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RESYNCHRONIZATION FOR EMBEDDED MULTIPROCESSORS

Shuvra S. Bhattacharyya, Sundararajan Sriram, and Edward A. Lee

ABSTRACT

This paper introduces a technique, called ^synchronization, for reducing synchronization
overhead in embedded multiprocessor implementations. The technique exploits the well-known
observation [39] that in a given multiprocessor implementation, certain synchronization opera
tions may be redundant in the sense that their associated sequencing requirements are ensured by
other synchronizations in the system. The goal of resynchronization is to introduce new synchro
nizations in such a way that the number of additional synchronizations that become redundant
exceeds the number ofnew synchronizations that are added, and thus the net synchronization cost
is reduced.

First, we define the general form of our resynchronization problem; we show that it is NP
hard by establishing a correspondence to the set covering problem; and based on this correspon
dence, we specify how an arbitrary heuristic for set covering canbe applied to yield a heuristic for
resynchronization. Next, we show that for a certain class of applications, optimal resynchroniza-
tions can be computed efficiently by means ofpipelining. These pipelined solutions, however, can
suffer from significantly increased latency, and this motivates the latency-constrained resynchro
nization problem, which we address for a restricted class of graphs that permit efficient computa
tion of latency. Again using a reduction from set covering (although the construction is
significantly different), we showthat latency-constrained resynchronization is NP hard. However,
we show that for the special case in which there are only two processors, latency-constrained
resynchronization can be solved in polynomial time. We also present a heuristic for latency-con
strained resynchronization, and through a practical example, we demonstrate that this heuristic
gives an efficient means for systematically trading off between synchronization overhead and
latency.
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1. Introduction
—,.—„

This paper develops a technique called resynchronization for reducing the rate at which

synchronization operations must be performed in ashared memory, embedded multiprocessor

system. Resynchronization is based on the concept that there can be redundancy in the synchroni

zation functions of agiven multiprocessor implementation [39]. Such redundancy arises when

ever the objective ofone synchronization operation is guaranteed as aside effect of other

synchronizations in the system. In the context ofnoniterative execution, Shaffer showed that the
amount of run-time overhead required for synchronization can be reduced significantly by detect

ing redundant synchronizations and implementing only those synchronizations that are found not
to be redundant; an efficient, optimal algorithm was also proposed for this purpose [39], and this

algorithm was subsequently extended to handle iterative computations in [4].
The objective ofresynchronization is to introduce new synchronizations in such away that

the number oforiginal synchronizations that consequently become redundant is significantly less
that the number ofnew synchronizations. We formulate and study this problem in the context of
self-timed execution of iterative synchronous dataflow programs. Over the past several years, syn

chronous dataflow programming ofiterative computations has attained significant popularity in
the application domain ofdigital signal processing (see for example [13,23, 30, 35,34, 38]), and
awide variety oftechniques have been developed to schedule synchronous dataflow programs for
efficient multiprocessor implementation, such as those described in [1, 7,14,27,32, 36,40,44].

Resynchronization has been studied earlier in the context ofhardware synthesis [12].
However in this work, the scheduling model and implementation model are significantly different

from the structure of self-timed multiprocessor implementations, and as aconsequence, the prob

lem formulations, analysis techniques, and algorithmic solutions do not apply to our context, and
vice-versa. We will explain the major differences between these two contexts in Subsection 3.5,

once we have developed the analytical models on which our work isbased.

The purpose ofthis paper is to introduce the utility ofresynchronization for self-timed
multiprocessor implementations ofsynchronous dataflow programs, examine the complexity of
fundamental problems that emerge from this concept, and develop anumber ofoptimal and heu-



ristic solutions to some of these problems. In synchronous dataflow (SDF), a program is repre

sented as adirected graph inwhich the vertices (actors) represent computations, the edges specify

data dependences, and the number ofdata values (tokens) produced (consumed) by each actor

onto (from) each of its output (input) edges is fixed and known atcompile time. This form of

"synchrony" should not be confused with the use of"synchronous" in synchronous languages [3].

The techniques developed in this paper assume that the input SDF graph is homogeneous,

which means that thenumbers of tokens produced orconsumed are identically unity. However,

since efficient techniques have been developed to convert general SDF graphs into equivalent (for

our purposes) homogeneous graphs [25], our techniques can easily be adapted to general SDF

graphs. In the remainder ofthis paper, when we refer to a dataflow graph (DFG) we imply a

homogeneous SDF graph.

Delays on DFG edges represent initial tokens, and specify dependencies between itera

tions of theactors in iterative execution. For example, if tokens produced by the A*th execution of

actor A are consumed by the (k + 2)th execution ofactor B, then the edge (A,B) contains two

delays. In drawings ofDFGs, we place a"D" on top ofan edge that has unit delay, and ifan edge

has n > 1 delays, then weplace"w D" on topof the edge (seeFigure 1).

Multiprocessor implementation ofan algorithm specified as a DFG requires scheduling

the actors, which involves assigning actors in the DFG toprocessors, ordering execution of these

actors on each processor, and determining when each actor fires (begins execution) such that all

data precedence constraints are met. In [26] the authors propose a scheduling taxonomy based on

which of these tasks are performed at compile time (static strategy) and which at run time

(dynamic strategy); in this paper we will use the same terminology that was introduced there.

In the fully-static scheduling strategy of[26], all three scheduling tasks are performed at

compile time. This strategy involves the least possible runtime overhead. All processors run in

lock step and no explicit synchronization is required when they exchange data. However, this

strategy assumes that exact execution times ofactors are known. Such an assumption isgenerally

not practical. Amore realistic assumption for DSP algorithms is that good estimates for the exe

cution times of actors can be obtained.

Under such an assumption on timing, it is best to discard the exact timing information



from the fully static schedule, but still retain the processor assignment and actor ordering. This

results in theself-timed scheduling strategy [26]. Each processor executes theactors assigned to

it inafixed order that is specified atcompile time. Before firing anactor, a processor waits for the

data needed by that actor tobecome available. Thus in self-timed scheduling, processors are

required to perform run-time synchronization when they communicate data. Such synchronization

isnot necessary inthe fully-static case because exact (or guaranteed worst case) times could be

used todetermine firing times ofactors such that processor synchronization isensured. As a

result, the self-timed strategy incurs greater run-time cost than thefully-static case.

Byaprocessor, we mean either a programmable component, inwhich case the actors

mapped to itexecute as software entities, or ahardware component, in which case actors assigned

to itare implemented and execute in hardware. See [19] for a discussion on combined hardware/

software synthesis from a single dataflow specification. Examples ofapplication specific multi

processors that use programmable processors and some form ofstatic scheduling are described in

[6,21,42].

Interprocessor communication (IPC) between processors is assumed to take place through

shared memory, which could be global memory between all processors, oritcould be distributed

between pairs ofprocessors (for example, hardware first-in-first-out (FIFO) queues ordual ported

memory). Sender-receiver synchronization is also assumed to take place by setting flags in shared
memory. Typically, special hardware for synchronization, such as barriers [10] or semaphores

implemented in hardware, is prohibitively expensive for embedded multiprocessor machines. For
the same reason, we cannot assume the efficient support for polling shared synchronization vari

ables that is available oncertain cache-coherent multiprocessors [28]. Interfaces between hard

ware and software are typically implemented using memory-mapped registers inthe address

space ofthe programmable processor (again akind ofshared memory), and synchronization is
achieved using flags that can be tested and set by the programmable component, and the same can

be done by an interface controller on the hardware side [17]. Thus, in our context, effective resyn

chronization results ina significantly reduced rate ofaccesses to shared memory for the purpose

of synchronization.



2. Background

Much of the nonstandard terminology that is introduced in thisand subsequent sections is

summarized in a glossary at the end ofthe paper.

We frequently represent a DFG by an ordered pair (V, E), where Vis the set ofvertices

and £ is the setof edges. We refer to the source and sink vertices of a graph edge e by stv(e)

and snk(e), we denote the delay on e by delay(e), and we frequently represent e bytheordered

pair (src(e), snk(e)). We say that e is an output edge ofsrc(e), and that e is an input edge of

snk(e).Edge e is delayless if delay(e) = 0, and it isa selfloop if src(e) = snk(e). In the

iterative execution of a DFG. the Ath invocation of an actorx is denoted xk, for k = 1,2,....

Given x,y e V, we say that .v is a predecessor of v if there exists e e E such that

src(e) = x and snk(e) = y; we say that x isa successor of y if v is a predecessor of at. A

path in (V,E) is a finite, nonempty sequence (e,,e2, ...,e„), where each ef is a member ofE,
and .w*(e|) = stz(e2),snk(e2) = sir (e3),..., snk(en_}) = stv(en). We say that the path
p = (ep e^ ..., e/;) contains each e, and each subsequence of (e,, e2 e„) iP ls directed

from src(e}) to snk(en); and each member of {.«*•(?,), stv(e2),..., s/r(*n), snk(en) >is tra

versed by p. A path that is directed from some vertex to itself is called a cycle, and a fundamen

tal cycle is a cycleof which no proper subsequence is a cycle.

If (/?,, /?-, pk) is afinite sequence ofpaths such that /?, = (eL ,, e,- 2 */./»,)' *°r
1</<A\and 5wA'(e/>lf) = sir(e/+K ,),for 1<i<(k- l),thenwe define the concatenation of

(/?,, /?,,..., pk), denoted <(/?,, /?2,..., /?*)), by

<(/?,, p2,..., /?A.)> =(e, ,,..., eUnr e2 ,,..., e2 „2, ..., eA. ,,..., ek,h) .

Clearly, <(/?,,/?2, •..,/>*)> isapathfrom 5/r(e, ,) to s/7A-(eA. ^).
Ifp = (eh £»„ ..., en) is apath in a DFG, then we define the path delay ofp, denoted

Delay(p), by

n

Delay(p) = £ <fe/fly(ef.).
/= i

Since thedelays onall DFG edges are restricted tobenon-negative, it is easily seen that between



any two vertices x,ye V, eitherthere is no pathdirected from x to y, or there exists a (not nec

essarily unique) minimum-delay path between x and y. Given a DFG G, andvertices x,y in

G, we define pG(x, y) tobe equal to oc if there is no path from x toy, and equal to the path

delay of a minimum-delay path from x toy if there exist one or more paths from x to y. If G is

understood, then we may drop the subscript and simply write"p " in place of"pG".

By a subgraph of (V, E), wemean thedirected graph formed by any V c V together

with the setof edges {e € E\stv (e), snk(e) e V}. We denote thesubgraph associated with the

vertex-subset V by subgraph (V). We say that (V, E) is strongly connected if for each pairof

distinct vertices x, y, there is a path directed from x to y andthere is a pathdirected from v to x.

We say that a subset V c V is strongly connected if subgraph (F') is strongly connected. A

strongly connected component (SCC) of (V, E) isa strongly connected subset F'cF such

that no strongly connected subset of Vproperly contains V. If V is an SCC, then when there is

noambiguity, we may also say that subgraph (V) is an SCC. If C, and C2 are distinct SCCs in

(V, E), we say that C, is a predecessor SCC of C2 ifthere is an edge directed from some vertex

in C, to some vertex in C2; C, is asuccessor SCC ofC2 if C2 is apredecessor SCC ofC,. An
SCC is a source SCC if it has no predecessor SCC; an SCC is a sink SCC if it has no successor

SCC; and an SCC is an internal SCC if it is neither a source SCC nora sink SCC. An edge is a

feedforward edge of (V, E) if it isnot contained in an SCC, orequivalently, if it isnot contained

in a cycle; an edge that is contained in at least one cycle is called a feedback edge.

We denote the numberofelements in a finite set S by |5|. Also, if r is a real number, then

we denote the smallest integer that is greater than orequal to r by [r~].

3. Synchronization model

In this section, we present the model that we use for analyzing synchronization in self-

timed multiprocessor systems. The basic model was presented originally in [41] to study the exe

cution and interprocessor communication patterns ofactors under self-timed evolution, and in [5],

the model was augmented for the analysis of synchronization overhead.

Consider the execution of thefour-processor schedule in Figure 1.In the self-timed execu-



tion shown in Figure 1(c), it is assumed that zero time is required for interprocessor communica

tion. If the timing estimates are accurate, the schedule execution settles into a repeating pattern

spanning two iterations of G, andthe average iteration period is 7 time units.

We model aself-timed schedule using aDFG Gipc = (V, Eipc) derived from the original

SDF graph G = (V, E) and the given self-timed schedule. The graph Gipc, which we to refer to

Prod

Proc2

Proc4

(ojV<£)
Proc3

(a) DFG "G"

Execution Time Estimates
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(b) Schedule on four processors
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(c) Self-timed execution
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Proc 2 P^c 3

Figure 1. Self-timed execution.

(d) IPC graph



as the interprocessor communication modeling graph, or IPC graph for short, models the

sequential execution of actors that are assigned to the same processor, and it models constraints

dueto interprocessor communication. For example, the self-timed schedule in Figure 1(b) canbe

modeled by theIPC graph inFigure 1(d). The IPC edges areshown using dashed arrows. The rest

of this subsection describes the construction of the IPC graph in detail.

The IPC graph has the same vertex set Vas G, corresponding to thesetof actors in G.

The self-timed schedule specifies the actors assigned toeach processor, and the order inwhich

they execute. For example in Figure 1, processor 1executes A and then E repeatedly. We model

this in Gipc by drawing acycle around the vertices corresponding to Aand E, and placing a
delay on the edge from E toA. The delay-free edge from A to E represents the requirement that

the kxh execution of A must precede the kth execution of £, and the edge from E to A with a

delay represents the constraint that the kth execution ofA can occur only after the (A'- 1)th exe

cution of£ has completed. Thus ifactors v,, v2,..., vn are assigned to the same processor in that

order, then Gipc would havea cycle ((v,, v2). (v2, v3),..., (v„_,, v„), (vn, v,)), with
delay{{vn, v,)) = 1. Ifthere are P processors in the schedule, then we have P such cycles cor

responding to each processor.

