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Abstract

We study the following problem: two agents are connected to each
other by independent binary symmetric channels of crossover prob
abilities p and q. They wish to generate common randomness by
communicating interactively over the two channels. Neither agent has
access to any external random sources, so that any randomness gener
ated must come from the noise on the two channels. We show that it

is possible to generate common randomness in this situation at a rate
(in bits perstep) of R*(p, q) = min {h(p) + h(q), 2- h(p) - h(q)}. We
also provea strong converse which establishes R*(p, q) as the common
randomness "capacity" of this pair of channels.
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1 Introduction

There are several situations in which common randomness available at distant

terminals plays a significant role. For example, in identification theory ([2],
[3], [4]), the amount of common randomness available to both transmitter and
receiver essentially determines the maximum achievable identification rate.
Also, in the theory of communication complexity ([7], [9]), it is known that
common randomness available to two communicating agents can significantly
reduce the complexity of computing certain functions. And, in cryptography
([1], [8]), if two agents share a random key about which an eavesdropper has
no information, they can use it to achieve secure communication between
them (through encryption of messages).

For these reasons, Ahlswede and Csiszar ([1]) proposed a systematic study
of the role of common randomness in information theory and cryptography.
In ([1]), they addressed the problem of secret sharing, i.e., generating com
mon randomness at two terminals without giving information about it to
an eavesdropper. In the "channel-type" model introduced there, the two
terminals are connected by a discrete memoryless channel with one input
and two outputs. One terminal governs the input, while the outputs are
seen by the other terminal and the wiretapper, respectively. There is also
a noiseless public two-way channel of unlimited capacity connecting the two
terminals. Both terminals have access to independent sources of randomness,
to begin with. Ahlswede and Csiszar proved bounds on the maximum rate
at which the two terminals could generate a shared secret key, under various
restrictions on the use of the public channel.

In this paper, we study a different but related problem, viz., of generating
common randomness at two distant terminals that are connected to each

other by independent binary symmetric channels, when neither terminal has
access to any external sources of randomness. The objective is to determine
the maximum rate (in bits per step of communication) at which common
randomness can be extracted from the noise on the two channels. However,
no secrecy constraints are imposed, i.e., the random outputs generated need
not be kept secret from any eavesdroppers. The results proved here are not
implied by those of [1], because both channels here are noisy and constrained
in capacity.

Imagine an agent Alice at one terminal, and an agent Bob at the other.
Let p be the crossover probability of the channel from Alice to Bob, and q



that of the channel from Bob to Alice. To see how the two agents could
generate common randomness even in the absence of any external random
sources, suppose that p = 0 and q = l/2 (this is the simplest case). Consider
the following communication between them: Bob transmits n zeros across
his channel in n successive steps, indexed 1,2,...,n. Since q = 1/2, Alice

A A A A. f

receives a totally random 0-1 sequence Y\, Y2,..., Yn (uniformly distributed
over {0,1 }n). In step &, 2 < k < ra, Alice echoes Yk-\ back to Bob, who
receives it accurately since p = 0. Thus, after n steps, both Alice and Bob
know (Vi, y2, •••,Yn-iJ, a random variable uniformly distributed over a set
of size 2n_1; they have generated "common randomness."

Note that this common randomness is derived from the "noise" on the

channel from Bob to Alice. Moreover, both agents act deterministically, in
the sense that their decisions in each step are determined solely by all past
receptions.

The rate at which common randomness is generated by the above proce
dure is 2jp bits per step, which can be made arbitrarily close to 1by making
n large enough. It is not hard to prove that no deterministic procedure can
yield common randomness at rates higher than 1 (the notions of "determin
istic procedure" and "rate" will be made precise later). Thus, the common
randomness "capacity" of this pair of channels is 1 bit per step.

For general p and g, the situation is more complicated; it may not be
possible to guarantee perfect agreement between Alice and Bob, or to gen
erate random variables with perfectly uniform distributions. Therefore, we
will only require that Alice and Bob generate random variables that agree
with high probability, and have distributions close to uniform. The precise
formulation of the problem appears in Section 1.2. The main result, stated
in Section 1.3, is the determination of the common randomness capacity for
arbitrary p and q.

