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CHAPTER1

Introduction

In recent years, there has been explosive growth in the computer, wireless communication,
multimedia, and networking industries. As a result, computers are becoming more powerful and
more networked-applications are hamessing this power by incorporating video, text/graphics,
speech and/or handwriting recognition, and users are demanding that they be able to run these
applications anytime and anyplace with no loss of processing power. However, in today’s wireless
computing environment, once the user breaks physical connection from the network, he is no

longer able to run these types of high bandwidth applications.

The Infopad project [Sheng92] attempts to address this issue and more specifically, the radio
project attempts to address one aspect of this equation, the high speed indoor wireless link. The
goal of the Infopad CDMA radio project [Sheng95] is to support up to 50 users per picocell where
each user can receive raw data at the rate of 2 Mby/s. This requires a chipping rate of 64 MHz and a
sampling rate of 128MHz for timing recovery. The data is modulated using DQPSK modulation
which encodes 2 bits/symbol and is transmitted at a symbol rate of 1IMHz, thus achieving a 2Mb/s

raw data rate.




The goal of this research is the development of the digital baseband circuitry used in the CDMA
radio’s receiver chip. The baseband circuitry must perform the following functions: initial coarse
timing recovery to align the receiver and transmitter to within 1 chip, data recovery, detection of
other nearby basestations, handoff, and fine (chip) timing recovery to keep the receiver and
transmitter aligned to within 1/4 a chip. Since this chip will be used in a mobile, battery-operated
receiver, minimizing power consumption is also of the utmost importance. Several techniques for
reducing power were used, including architectural reconfiguration, use of multiple voltage levels,

and logic design.

This paper is organized in the following manner: chapter 2 gives some background information
and motivation for choosing CDMA, as well as a brief introduction to direct-sequence spread
spectrum. Chapter 3 provides an overview of the chip as well as a more in-depth treatment of the
backend's core functions: lock, digital phase lock loop, data recovery, and handoff. Chapters 4 and
5 provide external and internal documentation for the chip. Lastly, conclusions are drawn and

future work is presented in Chapter 7.

This project attempts to show that it is possible to not only develop the required baseband DSP
circuitry to support the above specifications, but also that they can be implemented as a low-

power, low-cost custom-ASIC.




CHAPTER 2

Motivation/Background

This section is intended to help the reader understand where the DSP backend section fits into
the overall radio system, and to motivate why certain hardware blocks exist and design decisions
were made. This section first gives a motivation for choosing CDMA over other multiple access

schemes, then gives some background information on spread sprectrum.

2.1 Why Choose CDMA?

When choosing a multiple access scheme to use, it is very important to consider what type of
enviroment the system will be operating in. The environment in which the Infopad radio downlink
will be used is an indoor office environment with a picocell radius of 5 meters. The primary
interference in this type of environment is due to multipath interference. The difference in time
between the arrival of a signal and it’s last perceivable multipath arrival is called delay spread.
From statistical measurements done in [Seid91], it was found that typical delay spreads range from

20ns to 60ns with Rician-distributed fading characteristics.




With this in mind, the viability of several different multiple-access techniques for the downlink
was explored, including time-division multiple access, frequency-division multiple access,
frequency hop spread spectrum, and direct sequence spread spectrum [Sheng91]--direct sequence
spread spectrum was found to be the most éuimble. Direct sequence is effective because of its
ability provide mulitple access as well as its abiltiy to resolve multipath arrivals through ratio
combining using a RAKE receiver [Proak89]. Initial simulations [Teus94] confirmed this
effectiveness by showing that a RAKE can lower the BER by more than three orders of magnitude.

This result can be seen in Figure 2.1. It should be noted that near-far effects do not have to be

10400  p T Y —
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FIGURE 2.1 : BER vs. Number of users. This

simulation assumed there was no noise in the
channel {Wire94].

taken into consideration because the radio is in broadcast mode only.

A direct sequence spread spectrum system can not only support multiple user access, but it also
inherently provides users with a high tolerance to interfering signals, and a high degree of

resistance to narrowband nulls in the frequency résponse of the channel. Another advantage of




DS-CDMA, it the ability to provide variable quality of service (QOS) through power control.
Algorithms have been developed [Yun94] which can accept QOS specifications for different
substreams, assign them appropriate power levels, and can determine whether the system can add

or must drop substreams to maintain the desired QOS.

2.2 Background on Spread Spectrum

Direct sequence spread spectrum is a technique which provide immunity to noise, resistance to
jamming, and resistance to multipath fading. The term spreading refers to spreading of the signal

over a frequency band.

The basic method which a direct sequence spread spectrum (DS-SS) system uses to “spread™ the
data is to multiply the symbol or data stream of rate 1/T;, by an independent, binary antipodal',
pseudorandom (PN) sequence2 of rate 1/T, (called the chipping rate) where T, << Ty. Any bit at
the chipping rate is called a chip and the ratio of T}, to T, is called the processing gain or spreading
factor. The increase in performance obtained in a DS-SS system through the processing gain can
be used to allow multiple users to occupy the same channel bandwidth provided that each user’s

signal has a unique pseudorandom signature.

One property, however, which PN sequences generally lack is good cross-correlation which is
crucial in a multiaccess system to differentiate between the users’ signals. One technique to
guarantee that users’ signals are differentiable, while mantaining the pseudorandomness of the PN
sequence, is to overlay an additional user-specific code. One such code is called a Walsh code. The
code sequence has rate 1/T, and length equal to T/T.. Walsh codes have the property of being

perfectly orthogonal to one another. In other words, the cross-correlation/inner product of two

1. With binary antipodal signaling a “1” is represented as a ““-1” and a “0” is repesented as a “1".

2. A PN sequence is also called a maximal length shift register sequence (see Appendix A for a
description).
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distinct Walsh codes should equal 0. An example set of 3-bit Walsh codes can be seen in Figure

2.2. To see the orthogonality, we take the inner product of Walsh code 1 and Walsh code 3. The

+] +1
B -1 e —— )

USER 0 USER 1
+1 +]
-1 ‘ b -1

USER 2 USER 3
+1 — P——— +1
1 -1

USER 4 USER §
+1 — pr— +]
8] -1

USER 6 USER 7

FIGURE 2.2 : An example 3-bit (8 chip) Walsh sequences.

resultis 1+ 1+ 1-1-1-1-1+ 1 which sums to 0. The inner product of a Walsh code with itself
is 2", where n is the number of bits in the walsh number. In this case, n equals 3, so the inner
product is 8. Appendix B describes how Walsh codes are generated. This type of communication
in which each user has their own distinct signature for transmitting over a common channel

bandwidth is called code division multiple access (CDMA).

To recover the signal on the receiver side, the signal must be despread. This is done by multiplying
the received signal by the same PN and Walsh sequence which were used to originally spread the
signal in the transmitter, assuming here that the receiver and transmitter are synchronized. The
result is then accumulated for the number of chips equal to the spreading factor. By looking at the
accumulated result, the bit which was transmitted can be determined. In this ideal case, an
accumulated result of -(T;,T,) would mean a -1 was transmitted, while an accummulated result of
(Ty,T;) would mean a +1 was transmitted. Figure 2.3 illustrates this process for a spreading factor
of Ty, T, = 8. If there is no noise in the channel, then s(t) should equal s’(t)’PN-W1. This that
means the accum.ation of s’(t)*PN*W1 over 8 chips will be either a -8 or +8 signifying a -1 or +1

respectively.
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FIGURE 2.3 : Shows the process of spreading by a factor of 8 and
despreading user data through multiplication by PN and Walsh
sequences. This example assumes there is no noise in the channel.

In the real world, the received signal will not be ideal and will consist of the coherent data term
and an incoherent error term. The error term is due to multipath interference, adjacent cell
interference, thermal noise and ADC quantization noise. If the power of the data term is 1 and the
noise power is o2, then the SNR is 1/0%. When this signal is multiplied by the PN and Walsh and
then correlated in the receiver, the coherent portion’s power (the power of the user’s data) will
increase by the square of the spreading factor (nsf ) while the incoherent portion’s (the error term)
power will increase by the spreading factor (ng). Thus, the SNR after correlation will be l-nsf /

cz-nsf = ny/o2. In other words, the SNR after correlation has increased by a factor of ng;. An




example of the this noise reduction can be seen in Figures 2.4 and 2.5. For illustrative purposes,
the error term is an analog sine wave and only a PN sequence is used. Figure 2.4 shows what
would happen if the sine wave was integrated directly and Figure 2.5 demonstrates how the effect

is diminished through the multiplication of a PN sequence.
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FIGURE 2.4 : Shows effect of error term,
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FIGURE 2.5 : Shows how error is reduced
through multiplication by PN sequence.

2.3 Appendix A-Maximal Length Shift Register
Sequences

A maximal length shift register (MLSR) sequence are pseudorandom (PN) because they easily
synthesize repeating sequences that appear to be statiétically white over short subsequences. A

MLSR sequence is generated by a feedback shift register which is govemed by the relation.




X = hl-xk_IG...Ghn-xk_n (EQ 2.1)

where the output x, and the coefficients are binary assuming values of *0” and “1”. The zero
coefficients correspond to no feedback tap, whereas the one coefficients correspond to the direct
connection of the shift register output to the modulo-two summation. A representation of this

above relation can be seen in Figure 2.6. If we add x; to both sides of eqn. 2.1, remembering that

Xp. Xy . . X
"_k. D kl. D k-2 v xit:l. D k-n
hy hy hyy hy

PP - ~{Pl——

FIGURE 2.6 : A linear feedback shift register with binary input. The coefficients
are binary, and the summation is modulo-two.

xx ® xy =0, we get
% ®h -x &.Oh x, =0 (EQ22)
In other words,
x*h, =0, (EQ2.3)
if we define hy=1 and h,, = 0 form < 0 and m > n and we interpret the summation as a

convolution in the modulo-two sense. Thus, the D-transform of egn. 2.3 is

KD)X(D) = 0 ‘ (EQ 2.49)

where

hD)=10hD®...®h D" (EQ2.5)

is the transfer function of the shift register. The D-transform is just like the Z-transform except that
the additions ére modulo-two and the symbol D is used instead of z'). The transfer function h(D)
for the generator is a polynomial of degree n (we assume that h, = 1) with binary coefficients is

given the name generator polynomial.
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Not all generator polynomials produce a maximal length sequence in which the output period is r =
2" - 1. A generator polynomial of degree n will only produce a maximal length sequence if it does
not divide any polynomial (1 & D™) form <2" - 1. A table of maximal length sequence generating
polynomials can be seen in Table 2-1.

Table 2.1 : Generating polynomials of various orders. Each entry in the table when converted to
binary specifies the coefficients of the polynomial h(D).

Order Polynomial Order Polynomial
2 7 11 805
3 B 12 1053
4 13 13 201B
5 25 14 4443
6 43 15 8003
7 89 16 1100B
8 11D 17 20009
9 2n 18 40081
10 409 19 80020

2.3.1 Properties of an PN Sequence

Ideally, a PN sequence of length *“r” should have the following properties [1]:

» Relative frequencies of “-1" and “1” are each 1/2.

« Run lengths (of -1's or 1°s) are as expected in a coin-flipping experiment. In other words,
Prob(n -1°’s) = Prob(n 1’s) = (1/2)".

« Will see all possible combinations of length log,”r” (except the all-zero) in sequence.

« If the random sequence is shified by any non-zero number of elements, the resulting sequence
"~ will have an equal number of agreements and disagreements with the original sequence.

» Almost perfect autocorrelation properties:

r, 1=0

p(1) = {_; 120 (EQ 2.6)

The first four properties are necessary to make the resulting signal (the multiplication of the data
stream by the PN sequence) look as Gaussian or white as possible. The whiter the transmitted
signal, the more constant its power spectral density (PSD) will be over the band of interest. By

having a constant PSD, no one narrowband null in the channel’s frequency response will have
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more of a deleterious effect on the received signal than any other. The drawback to this technique
is that the signal’s SNR takes a hit®. The final property, almost perfect autocorrelation, is useful
for synchmnization between the transmitter and receiver. Unfortunately, in our system because we
overlay the Walsh sequence on top of the PN sequence. This compromises the ideality of the PN

sequence and correspondingly it’s properties.

2.4 Appendix B-Walsh Code Generation

Walsh Codes are a set of orthogonal functions developed by Joe Walsh in 1973. A good
discussion of the theory behind Walsh functions can be found in [Beau84). The Walsh code
number used in the Infopad is 6 bits, which produces a 64 bit length Walsh sequence. This
appendix will only discuss how Walsh sequences are generated and will focus on three bit walsh

numbers for simplicity.

The technique which the Infopad demodulator chip employs to generate Walsh sequences is to use
the difference between successive Gray codes. Table 2-2 shows a three bit Gray code sequence and
the difference between successive elements. A ‘1’ in the difference entry signifies that bit in the

Table 2.2 : Describes generation of Walsh sequence for user 5 out of 8.

Input of Toggle
Grey Code | Difference b/w successive gray Flip-Rip Output of Toggle
Elements code elements (SOP with Flip-Flop
walnum =*“101")
000 100 1 1
001 001 1 0
011 010 0 )
010 001 1 ]
110 100 1 0
11 001 1 1
101 010 0 0

3. This is in contrast to a frequency-hop spread spectrum system where the BER will be extremely high if
the current frequency which has been hopped into lies in a null. However, a frequency hop signal’s BER
will be lower than that of a direct-sequence signal when the signal gets through.
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Table 2.2 : Describes generation of Walsh sequence for user 5 out of 8.

Grey Code | Difference b/w successive gray

current Gray code entry is different from the previous entry. For example, the difference between
Gray codes 010 and 110 is 100 which signifies that only the msb has changed. Thus, the difference
entry is 100. Because Gray codes are designed so adjacent entries only differ by one bit, the

difference code should have only one ‘1’ for each entry.

The next step is to generate a sum-of-products with the Walsh number and use the result as the
input to a toggle flip-flop. In this case, since we are using a three-bit walsh number, the equation

would look like the following:
Ty = walnum, - diff, + walnum, - diff) + walnum,, - diff, ~(EQ2.7)

The output of the toggle flip-flop is the Walsh sequence. Examples of 3-bit Walsh sequences can
be seen in Figure 2-2 in Section 2.2 This algorithm can be implemented in various ways in

hardware. One way can be seen in Figure 2.7.
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FIGURE 2.7 : Hardware implemention of a Walsh code generator.
The user’s Walsh number (WAL[2:0]) determines which Walsh
sequence will be output [Walsh73].




CHAPTER 3

Chip Overview

As mentioned in the previous two chapters, the goal of the Infopad CDMA radio project is to
provide for up to 50 users per basestation where each user can receive raw data at the rate of 2Mb/
s. The radio uses orthogonal codes called Walsh codes to differentiate the users and a
pseudorandom noise (PN) sequence to spread/despread the data as well as provide a pilot tone for
synchonization and channel estimation. The data itself is encoded using DQPSK which provides
protection against oscillator mismatch ahd slow channel variations. To meet these specifications,
the radio requires a chipping rate of 64 Mchip/second and a transmit bandwidth of around 80-100
MHz.

The digital spread spectrum demodulator, the topic of this thesis, is only a part of the Infopad
CDMA radio receiver. A block diagram of the radio can be seen in Figure 3.1. The receiver in its
final form will be a hybrid or mixed-signal CMOS chip consisting of both analog and digital
circuitry. The analog blocks which precede the demodulator will consist of an off-chip image filter,
an LNA, an off-chip noise filter, a unity gain buffer, analog sampling demoduators, automatic gain

control (AGC) circuitry, and a analog-to-digital converter (ADC). These five blocks plus the off-

14
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Carrier Freguency

(1.088GHz)

Rﬁo
FIGURE 3.1 : Block diagram of the Infopad direct sequence spread spectrum radio.

chip ﬁlteré convert the 1.088GHz RF signal down to two baseband four-bit sign-magnitude
interleaved 128MHz streams. It was determined through simulation work [Teus94] that the
quantization noise introduced by the ADC will begin to be the dominate contributor when the
quantizer order is reduced below four bits. It was found that reducing the order below four bits
significantly impacted the BER, while increasing the number of bits above four did little to
improve performance. The reason why the data representation is sign-magnitude will become
apparent when power issues are discussed. These two streams are then fed to the radio’s digital
backend/demodulator section. A block diagram of the digital backend can be seen in Figure 3.2.

Once the data gets to the demoduator, a variety of operations are performed. First, the two
streams of interleaved 128MHz data from the ADC are converted into 2 parallel 64MHz in-phase
and quadrature phase (1/Q) streams (total of 4 streams of 4 bits each) by the input data mux. Then,
depending on the current mode of the demodulator, various operations may happen. Although the
data recovery unit only requires one 64MHz 1/Q stream, the data has been oversampled by a factor
of two to achieve fine timing recovery which is why the ADC output is two 128MHz streams. The
data fed to the lock, data recovery block and the adjacent cell scan block is considered the on-time
data (I, Qo). While the data sent to the DPLL is considered the off-time data (In¢r, Qo).

The first operation which must happen is the mobile must synchronize itself with the
basestation. Because there is no carrier phase-locked recovery loop in the analog section, all of the
synchronization, both initial lock and fine timing adjustment, must be done in the digital backend.

The initial synchronization guarantees that the mobile is locked to within £7.8ns (Tgp/2) to the
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FIGURE 3.2 : Digital baseband receiver architecture Four of the correlators
are shared between the lock block and the channel estimator/adjacent cell scan
blocks [Wire94].

transmitter. After coarse lock, the fine timing adjustment, done by a digitial phase lock loop
(DPLL), periodically attempts (every 1 us) to reduce this offset to within £3.9ns (Tcp;p/4). The
initial synchronization block is described in Section 3.1 and the DPLL is described in Section 3.2.
One can see from Figure 3.2 that the lock block shares hardware with the adjacent cell scan block
and the channel estimation block. Thus, before lock is acquired the four correlators are used for
initial synchronization, and afterwards are used for adjacent cell scan and channel estimation. The
DPLL has two dedicated correlators.

