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CHAPTER 1

Introduction

In recent years, there has been explosive growth in the computer, wireless communication,

multimedia, and networking industries. As a result, computers are becoming more powerful and

more networked-applications are harnessing this power by incorporating video, text/graphics,

speech and/orhandwriting recognition, and users are demanding that they be able to run these

applications anytime and anyplace with no lossof processing power. However, in today's wireless

computing environment, once the user breaks physical connection from the network, he is no

longer able to run these types of high bandwidth applications.

The Infopad project lSheng92] attempts to address this issue and more specifically, the radio

project attempts to address one aspect of this equation, the high speed indoorwireless link. The

goal of the Infopad CDMA radio project [Sheng95] is to support up to 50 users per picocell where

each user can receive raw data at the rateof 2 Mb/s. This requires a chipping rateof 64 MHz and a

samplingrateof 128MHz for timing recovery. The data is modulated using DQPSK modulation

which encodes 2 bits/symbol andis transmitted at a symbol rate of 1MHz, thus achieving a 2Mb/s

raw data rate.
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The goal of this research is the development of the digital baseband circuitry used in the CDMA

radio's receiver chip.The baseband circuitry must perform the following functions: initial coarse

timing recovery to align the receiver and transmitter to within 1 chip, data recovery, detection of

other nearby basestations, handoff, and fine (chip) timing recovery to keep the receiver and

transmitter aligned to within 1/4 a chip. Since thischip will be usedin amobile, battery-operated

receiver, minimizing power consumption is also of the utmostimportance. Several techniques for

reducing power were used, including architectural reconfiguration, use of multiple voltage levels,

and logic design.

This paper is organized in the following manner: chapter 2 gives some background information

and motivation for choosing CDMA, as well as a brief introduction to direct-sequence spread

spectrum. Chapter 3 provides an overview of the chip as well as a more in-depth treatment of the

backend'score functions: lock, digital phase lock loop,data recovery, andhandoff.Chapters 4 and

5 provide external and internal documentation for the chip. Lastly, conclusions are drawn and

future work is presented in Chapter 7.

This project attempts to show that it is possible to not only develop the required baseband DSP

circuitry to support the above specifications, but also that they can be implemented as a low-

power, low-cost custom-ASIC.



CHAPTER 2

Motivation/Background

This section is intended to help the reader understand where the DSP backend section fits into

the overall radio system, and to motivate why certain hardware blocks exist and design decisions

were made. This section first gives a motivation for choosing CDMA over other multiple access

schemes, then gives some background information on spread sprectrum.

2.1 Why Choose CDMA?

When choosing a multiple access scheme to use, it is very important to consider what type of

enviroment the system will be operatingin. The environment in which the Infopad radio downlink

will be used is an indoor office environment with a picocell radius of 5 meters. The primary

interference in this type of environment is due to multipath interference. The difference in time

between the arrival of a signal and it's last perceivable multipath arrival is called delay spread.

From statistical measurements done in [Seid91], it was found that typical delay spreads range from

20ns to 60ns with Rician-distributed fading characteristics.



With this in mind, the viability of several different multiple-access techniques for the downlink

was explored, including time-division multiple access, frequency-division multiple access,

frequency hop spread spectrum, and direct sequence spread spectrum [Sheng91]~direct sequence

spread spectrum was found to be the most suitable. Direct sequence is effective because of its

ability provide mulitple access as well as its abiltiy to resolve multipath arrivals through ratio

combining using a RAKE receiver [Proak89]. Initial simulations [Teus94] confirmed this

effectiveness by showing that aRAKEcan lower theBERbymore than three orders of magnitude.

This result canbe seen in Figure 2.1. It should be noted that near-far effects do not have to be
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FIGURE 2.1: BER vs. Number of users. This
simulation assumed there was no noise in the
channel [Wire94].

taken into consideration because the radio is in broadcast mode only.

