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Abstract

VideoStation: A Composition platform for Advanced Video

Services

by

Wen-lung Chen

Doctorof Philosophy in Engineering—Electrical Engineering and Computer Science

University of California at Berkeley

Professor David G. Messerschmitt, Chair

The advancement of the computertechnology, broadband networking, and video compres

sion technology makes it possible to support advanced video services such as video tele

phony, multi-party video conference, tele-seminar, distant learning, video on demand,

interactive TV, full motion video games, and virtual reality. In these advanced video ser

vices, video materials are generated and/or stored distributivcly over the network, and

shared and retrieved by many users over the network in real-time. To support advanced

video services, one important issue is the integration of all piecesof primitive video infor

mation from multiple points on the network to produce the final results suitable for per

sonal use. With all the fundamental real-time video supporting technologies today, one

missing piece for supporting advance video servicesis the high-level structure of the video

integration that enables efficientuse and manipulation of the videoelements. This integra

tion process of video materials, called video compositing, is the main topic of this thesis.

In this thesis, we propose a structured video model to provide a framework to support all

kinds of video information compositing. It represents the composited video scene in a

hierarchical tree structure while at the same time keeps all the video elements logically

separate over the network until the very last stage of video compositing at the users work

station. By doing this, the whole data structure is maintained in a very clean, structural

way. All the video elements can also be kept in a simple form that can be most efficient for



data compression, video material sharing and reuse. This makes the network management
and the network resource utilization more efficient. The structured video model also pro

vides means to support interactive control for real-time compositing of video information.

Based on the structured video model, we have explored various aspects ofthe realization

of structured video. We have explored both spatial and temporal compositing issues to
realize the structured video model. We also designed a real-time compositing platform
called VidcoStation to demonstrate the feasibility of the structured video model under the

limitation of today's supporting technologies. We propose apipeline architecture for Vid-
eoStation to address the memory bandwidth and processing capability bottlenecks in
today's memory and processor technology. To explore various video supporting technolo
gies, the VideoStation is implemented in two different approaches —the programmable
video signal processing and ASIC design. We have compared the results of these two
implementations, and discuss the improvement ofvideo signal processor design to support

general real-time video signal processing algorttEnls efficiently.

David G. Messerschmitt

Committee Chair
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CHAPTER 1

Introduction

1.1 Motivations

Today's technology has finally come to a point that multimedia applications are pos

sible both on the desktop environment and over the network. The technologies for gener

ating, manipulating, and distributing the tremendous volume o( data involved in

multimedia information are becoming available. Typical examples of multimedia applica

tions arc video telephony, multi-party video conferencing, tele-seminars, distant learning,

video on demand, interactive TV, full motion video games, virtual reality, etc. Since the

definition of 'multimedia' is still somewhat vague, we will use the term advanced video

services to represent the services we have in mind. The ultimate goal of advanced video

services is to make it easy to present, share, manipulate, and reuse various kind of media

information, mainly full motion video, in an efficient way among all users over the net

work. The triggering technologies for this advanced video service consists of three tech

nologies: computers , broadband networks, and datacompression.
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In computer technology, the increasing capacity of storage devicesand increasing pro

cessing capability make it possible to store/retrieve and manipulate multimedia informa

tion more easily. CPU processing capability and memory device capacity increase every

year, thanks mainly to the advances in very large scale integrated (VLSI) technology. In

addition to the advance of VLSI technology, parallel architectures are also important,

especially whenever the processing speed of the CPU or the bandwidth of the memory

device cannot keep up with the need for supporting real-time full motion video. Examples

are the design in video read/write access memory (VRAM), and the redundant array of

inexpensive disks (RAID), which use special architectures to provide the bandwidth that

silicon devices or conventional mechanical magnetic disks cannot achieve.

In broadband network technology, the asynchronous transfer mode1 (ATM) network

has been adopted by CCITT as the standard for broadband integrated services digital net

work (B-ISDN). Most of today's networksystems suffer from many disadvantages in sup

porting multimedia due to the tremendous bandwidth requirement and the variety of traffic

involved in multimedia. Advanced video services, by our definition, will include various

kinds of media. Each different medium may have different requirements when it is trans

mitted over networks. For example, full motion video has a higher requirement for net

work bandwidth and delay jitter. However, it may be able to tolerate some errors in

transport. Transmission of computer data requires very reliable transport, but is notascrit

ical in the delay requirement. Audio streams, on the other hand, are very sensitive to net

work delays. All these different media impose different requirements. Today's network

citherdoes not support sufficient bandwidth for real-time full motion video, or is not flex

ible enough to support different kinds of traffic. The ATM network is basically a service

independent network. Its virtual circuit concept makes it possible to support any kind of

media transport or a combination of them in a quite efficient way. This kind of network

will be most useful for transporting all the video, audio, graphics, etc. The ATM network

Transter mode is a term used in telecom enuoicatioos 10 describe multiplex and switching techniques
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also provides a very high bandwidth. The currently available ATM network supports

traffic of 155 Mbps (OC-3 rate) oreven up to 600 Mbps (OC-12 rate) on one port. This is

equivalent to abandwidth ofabout 100 to 400 video streams with MPEG1 Icompression

technology of the average bit rate from 1.2 Mbps to 1.5 Mbps. The huge amount of band

width capability and the flexibility for supporting multimedia make it the choice for a

future B-ISDN standard.

The third important technology is video compression. The uncompressed video infor-

mation takes a huge amount of bandwidth to transmit. A CC1R 601A video lakes a band

width of 216 or 270 Mbps for a word length of X or 10 bits, respectively. With no

compression, a single video stream cannot even fit into one 155 Mb/s ATM port. With

compression, however, the video stream can be reduced to a much lower rate for transmis

sion through the network. There are currently various compression standards used for var

ious applications. For low-quality video conferencing, the H.26L standard can compress

the video down to p x 64 Kbps. The video quality is barely acceptable when p is low.

MPEG I can be compressed down to 1.2 - 1.5 Mbps with VHS quality. It is used mainly

for application using storage devices. The algorithm is designed such that fast forward or

reverse is possible. MPEG II is aimed at entertainment, or even higher quality applica

tions. The data rate is varying from 4-15 Mbps for a format conforming to CCIR 601

standard, to 60 Mbps for high definition TV (HDTV).

A diagram of the advanced video service environment is given in Figure 1-1. illus

trating how the different technologies work together. In this figure, all users are connected

with a broadband ATM network for sharing multimedia material. Any information,

including video, audio, graphics, still images, and text, are transmitted through the ATM

network in a very flexible manner. At the user location, basic features would include video

'•|SO/1EC/JTfl/SC2«>/WCill MP0(i working group
•»

"' SM PTE recommendations 001. a lormat standard for studio quality video.

' ITU-T/CTITT Recommendation H.2hl. "Video Codec lor Audiovisual services at p x 64 Kbps.



Figure 1-1. Advanced video service environment.

compression/decompression, shooting real-time video sequences with a video camera,

retrieving/saving multimedia information from/into a local storage device on the network,

composing multimedia information, and transmitting information over the network. Sev

eral kind of devices can be provided on the network for serving all the users, such as a

large multimedia information server accessible by all users, video bridging or transcoding

for providing video stream merging and format conversion.

Even though this kind of service has been discussed for quite a long time, it was never

as promising as it is today. The cost of equipment to support them is also decreasing,

which helps to make it practical. Today, people are proposing for a set top box for interac

tive TV with a price around $300. Such a settop boxwill include features such as network

interface, video decompression, interactive control capability, and remote control capa

bility. Among all the supporting blocks for multimedia, one single piece whose cost has

notcome down is the production of the contents - mainly video materials. This is mainly

due to the difficulties in accessing and reusing existing video materials. Today, we can

very easily edit text and graphics information with even a very primitive personal com

puter. Any single graphic object can be used over and over again in different documents.

However, it is usually more difficult to reuse and compose video materials, especially for
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casual users. Most of today's video composing activities are performed in video studios

with very expensive equipment.

The reason for this difficulty in reusing video material actually lies in the structure of

the video information itself. Unlike computer graphics which start from structural manner

for efficient presentation, today's video technology develops from quite a different origin.

The video technology today basically puts all the information in one primitive video

stream with a rectangular screen shape. This single video stream may include many dif

ferent pieces of information tightly integrated. A more structured format is needed in

order to utilize existing video material more easily. The need for a structured format actu

ally already appears in the audio formal in Japanese "Karaoke" equipment. In Karaoke,

the sound of the original singer is separated from the background music such that we can

choose to either hear the original singer's voice or substitute our own voice for his voice.

This is a good example of how audioinformation needs to be more structured to have flex

ibility in the presentation. A similar situation happens in video. Without any structural

information in this primitive video stream, it is usually very hard to retrieve each indi

vidual piece of information for reuse. The whole video stream consisting of many pieces

of information has less chance to be reused than each individual piece of information

because it is less generic for reuse.

The objective of this thesis is to study the structural approach for multimedia informa

tion, mainly video information. We will try to use a structural model to make the presenta

tion of video information more efficient, in terms of either representation, transmission,

and ease of reuse. With this objective, we propose a structured video model, which we

believe will achieve these goals. In addition to better video material reuse, arranging the

video material in a structural manner also brings other advantages such as better compres

sion, more efficient resource utilization. Starting from this model, we also look into the

current technology that can actually implement the structured video model. Three major

components are required to support structured video. They are the workstation, used for
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compositing and presenting structured video information: the storage system, used for

storing video information; and the network, used for transporting video information. This

thesis will focus on the efficient implementation for the video display subsystem of a

workstation, which we call aVideoStation. We propose a pipeline architecture that can be

implemented with current technology to support real-time compositing and presentation of

structured video. We also implement the VideoStation with both an application specific

integrated circuit (ASIC) and a programmable video signal processing approach to get

more insight into the current technology.

1.2 Thesis organization

The organization of this thesis is as follows. In the second chapter, we describe in

more detail the advanced video services that we have just outlined, and study their

requirements in terms of bandwidth, processing, quality, etc. We briefly review today's

technologies in regard to the three major components for the support of advanced video

services — the workstation, the storage, and the network. We also discuss the relationship

of the three components to each other for efficient implementation.

In the third chapter, we describe the structured video model that we propose to facili

tate efficient video information presentation and reuse. Some major components in the

model, such as video objects, compositing functions, constraints, and events are defined.

The compositing properties of these components are studied in detail, in both spatial and

temporal compositing aspects. Then we discuss the advantage and disadvantage of this

structured video model.

In the fourth chapter, we describe the implementation issues of the structured video

model. In the spatial compositing aspect, we discuss the anti-aliasing issue, and derive the

algorithms for all the compositing functions of interest. We also study the properties of

compositing functions to enable restructuring and other ways for more efficient imple-
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mentation. In the temporal compositing aspect, we study the synchronization issues. This

includes clock rate matching and synchronization among multiple video objects.

In the fifth chapter, we describe the VideoStation that we propose for real-lime com

positing and presentation for structured video. We start with a review of today's display

technology, and describe the bottleneck in this compositing platform. Then we propose

our architecture — the pipeline architecture — to enable real-lime compositing. We also

describe the design of the VideoStation. andsome optimization issues.

In the sixth chapter, we describe our prototype of VideoStation. We use two quite dif

ferent approaches for this implementation. In the first case, we use a fully dedicated

approach to show the efficiency of the VideoStation architecture. In the second case, we

use a programmable video signal processing approach to get a better understanding of

today's video supporting technology. The programmable approach also enables faster

implementation and easier debugging. We also discuss the advantages and disadvantages

of the architecture of the VSP chips.

In the last chapter, we summarize the results, and describe some important issues in

this field that will require further study in the future.



CHAPTER 2

Advanced video services

As we described in chapter I, the technologies in computer, broadband network, and

data compression together bring up possibilities to support advanced video services such

as video telephony, multi-party video conference, tele-seminar, distant learning, video on

demand, interactive TV, full motion video games, virtual reality, etc. In our definition,

advanced video services are video services that provide people with an easy way to

retrieve, share, use, and present various kinds of information over the network. The media

that we consider are mainly full motion video sequences, but also includes audio,

graphics, images, and text. The ultimate goal is to allow people at different locations to

easily interact and collaborate among one other.

When advanced video services arc commonly used, it can significantly change the way

people interact. Full motion video not only lets people present their ideas more flexibly,

but also make people feel like the person were in front of them even though they are not

This is most important for human interaction services such as video telephony, video con

ferencing, and distance learning.
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There are three major components to advanced video services — the workstation that

processes and presents the information, the network that transports the information, and

the storage device that stores the information. Designing these components is achallenge

to support all kinds of media, especially lull-motion video sequences. On lop of these

components, an even more important issue is how various kinds of media are organized in

a most efficient way to ease the information transport, process and presentation. This

includes specifying basic components of information materials and to define ihe data

structure of the basic components best fit for all advanced video services. This information

structure issue is a major part of this thesis, and we will postpone the discussion about this

until laterchapters.

When all these components arc put together on the network, there are also issues

regarding distributed processing. For example, whether should we store a piece of infor

mation locally or remotely to make the overall process and transport most efficient: how

the processing is allocated distributivcly such that the resources on the network arc effi

ciently used, etc. These aspects allow further optimization when we address each specific

service. To do this design, weneed abetter understanding of the characteristic of the infor

mation that we want to support

In this chapter, we give a general review of the advanced video servicesand the tech

nologies in the three major components. In section 2.1. we list some advances video ser

vices, and describe the characteristics of the media involved in these services. Then we

briefly review the technologies ineach of the three components to support advanced video

services in section 2.2.
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2.1 Advanced video services and their requirements

2.1.1 Advanced video services

The advanced video services are categorized into two classes from the users environ

mentas listed in Table 2-1 — the business applications and the home applications. Typical

TABtE 2-1 Advanced video services.

Type of application Application

Business

Video telephony/Multi-party video conference

Tele-seminar/Corporaie training/Distant learning

Open/share workspace/Remote Collaboration

Video mail

Home

Video on demand/interactive TV

Bulletin board service/Home shopping service

On-line multimedia magazine

Full motion video game

Virtual reality/Virtual trip

business applications include video telephony, multi-party video conferencing, open/share

workspace, tele-seminar, corporate training, distant learning, video mail. etc. Video tele

phony and multi-party video conferencing allow people to interact through the network

without moving to the same place. Tele-seminar, corporate training, and distant learning

allow people to attend a seminar or a class in either realtime or non-realtime manner. In

realtime, people can attend the seminar from different places: have two way communica

tions between the audience and the speaker; and also can have subgroup discussions. In a

non-realtime manner, people access the seminar material pre-recorded in some informa

tion server, and simultaneously they may ask questions through a connection to the

speaker, or have discussions with each other. The class material may involve video, slides,

or some interactive exercises, with all various media integrated in a graceful way. The
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open/share workspace and remote collaboration arc applications thatallow people to work

on the same project from different sites. It provides a virtual workspace thathas the project

material accessible to all the participating people. Any changes of the project material by

any participant will be reflected to all the rest of people in real-time. Video mail is an

extension of the currentelectronic mail and voice mail. It allows people to compose, store.

anddistribute video message easily.

In a home user environment, video on demand allow people to order a video directly

from the network instead of walking into the video tape rental store, while allows people

to still have VCR-like control feature, such as pause, fast forward, etc.. over the displayed

video program. It also allows people to start watching the movie any time without wor

rying about the movie schedule. The bulletin board and the home shopping service allow

people to browse through the catalogs of many stores in real time, do research about the

quality and price of some merchandize, and finally place the order. The virtual reality and

virtual trip use 3-D video to enable people to toura place with a real sense of personal par

ticipation.

2.1.2 Media characteristics

Various kinds of media are involved in the applications described above — video,

audio, still images, binary data, interactive data, and their combination. The characteristics

of all these data types vary and cover the full spectrum of possibilities. Technically, it is

quite a challenge to support all kinds of media and integrate them in a graceful way. The

characteristics that are of interest are the data rate, the total data volume, and the burstiness

of the traffic. Burstiness of the traffic is defined as the ratio between the maximum and the

average information rate. There are also characteristics that are application-dependent or

implementation-dependent, e.g., the sensitivity to the transport delay or delay jitter. For

example, some applications require intermediate response with little delay, while others

allow a long delay. The acceptable delay is determined by applications, not by the media
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involved. Delay jitter, the variation of a delay, can usually be maintained to be under some

limit at the price of some buffering scheme and a longer delay.

All media can be categorized into two classes — non-realtime and realtime. The non-

realtime class includes ASCII files, binary data, still images, etc. The non-realtime media

has no hard time limit on when it should be available after we issue the access request.

Usually, we simply want to make the access as fast as possible for this class of media.

Since there is no hard-time limit on the access, the data rate and the burstiness vary,

depending on the application and the implementation. Typically, the burstiness of this

class of media is high because of the design of the storage device. For example, the

accesses of data from hard disk are always by a whole block.This causes the data traffic to

be more bursty. The total data volume of this class of media also varies. They can be a

small ASCII file of several bytes, ora very large image tile of several mega bytes. Today's

computer technology primarily focuses on this class of media, and can support them quite

well.

The realtime class includes data types that are usually accessed in a rhythmic way

instead of being accessed abruptly in as a short time as possible. They are access periodi

cally with a certain data rate, and have a hard-time limit on when it is available. If some

TABtE 2-2:Real-time media and their data rate.

Types of media Data rate Burstiness

Voice 32 kbit/s 2

Interactive data 1-100 kbit/s 10

High quality video telephony 0.2-2 Mbit/s 5

Standardquality video 1.5-15 Mbit/s 2-3

High definition TV 15-150 Mbit/s 1-2

data are available after this hard-time limit, it becomes useless. The transport delay jitter

therefore has important impact on the media in this class. The data types included in this
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class are video, audio, interactive data. etc. The data rate and burstiness vary depending on

the media, as shown in Table 2-2. The typical data volume of this type of media is large.

In essence, the media involved in advanced video services have characteristics that

cover the full spectrum of possibilities. To implement advanced video services, we need to

support both real-time or non real-time data types. We need to handle the data rate from

several kbits/sec up to hundreds of Mbits/sec. The total data volume can be from bytes up

to gigabytes. The burstiness also varies a lot. The components that store, transport and

display these media need to handle this heterogeneity in an efficient way.

2.2 Review of the current technology in three major components

In this section, we review today's technology in terms of presenting, transporting and

storing the media for advanced video services. Today's computer technology starting from

non-realtime data environment has no problem with the non-realtime media. The chal

lenge occurs when the data rate grows higher and when the data volume grows very large.

This is mainly introduced by full-motion video. Therefore we will focus on the support of

video streams when we discuss the three components. We will also briefly mention how

the current technology handles the heterogeneity of media types.

2.2.1 Multimedia workstation

One major component for advanced video services is the multimedia workstation that

users directly reach. Through this workstation, a user can access, view, and compose a

multimedia material. The function of this multimedia workstation is to receive and decode

various kind of media either from a local storage device or from the network, combine the

media according to some specified data structure, and present them on the display screen.

There are three components in the multimedia workstation — the media interface that

receives and decodes the media, the human interface that eases the manipulation of var

ious media, and the compositing display that combines the media. The media interface

relies on existing standards. For full motion video, there are several video compression
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formats available for various applications. H.261. motion JPEG. MPEG I. and MPEG 2

are some examples. H.261 is a constant bit rate video compression standard for video tele

phony application. Motion JPEG (MJPEG) is a video extension of the JPEG still image

standard. It is preferable to some applications that need to support video editing features

because of its intra-frame compression algorithm. MPEG 1 is originally proposed for

video storage related applications with roughly VHS video quality. MPEG 2 is a higher

quality proposed for video entertainment quality. It includes video resolution from NTSC

video quality to high definition TV. No matter what standard is used, the media interface

should provide appropriate decompression according to the nature of the media.

The human interface is important for multimedia presentation because of the com

plexity involved. Traditional mono-media applications, e.g., the voice phone, have a very

clearly defined media and function and are easy to handle. When the application involves

multiple media, however, there are all kinds of combinations and possibilities. The com

plexity will go beyond people's ability to handle if a proper human interface is not avail

able. One basic principle of designing the human interface is to use the analogy to

conventional way of doing things. For example, H. Kamata et. al. proposed in their MON

STER multimedia system a human interface based on the conventional paper document

system that people are most familiar ioday[29]. In addition, the technology in today's

computer system should also be incorporated, e.g., the hyper-linking technique that allows

easy access to related material by specifying their relationships through a link. The

authoring capability allowing users toeasily compose a multimedia material is also impor

tant Currently, commercial multimedia authoring systems are already available on the

market*

The compositing display system that combines the media and shows the material on

the display is a major bottleneck in a multimedia workstation. Most of today's worksta-

' For example, (iain Momentum Irom Gain Technology Inc.



15

lions cannot support full-motion video. With special hardware, some workstation can sup

port very limited full-motion capabilities1. Most of the existing special hardware of

workstation supporting full-motion video simply replaces the original frame buffer with a

faster one such that one (or two) rectangular full-motion video window can show on the

display. The big disadvantage of this approach is the scalability — they cannot be

expanded to accommodate more video streams. In advanced video services, multiple

simultaneous video streams are essential. One solution to this is to u.se a video bridge to

merge all the video streams into one stream in advance, such that die user need only to

receive and display one video stream. This approach, however, has a verybig limitation on

the use and manipulation of each individual stream of video material to get the best result

of presentation.

In advanced video services, we want to support multiple video streams and manipulate

each individual one independently. To maximize the flexibility of video composition and

presentation in advanced video services, we also want the video streams to be arbitrarily

shaped instead of rectangular such that the video streams can be easily put together and

composed into a new video scene. To do this, the compositing display system need to be

greatly enhanced to support more elaborated compositing operations for arbitrarily shaped

video streams. One goal of this thesis is to define structured video model based on arbi

trarily shaped video streams to ease the use and composition of video materials, and to

demonstrate the implementation of compositing display system for the structured video.

All these aspects will be discussed in detail in later chapters.

2.2.2 Network

In this section, we will review the network technology, mainly asynchronous transfer

mode (ATM) technology, which supports the requirements of advanced video services. To

support advanced video services, the network needs to handle any kind of information.

For example. XVideo card Irom i'arallax Inc. lor Sparc stations and Video blaster card Irom Creative Lab
lor PCs.
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such as voice, data, image, text, and video, in an integrated manner. The network not only

needs to support the required bandwidth of the media, but also to support the heteroge

neity of the services— bursty and continuous traffic, interactive and distributive services,

connection-oriented and connectionless, point-to-point and multipoint-to-multipoint con

nections — all be integrated gracefully. The use of highly reliable fiber systems can pro

vide the necessary high bandwidth foradvanced video services. To support heterogeneous

traffic, the transfer mode of the network need to be considered.

Transfer mode, according to CCITT, is the technique used for transmission, multi

plexing, and switching data information over the communication network. Tosupport het

erogeneous traffic, the transfer mode must be very flexible to transport a wide range of

natural bit rates and cope with services that have fluctuating characteristics in time. The

asynchronous transfer mode (ATM)|Qlf 121 technology has been recognized to be the best

one to support the heterogeneous requirement In this section, we will emphasize on the

ATM network technology.

2.2.2.1 ATM technology

ATM is a connection oriented packet switching technology that uses packet switching

with minimal functionality in the network to allow fast and efficient processing of the

switched information. The term "asynchronous" is used because it allows asynchronous

operations between the sender and the receiver using independent clocks. In ATM. user

information is transmitted between communicating entities using fixed-sized packets

(called cells) of 53 bytes. By choosing such a small and fixed cell size, all constant bit

rate(CBR) and/or variable bit rate(VBR) services can be easily multiplexed together to

share the network resources. Small cell size also allows us to reduce the buffer size in the

switch to limit the buffer queuing delays. A low queuing delay is necessary to satisfy the

requirement of real time services. The buffer management and switching fabric design are

also simplified with this small fixed cell size. There is no link-by-link error protection or

flow control in the ATM network. All the error detection and flow control mechanisms.
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when necessary, are pushed up to the end-to-end transport layer to keep the switch system

simple and fast. With highly reliable liber transmission, error protection can be omitted

without causing much problem.

Today's ATM networks can provide the OC-3 rate of 155 Mbps. and most possibly up

to the OC1-12 rate of 622 Mbps soon. With this rate, the ATM network supports multiple

standard quality video streams or even high definition TV quality video streams easily

with all other audio, data, images. Because of this, ATM has been adopted by CCITT as

the standard for the future broadband integrated services digital network (B-ISDN).

Since an ATM network is a service independent network platform, it can be tuned to

support specific characteristics of a connection on the network. Similar to the OSI layered

reference model, an ATM protocol reference model is also defined by CCITT. Among all

the layers in thereference model, the ATM adaptation layer (AAL) is defined to adapt var

ious service information to the ATM streams to provide the required quality of ser-

vice(QoS) to services. The basic function of AAL includes segmenting/reassembling the

information stream into/from cells, maintaining the time/clock recovery information, com

pensating variable delay and loss cells, etc.

Four AALs are currently defined by CCITT for four different classes of service. The

services are classified using three parameters: the liming relationship (realtime or non-

realtime), the bit rate (variable or constant bit rate), and the connection mode (connection

less or connection-oriented.) The four AALs are:

• AAL1: constant bit-rate connection-oriented services with liming relation

between source and destination. Examples of this class of services are the

emulation of constant bit rate channels such as 1.5 Mbits T-l connections

and constant bit-rate video coded connection (e.g., k x 64k).

• AAL2: variable bit-rate connection-oriented services with liming relation

between source and destination. Variable bit-rate video coded connection is

an example.
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• AAL3/4: variable bit-rate connection-oriented/connection less data transfer

services that are sensitive to loss, but not to delay. These are defined for

typical data communication.

• AAL5: variable bit-rale connectionless data transfer services. This layer is

defined to offer better error detection and less overhead then AAL3/4. The

typical service of this class is also data communication.

Although ATM hasalready been deployed in public networks, there are still issues thai

need to be resolved to really achieve the goal of serving as a high performance service

independent platform. The major issue is currently in the traffic management — how to

monitor the traffic, to perform the admission control and traffic policing to avoid the con

gestion in the network and guarantee the quality of the services for each connection. The

other issue is the routing — to select a best path in the network and maintain the correct

ness, simplicity, robustness, stability, fairness, and reliability.