As mentioned before, edges in G that cross processor boundaries after scheduling repre

sent interprocessor communication. We call such edges IPC edges. Instead ofexplicitly introduc

ing special send and receive primitives at the ends ofthe IPC edges, we model these operations as
part ofthe sending and receiving actors themselves. For example, in Figure 1, data produced by
actor B is sent from processor 2 to processor 1; instead ofinserting explicit communication prim

itives in the schedule, the send ismodeled within actor B while the receive is modeled aspart of

actor £. This is done so as not to clutter Gipc with extra communication actors. Even ifthe actual
implementation uses explicit send and receive actors, communication can still be modeled in the
above fashion because we are simply clustering the source ofan IPC edge with the corresponding

send actor and the sink with the receive actor.

For each IPC edge in Gwe add an IPC edge e in Gipc between the same actors. We also
set the delay on this edge equal to the delay on the corresponding edge in G. Thus, we add an IPC

edge from £ to / in Gipc with asingle delay on it. The delay corresponds to the possibility that

8



execution of £ can lag the execution of / byone iteration. An IPC edge represents abuffer

implemented in shared memory, and initial tokens on the IPC edge are used to initialize this

shared buffer. The number of initial tokens isequal to the delay onthe IPC edge. In a straightfor

ward self-timed implementation, each such IPC edge would also be asynchronization point

between the two communicating processors.

The IPC graph has the same semantics as aDFG, and its execution models the execution

ofthe corresponding self-timed schedule. As per the semantics ofaDFG, each edge (vy., v,) of

Gipc represents the following data dependency constraint [41]:

startiVj, k) >end(Vj, k-delay((vj, v,))), V(vy, v,) e Eipc, V* >delay(vj, v,), (1)

where start(\\ k) and end(v, k) respectively represent the time at which invocation k of actor v

begins execution and completes execution. We set start(v, k) = end(v, k) = 0 for k<0. Here

time is modelled as an integer that can be considered amultiple of thebase clock.

The constraints in (1) are due both to IPC edges (representing synchronization between

processors) and to edges that represent serialization ofactors assigned to the same processor.

To model execution times of actors we associate an execution time t(v) with each vertex

of the IPC graph; t(v) assigns a positive integer execution time to each actor v.

The IPC graph can be viewed as amarked graph [33] or Reiter's computation graph [37].

Below we use some of the well-known properties of such graphs to measure the self-timed evolu

tion of the system that corresponds to a given IPC graph.

Definition 1: The cycle mean ofacycle C, denoted /.(C), in an IPC graph is defined by

i / r,\ — v is traversed bv C „nj
X(C) Delay(C) ' and

the maximum cycle mean ofan IPC graph Gipc, denoted Xmax{Gipc), is defined by

max e. ,-,v.

^ =cycleCinGWC)>-
A fundamental cycle in Gipc whose cycle mean is equal to Xmax is called acritical cycle ofGipc.



Note that for an IPC graph that is constructed from a schedule that is not deadlocked, the

denominator in the expression for X(C) is necessarily positive [37]. Furthermore, in the self-

timed schedule for Gipc, an actor fires as soon as data is available at all of its input edges, and
such an assoon aspossible (ASAP) firing pattern implies that thethroughput ofthecorresponding

multiprocessor implementation is equal to (^max(Gjpc))~ [37].
For example, in Figure 1(d), Gipc has one SCC, and its maximal cycle mean is 7time

units. This corresponds to the critical cycle ((B, £), (£, /), (/, G), (G, B)) :

t(B) = /(£) = 3,r(7) = t(G) = 4 time units, so the total time along this cycle is 14, and there

are two delays on this cycle. Thus the average iteration period for this schedule is7time units. We

have not included IPC costs in this calculation, but these can be included in a straightforward

manner by adding the send and receive costs to the corresponding actors performing these opera

tions.

The maximum cycle mean can becalculated efficiently by repeated applications of the

Bellman-Ford shortest path algorithm [24].

If we onlyhave execution timeestimates available instead of exact values, and we set /(v)

in the previous section to be these estimated values, then we obtain the estimated iteration period

by calculating X . Henceforth we will assume that we know the estimated throughput -—
""max

ofa given IPC graph.

In the transformations that we present in therest of the paper, we preserve the estimated

throughput by preserving the maximum cycle mean of Gipc, with each /(v) set to the estimated
execution time of actor v. In the absence of more precise timing information, this is thebest that

we can hope to do.

3.1 Synchronization protocols

In [4], we describe two synchronization protocols for an IPC edge. Given an IPC graph

(V, E), and an IPC edge e e £, if e is a feedforward edge then weapply asynchronization proto

col called feedforward synchronization (FFS), which guarantees that snk(e) never attempts to

read data from an empty buffer (to prevent underflow), and s?v(e) never attempts to write data

into the bufferunless the number of tokens already in thebufferis less than some pre-specified

10



limit, which is the amount ofmemory allocated tothat buffer (to prevent overflow). This involves

maintaining a count ofthe number oftokens currently in the buffer in a shared memory location.

This count must be examined and updated by each invocation of src(e) and snk(e), and thus in

each graph iteration period, FFS requires an average offour accesses to shared memory (two read
accesses and two write accesses)1. We refer to these accesses to shared memory, which areper

formed solely for the purpose of synchronization, as synchronization accesses.

If e is a feedback edge, then we use a simpler protocol, called feedback synchronization

(FBS), that only explicitly ensures that underflow does not occur, and requires only two synchro
nization accesses per iteration period [4]. Such asimplified scheme ispossible since the number

oftokens that simultaneously reside on the buffer for a feedback edge can be shown tobe

bounded, and thus, it can beassumed that overflow will never occur if the buffer is sized appropri

ately [5].

3.2 The synchronization graph

An IPC edge in Gipc represents two functions: reading and writing oftokens into the
buffer represented by that edge, and synchronization between the sender and the receiver, which
could be implemented with FFS or FBS. To differentiate these two functions, we define another
graph called the synchronization graph, in which edges between actors assigned to different pro
cessors, called synchronization edges, represent synchronization constraints only. An execution

source ofasynchronization graph is any actor that either has no input edges or has nonzero delay

on all input edges.

Recall that an IPC edge (v., v(.) ofGipc represents the synchronization constraint

start{vi% k) >end{vp k-delay((vj, v,))), V* >delay(yp v,). (2)

1. Note that in our measure of the number of shared memory accesses required for synchronization, we ne
glect the accesses to shared memory- that are performed while the sink actor is waiting for the required data
to become available, orthe source actor iswaiting for an "empty slot" in thebuffer. Thenumber of accesses
required to perform these "busy-wait" or "spin-lock" operations is dependent on the exact relative execution
times of the actor invocations. Since in our problem context, this information is not generally available, we
usethebest case number of accesses — the number of shared memory accesses required for synchronization
assuming that IPC data on an edge is always produced before the corresponding sink invocation attempts to
execute — as an approximation.

11



Initially, the synchronization graph is identical to the IPC graph becauseevery IPC edge

represents a synchronization point. However, we will modify the synchronization graph in certain

"valid"ways (defined shortly) by adding/deleting edges. At the endofouroptimizations, the syn

chronization graph is ofthe form (V, (Eipc-F +F')), where F is the set ofedges deleted from
the IPC graph and F' is the set of edges added to it. At this point the IPC edges in Gipc represent

buffer activity, and mustbe implemented as buffers in shared memory, whereas the synchroniza

tion edges represent synchronization constraints, and are implemented using FFS and FBS. If

there is an IPC edgeas well asa synchronization edge between the same pair ofactors, then the

synchronization protocol is executed before the corresponding buffer is accessed so as to ensure

sender-receiver synchronization. Ontheother hand, if there is an IPC edge between two actors in

the IPC graph, but there is no synchronization edge between the two, then no synchronization

needs to be done beforeaccessing the shared buffer. If there is a synchronization edgebetween

two actors but no IPC edge, then no shared buffer is allocated between the two actors; only the

corresponding synchronization protocol is invoked.

The following theorem, which is developed in [5], underlies thevalidity ofour synchroni

zation optimizations.

Theorem 1: The synchronization constraints ina synchronization graph G, = (V, E}) imply

the constraints of the graph G2 = (V, E2) if for all e e E2 such that £ g E], wehave

pc (src (e), snk(e)) <delay(e) —that is, if for each edge £ that is present in G2 but not in G,

there is aminimum delay path from stv(e) to snk(s) in G, that has total delay of atmost

delay (e).

IfG, = (K,£j) and G2 = (V,E2) are synchronization graphs with the same vertex-set

and the same set of intraprocessor edges (edges that are not synchronization edges), then G, pre

serves G2 if for all £€ E2 such that £g £,, we have pGi(src(e), snk(e)) <delay(e). Thus
Theorem 1guarantees that the synchronization edges of G, can be used to implement the syn

chronization constraints of G2 if G, preserves G2. It is easily verified that the preserves relation

is transitive:

Fact 1: If Gj, G-> and G3 are synchronization graphs such that G, preserves G2 and G2 pre-

12



serves G3, then G, preserves G3.

Given an IPC graph Gipc, and asynchronization graph Gs such that Gs preserves Gipc, if

we implement the synchronizations corresponding to the synchronization edges of Gs, then

because the synchronization edges alone determine which actors must waiton actions performed

on remote processors, the iteration period of theresulting system is determined by the maximum

cycle mean of Gs.

3.3 Redundant synchronization edges

Definition 2: A synchronization edge is redundant in a synchronization graph G if its removal

yields a graph that preserves G. Equivalently from the definition of"preserves," a synchroniza

tion edge e is redundant if there is a path p*(e) from siv(e) to snk(e) such that

Delay(p) < delay(e).

Fig. 2 shows an example of a redundant synchronization edge. Here, before executing

actor D, the processor thatexecutes {A, B, C, D} does not need to synchronize with the proces

sorthat executes \E,F,G,H) because due to the synchronization edge x], the corresponding

invocation of F is guaranteed to complete before each invocation of D is begun. Thus x2 is

redundant. From this example, we see that the synchronization function associated with a redun-

NJ<i

Figure 2. An example of a redundant synchronization edge: the edge x2 is redundant.
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dant synchronization edge "comes for free" asa byproduct of other synchronizations, and thus, it

need not be implemented explicitly.

In [5], it is shown thatif all redundant edges in a synchronization graph are removed, then

theresulting graph preserves theoriginal synchronization graph — that is, the redundancies are

not interdependent. Thus, weneed not implement the synchronization functions associated with

any of the redundant synchronization edges. An efficient algorithm isgiven in [4] for determining

theredundant synchronization edges ofa synchronization graph. This algorithm isanextension to

iterative dataflow programs of an earlier algorithm developed by Shaffer [39] thatoptimally

removes redundant synchronization edges for the noniterative case.

3.4 Problem description

We define the synchronization cost of a synchronization graph Gs to be the average num

ber ofsynchronization accesses required per iteration period. Thus, if n^ denotes the number of
synchronization edges in Gs that are feedforward edges, and n^ denotes the number ofsynchro
nization edges that are feedback edges, then the synchronization cost of Gs is (4/?^- + In^) .

The basic objective of the methods discussed in this paper is tominimize the synchronization

cost.

In [5], a simple, efficient algorithm, called Convert-to-SC-graph, isdescribed for introduc

ing new synchronization edges so that the synchronization graph becomes strongly connected,

which allows all synchronization edges to be implemented with FBS. Asupplementary algorithm

is also given for determining an optimal placement ofdelays on the new edges so that the esti

mated throughput is not degraded and the increase inshared memory buffer sizes isminimized. It

is shown that the number of synchronization accesses required to implement the new edges that

are added by Convert-to-SC-graph can be significantly less than the number ofsynchronization

accesses that are eliminated by converting all uses of FFS to FBS. However, this technique may

increase the latency.

In this paper, we propose another approach toreducing synchronization overhead called

resynchronization. Resynchronization is also based on inserting new synchronization edges; the

objective isto insert these edges so that the number oforiginal synchronization edges that become
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redundant is greater thanthe numberofnew synchronization edges. As with Convert-to-SC-

graph, resynchronization can increase latency. We address the problem of optimal resynchroniza

tion both in the context where there is no restriction on latency, and in the context ofa hard

latency constraint that cannot be exceeded.

Generally, resynchronization can be viewed as complementary to the Convert-to-SC-

graph optimization: resynchronization is performed first, followed by Convert-to-SC-graph.

Under severe latency constraints, it maynotbe possible to accept the solution computed by Con

vert-to-SC-graph, in which case the feedforward edges that emerge from theresynchronized solu

tion mustbe implemented with FFS. In such a situation, Convert-to-SC-graph can be attempted

on the original (before resynchronization) graph to see if it achieves a better result than resynchro

nization without Convert-to-SC-graph. However, for synchronization graphs that haveonly one

source SCCandonly one sink SCC, the latency is notaffected by Convert-to-SC-graph, and thus,

for such systems resynchronization and Convert-to-SC-graph are fully complementary. This is

fortunate since such systems arise frequently in practice.

3.5 Comparison with the resynchronization model of Filo, Ku, and

De Micheli

As mentioned in Section 1, Filo, Ku and De Micheli have studied resynchronization in the

context ofminimizing the controller area for hardware synthesis of synchronization digital cir

cuitry [11,12], and significant differences in the underlying analytical models prevent these tech

niques from applying to ourcontext. In the graphical hardware model of [12], called the

constraint graph model, each vertex corresponds to a separate hardware device and edges have

arbitrary weights that specify sequencing constraints. When the source vertex has bounded execu

tion time, a positive weight w(e) (forward constraint) imposes the constraint

start(snk(e)) > w(e) + start(src(e)),

while a negativeweight (backward constraint) implies

start(snk(e)) < w(e) + start(str(e)).

If the source vertex has unbounded execution time, the forward and backward constraints are rela

tive to the completion time of the source vertex. In contrast, in our synchronization graph model,
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multiple actors can reside on the same processing element (implying zero synchronization cost

between them), and the timing constraints always correspond tothe case where w(e) is positive

and equal to the executiontime of src(e).

The implementation models, and associated implementation cost functions are also signif

icantly different. A constraint graph is implemented using ascheduling technique called relative
scheduling [22], which can roughly be viewed as intermediate between self-timed and fully-static

scheduling. In relative scheduling, the constraint graph vertices that have unbounded execution

time, called anchors, are used as reference points against which all other vertices are scheduled:

for each vertex v, an offset /, is specified for each anchor ai that affects the activation of v, and
v is scheduled to occur once /,- clock cycles have elapsed from the completion of a{, for each i.