A direct sequence spread spectrum system can not only support multiple useraccess, but it also

inherently provides users with a high tolerance to interfering signals, and a high degree of

resistance to narrowband nulls in the frequency response of the channel. Another advantage of



DS-CDMA, it the ability to provide variable quality of service (QOS) through power control.

Algorithms have been developed [Yun94] which can accept QOS specifications for different

substreams, assign them appropriate power levels, and can determine whether the systemcan add

or must drop substreams to maintain the desired QOS.

2.2 Background on Spread Spectrum

Direct sequence spread spectrum is atechnique which provide immunity to noise,resistance to

jamming, and resistance to multipath fading. The term spreading refers to spreading of the signal

over a frequency band.

The basicmethod which a direct sequence spread spectrum (DS-SS) system uses to "spread" the

data is to multiply the symbol or data stream of rate 1/Tb by an independent, binary antipodal1,

pseudorandom (PN) sequence2 of rate 1/TC (called the chipping rate) where Tc « Tb. Any bit at

the chipping rate is called a chip and the ratio of Tb to Tc is called the processing gain or spreading

factor. The increase in performance obtained in a DS-SS system through the processing gain can

be used to allow multiple users to occupy the same channel bandwidth provided that each user's

signal has a unique pseudorandom signature.

One property, however, which PN sequences generally lack is good cross-correlation which is

crucial in a multiaccess system to differentiate between the users* signals. One technique to

guarantee that users* signals aredifferentiable, while mantaining the pseudorandomness of the PN

sequence, is to overlay an additionaluser-specificcode. One such code is called a Walsh code. The

code sequence has rate \/Tc and length equal to T^/T^ Walsh codes have the property of being

perfectly orthogonal to one another. In other words, the cross-correlation/inner product of two

1. With binary antipodal signaling a "1" is represented as a"-1" and a "0" is repesented as a "1".
2. A PN sequence is also called a maximal length shift register sequence (see Appendix A for a
description).



distinct Walsh codes should equal 0. An example set of 3-bit Walsh codes can be seen in Figure

2.2. To see the orthogonality, we take the inner product of Walsh code 1 and Walsh code 3. The

={
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FIGURE 2.2 : An example 3-bit (8 chip) Walsh sequences.

result is 1 + 1+ 1 -1 -1 -1 -1 + 1 which sums to 0. The inner product of a Walsh code with itself

is 2n, where n is the number of bits in the walsh number. In this case, n equals 3, so the inner

product is 8. Appendix B describes how Walsh codes are generated. This type of communication

in which each user has their own distinct signature for transmitting over a common channel

bandwidth is called code division multiple access (CDMA).

To recoverthe signal on the receiverside, the signal must be despread. This is done by multiplying

the received signal by the same PN and Walsh sequence which were used to originally spread the

signal in the transmitter, assuming here that the receiver and transmitter are synchronized. The

result is then accumulated for the number of chips equal to the spreading factor. By looking at the

accumulated result, the bit which was transmitted can be determined. In this ideal case, an

accumulated result of -(Tb/Tc) would mean a -1 was transmitted, while an accummulated result of

(Tb/Tc) would mean a+1 was transmitted. Figure 2.3 illustrates this process for a spreading factor

of Tb/Tc = 8. If there is no noise in the channel, then s(t) should equal s'(t)«PN«Wl. This that

means the accumation of s'(t>PN»Wl over 8 chips will be either a -8 or +8 signifying a -1 or +1

respectively.
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FIGURE2.3 : Shows the process of spreading by a factor of 8 and
despreading user data through multiplication by PN and Walsh
sequences.This example assumesthereis no noise in the channel.