2.2.2.2 Video support of ATM network

In terms of supporting full motion video over ATM, the major issues are the clock

recovery/synchronization and error detection/correction/concealment The clock recovery

deals with the different clock frequency at the video source and the destination. As the

name implies. ATM is asynchronous, meaning that the clock at different nodes can be

independent This would cause the receiver to expect data at a faster or slower rate than it

is being transmitted. If the receiver runs at a faster clock rate, the buffer may be underflow

and the cells are thought to be lost. If the receiver runs at a slower clock rate, then the

buffer may be overflow and the cells are discarded. In either case, the quality of video is

degraded. To solve this problem, some timing information stamped in the data stream is

needed. Using the time stamp, we can recover a clock at die receiver to tightly follow the

clock at the transmitter. In this way, the data consumption rate at the receiver and the data

generation rate at the transmitterwill be roughly the same.
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Besides using the recovered clock to avoid buffer underflow/overflow, the recovered

clock is also used to generate the NTSC the video signal after the received data stream is

uncompressed. The current NTSC specification for video has a very tight requirement on

the drift of the recovered clock. Consequently, MPEG II specifies the acceptable clock

drift to be under 0.075 Hz/sec. It was shown by simulation by Divicom Inc. that the

recovered clock has a clock deviation as large as 10 Hz/sec for a 40-lap digital phase lock

loop filter, and70 Hz/sec for a 20-lap filler, assuming a uniform i.i.d. jiller with a peak-lo-

peak jitter of I msec. This is still two order of magnitude lower than the MPEG require

ment. How to find an economical way forelock recovery is currently still a research topic.

Synchronization among multiple video sources at the same receiver is also an issue lo

be resolved. Using the clock recovery technique, the receiver can only keep track of one

video source. How to make all the video sources synchronized is yet to be solved. In this

thesis, we will discuss this issue in more detail later in chapter 4.

Error detection/correction and concealment are also important issues for video traffic.

Over ATM. the bit error rate is usually low (less than 1()"**) due to the use of fiber system,

and the link-by-link error correction can be omitted without much impact on the perfor

mance. However, some error correction on a per cell basis at the AAL layer is still needed

to satisfy the requirementof various video services. A similar situation applies to the cell

x 11loss ratio. Typical cell loss rate for a single ATM switch range from 10"° lo U)"11. Table 2-

3[10| and Table 2-3 fill show some recommendations for the requirement on bit error

TABtE 2-3: Recommended BER values for some video applications.

Application Bit rate BER* BER

Videophone 2 Mbps 3x 10"11 1.3 x 10*

Videoconference 5 Mbps io-» 1.8 x 10*

TV Distribution 20-50 Mbps 3 x 10"13 ft x 10"7

I...
rudiments on (.Mock Recovery in the Presence ol Jitter". I')')* ISO/MPEG meeting paper.



TABLE 2-3: Recommended BER values for some video applications.

Application Bit rate BHR" BHR

MPliG 1 1.5 Mbps 4 x I0"n 2.5 x 10*

MPIiG 2 10 Mbps ox I0'12 1.5 x 10*

Without error handling in AAL.

Single-hii error correction on cell basis and additional cell loss cor

rection in AAL.

TABLE 2-4: Recommended CLR values for some video applications.

Application Bit rate Cell loss ratio!
*

Cell loss ratio

Videophone 2 Mbps 10* 8 x 10*

Videoconference 5 Mbps 4 x It)'9 5 x 10*

TV Distribution 20-50 Mbps lo-io Xx 10'7

MPF.G 1 1.5 Mbps K)-8 9.5 x 10*

MPEG 2 10 Mbps 2 x 10"9 4x 10*

20

Without error handlina in AAL.

Single-hit error correction on cell basis and additional cell loss correction

in AAL.

rates and cell loss rates of various video applications. After applying the bit error correc

tion and cell loss correction, some errorconcealment technique is used to make the uncor

rected bit errors or cell losses less noticeable. Retransmission is usually not possible for

video application over ATM because of the large bandwidth of the video traffics and the

delay of the transport.

2.2.3 Multimedia information server

The multimedia information server is a very important component for advanced video

services. Most of the advanced video services that we described in section 2.1.1, such as

video mail, video on demand, bulletin board service, and on-line multimedia magazine,

need a large information server to make them realizable. In this section, we discuss the

requirements on aserver to support advanced video services. We also review theimportant

issues in the realization of such a multimedia information server.
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2.2.3.1 Requirements

Tosupport advanced video services, the information server has quite different require-

menLs from a conventional computer file server. These requiremcnLs are mainly in three

aspecLs: the storage capacity, the access bandwidth, and the media access mode.

Capacity requirement

The storage capacity needed for full motion video sequences is usually very large. An

hourof MPEG 1 video information can easily consume about 1GBytes of storage space.

Typical data storage of a two-hour long video material in various applications is shown in

TABLE 2-5:Data volume of various video applications.

Application Bit rate Data volume of 2 hours of video

Videophone 2Mbps 1.8 GBytes

Videoconfcrence 5Mbps 4.5 GBytes

TV Distribution 20 - 50 Mbps 18 GBytes-45 GBytes

MPEG 1 1.5 Mbps 1.35 GBytes

MPEG 2 10 Mbps 9 GBytes

Table 2-5. Depending on the application, an information server may need to store several

hundred pieces of video information. This makes a total capacity requirement on an order

of several hundred gigabytes to several terabytes. This is extremely high as compared with

today's data file servers.

Bandwidth requirement

The bandwidth requirement on the video server is also usually high. Table 2-5 also

shows the access bandwidth requirement on each video stream. As a server, it is necessary

to support multiple simultaneous accesses. Forexample, in video on demand application.

a videoservermay need to support up to. say, 500 homes. This make the total access band

width up to 94 MBytes/sec sustained rate, assuming MPEG 1 video streams are used.
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Media access requirement

The media access of a multimedia server is quite different from the conventional data

server. First, it needs to support access of multiple media. Media such as text, graphics,

images, audio, and video streams are all stored in one server. Secondly, it need to support

real-time access for all media. To do this, a server needs to record both the incoming data

stream and the incoming traffic pattern, then replicate the same traffic pattern when the

piece of information is retrieved. Without this traffic pattern replication capability, the

retrieved information may be useless for realtime application. This is especially important

with variable bit rate video streams.

Note that not only the accesses of video/audio streams have the real-time constraint,

the access of text and graphics/images also need to satisfy similar real-lime constraintsuch

that the text and graphics are available at a time synchronized with the accompanying

videoand audio.This kindof I/O regulation/scheduling capability is one importantfeature

of realtime servers. In a conventional data file server, the server reads out a file as fast as

possible when the file access command is received. In a multimedia server, however, the

server only reads out the file (or video/audio streams) at a certain time with a specified

rate, even though it can do it earlier or faster. All these real-time access requirements make

the multimediaserverquite different from the conventionaldata file server.

To meet all three requirements described above is a major challenge in multimedia

information server design. Typically the requirements are beyond the capability of any

storage device available today. Under this situation, multiple devices running in parallel

are necessary to satisfy both the space and the bandwidth requirements. In the next sec

tion, we will review the architecture and the major technologies involved in a multimedia

server design.

2.2.3.2 Technologies in multimedia information server

A typical multimedia information server has an architecture shown in Fig. 2-1. In this

architecture, there arc four majorcomponents: the storage device, the serverprocessor, the



Server processor

Storage device

Buffer memory

I/O interface

I/O streams

Fig. 2-1. Typical multimedia server architecture,

buffer memory, and the I/O interface. The storage devices are the memory storage devices

such as magnetic disk, tape, and semiconductor memory, which keep the data. The server

processor is in charge of the receiving I/O access requests from outside the server, per

forms real-lime scheduling, and issue commands to ship data between the I/O interface,

the buffer memory, and the storage device. The I/O interface is the data interface between

the serverand the outside world.The buffer memory is used by the serverprocessor to reg

ulate the I/O traffic from more bursty one at the storage device into a smooth one. or vice

versa, at the I/O interface and the outside world. The buffer memory can also be used to

optimize the hard disk performance by keeping the disk access block as large as possible

to reduce the disk heads movemenLs. Among these components, the storage device and the

server processor are more involved, and we will discuss about them in more detail.
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System bus

Storage devices

The first issue in the design of multimedia information server is to have a storage

device that satisfies the bandwidth and the capacity requirements described previously.

There are various storage devices available today with different capabilities, as shown



24

in.Table 2-6. Among these devices, semiconductor memory devices provide the fastest

TABLE 2-6:Typical parameters of various storage devices available today.

Storage Device Access time Bandwidth Capacity per unit Cost per
MByte

SRAM 5-50 ns 1-4 Mbit/chip $X0-120

DRAM 50-100 as 4-16 Mbit/chip $32-40

Magnetic hard
drive

20 ms - 2.5-4 MBytes/see 20 Mbytes to sev
eral GBytes'

$1-7

Magnetic tape
drive

3 Mbytes/sec 24(H) GBytes $0.25

Optical drive
(R/W)

19-90 ms 5-15 Mbit/sec Up to 1.3 GBytes $5-8

Optical drive
(WORM)

40 - 90 4-8 Mbit/sec 600-940 MBytes $6

' Disk drives range
*IBM *4 80/90 tape

from I.?" to 10*.

drive.

access lime and the highest data transfer throughput. However, they are small in capacity

andexpensive in cost. The magnetic hard drive is slower than the semi-conductor memory

device, but with a larger space and lower cost. The magnetic tape drive provides the largest

storage space and least cost per megabyte. However, it is also the slowest.

Note lhat there are tradeoffs between the bandwidth capability and the capacity/cost

per megabyte. A faster storage device usually has a smaller capacity and a higher cost.

Under the constraint of these tradeoffs between the bandwidth, capacity, and cost, memory

caching hierarchy provides a way to reduce the overall cost while also satisfies the band

width and capacity requirement. This is done by placing the less frequently accessed data

in a lower speed but larger space magnetic tape drive, and swaps the more frequently

accessed material from the tape drive into faster devices such as magnetic disk and semi

conductor memory buffer. Once the data are placed in the faster devices, theycan berepet

itively used until they are swapped out of that device when other data are swapped in. In
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this way, most of the I/O access will only go to the faster device, and therefore reduce the

actual I/O access to the low speed devices. This kind of realization is typical in today's

video server for video-on-demand applications.

Among all the storage devices in the memory hierarchy for a video server, magnetic

hard disks are the most important to provide multiple real-time video accesses. Note that

magnetic tape drive can only support sequential access due to its tape storage. This is not

feasible for applications requiring very fast response with very small delay. The sequential

access nature also prohibiLs multiple simultaneous accesses to the same video material.

Magnetic hard disks are more appropriate to support simultaneous real-lime video

accesses in terms of ihe bandwidth, capacity, random access capability, and the cost.

To provide enough bandwidth and capacity with hard disks, an array of parallel disks

is usually used to expand the bandwidth and capacity. The disadvantage is that a disk array

usually has a much higher failure rate than each individual disk. The failure of any indi

vidual disk will cause the whole array system to fail. Redundant array of inexpensive disk

(RAID)f 131fl41 technique is very useful to make the disk array more reliable. The idea is

to provide redundancy in the disk array system such that a failure in a disk can be recov

ered from the information on the rest of the disks. In this way, the RAID technique can

provide a large capacity storage device using arrays of inexpensive disks while also pro

vide the reliability higher than a single large and expensive disk.

Server processor

As described previously, the server should support realtime access, record and repli

catecertain I/O pattern. These arc allaccomplished by the serverprocessor. In essence, the

function of the server processor is to provide real-time control to ship the information

around between the I/O interface, buffer memory, and the storage device at a correct time.

To do this, a real-time operating system running on the server processor is needed to main-

lain the realtime operations correctly. The VxWork by Windriver Inc. and the Irix real-
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time operating system by Silicon Graphics. Inc. are two of the realtime operating systems

currently available on the market

The other task of the server processor is the scheduling. Scheduling is used to solve

the contention among multiple simultaneous accesses on the common resources such as

bus, disk, buffer memory, and I/O interfaces. Scheduling is important in real-lime access

because the access has a deadline to meet A good scheduling algorithm will schedule I/O

tasks to satisfy the deadlines of most of the accesses, and optimize the performance. The

scheduling of real-lime video access is still a research topic. More details can be found in

(151.

The server processor is usually implemented with general purpose CPUs. When the

processing requirement of this server processor exceeds the capability of a single central

processing unit (CPU), a multiple processors' approach can be used to enhance the pro

cessing capability. Under this situation, several processors can either locate on the same

bus in Fig. 2-1. as is done in the Silicon Graphics Challenge series of video servers, or be

interconnected in a more complicated way, such as the N-Cube approach in Oracle video

servers. Exactly which architecture to use depends on the performance requirement and

ihecost A single bus approach apparently can be implemented with a lower cost On the

other hand, a more elaborate link N-Cube can provide a higher performance and expan

sion capability.

2.3 Conclusion

In this chapter, we briefly review the technologies used to build the components in an

advanced video service environment. The emerging advanced video services impose many

requirements on the workstation, the network, and the storage server. It requires the three

components to have high bandwidth/capacity, high processing capability, real-time opera

tion capability, and the capability to handle heterogeneous media traffic. These require

ments make the three components quite different from their conventional counterpart.



27

They all need to be re-designed and enhanced to support the required capability. This is

one major bottleneck thai prohibits the multimedia services from growing fast However,

most of the needed technologies in these components are getting mature. The cost and per

formance will also improve quickly.

Besides the optimization in each of the workstation, network transport, and the infor

mation server, system level optimization arises when all the three components are inte

grated together. When these components are connected through the network, it becomes a

fully distributed environment. All the distributed processing issues, such as resource man

agement and load balance, appear in this environment too. There are also tradeoffs

between the capability of these three components. That is. the performance of one compo

nent can affect the requirements on other components. For example, using a more pow

erful compression workstation, we can reduce the network bandwidth requirement,

however, at the cost of longer delay. Using a local storage device to save frequently used

and less frequently changed material can also save the bandwidth on the network. It can

also save the capacity and bandwidth requirement on the remote server. How to allocate

the distributed processing resources over the network to optimize the overall network

resource utilization is also an important issue in the system design.

A basic issue that we have not described so far is die information structure that speci

fies the relations among heterogeneous media lo enable efficient information transport,

processing, and presentation. This includes specifying basic components of information

materials and defining the data structure of the combination of all basic elements for

advanced video services. All the components that we reviewed so far need to rely on this

information structure to realize the multimedia information support. For example, the

workstation needs to use this structure to present various media to the user correctly. The

storage server must have this structure built in to efficiently store and retrieve related

information. The network also needs to use this structure to satisfy the real-time transport

requirements. Apparently this information structure is very important and needs to be
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studied in detail. We will explore this issue in detail in the nextchapter, and propose our

structured video model.
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CHAPTER 3

Structured video model

The advanced video services described in the previous chapter require a multimedia

workstation to receive various information, either video, audio, pictures, graphics, or text,

from any resource accessible on the network, and integrate them in a way suitable to per

sonal use. Among these features, the integration of visual information onto a single dis

play (usually a CRT monitor in today's workstation) is most interesting because of the

high processing and bandwidth requirements for visual information, especially full motion

video sequences. This integration process, which we call video compositing, combines

several video sources into a single display stream. Typical compositing includes overlap

ping, clipping (possibly lo non-rectangular shapes), scaling, blending, translation, etc.

In conventional broadcast video, compositing can only be performed in a video studio

for video program production. All video elements (e.g., foreground news reporter, back

ground weather map, text,) are combined into a single rasterscan stream in the video

studio before the signals are sent out for broadcasting. For advanced video services, video
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compositing can be done notonly in a videostudio, but al.so atany place on the network or

locally at the user's display. In addition, users want to have control over the pictures they

manipulate and view. For example, in multi-way video conferencing, a user may want to

display only part of the participants, orhe/she may want loenlarge the image sizeof a par

ticipant, and simultaneously display another video sequence from a database, while ihe

other user may want to arrange the information in a totally different way.

For this purpose, the most flexible choice is to keep the visualelements logically sepa

rate and use a structural representation for the final composed result shown on the user's

display. In this structural representation, the compositing operations can be assigned easily

to any existing resource, from the video sources through the network to the user's end.

The representation also provides an interactive interface to allow the user to dynamically

change the structure of the visual information, and thereby change the displayed scene.

The structural representation can also be used for efficient performance analysis, resource

allocation, network administration, and system implementation. There have been some

efforts to standardize thecoding and exchange formats for multimedia representations and

documents, but not for performance analysis and mapping to practical implementations in

networks.

In section 3.1. we first discuss the objectives of the representation model for com

posite video. Then in section 3.2 we review several existing representation standards

developed for multimedia applications, including ODa'm, HyTimc(3|, and

MHEGi 1][3], In section 3.3, we propose our structured video model with some detailed

description of its components, functionality, and representation. In section 3.4, we discuss

various advantages of the structured video model. Then we give a brief conclusion in

section 3.5.

ISO 8613: otfice Document Architecture.
•>

~ ISO/lEC JTCI/SC2/WG12. known as Multimedia and Hypermedia information coding Expert iiroup
Ubbrev MHEG).
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3.1 Objectives

In this section, we describe the objectives/features of the representation model we

have in mind. There are basically six main goals, as listed below.

• Real-time presentation and interchange.

• Logically separate visual information with structural representation.

• Use of video materials aseasy as the use of graphics and text.

• Common coding andrepresentation.

• Primitive compositing functions.

• Performance analysis and implementation optimization.

Real-time presentation and interchange

The model will support the presentation of full motion video compositing in real time.

In order to achieve this, it will require as little processing as possible to have the final dis

played scene. It is not intended for a full featured editing purpose such as standards like

ODA or HyTime, which requires a lot of processing to solve the cross-referencing or

hyper-linking before the final presentation is available. It is not intended for co-editing

either. On the other hand, the representation model will provide limited editing capability

to allow users to interactively change the appearance of the displayed scene in real time.

In addition, the representation model also supports real-lime interchange. That is.

when a composite scene is to be displayed, all the elements of the composite scene are

retrieved in real-time. The element may be available locally, or may be called up through a

network connection from a remote site. This is quite different from the document inter

change format such as ODA which collects all kinds of information into one single docu

ment, and this is then exchanged as a single entity.

Logically separate visual information from structural representation.
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To allow users to flexibly arrange the displayed scene, all the visual elements are kept

logically separate with the relationships among the various elements specified in some

structural representation. Keeping visual elements logically separate has several advan

tages. First, users can easily change the structure or the relation to rearrange the scene.

Second, it allows the flexibility of reusing and editing video information. Usually there are

more chances to reuse a simple visual element than to reuse a complicated composite ele

ment. Third, it could be more efficient to compress visual informations of different charac

teristics separately instead of compressing the composite resull|7|. Keeping the visual

elements logically separate does not imply anything in implementation. The actual com

positing operation can be performed at either video source, some nodes on the network, or

at the user's end, according to the actual network resources constraint

Use of video materials as easy as the use of graphics and text

Conventionally, the support mechanism for manipulation and presentation of video

and computer graphics comes from two very different technologies. The former one is

basically image oriented, with its information arranged in a rasterscan format of some

fixed frame rate, to be displayed in fixed sized rectangular windows, such as NTSC or

PALstandards. The latter one is data oriented, and is basically generated and manipulated

by computers. With the video material arranged in conventional format, it is usually hard

to reuse and edit without the special equipment found in a video studio. Today, the

merging of video and computer technologies requires a more flexible use of video mate

rials.

To achieve this, the representation model will support arbitrarily shaped full motion

video sequences. For example, a piece of video information can be a moving person

without his accompanying background scene. The shape and size of the video sequence

can also change from frame to frame. With this kind of representation, the video material
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can be easily reused by overlaying it with some background scene to suit a special need,

just as wedo with graphics and text today.

Common coding and representation

The representation model will provide acommon coding representation for the visual

elements such that they can be interchanged easily no matter from what platform/applica

tions these visual elements are generated. To be auseful visual information representation,

it must be extensive to cover all possible visual elements, such as bitmap pictures, graphs,

texts, video sequences, and flexible enough to allow all possible compression algorithms.

The object oriented approach can be useful in the visual element representation.

Instead of standardizing the encoding of every kind of information (i.e., every mono-

media piece of information), object oriented methodology can encapsulate data in a flex

ible way, hide the internal details ofvarious visual elements and provide auniform higher

level interface to the user. It allows the flexibility ofusing any kind ofencoding/compres

sion algorithm as long as the way to access the visual information is described with a

"method." The inheritance property ofobject oriented methodology also allows sharing of

common behavior among the contents of different objects. Almost all the current stan

dards use the object oriented approach for object formatting.

Primitive compositing functions

Defining standardized compositing functions makes the use of common modular hard

ware and software components possible across a variety of applications. On the other

hand, it is feasible to keep only the primitive functions that can be realized in real time,

considering the constraint of supporting full motion video sequences. Many complicated

compositing functions can be realized by the use of combinations of primitive ones. For

example, apanning function can be implemented by dynamically changing the translation

distance of the translate function, possibly together with the scale function.
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Performance analysis and implementation optimization

For a given displayed scene, there are usually different implementations. The repre

sentation model will allow us lo analyze the performance of the compositing system. It

will also serve as a tool to optimize the implementation according to the actual network

and hardware resource constraints, and can also be used lo help network management and

process allocation.

There is at present some effort to standardize the representation of multimedia infor

mation! 1,2.3,41. Most of today's standardization efforts place their major emphasis only

on some of the goals described above, especially on the coding representation, but not all.

So far, there is not any model that is intended as a tool for performance analysis/optimiza

tion. With these considerations in mind, we propose a structured video model, which

defines a logical model for any visual presentation in a hierarchical structure. As a logical

model, this model does not specify how the compositing system is implemented. Instead,

it provides the flexibility of performing the implementation in different ways. The optimi

zation of implementation involves some restructuring of the logical model graph such that

it is more efficiently mapped to the existing network with real physical locations. We will

describe the model itselfin this chapter, and leave the implementation issues to later chap

ters.

3.2 Review of today's standard in multimedia information representation

In this section, wereview some of today's standardization activity, and discuss itsrela

tion to the structured video model that we propose. We will review three standards —

ODA[4], HyTime|31, and MHEGfUl. The various standards proposed represent the com

munity they originate from. In the community of computer users, people are more inter

ested in the hypermedia and the efficiency found in an interactive user interface. In tele

communication community, the emphasis is on high speed communication and synchroni

zation. In publishing, there is more interest in the database structure. In addition to these
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standards, there are also proposals for multimedia information structures 12.5.6.71. Inter

ested readers may refer to the references.

There are some common issues in the multimedia information representation — object

formatting, hyper-linking, and synchronization. Object formatting is important in multi

media applications which use various kinds of information with different characteristics.

Object formatting not only standardizes the formal for information interchange, it also

hides the internal details of various kinds of information and provides a common interface

to the user. For this purpose, it is common to use the object oriented methodology, which

is useful in providing a standard for the object formal to represent visual elements as

described in the last section. Hyper-linking is used to combine related information and

provide interactive capabilities to ihe user. Bibliographic cross referencing is a simple

example which allows the user to search the linked information. More complicated hyper-

linking will pop-up the linked information from a window (e.g., on-line help orcontextual

linking) or play some kind of audio and video streams. Synchronization is used tokeep the

logical relations in time or space among several pieces of information. The lip sync

between the audio and images in a movie is an example of time synchronization. Another

example is the triggering of the start of a piece of information by the ending of a second

one. The page layout in a document is an example of space synchronization.

All of the standards proposed need to cope with all these three basic issues for multi

media information representation. Depending on its focus, however, each standard may

use a simple scheme in some issues and use acomplicated scheme for others.

Office document architecture (ODA)

ODA is a multimedia document standard issued by ISO. The ODA document is pro

posed to facilitate the interchange of documents consisting of text, image, graphics, and

sound. It is intended to be used for document preparation, storage, interchange, and pre

sentation of a multimedia document on the page or on a video display. The basic concept
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in ODA is structures. ODA uses two different structures — logical structure and layout

structure. In the logical structure, a document is subdivided into smaller parts according to

itsmeaning. Examples of logical objects are chapters, sections, figures, and paragraphs. In

the layout structure, the document is subdivided on the basis of its layout Examples of

layout objects are pages and blocks. Basically, the logical structure is used for input and

editing, and the layout structure is used for final presentation. The layout structure is actu

ally a synchronization mechanism — mainly space synchronization for page layout, but

also a discrete version of time synchronization by the concept of pages. Using both the

logical structure and layout structure allows very complicated editing capabilities and at

the same lime easy presentation.

The useof both logical and layout structures also creates some disadvantages. There is

usually some processing required to convert the document from its logical structure to the

layout structure for presentation. The more complicated the logical structure the more

powerful editing features it can support, while at the same time more processing is

required for preparing the logical structure into a layout structure This may not be fea

sible for real-time interactive editing purposes. Also, the ODA standard does not support

full motion video so far.

HyTime

HyTime is a standardized infrastructure for the representation of integrated open

hypermedia documents by the Music Information Processing Standards (MIPS). It is

derived from a standard music description language (SMDL) developed for music pub

lishing. Because of this, important features in music description such as synchronization

and hyper-linking (e.g., repeats and codas in music) arc emphasized in HyTime.

For synchronization. HyTime places objects in bonding structures known as events

which occur at some point in an ordered list known as a schedule. Synchronization is the

alignment of events within the schedule. The liming model is based on a virtual rime.
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which specifies the duration of objects relative to a master lime reference When the dura

tion of the master time reference is changed, the liming of all the objectsare also changed.

The same idea also applies to the space domain. To render an object, ihe model simply

places it into a virtual space, called Cosnu and then performs ihe projection to convert the

object from one space 10 another. Again, ihe axis of ihe virtual space can use a relative

scaling unit. For hyper-linking. HyTime allows all information to be linked, whether or not

it was explicitly prepared for linking. Also, link addressing is independent of file manage

ment or the network architecture of any particular platform. In addition lo a regular linking

like bibliographic referencing, HyTime also allows an indirect link similar to the pointer

constructs in C language

Similar to ODA. HyTime is also intended to be a document interchange standard

whereby all the information is collected intoa single entity. In contrast to the input/editing

capability in ODA. HyTime places its emphasis on elaborate synchronization and the

hyper-linking mechanism. Similar to the limitation of ODA, acomplicated mechanism for

synchronization and linking may compromise its real-time presentation performance

under system limitation.

MHEG1

MHEG is a standard under development by the CCITT/ISO. It is intended lo be a

generic layer for objects used by a wide range of applications. Therefore it is a standard

for representing objects, not a document processing or interchange standard. Many appli

cations, such as HyTime and ODA, may use MHEG objects as their basic elements.

MHEG allows many data types, such as text, graphics, video, digital audio, to be repre

sented as objects. Each object is manipulated as a single entity. As a standard developed

from CCITT, the MHEG standard reflects a communication-oriented wav of thinking,

ISO/U-C JTC l/St'2/WO | 2. known as Multimedia and Hypermedia information coding 1-xpen Group
(abbrev MIIO(J)
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which focuses on the multimedia services used in a communication environment such as

the interchange of multimedia information through telecommunication networks or by

means of a digital storage medium. Under this situation, the real-lime presentation, inter

change of the objects are the majorconsiderations in MHEG:

• Real-time presentation — MHEG objects are intended for real-time inter

active presentation. This requires the support of some real-lime synchroni

zation mechanism. Also, the objects are represented as a final form for

direct presentation without the additional processing on their structure

such as conversion from the logical structure to the layout structure in

ODA.

• Real-lime interchange — MHEG is intended lo provide mechanisms for

real-lime interchange with minimum buffering. A serialization mechanism

is used to arrange the coding of several related objects in acertain sequence

such that the delay is acceptable when objects are interchanged through a

limited throughput medium.