After lock has been achieved, the digital backend must then despread and recover the user
data. This is done by first accumulating the data which has been multiplied by the appropriate bits
from the PN and user’s Walsh sequences for 64 Tcy,;ps. Then, the accumlated I and Q data is fed
into a DQPSK decoder and user data is output at a fate of 2Mb/s. The data recovery block is
described in Section 3.3,

Because the Infopad is operating in a mobile environment, there is no guarantee that it will
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only reside in one cell. A more likely scenario is it would remain in any given cell most of the
time, but move into a new cell some of the time. As a result, the Infopad must constantly scan for
adjacent cells and perform cell handoff when necessary. This is described in Section 3.4.

A more detailed description of the chip’s individual blocks can be found in Chapter 5.

Low-Power Aspects

Beyond achieving functionality at the required thruput, minimizing power consumption was
critical, give the portable nature of the application. The main source of power dissipation in

CMOS circuits is dynamic power comsumed by the switching gates which can be expressed as

2

Pan = Coownr* Vaa - o (EQ3.1)

yn wotal *
where C,,,) is the amount of capacitance switched, Vg4 is the supply voltage, and f, is the clock
frequency [Chand92]. In our system, the clock frequency was fixed, so only the first three
parameters could be varied to minimize power. One can see from eqgn. 3.1, that reducing the supply
voltage by a factor of two would result in a fourfold reduction in power consumption, whereas
reducing the total switcbed capacitance by a factor of two would result only in a twofold
reduction. In the design of the demodulator, both supply voltage reduction and minimization of

switched capacitance techniques were used in order to reduce the demodulator’s overall power

dissipation.

Techniques to lower the supply voltage were explored on both a system and block level basis. On
the system level, three different supply voltage levels, 5V, 3.3V, and 1.5V were used in an attempt
to minimize power consumption. The 5V supply was used to power the clock generating circuitry
which has a critical path of 4 ns, the 3.3V supply was used to power the control circuitry and the
1.5V supply was used to power the correlators. Both the control circuitry and correlators run at 64
MHz. The idea was to give each block of the chip only as much power as needed. These three
voltage levels can be generated using off-chip low-power dc-dc converters [Strat94] and level

converters are used internally to interface blocks with different power supplies. A block diagram
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of a level-converter can be seen in Figure 3.3,

VddH VddL
N —W OUTLCpown

S

FIGURE 3.3 : Block diagram of a up/down level-
converter.

The main block-level modification was done on the correlators. Originally, the correlators were
designed to run off a 3.3V supply. However, it was identified early on that they contributed heavily
to the demodulator’s power consumption. Thus, they were redesigned to use a carry-save adder
archictecture instead of the original ripple-carry adder architecture. This approach effectively bit-
piplines the adder reducing the critical path down to a 1-bit adder and a register. By making this

architectural change, the correlators were able to run off the aforementioned 1.5V supply.

The other strategy to reduce power consumptioh was to reduce the amount of capacitance being
switched. Since the sign of the data is constantly being toggled due to multiplication with the PN
and Walsh sequences, it was found in [Chand92] that using a sign-magnitude number
representation will consume approximately 30% less power than a 2’s complement number

representation for this application.




19

3.1 Coarse Lock Acquisition

When the mobile unit is turned on, it must synchronize itself with the basestation before it can
start receiving user data. This is done by locking onto a pilot tone which is being continuously
transmitted by the basestation. The pilot tone, a PN sequence, is a periodic stream of bits or chips.

It has pseudorandom noise-like properties and good auto-correlation properties. Figure 3.4(a)

32767 32768
-1
Standard PN Sequence (N=32767) Modified PN Sequence (N=32768)
(a) (b)
FIGURE 3.4 : PN Autocorrelation Functions (1-bit data)
[Teus94).

shows an autocorrelation function for a PN sequence of length 32767 (N=32767). In terms of the
transmitted PN sequence, PN, and the PN sequence generated by the receiver, PN; the

autocorrelation function is shown in equation 3.1.

N
Cn= PN PN (EQ3.2)

n=l

If the mobile’s PN generator is in sync with the basestation’s PN generator, then ideally, the
correlation C,,, over one period would equal 32767. If the transmitter and receiver were not in
sync, then ideally the correlation over one pericd would sum to -1. The reason why it is not ideal is
because of multipath inteference (see Section 2.2) and quantization noise. The Infopad’s spread
spectrum radio uses a PN sequence of length N=32768=2"3 with a chipping rate of 64 MHz. One
bit has been added to ease in the hardware implemention and timing. The N=32768 sequence’s
autocorrelation properties are shown in Figure 3.4(b). Because of the excellent autocorrelation

properties of the PN sequence we can compare C;, to a threshold register. With a certain degree of
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confidence, it can be assumed that if C, is greater than the value stored in the threshold register
then lock has been achieved.

Unfortunately, however, when the mobile is first tumed on, the phase relationship between the
receiver’s and transmitter’s PN sequence is unknown. In the worst case, the demodulator would
have to correlate over all the phases of the PN sequence taking approximately 16.77 seconds
(213+215+1/64E6) to acquire lock. This is too long! Fortunately, simulations run in Ptolemy
determined that it was only necessary to correlate over 1024 chips before making the
determination of whether lock has been achieved instead of correlating over the entire length of
the PN sequence of 32768 chips. This reduces the acquisition time by a factor of 32. The
acquisition time was further reduced by a factor of four by using three extra correlators running in
parallel, in which each one is offset in time from its neighbors by one Tcy;p. Thus, with these
changes, the worst case time-to-lock was reduced to approximately 131 ms. A diagram of the

coarse acquistion block can be seen in Figure 3.5. A more detailed block diagram of the long

PN
PN STALL——@ |

UQDATA =4
1024 1024 1024 1024
Phase,, Phase, Phase,_» Phase, 3
1 Y
Irhreshold Rq* comparator comparator comparator comparator

COARSE
LOCK

FIGURE 3.5 : Block diagram from coarse lock acquistion.
The hollow arrow indicates 4-bit 1/Q pair.

correlators can be seen in Figure 3.6. The signal CMPTH_L is fed from each of the long
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FIGURE 3.6 : Block diagram of a multipath correlator.

correlators to the lock circuitry. The other signals, IPQ_OR_I and Q are used for channel
estimation (see Section 3.X). When testing coarse lock acquistion (LOCK = ‘0’), IPQ_OR_I can
be used to evaluate whether the chip is receiving energy or not.

The coarse lock acquisition search algorithm is the following:

() RESET THE PN GENERATOR TO KNOWN STATE (L.E. PHASE). THEREFORE, CORRELATOR WILL COR-
RELATE OVER PHASE,, CORRELATOR] OVER PHASEy.], CORRELATOR; OVER PHASEy. 2, AND
CORRELATOR3 OVER PHASEy 3.

@ RUN CORRELATORS FOR 1024 CYCLES.
® DUMP OUTPUT OF THE CORRELATORS TO LATCHES.

@® COMPARE THE VALUE STORED IN EACH LATCH TO A THRESHOLD REGISTER WHICH INDICATES HOW
MUCH ENERGY IS REQUIRED TO ACQUIRE LOCK. IN OUR CASE, THIS STEP COSTS US 64 CYCLES (1
SYMBOL PERIOD).

® IF ONE OF THE CORRELATED ENERGY VALUES IS GREATER THAN THE THRESHOLD REGISTER, THAN
GOTO @, ELSE GOTO ®.

® STALL THE PN GENERATOR 4 FOUR CLOCK CYCLES AND CLEAR OUR THE CORRELATORS. THIS WILL
SHIFT CORRELATOR FROM PHASE,; TO PHASE,_4, CORRELATOR| FROM PHASEy_; TO PHASE, s
CORRELATOR; FROM PHASE,,.; TO PHASE_ ¢, AND CORRELATOR3 FROM PHASEy_3 TO PHASE 7.
GOTO . NOTE: PHASE. | =PHASE337¢7, PHASE ,=PHASE337¢4. ETC.
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@ STALL THE PN GENERATOR THE NUMBER OF CYCLES EQUAL TO THE CORRELATOR WHICH FOUND
LOCK. C0->DO NOT STALL, C1->STALL 1 CYCLE, C2->STALL 2 CYCLES, C3->STALL 3 CYCLES.
TABLE 3.1 ILLUSTRATES THIS POINT.

recv’ddata | Phase of COPN | Phase of C1 PN | Phaseof C2ZPN | Phaseof C3PN | Stall
D1 4 3 2 1
D2 5 4 3 2
D3 6 ] 4 3
D4 6 s 4 3 X
D5 6 5 4 3 X
Dé 6 5 4 3 X
D7 7 6 5 4
D8 8 7 6 5

Table 3.1 : Ilustrates how stall is used to make CO become the on-time correlator. The numbers
represent the cusrent bit # in the PN sequence (32768 total). In this example, C3 has found lock.
Stalling the receiver’s PN generator for 3 clock cycles causes CO to become the on-time comrelator.
C1, C2, and C3 become multipath estimators after lock.

® GOT LOCK -> START ACQUIRING DATA.

It should be noted that in our system, synchronization does not have to be guaranteed between

mobile units, only between the mobile unit and the basestation.

3.2 Digital Phase Lock Loop

The role of the digital phase lock loop (DPLL) is to maintain synchronization between the

receiver and transmitter after initial lock has been acquired. Misalignment between the receiver
and transmitter can occur for two reasons: (1) coarse lock synchronization only guarantees that the
receiver and transmitter are aligned to within Tep;p/2, (2) due to the mobile nature of the Infopad,
.the channel can vary, and (3) due to oscillator offsets. To reduce the chance of bit errors, it is
desirable to maintain as small an offset as possible.

A high-level block diagram of the DPLL can be see;1 in Figure 3.7. One of the DPLL
correlators receives an I,¢/Qor pair, while the other receives an I,g/Qqgr pair which has been
delayed by Tchip. Both correlators extract the pilot tone information from the off-time data by
multiplying the 1,4/Q, ¢ pair by a bit from the PN sequence, since the pilot tone is the PN sequence

sequenée by itself. The energy from the pilot tone is accumulated for 1024 cycles (16 ps) and then
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FIGURE 3.7 : Block diagram of the digital phase lock loop. Correlates and
compares early and late pilot tone energy to see if clock’s phase should be adjusted
by +Tcpip/4-

dumped into latches. We have assumed that a DPLL with an update period of 16 us will be
sufficient to capture changes in the channel. A comparison is then made using the early and late
pilot tone energies (called E.,y and Ey respectively) in order to determine if and how the
clock’s phase should be adjusted. A block diagram of this comparison circuitry can be seen in
Figure 3.8. The comparison compares the absolute value of the difference between E,qy and Ejpe
(IEgasiy-Enarel) to a threshold register. The signal CMPTH3 shows the result. If the value is greater
than the threshold register, than Ee,yy and Ej, are far enough apart to warrant the clock’s phase
being adjusted. If the value is less, then the clock’s phase should not be adjusted. This prevents
needless ping-ponging when E,jy and Ej,c have similar values. By looking at the sign of Egyyy-
E},te. it can be determined how the clock’s phase should be adjusted. If the sign is positive, then
the system is sampling too late and the phase of the clock should be reduced. If the sign is
negative, then the system is sampling too early and the phase of the clock should be extended.
Figure 3.9 illustrates this point.

Ideally, one would like the DPLL’s granularity for adjusting the phase of the sampling clock to
be of infinite precision. However, this would be prohibitively expensive both in power and
hardware complexity. Instead, a trade-off between granularity and power/hardware complexity
needed to be made. Initially, the DPLL was designed to adjust the phase of the sampling clock by

% Tepip/8 Which required an input clock of 256MHz. This design was soon found to be
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FIGURE 3.8 : Block diagram of DPLL correlators along with backend decision
circuitry. CMPTH3 indicates whether the system clock’s phase should be adjusted.
CMPTH?2 indicates whether the received tone energy is large enough to stay in lock.
Note: CMPTH2 is used in the lock control circuitry, but not the DPLL.

Correlator Outputs In Lock Correlator Outputs In Lock
On-time AN Late (-Tchip/2) Early (+Tchip/2) o/ _On-time
Early (+Tchip/2) Late (-Tchip/2)
Sampling too early Sampling too late
(@ ()

FIGURE 3.9 : Shows idealized pilot tone energy relationships between the
early, late, and on-time correlators. (a) since E,, is less than E;, .., we are
sampling too early, therefore extend phase of the clock. (b) since E.,j, is
greater than E;,;., we are sampling too late, therefore reduce phase of the
clock.

unacceptable because the analog section only required the positive and negative phases of a

128MHz clock. Since only one sinusoidal oscillator was being used, this meant the analog section
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needed to perform a divide by two in order to obtain its two 128MHz clocks. Because of the
analog section had such tight phase offset requirements for the positive and negative phases of its
clock (i.e. their edges had to overlap almost perfectly), the skew introduced by the clock dividers
could not. be tolerated. Thus, a more conservative DPLL granularity of £Tcy;p/4 was choosen
which could be accomplished using a 128MHz input clock. Unfortuanately, due to limations with
Ptolemy simulator [Buck93] using the SDF domain, the effect of different DPLL granularities was
not simulated. There was one benefit, however, which ‘resulted from this change--it was must
easier to build a DQPSK decoder which could handle a +90° shift in it’s coordinate axis, than a

+45° degree shift.

3.2.1 Clock Generation

Although it will be discussed more in detail in Chapter 5, a brief overview of the clock

generator will be presented here. As can be seen in Figure 3.10, there are four phases of a 64MHz

—.I 4ns lq—
CLK_128MHz oI i /1 7511
CLK64_0 i I I N S D
CLK64_1 J L I
CLK64_2 j N R I e SN R
CLK64_3 -+ I 1
Extend Phase by Tey;p/4
CLkésmMHzOUT _I— LT LT
- Use CLK64_0 Use CLKé64_1
Reduce Phase by Tepip/4
‘—
CLK_64MHz_OUT _ T L_1...: I I
(o > >
Use CLK64_0 ' Use CLK64_3
FIGURE 3.10 : Shows how the clock’s phase is adjusted by T -P/4.
For example purposes, it is assumed that CLK64_0 is used initiai’l’y for
both cases.
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clock each offset from each other by Tey;,/4 which are used to produce the final output, a 64MHz
clock. By switching between these four clocks at the appropriate instances, the outputted clock’s
phase can be adjusted by £T.p;p/4. To extend the phase of the clock, switch to
[(NUM_CLOCK cyrrent+1) mod 4]; to reduce the phase of the clock, switch to
[(NUM_CLOCK ¢yrem*+3) mod 4]. Care must be taken not to produce any glitches in the output

clock.

3.3 Data Recovery

Once synchronization has been achieved, the mobile unit can begin recovering user data.
Although this chip is only concemed with data recovery (i.e. despreading and decoding), is it
worthwhile here to first discuss how the data is encoded and why this encoding scheme was

choosen. A discussion of how the data is spread can be found in Section 2.2.

3.3.2 DQPSK Encoding

The oscillators choosen in our system have a typical frequency accuracy of 20 parts/million.
This variation means there will be a slight frequency offset between the carrier frequency and the
sampling frequency for both the in-phase and quadrature signals. Assuming an oscillator of
1.088GHz, the offset would be 21.76kHz. This offset can be viewed as a slowm relative to the
symbol rate, rotation of the DQPSK constellation in symbol space. In other words, the
constellation will rotate 7.8° in 1 ps (64 Tpips-symbol period), 125.2° in 16 ps (1024 Tepips), or
360° in 46us (1/21.76kHz). Because of this frequency offset, differential quadrature phase shift
keying (DQPSK) was choosen as the modulation scheme since it can tolerate slow rotations in the
constellation symbol space and thus the use of a carrier phase-locked recovery loop can be avoided
[Sheng94).. In our case, the symbol rate is 1 Mbaud, so there will be a 7.8° rotation in the symbol
space, which is tolerable.

A DQPSK encoder converts two bits of user data into one complex symbol from the following

set: 0 (1,0), n/2 (0, 1), rx (-1,0), and 3xn/2 (O, -1). The real part is called the in-phase signal (I) and
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the imaginary part is called the quadrature signal (Q). It works by encoding two bits as a phase
offset which is added to the previously transmitted symbol to determine the next transmitted
symbol. The phase offset which should be added to the previous symbol for each combination of
bits is described in the following mﬁle:

Bi,;  Biy 4g
0 0 0°

0 1 90°
1 0 270°
1 1 180°

Example. The following bit pairs need to be transmitted: (0, 0), (1, 1), (1, 0), (1, 0),
(0, 0), (0, 1), (1, 0) (note: the order of transmission is assumed (bit,, . bit,), (bit,,3,
bit,,2), ...). The previous symbol transmitted was m/2. Thus, the next six symbols to

be transmitted would be r/2, 3n/2, &, ®/2, &2, ®, and x/2.

