,n,0)-3uTp,(,p,n,0)}+ Tp,(,p,n,0). (10)
TD(i’,P,"‘»O) = J—(a()’TDz(i,vpv n,O)) (ll)

where i’ = (i,1,) and aq is a minterm in (n, o) space.

14

Proof We construct D; by setting the output o equal to input i for each transition in A and adding a new part, i, , to the input,
which is set equal to the next state n; as a result, D, is deterministic since for each new input (i = (4,1,)) its corresponding
transition is uniquely specified. This construction is shown in Equation (9). In D,, it is possible that the transition is not
specified for every input of a state p. For any unspecified input in state p, we associate it with all specified transitions from p,
resulting in an NDFSM D,. This corresponds to Equation (10). Afterwards, we use the compatible projection operator L to
pick up a unique (n, o) for each (p, i’) in D, as shown in Equation (11) which results in a CSFSM D. a

Based on the discussion in Section 4.5, we can assign arbitrary state encoding to FSM D, and then have a logic imple-
mentation of FSM D. Subsequently, the methods in Section 3.2 can be employed to optimize M. Theoretically, the logic
implementation of D will not affect the optimality of M. However, efficiency may be affected. For example, state-of-the-art
sequential ATPG algorithms are based on BDD’s, and state encoding of D will affect the size of BDD’s for constructing the
transition function of D. Currently, we are investigating this effect.

4.7 Generalized K-N Procedure in Logic Optimization of FSM Networks

Based on the discussions in Sections 4.5 and 4.6, we propose an approach for logic optimization of a component in a general
FSM network using input don’t care sequences. Given a logic implementation of a component M, in an FSM network, our
procedure works as follows.

1. Construct the abstract driving machine M}, same in [42]. It may be non-deterministic.
2. Construct an NFA A’ to accept the language produced by machine M, as in the first step of the K-N procedure.

3. As described in Section 4.6, construct a CSFSM D whose set of output sequences is equivalent to £(.A’). Then derive
a logic implementation of CSFSM D.

4. Use the various optimization techniques in Section 3.2 to optimize M.

Note that if M, is deterministic, it can be handled by sequential optimization, hence we may use it directly in step 3. Our
approach can be regarded as a generalization of the K-N procedure, but no subset construction is needed. This is because, in a
sense, we do not use an ISFSM M.’ to express the flexibility due to input don’t care sequences. Based on Equation (4), exact
input don’t care sequences can be approximated. Many approximation methods for dealing with large FSM networks have
been proposed in [42]. There are many other approximation methods, e.g., hiding some state variables from .4’, and grouping
states of A’ etc. With our approach and powerful state-of-the-art sequential optimization techniques, less approximation is
required, i.e., more input don’t care sequences can be exploited.

5 [Experimental Results

We present preliminary results on small networks. Due to the lack of FSM network benchmark examples, most of the
examples here are obtained by connecting FSM’s from MCNC benchmarks. These FSM’s are completely specified and state-
minimal. We have implemented the new procedure for input don’t care sequences as described in Section 4.7.

Table 1 shows experimental results for some cascade circuits consisting of two FSM’s. The circuit topology of these ex-
amples is shown in Figure 6(a). We employ both the K-N procedure and our procedure to optimize M, and then compare
their results. Note that M, is a CSFSM, so in our approach we don’t use the methods in Section 4.6 to construct a CSFSM D
whose set of output sequences is equivalent to that of M. The logic optimizer used is SIS [36], and its standard optimization
procedure is called script . rugged [35] which includes kernel extraction, re-substitution, elimination and node simplifi-
cation. In this experiment, we use unreachable states as don’t cares which are exploited in node simplification. The initial
circuit of M is obtained by running script . rugged once. For the K-N procedure, we use the bounded subset construc-
tion in [42]; the bound on the number of states is set to 64. The state minimizer used here is STAMINA [19]. Afterwards, the
state-minimized machine is encoded using JEDI (26}, and then optimized by running script . rugged twice.

Our procedure takes the given circuit implementation of M as the starting point. External don’t cares, i.e., output values
not generated by M,, are extracted and then exploited in script . rugged. This corresponds to the first set of optimization
techniques in Section 3.2. We then use the construction in Figure 6(b), and apply the red_removal command in SIS to
remove sequential redundancies. This corresponds to the second set of optimization techniques in Section 3.2. The results
shown in Table 1 are obtained by running these two sets of optimization techniques twice.