Even though MHEG is intended primarily for object representation, it allows each

object to go beyond a mono-media object. This is done by the so-called composite object,

which designates an object containing some component objects and the inter-object rela

tionship structure The composite object can grow recursively with the component object

itself acomposite objectThe inter-object relations basically deal with the synchronization

specifying where the component objects are to be placed on the time axis and in the space

domain.

Structured video and the standards

Among the ihree standards described above. MHEG is most similar to our structured

video model. The basic objective of structured video is to provide a final presentation for

real-time multimedia information integration from the network. This is similar 10 MHEG

in that all objects are to be interchanged and presented across the telecommunication net

work in real-time On the other hand, the focus on the integration and final presentation of
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structured video makes it different from MHEG. MHEG is only for object representation

at a lower layer, while structured video can sit on a higher application layer which uses

MHEG just like ODA or HyTime does. On the other hand, structured video will noi sup

port complicated hyper-linking features such as ODA or HyTime Instead, structured

video will only support limited features that are good enough for general multimedia ser

vice use and also simple enough for real-time realization. This is similar to the MHEG

composite object, which actually goes beyond the MHEG layer to a higher layer speci

fying the structure and the relations of several component objects. The features in a com

posite object are al.so limited. Structured video defines more involved inter-object relations

using primitive compositing functions for output representation as compared with the

composite object of MHEG.

Contrasted to ihe two structures u.sed in ODA. structured video will use one single

structure for both input and output. In this way, we avoid the process of converting from

the logical structure to the layout structure before presentation. Of course a single struc

ture may limit the editing capability. Considering that structured video is used for multi

media presentation on the CRT display, the complicated logical structure used in ODA is

not needed.

3.3 The definition of a structured video model

In this section, we describe our proposed structured video model. Structured video can

be thought of as an extension to the previously proposed structured graphics\ 16]. When

the model is extended from still images to full motion video, not only does the compos

iting in the spatial domain need to be considered as is the case in structured graphics, but

temporal domain properties and modelling are also very important Spatial and temporal

domains are the iwo facets of the structured video. Both need to be carefully considered.

We first illustrate structured video in figure 3-1. In the picture, ihe composite scene

consists of video objects of reciangular-shaped bitmaps (a football background), irregular-
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Fig. 3-1. A sample composited picture of structured video.

shaped bitmaps (a news reporter), graphics, and text. The news reporter is opaquely over

lapped with the background object, while the graphic object is overlapped with the back

ground in a semi-transparent way. This picture shows only the spatial aspect of

compositing. With the temporal aspect, not only is the football background a full motion

sequence but the news reporter is talking as well, with her shape changing from frame to

frame. Her location may change from time to time to avoid obscuring important scenes in

the background. The graphics and text can appear for a short period of time, and then dis

appear. Given a set of video objects, there are many different ways to composite them into

a displayed scene, both spatially and temporally. It is the goal of our structured video

model to define efficient representations for video objects and their compositing rules.
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Composite video object (A)

x ^Video Sequence 1 Graphics

Fig. 3-2. A composited video object in the structured video model.

The structured video model starts with primitive video objects, each of which is a

piece of visual information that is generated from a single source and cannot be further

subdivided at downstream sites. Composite videoobjects arc formed by combining several

video objects (either primitive video objects or other composite video objects) into a

single video object with a compositing function. In this way, any complex video object can

be represented hierarchically with sets of video objects and compositing functions. An

example of a composite video object is shown in figure 3-2. Again, this figure shows only

the spatial aspect of the structured video model. When it is expanded in the temporal

domain, the graph becomes a 3-D graph, as shown in Fig. 3-3. In these figures, the com

posite video object consists of a graphic video object and another composite video object,

which again consists of two video objects (video sequences) and a text video object. The

compositing function specifies how the child video objects are composited, e.g., trans

parent or non-transparent, scaling, relative locations, synchronization, etc. In addition to

videoobjects and compositing function, a constraints system (not shown in the figure) and

events are also used in the structured video model. The constraints svstem is used to main-
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Compositing Function

Video Object

Video Sequence 2

A Space,

Time

Video Sequence 1

Fig. 3-3. Structured video model expressed in both spatial and

temporal domain.

tain the binding relationship among video objects, and the events are u.sed to handle the

user interactive inputs (from keyboard or mouse) or exceptions and maintain temporal

relations among all the compositing functions. In the following subsections, we will

describe the above mentioned components of the structured video model in more detail.

Once we understand more about all the components, we will describe the representation of

a composite object using a graph such as Fig. 3-3. A 3-D graph is actually difficult to

handle Our approach is to model the spatial and temporal domain separately in two

graphs. Fig. 3-2 is an example for the structured video graph in the spatial domain. We

will describe both spatial and temporal graphs later.

3.3.1 Video Object

First of all. we define the term video object. A video object is the visual representation

of part of some physical or logical object such that the entire part can be composited using

the same rules. For example any graphics or text inavideo sequence can be avideo object

as long as any subregion within the video object is composited in the same way as the

remaining parts of ihe video object when the video object is composited with others. If for

any entity in the video sequence, asubregion mustbecomposited differently from the rest
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ol the entity, then such an entity must be segmented into more than one video object For

example, the representation ofa person's hand could consist of separate video objects for

each finger and the palm, or could consist of just one object if the whole hand moves as a

single unit. A video object can be chosen to be the largest possible unit that can be com

posited with the same rule to reduce the overhead required for the representation and

manipulation ofobjects. For example, ifaperson's hand does move as asingle unit then it

should be described with just one video object Of course, the number of video objects

used to represent any real-world object may change as the object interacts with its sur

roundings.

In addition to segmenting an entity into multiple video objects in the spatial domain, it

is also possible to segment an entity in the lime domain or the frequency domain. Segmen

tation in the time domain is frequently found within the video clips in video editing. If seg

ments of video streams arc to be played at different times, they need to be treated as

separate video objects. Segmentation in frequency domain is less obvious. The basic idea

ofthis segmentation in the frequency domain is from sub-band coding. For example, areal

object can be separated into video objects of "high frequency band object," "low fre

quency band object" In this way, the quality of the object can be changed by either com

positing both video objects together or simply by use ofone video object (low frequency

band object).

3.3.1.1 Properties of video object

To clearly define a video object, we discuss the property of a video object from three

aspects — spatial domain, temporal domain, and general properties. From these proper

ties, we will define basic parameters that are needed lo specify such avideo object A list

of these parametersare as follows:

• Spatial domain parameters — pixel content, shape description, size. etc.

• Temporal domain parameters — frame rate, time stamp, life span.

• General parameters — object type, coding format.
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The spatial domain is orthogonal to ihe temporal domain. Therefore, the spatial

domain parameters may vary from instance to instance On the other hand, the temporal

domain parameters usually do not change with spatial location.

Spatial related properties

One spatial related property is the shape of the video object. A video object need not

be in rectangular shape. They can be any arbitrary shape such as head and shoulder of a

person. It will be too restrictive on video object manipulation and reusability if we assume

that all video objects are rectangular. Most graphics and text objects today are non-rectan

gular, but most video objects from a video camera are rectangular. There are techniques to

generate an arbitrarily shaped video object from rectangular-shaped video sequence such

as the chroma key technique In this thesis, we will not discuss how to generate an arbi

trarily shaped video object here Instead, we only assume that a video object can be any

shape, and it has the information needed to describe its shape

Parameters related to spatial domain properties are the pixel contents and the shape

description (if video sequences), graphic description file (if graphic), or the text content

and fonts (if text). Other parameters are also needed to ease the compositing operations,

such as ihe video object size.

There are also other parameters which are noi inherent in video objects: however, they

will be needed in compositing operations. For example these parameters may be the

object location in the composite object, the scale factor for the scaling function, the trans

parent factor for transparent overlapping, etc. These parameters need not be in the video

object. When they arc put into the video object, they can be used as default values.

Temporal related properties

From ihe temporal domain perspective, video objects can be classified into different

categories: isochronous/anisochronous and retrievable/non-retrievable. Isochronous video
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objects are the objects that must satisfy certain liming constraint in order lo make the pre

sentation meaningful. For example, movies are constant 24 frames per second picture

sequences. If the presentation does not abide with the 24 frames/sec timing constraint, the

movie is distorted. The liming constraint may or may not be fixed frame rale as in the

movie case They can also be non-constant rate eg. the computer animation case This

non-constant rate type is useful in describing video objects that does not changes very

often.

Retrievable video objects are video objects that are stored in some device They can be

played at any starting time without any difficulty. The life span of the video object is usu

ally known in advance The video stored in cassette tape or in disks are examples of

retrievable video objects. The non-retrievable video objects are objects that need to be pre

sented at the lime ihey arc received, or they are lost The viewer has no control on the

starting time or the length of the presentation. The broadcast TV is an example of the non-

retrievable video object Although the difference between retrievable and non-retrievable

video objects seems to be trivial, it makes differences when we consider video compos

iting.

In video compositing, all the video objects need to be presented at acertain starting

lime lor acertain period of time lo make the presentation meaningful. In this compositing

process, we are under various kind of timing constraint from video sources. For some

objects, we have no control on the starting time without using alarge and expensive buffer.

For others, we cannot change the presentation frame rate. Also, the timing relationship

among video objects need to be maintained. For example, the end of a video object trig

gers the start of the other video object To maintain all these timing relationship while ai

the same time satisfy ihe timing constraints of the video objects is an issue to explore in

this dissertation.

General properties
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General properties include all information that is related to whole video object, regard

less of the time instance or spatial location. Examples are the video object type and the

representation format of the video object The video object type specifics that cither ihe

video object is a retrievable isochronous object non-retrievable isochronous object, or an-

isochronous video object The representation formal specifies what kind of format it is

using. A video object can use any format for its content, as long as it is specified and the

receiver/user's end recognizes it. For example, a video can use either plain pixel values, or

some compressed format, such as JPEG, MPEG, or H.261 117,1S.19|. Graphics can use

postscript format or others.

Since video objects are intended to be arbitrarily shaped, the coding mechanism may

be non-conventional. The simplest solution of describing arbitrarily shaped video objects

is to surround the video object with certain pixel values in order to make it a rectangle.

Then we can use the conventional compression scheme to code the video object. Appar

ently it is notefficient to arbitrarily choose the pixel values to be filled. Some studies have

been done on the compression algorithm on the content and the edge of an arbitrarily

shaped video object.f28] Segmentation coding mcthodsf421 can also be used tocode arbi

trarily shaped video objects, even though they were not originally proposed for that pur

pose.

Several video objects can be combined into a single composite video object through a

compositing function. In this situation, the composite video object is treated as a single

video object that can be used for further compositing to form an even more complex

object. A new set of spatial, temporal, or general parameters will be generated to reflect

the actual situation of the composite video object Basically, a composited video object is

just like a primitive video object, with one exception. The way acomposited video object

appears can always be changed through an interactive event sent to the compositing func

tion, because the representation of acomposited video object actually consists of the rep

resentations of child video objects and a compositing function. Keeping the composited
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video object structure gives users the llexibilily of manipulating the child video objects

separately.

3.3.2 Compositing function

A compositing function can be used to change/composite one or several video objects

(either a composited video object or a primitive one) into one single composite video

object. The function describes ihe way the child objects are changed/composited. Exam

ples of compositing functions arc clipping, scaling, blending, translation, delay, etc. The

number of child video objects (the video objects that the compositing function operates

on) can be one or more When there is only one child video object, it is a conversion of the

video object to a new one of different format or property. An example of this unary oper

ator compositing function is the scaling function, which resizes the video object.

We can use asymbolic notation to stand for acompositing function as V-f(Vj. V?.....

varj, 1W3..J, where V/, V?— are <-*mld video objects: varL var2,. are variables used by

the compositing function to decide how the video objects are composited: and V is the

composited video object There are two classes of variables in the compositing function.

One is the variables that appear in all compositing function. Examples are locations L (to

determine the location of child objects with respect to the parent one) and the start time T

(to deiermine the liming delay of child objects with respect 10 the parent liming). Every

compositing function requires a set of such parameters for each video object. Because of

this, these parameters can be put into video objects as default parameters to simplify the

representation of the compositing function. For example, an overlap function combines

one video object above the other according to the location L and timing T represented as

over (V/, V3 L/, Li, Tj. Ti) can be simplified as overt Vh V2). where V, represents the

video object V,- with default setting of (Lj, Tj). However, we must note that even though the

parameters L/. 7/ are put into a video object, they are not characteristics of the video object

VJ. They are simply default values used when V/ is composited with other video objects

and are meaningless if V/ stands alone. The other class is the variables that appear only in
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certain compositing functions. Some examples are the transparency (used lo determine ihe

transparency of objects in transparent overlapping) and scale (lo determine the scaling

lactor in a scaling function). A transparent compositing function can be represented as

transparent (Vj, V% t/t t2), where Ty. x2 represent the transparency factors.

The compositing result of the compositing function is still avideo object The compos

iting function not only generates ihe pixel information of the composited video object, it

also generates all the parameters inherent in all video objects, such as the representation

format, size, described in the last section. In this way, a composited video object can be

hierarchically structured from a compositing function and several child video objects,

where the child objects themselves in turn are composited video object Table 3-1 lists

TABLE 3-1:Examples of basic compositing functions

Name Description

unarv translation (V, /J Change the location from the default value by /..

delay (V.T) Change the time from the default value by T.

scale (V. s) Re-scale object V with the scaling factor s.

scale jc (V, s) Re-scale object V in the x-direction with the scaling factor s.

scale_y(V, s) Re-scale object V in the y-direction with the scaling factor s.

/7ip_.t (V) Flip the object V in x-direction.

jlip^iV) Flip the object V in y-dircction.

rotate (V r) Rotate object V clockwise by r degrees.

binary overfV^Vp) Put object A over object U.

irKVfiVn) Display the pixels of object A inside object 13.

out(VA,Vii) Display ihe pixels of object A outside object B.

transparent (V,\. V/j T/. r>j Composite object A and R transparently according to T/. t?.

multiple sequence iV'̂ . V# V(j.) Combine video objects which are non-overlapped in time
domain into one single video object.

some useful compositing functions. A more detailed description of the compositing tunc-
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Fig. 3-4. Examples of composited video objects using basic

compositing functions in Table 3-1.

lions and their equations is discussed in Chapter 4. Figure 3-4 shows some examples of

composited video objects using the basic compositing functions in Table 3-1. Most of the

other complex compositing functions of interest can be implemented with the combination

of these basic compositing functions. A zooming function, for example, can be imple

mented by dynamically changing the scale size .v from frame to frame using the scale

function. Similarly, afading function can be implemented by dynamically changing the

transparent factor t using the transparent function.

3.3.3 Basic compositing functions

In this section, we discuss basic compositing functions that are useful in video object

compositing. We listed the functions in Table 3-1 in the previous section. Here, we show

how we came up with the basic compositing functions. The functions in the table basically

fall into two categories — transformation functions, and compositing fitncnons. Transfor

mation functions are the unary functions listed in Table 3-1 that are basically used for

changing properties of a video object, such as translation, delay, scaling, and format trans

coding. We are more interested in ihe compositing functions that have multiple video

objects involved and only this class of compositing functions will be discussed here.
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Again, ihe compositing function involves both spatial and temporal aspects. Every

compositing function must consider both aspects in order to produce a correct compos

iting result. We will discuss these two aspects separately to clearly define each compos

iting function.

3.3.3.1 Spatial aspect

overf), in(), out()

In conventional computer graphics, Porter and Duff [351 listed ihe twelve spatial com

positing results between two objects by the way the objects contribute to ihe four intersect

areas, i.e., AnB, AnB, AnB. and AnB. Only one object can contribute lo each of the

intersection areas. In this way, there are 3 possibilities in AnB. 2 possibilities each in

AnB and AnB. and only I possibility in the area of AnB. The total number of combina

tions is therefore 3x2x2x1 = 12. Table 3-2 shows the twelve spatial compositing

TABLE 3-2:Spatial compositing results in conventional computer graphics.

Operation Diagram

Clear

li

A overB

li over A

AinB

BinA

AouiB

li out A

A atop B

B atop A

A xor B
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results derived in this way. Some of these compositing functions are of interest primarily

for specialized graphics effect, and some of them are also useful in the compo.siting of full

motion video objects. For example, we may find the use of the function A in B in real life

when object B shows up through a window opening A. However, we may not find any use

of Axor B in real life.

The twelve spatial compositing results of Table 3-2 can be simplified into five binary

compositing functions, over(), in(), out(), atopO, and xori). Any compositing functions in

Table 3-2 arc covered by these i'wc functions with properoperand exchange. Among these

five compositing functions. atopi) and xor() are less useful and are left out in Fig. 3-1.

Choosing only the subset of the compositing function does not limit ihe flexibility. The

atopO and xori) can still be achieved by the combination of the basic functions. For

example,

atop(A.B) = over(in((A.B),B)) (3-1)

and

xor(A,B) = over (out (A. B). out (B, A)) (3-2)

In addition to ihe binary compositing functions, we are also interested in multiple

object compositing functions. Unlike the binary compositing functions, which has only

iwelve functions, multi-operand compositing functions are more complex. The number of

compositing functions of a three-object compositing can be shown to be 864, and the

number of compositing functions grows rapidly as the numberof objects increase. Among

the 864 functions, most of them are of no practical use It is not possible to exhaustively

implement all different functions. One possibility is to assume that most of them can be

represented as ihe combination of binary compositing functions. For example.

over(A,B,C) can be represented as over(A, overtB,C)) or ovetioveiiA.B), C). In this way,

mostof the useful multi-operand compositing functions can be implemented through basic

binary compositing functions. Note thatsome of the multi-operand functions arising from
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thecombination of binary functions arc redundant This issue will be discussed later in the

restructuring of structured video in 3.4.2

transparent)

Table 3-2 lists all binary compositing functions where each intersection area consists

of only one object. When we consider the case that both objects can contribute to the same

area, we come to transparent compositing. The transparent compositing function has been

used a lot onTV programs which overlay graphics onto the full motion video background

without fully blocking the video background. It is also useful for the case such as looking

through a window glass which is not completely transparent. Porter and Duff defined a

simple transparent function with a simple plus function, i.e.. plusiA, B) = P&+ Pg. To

make the transparent compositing function more versatile, we define the transparent com

positing function with an extra transparent weighting factor x. That is,

X.P. + XfjPf,
transparent (A. B) = -^ — (3-3)

While a values (to be defined in the next chapter) less than 1could he u.sed to describe

semitransparent video objects, they are different from the transparent weighting factor x in

equation (3-3). The x value is helpful in describing semitransparcni video objects, such as

windows, glass, and fog, in that the x value applies to an entire video object rather than to

just one pixel.

3.3.3.2 Temporal Aspect

While considering the spatial results of the compositing functions, it is also important

loconsider ihe temporal aspect Every compositing function needs to take care of both the

spatial and temporal aspects. Similar to the 12 spatial compositing operations between two

video objects shown in Table 3-2, we can also list all the possible compositing relations in

the temporal domain. Given any two intervals, there are thirteen distinct ways in which

they can be related in time, as described by J. F. Allen[621. We list only seven out of the
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thirteen relations in Table 3-3. The remaining six arc simply ihe inverse of these relations.

TABLE 3-3:Temporal relations from any two intervals.

Operations 1)iugram

A bejore B i A hM B

A meets B I A B !

A overlap B
T-.

A J—*-

-vf" b :

A during B
L • . . T,

-^MZ A ' »

B

A starts B A 1 l-

B I

A finish B T' .r A 1

1 B

A equals B A

B

Note that the spatial and temporal aspects are orthogonal to each other. Combining both

spatial and temporal aspects, we will have to define 4 x 7 = 28 compositing functions.

(That is,4 from the spatial aspects, asdescribed from the previous section, and 7 from the

temporal aspect in Table 3-3.)

Instead of performing this combination directly, we choose a simpler way. We will

assume a global timing available to all the compositing processors and the sources of the

video objects. Each compositing function simply specifies the starting time of the video

objects, and uses the life span of the video object to determine how long the object will be

shown on the composite result With global liming, the temporal relations are implicitly

specified by the siarl-timc and the life span of all the objects. When only one object is

present, ihe compositing function passes ihe object to the composite output. When both

objects are present, then ihe compositing function performs the actual spatial compositing.

The life span of the composite result is the interval that covers the life span of all the
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Fig. 3-5. ov6r(A,B) results under different temporal relations,

(a) Temporal relation: A overlap B. (b) Temporal relation: A

before B.

inputs. Under this condition, one spatial compositing function can cover all kinds of tem

poral relations. The composite results, however, are different depending on the actual tem

poral relations of the input video objects. For example, the outputs of the over(A,B)

function shown in Fig. 3-5 are dependent on the temporal relations of the two input

objects.

The life span of the compositing result is also shown in Fig. 3-5. The life span notonly

indicates the duration of the composite object, but also shows how long ihe compositing

resources are occupied. This is important in scheduling when the structured video tree is

mapped into physical compositing resources, which we will discuss in later sections. Note

that Fig. 3-5(b) shows acomposite result that has a null result in its life span. This is acon

dition that may not effectively utilize the compositing resource: however, it is a permis

sible condition.

sequenceQ

One compositing function that have not been mentioned in Table 3-1 is the sequencet).

This is a useful compositing function that serializes the input video objects into a sequence
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(a) (b)

Fig. 3-6. A composite object structure of slide show (a) with

and (b) without using sequenceQ function.

in the time domain such that a video object always starts immediately after the previous

object, i.e., the temporal relations meeti) and beforei). Since the life spans of all the input

video objects do not overlap one other, sequenceO can be used lo maintain the temporal

relations without needing any spatial compositing capability. One possible use of the func

tion is to organize aslide show, in which the function maintains the slides in some proper

sequence. The slide show composite object can still be achieved without using the

sequenceO function, as shown in Fig. 3-6(a). Use of the sequencei) function, however, will

make the tree structure more compact (Fig. 3-6(b)). Also, the use of the sequencei) func

tion may avoid wasting the spatial compositing resources.

There is one limitation in the use of the sequencei) function. Since our assumption

about using the sequencei) function is knowing the life spans of all input video object,

non-retrievable isochronous objects with an undetermined life span cannot be used as the

input of the sequencei) function.
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3.3.4 Constraints

While doing compositing, there are usually some binding relations that must be main

tained among the video objectt in acomposited video object We call ihis a constraint of

the composited video object. For example, suppose that in a weather report program, a

weather man is pointing to a map describing the temperature or air pressure If the weather

man and the map are two separate video objects, then the relative location of the two video

objects must be maintained, otherwise the weather man may point to the wrong place, and

the combination of the two video objects makes no sense Other examples of constraints

are synchronization (time relation), the priority relation (which object is at the top, which

one is at the bottom), and scale relation (all child video objects must be kept in the same

scale). We will call the video object property specified in the constraint such as size and

location, the constraint variable in the following discussion.

In implementation, these constraints are specified and maintained by a constraint

system. With the constraints specified, any changes in the constraint variables of a video

object (e.g., size, location) will also change the same constraint variables of the whole

composited video object, or other video objects bound with this video object. The con

straint system is very similar to the constraint model in computer graphics [20,211. The

constraint system keeps track of constraint variables of logically bound video objects and

makes the appropriate changes accordingly whenever it detects any changes in any of the

bound video objects. With this constraint system, wecan relieve the burden of maintaining

constraint relations from the compositing functions. Compositing functions simply follow

the variables the constraints system generates for it.

There are many ways to model a constraint. We can literally describe the constraint

with a list of rules and their related video objects, or we can use acertain data structure to

describe the constraint In order to clearly describe the way in which the video objects

interact with each other in our proposed structured video model, we use a tree structure to

represent a constraint, which specifies the related video objects and their associated com-
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(a) (b)

Fig. 3-7. Constraint representation examples for the

composited video object shown in figure Fig. 3-2.

positing functions, as shown in Figure 3-7. Each constraint tree specifies one constraint

For example Figure 3-7 shows iwo constraint trees for ihe composited video object shown

in Figure 3-2, one for "scale" and another for "location." The constraint tree is a tree

reduced from the original tree structure of the structured video, and includes only the

related video objects specified in the constraint. Each rectangular block represents arela

tion among the constraint variables of the video objects linked to it The literal descrip

tions of the constraint relations (e.g., scale-A, scale-B, location-A) can actually be

considered as mathematical functions, which we call constraintfunctions, of the constraint

variables. The constraint function produces new constraint variables if any of its inputs

change. The new constraint variables will in turn change other constraint variables if they

are linked to other constraint functions, and the effect of the change will be propagated

through the whole tree. Each constraint function is associated with one compositing func

tion in the original tree structure ofstructured video. For example, the scale-A in Figure 3-

7(a) represents the scale relation among child video objects Vgand V^of compositing

Iunction 4. In case the scale variable ofobject V^changes, the constraint function scale-A

calculates the corresponding scale change that Vg should take, and sends the value to

object Vg The constraint function scale-B receives the new scale variable of VB, generates
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new scale variables of its child objects V& VB and V/raccordingly, and then sends them to

corresponding source sites respectively.

A constraint can bind child video objects of either the same compositing function or

different compositing functions. It can bind either all or asubset ofchild video objects ofa

compositing function. In Figure 3-7(a), all three child video objects Vjy Vg. \'F<>f compo.s

iting function Bare constrained with another video object Vq In this case we encircle the

composited video object Vg with the constraint function scale-B. meaning that Vg is not

only constrained by scale-A. but also by scale-B. This offers an implementation flexibility.

The constraint system can either change the composited result at the output of compos

iting function B. or it can change ihe child video objects Vry V& and V/rseparately. On the

other hand, in Figure 3-7(b), Undoes not appear with the constraint function scale-B. This

means the constraint function location-A does not operate on the whole composited video

object Instead, it simply operates on the two child video objects Vpand V£. Under this sit

uation, the constraint can only change Vpand vE separately, and does not change object

Vfeor Vp

Note that the arrows of the constraint system are bidirectional. The constraint function

must also be bidirectional; namely, it can receive the parameters from any child video

object and make changes to other child video objects. For example ihe change of V^will

cause Vpand V£io change in Figure 3-7(a), and the change of V/)(or Vtf will cause V^to

change also.

3.3.5 Events

Once acomposited video object is constructed, some method isneeded lo interactively

change the compositing, to handle exception conditions, and to synchronize the video

objects. For these purposes, events are used to communicate between the end user, the

constraint system, and the compositing processors. For example when auser interactively

changes ihe compositing location of a video object, he sends an event signaling this
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change to the constraint system. The constraint system then searches through its constraint

trees, and sends all the corresponding changes to all related compositing functions. An

event can also be used to start a new video object or to delete an existing video object It

can also be used to handle the exception condition when the network or the system breaks

down. Another use ofevents is the communication between the compositing functions and

the video object sources for synchronization. To reduce the possibility of buffer over

flow/underflow in the transport, a synchronization mechanism is needed lo maintain an

optimum starting time and frame rate at the video source For non-retrievable isochronous

objects, an event can also be used to notify the receiver of the end of the video object

More details about the synchronization mechanism will be discussed in the next chapter.