In the implementation ofarelative schedule, each anchor has attached control circuitry

that generates offset signals, and each vertex has asynchronization circuit that asserts an activate
signal when all relevant offset signals are present. The resynchronization optimization is driven by
a cost function that estimates the total area of the synchronization circuitry, where the offset cir

cuitry area estimate for an anchor is afunction ofthe maximum offset, and the synchronization
circuitry estimate for avertex is afunction ofthe number ofoffset signals that must be monitored.

Asaresult of the significant differences in both the scheduling models and the implemen

tation models, the techniques developed for resynchronizing constraint graphs do not extend in

any straightforward manner to the resynchronization ofsynchronization graphs for self-timed
multiprocessor implementation, and the solutions that we have developed for synchronization
graphs are significantly different in structure from those reported in [12]. Most notably, the funda
mental relationships that we develop between set covering and our use ofresynchronization have

not emerged in the context of constraint graphs.

4. Resynchronization
•••^••lyiiii^i^iMMMumM^iin'itfwirni^iyiiiii'iiif1'-' • ••»••»•••"*•»•'•.ii>iniwiiiiMi1ii.ihu*MHiiMfjjuiiJua„.Hi imiHiiimiiMH

As discussed above, it is sometimes possible to reduce the total number of irredundant

synchronization edges by adding new synchronization edges to asynchronization graph. We refer
to the process ofadding one or more new synchronization edges and removing the redundant
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edges that result as resynchronization (defined more precisely below). Figure 3(a) illustrates this
concept. Here, the dashed edges represent synchronization edges. Observe that ifwe insert the
new synchronization edge d0(C, H), then two ofthe original synchronization edges— (B, G)
and (E, J) —become redundant. Since redundant synchronization edges can be removed from
the synchronization graph to yield an equivalent synchronization graph, we see that the net effect
ofadding the synchronization edge d0(C, H) is to reduce the number of synchronization edges

that need tobeimplemented by 1. In Figure 3(b), we show the synchronization graph that results

from inserting the resynchronization edge d0(C, H) into Figure 3(a), and then removing the

redundant synchronization edges that result.

Definition 3 gives a formal definition of resynchronization that we willusethroughout the

remainder of this paper. This considers resynchronization only"across" feedforward edges.

Resynchronization that includes inserting edges into the SCCs, is also possible; however, in gen

eral, such resynchronization may increase the estimated throughput (see Theorem 2 at theend of

this section). Thus, for ourobjectives, it must be verified that each new synchronization edge

introduced in an SCC does not decrease the estimated throughput. To avoid this complication,

which requires acheck of significant complexity (<9( |F| l^llog2( |F|)), where (V, E) is the modi-

®^^--KD^^) ®^-^>--KD^^)

(a)

Figure 3. An example of resynchronization.
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fied synchronization graph—this is using the Bellman Ford algorithm described in [24])for each

candidate resynchronization edge, we focus only on "feedforward" resynchronization in this

paper. Future research may address combining the insights developed here for feedforward resyn

chronization with efficient techniques to estimate the impact that a givenfeedback resynchroniza

tion edge has on the estimated throughput.

Definition 3: Suppose that G = (V, E) isa synchronization graph, and Fs {e}, e2,..., en) is

theset of all feedforward edges in G. Aself-timed resynchronization of G isa finite set

R={e,', e2',..., em'} ofedges that are not necessarily contained in £, but whose source and
sink vertices are in V, such that (a). e}', e2,..., em' are feedforward edges in the DFG

G* s (V, ((E-F) +R)); and (b). G* preserves G—that is, pG„(s/r(*,), snk(e()) <delayie^
for all i e {1, 2 n}. Each member ofR that is not in E is called a resynchronization edge

ofthe resynchronization R, G* is called the resynchronized graph associated with R, and this

graph is denoted by R(G).

Here we use the "self-timed" qualification to distinguish our context ofresynchronization

from the context of[12], which, as discussed in Section 3.5, is significantly different, and involves
both the insertion ofnew synchronization edges (serialization), and the modification ofselected
edge weights (timing constraints). In the remainder of the paper, we drop the "self-timed" qualifi
cation, and when we use resynchronization in a technical sense, we mean the self-timed resyn

chronization concept defined in Definition 3.

Ifwe let G denote the graph in Figure 3, then the set offeedforward edges is

F = {(B, G),(E,J),(E,C), (H,I)};R = {d0(C,H), (E, C), (//,/)} is aresynchronization
of G; Figure 3(b) shows the DFG G* = (V, ((E-F) +R)); and from Figure 3(b), it is easily
verified that F, R, and G* satisfy conditions (a) and (b) ofDefinition 3.

In the remainder ofthis section, we introduce a number ofproperties ofresynchronization

that we will use throughout the developments ofthis paper. The following definition is fundamen

tal to these properties.

Definition 4: Suppose that Gis asynchronization graph and Ris aresynchronization of G. If5
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is a synchronization edge in G that is not contained in R, we say that R eliminates s.lfs'eR,

s'*s, and there isa path p from src(s) to snk(s) in R(G) such that p contains s' and

Delay(p)< delay(s), then we saythat s' contributes to the elimination of s.

A synchronization edge s can beeliminated ifa resynchronization creates a path p from

src(s) to snk(s) such that Delay(p) < delay(s). In general, the path p may contain more than

one resynchronization edge, and thus, it ispossible that none of theresynchronization edges

allows us to eliminate p "by itself. In such cases, it is the contribution of all of the resynchroni

zation edges within the path p that enables the elimination ofp. This motivates the ourchoice of

terminology in Definition 4. An example is shown in Figure 4.

The following two facts follow immediately from Definition 4.

Fact 2: Suppose that G is a synchronization graph, R is a resynchronization of G, and r is a

resynchronization edge in R. If /* does not contribute to the elimination ofany synchronization

edges, then (R - {r}) isalso a resynchronization of G. If r contributes to the elimination ofone

and only one synchronization edge s, then (R -{/•} + {s}) is a resynchronization of G.

(a) (b)

Figure 4. An illustration of Definition 4. Here each processor executes a single actor. A
resynchronization of the synchronization graph in (a) is illustrated in (b). In this resyn
chronization, the resynchronization edges (V,X) and (X, W) both contribute to the
elimination of (l\ IV).
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Fact 3: Suppose that G is a resynchronization graph, R is a resynchronizationof G, s is a syn

chronizationedge in G, and s' is a resynchronization edge in R such that delay(s') > delay(s).

Then s' does not contribute to the elimination of s.

Forexample, let G denote thesynchronization graph in Figure 5(a). Figure 5(b)shows a

resynchronization R of G. In the resynchronized graph ofFigure 5(b), the resynchronization

edge (x4, j>3) does not contribute to the elimination ofany ofthe synchronization edges of G,and

thus Fact 2guarantees that R' =R-{(xA, y3)}, illustrated in Figure 5(c), is also a resynchroniza-

(c)

Figure 5. Properties of resynchronization.
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tion ofG. In Figure 5(c), itis easily verified that (x5, v4) contributes to the elimination ofexactly

one synchronization edge —the edge (x5, ys), and from Facts 1and 2, we have that
r» s &_ {(jc5,y4)} +{(x5,y5)}, illustrated in Figure 5(d), is aalso resynchronization ofG.

Lemma 1: Suppose that G and G' are synchronization graphs such that G' preserves G,and

p is apath in G from actor jc to actor y. Then there is apath p' in G' from x to y such that
Delay(p') <Delay(p), &nd tr(p) c tr(p'), where /r(cp) denotes the set ofactors traversed by

path cp.

In Figure 5(a), ifwe let jc = jc,,v = y2,and/? = ((*,, v,), (v,,v2)), then the path

p' = ((x,, x2), (x2, jc3), (jc3, v,), 0"i, v2)) in Figure 5(b) confirms Lemma 1for this example.
Hexttr(p) = {*,,v,,v2} and tr(p') = {.v,,x2, jc3, v,,y2}.

ProofofLemma 1: Let p = (e,, ey ...,en). By definition oftilt preserves relation, each e{ that

is not a synchronization edge in G is contained in G'. For each e, that is a synchronization edge

in G, there must be apath pi in G' from 5?r(e,) to s/7A'(e>,) such that Delay(pt) <delay(et).

Let e , e ,..., e , /. <i\ < ... < /.„, denote the set of et s that are synchronization edges in G,

and define the path p to be the concatenation

<(<?,,e2, .. .,(?/i_,),/?,, (^/i +1, ...,^:_, ),P2,-Aeim] +]^.:ei.]),pm,(ei+],...,en)).

Clearly. /? is a path in G' from .v to v, and since Delay(p,) <delay(eJ holds whenever e, is a
synchronization edge, it follows that Delay(p) <Delay(p). Furthermore, from the construction

of p, it is apparent that every actor that is traversed by p isalso traversed by p. •

Lemma 2: Suppose that G isa synchronization graph; R isa resynchronization of G; and

(x, y) isa resynchronization edge such that pc(x, y) = 0. Then (x, y) isredundant in R( G).

Thus, a minimal resynchronization (fewest number of elements) has the property that

pG(jc\ >»') > 0 for each resynchronization edge (x',y').

Proof: Let p denote a minimum-delay path from x to y in G. Since (jc, y) is a resynchroniza

tion edge, (.y, v) is not contained in G, and thus, p traverses at least three actors. From Lemma 1,
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it follows that there is apath p' in R(G) from .r to y such that Delay(p') = 0,

and p' traverses at least three actors. Thus, Delay(p') <delay((x, y)) and p' * (x, y), and we
conclude that (jc,y) is redundant in R(G).M

As a consequence ofLemma 1, the estimated throughput ofa given synchronization graph

is always less than orequal to that ofevery synchronization graph that it preserves.

Theorem 2: If R is a resynchronization of the synchronization graph G, then

Xnwx(R(G))>Xmax(G).

Proof: Suppose that C is a critical cycle in G. Lemma 1guarantees that there is a cycle C in

R(G) such that a) Delay(C) < Delay(C), and b) the set ofactors that are traversed by C is a

subset of the set of actors traversed by C. Now clearly, b) implies that

v is traversed by C v is tra\ersed by C

and this observation together with a) implies that X( C)>X(C). Since C is a critical cycle in G,

it follows that Xmax(R(G)) > Xnwx(G). •

Thus, in general, any saving in synchronization cost obtained by rearranging synchroniza

tion edges may come at the expense of a decrease in estimated throughput. As implied by Defini

tion 3, we avoid this complication by restricting our attention to feedforward synchronization

edges. Clearly, resynchronization that rearranges only feedforward synchronization edges cannot

decrease the estimated throughput since no new cycles are introduced and no existing cycles are

altered. Thus, with the form of resynchronization that we address in this paper, any decrease in

synchronization cost that we obtain is not diminished by a degradation of the estimated through

put.

Before implementation, a synchronization graph must be made strongly connected to

ensure that all IPC buffer sizes are bounded (in the absence of guarantees on actor execution

times) [5]. As outlined in Section 3, this is done eitherby applying the FFS synchronization proto

col,which effectively adds a feedback edge from snk(e) to src(e) for each feedforward synchro-
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nization edge e, or by applying the Convert-to-SC-graph transformation, which permits use of

the more efficient FBS synchronization protocol, and in general yields a lower overall synchroni

zation cost than use ofFFS [5]. By placing sufficient delay on certain edges, either of these tech

niques can be performed in such a way that the estimated throughput does not decrease. Thus, if

we apply self-timed resynchronization to a synchronization graph that is not strongly connected,

and thentransform the resulting synchronization graph to a strongly connected graph usingoneof

the two methods described above, there still will be no net degradation in estimated throughput.

5. Correspondence to set covering

We refer to the problem of finding aresynchronization with the fewest number of elements

as the resynchronization problem. In [5], we formally show that the resynchronization problem

is NP-hard; in this section, we explain the intuition behind this result. To establish the NP-hard-

ness of the resynchronization problem, weexamine aspecial case that occurs when there are

exactly two SCCs, which we call the pairwise resynchronization problem, and we derive a
polynomial-time reduction from the classic set covering problem [9], awell-known NP-hard

problem, to the pairwise resynchronization problem. In the set covering problem, one is given a
finite set X and a family T of subsets of*, and asked to find aminimal (fewest number of mem

bers) subfamily Ts c T such that \J t = X.A subfamily of T is said to cover X if each mem-
/ 6 7", .

ber of* is contained in some member of the subfamily. Thus, the set covering problem is the

problem of finding a minimal cover.

Although the correspondence that we establish between the resynchronization problem

and set covering shows that the resynchronization problem probably cannot be attacked optimally
with apolynomial-time algorithm, we will show that the correspondence allows any heuristic for
set covering to be adapted easily into aheuristic for the pairwise resynchronization problem, and
applying such aheuristic to each pair ofSCCs in ageneral synchronization graph yields aheuris
tic for the general (not just pairwise) resynchronization problem. This is fortunate since the set
covering problem has been studied in great depth, and efficient heuristic methods have been

devised [9].
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Definition 5: Given a synchronization graph G, let (jc,, x2) be asynchronization edge in G,

and let (y]9 y2) be an ordered pair ofactors in G. We say that (y^y2) subsumes (*,, x2) in G
ifp(x]9y]) +p(y2,x2)<delay((x^x2)).Thus,ifdelay((x],x2)) = 0,then (y]9y2) subsumes
(x,,jc2) ifp(jc,,j>i) = ptv2,Jc2) = 0.We may omit the qualification "in G" ifthe graph in
question is understood from context.

Thus, in asynchronization graph G = (V, E), (v,,j>2) subsumes (*,, x2) ifand only ifa

zero-delay synchronization edge directed from >>, to y2 makes (jc,, jc2) redundant.

The following fact is easilyverified from Definitions 3 and 5.

Fact 4: Suppose that G isa synchronization graph that contains exactly two SCCs, F is theset

of feedforward edges in G, and F' isa resynchronization of G. Then foreach e € F, there exists

e' e F' such that (src(e'), snk(e')) subsumes e in G.