1.1 Preliminaries

We will refer to the binary symmetric channel with crossover probability r as
the BSC(r). The two-way channel consisting of a BSC(p) from Alice to Bob
and an independent BSC(q) from Bob to Alice will be called the BSC(p,q).

For the BSC(r), Wr (z\z) will denote the probability that the ouput is z
given that the input is z (this equals r if z ^ z, and 1—r if z —z). As usual,



Wrn(z»\zn) = Tlnk=lWr(h\zk).
Throughout, [L] will denote the set of integers {1,2, ...,L}. h(-) and

Z>(-||-) will denote the binary entropy function and the binary discrimination
function respectively:

h(r) = —rlogr —(1 —r)log(l —r),

D(r\\s) =rlogg) +(l-r)log(i^).
All logarithms and exponentials will be to the base two.

1.2 Definition of a deterministic protocol

In order to generate common randomness, Alice and Bob communicate with
each other for, say, n steps. In each step, Alice transmits a bit to Bob
across the BSC(p) and, simultaneously, Bob transmits a bit to Alice across
the BSC(q). These bits are determined by an agreed-upon strategy which
specifies the bits to be transmitted in each step as functions only of all the
past receptions available to the respective senders.

Formally, an ra-step strategy is a pair (/,</), with / = (/i, /2,..., /„) and
9 = (^1^2,..-,0n). Here, (fugi) € {0,1} x {0,1} and, for 2 < k < n, fk
and gk are both maps from {0, l}fc_1 to {0,1}.

/ and g have the following interpretation: let Xk and Yk denote the bits
transmitted by Alice and Bob respectively in the kth step (1 < k < n), and
let these be received as Xk and Yk respectively. Then, Xi = /i, Y\ = pi, and,
for 2 < k < 7i, Xk = fk(Yk~% Yk = g^X"-1).

We will use W£9>/,5 (£n, 2/n) to denote the probability that Xn = xn and
A

Yn = t/n, when the n-step strategy (f,g) is used. Note that

Wp",./* (*"'$") =f[ [Wp (h Ifk (y*-1)) •W, (yk Igk (£*"«))] .

(The A: = 1 term is to be understood as Wp (xi \fi)'Wq (yi \ gi).)
After n steps, each agent separately decides whether the attempt to gen

erate common randomness was successful or not, and, in the former case,
A

computes a random output. Alice's decision is based only on yn, and Bob's
decision is based only on Xn. Their random outputs take values in some



common finite set of size, say, K. Without loss of generality, we may take
this set to be [K],

Formally, Alice computes / = I(Yn), and Bob computes J = J(Xn),
where / and J are both maps from {0, l}n to {e} U [K]. e is a symbol
indicating failure to generate common randomness. To avoid trivialities, we
will require I'1 (I) and J'1 (I) to be nonempty for each I e [K]. (7_1(e) and
t/-1(e) are, of course, allowed to be empty.)

The quadruple (/, #, /, J) defines an (n, A') deterministic protocolioi gen
erating common randomness (deterministic because neither agent has access
to any external sources of randomness; all transmission and computation
decisions are based solely on previously received bits).

Of course, the "amount" of randomness generated by the protocol, and
the extent to which it is "common," are determined by the joint distribution
of / and J. Ideally, we would like

WL,l,a ('(*"") =•*(•*") =0=£ for each le [K]. (1)
If (1) were true, / and J would be equal with probability 1, and uniformly
distributed over [K]. (There would be no "failure" events of positive proba
bility.)

In general, it is not possible to satisfy (1) except in the trivial case K = 1.
Therefore, we will have to settle for approximate equality and uniformity of
/ and J. To this end, we make the following definition: (/,#, /, J) is an
(n, K,X) deterministic protocol for the BSC(p, q) if

^r - w'-^ (/(fn) =Ji*n) =0 - nr for each'6 [K]- (2)
Condition (2) implies that

K„jJu {/ =j=/}Ui-a,
V€[tf] /

so that, if A is small, both agents compute the same "non-failure" output
with high probability. (In particular, the probability that either agent de
clares failure to generate common randomness is small.) Further, if /// =



WZ,,S,9 (I = J = l)iotle [K], then

1=1 W

K i-A. / a:

Also, since W£g /^ (/ ^ J) < A, Fano's inequality gives

max {# (/|J), tf (J\I)} < h{\) + Alog AT. (4)

From (3) and (4), it follows that

min {#(/), H(J)} > (1 - 2A) logK - h{\) - (1 - A) log(l + A).