3.3.6 Representation of structured video

Ideally, the only way to represent the relations among video objects is to use a 3-D

graph such as the one in Fig. 3-3. In a3-D graph, one axis isused to represent the temporal

relations. The rest of the two dimensions are used to represent the spatial compositing

relations of the video objects. A 3-D representadon graph, however, is difficult to generate

and show correctly in a 2-D environment Our approach is to project the 3-D graph onto

the spatial (x-y axis) and temporal domain (/. axis) separately. This section briefly

describes both spatial and temporal representation briefly. The implementation details and

ihcir optimization will be delayed until the next chapter.

3.3.6.1 Spatial representation

A spatial representation has been described briefly and is shown in Fig. 3-2. Basically,

the spatial representation uses directed arcs to represent the dependences between all the

components such as video objects, compositing functions, and events, and it forms a tree

structure A compositing function is pointed to by all its operand objects through the

directed arc. The compositing function together with all the child video objects pointing to

it forms a composite video object
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Static or dynamic nature of representation

Since the spatial representation is basically a projection from the 3-D graph, ideally

ihe spatial representation shows all the components involved, no matter when they actu

ally show up. This will form astatic tree structure that never changes. A static representa

tion has the advantage of ease of implementation in terms of resource allocation and

scheduling. Most of the interactive operations are still available, such as achange in the

object location, size, or the delay ofacertain video object for acertain period of time. On

the other hand, a static representation cannot cover all the situations. From time to time,

some interactive operations may add new video objects onto the existing tree structure or

they may change the compositing and change the overall tree structure.

We can adopt the spatial representation in two different ways to handle the dynamic

changes of the tree structure The first is to assume the spatial representation is static.

When there is amajor change in the tree structure, we terminate the current video object,

and start a new one with the new structure. This would ease the implementation of

resource allocation and scheduling. However, it has a disadvantage in that it may not sat

isfy the real time requirement, because tearing down the original object and establishing

the new section must be made in real time with no temporal gap. The second way is to

assume the spatial structure is actually dynamically changing. In this case the spatial

structure may change when some major interactive operation is issued. The disadvantage

ol this approach is that the implementation of the dynamic scheduling and allocation may

be complicated.

3.3.6.2 Temporal representation

The assumption of the existence of aglobal clock makes the temporal representation

much easier. Based on the this clock, all the video object sources can generate video

objects at some rate and at aspecific starting time. There are other proposals for the timing

model that use the fully event driven concept, such as the Object Composition Petri-Net

(OCPN)[591 model proposed by Thomas Littie and ArifChafoor for amultimedia storage



(a)

A

B

C

D >

overi<)

in()

OV6T20

transparent)

61

*-rr.z'-^ ~ •=-=.••- — - — - —

V Video Object )
1

*

[ ( Video Obiect ) 1 !
i

f ( Video Obiect J !

(1 Video Obiect 1
1

1
(Video Obiect) |

1- m\
r m\

.

i*

L-. fci

U

r*

*\

(b)

Fig. 3-8. The spatial representation (a) and its corresponding temporal

representation (b) ol a composite video object.

server. Such a model has the disadvantage of too much overhead in maintaining the syn

chronization of full motion video sequences with the frame rate. There is no demonstrated

video player/display thatcan maintain synchronization in such a fashion.

Based on the global clock, an example of the temporal representation is shown in

Fig. 3-8(b). lis corresponding spatial representation is shown in Fig. 3-8(a). In this repre

sentation, the temporal properties (starting lime, duration, etc.) are specified by the posi

tion and the length of object The left edge of the video objectrepresents its starting time,

and the length of the video object represents its life span. A composite object is repre

sented by a dashed rectangle surrounding all its child video objects. Also shown is the

duration of every compositing function. This temporal representation is not especially

useful in the resource allocation and scheduling of the compositing functions. For

example. Fig. 3-8(b) shows that both overjt) and overif) can share the same compositing

hardware since their intervals do notoverlap.

Similarly to the spatial representation, a temporal representation may not be static.

Interactive operations can change the temporal relations without changing the spatial rep

resentation, or vice versa. For non-retrievable isochronous objects without a pre-specified
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life span known in advance, the end time of the video object is unknown. The temporal

representation should allow this kind of video object as a free-running object which has an

indeterminani ending lime. The actual end lime will be specified at run time by an event

sent by the video object source

3.4 Advantages of structured video

Structured video offers considerable advantages as a model for provisioning of

advanced video services. We can divide the service provision into three distinct aspects:

the vendor or vendors which provide the video object (of course they may also be locally

stored), the transport or network connection from the vendor, and the user who interac

tively manipulates the video. The essence of structured video is to keep the video objects

logically separate, even if they share a common storage or transport, and to support the

flexibility ofcompositing them at later stages throughout the network, such as at the inter

mediate network node or the user display. The efficient hierarchical structure of the pro

posed structured video model and the generic representation of the compositing functions

enable efficient adaptation of hardware allocations to dynamically changing user

resources and application requirements.

Structured video can represent video images over a wide range of applications, for

example, a) full-motion high-definition television video, b) conference video, c) videotex,

d) interactive video, e) windowing and graphics computer display interfaces, and combi

nations of these types of representations. A standardized representation enables imple

mentation of display signal processing using a set of common modular hardware and

soltware components across a variety of applications, thereby achieving economies of

scale and lower costs. Further, one video display can support a variety of services,

depending on the hardware and software modules placed in it

Similar to the OSI model of data communications, structured video can provide a

common model of video shared between vendors, transport networks, and users. Specific
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services and applications are provisioned readily by simply parameterizing this model,

greatly simplifying the administration of telecommunications networks. A vendor can

request the network resources necessary to provision the service, and similarly can query

the user's display platform to determine ihe standardized resources it has and request the

resources it needs.

From the perspective of a vendor, keeping video objects separate should enable much

greater flexibility and reusability, for example in composing different scenes that reuse

common video objects. From the perspective of a user, keeping video objects logically

separate all the way to the display enables instantaneous interactive configuration, for

example in moving or resizing the participants in a multi-way video conference The use

of standard formats for many image types can support interactive services very easily.

Users can combine and customize images from many different people and vendors

without requiring that the sources interact at all. A single video stream can be used differ

ently by everyone who receives it without the end users interfering with one other. The

control traffic necessary to implement this same interactive functionality at the vendor is

eliminated.

Structured video has the potential to enable more efficient compression of complex

video representations for storage or transport. Data compression is more effective if done

on the separate types of video signals because compression algorithms can be tailored to

match the statistics of each data type It is becoming common to separate video into dif

ferent regions according to classification algorithms for more efficient compression, but

this is avoided if the video objects are kept logically separate in the first place [7,22]. It

may also be possible to add to the structured video representation additional semantic

information available at the source such as panning and zooming information, to simplify

and improve the compression. Further, if natural scenes are not overlaid with the high-fre

quency signals caused by text and graphics then standard video compression techniques

are more effective. Of course, text and simple graphics can be described veryefficiently by
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semantic descriptions (fonts, lines, rectangles, arcs) rather than by bitmaps. Graphics and

animation sequences can be transmitted much more efficiently by sending the procedure

required to generate them rather than the generated images, if there are sufficient pro

cessing resources at the user display to execute those procedures.

Structured video can also serve as the basis for adapting services to varying network

and user resources, which is an important practical issue. One video display may have lim

ited resources and be targeted at a limited setof services because of the specific hardware

and software modules it contains. For example, while an interactive full-motion videotex

system would require text, graphics, windows, pull-down menus, and full-motion video

mixed together, a computer workstation attached to a low-bandwidth network might

require only text, graphics, and windows. The vendor and transport will be able to adjust

to varying hardware resources at the display. For example, at the expense of interactive

flexibility, object compositing can be done at the vendor or within the transport if the dis

play does not possess sufficient processing capability. This can be done through restruc

turing of the compositing functions for optimal mapping mentioned insection 3.4.2. In the

limiting case, the minimal display can at least accommodate a single rectangular raster-

scanned video, which is also supported by structured video.

The computational resources for the final presentation of video can be partitioned arbi

trarily along the entire path from production to final presentation, thereby adjusting to eco

nomic constraints for a particular service aswell as to the available transmission or storage

bandwidth. Distribution or broadcast services will tend to place more processing nearer

the source, whereas point-to-point or specialized services will generally place more pro

cessing near the display. The representation will adapt easily lo a) different transmission

media (satellite liber, cable), b) display devices with varying processing resources,

ranging from simple television displays that present only the pixel map representation, to

complex workstations that can process all the representations, and c) vendors with widely
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varying processing resources ranging from reading pixel maps from storage devices

through display and graphics engines.

The subjective quality of presentation also can be adjusted to the transport bandwidth

resources. A lower quality can be provided by using only "higher" semantic and graphics

representations, with quality up to and including full-resolution HDTV available with the

expenditure of additional processing and bandwidth. We al.so postulate that where limited

bandwidth is available, higher subjective quality can be achieved by compressing some

video objects more heavily than others, for example in retaining full resolution on ahead

and shoulders while limiting the resolution of the background.

Structured video also has disadvantages. One disadvantage isthe higher cost ofdisplay

platlorms, although as mentioned previously even minimal existing platforms can support

adegenerate form of structured video. Another is the expansion of data required to trans

port the hidden portion of video objects, although this can be reduced with more sophisti

cated flow-control protocols |8|. There arc some limitations in the structured video model

relating to its inherently two-dimensional representation (like video itself), as described in

more detail in |231.

In summary, the structured video concept of keeping the components used to generate

video logically separate past the production process, all the way to the final video presen

tation if that makes economic sense, is very simple yet powerful. In particular, itwill offer

flexibility to reuse and modify video material at the user display or at any earlier point.

Where pictures are actually assembled from different components (foreground, back

ground, text, graphics, etc.), as will be increasingly the case in the future, it is potentially

much more efficient to compress the components before combination than after. Further,

structured video allows flexibility to adjust the subjective quality lo bandwidth and pro

cessing resources (for example substituting a graphically-generated background when

bandwidth is not available for a camera-generated background), and the flexibility to

adjust processing resources between provider and user (for example in adjusting to band-
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width resources). Finally, structured video is consistent with many interactive forms of

video, where components generated remotely can be combined easily with locally gener

ated elements to form the final video presentation. Centralized interactive services will

segment complex tasks into a) time-critical tasks done locally (graphics and animation), b)

reading of high-bandwidth background video too expensive to store locally from acentral

database, and c) non-data-intensive tasks such as billing performed remotely.

3.5 Conclusion

In this chapter, we propose a structured video model lhat defines ihe video material

composition in an efficient hierarchical way. The objective is to provide a model such thai

video information can be easily exchanged, reused, and composed for real-time presenta

tion. The model provides a powerful framework for the provision of advanced interactive

multimedia services which can be adapted efficiently based on the varying needs of net

works, services, and users. Essentially, the structured video model keeps all the displayed

video objects logically separate from sources to the final display, thus enabling instanta

neous interactive video configuration, reuse of video objects, and possibly more efficient

compression. The model also provides a way for efficient implementation of the compos

iting sy.stem. This is achieved through introducing the basic compositing functions for

modular implementation and the restructuring capability of the composite object. The

details of composite object restructuring capability has not been discussed yet, but will be

studied later in this thesis.

Afterreviewing the three current existing standards for multimedia information com

position, we define the structured video model in section 3.3. We introduced the basic ele

ments of structured video including video objects and compositing functions. We studied

video objects and compositing functions from both spatial and temporal aspects to reflect

the special requirements of the full motion video compositing. Some compositing func

tions are listed in Table 3-1 as basic modules. We also introduced a constraint system to

maintain the binding relations between separate internal video objects, and events to
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handle interactive user inputs, exceptional conditions, and synchronization. Structured

video representation graphs in both the spatial and temporal domains are also presented.

These graphs are a good means for resource allocation and scheduling in distributed net

work implementation. In the last section, we also discussed the advantages and limitations

of the structured video model.
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In chapter 3, we discussed the structured video model for video information integra

tion and presentation. In realization, we want to composite all video information (video

objects) in the way specified by ihe model. The compositing function is used to describe

how the video objects are actually integrated. In this chapter, we focus on the compositing

function realization issues. When we integrate multiple pieces of video information

together, video objects must be composited correctly both spatially and temporally. Spa

tial compositing means to composite the video objects with correct physical locations on

the display, and also to composite according lo the rules desired. Temporal compositing

defines how to maintain the video objects' temporal relations as described in the last

chapter. Related video objects, for example a moving weather reporter in the foreground

pointing at the background animated weather map, should be combined with correct
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liming and frame rate for meaningful presentation. Temporal compositing could also be

called synchronization.

Spatial and temporal compositing are needed not only in visual information. They are

also used for sound information. Spatial compositing in sound refers to the mixing of sev

eral audio streams in some proper way. It usually involves gain adjustment before the sig

nals arc mixed together. Synchronization is needed between video objects and audio

information. Lip sync between the video sequence of a person and his\her sound is an

example Synchronization is also needed between video objects and the events that control

theappearance of thecomposited result.

In the spatial compositing implementation, we first study the anti-aliasing, which is

needed for compositing arbitrarily shaped video objects in order to have an acceptable

video quality in section 4.1.1. Then we discuss the algorithms of the basic compositing

function in the structured video model in section 4.1.2. We also study distributed imple

mentation of structured video insection 4.1.3. There maybe different ways of video com

positing to achieve the same compositing result. One way of compositing may be

performed more efficiently than others under the constraint of compositing resources dis

tributed over the network. The study of the distributed implementation discuss how to con

vert from one way of compositing representation lo another to besi fit the existing

resources. We call this process of compositing representation conversion restructuring. In

order to do this, we study the generic representation of ihe primitive compositing func

tions and their associated properties. Through the study of these compositing functions,

wecan derive the rules for restructuring. In section 4.1.4, we discuss oiher alternatives that

make the spatial compositing more efficient

In the temporal compositing or synchronization implementation, we first study the

implementation of the global timeclock, which is assumed to beavailable in the structured

video model. We also discuss how the synchronization can be maintained among multiple

video objects, and propose a synchronization mechanism.
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Fig. 4-1. Aliasing effect due to insufficient resolution.

4.1 Spatial compositing

4.1.1 Anti-aliasing

Anti-aliasing is important in video object compositing ol" arbitrarily shaped objects.

Due to insufficient resolution on the display, objects appear jagged atthe edge, like a stair

case, which we call aliasing. An example of this aliasing effect is shown in Fig. 4-1. Porter

and Duff proposed a four-parameter (rg b a) compositing algorithm for arbitrarily shaped

images compositing [121 to reduce the subjective impairment of the aliasing effect. Here,

we will review their compositing algorithm.

To represent arbitrarily shaped objects placed overan arbitrary background. Porter and

Duff[12| use an additional a channel to represent a pixel in addition to the three colors

(either RGB. YUV. or any other format) The a value indicates the percentage that an

object covers a specific pixel location. An a of 0 indicates the object docs not cover that

specific pixel and an a of I means the object fully covers the pixel. At the boundary of an

object, an a between 0 and 1 is used to reflect the partial coverage. The shape of a video

object can be derived from its a values: the boundarv is the area where a becomes greater

than 0. An example of the a mask of a triangle is shown in Fig. 4-2.

In essence, ihe a value is a mixing factor used to control the linear interpolation of

foreground and background colors so that the boundary appears smooth. The best choice

for this mixing factor is the percentage of a pixel that a video object would cover if we
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Fig. 4-2. a mask of a triangle.

knew its edge's position with sub-pixel resolution. The resolution of a should be compa

rable to ihe color channels. The compositing rule that produces acomposited pixel P from

two overlapping video objects is

Compostied ~ tXForeground' Foreground + *' lif i (jr J>
oreiirounii' Hiukxruunu Background

This can also be extended easily to composite aset of video objects.

''Composed =Vl +<' -U,)|U,/»2+(| -U,) !«,/»,+ (I (X,)|'...|||

(4-1)

(4-2)

Through the use ofequation 4-2. the Porter and Duff algorithm requires thai video objects

be depth-ordered before compositing can begin. Also, the form of equation 2 implies that

the compositing function is a linear function of the pixel values and a.

The derivation of the a value may not be simple. For objects for which we know the

exact position of the boundaries, such as the algorithmically generated text and graphics,

we can calculate a values from the prespecified algorithm. For bitmap pictures, we need to

first identify the boundary of the video object by some means, such as chroma key[43], the

region growing and split and merge techniques u.sed in the segmentation-based

coding(421, or some other edge detection methods. Once the boundary is determined, we

can calculate the a value directly if the boundary is not limited by the pixel resolution

(e.g., the edge is identified through the feature of the video object) If the boundary is lim

ited by the pixel resolution, filtering techniques!441 can be used to smooth the edge of the
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object and generate the a values at the same time. In this thesis, we will not explore fur

ther the derivation of a, and simply assume that it is available together with ihe pixel
values.

4.1.2 Compositing algorithm

Following the 4-channel method by Porter and Duff, we can derive the compositing

algorithms for the binary functions inTable 3-1.

• C = over(A, B)

_ uaPa f <! CW«
P< u,\+<' <V«n (4-3)

u(. = a A f (I (XjHX/,

C = in (A, B)

Pr = Pa

xr = (XtUfl

• c out (A, B)

Pr = Pa

ar = "a (l ««>

• c = transparent (A, B)

Pr
uaxaPa + VrPh

aAXA + anxB

IX,. =• I (l (X^) ( I cx/r)

(4-4)

(4-5)

(4-6)

In the above equations, we also generate the a value of the composited result, so lhat

the composited object can be further composited with other objects. This derived a value

represents the overall portion occupied by the composited pixel. There are some approxi

mations used in the derivation of equations 4-3 lo 4-6. First, the derivations of the a values

are only approximations. Actually, without knowing the detail edge information inside a

pixel, we cannot get the exact a value of the composited result anyway. Our assumptions
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are shown in table Table 4-1. Let cxA and aH be the a value of pixel Aand B. The intersee-

TABLE 4-1:u value derivation assumptions

Label pixel a value

A IZJ <*4

H X. <*/?

AnB X a.^a/?

AvB i^pl l-il-aAHi<xB)

tion of the portions occupied by both pixels are aAati. The union of both pixels is l-tl-

(xAm-a.R). This is an orthogonal relationship assumption between the edge of the two

pixels. Similar results can be derived for the cases of A n B and A n B.

Similarly, without knowing the detail edge information of the pixels, wecannot get an

exact result for transparent compositing, either. The assumptions inTable 4-1 can apply to

the transparent compositing function. However, it makes the equation quite complicated

because it segments a pixel into four portions and calculates the result separately. In equa

tion 4-6, we use another simple assumption that contributions from both pixels are not

only determined by the transparent factor xA, xfi, but also byaA and aw. We are using the

product of a and t. i.e. aAxA and ot/jT/, as the weighting factors. The reasoning behind this

isthat a pixel occupies alarger area (larger a) and ends up contributing more in this trans

parent compositing function. The simulation result shows that both of these approxima

tions arc quite acceptable.

4.1.3 Distributed implementation of structured video

In this section, we discuss the flexibility of structured video implementation in a dis

tributed network system. The structured video model is general enough to represent any

kind ol video compositing, and is useful in allocating hardware resources for implementa

tion inadistributed environment. In distributive implementation, components of the struc-
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lured video model, such as the video objects, compositing functions, and events, are

mapped to physical nodes or transmitted on links in a network. There are different map

pings (and therefore different implementations) under the existing resource and network

configuration constraint The performance of each mapping can be determined by the

usage ofcommunication links and the compositing resource

For example in figure 4-3, we show a simple model of 3-way video conferencing.

Figure 4-3(a) shows the composited video objects to be displayed. Figure 4-3(b) shows

the mapping to three different implementations. In Figure 4-3(a) a single compositing

Junction is performed at acertain location only. The same composited result is broadcast

to all participants. Any change of the compositing from any user will change the compos

ited results on all other user displays. This is exactly the situation for video sharing/co-

editing. In Figure 4-3(b) three different compositing functions are performed at the same

location. Each produces acomposite scene for a user. In this situation, three compositing

functions are used, implying 3 times the hardware complexity as compared with Figure 4-

3(a). However, each user is given the flexibility to fully control his/her composited video

objects. The transmission bandwidth of this implementation is roughly the same as the

(b.l) case, as shown by the arrows of the graph. The only difference is that in (b.l) the

composiied result is broadcast back to three users, while in tb.2) three different compos

ited results are sent separately to the users. Broadcasting may save some network resource

as compared with using three different transport entities. In (b.3) three compositing func

tions are put at the user ends. The hardware complexity (by counting the number ofcom

positing function blocks) is the same as that for case (b.2). However, the required

transmission bandwidth may exceed that for case (b.2).1

There are two different approaches to optimizing the mapping ofstructured video into

a distributed network. The first is to optimize the compositing function scheduling. In

1Case (b.2) needs 2N links while case (b.3) needs N(N-1) links, where N is die number
ol users.
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(bJ)

Fig. 4-3. A 3-way video conferencing example, (a)the structured
video representation (b.1-b.3) three different mappings to networks.

structured video, most of the composite objects have a limited life span. That is. the com

positing processors are used only for a certain period of time It is possible to schedule

several compositing functions into the same compositing processor, as long as the inter

vals of the compositing functions do not overlap. This scheduling is a very difficult

problem, and has been studied extensively in the digital signal processing field. We will

not go into much detail regarding scheduling except to make the comment that both static
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and dynamic scheduling are of use in structured video scheduling. The choice of either

static or dynamic scheduling depends on what kind ofvideo objects are being composited.

As described in previous sections, there are various kinds of video objects. For retrievable

isochronous objects and an-isochronous objects whose life spans are known in advance

static scheduling is useful. For applications which use nonretrievable isochronous objects

or which have alot of interactive operations, dynamic scheduling is required because no

prescheduling can be done until run time Combining both static and dynamic scheduling

may make the scheduling of structured video avery challenging issue.

The second way ofoptimizing the mapping is through hierarchical iree restructuring.

As described in section 3.3.3.1. multiple-operand compositing lunctions can be formed

with the combination of many binary compositing functions. In such a process, several

different combinations may have the same final result. In other words, there are possibili

ties that several different hierarchical trees of composite objects have the same compos

iting output, and therefore represent the same composite object On the other hand,

different hierarchical trees can provide us with different views of mapping, and also

improve the performance In this section, we will focus on this restructuring issue. To do

this, we will study the properties ofevery compositing function listed before, and find the

restructuring rules. In this way, we can enable efficient manipulations of the compositing

lunctions for optimizing the mapping performance

4.1.3.1 Re-structuring of compositing function
Given aset ofvideo objects. {Vj}, acompositing function, F, maps them into acom

posited object, Vwrnpuated = F(Vj, V?,..., varj, van,...), as described in section 3.3.2.

When this compositing function is performed with the combination ofmultiple unary and

binary compositing functions, there can be many ways to complete the compositing func

tions. For example, overlapping ofthree objects can be completed with either the first two

or the last two objects overlapped first as shown in Fig. 4-4. Mathematically, this can rep

resented as overtovertA.B),C) for case (b) and over(A,over(B.O) for case(c) in Fig. 4-4.
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Fig. 4-4. Different implementations for the same composited video
object and their tree representations

The mathematical representation will help us analyze the properties of a compositing

function in a more systematical way. An example of a more complicated compositing

function is shown in the following equation.

vcomposited =<>ver(scale(over(V|,V2)), over(scale(V3), scale(V4))) (4-7)

The parentheses indicate the processing order for completing the whole compositing

function. It is this stiff restriction we want lo break in order to support the flexibility for

efficiently adapting implementations to the dynamically changing application require

ments and network configurations. We achieve this flexibility by exploring the character

istic properties of the generic representations for compositing functions, such as

associative, commutative, and distributive properties of the compositing functions. Based

on these properties, we can restructure the compositing process so that the final structure

implies the optimal implementation. For example, the composited object shown in equa

tion 4-7 can be restructured to a simpler one as follows (if we assume all scaling factors

are the same.)

vcomposited =scale(ovcr(over(overtV\, Vo), V3), V4)) (4-8)

In the following, we discuss these important properties for restructuring the compos

iting process and their possible effects on the implementation.

A binary compositing function, F. is associative if

F(F(V h V2), V3) = F(V!, F{V2, V3) (4-9)
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Examples of associative compositing functions are overt), transparent), and hit). The

compositing function out(), is not associative The significance of the associative property

is that itallows trade-offs between sequential vs. parallel implementations. For example if

video components are generated incrementally along a bus network, it is most natural to

composite these components objects one by one sequentially. On the other hand, if sources

of component objects are grouped into several locations, parallel compositing may be

more efficient In terms of hardware complexity, sequential compositing may facilitate

efficient implementations like pipelined compositing architectures. But if the sequential

compositing process is distributed among many different locations, the end-to-end latency

will be long.

A binary compositing function, F, is commutative if

F(V1,V2) = /r(V2,Vi) (4-10)

Anexample ofcommutative compositing functions is transparent). Overlap, A in B,

and A out Bare not commutative When combined with the associated property, the com

mutative property can determine whether or not multiple video objects can be composited

in any arbitrary order. This is important since video objects may come from many different

remote locations and their geographic location does not necessarily match the specified

compositing order. If the specified compositing order is unchangeable video objects may

need to be send to acentral node for compositing, or some distant video objects may need

to be sent to the same node and composited together before they are transmitted to another

distant location. Note, for unary operations, that the commutative property implies

U1(U2(V)) = U2(U1(V)), where UI and U2 can be the same operation. For example,

scaling and translation arc commutative

The distributive property is defined upon a unary or binary function with respect to a

binary function. Operation Uis distributive with respect to abinary function. G. if

U(G(V{, V'2)) =G(U(Vj), U(V2)) (4-11)
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Binary function. F. isdistributive with respect to a binary function. G, if

F(C(V|,V2), V3) = G(F(Vi,V3), FtV^Vy)) (4-12)

and

F(V|, G(V2. V3)) = G(F(Vi,V2),F(Vj,V3)) (4-13)

The first advantage of using the distributive property is the reduction of redundant

operation by extracting the common operations shared by two video objects. This means

the reduction of computations in most cases, although the actual amount of computation

reduction depends on the specific operations applied. For example, simple nonoverlap

combinations of two objects docs not reduce the total daui and thus does not reduce com

putations when a common operation is extracted. On the other hand, using the distributive

property to apply the same operation on both component objects before they are compos

ited together may be advantageous in some cases. For example, scaling down the compo

nent video objects before they arc transmitted to a network node for compositing can save

some transmission bandwidth compared to transmitting the full-sized video components

and doing down-scaling at the network node.