5.1 NP-hardness

An intuitive correspondence between the pairwise resynchronization problem and the set

covering problem can be derived from Fact 4. Suppose that G is a synchronization graph with

exactly two SCCs C, and C2 such that each feedforward edge isdirected from a member of C,

toa member of C2. We start byviewing the set F of feedforward edges in G as the finite set that

we wishto cover, andwitheachmember p of {(jc, y)\(x e C,, y e C2)}, weassociate thesubset

of F defined by x(p) s {e g F\(p subsumes e)}. Thus, x(P) >s the set of feedforward edges of

G whose corresponding synchronizationscan be eliminated ifwe implement a zero-delay syn

chronization edge directed from the first vertex of the ordered pair p to the secondvertex of/?.

Clearly then, {e,', e2,..., en'} isa resynchronization ifand only if each e e F iscontained inat

least one x((src(e/), snk(e/))) —that is, ifand only if {x((src(ei'), snk(e/)))\\ <i<n}
covers F. Thus, solving the pairwise resynchronization problem for G is equivalent to finding a

minimal cover for F given the family ofsubsets {x(x9y)\(x e C,,,v e C2)}.

Figure 6 helps to illustratethis intuition and our method for converting an instance of the

set coveringproblem to an instanceof pairwise resynchronization. Suppose that we are given the

561*= {*,,jc2, jc3,jc4} , and the family of subsets T = {/,, t2, /3}, where /, = {jc,,jc3},
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t2 = {jc,, jc2 }, and t3 = {x2, x4}. To construct an instance ofthe pairwise resynchronization

problem, we first createtwo vertices and an edge directed between these vertices/or each member

of*; we label each of the edges created in this step with the corresponding member of*. Then

for each / € T, we create two vertices vstv(t) and vsnk(t). Next, for each relation xf e tj (there

are six such relations in this example), we create two zero-delay edges — one directed from the

(a)

vsrc(t2)
vsrc(t3)

vsnk(t2) vsnk(t3)

(b)

Figure 6. (a). An instance of the pairwise resynchronization problem that is derived from
an instance of the set covering problem.

(b). The DFG that results from a solution to this instance ofpairwise resynchroni
zation.
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source ofthe edge corresponding to X;\o vsiv(tj), and another directed from vsnk(tj) to the sink
of the edge corresponding to jc, . This last step has the effect ofmaking each pair

(vsrv(t^, vsnk(tj)) preserve exactly those edges that correspond to members of /,; in other
words, after this construction, x((vsnrf/,), vsnk(t{))) = /,-, for each /. Finally, for each edge cre
ated in the previous step, we create acorresponding feedback edge oriented in the opposite direc

tion, and having a unit delay.

Figure 6 shows the synchronization graph that results from this construction process.

Here, it isassumed that each vertex corresponds toaseparate processor; the associated unit delay,

selfloop edges are not shown toavoid excessive clutter. Observe that the graph contains two

SCCs— (\src(xi)} u {vsrc(ti)}) and ({$/?*(*,)} u {\'swA'(/,.)}) —and that the set of feedfor

ward edges is the set of edges that correspond to members of*. Now, recall that amajor corre

spondence between the given instance of set covering and the instance of pairwise

resynchronization defined byFigure 6(a) is that x((vsn?(f,), vs/iA'(/;))) = /,, for each /.Thus, if

we can find aminimal resynchronization of Figure 6(a) such that each edge in this resynchroniza

tion is directed from some vsrc(tk) to the corresponding vsnk(tk), then the associated tk's form

aminimum cover of*. For example, it is easy, albeit tedious, to verify that theresynchronization

illustrated in Figure 6(b), {d^vsrcU^, vsnkO^d^vstvU^), vsnk(t3))}, isaminimal resyn

chronization of Figure 6(a), and from this, wecan conclude that {/,, f3} is aminimal cover for

*. From inspection ofthe given sets * and T, it is easily verified that this conclusion is correct.

This example illustrates how an instance of pairwise resynchronization can be constructed

(in polynomial time) from an instance of set covering, and how asolution to this instance of pair-

wise resynchronization can easily beconverted into a solution of the set covering instance. Our

proofof the NP-hardness of pairwise resynchronization, presented in[5], isageneralization of the

example in Figure 6.

We summarize with the following theorem.

Theorem 3: The pairwise resynchronization problem is NP-hard, and thus, the resynchroniza

tion problem is NP-hard.

Proof: A formal proof is given in [5].
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5.2 A family of heuristics

We have pointed out that the correspondence we have established between set covering

and pairwise resynchronization allows us to adapt any heuristic for set covering into a heuristic

for pairwise resynchronization. Furthermore applying such a heuristic for pairwise resynchroniza

tion to each pair of SCCs in a general synchronization graph gives a heuristic for the general

resynchronization problem. Figure 7 below shows how any algorithm Cover that solves the set

covering problem can be applied to derive a heuristic algorithm for resynchronization.

6. Chaining synchronization graphs
.-iJ<^:*:«/^*-YJ'l*»W-<fctw.»»ilVJ«-rt^.5.V-

In this section, we define a broad class of synchronization graphs for which optimal ^syn

chronizations can be computed efficiently using a simple chaining procedure. Such a solution,

when applicable, can be viewed as a pipelined implementation in which each SCC of the synchro

nization graph corresponds to a pipeline stage.

Definition 6: Suppose that C is an SCC in a synchronization graph G. and x is an actor in C.

Then x is an input hub of C if for each synchronization edge e in G whose sink actor is in C,

we have pAx, snk(e)) = 0. Similarly, x is an output hub of C iffor each synchronization edge

e in G whose source actor is in C. we have pc(src(e\ x) = 0. We say that C is linkable if

there exist actors jc, y in C such that x is an input hub, y isan output hub, and pc(x, y) = 0. A

synchronization graph is chainable if each SCC is linkable.

Forexample, consider the SCC inFigure 8(a). and assume that the dashed edges represent

the synchronization edges that connect this SCC with other SCCs. This SCC has exactly one input

hub, actor A. and exactly one output hub, actor F, and since p(A, F) = 0, it follows that the

SCC is linkable. However, if we remove the edge (C,F), then the resulting graph (shown in Fig

ure 8(b)) is not linkablesince it does not have an output hub. A class of linkable SCCs that occur

commonly in practical synchronization graphs are those SCCs that corresponds to only one pro

cessor, such as the SCC shown in Figure 8(c). In suchcases, the first actor executed on the proces-
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Function Resynchronize
Input: A synchronization graph G = (V,E).

Output: A synchronization graph G that preserves G.

£ = £

Compute pc(jc, v) for each ordered pair of vertices in G. /* used in Pairwise 7
For each SCC Cfl of G

For each SCC Cd of G

If C0 is a predecessor SCC of Cd Then

Compute £", = {e e E\(src(e) e Ca) and (snk(e) e Cd)}
F = Pairwise(subgraph(Ca),subgraph(Cd),Ef)

E = ((£-£,) uF)
End If

End For

End For

Return (r, £)

Function Pairwise(G\, G2, F)

Input: Two strongly connected synchronization graphs G, and G2, and a set £ of edges
whose source vertices are all in G, and whose sinkvertices are all in G2.

Output: A resynchronization £'.

For each vertex u in G,

For each vertex v in G2

X((w, v))={e e £|(pc(5/r(e), u) =0) and (pc(v, snk(e)) =0)}
End For

End For

T = {x((w. *0)|(w >snl G] and vis in G2)}

E = Cover(F, T)

Return {</0(w, v)|x((w, O) e H}

Figure 7. An algorithm for resynchronization that is derived from an arbitrary algorithm Cover
for the set covering problem
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sor is always an input hub and the last actor executed is always an output hub.

In the remainder of this section, we assume that for each linkable SCC, an input hub * and

output hub y are selected such that p(jc, y) = 0, and these actors are referred to as the selected

input hub and the selected output hub of the associatedSCC. Which input hub and output hub

are chosen as the "selected" ones makes no difference to our discussion of the techniques in this

section as long they are selected so that p(x, y) = 0.

An important property of linkable synchronization graphs is that if C, and C2 are distinct

linkable SCCs, then all synchronization edges directed from C, to C2 arepreserved by thesingle

ordered pair (/,, /2),where /, denotes the selected output hub of C, and l2 denotes the selected

(a) (b)

(c)

Figure 8. An illustration of input and output hubs for synchronization graph SCCs.
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input hub of C,. Furthermore, if there exists apath between two SCCs C{,C2 ofthe form

((o,,/2), (o2,/3), ...,(o„_ ,,/„)), where o, is the selected output hub of C,\ /„ is the selected
input hub of C2', and there exist distinct SCCs Z,, Z2,...,Z„_2 € {C,', C2'} such that for

k = 2,3,..., (n - 1), ik, ok are respectively the selected input hub and the selected output hub of

Zk_,, then all synchronization edges between C,' and C2 are redundant.

From these properties, an optimal resynchronization for achainable synchronization graph

can be constructed efficiently by computing atopological sort of the SCCs, instantiating a zero

delay synchronization edge from the selected output hub of the /th SCC inthe topological sort to

theselected input hub ofthe (/+ l)thSCC,for/ = 1,2,..., (w- 1), where n is thetotal number

of SCCs, andthen removing all of the redundant synchronization edges that result. For example,

if this algorithm is applied to the chainable synchronization graph of Figure 9(a), then the syn

chronization graph ofFigure 9(b) isobtained, and thenumber ofsynchronization edges is reduced

from 4 to 2.

(a) (b)

Figure 9. An illustration of a simple algorithm for optimal resynchronization of chainable
synchronization graphs. The dashed edges correspond to synchronization edges.

30



This simple chaining technique corresponds to pipelining, where each SCC in the output

synchronization graph corresponds to a pipeline stage. Pipelining has been used extensively to

increase throughput via improved parallelism ("temporal parallelism") in multiprocessor DSP

implementations (see for example, [2,15,31 ]). However, in ourapplication ofpipelining, the load

ofeach processor is unchanged, andthe estimated throughput is not affected(since no new cyclic

paths are introduced), and thus, thebenefit to theoverall throughput of our chaining technique

arises chiefly from the optimal reduction of synchronization overhead.

This technique can be generalized tooptimally resynchronize a somewhat broader class of

synchronization graphs. This class consists of all synchronization graphs for which each source

SCC has an output hub (but not necessarily an input hub), each sink SCC has an input hub (but not

necessarily an output hub), and each internal SCC is linkable. In this case, the internal SCCs are

pipelined as in the previous algorithm, and then each for each source SCC, asynchronization edge

is inserted from one of its output hubs to the selected input hub of the first SCC in the pipeline of

internal SCCs, and for each sink SCC, a synchronization edge is inserted to one of its input hubs

from the selected output hub of the last SCC in the pipeline of internal SCCs. If there are no inter

nal SCCs, then the sink SCCs are pipelined by selecting one input hub from each SCC, and join

ing these input hubs with achain ofsynchronization edges, and then inserting asynchronization
edge from an output hub ofeach source SCC to an input hub ofthe first SCC in the chain ofsink

SCCs.

As implied earlier, although the techniques described in this section preserve the estimated

throughput, they may result in significantly increased latency. For example in Figure 9, the latency
ofthe resynchronized solution is the sum ofthe execution times ofall actors in the graph. In the

following section, we address aproblem that becomes relevant when such alatency increase can
not betolerated, but there is some margin within which the latency can be increased. This is the

problem ofoptimally reducing the number ofsynchronization edges without increasing the

latency beyond some pre-specified threshold Lmax.

A somewhat analogous conflict between latency and synchronization overhead is dis

cussed in asignificantly different context in [43]. Here the objective is to reduce the probability of
metastable states in adigital circuit. This probability can be reduced arbitrarily by passing asignal
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through asufficiently long chain offlip flops. However, alternative techniques that have minimal
impact on latency have been devised for arestricted class ofproblems [43].

7. Latency-constrained resynchronization

As discussed insection 4,resynchronization cannot decrease the estimated throughput

since itmanipulates only the feedforward edges ofasynchronization graph. Frequently in real

time DSP systems, latency is also an important issue, and although resynchronization does not

degrade the estimated throughput, it generally does increase the latency.

In this section we define the latency-constrained resynchronization problem for self-timed

multiprocessor systems, and we show that although the resynchronization problem has asimple

polynomial time solution for the class of chainable synchronization graphs, the latency-con

strained resynchronization problem is NP-hard even if the input graph is assumed to be chainable.

7.1 Probiem statement

Definition 7: Suppose G0 is aDFG, G is asynchronization graph that results from amultipro

cessor schedule for G0, x is an execution source in G, and y is an actor in G other than jc, then

we define the latency from jc to v by £g(jc, v) bend(y, l +pC(}(x, y))l. We refer to x as the
latency input associated with this measure of latency, and we refer to y as the latency output.

Intuitively, the latency isthe time required for the first invocation of the latency input to influence

the associated latency output. More precisely, it is the earliest time at which an invocation yk ofy

executes such that there isa sequence of invocations /,, i2,..., /„, where /, = x,, i„ = yk and

for 1<k<n, the semantics of the DFG G0 imply that at least one token produced by ik iscon

sumed by ik+,.

Note that ourmeasure of latency is explicitly concerned only with the time thatit takes for

theirs/ input to propagate to the output, and does not in general give an upper bound on the time

1.Recall that starr(\>. k) and endiy, k) denote the time at which invocation k of actor v commences and
completes execution. Also, note that start(x, 1) = 0 since x is anexecution source.
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for subsequent inputs to influencesubsequent outputs. Extendingour latency measure to maxi

mize over all pairs of"related" input and output invocations would yield the alternative measure

Lq defined by

Lc'(x, y) = max( {end(y, k+pG(>(x, y)) - start(x, k) |(k = 1, 2, ...)}). (4)

Currently, there are noknown tight upper bounds on Lc' that can becomputed efficiently from

the synchronization graph for anyuseful subclass of graphs, and thus, we use the lower bound

approximation Lc, which corresponds to the critical path, when attempting toanalyze and opti

mize the input-output propagation delay ofa self-timed system. The heuristic that wepresent in

Section 9 for latency-constrained resynchronization can easily beadapted to handle arbitrary

latency measures; however, the efficiency of the heuristic depends on the existence ofan algo

rithm to efficiently compute the change in latency that arises from inserting a single new synchro

nization edge. The exploration ofincorporating alternative measures —orestimates —oflatency

in this heuristic framework, possibly with adaptations to the basic framework, would be a useful

area for further study.