Thus, if Ais small, each agent generates a random output whose distribution
is close to uniform on [K],

1.3 Main result

Fix A€ [0,1]. For each n > 1, define /\p,9(n, A) to be the largest K such that
there exists an (n, K, A) deterministic protocol for the BSC(p, q). The main
result proved here is the following:

Theorem 1.1 (Main Theorem) Let

R*(p, q) = min {h{p) + %), 2 - h(p) - h(q)} .

Then:

a) (Direct part)

liminf-log #,,,(», A) > R*{p,q) for all A G (0,1]. (5)
n-¥oo fi

b) (Converse part)

lim sup - log Kp,q(n, A) < R*(p, q) for all A G [0,1). (6)
n-Kx> n



Thus, limn^oo ±log KPt9(n, A) = R*(p, q) for all AG(0,1).
Define rate R of generating common randomness to be achievable over

the BSC(p, q) if there exists a sequence of (n, ifn, An) deterministic protocols
(for the BSC(p,q)) such that

lim An =0 and liminf^^ >r, (7)
n-+oo n-^oo <n v '

Then, (5) is obviously equivalent to the statement that any rate not exceeding
R*{Pi<l) is achievable over the BSC(p,q). A "weak" converse to (5) would
merely assert that rates above R*(p, q) are not achievable over the BSC(p, g),
i.e.,

lim limsup-log tfp,g(n, A) < R*(p,q). (8)
Mo n-Kx> n

However, (6) says much more than (8); in the usual terminology, (6) is a
"strong" converse to (5).

Together, (5) and (6) justify the interpretation of R*(p, q) as the common
randomness capacity of the BSC(p,q).

Note that R*(p, q) = 0 if and only if h(p) = h(q) = 0 or h(p) = h(q) = 1.
In the first case, the two channels do not provide any randomness (zero
entropy), although they allow for perfect agreement between the two agents
(high capacity). In the second case, the situation is reversed; a transmission
by either agent provides a totally random bit to the other (high entropy), but
the randomness generated this way cannot be reliably communicated back
to the sender (zero capacity).

On the other hand, R*(p, q) attains its maximum value of 1 whenever the
entropies and capacities balance each other, i.e., h(p) + h(q) = (1 —h(p)) +
(1 —h(q)). It is somewhat surprising that it is possible to generate common
randomness at a rate of 1 bit per step in all these cases.

We will prove the converse part in Section 2, and the direct part in Sec
tion 3.

2 Proof of the converse part

Let (/,(?, /, J) be any (n, K, A) deterministic protocol for the BSC(p, g), with
A < 1. The aim is to prove that

K < 2n7**(P'<*)+o(n)# (9)



Let

ft = {(*",$") :/«") = •/(*") = '}, I= 1,2,... ,K.
Then, by (2),

HSu* (f') *^ f°r each '«[*]•
The left inequality in (2) will not be needed in the proof. (The converse
holds even if this condition is dropped.)

The key idea in the proof is the following lemma. This is a simple gen
eralization, to the "interactive" situation, of the main idea in Kemperman's
proof of the strong converse to the coding theorem for DMCs with perfect
feedback [6].

Lemma 2.1 Let

£={(x",r):\\ogW^fJx",r)+n(h(p) +h(q))\ < Oy/n}.
Then:

a) \s\ < 2B<*(p)+M«))+*>/n>

b) For any 7 > 0, if 0 is large enough,

w;w£)>i-7. (io)

Proof: Appendix. •

For the rest of the proof, assume that 6 is so large that (10) holds with 7
replaced by (1 —A)/4. We will show that

K<min (2 •2n{h{p)+hiq))+e^', ( 8 ) 2n(2-Mp)-M?))+*v^\ ^

Obviously, (11) implies (9). Our first goal is to showthat many of the decision
regions Si must intersect significantly with S. More precisely, let

£={/€[A-]:W;,,/iS(£n£,)>^}.