A table summarizing the basic properties of the compositing functions is shown in

Table 4-2. These basic of associative, commutative, and distributive properties show us

TABLE 4-2:Basic properties of compositing functions for restructuring. A: associative. C:
commutative (CDfor binary, Cufor unary), D:distributive (For L/wrt. G)

Binary {G) Unary

Over
Transpa

rent
In Out Scale

Translat

e
Rotate Flip

Binary
(F)

Over A D D D (not defined)

Transparent n A.C'b D I)

In D D A 1)

Out I) I) D
A



TABLE 4-2:Basic properties of compositing functions for restructuring. A: associative. C;
commutative (CDfor binary, Cufor unary), D: distributive (For L/wrt. G)
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Binary [O Unary

Over
Transpa

rent
In Out Scale

Translat

e
Rotate Flip

Unarv

(U) '
Scale D 13 I) D <u <-'u <-\i
Translate D D D D <\i <\i <\i
Rotate D D D D Cu <-'u
Flip D D D D <-u <-'u <-\i <-u

(Si oui S2)uut S3 =SI out <S2 over S3) or SI out (S3 overS2).

out

Z.
out

Z.
over

-ZHS
scale scale

© ®

scale

over

&
(a) (b)

Fig. 4-5. The corresponding action of applying distributive
property on the implementation tree, from (a) to (b) — merging,
from (b) to (a) — splitting.

various possibilities for implementing ihe same compositing operation in different tree

structures. A more efficient mapping can be found through this restructuring process using

these properties. Basically, the associative property allows the moving of acompositing

block from one branch to another branch ofanode. The commutative property allows the

switching of two objects under acompositing block or the switching oftwo compositing

blocks on top ofasingle video object. The distributive property is equivalent to merging

two identical underneath blocks into asingle block on the top ofanother binary compos

iting block, as shown in figure 4-5. or the other way around (splitting).
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These basic properties for restructuring ihe compositing functions al.so facilitate an

efficient and systematic approach to matching the structured video implementations to

dynamic application requirements. For example, if transmission bandwidth is the most

important resource, we should perform compositing at nodes closer to the sources and

complete rate-reducing operations (e.g., down scaling) as early as at the source sites. If the

computational complexity isof most concern, then finding the simplest computation form

should be pursued. On the other hand, if users want the most responsive control, then

keeping video objects separate all the way down to the user sites should be most benefi

cial.

Besides these considerations, there is the challenging issue of optimizing the mapping

ofseveral structured video representations for many different services at the same time. A

suboptimal mapping for single-user services may become the optimal mapping when mul

tiple services are considered together. In a multi-user heterogeneous-service situation,

these restructuring techniques arc useful for finding the sharable compositing processes

among different users and different services to reduce the overall implementation cost

To provide more flexibility for restructuring, it is possible to change the basic proper

ties of the composting functions through different definitions ofthe compositing function.

For example, the definition oiovertA,B) places object Aat the top ofobject £. Therefore ii

is not commutative. However, if we define anew function overtA,B,za, zg) which either

places Aover or under Bdepending on the priority values za and z& then overt) becomes

commutative. Note that other properties may also change through this new definition. In

order to keep the overf) function associative, the priority value z needs to be per-pixel

based, instead of per-object based. If it is per-pixel based, the composite object has the

same priority for the whole object, and the associative property cannot be maintained.

This can be seen from the fact that in overiovertA.B), C) the overiA.B) is first performed

then composited with object C. Once overiAM) is performed, it becomes one single video

object We cannot tell the portion in A from the portion in Bbecause asingle priority value
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is used for this composited object. Under this situation, Ccannot be inserted between A

and B. This is apparently different from overtA, over(B,C)) in the case that Aover placed
over Bover C. By assigning a priority to each single pixel, we can maintain both associa

tive and commutative property for overt). Since overt) is the most frequently used among
all compositing functions, maintaining both commutative and associative properties will

provide agreat advantage in implementation. It also provides ameans to avoid presorting

the video objects acording to object priority. We will discuss this later in the discussion of

the pipelined architecture of the VideoStation.

4.1.4 Possible efficient implementation in spatial compositing

The algorithms described in the last section are a direct implementation of video com

positing in the plain pixel map domain. There are ways to make the compositing more effi

cient to reduce the processing requirement and/or reduce the transmission bandwidth

requirement. One possibility is a technique called compression domain compositing

[26][271. The other is to use the flow control method. In this section, we will briefly

review the compression domain compositing technique, then we discuss the flow control

algorithm.

Compression domain compositing

It is common today to use some kind ofcompression method to reduce the data rate

required for video information. With the reduced data rate in compressed domain, it is

possible that the compositing takes less processing because there are less data to be pro

cessed. On the other hand, when all the inputs and the output of the compositing arc in the

same compressed domain, e.g., compositing to be performed at some node on the net

work, performing the compositing in the same compressed domain can reduce the over

head of format conversion which is required if the compositing in performed in the plain

pixel map domain.
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Compressed domain compositing has been studied in some detail in |261|271. Abrief

review of the results shows that efficiency depends on the compressed algorithm, the char

acteristics of the video objects, and the assumption on the input/output format Compos

iting in asimple DCT transform domain is usually more efficient than compositing in the

pixel domain. The motion-compensated DCT transform, however, may or may not be

more efficient depending on the compression rate. More details can be found in |261(271.

Flow control technique

The other possibility is to use some kind of flow control technique lo save the total

transmission bandwidth requirement. Usually a composited object consists of objects

overlapping each other. There are usually some portions ofobjects that arc obscured and

cannot be seen. If it is possible to send this obscurity information to the video object

sources, then the obscured portion need not be sent in the first place. This can save some

transmission bandwidth.

The basic idea of this flow control technique is to use the information about an object

being partially obscured to save the transmission bandwidth required for the video com

positing. Our discussion will base on asimple model shown in Fig. 4-6. Fig. 4-6(a) shows

a composited object C consisting of object Aand B with the compositing function C =

overtA,B). Fig. 4-6(b) shows the video sources SA, Sgot' object A. Brespectively, the com

positing processor Cq and the connection links between them LA, Lg The use of the flow

control technique is to reduce the total transmission bandwidth requirement on the link LA,

and Lg With this simple modeling, the bandwidth usage are BA, Bg on link LA, and Lg

respectively. Let's use a weight function Wj to represent the cost ofthe link /'.The total cost

function F of the transmission will then be:

F= WABA+WBBB (4-14)

The idea is to inform each video source that some portion of its video object will not

be seen, and therefore need not be sent For example, object B is partially obscured by
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(b)

Fig. 4-6. A simple model for flow control scheme using object
obscuring information, (a) The composited result. A portion of
object B is obscured byobject A. (b) The network configuration of
video sources S^, Sg and Compositing processor Cq They are

connected with links t/\, t& The results will be sent out through

LG

object A. With the obscurity information, instead of sending an object Bto compositing

processor C, video source Bsends to C the object out(B, A), the unshaded portion ofobject

Bin Fig. 4-6(a), where out() is the compositing function described in the last chapter. Let

Bn, represent the bandwidth usage ofoutiB, A). The total transmission cost using the flow

control will be:

f'=lvA+V« +vvA (4-15)

Equation 4-15 assumes the weighting factors of sending information in both directions on

link Lflare the same, i.e., Wg. Bq'is the bandwidth of the obscurity information sent from

C to B. In order for the flow control mechanism to be useful, the cost function F must be

less than F. That is,

BB-BB.-Bn>() (4-16)

The left-hand side ofequation 4-16 represents the final bandwidth saved from sending

only the nonobscured portion, including the overhead of the obscurity information. This

bandwidth saving must be greater than zero inorder for this flow control mechanism to be



85

usetul. The first two terms. Bg - Bg>, are roughly equal to the data rate of the unshaded

portion ofobject B. The third term, Bq, equals the data rate of the edge information of

object A. The exact value of the bandwidth saving depends on the video itself, the over

lapped size of the video objects, and the algorithms used to code the video object content

and edge information. It is hard to give an exact value for the bandwidth saving. In gen

eral, however, the data rate of the code for video object content is several times higher

than the code ofedge information. Table 4-3 shows some typical ratios of the data rate

TABtE 4-3:Data Ratio of Video Object Content/Edge^

Content coding/Edge coding WxH:

lOOx 10

WxH:

50 x 50

WxH:

10 x 100

uncompress/uncompressed bit mask 16 16 16

JPEG/Run-I .ength-Coding 11.82 7.12 1.492

MPEG/Run-I .ength-Coding 4.55 2.7 0.574

Assuming the compression ratio of JPEG and MPEG are 10 and 26. respectively.

between the video content and the edge. It shows that for uncompressed video objects, the

edge code is only 1/16 of the content codes. If we use run-length coding for the edge, the

exact value depends on the size of the video object. Table 4-3 shows three different sizes

ofvideo objects. Note that the width and height of the video object shown in Table 4-3

only roughly describe the shape of the video object, because the video objects are arbi

trarily shaped instead ofarectangle. The figure in Table 4-3 shows that, for most cases, the

data rate ofedge information is several times less than that of the content and it is worth

while to send edge information to trade for the saved bandwidth from the overlapped
shaded portion.

The model described above for flow control is actually oversimplified. Practically

there are still issues remaining to beconsidered:



86

• First, there are some processing overhead at the video sources to derive the

object out(A,B). To make it simple, instead of sending the exact shape of
the object A, we may want to send only arectangle describing the area to
be covered by object A. This reduces the processing complexity, and also
reduces the bandwidth u.sed to carry the video object edge information. On
the oihcr hand, this also decreases the unsent portion ofobject B.

• The synchronization of both video objects in time needs to be solved. From

the model in Fig. 4-6, object Bcannot be sent to compositing processor C
until objects has arrived at Cand the edge information ofobject/* is sent
Irom Cto B. This causes adelay ofobject As being displayed, and requires
more buffer for object A. A possible solution of this problem is that all

video objects send their edge information several frames in advance, so

that this edge information can be sent to video sources in time to do the

flow control. This is reasonable because many coding algorithms today use
imerframe compression, e.g., MPEG and H.261. To derive the current

frame, we need the frames in the past or in the future. It is therefore possi
ble for the coder to put the edge information several frames in advance

without much difficulty. In the next section, we will discuss video object
synchronization issues further.

4.2 Temporal compositing (synchronization)

Synchronization in general means to maintain events in some temporal order. Struc

tured video uses atemporal representation to maintain this synchronization among all the

video objects involved in a structured video compositing. Under the structured video

model, all objects are distributed all over the network, and are transported over to the com

positing processor when needed. In such adistributed environment, it is important to study

the issues concerning how the temporal relations are kept in amost efficient way. In this

section, we first review some background ofnetwork delay and synchronization, and dis

cuss asource control mechanism that can be used to maintain the synchronization among

all video objects, and also minimize the buffer requirement at the receiver. Then we will

discuss the global clock timing recovery that is needed for the structured video model.
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Fig.4-7. Delays for structured video.

4.2.1 Synchronization background

In adistributed network, delays and delay jitters are inevitable due to the nature ofthe

network. Delay is the duration between the time the signal is sent from the transmitter to

the time when the receiver receives the signal. Along delay is not acceptable in applica

tions that require fast response time to interactive operations. The delay jitter results from

the changes of the delay. Delay varies due to reasons such as queueing, different routing,
retransmission due to error, etc. Because of variable delay, buffers are used to keep the

information that cannot be used immediately, and also regulate the traffic into asmoother

pattern. The goal of synchronization is threefold: (1) to maintain the correct temporal rela

tions among all video objects, (2) to minimize the overall delay and delay jitter at the

receiver, and (3) to minimize the buffer size required at the receiver.

In the structured video model, we can model the delay of any link from video object to
the compositing functions, as in the following equation. The corresponding graph of the
structured video is shown in Fig. 4-7.

delay ~ lsource^ tlink +lcompositing (4-17)

In this equation, the tsoun:e is the time used to generate the video object. It includes the

query evaluation, seek, and access time (if it is saved in astorage device), the coding time

(if it needs to be coded before it is sent to the compositing function), and the packetization

time. The t^ is the time used to send the video object to the compositing function

•lit*
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Butter
Buffer

Transmitter Receiver

Transmitte Receiver

Transmitter

Transmitter Receiver
Transmitter Receiver

Transmitter

(c) (d)

Fig. 4-8. 4 types of synchronization: (a) one-to-one. (b) one-to-
many, (c) many-to-one. (d) many-to-many.

through the transport. It includes the transmission delay and the queueing delay (if it is
buffered at any switch in the transport). The tu^^ls the time used to compose the
video object. It includes buffering delay, depackctization, decoding, and the compositing
processing time. In all these different delays, we will make no assumption about the

source coding, packetization/depacketization. the link or the compositing processing. The

emphasis of our discussion is placed on how to reduce the buffer and buffering delay in
the last term tccnpositms.

There are basically four types of synchronization. They are one-to-one, one-to-many,
many-to-one, and many-to many-synchronizations as shown in Fig. 4-8. The one-to-one

type is the most basic that any communication link needs to consider. Among all the four

types ofsynchronization, the many-to-one type ofsynchronization best fits into the struc

tured video model in that many sources (transmitters) send their video objects to the com

positing function (receiver) for compositing. All objects need to arrive at the same time in

order to reduce the required buffer. The many-to-many is also possible when video objects
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Fig. 4-9. Structured video model sharing the same
composite object for a different compositing function.

arc shared for some reason. Fig. 4-9 shows an example of amany-to-many type of syn
chronization. In this case the compositing result of object Aand B(mrr^Jis shared
between two receivers {overji) and mat)) to save the compositing resource. This case is
different from the multiple many-to-one type of synchronization because only one copy of
object A and B are sent out

Two important issues need to be studied. The first is the clock rate matching between
the transmitters and the receiver. When the clock rates are different, the buffer between the

transmitter and the receiver will overflow or underflow. There are mechanisms for this rate

matching. In the structured video model, we assume there is aglobal timing clock avail
able. It is required that the structured video model use some kind of mechanism to main-

lain aglobal clock among all the sources, destinations, and any intermediate compositing
processors so they all use acommon clock and timing. In section 4.2.2 we will discuss this

clock rate matching and global timing issue.

The second issue is the synchronization among all video objects sent to the same com
positing function. This is required in both many-to-one and many-to-many types of syn
chronization, which are the cases that apply to structured video. With either type of
synchronization, video objects should arrive at their destination just on time. If an object
arrives too early as compared with other video objects to be composited, this video object

should be kept in the buffer at the destination. Similarly, if it arrives too late, it keeps other
video objects waiting. Under this situation, some kind ofsource flow control mechanism
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is needed to maintain the best liming for video objects arriving at the destination to mini

mize the buffer requirement between the video sources and destinations. Without using the

timing control mechanism, avery large buffer may be required because the data rate offull

motion video sequences is usually very large. In section 4.2.3, we will discuss this source

flow control mechanism.

4.2.2 Clock rate matching

4.2.2.1 Brief review

In a distributed system, there is usually no single clock available to all nodes on the

network. Usually, each node operates on its own local clock. If the clock rate drifts from

node to node, problems appear. For example, when the transmitter transmits a video

stream at a rate slightly higher than the rate that the receiver can consume, the video

stream accumulates at the buffer, and the buffer periodically overflows no matter how

large the buffer size is. wSimilarly, when the transmitter transmits at alower rate, the buffer

periodically underflows, and the receiver is always waiting for the video stream data.

There are basically four solutions that can be used to solve this clock rate discrepancy
problem.

The first is so called "slip buffering." The idea is not to change the clock at either the

transmitter or receiver. Instead, the receiver throws away frames when the buffer over

flows, and repeats the previous frame when the buffer underflows. In this way, the receiver

can always catch up the clock rate ofthe transmitter. The disadvantage ofthis approach is

the degradation ofthe video quality. For example, with a0.01%drift in the crystal clock, a

frame is slipped every 6.5 minutes, assuming the video sequence is 30 frames/sec. There is

agoal in the MPEG community that no more than one glitch appear every 15 minutes1.

That is amuch more stringent requirement because the "glitch" includes any single bit

Prom A TM forum SAA group e-mail discussion.
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error. In slip buffering, every lime the buffer overflows, it is not a small glitch: ii is a

freeze or jump of the whole frame.

The second approach is to monitor the occupancy of the buffer at the receiver and send

this information back to the transmitter to adjust its transmission rate accordingly. This

mechanism, however, may not be useful for real time video when the delay on the link t^

is large. With such alarge delay, the receiver already accumulates alot of data before the

transmitter begins to correct its rate. The buffer needed at the receiver may become too

large. In the one-to-many type ofsynchronization, rate matching through monitoring the

buffer is not viable because different receivers may run at adifferent rales, and the trans

mittercan only match the rate of one of the receivers.

The third approach is to send the lime stamps together with the video sequence, and

recover the clock rate at the receiver end. This approach does not need any feedback from

the receiver, and is implementablc for real-time video. MPEG I and II both use this

approach to recover the clock at the receiver. However, this syncronization mechanism let

atransmitter determine the clock by its own. When multiple transmitters arc involved, dif

ferent clocks arc used. In this way, it does not work for the many-io-one type ofsynchroni

zation because the receiver can only recover the clock rate of one transmitter. For

structured video, many-to-one synchronization is most representative. Matching only the

clock ofone transmitter results in asacrifice ofvideo quality ofother transmitters.

The fourth approach is to provide a global clock available to all components. This

approach is appealing to applications with complicated structure such as the structured

video model. Providing an exact global clock to all distributed components may not be

easy, however, providing "approximate" global clocks based on the same reference clock,

however, is possible. In the distributed computation system, asystem using aglobal clock

is called a synchronous system. In fact, a global clock can be implemented even in the

presence of failures|63l[64|[65l. In the next subsection, we will describe our global clock

approach for structured video.



tlm« stamp flow

vidao data now

(clock master)

(a)

92

(clock master)

(b)

Fig. 4-10. Global clock time stamps flow in two steps: (a)
establishment session and (b)compositing session.

4.2.2.2 Global clock for structured video

Our solution to synchronization for structured video is to provide aglobal clock avail

able to all the components in the tree structure. By "global clock," is meant only global to

the whole tree, not the whole network. The clock rate between different trees can be dif

ferent. This is different from creating a totally synchronous distributed system in

[63U64P51.

The goibal clock syncrhonization process includes two steps: the establishment ses

sion and the compositing session. The global clock must be provided before the normal

compositing starts. To do this, an initial establishment session is used to exchange clock

information before the normal compositing starts. In the establishment session, we assign

the root compositing function of the tree as the clock master, as shown in Fig. 4-10. The

clock master sends out time stamps through the tree structure to all the components in the

tree. The lime stamps are sent out continuously from the start of the establishment session

until the end of the compositing session. All the components in the tree then recover a

local clock based on this reference clock.

Note that this time stamp is not sent directly from the root to all the leaves. Instead, it

is sent through the intermediate level of compositing functions, then to the leaves. In this

way, the synchronization can be done from link to link in a more distributed manner, and
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also ihe children nodes can maintain a better synchronization with their intermediate

parent node. This mechanism can also cover the many-to-one synchronization, in which

the clock master can be assigned to one of the root compositing functions in the structure.

This clock master sends the time stamps to all the rest of the roots. Each root then sends

the time stamps to all the components in its own tree. Note that this approach is different

from the MPEG approach, in which the lime stamps are embedded in the video signals.

Our approach uses aseparate channel for time stamps going in the opposite direction of

the video signals. The extra channel may or may not use more communication resources.

For example, in an ATM network, all the transports are in logical virtual channels. An

extra channel does not cost anything except an extra identifier (VCI).

The rate of the reference clock can be chosen according to the need of applications.

When possible, a lower rate can be used tosave the bandwidth for transmission of the time

stamps. This is depending on the application, though. For example, the reference clock

rate in MPEG I is 90 KHz, while MPEG II uses a27 MHz clock. The global clock derived

in this way is only an approximation of the reference clock due to the different delays of

time stamps (delay jitter). This approximated clock, however, will keep the buffers needed

to a limited amount.

4.2.3 Many-to-one type synchronization in structured video

The second issue in synchronization is the arriving time matching among all the video

objects ofthe same compositing function. Using more buffer at the receiver is not agood

solution for this problem because of the immense amount of data involved in real time

video. A better way is to do some kind of source control at the establishment session so

that the video sources send out the data at the exact time to guarantee that data from all

video sources arrive at the receiver at roughly the same time. To achieve this, it seems

obvious that two parameters need to be decided. One is the relative difference between the

origins of the time basis ofthe components. The other parameter is the delay measurement

of the links in the tree. These two parameters are related to each other. To derive one
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Fig. 4-11. Relative origin and delay determination, (a) Tree
structure, (b) Time traceof the negotiation process.

parameter, we need to know ihe other, and vice versa. In this section, we show a very

simple method to make video objects synchronous without knowing these two parameters.

Before we describe the detail, we will first make some assumptions about delay. In our

discussion, we assume that delays are constant throughout the whole compositing process.

Apparently, the source control to synchronize the arriving time handles only the first order

characteristic of delay. It will not handle delay jitter. However, it is reasonable to make

such an assumption on this source control model if the delay jitter issue is handled by the

rate matching mechnism described in the previous section with some buffers. Secondly,

we assume the delays in two directions on the same link may be different. This isareason

able assumption because both directions may use different routing, and may undergo dif

ferent traffic situations. Thirdly, we assume that the only unknown delay is the link delay.

The processing delay such as coding/decoding, compositing, and accessing delays are all

known to the local device. We can ignore such delays in our discussion. Taking them into

consideration iseasy since those delays are explicitly known.

Under these assumptions, we consider the model shown in Fig. 4-11. Here, we study

synchronization onone linkof Fig. 4-11(a), i.e., the linkbetween C and A. A similar result

applies to the link between C and B. Also note that in Fig. 4-11, component Cmay or may

94
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not be the clock master. When it is not the clock master, it receives the reference clock

from its parent and passes it on to the child nodes.

The global clock described in the previous section only gives all components acorrect

clock rate. It does not tell the transmitters when to start sending video. In fact, it is very

common for every component to have its own origin for its time base, as is shown in

Fig. 4-1 Kb). In this figure. O^and 0A represent the origins of the lime basis of A and C.

respectively. In the figure, it is assumed that component A assigns an origin when it first

receives the message (time stamps) from Cat the origin of lime basis ofC. It is difficult to

discover the discrepancy between these origins because the transmission delays between

the two components are unknown. However, it is still possible to make objects synchro

nous without knowing both their lime origin and their delay.

Take acloser look at Fig. 4-1 Kb). A packet sent from A at time 0Ain As time basis

arrives at the time t^of C\s time basis. Similarly, any packet sent at time tAin As time

basis will arrive at tA+ticin C\s lime basis. This is actually enough information for us to

make video objects synchronous at the receiver. To make video objects synchronous, we

only need to know the sending time in As time basis and the arriving time in C\s time

basis. It does not matter what the sending time is in Cs time basis or the arriving time in

As lime basis. Therefore, whenever compositing function C requests a video object to

arrive at time [q in C's lime basis, the video source Asimply sends out the video object at

time (telle) in A's time basis. This value 1\q can be taken as a logical delay (ij) com

bining the effect across different time bases and link delay. Such alogical delay can be

derived easily in the initial setup of the global clock in three passes of message passing, as
shown in Fig. 4-1 Kb).

The overall tree synchronization can be done easily through the global clock recovery

and the logical delay. To achieve synchronization, we need to derive the logical delay for

every link in the whole tree. The process of the whole tree synchronization is as follows:
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1. Initialize the global clock as described in the last section. All the compo

nents recover their clock base on the same global reference clock, so that

all the components proceed at roughly the same rate.

2. Once the global clock is available, the components chose their origin of

time basis as follows:

(i) Starting from the root, the root determines itown time origin arbi

trarily,

(ii) Once the time origin ofthe root is determined, it passes messages to

all its immediate children nodes,

(iii) The children node sets its origin of time basis when it receives this

message from its parent. Then it sends amessage back to its parent

notifying its receiving of the message. At the same time, it sends mes

sages to all itschildren nodes to initiate their time basis origin,

(iv) When the parent node receives the response from its children node, it

records the arriving time of this message. This arriving time is the log

ical delay between itself and this children node. Then itsends this log

icaldelay back to this children node.

The steps in 2.(iii) and 2.(iv) are performed recursively until all the components in the

iree have been set up correctly. Once the time basis and the logical delay is determined at

all components, the synchronization at the parent node can be easily maintained. Note that

this process can be done in afully distributive manner. It starts from the root, and spreads
serially to all the leaves.

4.3 Conclusion

In this chapter, we discuss most ofthe important issues in the implementation ofstruc

tured video compositing. In spatial compositing, we start with Porter and Duff's anti

aliasing algorithm, extend it. and derived the compositing algorithm ofall the compositing

functions that we listed in the previous chapter. We also study the implementation flexi-
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bility of ihe structured video model in allocating video compositing functions lo adistrib

uted network environment The structured video can provide ameans for studying various

possibilities of implementation, and provides as a tool for its performance analysis and

optimization. To do this, we explored ihe generic structure of compositing functions and

their useful properties such as associative, commutative, and distributive, which enable

easy manipulations of the compositing functions and restructuring of the structured video

representation of a video service and its associated implementation. More discussion

regarding the actual mapping of the tree structure into a physical network configuration

andthe trade-offs can be found in (32].

In temporal compositing, we discuss two important synchronization issues, which arc

the clock rate matching and the multiple object synchronization. In rate matching, we pro

pose to use a global timing clock for all the components in acomposite video object. This

kind of global clock mechanism uses separate channels for transmitting timing signals,

and may use more network bandwidth. However, this bandwidth usage is small when

compared with the bandwidth of full motion video sequences. With the complexity of a

tree structure, it is difficult to use traditional methods such as slip buffering or the buffer

monitoring method to match the clock rates among all the components. Since the goal of

structured video is to support real-time full motion video, it is best to use a global clock to

allow each component to run freely without other intervention. To maintain the synchroni

zation among multiple video objects, we use a simple mechanism to set the origin of the

time basis of all the components, and measure the delay of the links in the composite

object structure.

In a distributed implementation, we did not study optimization of resource allocation

in this thesis. We only study properties that enable more flexible resource allocation. The

scheduling isanother issue that needs to be solved. The temporal representation proposed

in chapter 3can be used as a foundation for scheduling. However, the scheduling can actu

ally be more involved because structured video includes not only limited life span video
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objects, but also undetermined life span objects and interactive operations. It is sure that

some kind of dynamic scheduling scheme is needed. When the optimization considers

both the resource allocation in the spatial domain and the scheduling in the temporal

domain, it becomes avery challenging problem, and deserves further detailed study in ihe
future.
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Today's displays, such as the video subsystems of high-performance workstations,

cannot implement the video compositing algorithm of structured video in real-time. In

particular,

• Workstation displays are designed to support an-isochronous objects only,
with the assumption that each pixel isupdated only infrequently. Rectangu
lar video windows can be placed on the screen using an analog RGB

switch, which isvery inflexible because it does not allow even simple oper
ationslike imposing a text labelonto a video window.

• Televisions are designed under the assumption that only a single rectangu

lar object is displayed, although they do update each pixel with each frame.
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While workstations can implement structured video successfully in software, video

compositing must be implemented in hardware with today's technology because of its

high processing rates. In this section, we examine the nature ofthe limitations oftoday's

display architectures. Then, as an example ofan architecture that can support structured

video compositing in real time with very few limitations, we present our VideoStation

hardware architecture. As ademonstrative example, the VideoStation will cover only part

ofthe compositing functions listed in chapter 3. We use acompositing algorithm modified

from the algorithms in chapter 4to cover the chosen compositing functions.