Before defining the complexity of the latency-constrained resynchronization problem, we

define a class ofsynchronization graphs for which our latency measure can becomputed effi

ciently. In words, this is simply the class ofgraphs in which the first invocation of the latency out

put is influenced by the first invocation ofthe latency input. Equivalently, it is the class ofgraphs

that have at least one delayless path in the DFG directed from the latency input to the latency out

put.

Definition 8: Suppose that G0 is a DFG, jc is a source actor in G, and y is actor in G that is not

identical to a- . Ifpc (jc, v) = 0, then we say that G0 is transparent with respect to latency input
jc and latency output v. If G isa synchronization graph that corresponds toa multiprocessor

schedule for G0, wealso saythat G is transparent.

Ifa synchronization graph is transparent with respect to a latency input/output pair, then

the latency can be computed efficiently using longest path calculations on an acyclic graph that is

derived from the input synchronization graph G. This acyclic graph, which we call the first-iter-
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ation graph ofG, denoted fi(G) is constructed by removing all edges from Gthat have non
zero-delay, adding avertex o, setting r(u) = 0,and adding delayless edges from u to each
source actor (other than i>) ofthe partial construction until the only source actor that remains is

i). Figure 10illustrates thederivation of f(G).
Given two vertices x and y in fi(G) such that there is apath inf(G) from x toy, we

denote the sum ofthe execution times along apath from x to y that has maximum cumulative

execution time by Tjj(G)(x, y). That is,

Tf{G)(x,y) =max( £ t(z) (p is apath from xtoy in /(G))J.
p traverses z

(5)

Ifthereisnopathfrom a- to v, then we define Tfi{G)(x, v) to be -oo. Note that for all x,.y
r/(C)(A, v) <+oo, since /(G) is acyclic. The values 7)(C)(x, >') for all pairs x, >' can be com
puted in 0(nl) time, where n is the number ofactors in G, by using asimple adaptation of the
Floyd-Warshall algorithm specified in [9].

Fact 5: Suppose that G0 is aDFG that is transparent with respect to latency input x and latency
output y, Gs is the synchronization graph that results from amultiprocessor schedule for G0, and

Figure 10. An example used to illustrate the construction of fi(G). The lower graph is fi(G)
when G is the upper graph.
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G isaresynchronization G5. Then pG(x, y) = 0, and thus Tji{G)(x, y) >0.

Proof: Since G0 is transparent, there is adelayless path p in G0 from jc to y. Let

(«,, m2, ..., w„), where jc = w, and >' = un, denote the sequence ofactors traversed by p. From

the semantics ofthe DFG G0, it follows that for 1<i <n, either ut and w, +, execute on the

same processor, with w, scheduled earlier than w; +,, or there isa zero-delay synchronization

edge in Gs directed from w, to ui+]. Thus, for 1</ <n, wehave pc (w,, w, +,) = 0, and thus,

that pG (x, y) = 0. Since G isaresynchronization of Gs, it follows from Lemma 1that

pc(A,v) = 0.H

The following theorem gives an efficient means for computing the latency LG for trans

parent synchronization graphs.

Theorem 4: Suppose that G is asynchronization graph that is transparent with respect to

latency input x and latency output y. Then Lc(x, y) = Tjf(C)(v, y).

Proof: By induction, we show that

end(w, 1) = THG)(u, w) for every actor w in fi(G), (6)

which clearly implies the desired result.

First, let mt(w) denote the maximum number ofactors that are traversed byapath in

f(G) (over all paths in f(G)) that stans at u and terminates at w. If mt(w) = 1,then clearly
w = i) . Since both the LHS and RHS of(6) are identically equal to t(v) = 0 when w = u, we

have that (6) holds whenever mt(w) = 1.

Now suppose that the result holds whenever mt(w) <k,for some k> 1,and consider the

scenario mt(w) = k+ 1. Clearly, in the self-timed (ASAP) execution of G, invocation w, com

mences as soon as all invocations in the set

Z = {zAz is a predecessor of w in/(G)}
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have completed execution. All members zeZ satisfy mt(z) <A, since otherwise mt(w) would

exceed (k + 1). Thus, from the induction hypothesis, we have

start(w, 1) = max(end(z, l)|r, e Z) = max(Tj;{G)(u, z)\(z e Z)),

which implies that

end(w,\) = max(Tf(G)(v,z)\(z e Z)) +t(w) (7)

But, by definition of Tf{C), the RHS of(7) is clearly equal to Tf{G)(v, w), and thus we have that
end(w, 1) = Tj-(G)(v,w).

We have shown that (6) holds for mt(w) = 1, and that whenever it holds for

mt(w) = A> 1, it must hold for mt(w) = (k + 1). Thus, (6) holds for all values of mt(w). •

Theorem 4 shows that latency can be computed efficiently for transparent synchronization

graphs. Afurther benefit oftransparent synchronization graphs is that the change in latency

induced byadding a new synchronization edge (a"resynchronization operation") can becom

puted in 0( 1) time, given Tfi{ G)(a,b) for all actor pairs (a, b). We will discuss this further, as

well as its application to developing an efficient resynchronization heuristic, in Section 9.

Definition 9: An instance of the latency-constrained synchronization problem consists of a

transparent synchronization graph G with latency input x and latency output y, and a latency

constraint Lmax >LG(x, y). Asolution to such an instance is a resynchronization R (ifone

exists) such that (1) LR{G)(x, y)<Lmax, and (2) no resynchronization ofG that results in a
latency less than or equal to Lmax has smaller cardinality than R.

Given a transparent synchronization graph G with latency input jc and latency output y,

and a latency constraint Lmax, we say that a resynchronization R of G is a latency-constrained

resynchronization (LCR) if LR{C)(x, y)<Lmax. Thus, the latency-constrained resynchroniza

tion problem is the problem of determining a minimal LCR.
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7.2 NP-hardness

Recall that optimal solutions for the resynchronization problem can becomputed inpoly

nomial time for chainable synchronization graphs. In this subsection we show that latency-con

strained resynchronization is NP-hard even for the very restricted subclass ofchainable

synchronization graphs in which each SCC corresponds toasingle actor, and all synchronization

edges have zero delay. Thus, the algorithms in Section 6 cannot beextended to yield polynomial

time algorithms for optimal latency-constrained resynchronization on the same classes of graphs.

As with the resynchronization problem, the intractability of latency-constrained resyn

chronization can be established by a reduction from set covering. To illustrate this reduction, we

suppose, as in the illustration ofour reduction for the resynchronization problem, that we are

given the set X = {*,, jc2, a3, jc4 } , and the family of subsets T = {/,, t2, t3}, where

/, = {.v,, a3 }, t2 = {a,, a2 }, and /3 = {a2, a4} . Figure 11 illustrates the instance of latency-

constrained resynchronization that we derive from the instance of set covering specified by

(X, T). As in Figure 6, each actorcorresponds to a single processor and the self loop edges for

each actorarenot shown. The numbers beside the actorsspecify the actor execution times, and the

latency constraint is Lmax = 103. In the graph of Figure 11, which we denote by G, the edges

labeled ex,, ex^ exy ex4 correspond respectively to themembers jc,, a2, jc3, jc4 of the set X in

the set covering instance, and the vertex pairs (resynchronization candidates)

(v, st]), (v, st2), (v, 5/3) correspond tothe members of T. For each relation x( e tj, an edge

exists that is directed from 5/ to sxt. The latency input and latency output are defined to be in

and out respectively, and it is assumed that G is transparent.

The synchronization graph that results from an optimal resynchronization of G is shown

in Figure 11, with redundant resynchronization edges removed. Since the resynchronization can

didates (v, 5/,), (v, 5/3) were chosen to obtain the solution shown in Figure 11,this solution cor

responds to the solution of (X 7") that consists of the subfamily {/,, r3}.

A correspondence between the set covering instance (X, T) and the instance of latency-

constrained resynchronization defined by Figure 11 arises from two properties of our construc

tion:
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Observation 1: (a, € / in the set covering instance )<=> ((v, stj) subsumes exi in G)

Observation 2: If R is an optimal LCR of G, then

each resynchronization edge in R is of the form

(v, stt), i e {1,2,3}, or of the form (stj, sxj, jc, € tj. (8)

The first observation is immediately apparent from inspection of Figure 11. The second

observation is justified in the following proof.

ProofofObsewation 2: We must show that no other resynchronization edges can be contained in

an optimal LCR of G. Figure 13 specifies arguments with which we can discard all possibilities

Lmfl„ = 103

Figure 11. An instance of latency-constrained resynchronization that is derived from an
instance of the set covering problem.
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other than those given in (8). In the matrix shown inFigure 13, the entry corresponding to row r

and column c specifies an index into the list ofarguments on the right side of the figure. For each

of the six categories of arguments, except for #6, the reasoning iseither obvious or easily under

stood from inspection of Figure 11. For example, edge (v, z) cannot be aresynchronization edge

in R because the edge already exists in the original synchronization graph; an edge of the form

(sxj, w) cannot be in Rbecause there is apath in Gfrom w to each sx,-; (z, w) gRsince other

wise there would beapath from in to out that traverses v, z, w, s/,, sx], and thus, the latency

Lmax = 103

Figure 12. The synchronization graph that results from a solution to the instance of
latency-constrained resynchronization shown in Figure 11.
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would be increased to at least 204; (in, z) &R from Lemma 2 since pG(in, z) = 0; and

(v, v) e R since otherwise there would be a delayless self loop. Three of the entries in Figure 13

point to multiple argument categories. For example, if Ay € r,, then (sxj, stj) introduces acycle,

and if a € tt then (sx, st() cannot becontained in R because it would increase the latency

beyond Lmax.

The entries in Figure 13 marked OKare simply those that correspond to (8), and thuswe

have justified Observation 2. •

Observation 3: Suppose that R isan optimal LCR of G and suppose that e = (st^ sa,) is a

resynchronization edge in R, for some i e {1, 2, 3,4}, j e {1, 2, 3} such that a, e tj. Then e

contributes to the elimination of one and only one synchronization edge — ext.

Proof: See Appendix B.

Now, suppose that weare given an optimal LCR R of G. From Observation 3 and Fact 2,

V IV 4- in out s'i 5A,-

V 5 3 1 2 4 OK 1

W 3 5 6 2 4 1 4

z 2 3 5 2 1 3 3

in 1 1 4 5 4 4 4

out 2 2 2 2 5 2 2

s,j 3 2 3 2 4 3'5 OKa

SXj 2 2 3 2 1 2/3 3/5

a. Assuming that A € tj: otherwise 1applies.

1. Exists in G.

2. Introduces a cycle.

3. Increases the latency beyond Lmax

4. pG(tf],tf2) = 0 (Lemma 2).

5. Introduces a delayless self loop.

6. See Appendix A.

Figure 13. Argumentsthat support Observation 2.
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we have that for each resynchronization edge (stj, sx() in R, we can replace this resynchroniza

tion edge with ext and obtain another optimal LCR. Thus from Observation 2, we can efficiently

obtain an optimal LCR R' suchthat theonly resynchronization edges in R' are of the form

(v, */,.).

For each a, e X such that

3/,|((a,. €/p and ((v, 5/,) €*')), (9)

we have that ex{ g R'. This is because R' is assumed to be optimal, and thus, R(G) contains no

redundant synchronization edges. For each a, e X forwhich (9) does not hold, we can replace

e.Xj with any (v, stj) that satisfies a, <= tj, and since such areplacement does not affect the
latency, weknow that the result will beanother optimal LCR for G. In this manner, if we repeat

edly replace each e.v, that does not satisfy (9) then we obtain an optimal LCR R" such that

each resynchronization edge in R" is of the form (v, stf), and (10)

for each xt e X, there exists a resynchronization edge (v, tf) in R" such that x( e tj. (11)

It is easily verified that the set ofsynchronization edges eliminated by R" is {ex^xf € X). Thus,

the set V = {/ -|( v, f.) is a resynchronization edge in R"} is acover for X, and the cost (number
ofsynchronization edges) ofthe resynchronization R" is (N-\X\ + \T'\), where N is the number

ofsynchronization edges in the original synchronization graph. Now, it is also easily verified

(from Figure 11) that given an arbitrary cover Ta for X, the resynchronization defined by

Ra^(R"-{(v,tj)\(tjeT)})+{(v,tj)\(tJETa)} (12)

is also avalid LCR of G, and that the associated cost is (N- \X\ + \Ta\). Thus, it follows from
the optimality of R" that T must be a minimal cover for X, given the family of subsets T. The

synchronization graph shown in Figure 11 is precisely R" J

41



To summarize, we have shown how from the particular instance (X, T) of setcovering,

we can construct a synchronization graph G such that from a solution to the latency-constrained

resynchronization problem instance defined by G, we can efficiently derive a solution to (X, T).

Once this example ofthe reduction from set covering to latency-constrained resynchronization is

understood, it is easily generalized to an arbitrary set covering instance (X*, T). The generalized

construction of the initial synchronization graph G is specified by the steps listed in Figure 14.

The main task in establishing our general correspondence between latency-constrained

resynchronization and set covering isgeneralizing Observation 2 toapply toall constructions that

follow the steps inFigure 14. This generalization isnot conceptually difficult (although it is rather

• Instantiate actors v, u.r. in. out, with execution times 1, 1, 100, 1, and 1, respectively,
and instantiate all of the edges in Figure 11 that are contained in the subgraph associated
with these five actors.

• For each / € T, instantiate an actor labeled st that has execution time 40.

• For each x e X

Instantiate an actor labeled sx that has execution time 60.

Instantiate the edge ex &d0(v, sx).

Instantiate the edge d0(sx, out).

•For each / € T

Instantiate the edge dQ(w< st).

For each a e /, instantiate the edge d0(st, sx).

• SeXLmax = 103.

Figure 14. A procedure for constructing an instance Ilr of latency-constrained resynchroniza
tion from an instance Isc of set covering such that a solution to Ilr yields a solution to Isc.

1. Ingeneral (for anarbitrary instance ofset covering). R" can beone ofmultiple possible sets; the number
ofpossibilities for R" is equal to the number ofdistinct solutions to the given set covering instance.
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tedious) since it is easily verified that allof the arguments in Figure 14 hold for the general con

struction. Similarly, the reasoning that justifies converting an optimal LCR for the construction

into an optimal LCRofthe form implied by (10) and (11) extends in a straightforward fashion to

the general construction. Furthermore, it is easily verified that this conversion can beexecuted in

0(\T'\) time (0(\T'\) time to convert the initial solution toa form that corresponds to (9) and

0(\T\) time toconvert this intermediate solution to a form that corresponds to(10) and (11)). We

thus arrive at the following theorem.