3.3.3 Data Correlation

As discussed in Section 2.2, the method used to recover data is to first multiply the received
signal by the PN sequence and the Walsh sequence assigned to the user, then correlate the results
for 64 Tepips- In our system, there are 64 possible Walsh codes. Walsh code 0 is used for the pilot
tone, Walsh code 1 is used for the control channel, and Walsh codes 2-63 are used for the user data
channels. Because the signal is DQPSK encoded there are actually two streams which need to be
correlated-one for I and one for Q. A block diagram of the data recovery block can be seen in
Figure 3.11. The chips fed to both the I and Q data correlators are 4-bit sign-magnitude numbers.
Since the PN and Walsh sequences are just streams of +1s and -1s, a multiplication by -1 is just a
sign-bit toggle, and a multiplication +1 will cause no sign-bit change. The correlation of a 4-bit

sign-magnitude number over 64 Tcy;,s will produce a 10-bit sign-magnitude result.

3.3.4 DQPSK Decoding

The accumulated I stream value (I,..) and the accumated Q stream value (Q,..) is taken from

the correlators and fed into the DQPSK decoder. Because 1., and Q,.. are composed of the
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FIGURE 3.11 : Data recovery block diagram. Hollow arrow
indicates complex valued data [Teus94).

despread user data plus the spread noise as opposed to only despread user data, their values will be
non-ideal. The error term will be small, and the DQPSK slicer will correctly determine which bits
were transfered.

The slicer makes it’s decision based on the phase difference between the current symbol §
which is defined by 1, +jQ, and the previous symbol 5 which is defined by 1 , +iQ,,. The

angle between the two can be found by performing the following division

S = 1S4l Z(0 -8 ) = M (EQ 3.3)
S, Sl T TR '
The equation can be simplified by multiplying the top and bottom by §_,*/5_*, thus
obtaining the following:
s_n Sml‘ ]n +an ]n-l -jle (lnln-l +QnQn-l) +j(1n-lQn-ann-l)
=== = : . - = EQ 3.4
S S+ La*iQu 1,0 . Real Pant (EQ3.4)

The angle is defined by the numerator and thus the denominator is not needed. In actuality, we
do not need to know the angle per se, but only the relationship between the absolute values of the
real and imaginary parts of the numerator and their sign. The following table describes the

decision regions and shows how we can use the absolute values and signs of the real and
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imaginary parts to make a decision:

Q
- td
. Output . QUAD2 ’
Quadrant Phase Diference Check (Bitye; Bity) \\\ ,’/

1 45°<Bg<45°  Ra> lmgl Revr ©0 , 8 - 28 '
2 45°<8g<135°  llmgl> Rel, Img+ . 3 ,%\ ]
3 135°<Ag€225°  Ilmgl> Rel, Img- an e N
4 -135°< 89S —45°  [Rel>limgl,Re- .9 o7 QUpDa %\

Note: Re = 11, ,+Q,Q,, and Im = 1_,Q,-1,Q,,.

The one drawback of using differential encoding is the BER for DQPSK is 3dB lower than the

SNR for coherent QPSK. This is because an error in the n bit affects the difference between not

just the n™ bit and the n-1'" bit, but also between the n'! bit and the n+1" bit. This is illustrated in

the following example:

Example. The symbols n/2, n/2, 3n/2, =, n/2, n/2, &, and n/2 are transmitted. However,
due to multipath interference, the symbols /2, n/2, 3n/2, 3n/2, /2, n/2, 7, and ®/2 are
received. As a result, the outputted bits are (0,0), (1,1), (0,1), (0,1), (0,0), (0,1), and (1,0)
in which bits 6and 7 are incorrect. If QPSK encoding was used, then only a 1 bit error

would have occurred.

3.3.5 Can a RAKE! help?

The signal being transmitted to the users is coming from one source--the basestation.

However, because of reflections from walls, ceilings, people, and fumiture, there is attenuation

and multipath delay of the arriving signal. Hence, at any instant of time, the received signal is not

only composed of the primary line of sight component, but is also composed of several secondary

components due to reflections. The time between when the transmitted signal first arrives at the

receiver and the time when the last multipath arrival is received is called the delay spread. When

the delay spread of the channel is greater than the symbol period, intersymbol interference (ISI)

1. The matched filter demodulator is called a RAKE correlator because of the resemblance of the tapped-delay-line
matched filter to an ordinary garden rake. That is, the RAKE matched fileter/correlator resembles a garden rake in the

way it collects the signal energy from all the resolvable multipath signal components [Proak89].
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ensues. Measurements done by [Seid91] have shown the delay spread for an indoor channel to be
between 20ns and 60ns. Since the signal is only resolvable at multiples of the chip time, Tep, the

number of resolvable multipaths is equal to the following equation: .

N= Tdehyspmd

In our case, since Tyejayspread aNd Tchip €qual 40ns and 16ns respectively, the number is

/Tdn'p"'l (EQ 3.5)

resolvable multipaths is approximately three. If nothing is done, then the multipath arrivals will act
as interference and lower the SNR of the received signal. The idea behind a RAKE receiver,
however, is to somehow use the information bontained in the multipath arrivals (essentially
delayed and attenuated copies of the original signal) to boost the SNR.

The RAKE receiver uses the pilot tone to obtain an estimate of the channel’s impulse
response. For coherent detection, each finger’s output is phase-corrected according to the carrier-
phase shift indicated by the channel estimate as well as attenuated according to the relative
magnitude of the multipath arrival versus the line-of-sight (LOS) component. All the phase-
corrected and weighted outputs are then summed and fed to the DQPSK slicer. A block diagram of
a RAKE receiver can be seen in Figure 3.12. For the case with two significant paths with path
delay amplitudes of By and B, and phase delays of 8, and 8, the decision variable would look like

the following:

-j(8, -8
Y = Y0+g—‘e" ' °)Y, (EQ 3.6)
0

This assumes additive white Gaussian noise (AWGN) is the dominant noise source. However,
in the Infopad system, interference, not AWGN, is assumed to be the dominant noise source. It
was shown in [Teus94], that the decision variable in an interference-limited system would instead

look like the following

3 (e, -
Y = Y°+[-g—:)] ej(e' e°?Yl (EQ3.7)

Notice that the weighting coefficient for the first multipath arrival increases as the cube of the

amplitude ratio instead of just linearly as in Eqn. 3.5. In other words, if B,, the amplitude of Y, is
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FIGURE 3.12 : RAKE receiver. Each finger is separated by one chip
[Teus94]. ‘

‘smaller than By, the amplitude of Y,, than the information contributed by the second term will be
minimal. For example, if B; is half B, then the weighting coefficient will be 1/8. This scenario is
likely because of the Rician distributed nature of the channel (i.e. one LOS component and several
weaker multipath arrivals). Other techniques such as echo cancellation are being explored by

Teuscher.

3.4 Adjacent Cell Scan/Handoff

One of the major benefits of the Infopad is its inherent mobility resulting from operating in a

wireless LAN environment. The design specfication has placed no restrictions (within reason) on
which basestations the Infopad may be connected to. In other words, as long as there is available
capacity, the pad is free to wander from room to room, basestation to basestation and at all times it
should be able to maintain connection with the backbone network.

Initially, when the Infopad is first tumed on, it will lock onto the nearest basestation. This is

done using the lock synchronization circuitry described in Section 3.1. However, it is very likely
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that as the pad roams around, it will receive pilot tones from other nearby basestations. As long as
the current basestation’s pilot tone energy is the strongest, then the Infopad will remain locked to
the current basestation. However, if the Infopad nears the edge of the current cell or even enters an
adjacent cell, then the pilot tone energy received from its current basestation may be weaker than
the pilot tone energy received from the adjacent cell. In that case, it would be wise to stop
receiving the data from the original basestation and start receiving data from the new cell’s
basestation. This process of determining which basestation’s pilot tone signal is the strongest is
called adjacent cell scan and the process of moving from one basesation to another is called

handoff. This section focuses on these two functions.

3.4.6 Adjacent Cell Scan

At any given time, the mobile unit will be receiving information transmitted from the
basestation it is currently locked onto as well as from adjacent cells. A part of each basestation’s
transmitted signal is the pilot tone which is just the periodic pseudorandom sequence of 32768
chips. Because the pilot tone is guaranteed to use at least 20% of the signal power, it can be used to
provide a type of received signal strength indicator (RSSI). All that needs to be done is to correlate
the received signal containing the pilot tone using a local PN sequence to do the despreading. If
the transmitter’s PN sequence (a.k.a. the pilot tone) and receiver’s PN sequence are aligned to
within one chip, then there will be a large peak in the correlated energy. If they are not aligned,
then the correlated energy will be small. Because the property, the pilot tone can be used to
distinguish between basestations. .

If each basestation is synchronized with the others, then they can each be assigned their own
unique phase of the pilot tone. For example, one cell, cell 0, could be assigned phase 0 and the
adjacent six cells, cells 1-6, could be assigned phases 2048, 4096, 6144, 8192, 10240, and 12288
respectively. By correlating over all 32768 phases of the pilot tone and keeping track of the top
three correlation energies and their phase offsets, one can determine which basestations are nearby.

The adjacent cell scan circutry (ACS) uses the following algorithm:
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(D WAIT FOR LOCK ACQUISTION.
@ RESET THE ACS’S PN GENERATOR TO PHASE( AND CLEAR OUT THE TOP ENERGY REGISTERS.

@ CORRELATE THE RECEIVED SIGNAL FOR 1024 CYCLES USING THE ACS’S PN GENERATOR AND
WALSH'CODE 0 (ALL ONES). THIS WILL EXTRACT THE PILOT TONE ENERGY FROM THE SIGNAL.

@ IF THE CORRELATED ENERGY IS ONE OF THE TOP THREE CORRELATED ENERGIES SO FAR, THEN SAVE
THE CORRELATED ENERGY AND THE ACS'S PN GENERATOR'S CURRENT PHASE OFFSET.

® CLEAR OUT THE ACCUMULATED ENERGY. IF THE CURRENT PHASE OF THE ACS’S PN GENERATOR IS
LESS THAN 32767, THEN STALL THE PN GENERATOR FOR ONE Typ THIS WILL SHIFT THE PN GEN-
ERATOR’S PHASE BY ONE CHIP, GOTO ®. ELSE, IF THE CURRENT PHASE IS 32767, THEN GOTO ©.

® DUMP THE TOP THREE ENERGIES AND THEIR CORRESPONDING PHASE OFFSETS TO ANOTHER SET OF
REGISTERS AND EMIT A SIGNAL OFF-CHIP INDICATING THAT NEW RSSIS ARE AVAILABLE. GOTO @.

For example, if the mobile is in cell 1 and near cells 5 and 6, then the output of the ACS
circuitry might indicate that the top energy is at phase 10240, the next is at phase 2048, and the last
is at phase 12288.

This technique of using pilot tone as an RSSI is used in the lock circuitry, the channel

estimaiors. and the DPLL as well.

3.4.7 Handoff

The top three energies and their offsets are transmitted to the basestation. A decision can then
be made by the controlling network software (“‘cellserver”) whether or not to perform a handoff.
The decision is not only based on the received RSSIs, but also on the current occupation of the
cells. For example, the signal received from cell 5 may be stronger than the current cell, cell 1, but
cell 5 is at capacity and cannot support any more users. Thus, even though, it would be desirable
for the user to switch from cell 1 to cell §, it may not be feasible. If the cellserver decided,

however, to perform a handoff, then the following things must happen [Le95]:

® THE CELLSERVER DATABASE MUST BE UPDATED TO INDICATE THAT THE USER HAS MOVED TO A NEW
CELL.

@ THE CELLSERVER MUST ASSIGN A NEW WALSH CODE FOR THE USER’S DATA.

(3 THE NEW CELL MUST NOW TRANSMIT THE USER'S DATA USING THE APPROPRIATE WALSH CODE.

@ THE OLD BASESTATION MUST TRANSMIT THE NEW WALSH CODE TO THE INFOPAD.




® THE INFOPAD MUST LOAD IN THE NEW WALSH CODE AND BEGIN RECEIVING DATA FROM THE NEW
BASESTATION.

©® THE OLD BASESTATION STOPS TRANSMITTING DATA FOR THE USER.
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External Documentation

4.11/0

The inputs, outputs, and power supply pins of the spread spectrum demodulator chip are

described in Table 5.1 and Table 5.2.

Table 4.1 : Pinout of demodulator chip listed in order of pin number.

PIN SUI{’(I)’{.Y NAME PIN su%?:/w NAME PIN svlgx_v NAME
D 713 3 M
2 [§) ODATAZ] a6 1 OSCH 90 0 ODATA10
3 S VDD_I 47 ] ~CURRBIAS 91 S VDD_6
4 1 ECRSTDUMP 43 1 OSCL 92 0 ODATA9
5 0 ODATA26 49 S GND_5 93 S PWRI_S
6 ] RESETL 50 S VDD_4 % 1 QINX2
7 §) ODATA25 51 §) DUMPI024H | 95 Q) ODATAS
8 1 TINX3 52 1 DATAIN14 9% §) — DUMP64H |
9 S PWR3_1 53 S PWRS_4 97 1 ECDATA2
10 S PWR5_1 54 S PWR3_2 98 4) ODATA7
1 1 TIN3 S5 1 TINO 9 §) CMP3THL
12 1 ADDRI 56 1 DATAINI3 100 S GND_8
13 1 ADDRO 57 q) ODATA17 101 §) ODATA6
14 0 ICLK 58 1 DATAINI2 102 S VDD_7
15 0 QCLK 59 §) — ODATAI6 103 1 ECDATAI
16 S PWRI_] 60 1 DATAINII 104 0 ODATAS
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Table 4.1 : Pinout of demodulator chip listed in order of pin number.

PIN sul;giv NAME PIN sulﬁ’ix NAME PIN sulgiy NAME
% S ms .} ZT WW#
18 3 VDD_2 62 0 ODATAIS 106 [§) ODATA4
19 1 CSC 63 S PWRI_8 107 1 QINX1
20 1 “WRL 6 1 —ECW 108 S PWR3_5
21 I EC64CLK 65 0 ODATAI14 109 S VDD_8
2 1 TIN2 66 [¥) CMP2THH 110 1 QINI
23 S PWRI_2 67 S "VDD_S 111 1 DATAING
24 0 ODATA24 68 Q) ODATAI3 12 1 DATAIN3
25 1 ~ TSTMODEO 69 S PWR5_5 13 1 CLKRST
26 0 ODATA23 70 1 ECDATA3 114 S VDD_9
27 1 TSTMODE] 71 §) ODATAI2 115 S PWRS_6
28 1 TINX2 72 1 DATAINIO 116 J PWR3_6
29 0 ODATA22 73 0 ODATAIl 117 S PWR1_7
0 3 GND_2 74 1 QINX3 118 S PWRS_7
31 1 ECDUMP 75 1 DATAINO 119 S PWR3_7
2 [§) ODATA2I 76 S GND_6 120 S GND_9
3 [§) LOCK ki I QIN3 121 1 QINO
34 3 PWRS_2 78 1 DATAINS 122 1 DATAIN2
35 §) ODATA20 79 S PWRI_3 123 §) ODATA3
36 1 OMODE2 80 Q) DUMPRST 124 1 DATAIN]
EY] ] ECPN 81 0 STALLL 125 §) ODATA2
8 [ ODATA19 82 3 PWRI_4 126 1 DATAINO
39 S VDD_3 83 S PWR3_3 127 1 QINXO
40 §) ODATAIS 84 1 "DATAINT 128 [§) ODATAI
al 1 TINX1 85 S ~ PWR3_4 129 S VDD_I0
2 1 OMODEI 86 3 GND_7 130 1 "ECDATAO
a3 i OMODEO 87 1 DATAING 131 §) ODATAO
44 1 ~ 1INI 88 1 QIN2 132 0 STRETCHSAMP |
Table 4.2 : Pinout for demodulator chip grouped by signal name.
NAME PIN DESCRIPTION PIN(S)
COUNT
RESETL 2 Chip reset signal 6
OSCH 3 Positive phase of 128MHz sinuscidal oscillator 46
OSCL 3 Negative phase of 128MHz sinusoidal oscillator 43
CURRBIAS 5 Bias voltage for clock pad a7
DATAIN[14:0] 20 Bus used 10 load values into registers 52,56,58,60,12,15,18,84,87, |
. 89,111,112,122,124,126
ADDR[1:0] 22 Register address lines 12,13
CSL 23 Chip select 19
WRL 24 Write signal for register 20
[~ OMODE|2:0) 27 Select which signals to output 36,42,43
| TSTMODE(1:0) 29 Determines the type of input 1o the chip 2725
TIN(3:0) 3 Input data from ADC or transmitter chip 11.22.44.55
QIN[3:0] 37 Input data from ADC or transmitter chip 77.,88,110,121
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Table 4.2 : Pinout for demodulator chip grouped by signal name.