5.1 Objectives

Today's display systems can do areasonable job with an-isochronous objects, in the

sense ofupdating the display within reasonable human visual system response times, but

are inadequate to handle isochronous objects without severe limitations. As acompositing

display platform for structured video, we envision adisplay which can support compos

iting functions ofany kind ofvideo objects, including computer graphics as well as video

in various combinations. Some useful display objectives, if they can be achieved at an
affordable cost, would include the following:

• It can display acombination of isochronous and an-isochronous objects,
with full update speed for isochronous objects.

• There should be no architecture-imposed limit on the number ofarbitrarily-
shaped video objects. More video objects can be supported by simply
insertingmore hardware.

• Parameters in compositing functions can be interactively changed in real
time. For example, parameters such as the location (L) in the function

translation^ the overlapping priority (z) of the function over(), and the

transparent factor (x) in the function transparent), etc., can all be changed

easily from frame to frame.
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• A variety of compositing functions can be realized in real time. In our first

implementation, we only implement four basic compositing functions in

table 3-1, i.e. overi), transparent), translation), anddelayi).

• The rest of the unary functions in table 3-1 can be performed individually

on each video objectbefore compositing, and therefore are not included in

thiscompositing platform.

In essence, the implementation ofcompositing functions deals with the placement and

combination of multiple video objects at proper spatial locations and temporal timing on

the display according to the compositing algorithms as described in chapter 3. Since video

objects are full motion objects with their location changing from frame to frame, the com

positing processor must guarantee real time operation such that the location of the video

objects appears correctly in every frame. This isdifficult in conventional display because

of the limitation of processing capability and memory bandwidth. The fact that only the

window boundary shows up when we select and move awindow in today's workstation

reveals the limitation to supporting full motion videos in conventional display. In addition,

the video objects require the support of compositing arbitrarily shaped objects, which

requires more processing. To properly handle the compositing, we need a special design

on the display architecture and implementation. In this chapter, we deal with these pro

cessing and memory bandwidth limitations and propose an architecture which enables real

time compositing. Before presenting our architecture, we first review the technology limi

tations intoday's video display technology.

5.2 Today's technology for video display

The single frame buffer display is the most popular display architecture used today as

is shown in Fig. 5-1. In this architecture, any point on the display screen corresponds to a

pixel value stored in the frame buffer. The frame buffer holds a 2-dimensional memory

array module with its size equal to the size of the display. The video refresh controller con-

standy reads out the data stored in the frame buffer and repeatedly scans the CRT monitor
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Fig. 5-1. Display Architecture with single frame buffer,

at atypical refresh rate of 30 times or 60 times per second. In this architecture, objects are
rasterized and written into certain address of the frame buffer by the display processor to
show up at the corresponding location on the display. TTie display processor can be either
a general purpose CPU, or a special hardware which enhances the rasterization of fre

quently used objects such as lines, rectangles, etc. The frame buffer also records an image
data structure that is used by compositing operations. For example, to perform atransla-
tion() operation, the display processor uses the image data structure to remove the original
object from the frame buffer, and then write itinto anew address.

This kind of single-frame buffer architecture is well suited to the display of an-isoch
ronous video objects, such as graphics and texts, which are only updated very infre
quently. Under this condition, most of the frame buffer bandwidth is used by the video
refresh controller. To support full motion video compositing, it is apparent that the frame
buffer bandwidth needs to be high enough to support the 30-frames-per-second updates
of the video objects. The display processor needs also to be fast enough to process the
compositing when the video objects changes from frame to frame. When the number of

video objects involved in the compositing increases, the requirement on both frame
memory bandwidth and processing capability becomes even more stringent.

It is the limitations of frame memory bandwidth and the display processor capability

that prohibit the direct implementation of the structured video compositing algorithm in
this kind of single-frame buffer architecture. There are actually some trade-offs between
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the frame memory bandwidth requirements and display processor requirements. For

example, to perform the over() function of two objects, we can either first write the object

at the bottom into the frame buffer, and then write the object at the top to overwrite the

portion at the bottom. Or we can write only the unobscured portion of the bottom object

and top object into the frame buffer. The former approach requires more frame buffer

bandwidth, but is easier done. The latter approach saves the frame buffer bandwidth usage

but requires more capable display processor to calculate what is the obscured part of the

bottom object — which may be very complicated. With this trade-off, it may be possible

to apply this single frame buffer architecture directly if we have either very fast frame

buffer, or avery fast processor. However, both frame memory bandwidth and processing

capability are limited to support real-time full motion video compositing with today's

technology, not to mention the compositing of arbitrarily shaped video objects. The next

two subsections review the memory components and processors available as the candi

dates for implementing video compositing display.

5.2.1 Today's memory components

In traditional single frame buffer display systems, the limited memory bandwidth of

the frame buffer is tolerable because of its asymmetric access pattern between read and

write. Most of the memory access bandwidths are used by the video controller for

refreshing. To support full-motion video objects, however, each pixel value is updated

every 1/30 to 1/60 of asecond. The access pattern becomes symmetric between read and

write. In fact, it is quite possible that the write accesses to the memory be higher than the

read ones in multiple video objects compositing. Under this situation, the bandwidths of

the frame buffer are shared by the frame buffer update and the video refresh. To investi-

TABLE 5-1:video timing forvarious video format

Visible Area

Pixels x Lines

512x485

Pixel time in ns

(30Hz refreshrate, interlaced)

loli

Pixel Times in ns

(60 Hz refresh rate, non-interlaced)

48^41
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TABLE 5-1:Video timing for various video format

640x485 82.3 38.73

512x512 96.7 45.14

1024 x 768 32.37 16.52

1024 x1024 22.57 11.42

1280 x 960 19.62 9.95

1280 x 1024 18.06 9.13

gate the bandwidth requirement on the frame buffer, we list the video timing for various

video formats in table 5-1 [57]. The number in the table shows the access requirement for

the video refresh purpose only. We can take the full motion video bandwidth requirement

on the frame buffer as two times the bandwidth listed in table 5-1 when the update access

is comparable to the video refresh access. The typical specification for the capacity and

TABLE 5-2:Typical specifications ofcommercial memory products asof1992.

Memory T^pe Capacity Configuration
(Words X Bits)

Operating
mode

Access time*
(ns)

Cycle time*
(ns)

DRAM 256K 262,144x1 Page mode 120 230

65,536x4 Page mode 120 220

1M 262,144x4 Highspeed
page mode

80 160

4M 1,048,576x4 High speed
page mode

80 140

SRAM 16K 2.048x8 - 100 100

64K 8,192x8 - 100 100

256K 32.768x8 - 100 100

1M 131,072x8 - 100 100

FIFO 4.5K 512x9 - 15 -

9K 1024x9 - 15 -

16K 256x36x2 - - 25

VRAM 1M 276,480x4 forEDTV 50 60

1M 189.360x8 for VCR 65 88
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Access time is the minimum time required for data to become valid at the output ofthe chip after the
chip is addressed.

Cycle time is the minimum time between successive accesses to the same chip. Depending on the oper
ating mode, there may be muiuple words ofaccess in one cycle time,

accessing speed of today's memory components (from data book of 1992) in commercial

products is shown in table 5-2[661 The current existing memory components basically

include dynamic RAM (DRAM), static RAM (SRAM), video RAM (VRAM), and first-
in-first-out memory (FIFO).

Among all the memory components, DRAM is the most used in today's display

system. It is the least expensive one, and can support more capacity than other types of

memorycomponent The low cost makes it the most common one for a frame buffer. The

access time of the DRAM, however, is also the longest. From table 5-2, we find that

DRAM actually cannot keep up with the video refresh time ofany video format listed in

Table 5-1. To catch up with the pixel time, it is very common to use multiple chips so that

multiple pixels are accessed simultaneously. A DRAM needs to periodically refresh the

chip so that the data stored in the chip is not lost due to charge leakage. This is done by
accessing every memory cell on the chip periodically. This chip refresh is different from

video fresh. In video systems, the video refresh that accesses every location ofmemory for

display can easily meet this chip refresh requirement. Therefore, chip refresh is usually
not an important issue in adisplay system.

SRAM provides a faster cycle time than DRAM because itdoes not need to refresh the

memory periodically. On the other hand, it consumes more power and the capacity is usu

ally smaller. The cost is also much higher than with the DRAM. Considering that chip
refresh is easily satisfied when DRAM is used as aframe buffer, SRAM does not provide

too much advantage over DRAM when used as a frame buffer. However, SRAM is still

faster and is still used in some high performance graphic stations. FIFO has the fastest

access time with smallest capacity. It is too expensive to be used as a frame buffer. Its

capacity is also too small. To be used as aframe buffer, many chips are needed since dis-
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play systems usually require alarge frame buffer. These limitations in capacity and cost

prohibit the use ofFIFO in any display system today.

VRAM is amemory specially designed for a frame buffer purpose. It is adual-port

DRAM that allows random access from one port, and serial access from the other one. A

shift register is used at the serial port to shift out the data serially. To access through the

serial port, awhole row ofmemory data is moved from DRAM to the shift register. Once

the data resides in the shift register, it can be shifted out at amuch faster cycle time than

accessing the DRAM. At the same time, the random access port can still read/write data

into the DRAM. The contention between two ports occurs only when the data is being

moved from DRAM to the shift register. VRAM is very useful for avideo refresh con

troller that requires periodical access ofserial data. However, VRAM is designed mainly

for graphics applications. The random access port bears abandwidth much lower than the

serial port. It cannot support the update access which is used as the frame buffer for full

motion video display. The cost of VRAM lies between the SRAM and DRAM while its

capacity is a litde bit less than DRAM.

Comparing the figure from both table 5-1 and table 5-2, we find that DRAM cannot

satisfy the pixel time requirement of any video format. Even SRAM, VRAM and FIFO

can only barely make it, depending on the video format. To support full-motion video

compositing, the update access requires a comparable amount of bandwidth, or even

higher as listed in table 5-1. None of the memory components listed in table 5-2 except

FIFO can support twice the bandwidth of the video refresh rate in table 5-1 to cover a

comparable video update. Even the VRAM cannot support either. Another popular

VRAM from Texas Instruments has a33 MHz burst rate, which is marginally fast enough

to handle one real-time video object but certainly not more[13]. As the number of full-

motion objects that asystem displays increases, the system's memory bandwidth require

mentincreases proportionally.
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Today's memory technology advances in three directions — to improve the memory

size, to improve the speed, and to lower the power consumption. The advances of size

expansion have progressed much faster than the other two. Since today's frame buffer uses

multiple parallel chips to enhance the bandwidth capability, the size improvement is actu

ally adrawback because itreduce the number ofchips needed for simultaneous access.

5.2.2 Today's display processors

The job of the display processor is to update the frame buffer. The major functions of

the display processor are address generation, pixel block transfer (bitblt), window clip

ping, and object generation. Some of the functions not only involve write access to the

frame buffer, but also read access. For example, a pixel block transfer includes read-

modify-write operation. These functions can be performed by ageneral purpose processor

(CPU), or with aseparate display processor controlled by aCPU to accelerate the update

speed. Ageneral purpose CPU may be slow for all these functions, and is becoming rare
today. Use of the separate display processor ismost common.

The display processor used depends on the actual applications. Most of today's display
processors are for graphics purposes. They accelerate the generation of arange of geo

metric objects, such as lines, circles, text characters, polygons, filled objects, and also the

bitblt. The general purpose CPU uses simple I/O commands to instruct the display pro
cessor to generate a specific object and update the frame buffer. Today, agraphic display

processor can be implemented in one single chip which includes all the video refresh con

troller, memory interface, and graphic generation function. These processors, however,
usually only support graphics and texts inanon real-time manner.

With the speed pushed to the extreme, some of the graphic display processors can also

support full-motion video overlay. This video card does not get the video stream from the

CPU. Instead, it receives the video streams directly from the external interface. The dis-
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play processor maintains a pixel-by-pixel mask (a single bit a value), and uses a special

mechanism to filter the video stream through the mask, and overlay on other graphics.

This kind of video card is available today on both personal computers1 and worksta-

tions**. The weakness of these boards is twofold. First, they can overly only rectangular

video windows. The display processor does not consider arbitrarily shaped video objects

when it generates the mask. The screening mask is generated inanon real-time sense. The

mask does not depend on the content of the video stream, and does not change frequendy.

When the shape of the video objects changes from frame to frame (which is required by

the structured video), the mask also changes from frame to frame. The mask generation

becomes areal-time job, and isnot affordable with the display processor described above.

The second drawback is the expandability problem. Using a single frame buffer with

single display processor limits processing capability. This kind of architecture does not

have the flexibility to be expanded to accommodate more video objects. For example, the

XVideo board from Parallax can process only twovideo objects, and nomore.

The nature of the video objects in structured video is more like graphic objects

updating from frame to frame. To compose video objects, the display processor cannot

simply put them on top of all the rest of graphic objects without considering their contents.

Following the approach described above, the display processor needs to read in the con

tent of the video objects and generate a mask for every video object from all the informa

tion read in. All this needs to be done in a single-frame period of time, only achievable

through a multi-processors approach.

Thus, both memory bandwidths and display processors have limited capability to sup

port structured video compositing. A multi-chip frame buffer andmulti-processor display

processor approach are required. With these considerations in mind, the next question is

1 For example, the Video-Blaster board from Creative labs.
*• For example, the Xvideo board from Parallax.
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what architecture can best organize all the memory chips and the processors. In the next

section, we will discuss this issue.

5.3 Architecture consideration

For real time video compositing, it is obvious that our display system must use an

architecture with multiple hardware compositing modules — i.e., multiple compositing

processors (or display processors) and memory modules to break the bottleneck described

in previous sections. In this section, we discuss how the compositing function and/or the

display processor can be decomposed into multi-processing modules and their architec

ture. There are basically three different ways to decompose. The first is space division,

meaning that the space on the display screen is divided into multiple separate areas. Each

area has an associated display processor and frame buffer to process the compositing of

any portion ofobjects fallen into that area. [68] [69] [70]. The extreme ofthis approach is to

associate aprocessor with each memory chip[69] or even apixel[70] in the frame buffer.

The second approach is the function division, meaning to divide the processing from the

function domain. For example, in high speed graphic display, the function oftransforma

tion, polygon drawing, edge processing, etc., are pipelined and put into separate mod

ules.^1]. The third way is object division, meaning to divide the processing into multiple

modules with each module handling different video objects. Out of these three

approaches, only the third is expandable to accommodate the increasing number ofvideo

objects involved in compositing. The first two approaches will reach their Umits when the

number ofobjects increases. For this reason, we will use the third approach in our Video-

Station. It is also possible to apply functional division and object division simultaneously

when many complicated compositing functions are used. That is, we decompose the pro

cessing into multiple modules so that every module handles only one compositing func
tion and one video object

There are two basic architectures base on the object division — linear array and tree-

based architecture as shown in Fig. 5-2. Tree-based architecture covers many different
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(b) A Tree-Based Compositing Architecture

Fig. 5-2.Two modular architectures for objects division compositing.

variations. Linear array is actually also a special case of tree-based architecture. We

simply call any variation which isnot linear array tree-based. These architectures decom

pose the compositing function into multiple binary compositing blocks. Each compositing

block is a binary compositing function. We choose binary compositing function as basic

compositing elements just for simplicity. In general cases, it is possible that acompositing

block composes N objects instead of only two.

To compare the two architectures, weconsider two factors: compositing image quality

and complexity/cost. The image quality is basically the same for both cases as long as the

same compositing algorithm is used, except for latency. The tree-based system performs

compositing with less delay than the linear array because each input is processed by

0(log(N)) compositing stages rather than O(N). However, the delay of each compositing

stage isonthe order of amultiple pixel duration when a fully pipelined implementation is

used. So, both tree-based and linear array compositing systems should yield latencies
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much shorter than a single-frame time. The costincludes thecompositing processor com

plexity, the memory size, the I/O bus, and also the design cost. Simply comparing the

numberof compositingblocks usedrevealsthat both architectures use the same numberof

blocks (N-l). However, this does not reflect the actual complexity/cost. Basically, the

compositing block in linear array architecture is simpler than the tree-based architectures

in terms ofcompositing processor complexity and the memory size. This isbecause one of

the inputs of the compositing block in linear array is always asimple video object, instead

of composite video objects as in the case of tree-based architecture. To combine a video

object onto acomposite video object can be made simpler than combining two composite

video objects. For example, the tree-based architecture compositing block needs to buffer

both inputs. In the linear array case, it is possible to feed one of the inputs directly from

the previous stage without buffering by treating this input as a full-screen size rasterscan

stream to make the synchronization easier, and therefore to save one buffer memory.

5.4 VideoStation design

5.4.1 An integrated compositing algorithm

To design the VideoStation base on the linear array architecture, it is important to for

mulate the compositing function in away that best fits in the architecture. With object-

based linear array, it is possible to have an extensible architecture that can accommodate

more video objects by simply inserting more hardware, and also keeps the complexity

low. In this section, we develop acompositing algorithm based on the compositing func

tion algorithms described in chapter 4. We try to define one integrated algorithm that
covers severalcompositing functions.

In our first prototype of the VideoStation, we only implement overi), transparent),

and the unary compositing function translationi). The discussion hereafter will focus only

on the algorithms ofthese two binary compositing functions only. For simplicity, we intro

duce aparameter in addition to the 4channels (r,g,b,cc) used by Porter and Duff. It is the
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object priority z, which is used simply to keep track of which objects cover other objects.

The priority z is similar to the z value in z-buffering 3D rendering systems [4, 6], but our z

value is simply a depth priority, nota distance. Also, our z value describes a whole video

object, while the z value in z-buffering can change with every pixel in an object. Objects

withlarger z values will be composited in front of other objects with smaller z values.

The z value is also used to control the way in which video objects are composited.

Instead of specifying explicidy what compositing function is to be performed, we assume

that transparent) is performed wheneverthe z value of the operands are the same, other

wise over() is performed. Under this assumption, we will merge both over() and trans

parent) in equation 4-3 and 4-6 into the equation as follows.

*APA + U-aA)aBPB
*c = aA + (l-aA)ofl

ac = aA+(l-aA)aB

pc =

*C= ZA

aAXAPA+aBXBPB
aAXA+aBXB

oc= l-(l-aA)(l-afl)

pc =

zc = za = H

*BPB + (l-*B)*APA

ac = afl + (l-afl)aA

zA>z,

if Z. = Z. (5-1)

z*<z.

This equation can be easily extended to multiple objects. First we composite objects

with equal z values as follows.

I°yV>
p. =

)Gt,

Sa/T/
(5-2)

aIt=l-n 0-a,> (5-3)
yet,

Then we composite these results.
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5.4.2 Pipeline architecture

VideoStation uses a pipeline architecture based on the linear array. The compositing

processor is decomposed intomultiple processing units organized in a pipeline, as shown

in Fig. 5-3. In this architecture, each pipeline stage consists of two parts — acompositing

processor and a buffermemory. Each buffer stores a video object from its stage's input

port, which is connected either to external networks or local video devices such as cam

eras, videodisks, or graphics generators.

This architecture gets rid of the frame buffer which has fixed mapping to the pixels on

the display. Instead of keeping the pixel structure in a physical frame buffer, it maintains

the display pixel structure implicidy in the raster scan signals passing from stage to stage

inthe pipeline architecture. The raster scan isapattern that the electron beam inacathode

ray tube (CRT) sweeps out to generate frames of 2-dimensional images through a series of

horizontal lines moving from the top to the bottom of the image and from left to right on

each line, as shown in Fig. 5-4. With raster scan, the pixels of any 2-dimensional images

are arranged into 1-dimensional pixel streams with some additional synchronization sig

nals specifying the horizontal and vertical retracing. To maintain the pixel structure

implicidy, the pipeline architecture uses a synchronization generation unit (SYNCGEN in



T

S

_^.

"~ SCAN LINE

* ' HORIZONTAL RETRACE

"VERTICAI RETRACE

Fig. 5-4. The typical raster scan pattern used in cathode ray
tube (CRT).

114

Fig. 5-3) at the first stage of the pipeline to continuously generate theraster scan synchro

nization signals —vertical and horizontal retrace signals. This raster scan signal is then

passed down the pipeline from stage to stage, so thatevery module is ableto maintain the

pixelstructure correcdy without having to access some frame buffer. When thisraster scan

signal goes down the pipeline stages, each compositing module performs the compositing

by inserting video objects into the raster scan data stream at some correct timing. In this

process, to place a video object at a certain location on the display is a matterof inserting

thevideoobjectat thecorresponding timingin the raster scan stream. In order to insert the

video objects at any location (therefore at anyarbitrarily timing), some buffer is required

at each stage to keep the video objects. A double buffering approach is required so that

when one buffer is used for video object input, the other buffer can be used for simulta

neous output. The detailed operation of the compositing processor module is shown in

Fig. 5-5.
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Rasterscan stream (C)
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Video object from localstage (B)

Fig. 5-5. Compositing processor module in a

pipeline stage

This architecture shows a feasible way of distributing processing into multiple mod

ules and also of avoiding the single big frame buffer, thus breaking display processing and

memory bandwidth bottlenecks. Using theraster scan signal as the implicit pixel structure

has several advantages. First, it avoids the single big frame buffer which is the source of

the memory bandwidth botdeneck. With atraditional frame buffer approach, video objects

are put into the frame buffer simply to place it at some correct location in the display pixel

structure. For this simple purpose, all the video objects must go in and out of the same

frame buffer, and therefore require high bandwidth on the frame buffer. With our

approach, the pixel structure is not associated with a memory device. It is embedded

implicidy in the raster scan signal. The memory bandwidth requirement is therefore much

less. In pipeline architecture, we don't have a frame buffer. But we still need some buffer

at every stage to regulate the input/output traffic of video objects. The memory bandwidth

needs to support only the I/O of the video objects. This bandwidth requirement is quite

different from the frame buffer case, in which the data need tobe read out for display con

tinuously.
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Secondly, some compositing operations can be performed on the fly without cost. For

example, to perform a translation operation in a traditional frame buffer approach, we

need first to remove the object from the frame buffer, then write the object into a new

address. With our pipeline approach, we don't need to remove the object from the frame

buffer because there are no precomposed data stored in any memory device. All the com

positing operation are performed dynamically. To change the location of a video object,

we simply change the parameter in the compositing processor, where the change will be

performed by inserting thevideo object at the newtiming corresponding to the new posi

tion.

Third, the buffer memory usage is more efficient than the single frame buffer

approach. In our pipeline architecture, each buffermemory need not be large enough to

store an entire screen of video data as would a frame buffer. Instead, each must holdonly

thearea where its video object exists. The total sumof all the buffer memory can be less

than the size of entire screen when the video objects occupy only a portion of the display

screen; the total buffer size can be smaller than the screen size. Also, since the buffer is

not direcdy mapped to the physical size or location of the display, the buffer can be

arranged flexibly to accommodate various sizes of objects. For example, a 10 K pixels

buffer can be used to hold objects of various sizes, such as 100x100 object, 200x50,

500x20, etc. There are no presumptions about the shape of video objects, as long as the

size of the video object can be fit into the buffer. If some video object is larger than one

single buffer can hold, the video object can besplit upand stored indifferent stages. Also,

if a system needs to composite many small video objects, it can process several nonover-

lapping objectsin a single stage.

5.4.3 A modified approach to avoid presorting

The compositing algorithm described in the previous section has some limitations.

Apparently, the multiple objects in equation (5-2), (5-3), and (5-4) must be sorted

according to the priority value (z) in advance in order to be performed correctly. When we
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modularize the compositing function into the pipelined architecture, we also assume that

all the video objects are sorted inadvance. The reason why compositing order must con

form to the object priorities is that the composited pixels are the sum ofpixels oftwo input

video objects. Once two objects are composited, it is hard to insert the third object

between them because the pixel data from each single object are lost, and only the com

posited pixel data are available. Sorting the video objects in advance prohibits the possi

bility of inserting the third video object into any two composited objects.

Presorting video objects, however, isnot preferable. First of all, it isexpensive. To sort

video objects by priority is possible (with a self-routing network for example) but would

require more processing than to composite them, and to son the objects would limit the

ability of this architecture to change objects' priorities or dynamically add new objects.

Secondly, when the compositing isperformed distributed over the network, the presorting

problem becomes even more serious. Every time the object priority changes, the network

connections must be closed, the compositing function mapping on the network must be

redone, and then the new connections must be re-established according tothe mapping.

One brute force method toavoid sorting video objects bypriority is tohave each pipe

line stage pass both its composited result and also its local video signal to the next stage.

The local object information can be used in later stages toundo the compositing if avideo

object at a later stage is found to have a priority value between that of the composited

pixel and the local pixel. However, this solution requires that the number of video objects

passed down the pipeline becomes larger further down the pipeline. The complexity of

systems based on this method would increase rapidly with the number of video objects to

be composited. This solution increases the compositing processing load of the down

stream pipeline stages, which might result in the need to undo several compositings and

then do several compositings again to derive a correct result. The extreme case of this

solution is that all the video objects are passed to the last stage which does all of the com

positing itself.
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Fig. 5-6. Athree-object compositing stage.

The solution we propose is a three-object compositing algorithm — in each pipeline

stagewe composite a foreground, background, and local object. As shown in Fig. 5-6, we

pass two raster scan streams down the pipeline instead of one. The two streams passed

down consist of video objects with the two highest priorities. The one with largest z is

called the foreground stream and the one with second largest z is called the background

stream; these two are notcomposited together until the last pipeline stage. At the pipeline

stage, thecompositing processor compares the priority of the local object with the priori

ties of the foreground and background streams. If a pipeline stage's local object has a

lower z value than both the foreground and background streams, then the local object is

discarded. If a local object's z value is between those of the foreground and background

streams, then the background objectis replaced with the local object. If a local object's z

value is higher than those of the foreground and background objects, then the background

object is replaced with the foreground object and the foreground is replaced with the local

object. At the last stage, the final display result is derived by combining the background

stream into the foreground.

This solution changes the algorithm described in equation (5-2) to (5-4) somewhat.

Previously we assumed that anycombination of AT overlapping videoobjects was compos

ited with the same linear equation. With the three-object compositing method we assume

that for anynumber K overlapping objects, thelinear function for compositing theobjects

only gives non-zero weight to the two objects with highest priorities. We have simulated
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both the original algorithm and three-object compositing algorithms and have found that

images produced with the modified algorithm are perceptually indistinguishable from

images composited with the original algorithm. In fact, only the few pbcels that lie on the

crossing points of the boundaries of three or more video objects give different results from

the two algorithms.