Theorem 5: The latency-constrained resynchronization problem isNP-hard for the following

classes of synchronization graphs (in decreasing order ofgenerality): general transparent synchro

nization graphs; transparent, chainable synchronization graphs; transparent synchronization

graphs in which each SCC corresponds to asingle processor; transparent synchronization graphs
in which each SCC corresponds to asingle processor, each processor executes only one actor, and

all synchronization edges have zero delay.

8. Two-processor systems

In this section, we show that although latency-constrained resynchronization for transpar

ent synchronization graphs is NP-hard, the problem becomes tractable for systems that consist of
only two processors —that is, synchronization graphs in which there are two SCCs and each SCC
is a fundamental cycle. This reveals apattern ofcomplexity that is analogous to the classic non-
preemptive processor scheduling problem with deterministic execution times, in which the prob
lem is also intractable for general systems, but an efficient greedy algorithm suffices to yield
optimal solutions for two-processor systems in which the execution times ofall tasks are identical
[8, 16]. However, for latency-constrained resynchronization, the tractability for two-processor
systems does not depend on any constraints on the task (actor) execution times. Two processor
optimality results in multiprocessor scheduling have also been reported in the context ofasto
chastic model for parallel computation in which tasks have random execution times and commu

nication patterns [29].

In an instance of the two-processor latency-constrained resynchronization (2LCR)
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problem, we are given aset ofsource processor actors a,, a2, ...,xp, with associated execution
times {t(x{)}, such that each *, is the /th actor scheduled on the processor that corresponds to

the source SCC of the synchronization graph; aset ofsinkprocessoractors y\,yi* •••♦ J>V w^tn

associated execution times {t(yt)}, such that each yf is the /th actor scheduled on the processor

that corresponds to the sink SCC of the synchronization graph; aset of irredundant synchroniza

tion edges S = {s^s,, ...,sn} such that for each 5,-, sjv(s{) € {a,,a2, ...,*p} and

snk(Sj) e {y]ty2, -~*yq}; and alatency constraint Lmax, which is apositive integer. Asolution
to such an instance is aminimal resynchronization R that satisfies LR{G)(xx, yq) <Lmax. In the

remainder of this section, we denote the synchronization graph corresponding to our generic

instance of 2LCR by G.

As in the previous section, weassume that G is transparent. Also, we start by assuming

that delay(sf) = 0 for all 5,, and we refer to the subproblem that results from this restriction as

delayless 2LCR. In the following two subsections, we show that delayless 2LCR can besolved

efficiently in polynomial time, and in Subsection 8.3, weextend this analysis to show that the gen

eral 2LCR problem can also be solved efficiently.

8.1 Interval covering

An efficient polynomial time solution to delayless 2LCR can be derived by reducing the

problem to a special case of set covering called interval covering, inwhich we are given an

ordering iv,, w2,..., ws of the members ofX (the set that must be covered), such that the collec

tion of subsets T consists entirely of subsets of the form {wQ, wa+ ,,..., wb},\ <a<b<N.

Thus, while general set covering involves covering aset from acollection of subsets, interval cov-

ering amounts to covering an interval from acollection of subintervals.

Interval covering can be solved in 0(p(||7l) time by a simple procedure that first selects

the subset {Wj, w2,..., wb }, where

bx = max({b\(wx, wb e /) for some / e 7"});

then selects any subset of the form {wa , wa^ +,,..., wb^}, a2 < b} + 1, where

b2 = max( {b\(wb +,, wb e t) for some t e T});
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then selects any subset of the form {wa^, wa +j,..., wb], ai<b2+\, where

b3 - max( {b\(wb^ +,, wb e t) for some / e 7"});

and so on until bn = N. It is easily verified that the collection ofselected subsets will be amini

mal cover for X.

8.2 Two-processor latency-constrained resynchronization

To reduce delayless 2LCR to interval covering, we start with the following observations.

Observation 4: Suppose that R is a resynchronization of G, r e R, and r contributes to the

eliminationof synchronization edge s. Then ;• subsumes s. Thus, the set of synchronization

edges that r contributes to the elimination of is simply the set of synchronization edges that are

subsumed by r.

Proof: This follows immediately from the restriction that therecanbe no resynchronization edges

directed from a v to an a, (feedforward resynchronization), and thus in R(G), there can be at

most one synchronization edge in any path directed from siv(s) to snk(s). •

Observation 5: If R is a resynchronization of G, then

^(C^'i'-V = "^x({tpnJsrc(s')) +tsucc(snk(s'))\sf e R}),where

Proof: Given a synchronization edge (a0,yb) e R, there is exactly onedelayless path in R(G)

from a, to v that contains (xa, yb) and the set of vertices traversed by this path is

{a,,a2, ..., xa, yb, yb +,,..., yq}. The desired result follows immediately. •

Now, corresponding to eachof the source processor actors a, that satisfies

lpred(xi) +'O'fl) - Lmax we define an ordered pair ofactors (a "resynchronization candidate") by

V/sO^jip.where./ = min^k^t^x^ tsucc(yk)<Lmax)}). (13)

45



Consider the example shown in Figure 15. Here, we assume that t(z) = 1 for each actor

z, and Lmax =10. From (13), we have

vl = C^iO'l )> v2 = (*2» y\)» v3 = (*3» >'2>» V4 = (*4> J^) '

v5 = (** J'4>» v6 = (*6'-v5)» V7 = (*7».v6)* v8 = (*8'-v7)- (14)

If vy exists for agiven a, , then d0(v{) can be viewed as the "best" resynchronization edge

that has a, as the source actor, and thus, to construct an optimal LCR, we can select the set of

Lma, = 10-max
(a) (b)

Figure 15. An instance of delayless, two-processor latency-constrained resynchroniza
tion. In this example, the execution timesof all actors are identically equal to unity.
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resynchronization edges entirely from among the v,s. This isestablished bythe following two

observations.

Observation 6: Suppose that R is an LCR of G, and suppose that (xa, yb) is a synchronization

edge in R such that (xa, yb) * va. Then (R- {(xa,yb)} + {d0(va)}) isan LCR of R.

Proof: Let vQ = (xa,yc) and R' = (R- {(xa,yb)} + {d0(va)}), and observe that va exists,

since

((xa,yb) €/?)=> (tpred(xa) + t5ucc(yb) <Lmax) => (tpred(xa) + t(yq) <Lmax).

From Observation 4, the set of synchronization edges that (xa,yb) contributes to the elimination

of is simply the set of synchronization edges that are subsumed by (xa, yb). Now, if 5 is a syn

chronization edge that is subsumed by (xa,yb), then

pG(src(s),xa) +pG(yb, snk(s)) <delay(s). (15)

From the definition of va, we have that c<b, and thus, that pG(yr yb) = 0. It follows from (15)

that

pG(src(s), xa) +pG(yc, snk(s)) <delay(s), (16)

and thus, that va subsumes s. Hence, va subsumes all synchronization edges that (xa,yb) con

tributes to the elimination of, and we can conclude that R' is a valid resynchronization of G.

From the definition of va, we know that tpred(xa) +tsucc(yc) <Lmax, and thus since R is

an LCR, we have from Observation 5 that R' is an LCR. •

From Fact 3 and the assumption that the members of S are all delayless, an optimal LCR

of G consists only ofdelayless synchronization edges. Thus from Observation 6, we know that

thereexistsan optimal LCRthat consists onlyof members of the form ^(v,.) (but not necessarily

ofall d0( v;) s). Furthermore, from Observation 5, we know that a collection Vof v- s isan LCR if
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and only if KJ %(v) = {s}, s->,..., s }, where x(v) is the setof synchronization edges that are
v € V

subsumed by v. The following observation completes the correspondence between 2LCR and

interval covering.

Observation 7: Let sx', s2',..., sn' be the ordering of 5,,s2,..., sn specified by

(a0 =5/r (5/), xb =src(s/), a<b)=> (i<j). (17)

That is the s/ 's are ordered according to the order in which their respective source actors execute

on the source processor. Suppose that for some j e {1,2,...,/?}, some m> 1, and some

1e {1,2,..., n-m), we have 5/ € x(vj) and s/ +in' € x(v,). Then

51 +I'» si+2'' •••' 5i +m- 1 € X( v7'"

In Figure 15(a), the ordering specified by (17) is

V =(*]0'2),s2' =U2, V4W =(-WeW =U5O7W =(a7,.v8), (18)

and thus from (14), we have

X(v,)= {*,'}•X(*'2)= f^'i^l'XWM.V.^^}'^)55 {.*2W>

X(V5)= {52',. '̂,54'},X(V6)= {53',54'},X(V7)= {53',54',55'},X(V8)= {s4',55'}, (19)

which is clearly consistent with Observation 7.

ProofofObservation 7: Let v. = (a;, v,), and suppose k is apositive integer such that

i<k<i +m. Then from (17), we know that pG(src(sk), src(si +m')) = 0. Thus, since

5/ +m'€X0'y), we have that

pd(5/r(s,'),A,-) =0. (20)
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Now clearly

Pd(5/7A'(5/),5«A:(5A.')) =0, (21)

since otherwise pG(snk(sk), snk(Sf')) =0 and thus (from 17) sk subsumes s/, which contra
dicts the assumption that the members of S are irredundant. Finally, since s/ e %(Vj), weknow

that p^0';, 5/7^(5/)) = 0. Combining this with (21) yields

pd(v7, snk(sk')) = 0, (22)

and (20) and (22) together yield that sk e x(vj) ••

From Observation 7and the preceding discussion, weconclude that an optimal LCR of G

can obtained by the following steps.

(a) Construct the ordering s, \s2\ ...,5,/ specified by (17).

(b) For 1 = 1,2,...,/?, determine whether or not v, exists, and if it exists, compute v,..

(c) Compute x(vj) for each value of/ such that Vj exists.

(d) Find aminimal cover C for 5 given the family of subsets (x(vy)|\'7 exists}.

(e) Define the resynchronization R = {vy|x(Vy) e C}.

Steps (a), (b), and (e) can clearly be performed in O(N) time, where N is the number of

vertices in 6. If the algorithm outlined in Section 8.1 is employed for step (d), then from the dis

cussion in Section 8.1 andObservation 8(e) in Section 8.3, it canbe easilyverified that the time

complexity ofstep (d) is 0(N2). Step (c) can also be performed in 0(N ) time using the obser

vation that if v,. = (a,-, Vj), then x(v,) ={(xa,yb) £ S\a <iand b>j}, where

S = {5j, s-,,..., sn} is the set ofsynchronization edges in G. Thus, we have the following result.

Theorem 6: Polynomial-time solutions (quadratic inthe number of synchronization graph ver-
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tices) exist for the delayless, two-processor latency-constrained resynchronization problem.

Note that solutions more efficient than the 0(N2) approach described above may exist.
From (19), we see that there are two possible solutions that can result if we apply Steps

(a)-(e) toFigure 15(a) and use the technique described in Subsection 8.1 for interval covering.

These solutions correspond to the interval covers Cx = {x(v3>> X(v7)} and
C2 = {x(v3),x(v8)}. The synchronization graph that results from the interval cover C, is

shown in Figure 15(b).

8.3 Taking delays into account

Ifdelays exist on one or more edges ofthe original synchronization graph, then the corre

spondence defined in the previous subsection between 2LCR and interval covering does not nec
essarily hold. For example, consider the synchronization graph in Figure 16. Here, the numbers
beside the actors specify execution times; a"DM on top ofan edge specifies aunit delay; the

latency input and latency output are respectively a, and yq; and the latency constraint is
Lmax = 12. It is easily verified that v,. exists for / = 1,2,..., 6, and from (13), we obtain

v, =(a,, v3), v2 =(a2,.v4), v3 =(a3, v6), v4 =(a4,v8), v5 =(a5, v8), v6 =(x6,y%). (23)

Now if we order the synchronization edges as specified by (17), then

V =(W/ +4) for ' = U2< 3<4' and V =(W/-4) for ' = 5, 6, 7, 8, (24)

and if the correspondence between delayless 2LCR and interval covering defined in the previous

section were to hold for general 2LCR, then we would have that

each subset x(v,) is ofthe form {sa',sa+]', ...,sb}, \<a<b<8. (25)

However, computing the subsets x( v/), we obtain

X(vl)={5l',57',58'},x(v2)={^r^2'^8,>'X(v3)={^'^3'}
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X(V4)= {V}'X(V5)= {54',J5'},X(V6)= {54',55',56'}, (26)

and thesesubsets are clearlynot all consistent withthe form specified in (25).Thus, the algorithm

developed in Subsection 8.2 does not apply directly to handle delays.

However, the technique developed in the previous section can be extended to solve the

general 2LCR problem inpolynomial time. This extension isbased on separating thesubsumption

relationships between the vf. 'sand the synchronization edges into two categories: if vf. = (a,,)>j)

subsumes the synchronization edge 5 = (xk, yt) then we say that vf. 1-subsumes s if i <k, and

we say that v; 2-subsumes 5 if 1> A-. For example in Figure 16(a), v, = (a,, j'3) 1-subsumes

L =12•-max 'c-

Figure 16. A synchronization graph with unit delays on some of the synchroniza
tion edges.
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both (A7,y3) and (jrg,y4),and v5 = (x5, y8) 2-subsumes (x4, y8) and (x5, v,).

Observation 8: Assuming the same notation for a generic instance of2LRC that was defined in

the previous subsection, the initial synchronization graph G satisfies the following conditions:

(a) Each synchronization edgehas at mostone unit of delay (delay(st) € {0,1}).

(b) If (a-,, yj) is a zero-delay synchronization edge and (xk, v;) is aunit-delay synchroni
zation edge, then i<k and j>I.

(c) If v; 1-subsumes a unit-delay synchronization edge (*,,y.), then vf. also 1-subsumes

all unit-delay synchronization edges s that satisfy siv(s) = xi +n, n > 0.

(d) If vf. 2-subsumes a unit-delay synchronization edge (a,, y.), then v, also 2-subsumes

all unit-delay synchronization edges s that satisfy src(s) = a,.,,, n > 0.