We will prove that |£| > K/2. To this end, note that if / £ C then

>(¥)-(^)

Therefore,

1-A

1-A

IK

> (*-ir|)fe±Y
which gives

Next, note that

W>f • (12)

\£n£,\ >(Jjjf) 2n<A<'>+',<«»-,V;r for all I€C, (13)

since W^Jig(in,y") < 2^«pH»WW/! for all (xn,yn) 6 £. In particular,
£ fl £| is nonempty for all / € C. Consequently,

2n(h{p)+h{q))+6y/Z
> 1*1
> El* 0 5/

> Ei

>
K

2'

where the first step is by Part a) of Lemma 2.1 and the last step is by (12).
This proves that

K < 2 •2n^h^+h^+e^. (14)



Finally, since 2" >££, |/-»(i)| and 2" > E£=, |J_10')I.

22n >(El '̂wIjfEk-'O)!)
/ K \ ^

> (Ev/FmoTF1^)!) (is)

> \Y^\ery£,\\

>- E
1-A'

1-A

2K

2n(h(p)+h(q))-e^
l/2>

(16)

where (15) is by the Cauchy-Schwarz inequality, (16) is by (13), and (17) is
by (12). This proves that

K<( 8 \ 2»(2-Mp)-M«))+«>/n. (is)

The converse follows from (14) and (18).

3 Proof of the direct part

In this section, we will prove that Alice and Bob can generate common ran
domness over the BSC(py q) at rates arbitrarily close to R*(p,q), i.e., for any
R < R*(p, q), we will prove the existence of a sequence of (n, Kni An) deter
ministic protocols for the BSC(p,q), satisfying (7). This suffices to prove
the direct part of Theorem 1.1.

Actually, to prove that rate R is achievable, it is sufficient to exhibit a
(i2, Kt2y Xp) protocol for all large i, such that

lim A*2 = 0 and lim inf r-^- > R.
t-+oo t-foo £2

10



For, given any n satisfying t2 < n < (t+1)2, Alice and Bob couldexecute the
(t2,Kt2, Xp) protocol and fill the remaining n —t2 steps arbitrarily, without
affecting the rate achieved. (Essentially, this is because limt_^oo Tt+iv = *•)

Accordingly, in all that follows, we will restrict ourselves to describing
protocols with t2 steps, where t is suitably large.

Without loss of generality, we may assume that 0 < p < q < 1/2. Since
there is nothing to prove if R*(p,q) = 0, we will assume from now on that
{P,<l) ¥" (0}0) and (p,q) ^ (1/2,1/2). The remaining values of p and q will
be classified under three cases:

1) 0 < p < q < 1/2,
2) p = 0, 0 < q < 1/2,
3) 0 < p < 1/2, q = 1/2.
The main case, viz. Case 1, is handled in Section 3.2. The two "bound

ary" cases, viz. Cases 2 and 3, are disposed of in Sections 3.3 and 3.4.
But first we state two lemmas (Lemma 3.1 and Lemma 3.2) which will

be needed in the proof.

3.1 Preliminary results

Definition 3.1 A (2, £,7) block code for the BSC(r) is a collection,

{(u,,W,):/=l,2,...,L},

where u/ € {0,1}* for each I € [L],Ui,U2,...,Ul partition {0,1}*, and

Wlr (Ut | u/) >1- 7 for each IG[L].

Lemma 3.1 Suppose 0 < r < 1/2, and rj > 0 is so small that

r + n < y/r -\- y/l —r'

Then, for any t>1and L< 2f(1"/l(r+,>)), there exists a (t,L,4- 2-*D(r-Nlr))
block code for the BSC(r).

Proof: Standard. See, e.g., [5]. D

11



Definition 3.2 Letue {0,1}* andU C {0,1}*. An {r,L,r) equipartition
ofU w.r.t. u is a partition ofU into L +1 subsets £/(e),W(l),... ,U(L) such
that

Wl (U(l) |u) =I [Wr* (U |u) - Wr* (W(e) |u)] /or a// /€[L], (19)
and Wr* (W(c) |u) <t.