To simplify the design, the parameters passing between pipeline stages are notthe final

pixel and a values. Instead, we define several parameters as:

r = V O.X.P.
A* J J J
j*h

With these definitions, the equations for each pipeline stage are:
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Using the foreground and background objects, the final display result can be derived at

the last stage of the pipeline using the following equation:
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fg, out bg, out

out (5-16)
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The implementation of equation (5-8) to (5-15) is much more efficient than using

direct implementation as shown inthe 2-object compositing case in the last section. Using

the direct implementation in the last section, even the 2-object compositing requires at

least 5 multiplications, 5 additions, and 1division inevery stage. With theoptimization in

the parameters passed between stages, a stage can be implemented in 3 multiplications, 5

additions, and nodivision. The only division operation is in the last stage where the fore

ground and background objects are combined. This reduces the implementation com

plexity considerably in the pipeline stages. Also, equation (5-14) is actually notnecessary

because only the two highest priority objects are kept. This is reflected by the fact that

a'bg, out does not snow UP in equation (5-16). One more thing to note is that even though

the priority value t isaper-object based parameter, it becomes a per-pbcel based parameter

and mustbe passed from stage to stage because both the foreground and background result

includes pixels from objects of different priorities. The cost is the extra channel required

between the stages. The size of the memory buffer of the pipeline stage is not affected

because the priority value of the local video object is still per-object based.

5.5 Conclusion

In this chapter, wedescribe the design detail of avideo compositing platform - Video-

Station that supports real time compositing for structured video. We first reviewed the bot

tlenecks for the implementation with today's technology. There are mainly two of these

bottlenecks — the memory bandwidth and the processing capability bottlenecks. Today's

memory devices advance every year mainly incapacity rather than in speed orbandwidth.

This does not help to provide the high memory bandwidth that is required by most video

applications. On the contrary, it actually makes the problem more serious because alarger

size of memory is put into a package that has the same limited bandwidth. It is very

common in traditional graphics display to use multiple memory chips in parallel to pro

vide sufficient bandwidth. This approach is less efficient with the larger size memories.

With full motion video, the memory bandwidth is much more critical than the graphics
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bandwidth because the full motion video requires balanced read/write access to the frame

buffer. A traditional frame buffer using vertical/horizontal retrace for write update is not

enough for full motion videoupdate. With the increase in the number of objects involved

in compositing, the write update bandwidth needed may even be higher than the read

operation. The display processor used by traditional graphic stations isalso not well suited

for full motion video display. Most display processors today optimize some specific oper

ations, such as bitblt operations. More advanced processors enhance the performance by

providing a pipeline of various functions, such as transformation, clipping, etc. This

approach can only enhance the processing capability to some extent. The architecture is

notexpansible to accommodate more objects when the number of objects increases.

We propose a pipeline architecture for the VideoStation. The basic idea is to get rid of

the single frame buffer so that there is no more fix mapping between the memory address

and the display physical location. The advantage of this is to provide more flexible map

ping between the memory address and the display, thus making the frame buffer usage

more efficient. The translations such as bitblt can beperformed on the fly without any dif

ficulties. It also allows a much easier method of expansion to accommodate more video

objects. The buffer memory required at each stage need not to be as large as the whole

frame buffer. Instead, the buffer memory needs only to be large enough to hold the local

video object. To avoid the presorting requirement in the compositing, we also proposed a

3-object compositing mechanism which does not perform the actual compositing until the

last stage. The function of each pipeline stage is to select the two highest priority objects

and pass down to the next stage. With this 3-object compositing, any dynamic changing of

priority values can be done without difficulties. By choosing proper parameters passing

between the stages, we also make the operations in each pipeline stage as simple as pos

sible. As compared with direct implementation, which requires division operations in

every stage, theoptimized approach pushes the division to the last stage. All the restof the

stages need only addition/multiplication, and some simple logic operations.
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CHAPTER 6

VIDEOSTATION PROTOTYPE

We have designed a prototype of the VideoStation architecture, to understand better its

hardware complexity and to demonstrate the implementation ofthe structured video algo

rithms. In this chapter, we discuss the prototypes that we have implemented. We also study

various implementation alternatives available today for real-time video applications.

There are two basic ways for full-motion real-time video implementations. One is to use

programmable video signal processors with software coding. The other is to use fully

custom design hardware. We will discuss both approaches in this chapter.

Programmable video signal processors have advantages of more flexibility in design,

fast prototyping, easy debugging, easy modification, etc. There are currendy some video

signal processors available for real-time video processing[72][73][75]. Most of them are

designed for some specific applications, especially video compression algorithms. For

example, Integrated Information Technology (UT) developed aVCP chip[72] for discrete

cosine transformation (DCT) based video compression/decompression. NEC also devel

oped a VSP chip[73] for motion compensation. Among these, the programmable video

signal processor(VSP)[75][76] produced by Philip is aimed for general purpose video

signal processing. It uses an architecture that allows parallel processors to expand the pro-
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cessing capability ofthe chips. We have designed aprototype ofVideoStation using the

Philip VSP processor. The prototype uses 8VSP chips to implement one pipeline stage of

VideoStation. In this chapter, we will describe the Philip VSP processor in detail, then we

describe the implementation ofVideoStation using the Philip VSP. Through our design,

we also discuss the strength and weakness of the Philip VSP chip and possible improve

ment of the Philip VSP as ageneral purpose video signal processor.

The fully custom hardware design is possible with the aid of today's VLSI computer

aided design (CAD) tools. We have designed an application specific integrated circuit

(ASIC) for the core of the VideoStation. The chip is designed with Berkeley LagerlV

CAD tools using 1.6 ujn CMOS technology. In this approach, the function of 8VSPs and

many control and glue logics used in the previous approach is put into one single ASIC

chip. This reduces the system complexity alot.

The organization of this chapter is as follows. We describe the system perspective of

the prototype system in the first section. In the second section, the programmable

approach of our implementation isdescribed. The third section shows our implementation

using the ASIC approaches. In the last section, we give abrief conclusion.

6.1 System Perspective

In this section, we describe the system aspects of the VideoStation prototype. The pro

totype uses the pipeline architecture shown in Fig. 5-3 with each pipeline stage per

forming the 3-object video compositing operations described in Fig. 5-6 and equation (5-

5) through (5-15). A schematic of the VideoStation hardware is shown in figure 6-1. The

'VideoStation consists of two different pipeline stages. One is the graphic stage for an-iso

chronous video objects, the other is the real-time video stage for isochronous video

objects. Figure 6-1 shows a VideoStation with one graphic stage and two video stages.

The number of graphics and realtime video stages is determined by the number ofgraphic

and realtime video objects to be composited. More pinepline stages can be easily inserted
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Fig. 6-1. System Diagram of the VideoStation system.

inthe pipeline architecture to support more video objects. All the pipeline stages are con

nected toamaster computer through aVME bus for control purpose. In the following, we

will describe the graphic stage, the realtime video stages and the control, separately.

6.1.1 Graphic Stages

The first stage inFig. 6-1 isa graphic stage that holds all an-isochronous video objects

such as text and graphics video objects. The graphic stage performs two functions. As the

first stage in the pipeline, it generates the video synchrnization clock signals and provide it

for use of the subsequent stages. Secondly, it performs the compositing operations of all

an-isochronous graphic and text objects according to the 3-object compositing algorithm

to generate the foreground and background objects to be passed down the pipeline stages.

An-isochronous video objects, by definition, have no hard time limit on when they

must be shown on the display. Also they usually change only very infrequendy. There

fore, the memory bandwidth and the compositing processing requirements are very low.

One frame buffer with a single CPU is usually sufficient to handle all the graphics and

texts shown on the display inone stage. The video compositing operations can all bed- »v

through software by the CPU. This isexacdy the way implmented in today's workstation
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to handle graphics and texts. In case the number ofgraphic objects become over the capa

bility of the single frame buffer and the single CPU, itis still possible to add more graphic

stages with frame buffer and CPU into the pipeline architecture to increase the bandwidth

and the processing capability.

The implementation of the graphic stage isquite similar tothe traditional frame buffer

display. The difference is that the output of the frame buffer isnot acompletely compos

ited video stream. Instead, it generates the foreground and background video object com

ponents as required by the 3-object compositing algorithm. To do this, the single frame

buffer is modified into two frame buffers toaccomodate both foreground and background

video objects. Each frame buffer stores four components of video objects: the pixel value

p, the a value, the priority value z, and the transparent value x. The frame buffer is

updated using the3-object compositing algorithm described inthelast chapter by theCPU

inthe SUN workstation through the VME bus. The frame buffer update can be done asyn

chronously. The output of the frame buffer, however, is read out synchronously at the 27

MHz clock rate. The video synchronization signals such as vertical and horizontal blanks

and headers are embeded in the foreground video stream following the CCIR 601 video

format byadisplay processor. The detailed diagram of a graphic stage is shown in Fig. 6-

2.

6.1.2 Isochronous object stage

The second type of pipeline stage is for isochronous video objects. For isochronous

video objects, the compositing operations are performed in real-time at 30 frames per

second. A functional diagram of the isochronous object stage is shown in Fig. 6-3. In iso

chronous stages, the local object is composited with the foreground and background video

objects in a synchronous sense that objects can beupdated only between the frame period

of 1/30 second. In order tokeep this synchronization, frame sync control signals are gen

erated from the foreground pixel stream in the compositing processor block. Also,a FIFO

is used to buffer the local object from the input such that it can be synchronized with the
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recovered frame sync control signals. A double buffer (VRAMs) scheme is used in this

design such that when one VRAM is storing the data from the FIFO, the other one can

output the data into the compositing processor. In this design, , the isochronous object

stage can only support one video object from the input to be composited with the fore

ground and background video stream. To allow multiple objects per stage, amore compli-

cated control and memory management is needed.

All the compositing operations are performed in the video compositing processor

(VCP) block. The detailed block diagram of the VCP is shown in Fig. 6-4. It consists of
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several blocks: acompositing computation block, a frame syncsignals generation block, a

compare and control logic block, a finite finite state machine (FSM), a memory module,

and some registers. The compositing computation block performs all the compositing cal

culations over the foreground and background input video streams according to the equa

tions shown in (5-5) through (5-15). The frame sync signals generation block generates

the video frame synchronization signals such as start of frame signal, start of vertical

blank signal and start of horizontal signal from the foreground video stream. It also gener

ates the current raster scan location address for use in the compare & control logic block.

The compare & control logic block uses thecurrent raster scan location and other compos

iting parameters, together with the parameters of the local video object to generate the

control signals to instruct the compositing computation block to perform proper calcula

tion. The finite state machine coordinates the operations among all the blocks in the VCP.

In addition, it also coordinates the read/write operations between the FIFO, the two

VRAMs, and VME bus interface.

Our portotype design effort emphasizes on the isochronous object stage. In implemen

tation, the VME bus arbitration and VRAM interface is handled with one Xilinix 6400-
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gate field-programmable logic device (FPLD) per stage. The VCP is a more complicated

pan. We have two alternatives for the implementation of the compositing processors in

pipeline stage. One is to use the programmable video signal processors, the other is to

design a application specific integrated circuit (ASIC). Both methods are able to provide

real time video compositing cjapability. A detailed description of both implementations

will be described in later sections.

6.1.3 Control

All the pipeline stages are connected and controlled by a Sun workstation through a

VME bus. The main function of the Sun workstation is to keep track and update the com

positing parameters of every video objects, such as the object size, localtion, priority, and

transparency. The Sun workstation also provide users with an interface to interactively

change the way the compositing is performed, such as to move avideo object, to modify

video objects' compositing parameters z and x. Once arequest is sent to the Sun worksta

tion, it will update the parameters through the VME bus accordingly.

Note that the Sun workstation is performing real-time control operations over all the

pipeline stages. Allread/modify operations of the compositing parameters should be per

formed in every 1/30 second. Except these real-time control operation, the Sun worksta

tion does not perform any real-time compositing operation. The VME bus does not send

any of the real-time video objects pixels either. Under this condition, a single CPU with a

VME bus is sufficient for all the operations. In the case of graphic stages that use the Sun

workstation as the compositing engine, the Sun workstation loads all the graphics and text

pixels according to the compositing algorithm through the VME bus into the graphic

stage. Since these are none real-time oeprations, these oeprations can be given alower pri

ority than the real-time control such that all the real-time control operations are done in

time.
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6.2 Compositing processor implementation with programmable VSP

Use of programmable video signal processors (VSP) have several advantages. From

the design perspective, it provides an easier way to implement an experimental system. It

is easy to debug and modify the programmed algorithms. The design time is also much

shorter. The disadvnatage is less flexibility in the design, more glue logic, less compact,

and higher cost as compared with a full customed designed hardware orapplication spe

cific integrated circuit (ASIC) chip. From the processing capability perspective, a pro

grammable processor is more efficient in the implementation of complicated, control

intensive algorithms. A staightforward discrete transformation algorithm, for example,

may be implemented efficiendy with an ASIC as well as a programmable chip. A very

complicated control algorithm, however, can be programmed in a programmable pro

cessor mucheasier than in ASIC design.

6.2.1 Programmable VSP overview

Today, there are basically two classes of programmable processors available for video

signal processing. One class is designed for some pre-specified applications. The other is

for general purpose video signal processing. For example, ITTs VCP chip[72l isdesigned

for discrete cosine based video compresion algorithms. The NEC's VSP chip[73l is for

motion compensation purpose. These processors fall in the first class. With pre-specified

applications, the processors are optimized to the applications by providing modules spe

cific for the applications. For example, the IIT VCP chip has modules for Huffman

decoding/encoding. The processor architecture is also designed such that some functions

are most easily mapped into the processor.

The processors in the second class support general purpose video signal processing.

They can only beoptimized according to the general characteristics of video signals. For

example, all video streams consume a lot of bandwidth, and need a lot of processing

power. They can usually be parallelized veryeasily because of the large arrays of pixels in

each frame. Therefore the processors in this class can bedesigned using heavily parallized
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architecture to provide the required bandwidth and processing capability. Some generic

functions are needed for any video signal processing, such as the frame data collection,

frame sync recovery, etc.These functions can also be putintothevideosignal processor to

ease the use of the processor. The Philip's VSP chip[75][76] falls into this category.

Whether a particular processor is good ornotdepends a loton the application to beimple

mented on the processor. In our implementation we choose Philip's VSP, which we will

describe in the next section.

6.2.2 Philips architecture.

The Philip VSP chip[75][76] is an all digital, general purpose programmable processor

chip designed for real-time video signal processing. A VSP chip contains anumber of pro

cessing elements that operate in parallal. A complete VSP system can contain many of

such chips. The architecture of the VSP architecture is shown in Fig. 6-5. The Philips

VSP chip consists of several basic components: 3 arithmetic and logic elements (ALEs)

and 2 memory elements (MEs), 5 output buffers(OBs), 5 input pons (12 bit wide each),

and 5 output pons. The ALEs performs generic arithemetic and logic operations such as

addition, substraction, multiplication, and, or, and compare operations. The MEs are

memory modules of size 512 words by 12 bits. They are mainly used to provide the table
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Fig. 6-6. Block diagram of (a) arithmetic and logic element (ALE)
and (b) memory element (ME).
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look upcapability and to implement large number of delays that OBs cannot suppon. The

OBs maintain a variable delay to synchronize thedata at theoutput ports. A detailed dia

gram of the ALEs and MEs is shown in Fig. 6-6.

The whole chip is fully pipelined at a clock rate of 27 MHz. The ALEs and the OBs

can read in data and generate new data at the full clock rate. The MEs can also read or

write data at the clock rate. Each of the ALEs, MEs, and OBs has a program memory

module associate it such that it knows which operation to perform. The inputs pons and

the outputs of the ALEs and MEs are fully connected through a programmable cross bar

switch such that the output of any of ALEs and MEs can be routed to any input of them

selves, or to the 5 OBs. The overall architecture provides a very high processing and I/O

rate— up to 135MIPS, 135 M samples input and 135 M sample outputs. This cross-bar

switch architecture also make it very easy to integrate multiple VSP chips parallely on the

same task.

Programming the VSPs requires first mapping thevideoalgorithm intoa synchronous

signal flow graphs (called soft draw) with blocks of basic operations supported by the

ALEs and MEs. Each block in the flow graph runs at a constant clock period which is a
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multiple of 27 MHz clock period. That is, each block runs at 27 MHz, 13.5 MHz, 6.75

MHz, etc. Once the signal flow graph is available, the graphic can be panitioned and allo

cated to each of the processing components. The signal flow graph generation, partition,

and resource allocation are done manually. The programmer must assure the task assigned

toone processing component does notexceedthe processing capability of that component.

When multiple VSP chips are used, the programmer also specify the connections between

the VSPs in a hardware connection graph (called hard draw), and assign tasks to each

VSP chip manually. An example softdraw and hard draw graph is shown in Fig. 6-7.

Once the partition and allocation is done, an automatic scheduler is available to

schedule the partitioned result into the the instruction programs of the processing compo

nents. The scheduler works outthe correct timing of the input/output data streams among

all processing components. The automatic scheduler is a necessary tool to help the pro

grammer design a system within a reasonable time.

6.2.3 Implementation result and discussion

Following the design procedure described in the last section, weare able toimplement

the VCP using one VSP-8 board with 8VSP chips on the board. The hard draw in Fig. 6-

7(b) shows how the 8VSP chips are physically connected. The softdraw in Fig. 6-7(a) is

pan of the signal flow graph design for the VCP. A complete graph of the design of VCP is

shown in Appendix A.l and A.2. In this implementation, only pan of the VCP functions

are implemented with VSPs — mainly the compositing computation block and pan of the-

compare and control block. The function of the frame sync generation block, the finite

state machine, and the binary logic operations of the compare & control block are put out

side of the VSP chips for efficient use of the VSPresource. Using the VSPs to implement

the functions such as FSM and frame sync generation block will cost many VSP chips and

meanwhile waste a lot of resource on the VSP chip. Instead, most of these functions can

be implemented efficiently by using field-programmable logic devices (FPLD), such as

the Xilinx 6400 that we use for VRAM and VME bus interface control.
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Strengths

• The Philip VSPs are good for realizing computations that are represented

by an equation, e.g. filters. The multiple processing elements on the chip
and the capability of integrating multiple VSP chips provide a very high
processing power to satisfy the computation need of most realtime video

signal processing algorithms.

• The crossbar switch provides a very flexible way of connecting the multi

ple processing elements on the chip. It enables very efficient scheduling,
i.e., the resource utilization overhead due to scheduling is very low. Italso
eases the integration of multiple VSP chips.

• The VSP programming environment isreasonably easy to program. It pro
vides a graphic user interface to input soft draw and hard draws. The auto

matic scheduling tool is also efficient. This is far ahead of the IIT's VCP

chip, which relies totally onmanual scheduling.

Weaknesses

• The Philip's VSP is not designed for control purpose. It does not suppon
simple logic operations such as simple 1bit logic operations. We can use

the 12-bit wide ALEs to perform the simple logic operations, which how
ever wastes 11/12 of the resource.

• Conditional branch operations is not supported efficiently. Unlike tradi
tional FIR or IIR filtering algorithm, today's video algorithms uses condi
tional branch a lot. Examples are algorithms such as motion compensation

and conditional replenishment. The current synchronous signal flow graph
used by VSP cannot support conditional branch. Also, the VSP does not

allow multiple sets of programs stored inthe program memory and execute

only one branch of the program according to previous execution results.

Currently once the signal flow graph ismapped, all branches consume pro
cessing resource even though the branch should not beexecuted.
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• Cross-bar switch does not support data dependent switching. Datta depen

dent switching is possible at the cost of using ALEs as the switching ele

ment.

• The ALE and the ME does not have equivalent bandwidth capability. The

ALEs on the VSP consume and at the same time produce data at 27 MHz

clock rate. However, the memory elements can only read or write data at

the 27 MHz rate, but not read and write simultaneously. This prohibits the

VSP chip to become a real pipeline engine that can pump data in and outat

full clock rate. It also causes a lot of programming complexity when we

need to read/write at full clock rate. It is preferrable to have the MEs to

support 27 MHz bi-directional read/write operations, even though techni

cally it may be hard to designa memory module with 54 MHz rate.

• It is difficult to interface with interrupt driven modules. The VSP is a fully

synchronous engine which assumes constantclock rate data pumped in and

out all the time. This causes somedifficulty when it is to be integrated with

some asynchronous modules.

All the desired capabilities described above can be done in one way or another, how

ever, with very low resource utilization efficiency. That is, it may take many VSPs to

achieve with the current VSP capability. In essence, the Philip VSP processor is very

capable for computation portion (e.g., add, multiplication.) of the video compositing algo

rithm. However, it is less suitable to be used for control portion (e.g., conditional

branching, single bit binary logic, data dependeint switching, etc.) of the compositing

algortihm. Since our VCP compositing algorithm combines both computation and com

positing portion, the VSP isonly useful for pan of the algorithm.

Actually, mostof today's video algorithm consists of both computation portion and the

control portion, it is amust that a general purpose video signal processors suppon both. A

good example is the IITs VCP chip, which uses two separate modules on the chip —

video processor and video controller. The video processor provides computation capa

bility and the video controller provides the branching and control capabilities. [72]
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6.3 Compositing processor impiementation with ASIC

Full custom design IC chip allows most flexibility to optimize and reduce the com

plexity. However, it is more time consuming to design a chip from scratch. Fortunately,

today's VLSI computer aided design (CAD) tools are very powerful. They make the ASIC

design easier and more automatic. We have designed anapplication specific integrated cir

cuit (ASIC) for the VCP of the VideoStation. In this chip, the whole VCP block shown in

Fig. 6-4 was putinto a very compact IC chip. This is quite a tremendous difference when

compared with 8 VSPs and many glue logics in the previous approach to achieve the same

functionality.

6.3.1 Design environment

We have laid out and fabricated a video compositing processor chip using the Ber

keley's LagerlV tools[81 in 1.6 Jim CMOS technology. The Berkeley's Lager/V is a chip

design systemthatconsists of a setof layout generation toolsanda setof MOSIS SCMOS

cell libraries. The tools set includes a parameterized macrocell generator called TimLager,

a programmable logic arrary(PLA) generator called Plagen, a standard cell placementand

routing tool called Stdcell, a bit-slice data path macrocell generator called dpp, a general

purpose macrocell placement and routing tool called Flint, and other simulation tools.

This environement suffices a user to design a chip and generate and simulate the layout

automatically.

6.3.2 Design methodology

The design of thechip starts with defining the function of the chip,and comeout with

a functional diagram. A functional diagram of the VCP chip is shown in Fig. 6-8. In the

functional diagram, we mainly separate the chip into two blocks— the control block and

the computation data path block, as the way we analyzed our implementation of VCP

using VSP in the last section. The control block includes all the control related sub-blocks,

such as the finite state machine, thevideo frame sync signal generation, binary logics, etc.
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The computation data path block is a data path using the foreground and background

video input streams to generate the composited output video streams. The detailed design

of th two blocks are shown in Appendix B.l.

Thereason of separating theVCP chip into two blocks is because of thedifferent char

acteristics and requirements between the data path block and the control block. The data

path block performs operations over the incoming video samples running synchronously

at a very high speed of 27 MHz clock rate (in CCIR 601 format). The main operations are

switching, addition, multiplications, etc. On the other hand, the control blocks is much

morecomplicated in functionality. The speed of the control logic, however, may be much

lower than the data path block. It basically controls and coordinates operations of the

whole pipeline stage. It receives related informations from all the blocks in that stage,

including external blocks such as VME interface module, VRAM interface, and the FIFO,
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and generates signals to control andinstruct all the blocks to perform operations properly.

It interfaces with othermodulesin bothsynchronous and asynchronous way.

With these considerations, we are designing the chip using two different clock rate.

One running at the data pathclock rate of 27 MHz. The other runs at a much lower clock

rate of around 9 MHz. Fig. 6-8 shows the portion of the VCP chip that runs at the lower

clockrate in the black shading. The portion withoutthe shading are running atthe 27 MHz

clock rate.

Once the functional diagram is available, the second step of the design is to map the

functional diagram into available cells in the Lager cell libaray. An important consider

ation here is to choose an appropriate cell and an appropriate tool to generate the macro-

cells to satisfy the functional requirement andalsominimize the macrocell size. Here, we

use thedata path generator (dpp) and themacrocell tiling program (TimLager) to generate

most of the macrocells in the data path block. Forthe control block, we are using various

tools. We use the PLA generator (Plagen) to generate the finite state machine and one of

the combinational logic macrocells (The functional description of the finite state machine

and the the comnibational logic cells are shown in Appendix B.2 and B.3.) We also use the

standard cell libaray and TimLager to generate the rest of the macrocells. Once the cells

are generated, they are connected together by using Flint as the placement and routing

tool.

In addition to using the Lager IV tools directly, we also need to redesign some of the

macrocells in the library to satisfy the speed requirement of the data path block. This is

done by putting some pipeline latches into the macrocells such that the delay between

latches is lower than theoriginal macrocells, and can therefore run ata higher clockrate.

Making macrocells pipelined is easy for some macrocells anddifficult for others. For

example, it is easy to make the macrocells generated by the data path generator (dpp)

pipelined because the dpp allows the user to specify how to insert the pipeline latch to
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meet the requirement. Other macrocells, such as those generated by TimLager, may not

allow users to put in the pipeline latches at will. For these macrocells, we need to rewrite

the macrocell tiling program to make them pipelined and run at higher clock rate. An

example is the array multiplier macrocell generated by the TimLager. In the design of the

VCP, we created a new array multiplier macrocell thatcan be pipelined at every three bit-

slice to make it run at the 27 MHz clock rate without any problem.

There are also macrocells that is extremely difficult to modify to become pipelined.

The finite state machine macrocells generated by the PLA generator is an example. For

these macrocells, we have no easy way to enhance the speed. Fortunately most of these

macrocells are used for control purpose, and can actually be run at a lower rate than the

data path clock rate through a careful design. After recognizing this fact, we chooseto use

2 different clock rate for different macrocells such that most of the macrocells arerunning

at a lowerclock rate. Only those macrocells in the data path block runat the 27 MHz rate.

Through this, we can avoid the requirement to modify many macrocells to be pipelined.

6.3.3 Simulation, fabrication and testing

The simulationof the chip is done by using the simulation tools provided in LagerlV.

The tools we use are Thor, irsim andspice. Thor is used for simulation from gate level to

behavior level. The irsim is used to perform switch level simulations. It can simulate the

circuit extracted from the actual layout, and perform timing simulation to gurantee the

correct function of the layout. The spice is used to perform more accurate timing simula

tion. The simulation time limits the use of these three different simulation tools. The

higher level simulation tools, such as the Thor, can be run at a reasonable speed to simula

tion the whole chip without any problem. Spice simulator, however, takesa very longtime

for large circuits. It canonly be used to simulate the timing of some critical path. Irsim, as

a switching level simulator between Thor and spice, runs in reasonable time to simulate

large macrocells. It is possible to use irsim to simulate the whole chip. However, it takes

quite a long time to finish the job. In ourdesign process, we did use irsim to simulate the
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behavior of thewhole chip to gurantee thecorrect functionality of thechip before the chip

is sent out for fabrication.