(e) If (a,, v.) and (xk,yf) are both distinct zero-delay synchronization edges or they are

both distinct unit-delay synchronization edges, then i * A' and (/ < A) <=> (j < I).

(f) If (a,, v ) 1-subsumes a unit delay synchronization edge (xk, v,), then / >j.

Proofoutline: From Fact 5, weknow that p(*,, y ) = 0. Thus, there exists at least onedelayless

synchronization edge in G. Let e be onesuch delayless synchronization edge. Then it is easily

verified from the structure of G that for all *,-, Vy, there exists apath pt j in Gdirected from a,
to y such that /?, ; contains e, /?, ; contains no other synchronization edges, and

Delay(Pi ) <2. It follows that any synchronization edge e' whose delay exceeds unity would be

redundant in G. Thus, part (a) follows from the assumption that the synchronization edges in G

are all irredundant.

The other parts canbe verified easily from thestructure of G, including theassumption

thatall synchronization edges in G are irredundant. We omitthe details. •

Resynchronizations for instances of general 2LCR canbe partitioned into twocategories

— category A consists of all resynchronizations that contain at least one synchronization edge

having nonzero delay, andcategory B consists of all resynchronizations thatconsist entirely of

delayless synchronization edges. Anoptimal category A solution (a category A solution whose

cost is less thanor equal to the costof all category A solutions) canbe derived by simply applying
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the optimal solution described in Subsection 8.2 to "rearrange" the delayless resynchronization

edges, and thenreplacing all synchronization edges thathave nonzero delaywith a singleunit

delay synchronization edge directed from x , the last actor scheduled on the source processor to

yj, the first actor scheduled onthe sink processor. We refer to this approach as AlgorithmA.

An example is shown in Figure 17. Figure 17(a) shows an example where for general

2LCR, the constraint that all synchronization edges have zerodelay is too restrictive to permit a

globally optimal solution. Here, the latency constraint is assumed to be Lmax = 2. Under this

constraint, it is easily seen that no zero-delay resynchronization edges can be added without vio

lating the latency constraint. However, if we allow resynchronization edges that havedelay, then

we can apply Algorithm A to achieve a costof two synchronization edges. The resulting synchro

nization graph, with redundant synchronization edges removed, is shown in Figure 17(b). Observe

that this resynchronization is an LCR since only delayless synchronization edges affect the

latency of a transparent synchronization graph.

Now suppose that G (ourgeneric instance of 2LCR) contains at least one unit-delay syn

chronization edge, suppose that Gb is an optimal category B solution for G, and let Rb denote

L =2-max

(a) (b)

Figure 17. An example in which constraining all resynchronization edges to
be delayless precludes the ability to derive an optimal resynchronization.
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the set of resynchronization edges in Gb. Let ud(G) denote the set of synchronization edges in

G that have unit delay, and let (xk9yf)9 (**,,y/,),..., (xk„>>'iJ denote the ordering ofthe mem
bersof ud(G) thatcorresponds to the order in whichthe source actors executeon the source pro

cessor— that is, (i <j) => (kt <kj). Note from Observation 8(a) that ud(G) is the set ofall
synchronization edges in G that are not delayless. Also, let lsubs(G, Gb) denote the set of unit-

delay synchronization edges in G that are 1-subsumed by resynchronization edges in Gb. That is,

Jsubs(G, Gb)={s €ud(G)\(3((zl,z2) e Rb)) s.t ((z]yz2) 1-subsumes s in&)}.

If lsubs(G, Gb) is not empty,define

r = min({j\(xk,y,) e lsubs(G, Gb)}). (27)

Suppose (aw,ym.) e lsubs(G, Gb). Then by definition of r, m' > lr, and thus

p-(y{, ym.) = 0. Furthermore, since xm and a, execute on the same processor, pG(xm, x}) < 1.

Hence pG(xm. a, )+pG(y{, ym.) <1 = delay(xm, ym.), so we have that (a,,,v/r) subsumes
(xm, ym.) in G. Since (aw, ym.) isan arbitrary member of ud(G), we conclude that

Every member of lsubs( G, Gb) is subsumed by (ap y,). (28)

Now, if r =(ud(G)- lsubs(G, Gb)) is notempty, then define

u= max({j\(xk,yij)eT}), (29)

and suppose (a;„, ym.) e T. By definition of u, m<ku and thus PG(xm, xk) = 0. Furthermore,

since ym. and .v execute on the same processor, PG(yq,ym') ^ 1•Hence,

pG(xm,xk) +pG(yq,ym.)<\ = delay(xm,ym.),

and we have that

Every member of T is subsumed by (jca ,yq). (30)

Observe also that from the definitions of r and u, and from Observation 8(c),
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((Jsubs(G, Gb) * 0) and (T* 0)) => (w = r- 1); (31)

(lsubs(G, Gb) = 0) => (w = A/); (32)

and

(T = 0) =>(/•= 1). (33)

Now wedefine the synchronization graph Z(G) by Z(G) = (V, (£- ud(G)) + P),

where Kand £ are the sets ofvertices and edges in G; P = {d0(x},y,), d0(xk,yq)}, ifboth

lsubs(G,Gb) andT are non-empty; P = {d0(xx,y,)} if T is empty; and P = {</0(^.,y^)}

if lsubs(G, Gb) is empty.

Theorem 7: G/, is a resynchronization of Z(G).

Proof: The set ofsynchronization edges in Z( G) is E0 + Z5, where £0 isthe set ofdelayless syn

chronization edges in G. Since Gh is a resynchronization of G, it suffices to show that for each

e eP.

pGh(src(e),snk(e)) = 0. (34)

If lsuhs(G, Gb) is non-empty then from (27) (the definition ofr) and Observation 8(f),
there must be adelayless synchronization edge e' in Gb such that snk(e') = yM. for some w<lr.

Thus,

p^(A1,y/)<p^(A,,s/r(e')) +pGA(5/7/r(^),y/) = 0+p^(yw.,y,) = 0,

and we have that (34) is satisfiedfor e = (x^Vj).

Similarly if T is non-empty, then from (29) (the definition of u) and from the definition of

2-subsumes, there exists a delayless synchronization edge e' in Gb such that src(e') = xw for

some w > ku. Thus,

PGh(xkuiyq)<pGh(xk,sfv(et)) +pGh(snk(e'),yq) = pCa(aa. ,xw) +0 = 0;
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hence, we have that (34) is satisfied for e = (xku, yq).

From the definition of P, it follows that (34) is satisfied for every e e P. •

Corollary 1: The latency ofZ(G) is no greater than Lmax. That is, LZ{G)(x,, yq) <Lmax.

Proof: From Theorem 7, we know that Gb preserves Z(G). Thus, from Lemma 1, itfollows that

L x(jc,, y )<LG (aj, y ). Furthermore, from the assumption that Gb is an optimal category B

LCR, we have LGh(xx,yq) <Lmax. We conclude that LZ{G)(xvyq) ^Lmax. •

Theorem 7, along with (31 )-(33), tells us that an optimal category BLCR of G isalways a

resynchronization of

(1) a synchronization graph of the form

(K,((£-^(G))+{^0(Al,y/o),Jn(AA.o O^)})), l<cx<M, (35)

or

(2)ofthegraph(F,((£-^(G))+{^0(A1,y/)})), (36)

or

(3) of the graph (V, ((£- ud(G)) +{d0(xku,yq)})). (37)

Thus, from Corollary 1, an optimal resynchronization can becomputed byexamining each

ofthe (M + 1) = (\ud(G)\ + 1) synchronization graphs defined by (35)-(37), computing an opti

mal LCR for each ofthese graphs whose latency is no greater than Lmax, and returning one of the

optimal LCRs that has the fewest number ofsynchronization edges. This is straightforward since

these graphs contain only delayless synchronization edges, and thus the algorithm ofSection 8.2

can be used.
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Recall the example ofFigure 16(a). Here,

ud(G) = {(A5,y,),(A6,y2),(x7,y3),(A8,y4)},

and the set of synchronization graphs that correspond to (35)-(37) are shown in Figure 18(a)-(e).

The latencies of the graphs in Figure 18(a)-(e) are respectively 14,13,12,13, and 14. Since

Lmax = 12, we only need to compute an optimal LCR for the graph of Figure 18(c) (from Corol

lary 1). This isdone by first removing redundant edges from the graph (yielding the graph in Fig-

Id) (e)

Figure 18. The synchronization graphs considered in Algorithm B for the example in Figure 16.
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ure 19(b)) and then applying the algorithm developed in Section 8.2. For the synchronization

graph of Figure 19(b), and Lmax = 12, it is easily verified that the set of vf s is

vl =(^I'M v2 = (*2>>'4)> v3 =(^3'M V4 =(*4>M V5 =(*5» M v6 = (x6*y*)'

If we let

51 = (*1» V3M2 = (*2»-v6)»53 = (X3'-V1^S4 = (*6'-v8)> (38)

then we have,

X(v,)= |5,},x(v2)= {52},x(v3)= {52,53},x(v4) = X(v5) = 0,XO'6) = {*4}. (39)

From (39), the algorithm outlined inSubsection 8.1 for interval covering can beapplied to

obtain an optimal resynchronization. This results in the resynchronization R = {v,, \'3, v6}. The

resulting synchronization graph is shown in Figure 19(c). Observe that the number of synchroni

zation edges has been reduced from 8 to 3, while the latency has increased from 10 to

L = 12. Also, noneof the original synchronization edges in G are retained in the resynchro

nization.

We saythat Algorithm B for general 2LCR is theapproach of constructing the

(a) (b) (c)

Figure 19. Derivation of an optimal LCR for the synchronization graph of Figure 18(c).
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(Iud(G)\ +1) synchronization graphs corresponding to (35)-(37), computing an optimal LCR for

each of these graphs whose latency isnogreater than Lmax, and returning one of the optimal

LCRs that has the fewest number ofsynchronization edges. We have shown above that Algorithm

B leads toan optimal LCR under the constraint that allresynchronization edges have zero delay.

Thus, given an instance of ageneral 2LCR, aglobally optimal solution can bederived by

applying Algorithm A and Algorithm B and retaining the best of the resulting two solutions. The

time complexity of this two phased approach is dominated by thecomplexity ofAlgorithm B,

which is 0(\ud(G)\ N2) (a factor of \ud(G)\ greater than the complexity ofthe technique for
delayless 2LCR that was developed in Section 8.2), where N is the number ofvertices in G.

Since \ud(G)\<N from Observation 8(e), the complexity is 0(N ).

Theorem 8: Polynomial-time solutions exist for the general two-processor latency-constrained

resynchronization problem.

The example in Figure 17 shows how it is possible for Algorithm A to produce a better

result than Algorithm B. Conversely, the ability of Algorithm B to outperform Algorithm A can

be demonstrated through the example of Figure 16. From Figure 19(c), we know that the result

computed by Algorithm B has a costof 3 synchronization edges. The result computed by Algo

rithm A can be derived by applying interval covering to thesubsets specified in (26) with all ofthe

unit-delay edges (s5\ s6\ s7', s$) removed:

X(v,)={5l'},x(v2)={5,',52'},x(v3)={52',53'}

X(v4) = X(v5) = X(v6) = {*/}• <4°)

A minimal cover for (40) is achieved by {x( v2), x(v3), x(va) }> and the corresponding synchro

nization graph computed by Algorithm A is shown in Figure 20. This solution has acostof 4 syn

chronization edges, which is onegreater than that of the result computed by Algorithm B for this

example.
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9. A heuristic for latency-constrained resynchronization

In this section, wepresent the application of awell-known set covering heuristic to the

latency-constrained resynchronization problem, and we illustrate the ability of this method to sys

tematically trade off latency for synchronization overhead. Our heuristic for latency-constrained

resynchronization is based on the simple greedy approximation algorithm for set covering that
repeatedly selects asubset that covers the largest number ofremaining elements, where aremain
ing element is an element that is not contained in any ofthe subsets that have already been
selected. In [18,20] it is shown that this set covering technique is guaranteed to compute asolu-

Figure 20. The solution derived by Algorithm A when it is applied to the
example of Figure 16.
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tion whose cardinality is no greater than (ln(|Al) + 1) times that of the optimal solution, where

X is the set that is to be covered.

To adapt this set covering technique to latency-constrained resynchronization, we con

struct an instance of setcovering by choosing the setX, the setof elements to be covered, to be

the set of synchronization edges, andchoosing the family of subsets to be

T= {x(v„ v2)|((v,, v2 e V) and (pG(v2, v,) =cc) and (Z/(v„ v2) <Lmax))}, (41)

where G = (V, E) is the input synchronization graph, and V is the latency of the synchroniza

tion graph (V, {E+ {(v,, v2)}}) that results from adding the resynchronization edge (v,, v,) to

G. Assuming that 7^((7)(x,.v) has been determined for all *, ve V,V can easily be computed
from

Z/(v„v2) = max({(THG)(v,vx)+TnG)(v2,oL)),LG\) , (42)

where u is the source actor in /f (G), oL is the latency output, and LG is the latency of G.

The middle constraint, pG( v,, v,) = x, in (41) ensures that inserting the resynchroniza

tion edge (\s, v,) does not introduce a cycle, and thus that itdoes not reduce the estimated

throughput.

Ourheuristic for latency-constrained resynchronization determines the family of subsets

specified by (41), chooses a member of this family that has maximum cardinality, inserts the cor

responding delayless resynchronization edge, removes all synchronization edges that it subsumes,

and updates the values Tfi(G)(x,y) and pG(x,y) for the new synchronization graph that results.
This process is then repeated on the new synchronization graph, and it continues until it arrives at

a synchronization graph for which the computation defined by (41) produces the empty set —that

is, the algorithm terminates when no more resynchronization edges can beadded without increas

ing the latency beyond Lmax. Figure 21 gives a pseudocode specification ofthis algorithm (with

some straightforward modifications to improve the running time). Fact 1guarantees that theresult

returned by latency-constrained-resynchronization is always a valid resynchronization.