In the real world, the received signal will not be ideal and will consist of the coherent data term

and an incoherent error term. The error term is due to multipath interference, adjacent cell

interference, thermal noise and ADC quantization noise. If the power of the data term is 1 and the

noise power is a2, then the SNR is l/o2. When this signal is multiplied bythe PN and Walsh and

then correlated in the receiver, the coherent portion's power (the power of the user's data) will

increase bythe square of the spreading factor (nsf2) while the incoherent portion's (the error term)

power will increase by the spreading factor (nSf). Thus, the SNR after correlation will be l-nSf2/

o2-nsf =nsf/o. In other words, the SNR after correlation has increased by a factor of nSf. An
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example of the this noise reduction can be seen in Figures 2.4 and 2.5. For illustrative purposes,

the error term is an analog sine wave and only a PN sequence is used. Figure 2.4 shows what

would happenif the sine wave was integrated directlyand Figure 2.5 demonstrates how the effect

is diminished through the multiplicationof a PN sequence.
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FIGURE 2.4 : Shows effect of error term.
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FIGURE 2.5 : Shows how error is reduced
through multiplication by PN sequence.

2.3 Appendix A-Maximal Length Shift Register
Sequences

A maximal length shift register(MLSR) sequence arepseudorandom (PN) because they easily

synthesize repeating sequences that appearto be statistically white over short subsequences. A

MLSR sequence is generated by a feedback shift register which is governed by the relation.



xk = hl \.\ hnXk-n (EQ2.1)

where the output xk and the coefficients are binary assuming valuesof "0" and "1". The zero

coefficients correspond to no feedback tap, whereas the onecoefficients correspond to the direct

connection of the shift register output to the modulo-two summation. A representation of this

above relation can be seen in Figure 2.6. If we add xk to bothsides of eqn. 2.1, remembering that

r—»» D
X k-l

—* D
*1t-2 *k-

» • • • —

h2

n+l

D
*k-u

hnhi hn- 1

V U i '

e e ^—• • •^- e
FIGURE 2.6: A linear feedback shift register with binaryinput. The coefficients
are binary, and the summation is modulo-two.

xk © xk = 0, we get

In other words,

where

xk©hrxkl©...©hnxk.n = 0 (EQ 2.2)

xk*hksO ,

h(D)X(D) = 0

(EQ 2.3)

if we define h0 = 1 and hm = 0 for m < 0 and m > n and we interpret the summation as a

convolution in the modulo-two sense. Thus, the D-transform of eqn. 2.3 is

(EQ 2.4)

h(D) = 1®hjD ®...©hnDn (EQ 2.5)

is the transfer function ofthe shift register. The D-transform is just like the Z-transform except that

the additions are modulo-two and the symbol Disused instead of z*1. The transfer function h(D)

for the generator is a polynomial of degree n (we assume that 1^ = 1) with binary coefficients is

given the name generator polynomial.
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Not all generator polynomials produce amaximal length sequence inwhich the output period isr=

2n -1. A generator polynomial of degree n will only produce amaximal length sequence if it does

not divideany polynomial (1 © Dm) for m <2n-1. A table of maximal lengthsequence generatmg

polynomials can be seen in Table 2-1.

Table 2.1: Generating polynomials of various orders. Each entry inthe table when converted to
binary specifies the coefficients of the polynomial h(D).

Order Polynomial Older Polynomial

2 7 11 805

3 B 12 1053

4 13 13 201B

5 25 14 4443

6 43 15 8003

7 89 16 1100B

8 11D 17 20009

9 211 18 40081

10 409 19 80020

2.3.1 Properties of an PN Sequence

Ideally, a PN sequence of length "r" should have the following properties [1]:

Relative frequencies of "-1" and "1" areeach 1/2.

Runlengths (of -l's or 1's) are as expected in acoin-flipping experiment. Inother words,
Prob(n -l's) = Prob(n 1's) = (l/2)n.

Will see all possible combinations of length log2"r" (except the all-zero) in sequence.

If the random sequence is shifted by any non-zero number of elements, the resulting sequence
will have an equal numberof agreements and disagreements with the original sequence.