NAME cgg“m DESCRIPTION PIN(S)
[ QINX[3:0] 45 Input data from transmitter chip (for testing only) 74,94,107,127
ODATA[27:0] 73 Output data bus 2,5.1,24.26,29,32,35,38,40,
57.59,62,65,68,71,73.90,92,
95,98,101,104,106,123,125,
128,131
ICLK 74 unused-connected to ground 14
QCLK 75 intemal system clock 15
LOCK 76 high when mobile has acquired lock 33
STALLL 77 low when PN gencrator is being stalled 8
[ STRETCHSAMP 78 0: Adjusted phase by - Tepp/d 132
, 1: Adjusted phase by + Tep;p/4
CMP2THH 79 0: No adjustment made to phase of clock 66
1: Adjusted phase of clock
CMP3THL 80 0: Not enough energy to be in lock 99
1: Still have energy to be in lock
DUMPRST 81 Indicates that the MP1 correlator was cleared 80
DUMP64H 82 Indicates when output of data recovery correlator is valid 9
DUMP1024H 83 dicates when output of long cormrelators are valid 51
[ ECRSTDUMP 84 Extra correlator reset latches while dumping 4
"EC64CLK 85 Extra correlator clock 21
[ ECDUMP 86 Extra correlator dump output 3
ECPN 87 Extra correlator PN input 37
ECW 88 Extra correlator walsh input 64
ECDATA[3:0) 92 Extra correlator data 70,97,103,130
PWRI| 100 1.5V intemal power supply 16,23,63.79,82.93,105,117
PWR3 107 3.3V intemal power supply 9,54,83,85,108,116.119
PWRS 114 SV intemnal power supply 10,17.34,53,60.115,118
VDD 125 SV pad power supply 3.18,39.45,50,67.91.102,
109,114,129
GND 132 . ground 1.30,49,76,86,100,120

4.2 Programmable Registers

The registers in the demodulator are two-level latches. This allows the front half of the register
to be extenally written into without affecting the intemal operation of the chip which depends on
the registers’ values. A block diagram of a register can be see in Figure 5.1 along with its control
signals. The signal CLKX (X signifies the register number) is externally controlled by the CS_L,
WR_L and ADDR signals. Since there is only one set 6f the ADDR, CS_L and WR_L lines, only
one register can be updated at a time. The backend of the register is updated when CLK_BACK

goes high. This occurs every rising edge of CLK64 during reset and when the PN generator’s




DATAIN([14:0} REGOUTIX:0] Cs.L -

CLKX CLK_BACK

FIGURE 4.1 : Block diagram of two level registers along with timing
diagram.

output is all-ones during normal operation. There are four registers in the demodulator whose

functions and bit-widths are described in Table 5.3.

Table 4.3 : Describes the demodulator’s four writable registers.

ADDR | NAME I BIT wm'm] FUNCTION

00 WALSH 6 Walsh number
01 THRESA 14 Used to determine whether coarse lock has been acquired
10 THRESB 15 Used to determine whether the Infopad is still in lock
1 THRESC 15 Used to determine whether clock phase should be adjusted by Tey;p/4
. ®
4.3 Observation Modes

The OMODE signal is a 3-bit signal that controls which signals will be driven onto the 28-bit
output bus. A description of all eight possibilities along with an explanation of the signals

outputted can be seen in Figure 4.2.
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OMODE(f2:01 OUTPUT DATA BUSI27:01
27 20 19 109 0 DR: data
. . : data recovery
111 [ 00000000 DRI[9:0] DRQI[9:0] MP- multipath
IPQE: dpll early
2z 1413 O IPQL: dpll late
110 MPIIPLUSQ[13:0] MP1Q[13:0] WALBITS: walsh,
S-to-P 1->8
27 1413 0  PNBITS: pn,
. . S-to-P 1->8
101 MP2IPLUSQ[13:0] MP2Q[13:0) ST stare bite
2 1413 0 EC: extra correlator
100 MP3IPLUSQ[13:0] MP3Q[13:0]
27 14 13 0
011 MP4IPLUSQ[13:0] MP4Q[13:0)
27 14 13 0
010 IPQE|[13:0] IPQL[13:0)
27 21201918 1615 87 0
001 0000000 /l' w|WALBITS[7:0)] PNBITS[7:0]
LOCKST{1:0) CONTROLST[2:0]
272625 13 12 0
000 {00 ECQ(12:0) ECI[12:0)
FIGURE 4.2 : Describes the different signals which can be driven onto
the output data bus.
4.4 Test Modes

The demodulator has three functional modes (see Table 5.4) which are controlled by the 2-bit
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TSTMODE signal. One mode is used for regular operation and two are used for testing purposes.

Table 4.4 : Description of the three operating modes for the demodulator.

TSTMODE | MODE Inputs Comments
00 normal TIN,QIN Data is unmodified
o1 test IIN.QIN Data converted from 4-bit binary (0 to 15) to 4-bit sign magnitude (-7 to 7)
10 test IINQIN, Data converted from 4 panallel 2's complement (-8 to 7) streams at 1/2 OSCH's

IINX,QINX frequency to two intereaved sign-magnitude (-7 to 7) streams at OSCH's fre-
' quency
1 UNDEF. UNDEF. UNDEF.

Independent of the test mode, after the data has passed through the testmode block, it will consist
of two 4-bit sign-magnitude interleaved streams at a frequency equal to one-half OSCH’s

frequency.




CHAPTERSS

Internal Documentation

This chapter gives a high-level overview of each block in the chip; more detailed schematics

can be found in Appendix A.

5.1 Correlator

The heart of the demodulator chip is the correlator which can be thought of as an accumulator.
Its role is to accumulate the 64 MHz 4-bit sign-magnitude data whose sign bit has been multiplied
by a bit from the PN and from the Walsh sequence. It accumulates data until an external dump
signal is received, whereupon, the final sum is latched, the correlator’s internal registers are

cleared and the accumulation process begin again.

5.1.1 Basic Architecture

The basic correlator bloék can be seen in Figure 5.1 It should be noted that the correlator

shown in Figure 5.1 is actually one-half of a complex I/Q correlator. The exact same circuitry is

41
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9

SIGN-BIT
(To Control)

GATED GATED OCLK OCLK L
CLK CLK  (1MHz) (1MHz)

OCLK
(1MHz2)

GATED GATED GATED OCLK OCLK
CLK CLK CLK (1MHz) (1MHz)

FIGURE 5.1 : Datapath for correlator (one-half of complex 1/Q).

used for the I path and the Q path. The correlator works in the following manner: an incoming 4-
bit sign-magnitude piece of data is latched by a 4-bit register. Then, depending on the data’s sign
bit which has already been multiplied by bits from the PN and Walsh sequences, it will either be
latched by the first register in the POSACC datapath or the NEGACC datapath. If, for example,
the data’s sign was positive, then the data will be latched by the first POSACC register. At the
same time, the previously accumulated SUM and CARRY vectors are latched and fed back into
the adder. Thus, this new piece of data is added with to the previously accumlated positive data. In
actuality, the addition is broken up into a 3-bit add and a 6-bit accumulate. The clocks to the
NEGACC datapath are gated off, so no switching activity occurs in the NEGACC datapath.
Likewise, if data is negative, the NEGACC datapath is used and the POSACC datapath remains
idle. By using a carry-save architecture instead of the more traditional ripple-carry approach, the
critical path was reduced to a half-adder and a regisier delay. Effectively, the adder becomes

pipelined at the bit-level. A bit-slice of the carry-save adder can be seen in Figure 5.2.
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FIGURE 5.2 : Bit slice of the carry-save adder.

The data is accumlated until a dump signal is received, whereupon, the final sum and carry vectors
are latched for each datapath and summed together to produce the negative and positive
accumulated data. The negative accumulated data is then subtracted from the positive and the
output is determined. Both the adders and the subtractor use a 2’s-complement ripple-carry
architecture. If these final adds and subtract were a part of the critical path, then the maximum
speed of the carry-save adder would be limited by these slow blocks. Fortunately, in our system,
this is not the case. In our design, 64 chips of data are accumulated before being dumped. Thus, at
the same time the correlator is accumulating a new set of 64 samples, the backend circuitry
performs the final addition and subtraction, operating at IMHz. As a result, the backend

processing only needs to operate at IMHz.

The correlator just described above can only correlate 64 samples at a time. For the data recovery
block, no additional circuitry is needed since only correlations over 64 chips are needed. However,

for the remainder of the blocks, 1024 sample correlations are desired. For these longer
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correlations, the outputted data, CORROUT, can be feed into a 14 bit accumulator which would be

updated 16 times (once every 1 us) before producing the final output.

5.1.2 Constellation Rotation

While the 21.76kHz constellation rotation described in Section 3.3.2 may be tolerable for the
DQPSK decoder, it is not tolerable for the channel estimation correlators. This is because they
correlate the pilot tone over 1024 T, instead of 64 Tey;ps, Which results in a 125.2° rotation.
Each correlator sums for 1024 Tp;ps both the in-phase and quadrature phase components of the

received pilot tone. The equations can be expressed as

1023 1023
Q= Y S;sin6,I= Y S;cos, (EQ5.1)
i=s0 i=0

where i represents the number of chips, S; is the ith data sample received (assumed already
multiplied by the bits from the PN and Walsh sequences) and 6, is the amount the constellation has
rotated (in degrees) since the beginning of the correlation. Again, the angle 6, varies from 0° when
i=0 to 125.2° when i=1023 or increases 0.12° per T p;p. If the correlators operated in this manner
without being modified, then this rotation would produce severe errors in the estimation of the
pilot tone energy (used for lock and the DPLL) as well as errors in the estimation of the channel’s

impulse response (used in the RAKE receiver).

The first pass of the demodulator only used the on-time data and did not try to improve the SNR
through ratio combining with the multipath arrivals. As a result, a solution was proposed which
attempted to fixed the rotation problem for pilot tone energy estimation, but not for estimating the
channel’s impulse response since channel estimation was not being performed. In actuality, the
currently implemented solution prohibits estimation of the channel’s impulse response--the reason

why will be explained shortly.

The modified correlators still correlate over 1024 Ty, but instead of correlating continuously for
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1024 Tepips, they are broken into 16 correlations of 64 Tepips. If this were the only change, then the
correlators would be functionally identical to the original ones in Equation 5.1. The key
" modification is that the absolute value of each individual correlation over 64 Tenips 1S taken before
being added into the running accumulation of 1024 Tep;p,. Thus, the new correlation equations

look like the following:

15
Q=Y
=0

63
Zsijsineij
im0

63
ZSi jcos6;;
w0

15

.1=2
j=0

(EQ 5.2)

Taking the absolute value has the same effect as beginning a new correlation. Thus, since the
absolute value is taken every 64 Tepps. it is like the constellation only rotates 7.8° which is
tolerable. Unfortunately, though, taking the absolute value does not come without a price. The
price is that the magnitude information is maintained, but the phase information is lost. This is
acceptable for pilot tone energy estimation since it is only concemed with magitudes, but not for
channel impulse response measurements which require both magnitude and phase information. In

other words, using this technique prevents channel impulse response measurements from being

performed.

The channel impulse response measurement determines the nature of the channel for the on-time
data and the data which has been delayed by one and two Tp;ps due to multipath. This will be used
in the RAKE receiver. The details of the RAKE are discuséed in Section 3.3.5, but it suffices to say
that only the relative phase information between the on-time channel reponse and the two
multipath channel responses is needed. One technique to maintain the relative phase information is

shown in the following equations:

63 63
is 3800088, + i3 S;; sin8;.
i=0) jml)
I, =Re\Y| & : = (EQ5.3)

=0 . .
555 ometime €958 on-time * 5.2, S5 om-time 511 85 on-time
i=0 i=0
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1s zsij.nwseij.n +3),8;;508;;
Q,=Im 2 = i=0 ';g (EQ 5.4)

o zsij.on-ﬁme“’seij,on-ﬁme"’jzsij.on-ﬁmesmaij.on-dm
i=0 =0

where n is the nth multipath bounce. This technique should remove the effect of the constellation

rotation, but it will distort the magnitude. The difference between the magnitude of I, in Equation
1023 1023

44and Y s, sing, /Y S
im0 in0

which is small if a=b and c=d.

sin®, is similar to the difference between atb ad.+d .

i,on-time ion-time c+d c d

5.1.3 Power Consumption

The correlator was designed with low power consumption in mind. Two important
architectural features were incorporated to achieve this goal. The first was that the correlator uses a
sign-magnitude adder--there are separate adders for the positive and negative data; the second was

that each adder uses a carry-save architecture. The benefits of these are explained below.

Sign-magitude vs. Ripple-carry adder

Simulations done in [Chand94] compared the power consumption of a 2's complement versus
a sign-magnitude adder for different input patterns (see Table 5.1). Both adders used a ripple-carry
architecture. It was shown that for random data, which characterizes the correlator’s input pattern,
a sign-magnitude adder consumes approximately 30% less power than a 2's complement adder.
This is due to reduced switching activity .

Table 5-1 : Comparison of the power dissipation of 2’s complement adder vs. sign-

magnitude adder.
Input Pattem 2's Complement Power Sign-Magnitude Power
E (1024 cycles) 3v) (3V)

constant (IN=7) 1.97 mW 2.25mW

ramp 213mW 243 mW
-7,-6,....6,7)

random 4a2mW 251 mW

min—max—Imin 5.28 mW 2.46 mW
-7.7.-2.7,..))
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Carry-save architecture

By using the carry-save adder, instead of the slower ripple-carry, it was possible to reduce the
supply voltage to 1.5V from 3V and almost a fourfold reduction in power consumption was
achieved. Power reduction wasn't quite fourfold because the carry-save adder uses twice the
number of registers as the ripple-carry, and as a result there is more switching and the clock is

more heavily loaded.

5.1.4 Estimation of Pilot Tone Energy

The long correlators are used by the demodulator to estimate the received signal’s energy by
measuring the energy of the pilot tone. Ideally, one would like to use the magnitude of the complex
pilot tone signal, m ,oreven I +Q’ as a measure of the energy. However, in order to avoid
using multipliers, the pilot tone energy was approximated as I + |Q| . Figure 5.3, shows the error
which is incurred from using this approximation. The approxmation is plotted as |sin8| +|cos8|,
where 0 varies from 0° to 360°. The normalized error ranges from 0 to 0.41. By chosing proper

values for the threshold registers, the impact of this error can be minimized.

5.2 Clock Mux

The role of the clock mux is twofold. One is to synthesize the clocks for the chip and the
second is to convert the incoming interleaved data at rate OSCH into four parallel streams at rate

OSCH/2.

5.2.5 Clock Generator

The Infopad’s spread spectrum demodulator simultaneously requires 4 phases of a 64 MHz where
each phase is separtated from one another by 4 ns. Another requirement imposed by the chip’s
digital phase lock loop is that the phase of the clocks must be adjustable by * 4ns. This section

explains how the 4 phases are generated as well as how their phase can be adjusted.
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FIGURE 5.3 : Graph comparing the absolute value magnitude
approximation vs. angle against the true magnitude calculation. The
values have been normalized.

Input/Outputs

Table 5.2 shows the input and output signals for the clock generator.

Table 5.2 : I/Os for clock generator

Signal Name Description I irection I
cIk128_1 dock Input
clk128_h dock Input
clkrst_h reset clock generator flip-flops to known state Input

reset_] rese1 signal for control flip-flips Input
valid_data indicates when clock’s phase should be adjusted; Input
high for one 64 Mhz clock cycle every 1024 Tchips

extend_phase 0 - reduce phase, ’ Input

1 - extend phase
change_phase_) 0 - change phase Input
1 - keep phase the same
lock 0 - out of lock Input
1 - got lock
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Table 5.2 : 1/Os for clock generator

Signal Name Description Direction

shr_l_1d (killpulse) This signal “kills" one nsing edge of the clock that
is fed to the comrelators. Used when reducing phase
of clock by -Teyp/4.

clk64 64 Mhz clock Output

Implementation

The heart of the clock generating circuitry is two flip-flops (FF) whose outputs are inverted

and used as their inputs (see Figure 5.4). One FF is clocked by the positive phase of a 128MHz

RESET_L
SEL_CLKA L
CLK
o
- SEL_CLRB_L
i S -
I SEL_CLKC_L 4 @’ CLKY
CLKI28H oo CNJ
CLKRST
iy SEL_CLKD_L

A
cLitast

FIGURE 5.4 : Generates four phases of a 64MHz clock (clka, clkb, clkc,
and clkd) which are offset from each other by 4 ns. Only one of the clocks
is outputed as clkx.

clock and the other is clocked by the negative phase. The output of these FFs and the output of
their trailing inverters generate the four phases of a 64 Mhz clock each offset in time by 4 ns (see
Figure 5.5). At any given time, only one of the four active-low pass gates controlled by the sel_clk

signals will be activated--the rest will be tristated.

There are two reset signals used in the circuitry shown in Figure 5.4. CLKRST is used to set

the two FFs into a deterministic state. This signal only needs to be low for 10ns. RESET_L is the




cbka ____ 1 L1 LT
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ke —__ ML I L1 L |
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FIGURE 5.5 : Four phases of 64MHz clock
generated inside clock generator.

global reset signal. When RESET_L is low CLKA is selected (the SEL_CLK pass gates are
bypassed). Because the clock generator is supplying the clocks for the chip, we must guarantee
that it is outputting a clock even during the reset mode in order to reset/clear the intemal latches.
The SEL_CLK signals depend on the clock which is produced by the clock generator in Figure
5.4. If we did not have the bypass pass-gates for reset, then the select lines would have to be
initialized in order to produce the intemal clock. However, this is impossible since they themselves
depend on the internal clock to be initialized. When RESET_L is high, the output of the four
SEL_CLK pass-gates is passed to CLKY. The output of this circuit, CLKY, is fed to a block of
dual edge-triggered flip-flops (see Section 5.1.3) which generates the four phases of the 64MHz
clock needed by the chip. The correlators have been designed to run at 64MHz (15.6ns period)
when operating at 1.5 volts. However, when the clock’s phase is reduced, for one cycle, the clock’s
period is reduced by 4 ns down to 11.7ns. Unfortunately, if this 11.7 ns period clock were passed to
the correlators, then non-deterministic results would ensue. In order to combat this problem, we
“kill off” a rising edge of the clock by setting killpulse_l low for one cycle. Thus, the effective
period of the clock for this cycle becomes 27.3ns (see Figure 5.8). The penalty which is paid, is
that the correlators lose one sample every time the clock’s period is reduced. Therefore, the worst
case is that one sample is lost every 1024 samples; ﬁxis effect is tolerable. Unfortunately, the
control circuitry cannot lose any rising-edges. This is because once we have lock, the transmitter’s
and receiver’s PN generators are synchonized. If the receiver’s PN generator loses a cycle due to

having a rising-edge of it’s clock removed, then it would no longer be synchronized with the
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KILLPULSE_L
STATE 0111 X 1011

FIGURE 5.7 : Timing diagram for extending the clock’s phase.
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KILLPULSE_L ] [
STATE VIl X 1110

FIGURE 5.8 : Timing diagram for reducing the clock’s phase.