15

circuit I} X|O[|S|S: M, K-N procedure Our procedure
initial SM enc + opt * opt+ red
[literals || S;" | cpu | finallits | cpu || S;" | finallits | cpu
ex1-s510 919 7]20[47 248 7 02 95 [89 || 12 37| 204
ex7-dk16 2| 2 3| 827 348 || 15 0.1 63| 371 16 75| 19.0
5820-s510 1819 72547 248 8 03 39| 24| 16 34| 292
58325510 1819 7| 25| 47 248 4 0.1 14| 10 5 15| 173
bbsse-keyb 77 71 2[16] 19 314 [[18 13 193 [532 [18 170 | 403
keyb-dk16 T 2| 3|19 27 348 | 19 0.1 120 | 117 || 20 9 | 414
s510keyb || 19| 7| 2| 47 | 19 314 || 15 7.5 178 | 415 || 16 93 | 1074 |
sand-ex1 11| 9[19| 32| 20 280 8 83.8 239 | 593 9 66 | 552.5
[bbsse-planet | 7| 719] 16 | 48 617 - [spaceout | - | - || 44 454 | 169.6
planets510 || 7 | 19| 7 | 48 | 47 248 - | tmeout - - [35 165 | 534.7
s510-planet || 19| 7 | 19 | 47 | 48 617 - | timeout - - || 45 441 | 4380
sandstyr [l 11| 9]10] 32| 30 596 - | timeout - - 27 375 | 405.6

Table 1: Experimental results of one-way-communication circuits.

M, (M2): driving machine (driven machine).

L,0,X: number of PI's, PO's, interacting signals of M) — M2, respectively.
S1 (S2): number of states of M, (Mz), respectively.

M- initial literals: number of literals (in factored form) of the initial M.

final lits: number of literals (in factored form) of M after optimization.

Sa': number of states of M> after exploiting input don't care sequences.
SM: result for STAMINA.

enc + opt: encoded by JEDI and then optimized by running script . rugged twice.
opt + red: optimized by running (script.rugged + red_removal) twice.
cpu: CPU time in seconds on a DEC 3000/500 AXP with 160MB memory.
timeout: set to 20,000 seconds of CPU time.

Our procedure achieves better results except for examples ex7-dk16 and s832-s510. For the third set of examples
(bbsse-planet,planet-s510, s510-planet and sand-styr), STAMINA cannot efficiently exploit input don’t
care sequences computed by the K-N procedure. As shown in Table 1, not only the factored literal count is reduced, but also
the number of states is reduced. Most of CPU time for our procedure is spent either in node simplification or in removing
sequential redundancies.

We also conducted the following experiments: (1) Apply our procedure on the results obtained by the K-N procedure. (2)
Perform re-encoding and re-synthesis on the results obtained by our procedure. We compare these results in Table 2, For the
first experiment, improved results are obtained, but half are still inferior to the results obtained by our procedure alone (see
Table 1). For the second experiment, re-encoding and re-synthesis produce the best results except for examples s832-s510
and planet-s510.

In our experiments, only redundancy removal is used, and we expect that better results can be achieved if redundancy
addition and removal in [18] is employed. These preliminary resuits indicate that our approach together with the notion of
abstract driving machines [42] is promising for computing and exploiting input don’t care sequences in general FSM networks.

We plan to integrate the algorithm for computing E-machines in [1] and our approach in Section 3, and then study various
trade-offs about efficiency and effectiveness between input don’t care sequences and E-machines in FSM networks.

6 Conclusion

We presented a novel approach for exploiting exact or approximate flexibility for a component in an FSM network directly
at the net-list logic level. With our approach, many existing sequential net-list logic optimization techniques can be applied
to exploit the flexibility. Moreover, we proposed a new procedure to facilitate both computation and exploitation of input
don’t care sequences in general FSM networks. Multi-level logic optimization of larger FSM networks can then be achieved.
Preliminary results look promising but more FSM networks must be experimented on.

16

circuit M,
after K-N procedure after (opt + red)
opt + red || re-encoding + (opt + red)

initial lits | finallits | cpu || initiallits | finallits | cpu
ex1-s510 95 74| 132 37 26 9.0
ex7-dk16 63 63 40 75 58 4.7
5820-s510 39 33| 158 34 3| 175 |
5832-5510 14 2] 71 15 14 75
bbsse-keyb 193 152 | 489 170 124 209
keyb-dk16 120 101 | 349 94 75 | 27.6 |
s510-keyb 178 108 | 62.5 93 70 149
sand-ex1 239 113 | 323.0 66 56 | 1112
bbsse-planet * - - - 454 396 | 1243.1
planet-s510 - - - 165 186 | 5122
s510-planet * - - - 441 377 | 11549
sand-styr * - - - 375 312 | 18263

Table 2: Experimental results for re-encoding and re-synthesis.