For easy testing, we also incorporate some testing circuit into the chip design. We use

scan register to implement the output of most critical macrocells such that the resultof the

macrocells can be easily shifted out serially through the scan path. Since we run the chip

attwoclockrates, we have two separate scanning paths for thecomponents running at dif

ferent rates. The two scanning paths are shown in Appendix B.4.

The final layout of theVCPchip has adie sizeof 12.1 x 12.1 mm. Itcontains 20698 n-

channel transistors and 18529 p-channel transistors. The power consumption is about 1.3

wattaccording to rough calculation by using the total capacitances. The designed chip has

a very large number of input/output signals, and uses a 208 pins PGA package. (See

Appendix B.5 for pin assignment.) This large pin number makes the total die size so large.

Without counting the I/O pads, the actual die size of the active circuit is actually only a

little bit more than half of the current size.

Once we finished the design, layout and simulation, the chip was sent to the Asahi

Chemical Co. in Japan for fabrication and testing. It was fabricated and passed the testing

at 27 MHz clock rate using the test vectors that we provide. After the chip is fabricated,

we also designed a board for the complete pipeline stage using the fabricated chip. More

detail about this board can be found in [251.

6.4 Conclusion

We have implemented the VideoStation video compositing processor to demonstrate

the feasibility of real-time video compositing for structured video. We use two different

approaches in this chapter — the programmable video signal approach and the ASIC

design approach. Basically the programmable video signal approach provides a faster

solution for prototyping and an easier way of debugging and redesign. It is most suitable

for lab experimental prototype implementation. In this approach, the designers are bound
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with the limited availability of today's programmable processors and the built-in architec

ture of the video processor. When the capability or the architecture of the processor does

not fully fit the requirement of the specific application, some glue logic may be needed

and theimplementation costand complexity may beincreased.

The ASIC design approach provides a direct way of implementation of the prototype.

The designer has more flexibility todesign the whole circuit from higher level architecture

to thelow level layout. The final design can becompact and simple and cheaper when pro

duced massively. However, the ASIC approach is much more difficult and time con

suming to design from scratch. It needs carefully design from functional design, layout,

simulation to testing. Today's VLSI CAD tools provide a way to ease the whole design

process a lot. Some of them even provide automatic layout generation from very high

level behavior description. Even with the various VLSI CAD tools available today, this

ASIC design approach is still much more complex than using the programmable signal

processor. In the future, the design complexitygap between the programmable signal pro

cessor and the VLSI ASIC can hopefully be reduced when more advanced VLSI CAD

tools become available.

Our implementation results show that programming with the Philip's VSP chip is not

quite an efficient way for implementing theVideoStation real-time compositing processor.

Using Philip's VSP chip, we need 8 VSP chips (on one VSP-8 board) to implement the

data path computation portion of the VCP block. To complete the whole VCP block, we

need to usemore control and glue logic to be integrated with theVSP-8 board. The result

is that we not only need to program theVSP processor, butalso need tocustom desgin the

external control and glue logic hardware. Under this situation, the easy prototyping advan

tage of the programmable signal processor is reduced dramatically. Usingthe ASIC design

approach, on theother hand, we are able to design the wholeVCP blockin one single chip

of 12.1 x 12.1 mm die size. This shows the dramatically advantage on the final design
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complexity of the ASIC design approach over the programmable signal processor

approach.

In this chapter, wealso discuss the general video signal processors available today. We

discussed the reason way the Philip's chip is not so much suitable for the real-time com

positing implementation. First, the Philip's VSP chip architecture is basically designed for

implementing the data intensive computations. Its capability of supporting control func

tions and conditional branching isqute weak. While inmostof today's video applications,

both computation and control functions are equally important. Our structured video com

positing algorithm shows this fact quite clearly. This makes the implementation using the

Philip's VSP chip not quite efficient. Secondly, even though the Philip's VSPisclaimed to

be designed for realtime video signal processing purpose, its design is basically for any

high speed signal processing. This "high speed signal processing" isonly one of the char

acteristics of any video signal processing algorithms. There are other generic characteris

tics of video processing algorithms that can be used to optimize the VSP design. For

example, most video signal processing requires frame sync restoration, frame delay imple

mentation, block based data structure processing, etc. All these appear a lot in many dif

ferent video algorithms, and should be supported efficiendy. A programmable signal

processor designed for video purpose should take these into consideration, and be opti

mized accordingly.
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CHAPTER 7

Conclusion

7.1 Summary of research result

Advanced video services is becoming possible with all the fundamental video sup

porting technologies getting mature. One missing technique to suppon advanced video

services is the real-time video compositing technique to allow real-time access and inte

gration ofvideo elements over the network. This thesis basically discuss various aspects of

real-time video compositing — from its high level video information structure to the low

level hardware implementation.

In this thesis, we first review the nature and characteristics of the advanced video ser

vices. Then we propose astructured video model to provide a framework to suppon effi

cient real-time video compositing for advanced video services. It essentially represents the

compositing video scene in a hierarchical tree structure while at the same time keeps all

the video elements logically separate over the network until the very last stage of video

compositing attheusers workstation. By doing this, the whole data structure is maintained
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in a very clean, structural way. All the video elements can also be kept in a very simple

form that can be most efficient for data compression, video material sharing and reuse.

This makes the network managementand the network resource utilization more efficient

The structured video model also allows instantly interactive control for real-time compos

iting of video information. The model also provides a way for efficient implementation of

thecompositing system. This is achieved through introducing the basic compositing func

tions for modular implementation and therestructuring capability of thecomposite object.

Based on this structured video model, we study the technologies thatactually support

therealization of the structured video model in chapter 4. In spatial compositing, we start

with Porter and Duff's anti-aliasing algorithm, extend it, andderive the compositingalgo

rithm of all the compositing functions that we defined in the structure video model. We

also study the implementation flexibility of the structured video model in allocating video

compositing functions to a distributed network environment The structured video can

provide a means for studying various possibilities of implementation, and provides as a

tool for its performance analysis and optimization. To do this, we explored the generic

structure of compositing functions and their useful properties suchasassociative, commu

tative, and distributive, which enable easy manipulations of thecompositing functions and

restructuring of the structured video representation of a video service and its associated

implementation.

In temporal compositing, we discuss two important synchronization issues — the

clockrate matching and themultiple object synchronization. In rate matching, we propose

to use a global timing clock for all thecomponents in a composite video object. It essen

tially uses separate channels for transmitting timing signals for global clock. With the

complexity of tree structure, it is difficult to use traditional methods such as slip buffering

or the buffer monitoring method to match theclock rates among all thecomponents. Since

the goal of structured video is to support real-time full motion video, it is best to use a

global clock to allow each component to run freely without other intervention. To main-
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tain the synchronization among multiple video objects, we usea simple mechanism to set

theorigin of the timebasis of all the components, and measure the delay of the links in the

composite object structure.

In chapter 5, we described the design detail of a video compositing platform - Video-

Station that supports real timecompositing display for structured video. We first reviewed

the implementation bottleneck with today's display technology. There are mainly two bot

denecks — the memory bandwidth and the processing capability botdenecks. To get

around of these botdenecks, we proposed a pipeline architecture for the VideoStation. It

uses a multiple parallel compositing modules on a pipeline data path to provide enough

processing capability and the memory bandwidth.The basic idea of this pipeline architec

ture is to avoid the traditional single frame bufferapproach so that there is no fix mapping

between thememory address and thedisplay physical location. The advantage of thisis to

provide more flexible mapping between the memory address andthe display, thusmaking

the memory usage more efficient. Some of the compositing operations, such as bitblt can

be performed easily and efficiendy with this pipeline architecture. The pipeline architec

turealsoallowsa much easier methodof expansion to accommodate morevideo objects.

To avoid the presorting requirement in the compositing, we proposed a 3-object com

positing mechanism which does not perform the actual compositing until the last stage.

The function of each pipeline stage is to select the two highest priority objects and pass

down to the next stage. With this 3-object compositing, any dynamic change of priority

values can be done withoutdifficulties. By choosing proper parameters passing between

the stages, we also make theoperations in each pipeline stage as simple as possible. Com

pared with direct implementation which requires division operations in every stage, the

optimized approach needsthe division only in the last stage. All the restof the stages need

only addition/multiplication, and somesimple logic operations.

In the last chapter, we present our prototype design of VideoStation in two different

approaches — the programmable video signal processing approach and the VLSI ASIC
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design approach. This basically compares the two most common implementation methods

used today for real-time video processing. Our results shows that the implementation

using the Philip's programmable video signal processor is not quite efficient for our real

time compositing algorithm of VideoStation. Using Philip's VSP chip, we need 8 VSP

chips (on one VSP-8 board) to implement the data path computation portion of the VCP

block. To complete the whole VCP block, we need to use more control and glue logic tobe

integrated with the VSP-8 board. Using the ASIC design approach, on the other hand, we

are able todesign the whole VCP block inone single chip of 12.1 x 12.1 mmdie size. This

shows the dramatic advantage on the final design complexity of the ASIC design approach

over the programmable signal processor approach.

There are several reasons why the Philip's chip is not quite suitable for the real-time

compositing implementation. First of all, the Philip's VSP chip architecture is basically

designed for implementing the data intensive computations. Its capability of supporting

control functions and conditional branching is quite weak. While in most of today's video

applications, both computation and control functions are equally important. Our structured

video compositing algorithm shows this fact quite clearly. This makes the implementation

using the Philip's VSP chip not quite efficient Secondly, even though the Philip's VSP is

claimed to be designed for real-time video signal processing purpose, it is actually

designed basically for any high speed signal processing. This "high speed signal pro

cessing" is actually only one characteristic of any video signal processing algorithms.

There are other generic characteristics of video processing algorithms that can be used to

optimize the VSP design. For example, most video signal processing requires frame sync

restoration, frame delay implementation, block based data structure processing, etc. All

these appear alot in many different video algorithms, and should be supported efficiently.

A programmable signal processor designed for video purpose should take these into con

sideration, and be optimized accordingly.
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7.2 Future Direction

We have followed a very straightforward thinking of real-time video compositing

issues of advanced video services — starting from the high level information structure to

thelow levelhardware implementation. Along this line, the extent that we covered is still

quitelimited. There are a lot more to pursue in the future. Here, we would like to point out

some major ones.

In the discussion of the structured videomodel, we pointed out the possibility of using

the model to optimize the network resource allocation in a distributive network environ

ment.We studied the properties of thecompositing function in the structured video model

to enable flexible resource allocation. However, we did not study how to achieve the opti

mization. The resource allocation algorithms using the restructuring capability of the

structured video model needto be further explored.

Along with the resource allocation optimization issue is the real-time scheduling issue

in video compositing. The temporal representation proposed in chapter 3 can be used as a

foundation for scheduling. However, the scheduling can actually be more involved

because structured video includes notonly limited life span videoobjects, but also unde

termined life span objects and interactive operations. It is sure that some kind of dynamic

scheduling scheme is needed. When the optimization considers both the resource alloca

tion in the spatial domain and the scheduling in the temporal domain, it becomes a very

challenging problem, and deserves further detailed studyin the future.

Once the scheduling and the resource allocation are done, another issue that needs to

be investigated is the distributive call model andits associative signalling andnegotiation

protocol for this allocated tree structure. The call model not only need to handle the initial

establishment and tear down of multi-point multi-media call connection, but also needs to

handle dynamic connection establishment during the run time. There are currendy many

activities in the ATM Forum on the signalling protocols for switched virtual connections

(SWC) over ATM network. The current standard adopted is one called Q.2931. This sig-
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nailing protocol, however, supports only point to point connections. It does not support

any multi-party multi-media connection in a call, not to mention the complicated tree

structure used in the structured video model. The call model and signalling protocol of the

structured video can be built based on the current Q.2931 standardand extend it. This will

basically satisfy the need of the structured video protocol issue.

Regarding VideoStation, we have designed and optimizedthe architecture withrespect

to a subset of compositing functions in the structured video model. Those compositing

functions includes over(), transparent, translation(), delayO, etc. There are many other

compositing functions described in chapter 3 thatare of interest for general video compos

iting applications. A more generic compositing processor implementing all these compos

iting functions need to be further studied.

In the pipeline architecture proposed, each pipeline stage can only support one isoch

ronous video objects disregarding how large the video object is. This is a waste of the

compositing resource considering the processing capability of each pipeline stage is far

beyond. A more flexible design to enable multiple isochronous video object compositing

in one pipeline stage is definitely another issue that need to be further pursued.
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Appendix A: Video compositing processor implementation with
Philip VSP

A.1 VSP-8 hardware connection graph(Hard Draw)

alpha_tau_0
alpha_tair_0

Fig. A-1. Hard draw: This graph specifies the hardware
connection between the 8 VSPs and input/output ports on the

VSP-8 board.



A.2 Video compositing algorithm signal flow graph (Soft Draw)
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Fig. A-2. Soft Draw: part(1). This signal graph read in the
compositing parameters and store in the memory, then use the

parameters to compare with current scanning location and

generate a control signal to read local pixel values from VRAM.
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Fig. A-3. Soft Draw: part(2). This signal graph read local video
object from VRAM and calculate the product pax and 1- a for use
in soft draw part(3) and part(4).
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Fig. A-4. Soft Draw: part(3). This signal flow graph perform
compositing calculation of foreground pixel, background pixel, and
foreground a vlue.
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Fig. A-5. Soft Draw: part(4). This signal flow graph perform
compositing calculation of foreground and background x, z
values.
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Appendix B: Video compositing processor implementation with
ASIC approach

B.1 Chip functional diagram
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Fig. B-3. Functional diagram of the data path block in Fig. B-1



B.2 VCP finite state machine block implementation

PresentSiatc<2>
Pre.sentState< 1>
PrcsemStaie<()>

vmcState<l>
vmeState<(>>

presentStatus<l>
presentSlatus<0>
objectReady<l>
objeciReady<()>

fifolimptv
passin

latchMatch
datapath
transRcq
vmcRW_
vmcDS.

vmeMODSEL
countcrDectl

counterDect2
reset

PHM.PHI2

Q

FSM

Fig. B-4. Finite state machine input/output graph.

MODEL fsm nextState<2:0>. ncxtVmcStatc<l:()>. counlerl-NA. countcrINC
ramWrite. rscU'ransReq. lifoRcad. registerl.D. nextStalus<l:0>.
nextObjectRcady<l:0>. passout. vmeACK. vmeERR.dsc.demux
=passin. presentState<2:0>. tlfoEpty. presentStatus< 1:0>.
counteract J. counterDecl2. latchMatch. datapath. transRcq.
objeciReady<l:()>. vmcRW. vmeDS. vmeMODSEL. reset.
vmeStatc< I :()>.

transRcq: vertical blank matched, request to load new parameters Irom
RAM into registers.
rsetTransReq: Used to reset TransRcq flip-flop
Status: 0: No unused parameters inRAM yet.

1: New parameters inRAM. not read byhost yet.
2: Parameters read by host, notmodified yet.
3: Parameters modified byhost, not loaded into registers yet.

ROUTINE cntl^en:
counterENA = 0.

nextStatus = prcscntStatus:
iiextOhjeclReady =«>hjcclReady:
nextVmcStaic = vmcStale:
rcgistcrLD = 0.
counterINC = 0:

ncxtState = nrcscntState;
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ncxtStaic<2>
ncxt.Staic<l>

ncxtStatc<(fc>
nexiVmeSiaie<l>
ncxtVmcStatc<()>

ncxtStatus<l>

nextStatus<<)>

nextOhjeciReady< I>
ncxtC)b jectReady<( )>
filoRead
rcgistcrl.D
counter! :NA
auimertNC
ramWritc
rsctTransRcq

jTassoui
vmeACK

"vmcERR
dsc

demux



ramWrite = 0;
fifoRead = 0;
demux = 0;

rsetTransReq = 0;
vmeACK =1;

vmeERR=l;
dsc = 0;

! objectReady signify the# of valid fields inVRAM. If only one or
! less valid field data inVRAM, the data from previous stages are
! passed direcdy to the next stage.
! Thepassout signal isused tocontrol aFlip Flop outside which is
! triggered by thevinv rising edge.
! Inthis way, the passin remains inasingle state (1 or0) during
I every fieldcycle.

passout = 1;

if (objectReady GTR 1) THEN passout =0;

! VME response loop. This finite state machine always response
! to the interrupt from VME bus first

if ((NOT vmeMODSEL AND(((presentStatus EQL 1)ANDvmeRW)
OR((presentStatus EQL2) ANDNOTvmeRW)))OR( vmeState NEQ 0)) THEN

BEGIN

select vmeState FROM

[0): BEGIN
counterENA = 1;
nextVmeState = 1;
END;

[1]: BEGIN
IF vmeDS THEN nextVmeState = 1 ELSE

BEGIN

IF vmeRW THEN

BEGIN

vmeACK = 0;
nextVmeState = 2;

END

ELSE

BEGIN

ramWrite = 1;

vmeACK = 0;

nextVmeState = 3;

END;
END;

END;
[2]: BEGIN

vmeACK = 0;

IF NOT vmeDS THEN nextVmeState = 2

ELSE

BEGIN

vmeACK = 1;

IF countcrDect2 THEN

BEGIN

nextStatus = 2:

nextVmeState = 0:

counterENA= 1;
END
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ELSE

BEGIN

counterINC = 1;
nextVmeState = 1;

END;
END;

END;
[3]: BEGIN

vmeACK = 0,

IF NOT vmeDS THEN nextVmeState = 3
ELSE

BEGIN

vmeACK= l;

IFcounterDectlTHEN
BEGIN

nextStatus = 3;
nextVmeState = 0;
counterENA = 1;
END

ELSE

END;
END;

BEGIN

counterINC = 1;
nextVmeState s 1;
END;

ENDSELECT;
END

ELSE

! Starting tofetch input from FIFO, and put put to VRAM or RAM,
I dependingon the headermatched ornot

BEGIN

IFNOTvmeMODSEL THEN vmeERR =0;
SELECT presentState FROM

! This state is astate when the frontend input latch is empty.
! Fetches data from FIFO ifitis not empty. Wait if FIFO is empty.

fl): BEGIN

! Loading parameters from RAM into registers, ifthe parameters is
! already modified bythe host, and the transReq flag isset.

IFtransReq AND(presentStatus EQL3)THEN
BEGIN

counterENA = 1;
nextState = 2;
END

ELSE

BEGIN

IF fifoEPTY THEN nextState = 1 ELSE
BEGIN

fifoRead = l;
nextState = 4;
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END;
END;

END;

[2]: BEGIN
! Load the parameter into registers
! Here, assume that countercan be accessand
! incrememted at the same time.

IF counterDectl THEN
BEGIN

rsetTransReq= 1;
nextStatus = 0;

nextState = I;
counterENA = 1;
END

ELSE

BEGIN

registerLD= 1;
counterINC = 1;
nextState = 2;
END;

END;
[3]: BEGIN

IF counterDectl THEN
BEGIN

rsetTransReq = 1;
nextStatus = 0;
nextState = 4;
counterENA = 1;
END

ELSE

END;
f4): BEGIN

BEGIN

registerLD= 1;
counterINC = 1;
nextState = 3;
END;

! Sendto the datapath,and at thesame timefetch
! from FIFO.

LF transReq AND (presentStatus EQL 3 )THEN
BEGIN

counterENA = 1;
nextState = 3;
END

ELSE

BEGIN

IF latchMatch THEN
BEGIN

IF ((presentStatus NEQ0) OR
((passin EQL 1) AND(objectReady
EQL 2))) THEN
! Wait until thepreviousparameters
! are modified and consumed.

! Also wait until the VRAM are switched
! to vacate a VRAM.

nextState = 7



ELSE

BEGIN

SELECT objectReady FROM
[0]: ncxiObjcciReady = 1;
[1]: nextObjectReady = 2;
[2]: nextObjectReady = 2;

ENDSELECT;
counterENA= 1;

IF fifoEPTY THEN nextState = 5 ELSE
BEGIN

fifoRead=l;

nextState = 6;

END;
END;

END

ELSE

BEGIN

IF datapath THEN
BEGIN

dsc= 1;

IF fifoEPTY THEN nextState = 1 ELSE
BEGIN

fifoRead=l;
nextState = 4;

END;
END

ELSE nextState = 4;
END;

END;
END;

[5]: BEGIN
I Load an item from FIFO

IF fifoEPTY THEN nextState = 5 ELSE
BEGIN

fifoRcad=l;
nextState = 6;
END:

END;

[6]: BEGIN

IF counterDect2 THEN
BEGIN

nextStatus & l;

IF datapath THEN
BEGIN

dsc=l;

IF fifoEPTY THEN nextState = 1 ELSE
BEGIN

fifoRead = 1;

nextState = 4;
END:

END

ELSE nextState = 4;
counterENA = 1;
END

ELSE

BEGIN
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counterINC = 1;
dcmux = 1;

ramWrite = 1;

IF fifoEPTY THEN nextState = 5 ELSE
BEGIN

fifoRead=l;
nextState = 6;

END;
END;

END;

17]: BEGIN
!Wait until parameters are written into registers

IF ((presentStatus EQL 1)OR(presentStatus EQL 2)OR
((presentStatus EQL 3) ANDNOTtransReq) OR
((presentStatus EQL 0) AND(passin EQL1)AND
(objectReady EQL 2))) THEN

nextState = 7

ELSE

! Start transfer theparameters into register.
IF ( presentStatus EQL3 )THEN

BEGIN

counterENA = 1;
nextState = 3;
END

! Allow to read new parameters
ELSE

BEGIN

SELECT objectReadyFROM
[0]: nextObjectReady = 1;
jlj: nextObjectReady =2;
[2]: nextObjectReady = 2;

ENDSELECT;
counterENA = 1;
IF fifoEPTY THEN nextState = 5 ELSE

BEGIN

fifoRead=l;
nextState = 6;

END;
END;

END:

ENDSELECT;
END;

if RESET THEN
BEGIN

passout = 1;

counterENA si;
nextStatus = 0;
nextObjectReady=0;
nextState = 1;
nextVmeState = 0;
registerLD = 0;
counterINC = 0;
ramWrite = 0;
fifoRead = 0;
demux = 0;

rsetTransReq= 0;
vmeACK = I;
vmeERR=l;
dsc = 0;
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END;
ENDROUTINE;

ENDMODELfsm;

170



171

B.3 VCP combinational logic block implementation

MODEL combjog

SC,B_SEL13.B_SEL45.B_SEL1345.B_SEL2,F_SEL13.F SEL2.SEL Y
=FLAG. CONSISTENCY. ALPHAl. ALPHAO. F.ALPHA1U F.ALPHAIM, FGE, FEQ. BGE.
BEQ, ulx. uly, Inc. Iry, bulx, buly, blrx, blry, pass, y_uv;

ROUTINElogic_gen;
STATE F_l, F.2. F.3, B_l,B_2. B_3. B_4, B_5, PRESENCE, range, FGT.

BGT, FLS, BLS, F.ALPHA1;
F.ALPHA1 =F.ALPHA1L ANDF.ALPHAIM;
SC=ulxANDulyANDlrxANDIry;
FGT « FGE AND (NOT FEQ);
BGT=BGEAND(NOTBEQ);
FLS = NOT FGE;
BLS = NOT BGE;
range =SCANDbulx ANDbulyAND blrx ANDblry;
PRESENCE =range AND (NOT pass) AND (NOT ALPHAO) AND

(NOT ((NOT y.uv) AND(NOT FLAG) AND
CONSISTENCY));

F.l = FLS AND PRESENCE;
F.2 a FEQAND PRESENCE;
F_3»(NOT PRESENCE) OR FGT;
B.l =(FGT OR(FEQ AND ALPHAl AND (NOT F ALPHAl))) AND BLSAND

PRESENCE;
B.2 =BEQ AND ( FGT OR( FEQ AND ALPHAl AND (NOT F ALPHAl))) AND

PRESENCE;
B.3 =(NOT PRESENCE) ORBGT OR(FEQ AND (NOT ALPHAl) AND (NOT

F.ALPHA1));
B.4 * FEQ ANDALPHAl ANDF.ALPHAl ANDPRESENCE;
B^5 =(FLSOR (FEQ AND (NOT ALPHAl) AND F ALPHAl)) AND

PRESENCE;
F_SEL13= NOTF 3;
F_SEL2 = F_2;
B.SEL13=i l;
B.SEL45 = B.4;
B.SEL1345 =NOT (B.4 OR B 5);
B.SEL2 = B_2;
SEL_Y = y_uv;

ENDROUTINE;
ENDMODEL;
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B.4 VCP scanning register path for testing

♦ PHIlF,PHI2Fpath:

SCANTNF -> VRAM.IN.PDCEL (0:7) -> L.ALPHA (0:2) -> VRAM.IN.ALPHA (0:3 ) ->
TAU (0:3) -> L.ALPHA(3) -> BLANK (0:1)-> L.TAU(0:6) -> ALPHAO (0) -> BLANK (0:2) ->
L.PDCEL (0:10 )-> L.X (6:10) -> L.X ( 0:5) -> L Y (4:8 ) -> L Y ( 0:3 ) -> FIN ( 0:3 )-> BIN (0:3 ) ->
PRI (0:3 ) -> SC.O -> B.SEL13.0 -> BLANK -> B.SEL1345.0 -> B.SEL2.0-> F.SEL13.0 ->
F.SEL2.0 -> BLANK -> SC.l -> B.SEL13.1 -> BLANK -> B_SEL1~345.1 -> B.SEL2.1 -> F.SEL13 ->
F.SEL2.1 -> BLANK -> SCLOAD -> BLANK -> v -> BLANK -> ALPHAO -> PASS -> datapath ->
DSC ->BLANK (0:3)->SCANOUTF

• PHI1, PHI2 path:

SCANTN -> REG.IN (0:11) -> ADDR (0:3 )-> RegLD -> VmeACK -> VmeERR -> state (0:2) ->
vstate (0:1) -> status (0:1) -> objReady (0:1) -> SCANOUT



B.5 VCP chip pin diagram

PIN

l

2

3

4

5

6

7

8

9

Fig. B-5. VCP chip pin diagram using 208 pin PGA package.

Name PIN type

RESET IN
VRAM1[0] I/O
VRAMlfl] I/O
VRAM1[2] I/O
VRAM1[3] I/O
VRAM1[4] I/O
VRAM1[5] I/O
VRAM1[6] I/O
VRAM 1[7] I/O
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186 FIFOJN[21 IN
187 FIFO_IN[3J IN
188 FIFO_IN[4] IN
189 FIFOJN[5] IN
190 FIFOJN[6] IN
191 FIFOJN[7] IN
192 FIFO_IN[8] IN
193 FIFO_IN[9] IN
194 FIFOJN[10] IN
195 FIFO IN[11] IN
196 PHI1F IN
197 PHI2F IN
198 NOT CONNECTED NC
199 F_TAU_OUT[0] OUT
200 F_TAU_OUT[l] OUT
201 FJTAU_OUT[2] OUT
202 F_TAU_OUT[3] OUT
203 FJTAU_OUTt41 OUT
204 F_TAU_OUT[5] OUT
205 F_TAU_OUT[6] OUT
206 SCAN IN
207 Vdd Vdd
208 GND GND
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