Lemma 3.2 Suppose 0<r-Tj<r< 1/2, andt>\. LetL< 2*^-") and

r= min (i. 2"*[/l^-^r-^ +2•2-*D(/xllrU . (20)
r—r)<fi<r l> J

Then, for any u € {0,1}* andU C {0,1}*, there exists an (r,L,t) equiparti
tion ofU w.r.t. u.

Proof: Appendix. D

3.2 Case 1: 0 <p< q< 1/2

Choose o* > 0 and e > 0 small enough that

P+6< ^ ^, and q+e< _ ^ (21)

Next, choose fi G (0,p) and v € (0,g) such that:
a) If h(p) + h(q) < 1, then

max {/i(p+ £) + %-*/), h(p-fi) + h(q+ e)} < 1. (22)

b) If &(p) + %) > 1, then

min {h(p + S) + % - i/), % - ^) + % + e)} > 1. (23)

The sequence of protocols to be described will achieve the rate

min {h(p - p) + h(q - i/), 2 - % + J) - % + e)} , (24)

which can be made arbitrarily close to R*(p,q) by choosing 8,c,fi, and v
sufficiently small.

The protocol with t2 steps requires two block codes of blocklength t (one
for each channel), and equipartitions of their decoding regions w.r.t. the
corresponding codewords. These are described next.

12



3.2.1 Block codes and equipartitions of the decoding regions

Let

M = minl^1-^^],^-^]}-!, (25)
N= min{[2^-^+£))j,[2*^-^J}--l, (26)

and let

p = _min [t •2-'Wt)-Mp-*0] +2.2"*d(tHp)} , (27)
a = _min {t •2-t[h{T^h^-^ +2•2-tDWM} . (28)

Pick arbitrary bitstrings a and b of length t. Then, Lemma 3.2 guaran
tees that there exist a (p,N,p) equipartition of {0,1}* w.r.t. a into subsets
.4(e),.4(1),...,A(N), and a (g,M,a) equipartition of {0,1}* w.r.t. b into
subsets #(e), 5(1),..., #(M). From the definition of equipartition, it follows
that

jf > K(Ati) Ia) ^ ^r for each i€ M. (»)
jjj > WJ (B(i) Ib) >1^ for ea*h i€[M]. (30)

Alice and Bob agree upon such bitstrings and equipartitions before commu
nication begins.

Next, let

a = 4•2-*D(p+*"p> and /? = 4•2"*D(9+«. (31)

Then, Lemma 3.1, along with (21), (25), (26), and (31), guarantees the
existence of a (*, M + 1,a) block code, {(a,-, Ai) : i = e,1,..., M} , for the
£SC(p), and a (*, N + 1,/?) block code, {(b,, Bj) : j = e,1,..., N} , for the
£SC(g).

Further, by Lemma 3.2, (25), (26), (27), and (28), for each i G{e}U[M]
and j 6 {e} U [iV], there exist a (p,Af,p) equipartition of .4; w.r.t. a,- into
subsets Ai(e), .4,(1),.•., Ai(N), and a (9, M, a) equipartition of Bj w.r.t. bj
into subsets Bj(e),Bj(l),...,B5(M).

13



Since 1>W$ (Ai |a;) >1- aand 1>Wlq [Bj \h3) >1- 0, we get

jj > Wp (Mf) |ai) >l~aN~P for each f €[N], (32)
jf > W, (Bi(0 |b,-) >1"^"g ^ each i' €\M). (33)

Before communication begins, Alice and Bob agree upon such block codes
and equipartitions of their decoding regions.

3.2.2 Outline of the protocol

The protocol proceeds in t rounds, indexed 0,1,..., t—1. In eachround, Alice
and Bob send each other bitstrings of length /, so that the total number of
steps is t2. We will describe these t rounds recursively.

In round 0, Alice and Bob transmit the bitstrings a and b respectively.
Alice defines h to be the (unique) i G {e} U [M] such that the bitstring she
receives in round 0 falls in B(i). Similarly, Bob defines J\ to be the (unique)
j € {e} U [N] such that the bitstring he receives in round 0 falls in A(j).
This completes round 0.

Now let 1 < k < t. Assume that Alice and Bob have computed Ik €
{e} U [M] and Jk e {e} U [N] respectively, based on the bitstrings they
received in round k —1. Then, in round fc, Alice transmits the codeword
a(/jk) and Bob transmits the codeword b(Jk). (The indices are written in
parentheses, rather than as subscripts, for typographical convenience.)