Timing

A critical issue in design of the clock generator was making sure the critical path was met
everywhere. For most of the circuitry the critical path.was 16 ns. However, for several parts, the
critical path was 4 ns. Because of the relatively large propagation time and setup time of the D-FF
(about 2.0 ns), only about 1-2 levels of combinational logic could be tolerated. This 4ns critical

path time consisted of the propagation time through a D-FF, the propagation time through two pass
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transmitter’s PN generator. This would be catastrophic since the mobile would lose lock with the
transmitter. As a result, there are two clocks which are generated; one for the control logic

(CLK_ION_PN) and one for the correlators (CLK_ION).

The CLK_SEL signals are actually the state bits of a four-bit one-hot encoded state machine.
Initially, the state is set to “0111”. This means the CLKA pass-gate will be transparent while the
others will be tristated. The three other valid states are 1011, 1101, and 1110 which cause CLKB,

CLKC, or CLKD to be output respectively. The state transistion diagram can be seen in Figure 5.6.

pre_ext_| = changephasc_l - lock - valid_data - extend_phase
pre_shr_1 = changephase_| - lock - valid_data - extend_phase
ext_| = latch(pre_ext_])
shr_| = latch(pre_shr_l)

Note: state remains the same if ext_l="1" and shr_l="1" and
reset_|="1"

FIGURE 5.6 : State transition diagram for SEL_CLK signals. Each state bit
corresponds to a control bit for clock generator’s pass-gates. Thus,
bit3(msb)=SEL_CLKA, bit2=SEL_CLKB, bit3=SEL_CLKC, and
bit4(Isb)=SEL_CLKD.

Normally, ext_] and shr_l equal ‘1°. The only time their values can change is once every 1024
cycles, when the digital phase lock loop may assert a change in the clock phase. At this time,
valid_data will go high for one clock period. If changephase_l is low and lock is high, then either
ext_l or shr_| will go low for one clock cycle depehding on extend_phase. Example timing

diagrams can be seen in Figure 5.7 and Figure 5.8.
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gates, and the setup time for a D-FF. It was also found necessary to run the clock generator

circuitry with a SV supply to meet the timing requirements.

5.2.6 Dual-edge Trigger Flip-flop (DETFF) Block

This block generates the four phases of the 64MHz clock which are needed in the chip. In
order to generate these four phases which are offset from one another by Tey;p/4 or ~ 4ns, it is

necessary to use a 128MHz clock to drive the DETFFs.

Inputs/Outputs
Table 5.3 : 1/Os for DETFF block
Signal Name Description Direction
CLKIN T28MHz clock used to drive DETFFs — nput
DATAIN 64MHz2 clock from clock generator circuitry Input
KILLPULSE_L 0 - keeps clk_ion, clk_qon, clk_ioff, clk_goff low Input
1 - clk_ion, clk_gon, clk_ioff, clk_goff are unmodified
CLK_ION_PN 64 MHz clock used to drive control logic Output
CLK_ION 64 MH2 clock used to drive correlators. Also, used to Output
sample data from the ADC.
CLK_QON 64 MHz clock offset by +Ty;p/4 from CLK_ION. Output
Used to sample data from the ADC.
CLK_IOFF 64 MHz clock offset by +Tep;p/8 from CLK_ION. Output
Used to sample data from the ADC.
CLK_QOFF 64 MHz clock offset by +Ty;p/12 from CLK_ION. Output
Used to sample data from the ADC.
Implementation

A block diagram of the DETFF block can be seen in Figure 5.9. The dual-edge triggered flops
are taken from [Afgh91]. The basic schematic can be seen in Figure 5.10. One can see that the
upper-half of the schematic is a standard rising-edge TSPCR (true-single phase clocking register)
which can be found in [Burd94]. The lower-half is a falling-edge triggered TSPCR (fetFF) which
is simply the dual of the rising-edge TSPCR (retFF). One can obtain the fetFF from the retFF by
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FIGURE 5.9 : Block diagram of DETFF block.
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FIGURE 5.10 : Schematic for dual-edge triggered flip-
flop.

flipping over each leg, then swapping NMOS for PMOS transistors and vice-versa. At any given

time, either the retFF or the fetFF’s output will be active--the other will be tri-stated.

5.2.7 Data Multiplexor

In the final incamation of the radio, all aspects of the receiver, both analog and digital, will be
integrated onto a single die. The interface between these two sections is, of course, the A/D
converter (ADC) . By design, the ADC produces two 4-bit sign-magnitude interleaved streams of
data running at 128MHz. The data multiplexor was added to convert this stream to 4 parallel non-
interleaved (aligned) 4-bit streams running at 64MHz to simplify implementation and to provide
T/4 timing resolution. Because the data has been overs.ampled by 2x, there is both ontime I and Q
(ION and QON) data which is used for data recovery and lock acquisition and offtime I and Q

(IOFF and QOFF) data which is used in the digital phase lock loop for fine timing adjustment.
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Inputs/Outputs

Table 5.4 : 1/Os for clkmux_datamﬁx

Singnal Name Description Bit Width I Direction |
CLKIA | Clock medtolatch DATAIA signal. | | Taput
CLKIB Clock used to latch DATAIB signal 1 Input

CLKR2_1X Clock signal used to align 1,5/Qq, of L Q- 1 Input

CLKR3_1X Clock signal used to align 1,,/Qn/Tos/Qofr- 1 Input

CLKR4_IX Clock signal used to help synchronize datamux and 1 Input

correlators.

MUXSELIA Used to select between DATA1A and DATAIB 1 Input
DATA1A ADC stream which is 2x CLK1A’s frequency 4 Input
DATAIB ADC stream which is 2x CLK1A’s frequency, 180° 4 Input

out of phase with DATAJA
CLK2A Clock used to latch DATA2A signal. 1 Input
CLK2B Clock used to latch DATA2B signal 1 Input

CLKR2_2X Clock signal used to align 1,,/Qq, of Lg/Qog- 1 Input

CLKR3_2X Clock signal used to align [,,/Qq0/l/Qoft- ] Input

CLKR4_2X Clock signal used to help synchronize datamux and 1 Input

correlators. _

MUXSEL2A Used 10 select between DATA1A and DATA1B 1 Input
DATA2A ADC stream which is 2x CLK2A’s frequency 4 Input
DATA2B ADC stream which is 2x CLK2A’s frequency, 180° 4 Input

out of phase with DATA2A

DATAIOUT Synch'd with DATA20UT: either 15 or I 4. 4 Cutput

DATA20UT Synch'd with DATAIOUT; either Qo or Q- 4 Output

Implementation

The circuitry which performs the parallelization can be seen in Figure 5.11. It consists of 4
identical 4-bit wide data paths. The first thing to note is that the two interleaved 128MHz streams
of 4-bit data are called xdata and ydata, instead of I and Q. This is because there is no notion of I
and Q yet in the two input streams. Depending on the sampling clocks, at any point in time X0
could be considered ION, QON, IOFF, or QOFF. As an example, in Figure 5.11, we see the even
XDATA samples are first considered as the ION data. However, after the clock’s phase is
extended, the even XDATA samples become the QOFF data. The second thing to note is that only

half of the R1 clocks are active. All the R1 clocks could be continuously running, but since only
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FIGURE 5.11 : Block diagram of the data
multiplexor.

half of the outputs are used, power was saved by shutiing off the clocks of the unused registers.
However, the R2, R3, and R4 clocks can never be turned off because these registers need to be

latched every cycle. Lastly, it should be noted that there are two voltages levels being used in the
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datapath shown in Figure 5.11. This is done because the data coming off the ADC is at 3.3V, but
the correlators are running at 1.5V. The correlators could have been fed with 3.3V data, but this
would mean we are driving the large capacitance wires which connect the correlators to the data
block; thus, burning unnecessary power. The ION and QON outputs are fed to the data recovery
correlator and the channel estimation correlators. IOFF and QOFF as well as IOFF and QOFF
delayed by one clock cycle are fed to the early and late correlators used in the digital phase lock

loop.

A timing diagram for the data multiplexor block can be seen in Figure 5.12. The R1 registers
latch the incoming data, the R2 registers align ION with QON and IOFF with QOFF, and the R3
registers align lON; QON, IOFF and QOFF. The R4 regiéters are clocked by CLKION1_5X,
instead of CLKION. By relatching the data with the correlators’ clock, the data has more time to

propagate from the data multiplexor to the correlators.

5.3 Clock Buffers

There are three main clock buffers in the demodulator. The first is a differential amplifier
embedded in the pad frame which used to convert an off-chip differential sinusoidal oscillator’s
signal into two 50% duty cycle square-wave clock signals which are 180° out of phase. The
second buffer is used to drive the control circuitry and the last is used to drive the correlators’

clocks.

5.3.8‘Clock Pad Buffer

The clock pad buffer converts an differential sinusoidal signal into differential 50% duty cycle
square waves of equal frequency. A schematic and layout of the clock pad can be seen in Figure
5.13. The signals OSCL, OSCH, and CURRBIAS come from off-chip. OSCL and OSCH are from

the sinusoidal oscillator and CURRBIAS is used to set the current down the two legs of the pre-
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FIGURE 5.12 : Timing diagram for the data multiplexor. G= Garbage.

amplifier. CURRBIAS should be adjusted so the current down each leg is approximately 1 mA.
The outputs of the clock pad buffer are CLK_L and CLK_H. One can set CURRBIAS by
connecting the CURRBIAS pin to a potentiometer or an offchip precision current source. The

potentiometer’s other input should be connected to ground.
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FIGURE 5.13 : Schematic and layout of differential input clock
buffer. From the layout, one can see that the input clock buffer uses
three pads, two for the oscillator’s inputs and one for biasing the
current down the preamplifer’s two legs.

5.3.9 Control Logic Clock Buffer

The output of this clock buffer is used to drive the 3.3V control logic. The clock buffer has
been designed to drive up to 2 pF with a 2ns worst-case rise/fall time. A high-level block diagram

of the control logic clock buffer can be seen in Figure 5.14.
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FIGURE 5.14 : Block diagram of the control logic clock
buffer.

5.3.10 Correlator Clock Buffer

The clock buffer is used to drive the correlators. Each correlator’s clock sees approximately
1pF of capacitance from the gate capacitances plus another 0.5pf from the clock wire capacitance.
As a result the total capacitance is 7 x 1.5 pF = 10.5 pF. It was decided to design the clock buffer
as a tree with 7 branches, one for each correlator. Thus, each branch or leg must drive
approximately 1.5 pF. A block diagram of the correlator clock buffer can be seen in Figure 5.15
below. One extra branch was added to drive miscellaneous logic such as the final set of registers in

the data multiplexor.

5.4 Control Logic

This section describes most of the control logic used in the demodulator. It is recommended
that the reader read Section 2, Background on Spread Spectrum, before proceeding to read this

section.
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FIGURE 5.15 : Block diagram of the correlator clock
buffer tree. More detailed diagrams of the CTLDRYV and
DRV2 bufffers can be seen in Figure 5.14.

5.4.11 Walsh Generator

Walsh codes are orthogonal codes used to differentiate an individual user’s signals from other
people’s signals. Each user is assigned their own unique Walsh number which is loaded into the
walshnum register by the Infopad. There is no default Walsh number, so upon power-up, the
Infopad must load the walshnum register before the Walsh generator/data recovery unit can
function correctly. During startup, Walsh number 1 is used as a control channel. After proper
handshake and initialization has been achieved, the user will be assigned a Walsh number between
2 and 63. The Walsh codes are generated by using the difference between successive elements of a
Gray code sequence plus the Walsh number to control a toggle flip-flop. This section describes the

1/0O for the Walsh unit and it’s implementation.
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Inputs/Outputs

Table 5.5 : I/Os for Walsh block
Signal Name Description Bit Width Direction
CLK64 64MHz clock 1 Input
RESET_L Global reset signal 1 Input
STALL_L When 0 gates the clock which keeps the Walsh gen- 1 Input
erator in the same state.
PN_ALLONES_L | When O resets the Walsh generator to some initial 1 Input
state. Used to synchronize the Walsh generator and
the PN generator
WALSHNUM User number-controlled by the extemally loadable 6 Input
walshnum register.
WALSHOUT Current bit of the Walsh sequence comresponding to 1 Output
user WALSHNUM
WALSHCNT Current state of the walsh counter 6 Output
Implementation

The Walsh code generator followed the basic architecture shown in Section 2.4, except its datapath

is 6 bits instead of 3 bits. The majority of the Walsh generator was implemented as synthesized

VHDL which can be seen in Appendix B. However, in order to meet critical path timing the 6-bit

counter and the nand block were designed using schematic capture. The counter was designed to

exploit the fact that the msb’s of the counter are stable for a long time and can thus pass through

more gates before reaching the flip-flop input. Thus, the critical path only involves the countout(

signal passing through an and-gate, an xor-gate and a flip-flop. A generic version of this counter

can be seen in Figure 5.16. This technique was also used to design the 11-bit counter found in the

update control block. The 6-bit and 11-bit counters are slightly modified from the one shown in

Figure 5.16 because reset and enable signals were added. This change, however, only added one

extra gate to the critical path.
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FIGURE 5.16 : Generic n-bit counter implementation designed to
minimize the critical path. In this counter, the critical path is toop i +
torop,and + tprop.xor + Usetup.ff-

5.4.12 PN Generator

This block generates the PN sequence used for despreading the data. This section describes the

1/Os as well as the PN generator’s implementation.

Inputs/Outputs
Table 5.6 : 1/Os for the PN Generator.
Signal Name Description Bit Width Direction
CLK64 64MHz clock 1 Input
- RESET_L Global reset signal, loads seed into PN generator’s shift register. 1 Input
STALL_L When 0 gates the clock which keeps the PN generator in the 1 Input
same state. Used in lock acquisition to shift the phase of the
receiver's PN seugence with the transmitter’s PN sequence.
SEED The initial starting point for the PN generator. Reloaded every 16 Input
time the PN generator wishes to begin again its 32768 chip
sequence. : .
PN_ALLONES_L | Indicates that the all the bits in the PN gencrator’s shift regisister 1 Output
all ones. The next clock will start the PN sequence over again by
loading in the SEED value. This signal is used to synchronize the
Walsh generator with the PN generator.




Table 5.6 : 1/Os for the PN Generator.

Description Bit Width

PN_OUT Output of PN generator. Considered the “on-time™ phase (i.c. 1 Output
should be aligned with the transmitter’s PN sequeace). Feed to
correlatorg, DPLL correlators, and the data recovery comelator.

PN_OUTID PN_OUT delayed by 1 clock cycle. Feed to correlator;. 1 Output

PN_OUT2D | PN_OUT delayed by 2 clock cycles. Feed to correlator,. 1 Output

PN_OUT3D PN_OUT delayed by 3 clock cycles. Feed to correlators. ] Output
Implementation

The system specification for the Infopad radio called for a PN sequence of length 32768 chips.
The normal method is just to use the Isb of a feedback shift register as the PN sequence. However,
the closest sequences in length are 32767 chips produced by a 15-bit feedback shift register and
66535 produced by a 16-bit feedback shift register (note: length = 2" - 1). There were two options
considered: (1) Implement it as a 15-bit feedback shift register with one extra bit added at the end,
or (2) implement it as a 16-bit feedback shift register, but only use 32768 of the 65536 chips before

resetting the sequence. Option (2) was chosen.

The PN generator which was designed using VHDL (see Appendix B) and schematic capture is
implemented as a 16-bit feedback shift register. The feedback which provides the next msb (bit 15)
for the shift register is composed of the xor of bits 15, 13, 4 and 0 together. The seed was choosen
so that when the 32768th bit was outputted all the taps of the shift register would be all ones. Thus,
when the all ones case is detected, the seed is loaded into the shift register on the clock’s next
rising edge and the PN sequence starts anew. In actuality, “1111111111111110” is detected instead
of all ones because there was not enough time to check for the all ones case as well as setup the
seed as the next value to be loaded into the shift register in one clock cycle. Thus,
“1111111111111110” is detected in one clock cycle. In the next cycle, the seed is setup to be loaded
into the shift register. During reset, the seed is loaded into the shift register and the PN generator is

synchronized with the Walsh generator.
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5.4.13 Lock State Block

This block keeps track of whether the pad is in lock or not. It does not control the initial coarse

synchronization. This is done in the update control block (Section 5.4.14).

Upon startup, the lock block is in state ‘00’ indicating that lock has not been acquired yet. The
output LOCK and LOCKRESET are both *0’. Every 1088 cycles, the VALID_DATA signal will
go high indicating that C;_L, C,_L, C3_L, and C4_L are valid. The Cx_L signal indicates whether
or not the accumlated energy in correlatory is greater than/equal to or less than the value stored in
threshold register 1--‘0’ indicates greater than/equal to and ‘1’ indicates less than. If any Cx_L
signal is ‘0’ and VALID_DATA is ‘1°, then lock has been achieved, the new state is ‘01°, and the
LOCK signal is setto ‘1°.

Once in lock, the system will stay there unless the summation of the energies accumulated in the
early and late correlators falls below the value stored in threshold register 3. This will be indicated
when T_RESET and VALID_DATA both equal ‘1. If the system does fall out of lock, then the
lock status state machine will first progress to state ‘10’ and set LOCK to ‘0’ and LOCKRESET to

*1°, then retum to state ‘00" where both LOCK and LOCKRESET are ‘0’.