Clearly, each time a delayless resynchronization edge isadded toa synchronization graph,

the connectivity of the graph is increased byat least one, where the connectivity is defined to be
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function latency-constrained-resynchronization
input: a synchronization graph G = (V, E)
output: an alternative synchronization graph that preserves G.

compute pG(x, y) for all actor pairs x,y € V

compute Tf{C)(x,y) for all actor pairs x,ye(Vu{v})
complete = FALSE

While not (complete)

best = NULL, M = 0

for x, y e V

if ((pg(v,jc) = oc)and(I'(.v,y)<Lmax))

X* = X((*. v))

if (|x*l>M)

M = 1x1
best = (.y, v)

end if

end if

end for

if (best = A'lrZ.I)

complete = TRUE
else

£ = E-x(best)+ \d0(best))

G = (F,£)

for .v. ve(Fu{u}) /* update 7>(G) 7

7"„™(*<r) = '«aY({7/y(C)(Ar,v),7;/y(C7)(ar,5/r(^5/))+ Tfi{C)(snk(best), y)})
end for

for.v.ve K /* update pc 7

pWH.(jr,.v) = min({ pc(x,y), pc(x, src(best)) +pc(snk(best),y)})
end for

PC = P/tfu ' ^/?(C) = 'nen
end if

end while

return G

end function

Figure 21. Aheuristic for latency-constrained resynchronization.

62



number of ordered vertex pairs (x, y) that satisfy pG(x, y) = 0. Thus, the number of iterations

of thewhile loop in Figure 21 is bounded above by \V\~. The complexity ofone iteration ofthe

while loop is dominated by thecomputation required toupdate the longest and shortest path quan-

tities Tg(G) and pG respectively, both ofwhich can be accomplished in 0(\V\ ) time. Thus, the
time-complexity of the overall algorithm is 0(\V\ ). In practice, however, thenumber ofresyn-

chronization steps is much lower than |V\ since the constraints on the latency and on the intro

duction of cycles severely limit the number ofresynchronization steps. Thus, our Oi\V\ ) bound

can be viewed as a very conservative estimate.

9.1 Example

Figure 22 shows the synchronization graph topology that results from a six-processor

schedule ofa synthesizer for plucked-string musical instruments in 11 voices based on the Kar-

plus-Strong technique. Here, exc represents the excitation input, each vf. represents the computa

tion for the /th voice, and the actors marked with "+" signs specify adders. Execution time

estimates for the actors are shown in the tableat the bottom ofthe figure. In this example, exc and

out are respectively the latency input and latency output, and the latency is 170. There are ten

synchronization edges shown, and these are all irredundant.

Figure 23 shows how the number of synchronization edges in the result computed by our

heuristic changes as the latency constraint varies. If just over 50 units of latency can be tolerated

beyond the original latency of 170, then the heuristic is able to eliminate asingle resynchroniza

tion edge. No further improvement can be obtained unless roughly another 50 units are allowed,

at which point the number of synchronization edges drops to 8, and then down to 7 for an addi

tional 8 time units ofallowable latency. If the latency constraint is weakened to 382Just over

twice the original latency, then the heuristic isable toreduce the number of synchronization edges

to 6. No further improvement is achieved over the relatively long range of (383 - 644). When

Lmax >645, the latency of the pipelined solution (see Section 6) ispermissible, and this allows

theminimal costof 5 synchronization edges for this system,which is half that of the original syn

chronization graph.

Figure 24 illustrates howthe placement of synchronization edges changes as theheuristic
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actor execution time

exc 32

Vi,V2, ....V^ 51

out 16

+ 04

Figure 22. The synchronization graph that results from a six processor schedule
of a music synthesizer based on the Karplus-Strong technique.
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Figure 23. Performance of the heuristic on the example of Figure 22.
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Figure 24. Synchronization graphs computed by the heuristic for different values of L,
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is able toattain lower synchronization costs. Each of the four topologies corresponds toabreak

point in the plot of Figure 23. For example Figure 24(a) shows the synchronization graph com

puted by the heuristic for the lowest latency constraint value for which itcomputes asolution that

has 9 synchronization edges.

Note that synchronization graphs computed bythe heuristic are not necessarily identical

over any ofthe Lmax ranges in Figure 23 in which the number ofsynchronization edges is con
stant. In fact, they can be significantly different. This isbecause even when there are noresyn

chronization candidates available that can reduce the net synchronization cost (lx(*)l >1), the

heuristic attempts to insert resynchronization edges for the purpose of increasing the connectivity;

this increases the chance that subsequent resynchronization candidates willbe generated for

which lx(*)| >1. For example, Figure 25, shows the synchronization graph computed when

L„ xis just below the amount needed to permit the pipelined solution. Comparison with the
graph shown in Figure 24(d) shows that even though these solutions have the same synchroniza

tion cost, the heuristic had much more room to pursue further resynchronization opportunities

Figure 25. The synchronization graph computed bythe heuristic for Lmax = 644
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with Lmax = 644, and thus, the graph ofFigure 25 is more similar to the pipelined solution than

it is to the solution ofFigure 24(d).

Earlier, we mentioned that our 0(\V\ ) complexity expression is conservative since it is

based on a |V\ bound on the number of iterations of the while loop in Figure 21, while in prac-

tice, the actual number ofwhile loop iterations can beexpected to be much less than |V\ . This

claimis supported by ourmusic synthesis example, as shown in the graph ofFigure 26. Here, the

X-d\\s corresponds again to the latency constraint Lmax, and the /-coordinates give thenumber

ofwhile loop iterations that were executed by theheuristic. We seethat between 5 and 13 itera

tions were required for each execution ofthe algorithm, which is not only much less than

|y\2 = 484, it is even less than |V\. This suggests that perhaps asignificantly tighter bound on
the number of while loop iterations can be derived.

10. Conclusions

This paper develops a post-optimization called resynchronization for self-timed, embed

ded multiprocessor implementations. The goal of resynchronization is to introduce new synchro

nizations in such a way that the numberofadditional synchronizations thatbecome redundant

exceedsthe numberofnew synchronizations that are added, andthus the net synchronization cost

is reduced. Two specific resynchronization problems are addressed. In the first context, which we

refer to here as unbounded-latency resynchronization, we impose the constraint that resynchroni

zation cannot degrade the throughput of the original schedule, and to ensure this constraint effi

ciently, we restrict resynchronization to involve only feedforward synchronization edges. In the

second context, called latency-constrained resynchronization, we assume the same constraints

and we consider a user-specified upper bound on latency that the resynchronized solution must

respect.

We showthat the general forms ofboth problems are intractable by deriving reductions

from the classic set covering problem. For unbounded-latency resynchronization, we define a

broad class of systems for which optimal resynchronization can be performed in polynomial time

by a method that is roughly equivalent to pipelining. For latency-constrained resynchronization,
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Figure 26. Number of resynchronization iterations versus Lmax for the example of Figure 22.
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we develop polynomial time techniques to optimally resynchronize two-processor systems.We

also develop heuristic techniques for both problem contexts. For the unbounded-latency case, we

showthata heuristic framework emerges naturally from the correspondence to set covering.

Given an arbitrary heuristic for set covering, this framework generates a heuristic for unbounded-

latency resynchronization. Based ona simple approximation algorithm for setcovering that was

developed previously, we propose aheuristic for latency-constrained resynchronization, and

through an example of amusic synthesis application, weillustrate the performance of our imple

mentation of this heuristic. The results demonstrate that the technique can efficiently trade off

between synchronization overhead and latency.

Several useful directions for future work emerge from our study. These include investigat

ing whether efficient techniques can bedeveloped that consider resynchronization opportunities

within strongly connected components, rather than just accross feedforward edges; and develop

ing more general measures of latency that can be computed efficiently. There may also be consid

erable room for improvement over our proposed heuristics, which are straightforward adaptations

of existing set covering algorithms. In particular, itmay be interesting to search for properties of

practical synchronization graphs that could be exploited in addition to the correspondence with

set covering. A related direction for further study is the exploration of additional useful special

cases that can be resynchronized optimally, for both theunbounded-latency and latency-con

strained contexts.

Appendix A

ProofofArgument #<5 in Figure 12. By contraposition, we show that (w, z) cannot contribute to

the elimination of any synchronization edge of G, and thus from Fact 2, it follows from the opti-

mality of R that (w, z) e R. Suppose that (w, z) contributes to the elimination of some synchro

nization edge s. Then

P/?(G)(5'r(5)'M") = P/?(C)(r> snk(s)) = 0. (43)
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From thematrix in Figure 13, we see that noresynchronization edge can have z as the source ver

tex. Thus, snk(s) e {z,out}. Now, if snk(s) = z, then s = (v, z), and thus from (43), there isa

zero delay path from v to w in R(G). However, the existence of such apath in R(G) implies the

existence of apath from in to out that traverses actors v, w, s/,, sx,, which in turn implies that

LR,G)(in, out) >104, and thus that R is not avalid LCR.
On the other hand, if snk(s) = out, then src(s) € {z, sx,, sx2, sx3, sxA}. Now from

(43), s/r(s) = z implies the existence ofa zero delay path from z to w in R(G), which implies

the existence ofa path from in to out that traverses v, w, z,sf,, sx,, which in turn implies that

Lmax >204. On the other hand, if sic (s) = sx,. for some /, then since from Figure 13, there are
no resynchronization edges that have an sx,. as the source, it follows from (43) that there must be

azero delay path in R(G) from out to w. The existence of such apath, however, implies the

existence ofa cycle in R(G) since pG(w,out) = O.Thus, s/?A'(s) = out implies that R is not

an LCR. •

Appendix B

ProofofObsen-ation 3: Since R is an optimal LCR, we know that e must contribute to the elim

ination of at least one synchronization edge (from Fact 2). Let s besome synchronization edge

such that e contributes to the elimination of s. Then

pR{G)(src(s),src(e)) = pR(G)(snk(e), snk(s)) = 0. (44)

Now from Figure 13, it is apparent that there are no resynchronization edges in R that have sx, or

out as their source actor. Thus, from (44), snk(s) = sx, or snk(s) = out. Now, if

snk(s) = OM?,then s;r(s) = sxk for some k* i, or srv(s) = z. However, since no resynchro

nization edge has amember of {sx,, sx2, sx3, sx4} as its source, we must (from 44) rule out

src(s) = sxk. Similarly, if src(s) = z, then from (44) there exists azero delay path in R(G)
from z to stj, which in turn implies that LR{G)(in, out) >140. But this is not possible since our
assumption that R is an LCR guarantees that LR{G)(in, out) <103. Thus, we conclude that
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snk(s) * out, andthus, that snk(s) = sx,.

Now (snk(s) =sx,) implies that (a) s = ext or(b) s = (s/A., sx,) for some A' such that

x,. € tk (recall that x, g tj, and thus, that k*j).lfs = (s/A., sx,), then from (44),
pR{G)(stk, stj) = 0. It follows that for any member x, e tj, there is azero delay path in R(G)
that traverses stk, stj and sx,. Thus, s = (stk, sx,) does not hold since otherwise
LRiG)(in, out) >\40.

Thus, we are left only with possibility (a) — s = exi. •

Glossary

\S\: The number ofmembers in the finite set S.

p(x,y): Same as pG with the DFG G understood from context.

pG(x, v): If there is no path in G from x to v, then pc(x, y) = oc; otherwise,
pG(x, v) = Delay(p), where p is any minimum-delay path from x to y.

delay(e): The delay on a DFG edge e.

Delay(p): Given a path p, Delay(p) is the sum of the edge delays over all edges in
P-

dn(u, v): An edge whose source and sink vertices are u and v, respectively, and
whose delay is equal to n.

X : The maximum cycle mean ofa DFG.

%(p): The set of synchronization edges that are subsumed bythe ordered pair of
actors p.

<(p,, p2,..., pk)): The concatenation of the paths p,, p2,..., pk.

2LCR: Two-processor latency-constrained resynchronization.

connectivity: The connectivity ofa DFG G is the number of ordered vertex pairs (x, y)
in G that satisfy pG(x,y) = 0.

contributes to the elimination'.
If G is a synchronization graph, s is a synchronization edge in G, R is a
resynchronization of G, s' e R, s' * s, and there is a path p from stv(s)
to shA-(s) in R(G) such that p contains s' and Delay(p) < delay(s), then
we say that s' contributes to the elimination of s
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critical cycle,

cycle mean:

eliminates:

end(v, k):

estimated throughput

execution source:

FBS:

feedback edge:

feedforward edge:

FFS:

LCR:

maximum cycle mean:
Given a DFG, the maximum cycle mean is the largest cycle mean over all
cycles in the DFG.

resynchronization edge:
Given a synchronization graph G and a resynchronization R, a resynchro
nization edge of R is any member of R that is not contained in G.

RIG):

SCC:

A fundamental cycle in a DFGwhose cycle mean is equal to the maximum
cycle mean of the DFG.

The cycle meanofa cycle C in a DFG is equal to T/D, where T is the
sum ofthe execution times ofall vertices traversed by C, and D is the sum
ofdelays ofall edges in C.

If G is a synchronization graph, R is a resynchronization of G, and s is a
synchronization edge in G, we say that R eliminates s if s g R.

The time at which invocation k ofactor v completes execution.

Given a DFG with execution time estimates for the actors, the estimated
throughput is the reciprocal of the maximum cycle mean.

In a synchronization graph, any actor that has no input edges or has non
zero delay on all input edges is called an execution source.

Feedback synchronization. A synchronization protocol that may be used
for feedback edges in a synchronization graph. This protocol requires two
synchronization accesses per schedule period.

An edge that is contained in at least one cycle.

An edge that is not contained in a cycle.

Feedforward synchronization. A synchronization protocol that may be used
for feedforward edges of the synchronization graph. This protocol requires
four synchronization accesses per iteration period.

Latency-constrained resynchronization. Given a synchronization graph G,
a latency input/output pair, and a positive integer Lmax, a resynchroniza
tion R of G is an LCR if the latency of R(G) is less than or equal to L,max

If G is a synchronization graph and R is a resynchronization of G, then
R(G) denotes the graph that results from the resynchronization R.

Strongly connected component.
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selfloop: An edge whose source andsink vertices are identical.

start(v, k): The time at which invocation A ofactor v commences execution.

subsumes: Given a synchronization edge (x,, x2) and an ordered pair ofactors
(v,,^2)' (^i*^) subsumes (x,,x2) if
P(*i,y}) + Pfe *2)* delay((x},x2)).

t(v): The execution time orestimated execution time ofactor v.

Tji(G)(x, y): The sum ofthe actor execution times along apath from x to y in the first
iteration graph of G that has maximum cumulative execution time.
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