Ma: driven machine.

initial lits: initial number of literals (in factored form) of M,.

final lits: final number of literals (in factored form) of M; after optimization.
opt + red: optimized by running (script . rugged + red_removal) twice.
re-encoding + (opt + red): encoded using JEDI and then optimized by running opt + red.

cpu: CPU time in seconds on a DEC 3000/500 AXP with 160MB memory.

* full_simplify in script.rugged is limited to 500 seconds.

References
(1} A.Aziz, F. Balarin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Sequential Synthesis using S18. In IEEE International Conference
on Computer-Aided Design, November 1995,

[2] K. Bartlet, R. K. Brayton, G. D. Hachtel, C. R. Jacoby, C. R. Morrison, R. L. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. Multi-
level Logic Minimization Using Implicit Don't Cares. In JEEE Transactions on Compuser Aided Design of Integrated Circuits and
Systems, pages 723-740, June 1988,

[3] K. L. Brace, R. E. Bryant, and R. L. Rudell. Efficient Implementation of a BDD Package. In 27th ACM/IEEE Design Automation
Conference, pages 40-45, June 1990.

[4] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: Multiple-Level Logic Optimization System. In JEEE Trans-
actions on Computer Aided Design of Integrated Circuits and Systems, pages 1062-1081, November 1987.

(5] R. K. Brayton and F. Somenzi. Boolean Relations and the Incomplete Specification of Logic Networks. In VLSI'89, August 1989.

[6] R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers, C-35(8):677-691,
August 1986.

[7] J.R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential Circuit Verification Using Symbolic Model Checking. In 27th
ACMIIEEE Design Automation Conference, pages 46-51, Orlando, June 1990,

[8] E.Cemy and M. A. Marin. An Approach to Unified Methodology of Combinational Switching Circuits. In JEEE Transactions on
Computers, pages 745-756, August 1977.

[9] S.-C. Chang and M. Marek-Sadowska. Perturb and Simplify : Multi-level Boolean Network Optimizer. In JEEE International Con-
Jerence on Computer-Aided Design, pages 2-5, November 1994,

[10] K.-T. Cheng. On Removing Redundancy in Sequential Circuits. In 28th ACM/IEEE Design Automation Conference, pages 164-169,
June 1991.

[11] H.Cho, G. D. Hachtel, and F. Somenzi. Redundancy Identification/Removal and Test Generation for Sequential Circuits Using Implicit
State Enumeration. In JEEE Transactions on Computer Aided Design of Integrated Circuits and Sysiems, pages 935-945, July 1993.

17

[12] O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Based on Symbolic Execution. In Proceedings of the
Workshop on Automatic Verification Methods for Finite State Systems, Grenoble, France, 1989.

[13] O.Coudert and J.C. Madre. A Unified Framework for the Formal Verification of Sequential Circuits. In JEEE International Conference
on Computer-Aided Design, pages 126-129, November 1990,

(14] M. Damiani. Nondeterministic Finite State Machines and Sequential Don't Cares. In The European Design and Test Conference, pages
192-198, February 1994.

[15] M. Damiani and G. De Micheli. Recurrence Equations and the Optimization of Synchronous Circuits. In 28tk ACM/IEEE Design
Automation Conference, pages 556-561, June 1992.

[16] S.Devadas. Optimizing Interacting Finite State Machines Using Sequential Don’t Cares. In IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, pages 1473-1484, December 1991.

[17] X. Du, G. D. Hachtel, B. Lin, and A. R. Newton. MUSE : A Multilevel Symbolic Encoding Algorithm for State Assignment. In JEEE
Transactions on Computer Aided Design of Integrated Circuits and Systems, pages 28-38, January 1991,

(18] L.Entrena and K.-T. Cheng. Sequential Logic Optimization By Redundancy Addition and Removal. In IEEE International Conference
on Computer-Aided Design, pages 310-315, November 1993,

(19] G.D. Hachtel, J. K. Rho, F. Somenzi, and R. Jacoby. Exact and Heuristic Algorithms for the Minimization of Incompletely Specified
State Machines. In The European Conference on Design Automation, 1991.

[20] J.E. Hopcroft. An nlog(n) Algorithm for Minimizing the States in a Finite Automaton. In The Theory of Machines and Computation,
ed.Z. Kohavi, 1971.