Based on the bitstrings they receive from each other, Alice and Bob try to
guess the index of the codeword sent by the other, and also decide the index
of the codeword to transmit in the next round. This is done as follows: Alice

finds the unique (i,j) G ({e} U [M]) x ({e} U [N]) such that the bitstring she
receives in round k falls in Bj(i). She then estimates Jk as Jk = j, and takes
Ik+i = i. Similarly, Bob finds the unique (i,j) £ ({e} U [M]) x ({e} U [N])
such that the bitstring he receives in round k falls in Ai(j). He then estimates
Ik as Ik = i, and takes Jk+\ = j. This completes round k.

Let

r =((ii,Ji),(/2,A)..., (/i-i, Jt-i)\
r =^(/1,j1),(/2,j2)...,(/t_1,j,_1)V

14



Both J* and J* can take on \(M + 1)(N + l)]'"1 different values. Of these,
there are (MiV)*-1 in which none of the 2(* —1) components is e. Let 1Z be
an arbitrary function that maps these (MTV)*-1 possibilities onto [(MAT)*"1],
and maps all the remaining possibilities to e.

Then, after round t —1, Alice takes her random output to be / = 11(1*)
and Bob takes his random output to be J = 1Z(Jm). Thus, both / and J
take values in {e} U [K], where K = (MNy-1.

3.2.3 Analysis

We will now prove that the sequence of protocols just described does achieve
the rate promised in (24).

Claim 3.1 a) For each fc€{l,2, ...,*-l}, choose any (ikJk) € [M] x [N].
Then,

^ >Pr [/• =J-= ((.W0)«] > !"A(MNy

where X= t(a + p + j3 + o')-)-0 as t -t oo.

-l(MNy

,. .. log (MAO'"1 ,, N .,h) }™ t2 = h(p-p) +h(q-v) if h(p) + %)<1;

= 2-h(p + 5)-h(q+e) if h(p) + h(q)>\.

Proof: For convenience, let

A f A A "\

Gjk = V* = U, Jk = jfc} and Gjk = {Ik = **, Jfc = jk) .

Then, note that

Pr [/' =J* =((t*. jt))Ui] =Pr fH (G* nGk)
U=i

(34)

Now, for each A: > 1, (/*, jk,lk+1, Jk+i) is conditionally independent of
(/*-\J^,/*"1, J*"1), given (/,, J,). Therefore,

Pr f| {Gk nG*) =Pr [d] Cf[ Pr [6k fl Gfc+1 |(?fc]) Pr [6,-JG,-!]
(35)

15



We will bound each of the terms in the above product separately. To begin
with,

PrlGi] = Pr [J, = j1]-Pr [/, = <,]

= W; (AUi) |a) •Wl (B(h) Ib) .
From (29) and (30), it follows that

^>Pr[Gl]>(^)(^). (36)
Next, for 1 < k < t - 2,

Pr [6k fl Gk+i\Gk] = Pr [lk =tfc, Jk+i =jk+i\h =ik] '
-Pr |JA = jk, Ik+1 = u+i|Jfc = jk\

= Wl (Aik(jM) |alt) •Wl (Bh(ik+1) IbA) .
From (32) and (33), it follows that

!7>iv[dinGw|04]>(lzpi)(izAzi), !<*<<_2.
(37)

MN

Finally,

Pr [&_!!<?«_,] =Wp' (A,., |a,,.,) •W\ (Bj,., | b,,.,) ,
so that

1>Pr [&_i |G,-i]>(l-a)(1-/?).
By (34), (35), (36), (37), and (38),

_L_ >Pr [r=r =(fe j0)j-i]
and

Pr [r =r =((4, jt)C]

2 (i^)(i^)['-°-^-"-""-

(38)

MN
(l-a)(l-(3)

[(1-a- p)(l -(3- a)}'
- (MNy-1
> l-t(a + p+ (3 + cr)

(MNy-1
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which proves Part a).
Next, note that by (22), (23), (25), and (26),

MN = ([2*<«-»)J - l) ([2("(p-")J _ i) if *(p) +&(*) <1;
= ([2'(1-*("+Wj - i) ([2«0-M^))j _!) if h(p) +h(g) >I.