Inputs/Outputs
Table 5.7 : 1/Os for lock control block
Signal Name Description Bit Width Direction
CLKé64 64MHz clock 1 Input
RESET_L Global reset signal, sets the lock statemachine in the 1 Input
“need to acquire lock™ state.
T_RESET Signal comes from DPLL block. A ‘1" indicates 1 Input

that the radio fell out of lock. Determined by com-
paring the summation of the correlated energy in
the early and late correlators with threshold register
2

VALID_DATA Indicates C1_L, C2_L, C3_L, C4_L are valid. 1 Input
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Table 5.7 : 1/Os for lock control block

Signal Name
CiI_L

Description Bit Width

0-Accumulated energy in corvelatory is greater than 1
or equal to threshold regisiter 1.

1-Accumulated energy in corvelatorg is less than
threshold regisiter 1.

Direction

Top

0-Accumulated energy in correlator, is greater than 1
or equal to threshold regisiter 1.

J-Accumulated energy in correlator, is less than
threshold regisiter 1.

Tnpat

0-Accumulated energy in correlator, is greater than 1
or equal to threshold regisiter 1.

1-Accumulated energy in coselator, is less than
threshold regisiter 1.

Input

CaL

0-Accumulated energy in correlatory is greater than 1
or equal to threshold regisiter 1.

1-Accumulated energy in correlators is less than
threshold regisiter 1.

Input

LOCK

0-no lock 1
1-lock

Output

LOCKSTBITS

State bits of the lock state machine. Used for debug- 2
ging purposes only.

Output

Implementation

The lock control block was implemented as a state machine in VHDL and then synthesized

down to standard cells. Figure 5.17 shows the lock block’s state transition diagram. The

RESET_L="0' or VARx="0"

VARx=VALID_DATA & not(C1_ L& C2_ L& C3_L&C4_L)
VARy=VALID_DATA & T_RESET

FIGURE 5.17 : State machine for lock status block.
VARy and VARy have been added for legibility
purposes only.
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VALID_DATA signal is controlled by the update control block. It is valid approximately once
every 1088 cycles. |

5.4.14 Update Control

‘The heart of the demodulator’s control is the update control block. The functionality of this
block can be divided into four areas: coming out of reset, coarse lock acquisition, data recovery

and channel estimation, and falling out of lock.

Inputs/Outputs

Table 5.8 : 1/Os for Update Control Block

I - Signal Name I Description Bit Width Direction
CLK64 64MHz clock | 1 Input
RESET_L Global reset signal, sets the lock statemachine in the 1 Input
“need to acquire lock™ state.
Cl_L 0-Accumulated energy in correlatorg is greater than 1 Input
or equal to threshold regisiter 1.
1-Accumulated energy in correlatory is less than
threshold regisiter 1.
C2_L 0-Accumulated energy in comelator, is greater than 1 Input
or equal to threshold regisiter 1.
1-Accumulated energy in comrelator, is less than
threshold regisiter 1.
C3_L 0-Accumulated energy in correlator; is greater than 1 Input
or equal to threshold regisiter 1.
1-Accumulated energy in cormelator, is less than
threshold regisiter 1.
Ca_L 0-Accumulated energy in correlator; is greater than 1 Input
or equal to threshold regisiter 1.
1-Accumulated energy in correlators is less than
threshold regisiter 1.
LOCK 0-no lock 1 Input
1-lock :
VALID_DATA Indicates C1_L,C2_L.C3_L, C4_L are valid. Also, 1 Output
(UPD1087) tells the backend section of the correlators to latch
in the new accumulated data.
DR_RST Clear out the contents of the data recovery correla- 1 Output
tors
CORR_RST clear out the contents of the carry-save adder’s | Output
“dump-into” registers
UPD63 When °1" indicates counted for 64 valid Tep;p, 1 Output
PNSTALL_L When ‘0’ stalls the PN and Walsh generators 1 Output
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‘Table 5.8 : /Os for Update Control Block

UPDSTBITS State bits of the update state machine. Used for

Implementation

The updctrl block was written in VHDL (see Appendix XXX) and then synthesized via
standard cells. It’s main components are a 3-bit (8 state) state machine, an 11-bit counter, and 8
latches used to delay the control signals. The counter was designed using the same techniques as

the one described in Section 5.3.X.

The minimum clock period of the control block is Tehip - Tenip/4 O 3Tepp/4. This will happen for
one clock cycle when the DPLL reduces the clock’s phase by Teyip/4. Because of this strict timing
requirement, the outputted control signals must be pipelined and thus are generated several clocks
in advance of when they are needed. This is shown in Figure 5.18. The pipelining is problematical
when one forgets that it takes several clock cycles for the signal to‘change, causing the old value to
be around for several clocks longer than desired. For example, when coming out of reset, care had

to be taken to prevent lingering values from causing errors.

Afier coming out of reset, updctrl enters the coarse lock aquisition mode. As presented in Section
3.1, the controller effectively counts for 1088 cycles before checking the Cx_L signals to see if
lock has been acquired. The reason why updctrl counts‘for 1088 cycles instead of 1024 is due to
the way the correlators operate (see Section 5.1). In order to prevent the constellation rotation error
for becoming too great, the correlators are dumped every 64 cycles and the absolute value of their
outputs are accumulated. Thus, at cycle 1024, the correlators are dumped for the 16th time. The
outputs of the I and Q correlators must then be summed and compared to threshold register 1. This
takes time, so the Cx_L are not ready until approximately cycle 1050. To make it easier on the
control, the Cx_L signals are checked at cycle 1088 instead of around cycle 1050. At the same

time the Cy_L signals are checked, the 11-bit counter is reset. If lock has been achieved, then the
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UPDCTRL SIGBUF
BLOCK

FLAG1085—] ;°}
CTRL1086————
CTRL_CRST —@‘

BLOCK

UPD1087

—4 L/C zZ

@; UPD1088
(to comrelator)

CORR_RS

UPD63

T
‘}_ 7 —{pUp>CORRRSTOUT

counter.

FLAG61 — 7 3 )
CTRL62

¥[> =

w; UPD64
(to correlator)

CTRL_DRST

+[> =

DRRSTOUT
(to correlator)

PREPNSTALL_L —

PNSTALL_L

FIGURE 5.18 : Describes how the correlators’ control signals are
generated. The CTRL signals are outputs of the state machine and
the FLAG signals are formed from the outputs of the 11-bit

PN and Walsh generators are stalled the appropriate number of clock cycles (0, 1, 2 or 3) and the

update control state machine enters the data acquisition state. If lock is not achieved, then the PN

and Walsh generators are stalled for four clocks cycles, the correlators are cleared out, and the

process repeats. In either case, the counter will have proceeded 0, 1, 2, or 3 cycles before the new

data has begun to accumulate. This means that there will be up to three chips worth of invalid data

incorporated into the next accumulation and only 1083 chips worth of valid data. This was

necessary because the counter could only be reset on multiples of 64 in order to stay in

synchronization with the PN and Walsh generators. During the lock mode, updctrl must generate

control signals to update the correlators every 64 cycleé as well as every 1088 cycles.




- 70




CHAPTER 6

Conclusion

6.1 Summary

This report describes the overall architecture for the Infopad’s CDMA radio’s demodulator
chip as well as details the implemention of the first version. The first version was an 80K transistor
chip fabricated in HP’s psuedo 0.8um process. It occupied 56.56 mm? (7.69 mm x 7.36 mm) and
was packaged in a large cavity 132 PGA. It implemented all the functions described in the
architecture description, except for the DQPSK decoder and the adjacent cell scan circuitry. A die
photo of the chip can be seen in Figure 6-1. As of the date of this thesis’ filing, the first version
demodulator chip was only functionally tested using Tektronix’s DAS9200 system. It was found

that all functions performed (mostly) correctly at low speeds (up to 25 MHz).

6.2 Future Work

There is still plenty of work left to be done. There were two blocks which were not

implemented in the first version of the demodulator chip: the DQPSK decoder and the adjacent
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Figure 6-1 : Micrograph of the spread spectrum demodulator chip.

cell scan and handoff circuitry. The DQPSK decoder can be implemented either as another on-chip
block or since it is running at 1 MHz, as a separate chip. The adjacent cell scan and handoff
circuitry can be realized using an extra correlator with some different backend logic and another

PN generator.

The demodulator chip was implemented as a stand-alone chip. However, the since final
implemention of the Infopad’s radio receiver was envisaged as a single chip solution (i.e. both the

analog and digital sections integrated onto a single die), someone needs to look into the effect of
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having digital and analog circuitry on the same die to determine whether a single chip solution is
practical and/or feasible versus something like and MCM or chip-on-board solution. The current
version of the demodulator was designed to perform hard handoff. Looking at how to do a soft

handoff can also be explored.

Techniques are being explored by Teuscher which focus on reducing the SNR through
equalization and interference cancellation techniques. If some type of combining strategy is
implemented, then the long correlations must be modified to handle the phase correction while

maintaining the phase information.

At the higher level, what type of numbers can/should be provided to the network folks (i.e. SNR,
RSSI, BER estimates) can be explored. Currently, only RSSI numbers are provided.
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Appendix A-Schematics

The actual schematics are located in the demodulator’s schematic directory. They can be viewed
using Viewlogic's viewdraw schematic capture program. The following is a list of schematics with

their corresponding hierarchy:

corrpad - contains core of chip along with pad ring (schematic can be seen below)
corrcore - contains all the blocks of the chip (schematic can be seen below)
mpcorr - multipath correlator with backend logic
i_basecorr - actual 13-bit correlator block

mpback - compares IIl + IQI against thresregl; outputs Q and either I or
IPLUSQ depending on whether lock has been acquired or not.

xbuffer - dpp buffer of size ‘H’ which is used to drive output signals
t1t2corr - early and late correlators with backend logic
t1t2base - contains early and late 1/Q correlator pairs
i_basecorr - actual 13-bit correlator block

t1t2back - compares [(Ill + IQI)w, + (Il + 1QI))5¢e] With thresregy, to see if
energy energy is being recewed to stay in lock; compares [(IIl +
1QDearty - (M1 + 1QN)yaee] With thresreg, to see if the clock’s phase
lock loop should be adjusted, and if so, whether it should be
extended or shrunk.
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tlt2ss - converts 15-bit sign-magnitude number to 15-bit one’s
complement number

drcorr - data recovery correlator with backend logic
i_frontend - actual 9-bit correlator block
drback - latches and buffers output of 1/Q correlators
extracorr - extra correlator used for debugging and power measurements
i_basecorr - actual 13-bit correlator block
regblk - registers with contro! logic
regbufs - registers and buffers
regctrl - control logic for registers

datablock - generates 64MHz clock; converts two 128MHz interleaved data
streams to four parallel 64MHz streams as well as adjusts data depending
on which testmode is selected.

testmode - adjusts data depending on which testmode is selected
bin2sm - converts binary number (0 to 15) to sign-magnitude

two2smx - converts two's complement number to sign-
magnitude

xmtr_int - interface to transmitter chip. Converts four parallel
streams to 2 interleaved streams at twice the input
frequency

muxbuf - selects which type of data to send to the rest of the chip
depending on the testmode bits

clkmux - generates 64MHz clock; converts two 128MHz interleaved data
streams to four parallel 64MHz streams

clkmux_nodetff - generates 64 MHz clock which can be
adjusted by *Tp;p/4; generates control signals for
clkmux_datamux

clkmux_detff - bank of dual-edge-triggered flip-flops which
generate four phases of the 64MHz clock from a single
64MHz input clock.

clkmux_bufs - buffers for the clock signals

clkmux_datamux - converts 2 interleaved 128MHz data streams
into 4 parallel 64MHz streams

clkmux_delay - delay element and buffer for data (used to create
lot‘f and Qoff-

clkentridry - buffers clock for control logic

Ivicvt - level converter
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clk3_3driver - clock buffer for control circuitry
clkcorrdrv - buffers clock for correlators
lvicvt - level converter

clk1_Sdriver - generates 8 clocks to drive 7 correlators +
miscellaneous logic

ctriblk - control circuitry
walsh - generates Walsh sequence according to Walsh user number
pn - generates PN sequence
lock - lock control circuitry
updctrl - generates update control signals for the correlators
sigbufs - level converts, latches, and buffers signals
upddly - latches and buffers signals
clk8mhzgen - latches bit2 of walshcnt to generate 8Mhz clock
rstbufx - latches and buffers signal
xbuffer - buffers signals

osb - observation block which is used to select which outputs to view on the odata
bus :

osbscan - converts 1->8 serial to parallel converter

osbss - generates grounds which are used for some of the msbs of the
inputs to osbback

osbback - 28-bit wide 8:1 mux

Two example schematics are shown on the following two pages: corrpad and corrcore.
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Appendix B-VHDL

List of VHDL files

i_basecorr  ................. PN e e e 81
D & 111 (=1 1 T [ G 83
Y7211 o e 85
L 741 1 (T 47 17 [ U P 87
COUNIGASYIIC ..ottt e iininreeeeeennnecnnnnnnnas et 88
oY1 <Pt 89
51 PP e 91
110100 TG T (3 S e eeeeaeeaaan 94
L1707 (ot £ P ceeeeaas 94
ent2048lds ... e i ie it e eeeieeteee e .. 101
regetrl P e eeeeneeee e 102
EWO2SINIX ot tvevesvnneenoeneansaeencoseessesanasanaenonssssssnssonnas 103
-- Cell: i_basecorr ‘

-- Description: base block for correlator

-=- Author: Ian O’Donnell

-- Date:

-- Modified: 8/1/94-Modified Kevin Stone’s previous base_dp.vhd to this.
-- Note: Does not model hardware, only functionality at
-- input and output. Internal nodes do not correspond.
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-- Do not synthesize this and then expect it to work.

entity i_basecorr is

port (

clock : in vlbit;

ret_dump : in vlbit;

dump : in vlbit;

pn in vilbit;

walgh : in vlbit; .

datain : in vlbit_vector(3 downto 0);
vdd : in wvilbit;

gnd : in +vlbit;

dataout : out vlibit_vector(12 downto 0)

);
end i_basecorr;

architecture behavior of i_basecorr is

signal rst_dumpld, dumpld, pnld, walshld : vlbit;

signal datald : vlbit_vector(3 downto 0);

signal rst_dump2d, dump2d : vlbit;

signal data2d, data3d : vlbit_vector(3 downto 0);

signal datasum, dataacc, dumpdata : vlbit_vectoxr (9 downto 0);
gsignal dumpsum, dumpacc : vlbit_vector (12 downto 0);

begin
process (clock)
variable dumpsum_temp : vlbit_vector (13 downto 0);
variable all0 : vlbit_vector(l2 downto 0);
variable datasum_temp, dump_temp : vlbit_vector(10 downto 0);
variable datasum0 : vlbit_vector(9 downto 0);
variable data2d_temp : vlbit_vector(3 dowato 0);
begin
asgsert (vdd='1l’ and gnd='0’)
report “Vdd and GND not connected properly!”
severity Pailure;

all0o := “0000000000000”;
datasum0 := “0000000000”;

if prising(clock) then
if dump2d='1‘’ then
if rst_dump2d4=’1l‘’ then
dumpacc <= all0(12 downto 0);
dumpdata <= all0(9 downto 0);
else
dumpacc <= dumpsum(1l2 downto 0);
if datasum(9)=’'1’ then
dump_temp := sub2c(datasum(, datasum);
else
dump_temp := add2c(datasum0, datasgum);
end if;
dumpdata <= dump_temp(9 downto 0);
end if;
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dataacc <= all0(9 downto 0);
else

dataacc <= datasum( 9 downto 0);
end if;

rst_dump2d <= rst_dumpld;
dump2d <= dumpld;
data3d <= data2d(3 downto 0);
data2d(3) <= (pnld xor walshld xor datald(3));
data2d(2 downto 0) <= 4atald(2 downto 0);
rest_dumpld <= rst_dump;
dumpld <= dump;
pnld <= pn;
walshld <= walsh;
datald <= datain(3 downto 0);
end if;

if pfalling(clock) then
dumpsum_temp := add2c(dumpacc, dumpdata);
dumpsum <= dumpsum_temp(l2 downto 0);
dataout <= dumpsum_temp(l2 downto 0);

if data3d(3)=’1l’ then

____________ This step is necessary to convert the input data (which
____________ is signed mag.) to 2's complement (which is how thig vhdl
............ model keeps the sum).

data2d_temp(3) := all0(0);
data2d_temp(2 downto 0) := data3d(2 downto 0);
------------ If the sign bit is high, we subtract the magnitude from
------------- the current sum.
datasum_temp := sub2c(dataacc, data2d_temp);
datasum <= datasum_temp(9 downto 0);
else
datasum_temp := add2c(dataacc, data3d);
datasum <= datasum_temp(9 downto 0);
end if;
end if;

end process;

end behavior;

-- Cell: i_frontend

-~ Description: front end block of correlator
== Author: Ian O’Donnell

-- Date:

-- Modified: 8/1/94-Modified Kevin Stone’s previous base_dp.vhd to this.
-- Note: Does not model hardware, only functionality at

-- input and output. Internal nodes do not correspond.

-- Do not synthesize this and then expect it to work.