(21] T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli. A Fully Implicit Algorithm for Exact State Minimization. In 375t
ACMIIEEE Design Automation Conference, pages 683690, June 1994,

[22] T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit State Minimization of Non-Deterministic FSM's. In /nfer-
national Workshop on Logic Synthesis, May 1995.

[23] J.Kim and M. M. Newbom. The Simplification of Sequential Machines With Input Restrictions. In IEEE Transactionson Compulers,
pages 1440-1443, December 1972.

[24] W.Kunz and P. R. Menon. Multi-Level Optimization by Implication Analysis. In JEEE International Conference on Computer-Aided
Design, pages 6-13, November 1994.

[25] B.Lin, G. de Jong, and Kolks T. Modeling and Optimization of Hierarchical Synchronous Circuits. In The EuropeanDesgin and Test
Conference, pages 144—149, Paris, March 1995.

[26] B.Lin and A. R. Newton. A Generalized Approach to the Constrained Cubical Imbedding Problem. In International Conference on
Computer Design, October 1989.

(27] B. Lin and A. R Newton. Implicit Manipulation of Equivalence Classes Using Binary Decision Digrams. In International Workshop
on Logic Synthesis, 1991.

(28] B. Lin and F. Somenzi. Minimization of Symbolic Relations. In IEEE International Conference on Computer-Aided Design, pages
88-91, November 1990.

[29] B. Lin, H. Touati, and A. R. Newton. Don't Care Minimization of Multi-Level Sequential Logic Networks. In IEEE International
Conference on Computer-Aided Design, pages 414417, November 1990,

(30) S.Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney. The Transduction Method - Design of Logic Networks Bases on Permissible
Functions. In JEEE Transactions on Computers, October 1989,

[31] M. Rabin and D. Scott. Finite Automata and Their Decision Problems. In IBM Journal of Research and Development, pages 114-125,
1959.

[32] J.K. Rho, G. D. Hachtel, and F. Somenzi. Don't Care Sequences and the Optimization of Interacting Finite State Machines. In IEEE
International Conference on Computer-Aided Design, pages 418-421, November 1991,

[33] H. Savoj and R. K. Brayton, Observability Relations and Observability Don't Cares. In IEEE International Conference on Computer-
Aided Design, pages 518-521, November 1991.

{34] H. Savoj, R. K. Brayton, and H. Touati. Extracting Local Don't Cares for Network Optimization. In IEEE International Conference
on Computer-Aided Design, pages 514-517, November 1991.

[35] H. Savoj, H.-Y. Wang, and R. K. Brayton. Improved Scripts in MIS-1I for Logic Minimization of Combinational Circuits. In /nterna-
tional Workshop on Logic Synthesis, May 1991.

[36] E. M. Sentovich, K. J. Singh, L. Lavagno, R. Moon, C. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis. Technical Report Memorandum UCB/ERL M92/41,
University of California, Berkeley, May 1992.

18

[37] A.Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algorithms for Discrete Function Manipulation. In IEEE International Conference
on Computer-Aided Design, pages 92-95, November 1990,

[38] H. Touati, R. K. Brayton, and R. Kurshan. Testing Language Containment for w-Automata using BDD’s. In Proceedings of
ACMISIGDA International Workshop on Formal Method s in VLSI Designs, Miami, January 1991.

(391 H.Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit State Enumeration of Finite State Machines using
BDD’s. In JEEE International Conference on Computer-Aided Design, pages 130-133, November 1990.

[40] S. H. Unger. Asynchronous Sequential Switching Circuits. John Wiley, 1969.

[41] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State Assignment for Optimal Two-level Logic Implementations. In /EEE Transac-
tions on Computer Aided Design of Integrated Circuits and Systems, pages 905-924, September 1990.

[42] H.-Y. Wang and R. K. Brayton. Input Don’t Care Sequences in FSM Networks. In JEEE International Conference on Computer-Aided
Design, pages 321-328, November 1993.

(43] H.-Y. Wang and R. K. Brayton. Permissible Observability Relations in FSM Networks. In 31st ACM/IEEE Design Automation Con-
Jerence, pages 677-683, June 1994,

[44] Y. Watanabe and R. K. Brayton. The Maximum Set of Permissible Behaviors for FSM Networks. In IEEE International Conference
on Computer-Aided Design, pages 316~320, November 1993.

[45] Y. Watanabe and R. K. Brayton. State Minimization of Pseudo Non-Deterministic FSM’s. In The European Design and Test Confer-
ence, pages 184—191, February 1994,

19

	Copyright notice 1995
	ERL-95-66