Part b) of the claim follows easily from this. •

3.3 Case 2: p = 0, 0 < q < 1/2

Note that R*(p,q) = h(q) in this case. Pick any v € (0,g). The sequence of
protocols to be described will achieve the rate h(q —*/), which can be made
arbitrarily close to R*(p,q) by choosing v small enough.

Let M= l^^-^J - 1, and let a be given by (28). By Lemma 3.2, for
any b € {0,1}*, there exists a (q,M,a) equipartition of {0,1}* w.r.t. b into
subsets #(e),#(l),...,5(M). This equipartition satisfies (30). Alice and
Bob agree on some such bitstring and corresponding equipartition. They also
agree upon M+l distinct (but otherwisearbitrary) bitstrings, ae, ai,..., a^,
each of length t.

As before, the t2-step protocolproceeds in t rounds, indexed 0,1,..., t—1.
In each round, Bob simply transmits the bitstring b. As for Alice, she
transmits a dummy bitstring (say, 00•••0) in round 0, and the bitstring
a(/fc) in round k (1 < k < t). Here, Ik is the unique i € {e} U[M] such that
the bitstring she receives from Bob in round k —1 falls in B(i).

Since p = 0, Bob receives all transmissions from Alice without any errors.
Thus, after round t —1, both Aliceand Bob know /* = (/i, 72, •••, /<-i). Let
V, be a function that maps onto [M*_1] the M*-1 values of /* in which no
component is e, and maps all the remaining values to e. Both Alice and Bob
take *R,(I*) to be their random output.

Claim 3.2 a) For each k € {1,2,... ,* - 1}, choose any ik € [M]. Then,

l->Pr[r =(iui2,-.-,it-i)}>1~X
where X = ta —> 0 as t —• oo.

logM1-1
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Proof:

Pr[r =(ii,e2,...,^-i)] = f[Pr[h =ik]
k-i

= 'f[Wl(B(ik)\b).
Jfc=l

Part a) now follows easily from (30). Part b) is obvious from the definition
of M. D

3.4 Case 3: 0 < p < 1/2, q = 1/2

Note that R*(p, q) = 1 —h(p) in this case. Pick any 8 > 0 satisfying p + 8 <
jp+ji-p- Then, pick any v € (0,g) such that 1—h(p + 8) < h(q —v). The
sequence of protocols to be described will achieve the rate 1—h(p+ 8), which
can be made arbitrarily close to R*(p,q) by choosing 8 small enough.

Let M= ^-Mp+WJ - 1, and a=4•2-tD^+s^\ By Lemma 3.1, there
exists a (*, M+1,a) block code, {(a,-,,4,-) : i = e,1,..., M} , for the BSC(p).
Alice and Bob agree upon such a code.

Let cr be given by (28). Since M < 2th^~u\ Lemma 3.2 guarantees that,
for any b € {0,1}*, there exists a (q,M,a) equipartition of {0,1}* w.r.t. b
into subsets B(e),B(l),..., B(M). As before, this equipartition satisfies (30).
Alice and Bob also agree on some such bitstring and corresponding equipar
tition.

Again, the 22-step protocol proceeds in t rounds, indexed 0,1, ...,< —1.
In each round, Bob simply transmits the bitstring b. Alice transmits a
dummy bitstring (say, 00 •••0) in round 0, and the codeword a (/*) in round
k (1 < k < t). Here, Ik is the unique i e {e} U[M] such that the bitstring
she receives from Bob in round k —1 falls in B(i).

Bob estimates Ik, 1 < k < t, as the unique i € {e} U [M] such that the
bitstring he receives from Alice in round k falls in Ai. Call the estimate Ik.

Let /* = (Iu I2,..., /,_!) and J* = (lu 72,..., i^). After round t- 1,
Alice's random output is / = %(I*) and Bob's random output is J = K(J*).
Here, 71 is a map exactly as in Case 2.

18



Claim 3.3 a) For each k e {1,2,... ,t - 1}, choose any ik G[M]. Then,

tr >Pr[r =r =(^,...,^-1)] >*~x
M

where X= t(a + cr) —¥ 0 as <—• oo.

logM*"1

Proof:

lim
t-HX> tf

M'"1

= l-h(p + 6).