- > T - D T R W %R S G TR e e D R R D R D S P P S WD G5 D S D YD R R D R D R D D D D R P D P e S S S R R

entity i_frontend is
port (




84

clock : in
rst_dump : in
dump : in
pn @ in
walsh : in
datain : in
vdd : in
gnd : in
bufdump : out
datasign : out
dataout : out

):
end i_frontend;

vlbit;

vibit;

vlbit;

vlibit;

vlbit;

vlibit_vector(3 downto 0);
vlbit;

vlbit;

vlbit;

vlbit;

vlbit_vector(8 downto 0)

architecture behavior of i_frontend is

signal rst_dumpld, dumpld, pnld, walshld : vlbit;
signal datald : vlbit_vector(3 downto 0);
signal rst_dump2d, dump2d : vlbit;

signal dataz2d, data3d

: vlbit_vector(3 downto 0);

signal datasum, dataacc : vlbit_vector(9 downto 0);

begin
process (clock)

variable all0 : vlbit_vector(12 downto 0);
variable datasum_temp, dump_temp : vlbit_vector(l0 downto 0);
variable datasign_temp : vlbit;

variable datasum0 :

vlbit_vector(9 downto 0);

variable data2d_temp : vlbit_vector(3 downto 0);

begin
assert (vdd=’1’ and

gnd='0")

report “vdd and GND not connected properly!”

saverity Failure;

all0 := “0000000000000";
datasum0 := #0000000000”;

if prising(clock) then
if dAump2d=’'1l’ then
if rst_dump2d=’'1l’ then

dataout <=

allo(8 downto 0):

datasign <= ‘0’;

sublc (datasum0, datasum);

dump_temp := add2c(datasum0, datasum);

dump_temp (8 downto 0);

else
if datasum(9)='1’ then
dump_temp :=
datasign_temp := ‘1’;
else
datasign_temp := ‘0’;
end if;
dataout <=
datasign <= datasign_temp;
end if;

dataacc <= all0o(9 downto 0);

else

dataacc <= datasum( 9 downto 0);
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end if;

rst_dump2d <= rst_dumpld;
dump2d4 <= dumpld;
data3d <= data2d(3 downto 0);
data2d(3) <= (pnld xor walshld xor datald(S)):
data2d(2 downto 0) <= datald(2 downto 0);
rest_dumpld <= rst_dump;
dumpld <= dump;
pnld <= pn;
walshld <= walsh;
datald <= datain(3 downto 0);
end if;

if pfalling(clock) then
bufdump <= dAump24;
if data3d(3)='1’ then

____________ Thig step is nacessary to convert the input data (which
____________ is signed mag.) to 2's complement (which is how this vhdl
------------ model keeps the sum).

data2d_temp(3) := allo(0);
data2d_temp(2 downto 0) := data3d(2 downto 0);
------------ If the sign bit is high, we subtract the magnitude from
------------- the current sum.
datasum_temp := sub2c(dataacc, data2d_temp);
datasum <= datasum_temp(9 downto 0);
else
datasum _temp := add2c(dataacc, data3d);
datasum <= datasum_temp(9 downto 0);
end if;
end if;

end process;
end behavior;

-- Cell: walsh

-- Description: walsh generator
== Author: Kevin Stone

-~ Date: 3/24/94

-=- NOTE: FOR CORRECT SYNTHESIS MUST SYNTHESIZE WALSH BEFORE WALSH_NAND.
- Counter was hand designed -> do not synthesize
-~ 6/20/94: Changed counter from asynch reset to synch reset

entity walsh is

port (
reset_1l : ‘in wvlbit;
pn_allones_1l : in vlbit;
stall_1l : in vlbit;
walshnum : in vlbit_vector(5 downto 0);
pnsynch : in wvlbit;

clkéd : in vlbit;
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walshout :
walshcount :
):
end walsh;

out vlbit;
out vlbit_vector(5 downto 0)

architecture behavior of walsgsh is

component countédsync

port (
clk : in vlbit;
rst in vlbit;
ent in vlbit;

countout :

);
end component;

out vlbit_vector (5 downto 0)

component walsh_nand
port (

walshnum : in wvlbit_vector(5 downto 0);
walcnt_int in vl1bit_vector(5 downto 0);
walcent_d4al : in vlbit_vector(5 downto 0);
nandout : out vlbit

)i
end component;

signal walcnt_int : vlbit_vector(5 downto 0);
signal walcnt_d4l_temp : vlbit_vector(5 downto 0);
signal walcnt_dl : vlbit_vector(5 downto 0);
signal tempnandé : vlbit;
signal walshout_int : vlbit;
signal walshout_temp : vlbit;
signal walcnt_rst : vlbit;
signal walsh_rst : vlbit;
signal stall_l_b : vlbit;
signal reset_l_b : vlbit;
signal pn_allones_1l1l_b : vlbit;

begin

walcounter : countédsync -- gynchronous reset, no load
port map(

clk => clké4,

rst => walcnt_rst,

cnt => stall_l,
countout => walcnt_int

I3
’

)
walnand : walsh_nand
port map (
walshnum => walshnum,
walent_int => walent_int,
walent_dl => walent_d41,
nandout => tempnandé

.
.

)

walcnt_rst <= reéet_l_b or pn_allones_1_b or pmsynch;
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pn_allones_l1l b <= not(pn_allones_l);
reset_l_b <= not(reset_1l);
stall_l_b <= not(stall_l);

walshout <= walshout_int;
walshcount <= walcnt_int;

process(reset_l, pn_allones_l, stall_l, walcant_int, walshout_int,
tempnandé, walcnt_dl, walsh_rst)
variable all0 : vlbit_vector(5 downto 0);
begin
all0 := ~“0000007;
if ((walent_int = all0) or reset_1l='0’ or pn_allones_l='0’) then
walsh_rst<='0’;
else
walsh_rst<=’l’;
end if;

if walsh _rst='0’ then
walshout_temp <= ‘0’;
elsif stall_1='0’ then
walshout_temp <= walshout_int;
elsif (tempnandé = ‘1l’) then -- £flip bit
walshout_temp <= not (walshout_int);
else
walshout_temp <= walshout_int;
end if;

if (reset_l=’'0’ or pn_allcnes_1l='0’) then
walcnt_dl_temp <= allol;
elsif stall_1='0’ then
walcent_dl_temp <= walcnt_d4l;
else
walcent_dl_temp <= not(walent_int);
end if;

end process;

latch_procl : process
begin
wait until prising(clkéd);
walshout_int <= walshout_temp;
end process latch_procl;

latch_proc2 : process
begin
wait until prising(clké6d);
walcnt_dl <= walcnt_dl_temp;
end process latch_proc2;

end behavior;

-- Cell: walsh_nand
-- Description:
-- Author: Kevin Stone

-- Date: 6/12/94




entity walsh_nand is

port (
walshnum : in wvlbit_vector(5 downto 0);
walent_int : in vlbit_vector (S5 downto 0);
walent_41 in vlbit_vector(5 downto 0);
nandout : out vlbit

):
end walsh nand;

architecture behavior of walsh_nand is

signal tempnand0 : vlbit;
signal tempnandl : vlbit;
signal tempnand2 : vlbit;
signal tempnand3 : vlbit;
signal tempnandd : vlbit;
signal tempnand5 : vlbit;

begin

tempnand0 <= not (walshnum(0) and walent_int(0) and walcnt_dl1l(0));
tempnandl <= not (walshnum(l) and walcnt_int (1) and walent_dl(1));
tempnand2 <= not (walshnum(2) and walcnt_int(2) and walent_d1(2));
tempnand3 <= not (walshnum(3) and walcnt_int(3) and walent_dl(3));
tempnandd <= not (walshnum(4) and walcnt_int(4) and walcnt_d4l(4));
tempnand5 <= not (walshnum(5) and walcnt_int(5) and walcnt_dl1(5));
nandout <z not (tempnand0 and tempnandl and tempnand2 and
tempnand3 and tempnandd and tempnand$);

end behavior;
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-- Cell: countédsync

-- Description: sync rst, no load
-~ Author: Kevin Stone

-=- Date: 6/20/94

-=library synth;
~--use synth.stdsynth.all;

entity countédsync is

port (
clk : in vlbit;
rst : in vlbit;
ent : in vlbit; )
countout : out vlbit_vector (5 downto 0)

);
end countédsync;
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architecture behavior of countédsync is
signal countout_int : vlbit_vector(5 downto 0);
signal count_temp : vlbit_vector(5 downto 0);
constant all0 : vlbit_vector(5 downto 0)
:= 20000007;
constant one : vlbit_vector(5 downto 0)
:= ~“000001~;
begin

count_proc : process(cnt, count_temp, countout_int, rst)
variable count_temp2 : vlbit_vector(6 downto 0);
begin
count_temp2 := addum(countout_int, one);

if rst=’'1l’ then
count_temp <= allo;

elsif cnt='1l’ then
count_temp <= count_temp2(5 downto 0);

else
count_temp <= countout_int;

/ end 1if;
end process count_proc;

latch_procl : process
begin

wait until prising(clk);

countout_int <= count_temp after 100 ps;
end process latch_procl;

countout <= countout_int;
end behavior;

-=- Cell: lock

-- Description:

-=- Author: Kevin Stone

-- Date: 7/6/94

-- Inputs

-- CLKé64

-- RESET_L: chip reset

-- T _RESET: Indicates radio fell out of lock
- VALID_DATA: Occurs approx every 1024 cycles
-— cl

-- c2

- c3

-- cd

-- outputs

-- LOCK

- LOCKRESET: High for one cycle, right after radio falls

- out of lock




entity lock is

port (
clké6d : in +vilbit;
reset_1l : in wvlbit;
t_reset : in wvlbit;
valid_data : in vlbit;
el ]l : in vlbit;
c2_1 : in vlbit;
c3_1 : in +vlbit;
cd_l : in vlbit;
lock : out vlbit;.
lockreset: out vlbit;
statebits : out vlbit_vector(l downto 0) -- take out state for
-- debugging purposes
)i
end lock;

architecture behavior of lock is
signal nextstate : vlbit_vector(l downto 0);
signal presentstate : vlbit_vector(l downto 0);
signal nextlock : vlbit;

begin

statebits <= presentstate;

process (clk64, presentstate, reset_l, valid_data, e¢l_1, c2_1, c3_1,
cd_1l, t_reset)
variable statetemp : integer;
begin

statetemp := vlid2int (presentstate);
case statetemp is
when 0 => =-- no lock
lockreset <= ‘0’;
nextstate(0) <= (valid_data and not(cl_l and c2_1 and ¢3_1 and
cd_1));
nextstate(l) <= ‘0’;
nextlock <= (valid_data and not(cl_l and c2_1 and c¢3_1 and
cd_1));
when 1 => -- got lock
lockreset <= ‘0';
nextstate(0) <= not(valid_data and t_reset);
nextstate(l) <= valid_data and t_reset;
nextlock <= not(t_reset and valid_data);
when 2 => -~ lost lock
lockreset <= ‘1’;
nextstate <= #“00”;
nextlock <= ‘0’;
when others => -~ invalid state
lockreset <= ‘0’; :
nextstate <= “00”;
nextlock <= ‘0’;
end case;
end process;
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latchlProc : process
begin
wait until prising(clké64) or reset_1l1l='0’;
if reset_l='0’ then
presentstate <= ~“00”7;
else
presentstate <= nextstate;
end if;
end process latchlProc;

latch2Proc : process
begin
wait until prising(clkéd) or reset_1l=’'0’';
if reset_1=’0’ then
lock <= ‘0’;
else
lock <= nextlock;
end if;
end process latch2Proc;

end behavior;

-- Cell: pn

-~ Description: pn generator
== Author: Kevin Stone
-- Date: 3/23/94

-~library synth;
--use synth.stdsynth.all;

entity pn is

port (
reset_1 : in vilbit;
-- pnsynch : in wvlbit;
clké64 : in vlbit;
stall_1 : in vlbit;
pn_1l4d : in vlbit;
seed : in vlbit_vector (15 downto 0);
pncode : out vlbit_vector (15 downto 0);
pn_out : out vlbit;
pn_outld : out vlbit;
pn_out2d : out vlbit;
pn_outid : out vlbit;
pn_xorout : out vlbit;

pn_allones_l : out vlbit
);
end pn;

architecture behavior of pn is
component muxl5_3tol

port (
A in vlbit_vector (15 downto 0);
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in vibit_vector (15 downto 0);
in v1bit_vector (15 downto 0);
in vlbit_vector(l downto 0);
out vlbit_vector (15 downto 0)

w0
C). w
o f=d 00 oo

):
end component;

component delayl

port (
input : in vlbit;
reset_1l : in vlbit;
clk : in vlbit;
output : out vlbit

)

end component;

signal pncode_int : vlibit_vector (15 downto 0);
signal load_l_temp, load_1l1_dl : vlbit;
gignal pn_xorout_int : vlbit;
constant templ : vlbit_vector(l5 downto 0)

:= #1111111111111110”;
signal pnload_shift : vlbit_vector (15 downto 0);
signal pnload_temp : vlbit_vector(l5 downto 0);
signal muxlSsel : vlbit_vector(l downto 0);
signal pn_reset_l : vlbit;
signal tmpl : vlbit;
signal pn_outld_int
signal pn_out2d_int

begin

vlbit;
vlbit;

*
.
.
:

muxlS : muxl5_3tol
port map (
A => pncode_int,
B => seed,
C => pnload_shift,
sel => muxlS5sel,
Q => pnload_temp
);

dlyl : delayl
port map (
input => pncode_int (0),
reset_l => tmpl,
clk => clké4,
output => pn_outld_int
);:

dly2 : delayl
port map (
input => pn_outld_int,
reset_1l => tmpl,
clk => clk64,
output => pn_outad_int
)

dly3 : delayl
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port map(
input => pn_out2d_int,
reset_1l => tmpl,
clk => clkéd,
output => pn_outid
| ¥

-=- pn_reset_l <= reset_l and not (pnsynch);
tmpl <= ‘1’;
pn_outld <= pn_outld_int;
pn_out2d <= pn_out2d_int;
pn_reset_1l <= reset_l;
pn_xorout_int <= pncode_int(15) xor pncode_int(13) xor
pncode_int (4) xor pncode_int(0);
pn_xorout <= pn_xorout_int;
pncode <= pncode_int;
pn_out <= pncode_int(0);
pn_allones_l <= load_1l_4a1;
pnload_shift <= pn_xorout_int & pncode_int (15 downto 1);

load_proc : process(pncode_int, reset_1l, pn_xorout_int, seed,
load_1l_41,
stall_l, pn_14d)
begin
-- 4/2/94: different from original sdl/bds file. Changed polarity of
load
-- Note: checking for all ones case one cycle ahead
if stall_l1='0’ then
load_1_temp <= load_l_d1;
elsif (pncode_int = templ) then
load_l_temp <= ‘0’;
else
load_1_temp <= ‘1’;
end if;

-- load_1_dl goes when pncode_int is all ones or when resetting
if stall_1l=‘0’ then
muxl5sel <= #“007;
elsif load_1_d1='0’' or pn_l1ld='1l’ then
muxl5sel <= “01”;
else
muxlS5sel <= “107;
end if;
end process load_proc;

latch_procl : process
begin
wait until prising(clksd),
pncode_int <= pnload_temp;
end process latch_procl;

latch_proc2 : process
begin
wait until prising(clké4) or pn_reset_1l='0’;
if pn_reset_1l=’'0’ then
load_1_4l1 <= ‘0’;
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else
load_1l_dl <= load_l_temp;
end if;
end process latch_proc2;

end behavior;

-- Ceoll: muxl5_3tol

-- Description: 15 bit wide 3 to 1 mux
== Author: Kevin Stone

-=- Date: 6/13/94

- e S S e s R P R S S D SR D e G R P YR D D D P R R T WP e G e

--1library synth;
--ugse synth.stdsynth.all;

entity muxl5_3tol is

port (
A in vlbit_vector (15 downto 0);
B : in wvlbit_vector (15 downto 0);
C : in vlbit_vector(l5 downto 0);
gsel : in vlbit_vector(l downto 0);
Q : out vlbit_vector(l5 downto 0)

)
end muxl5_3tol;

architecture behavior of muxl5_3tol is
begin
muxProc : process(sel, A, B, C)
variable muxsel_temp : integer;
begin
muxsel_temp := vid2int (sel);
case muxsel_temp is
when 0 => -- gelect seed
Q <= A;
when 1 => -- select pnsc_a
Q <= B;
when 2 => -- select pnsc_b
Q <= C;
when others => -- ghould never get here
Q <= “XXXXXXXXXXXXXXXX’” »
end case;
end process muxProc;
end behavior;

-=- Cell: updctrl

-- Description:

-~ Author: Kevin Stomne
-- Date: 7/5/794

-- Note: updé3, updl087, and corr_rst need to be level

-- converted to 1.5V, then latched to produce updéd4, updl088, corr_rstl S

-- 7/6/94: changed pn_stall_l to pnstall
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-- 7/17/94: using updl087 as valid_data signal. This means that

-- the outputs from the correlators must be before the final

== latch instead of after.