Pr[r = Jm =(iui2,...,it_l)] = J[(Pr[Ik =ik].Pr[ik =ikIk =ik])
k=i

= HK' (*(*) \b)-w; (Ait Ia,-,)].
k=l

(39)

Part a) follows easily from (39), (30), and the fact that 1> W* (Aik | atfc) >
I —a. Part b) is obvious from the definition of M. •

4 Appendix

Proof of Lemma 2.1: Part a) is obvious from the definition of S. To prove
Part b), first note that

(40)

where Xk and Yk are respectively the (random) bits that Bob and Alice
receive in the kth step of the given protocol. Let

Zk =log W„ (Xk | f„ (K*-1)) +log Wq (Yk |gk (X*"1)) .
The right hand side of (40) then equals

Pr Y,Zk + n(h(p) + h(q))
Jfc=i
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so that it suffices to prove that (41) can be made arbitrarily small by choosing
0 large enough. This will be done using Chebyshev's inequality. To this end,
we will now estimate the mean and variance of J2k=i %k- It is easy to see
that

E[Zk \X"-\ Y"-1] = -k(p) - %), (42)
so that

E[Zk] = E[E[zk\Xk-\Yk-1]]
= -h(p) - h(q), for 1 < k < n. (43)

Next, note that ifk' < k then Zk> is a function of (Xk-1,Yk-1). Therefore,

E[Zk,Zk) = E[E[zk,Zk\Xk-\Yk-1\[
= E^.EfZjblX*-1,^*-1]]
= E[Zk,-E[Zk]] (44)
= E[Zk,]>E[Zk],

where (44) is by (42) and (43). But this means that

Var(£z*)=i:Var(Z,). (45)
\*=i / k=i

Now, let a2 be a uniform upper bound on Var (Zk), k = 1,2,..., n. (Such a
bound obviously exists.) By (43), (45), and Chebyshev's inequality, (41) is
upper bounded by cr2/02, which can be made arbitrarily small by choosing 6
large enough. •

Proof of Lemma 3.2: For 0 < w < t, let

T„ ={ze{0,l}*:£2* =u;},
and let

u®7^ = {u®z :zeTw}.

(u © z is the bitstring obtained by bitwise mod 2 addition of u and z.)
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Pick any fi € [r —77, r]. For each w satisfying h(j) > /&(//), construct L
pairwise disjoint subsets of U D (u © 7^,), say Uw(l)yUw(2),... ,UW(L), each
of size exactly [\U 0 (u © Tw)\ /L\ (the subsets are otherwise arbitrary).

Let

U(l)= (J Uw(l), / = 1,2,...,L
M?)>M/0

and let

#(e) = wn U"(0
7=1

By construction, Wlr (l((l) | u) = Wr* (#(/') | u) for all /,/' €[I]. Therefore,
for any /' € [L],

wr (u(i')\u) =Iw?Mjw(o|«)
=i [»? (w Iu) - Wl (U(e) ju)] ,

which proves (19). To upper bound Wr* \U(e) u), note that

W}(u(e) u) = E [|̂ n(u©T^)|modL]ru;(l-r)*-

+ E l^n(u©7;)K(i-r)*-
M?)<Mm)

< E L •rW(i - 0'""

+ E rar-(l-r)*-.
Mf)<M*0

The first term in (46) can be upper bounded as follows:

E L-r"(l-r)*— = E L•2-<[fc(*,+D(Wl
Mt)>Mm) */*<t«<*(i-M)

< L.2-*^) E 2-*D<fll'")
tfl<W<t(l-n)

< 2th^r~^2-th^tlh.

21
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The second term in (46) can be upper bounded using Chernoff's theorem:

J2 |T„|r-(l-r)'- = £ (<V"'(l-'•),"

< 2"*£)(/i||r) + 2-*D(1~^lr)

< 2•2-*DW'r) since /x < r < 1/2. (48)

From (46), (47), and (48), it follows that

Wlr {lA(e) v\ < t•2-*W^-^r"^ +2•2-*Wr>
= r

if /i is chosen to attain the minimum in (20).
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