-~ 8/1/94: add flop create a delay reset_l signal. This is used to
-- make sure the proper thing is done when coming out of reset

library synth;
use synth.stdsynth.all:;

entity updctrl is

port (
clkéd : in vlbit;
reset_1l : in wvlbit;
cl l : in wvlbit;
c2_1 : in wvlbit;
e3_1 : in vlbit;
cd_l : in vlbit;
-- valid_data : in +vlbit;
lock : in vlbit;
pnstall_l : out vlbit;
-- pnsynch : out vlbit; -- used to keep counter/pn/walsh in synch
when
- -- coming out of reset
updé3s : out vlbit; -- counted for 64 valid Tchips
updl1087 : out vlbit; -- tells backend of corr’s to latch data
corr_rst : out vlbit; -- clear out contents of carry-save
adder’s
-- “dump-into” registers
dr_rst : out vlbit; -- clear out contents of dr_corr regs.
statebits : out vlbit_vector(2 downto 0) -- take out state for

-- debugging purposes
)
end updctrl;
architecture behavior of updctrl is

component cnt20481ds

port (
countin : in vlbit_vector (10 downto 0);
clk : in vlbit;
rst : in vilbit;
14 : in vlbit;
cnt in «vlbit;
countout : out vlbit_vector(l10 downto 0)

)
end component;

component delayl

port (
input : in +vlbit;
reset_1l : in vlbit;
clk in vlbit;
output : out vlbit

);
end component;
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signal presentstate : vlbit_vector (2 downto 0);

signal

signal

signal
cnt2048

nextstate : vlbit_vector (2 downto 0);
count : vlbit_vector (10 downto 0);
tmp64 : vlbit_vector (10 downto 0); -- used as constant input to

signal valid_data : vlbit; -- tells control that output from correla-
tors is valid

signal rstflag : vibit; -- indicates that we are in states=000\b

signal flag6l : vlbit; -- based only on value of count

signal flagé2 : vlbit; -- latched flagé6l

signal ctrl62 : vlbit; -- control signal generated by state machine

-- which can also set updé3

signal preupd63 : vlbit; -- input to flop where updé3 is the output

signal £1agl085 : vlbit; -- based only on value of count

signal £1lagl086 : vlbit; -- latched £1lagl085

signal ctrll086 : vlbit; -- control signal generated by state machine
-- which can also set updl08?

signal preupdil087 : vlbit; -- input to flop where updl087 is the output

signal
signal
signal
signal

signal

signal
put
signal
signal
signal
put
signal
signal
signal
signal
signal
signal
begin

updé3_int : vlbit;
updl087_int : vlbit;
corr_rst_int : vlbit;
ctrl_crst : vlbit;

control signal generated by state machine
-- which can also set corr_rst

vibit; -- control signal generated by state machine
-- which can also set dr_xrst

precorr_rst : vlbit; -- input to flop where corr_rst is the out-

ctrl_drst :

predr_rst : vlbit; -- input to flop where dr_rst is the output
pnstall_1l_int : vlbit;
prepnstall_l : vlbit; -- input to flop where pnstall is the out-

vlbit;
vlbit;
vlbit;

rst_count :
cnt_count :
1d_count :

tmpl : vlbit;
tmp0 : vlbit;

rstflag dl : vlbit;

tmp0 <= ‘0’;

tmpl <= ’'1’;

tmp64 <= #00001000000”;

preupdé3 <= flag62 or ctrlé62;
preupdl087 <= £1lagl086 or ctrll086;
precorr_rst <= f£lagl086 or ctrl_crst;
updé3 <= updé3_int;

updl087 <= updl087_int;

valid_data <= updl087_int;

corr_rst <= corr_rst_int;

pnstall_l <= pnstall_1l_int;
statebits <= presentstate;

cnt_count <= pnstall_l_int; -- keep count

-- pnsynch <= not(presentstate(2) or presentstate(l) or present-

state(0));

in sync with data/pn/walsh

rstflag <= presentstate(2) or presentstate(l) or presentstate(0);




cnt2048 : cnt2048lds
port map(

countin => tmpéd4d,
clk => clkéd4,

rst => rst_count,
14 => tmpo,

cnt => cnt_count,
countout => count
Y:

~-- pipeline control signals to minimize the number of levels of
-- logic between flops. Want only 3 levels of logic, 4 at most.
dlyl : delayl
port map (
input => flag6l,
reset_1l => tmpl,
clk => clké64,
output => flagé2
);

dly2 : delayl
port map(
input => preupdé3,
reset_l => tmpl,
clk => clké4,
output => upd63_int
):

dly3 : delayl
port map(
input => flagloss,
reset_l => tmpl,
clk => clké4,
output => £lagl086
);

dlyd : delayl
port map(
input => preupdl087,
reset_l => tmpl,
clk => clké4,
output => updl087_int
);

dly5 : delayl
port map (
input => precorr_rst,
reset_1l => tmpl,
clk => clké4,
output => corr_rst_int
)z

dlyé : delayl
port map (
input => ctrl_drst,
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reset_l => tmpl,

clk => clké4,

output => dr_rst
);

dly7 : delayl
port map (
input => prepnstall_l,
reset_1l => tmpl,
clk => clké4,
output => pnstall_l_int
):

dlys8 : delayl
port map(
input => rstflag,
reset_1l => tmpl,
clk => clké64,
output => rstflag dl
)i

flag proc : process(count)
variable tmp6l : vlbit_vector(5 downto 0);
variable tmpl085 : vlbit_vector (10 downto 0);
begin
tmpél 1= #111101”;
tmpl085 := “10000111101”;
if (count(5 downto 0) = tmpé6l(5 downto 0)) then
flag6l <= ‘1l’;
else
£flagél <= ‘0’;
end if;

if (count = tmpl085) then
£1agl085 <= ’1’;
else
£1laglo8s <= ‘0’';
end if;
end process flag_proc;

stmachProc : process(lock, cl_1, c2_1, c3_1, ¢d4_1, presentstate,
updl1087_int, valid_data, rstflag_dl)
variable statetemp : integer;
begin
statetemp := vld2int (presentstate);
case statetemp is
-- note: wierd things happen in reset because updé3, updlos7,

-- corr_rst are flopped values. Thusg, after reset_l

-- goes high, updl087 will be high for one extra cycle.
-- This means the controller will be in state 1 and see
- upd1087 is high and thus want to reset the counter.
-- This will screw up the counter’s synch with pn/walsh.
- Therefore, the kluge is to generate a signal which
-- will keep counter/pn/walsh in synch when coming out
-- of reset.

when 0 => -- reset state
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nextstate <= “001”7;

prepnstall_l <= ‘1’;

ctrl62 <= ‘1l’; -- reset correlators

ctrll0B86 <= ’l’; -- clear out backend

ctrl_crset <= ‘1’;

ctrl_drst <= ‘1’;

rgt_count <= ‘1l’; -- reset count

1d_count <= ‘0’; .
when 1 => -- trying to acquire lock

prepnstall_1 <= ‘1’;

ctrlé2 <= ‘0’;

ctrllo86 <= ‘0’;

ctrl_crset <= ‘0’;

ctrl_dArst <= ‘0’;

ld_count <= ‘0’;

if updl087_int='1’ and rstflag dl=’1l’ then
rgt_count <= ‘1’;
else
rst_count <= ‘0’; -- used to keep pn, walsh, count in sync
end if;

-- use rstflag dl make that the correlators’
-- comparators’ outputs are not used right
-- after coming out of lock
if valid_data=’l’ and rstflag dl=’1l’ then
if c1_1='0’' then
nextstate <= #110”; -- stall 0 cycles
elsif c2_1=’0’ then
nextstate <= “101”; -- stall 1 cycle
elgif c3_1=’0’ then
nextstate <= “100”; -- stall 2 cycles
elsif c4_1='0’ then
nextstate <= “011”; -- stall 3 cycles
else
nextstate <= #010”; -- stall 4 cycles
end 1if;
else -- don’t do anything
nextstate <= ~001”;
end if;
when 2 => -- gtall 4 cycles
prepnstall_1l <= ‘0’;
nextstate <= “011”;
ctrl62 <= ‘0’;
ctrll086 <= ‘0’;
ctrl_crst <= ‘0’;
ctrl_drst <= ‘0’;
rst_count <= ‘0’;
1d_count <= ‘0’;
when 3 => -- gtall 3 cycles
prepnstall_1l <= ‘0’;
nextstate <= “100”;
ctrlé2 <= ‘0’;
ctrll086 <= ‘0’';
ctrl_crst <= ‘0’;
ctrl_drst <= ‘0’;
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rst_count <= ‘0’;
ld_count <= ‘0’;

wvhen 4 => -- gtall 2 cycles
prepnstall_ 1 <= ‘0’;
nextstate <= #101”;
ctrlé2 <= ‘0’;
ctrllosé <= ‘0’;
ctrl_crst <= ‘0’;
ctrl_dArst <= ‘0’;
rst_count <= ‘0’;
1d_count <= ‘0’;

when 5 => -- stall 1 cycle
prepnstall_l <= ‘0’;
nextstate <= ¥110”;
ctrlée2 <= ‘0’;
ctrll08é <= ‘0’;
ctrl_crst <= ‘0’;
ctrl_drst <= ‘0’;
rst_count <= ‘0’;
1d4_count <= ‘0’;

when 6 =>
if lock=’1l’ then

nextstate <= #111%;
else
nextstate <= #001”;

end if;

prepnstall_l <= ‘1’;
ctrlé2 <= ‘1’; -~ clear out correlator
ctrllosé <= ‘0’;
ctrl_crst <= ’‘1l’; -- clear out correlator
ctrl_drst <= ‘0’;
rst_count <= ‘0’;
1da_count <= ‘0’;
when 7 => -- got lock
prepnstall_l <= ‘1’;
ctrl62 <= ‘0’';
ctrll086 <= ‘0’;
ctrl_crst <= ‘0’;
ctrl_drst <= ‘0’;
ld_count <= ‘0’;

if updl087_int =’1’ then
rst_count <= ‘1’;
else
rst_count <= ‘0’;
end if;

if lock=’l’ then
nextstate <= “111”;
else
nextstate <= “000”;
end if;
vhen others => -- should never get here
prepnstall_l <= ‘1’;
nextstate <= “000”;
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ctrlé2 <= ‘0’;
ctrllo86 <= ‘0’;
ctrl_crst <= ‘0’;
ctrl_drst <= ‘0’;
rst_count <= ‘0’;
1d_count <= ‘0’;
end case;
end process stmachProc;

latchlProc : process
begin
wait until prising(clké4) or reset_l=z='0’;
if reset_l='0’ then
presentstate <= “000”;
else
presentstate <= nextstate;
end if;
end process latchlProc;

end behavior;

-- Cell: cnt2048lds

-- Description: 11 bit counter with synchronous load and reset
== Author: Kevin Stone

-- Date: 7/4/94

- > - - - S P e P e e e e e S R R e D > > D D D D P P e s e e e

~-library synth; .
--use synth.stdsynth.all;

entity cnt20481ds is

port (
countin : in vlbit_vector (10 downto 0);
clk : in vlbit;
rst : in vlbit;
14 : in vlbit;
cnt in vlbit;
countout : out vlbit_vector (10 downto 0)

):
end ont20481l1ds;

architecture behavior of cnt20481lds is
signal countout_int : vlbit_vector(10 downto 0);
signal count_temp : vlbit_vector (10 downto 0);
constant all0 : vlbit_vector(10 downto 0)
:= #00000000000”;
constant one : vlbit_vector(l10 downto 0)
:= #00000000001”; '
begin

count_proc : process(rst, ld, cnt, countin, count_temp, countout_int)
variable count_temp2 : vlbit_vector(ll downto 0);
begin
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count_temp2 := addum(countout_int, one);

if rst='1’ then
count_temp <= allol;
elsif 1d=’1l’ then
count_temp <= countin;

elgif cnt=’'1l’

then

count_temp <= count_temp2(10 downto 0):;

else

count_temp <= countout_int;

end if;

end process count_proc;

latch_procl : process

begin

wait until prising(clk);
countout_int <= count_temp after 100 ps;
end process latch_procl;

countout <= countout_int;

end behavior:;

-=- Cell: regetrl

~-- Description: Registers for thres #1, #2, #3 and walsh number
Kevin Stone

== Author:

-- Date: 3/28/94
-- 9/13/94: Added pnclk

library synth;

use synth.stdsynth.all;

entity regetrl is
port (
reset_1 :
clkéd :
pn_allones_1l :
cs_1 ‘
wr_1l
addr
clka
¢lkb
clke
clkd :
clkback :
);
end regctrl;

e 0 0 e e e

architecture behavior of regctrl is

begin

in
in
in
in
in
in
out
out
out
out
out

vlbit;
vlbit;
vlbit;
vlbit;
vlbit;

vlibit_vector(l downto 0);

vlbit;
vlbit;
vlbit;
vlbit;

vlbit -- low when pn shiftreg is allomnes

clka <= not(es_l or wr_1l) and not{(addr(1l)) and not (addr(0)
clkb <= not(cs_l or wr_l) and not(addr(l)) and (addr(0)

clke <= not(es_l1 or wr_1l) and

(addr(1)) and not (addr(0)

):
);:
)i
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clkd <= not(cs_l or wr_l) and (addr(l1)) and

(addr(0));

clkback <= (not(reset_l) and clk6d) or (reset_l and pn_allones_l);

end behavior;

-- Cell: two2smx

-- Description: convert two’s complement numbers (-8 to 7) to
-~ gign magnitude (-7 to 7). 8Sign of INB and INC are inverted.
-- This is done to interface with the transmitter chip.

== Author: Kevin Stone
-=- Date: 10/18/94

entity two2smx is

port (
ina : in vlbit_vector(3 downto
inb : in vlbit_vector(3 downto
inc : in vlbit_vector(3 downto
ind : in vlbit_vector(3 downto
outa : out vlbit_vector(3 downto
outb : out vlbit_vector(3 downto
outc : out vlbit_vector(3 downto
outd : out vlbit_vector(3 downto

):
end two2smx;

architecture behavior of two2smx is

component buff104_4

port (
input : in vlbit_vector (3
output : out vlbit_vector (3

)
end component;

signal outa_temp
signal outb_temp
signal outc_taemp
signal outd_temp

vlibit_vector(3 downto 0
vlbit_vector(3 downto 0
vlbit_vector(3 downto 0
vlbit_vector(3 downto 0

% o0 0 e

begin
bufa : bufflod_4
port map (
input => outa_temp,
output => outa
);

bufb : buff£104_4
port map(
input => outb_temp,
output => outb
):

00000000
(R REE A N
We Ne Ne N W N W

downto 0);
downto 0)
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bufc : bufflo04_4

port map(

input => outc_temp,
output => outc

);

bufd : bufflod_4
port map(
input => outd_temp,
output => outd

):

process(ina)
variable ina_temp

begin

integer;

ina_temp := vid2int(ina);
case ina_temp is

when 0 =>
outa_temp
when 1 =>
outa_temp
when 2 =>
outa_temp
when 3 =>
outa_temp
when 4 =>
outa_temp
when 5 =>
outa_temp
when 6 =>
outa_temp
when 7 =>
outa_temp
when 8 =»>
outa_temp
when 9 =o>
outa_temp
when 10 =>
outa_temp
when 11 =>
outa_temp
when 12 =>
outa_temp
when 13 =>
outa_temp
when 14 =>
outa_temp
when 15 =>
outa_temp
when others =>
outa_temp

end case;
end process;

process (inb)

<=

<=

“0000”;
“0001”;
“0010”;
“0011”;
#0100”;
#0101%;
#0110”;
“0111”;
“11117;
“#1111”;
«1110”;
“#1101”;
#1100”;
“3011";
41010”;
«“1001";

“XXXX" ;
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variable inb_temp : integer;
begin
inb_temp := v1d2int (inb);
case inb_temp is
when 0 =>
outb_temp <= “10007;
when 1 =»>
outb_temp <= #1001”7;
when 2 =>
outb_temp <= #1010”;
when 3 =»>
outb_temp <= “1011%;
when 4 =>
outb_temp <= #1100”;
wvhen 5§ =»>
outb_temp <= #11017;
when 6 =>
outb_temp <= ~1110”;
wvhen 7 =»>
outb_temp <= #1111”;
when 8 =>
outb_temp <= “0111”;
when 9 =>
outb_temp <= “0111”;
when 10 =»>
outb_temp <= “0110”;
when 11 =»>
outb_temp <= “0101~;
when 12 =»
outb_temp <= “0100”;
when 13 =»>
outb_temp <= “0011”;
when 14 =»>
outb_temp <= “00107;
when 15 =>
outb_temp <= “0001”;
when others =>
outb_temp <= “XXXX”;
end case;
end process;

process (inc)
variable inc_temp : integer;
begin
inc_temp := vl1d2int (inc);
case inc_temp is
when 0 =>
outc_temp <= #1000”7;
when 1 =>
outc_temp <= #1001”;
when 2 =>
outc_temp <= #1010”;
when 3 =>
outc_temp <= “1011”;
wvhen 4 =>
outc_temp <= #1100”;
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when 5 =>

outc_temp <= “1101”";
when 6 =>

outc_temp <= *“1110”;
when 7 =>

outc_temp <= #1111”;
when 8 =>

outc_temp <= “0111”";
when 9 =>

outc_temp <= #“0111";
when 10 =>

outc_temp <= ¥01107;
when 11 =>

outc_temp <= “0101”;
when 12 =>

outc_temp <= #“0100”;
when 13 =>

outc_temp <= “0011”;
when 14 =>

outc_temp <= “0010”;
when 15 =>

outc_temp <= “0001";
when others =>

outc_temp <= “XXXX";

end case;
end process;

process (ind)
variable ind_temp : integer;
begin
ind temp := vld2int (ind);
case ind_temp is
when 0 =>
outd_temp <= “0000";
when 1 =>
outd_temp <= “0001”;
when 2 =>
outd_temp <= “0010”;
when 3 =>
outd_temp <= “0011”;
when 4 =>
outd_temp <= “0100";
when 5 =>
outd_temp <= “0101”;
when 6 =>
outd_temp <= “0110";
when 7 =>
outd_temp <= #0111”;
when 8 =>
outd_temp <= “1111”";
when 9 =>
outd_temp <= “1111";
when 10 =>
outd_temp <= “11107;
when 11 =>
outd_temp <= *“1101”;




107

vhen 12 =>
outd_temp <=
when 13 s=>
outd_temp <=
when 14 =>
outd_temp <=
when 15 =»>
outd_temp <=
wvhen others =>
outd_temp <=
end case;
end process;

end behavior;

#1100”;
“1011”;
~#10107;
~1001~;
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