Almost perfect autocorrelationproperties:

P(t)

r, x = 0

*0• iv; (EQ 2.6)

The first four properties are necessary to make the resulting signal (the multiplication of the data

stream by the PN sequence) look as Gaussian or white as possible. The whiterthe transmitted

signal, the more constant its power spectral density (PSD) will be overthe band of interest. By

having a constant PSD, no one narrowband null in the channel's frequency response will have
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more of a deleterious effect on the received signal than any other. The drawback to this technique

is that the signal's SNR takes ahit3. The final property, almost perfect autocorrelation, isuseful

for synchronization between the transmitter and receiver. Unfortunately, in our system because we

overlay the Walsh sequence on top of the PN sequence. This compromises the ideality of the PN

sequence and correspondingly it's properties.

2.4 Appendix B-Walsh Code Generation

Walsh Codes are a set of orthogonal functions developed by Joe Walsh in 1973. A good

discussion of the theory behind Walsh functions can be found in [Beau84]. The Walsh code

number used in the Infopad is 6 bits, which produces a 64 bit length Walsh sequence. This

appendix will only discuss how Walsh sequences are generated and will focus on three bit walsh

numbers for simplicity.

The technique which the Infopad demodulator chip employs to generate Walsh sequences is to use

the difference between successive Gray codes. Table 2-2 shows a three bit Gray code sequence and

the difference between successive elements. A 4T in the difference entry signifies that bit in the

Table 2.2 : Describes generationof Walsh sequence for user 5 out of 8.

Grey Code
Elements

Difference b/w successive gray
code elements

Inputof Toggle
Hip-Flip

(SOP with

walnum = M10r')

Outputof Toggle
Flip-Hop

000 100 1 1

001 001 1 0

Oil 010 0 1

010 001 1 1

110 100 1 0

111 001 1 1

101 010 0 0

3. This is in contrast to a frequency-hop spreadspectrum system where the BER will be extremely high if
the current frequency which has been hopped into lies in a null. However, a frequency hop signal's BER
will be lower than that of a direct-sequence signal when the signal gets through.



Table 2.2: Describes generation of Walsh sequence for user5 outof 8.

Grey Code
Elements

Difference b/w successive gray
code elements

Inputof Toggle
Flip-Rip

(SOP with
w«lnum ="10n

Outputof Toggle
Flip-Hop

100 001 1 0

12

current Gray codeentry is different from the previous entry. For example, the difference between

Gray codes 010and 110 is 100 which signifies that onlythemsbhas changed. Thus, thedifference

entry is 100. Because Gray codes are designed so adjacent entries only differ by one bit, the

difference code should have only one 4V for each entry.

The next step is to generate a sum-of-products with the Walsh number and use the result as the

input to a toggle flip-flop. In this case, since we are using a three-bit walsh number, the equation

would look like the following:

Tppjjj = walnum2 •diff2 +walnurrij •diffj +walnum0 •diff0 (EQ 2.7)

The output of the toggle flip-flop is the Walsh sequence. Examples of 3-bitWalsh sequences can

be seen in Figure 2-2 in Section 2.2 This algorithm can be implemented in various ways in

hardware. One way can be seen in Figure 2.7.
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CHAPTER 3

Chip Overview

As mentioned in the previous two chapters, the goal of the Infopad CDMA radio project is to

provide for up to 50users per basestation where each user can receive raw data atthe rate of 2Mb/

s. The radio uses orthogonal codes called Walsh codes to differentiate the users and a

pseudorandom noise (PN) sequence to spread/despread thedata aswell as provide a pilot tone for

synchonization and channel estimation. The data itself is encoded using DQPSKwhich provides

protection against oscillator mismatch and slow channel variations. To meet these specifications,

the radio requires a chipping rate of 64 Mchip/second and a transmit bandwidth of around 80-100

MHz.

The digital spread spectrum demodulator, the topic of this thesis, is only a part of the Infopad

CDMA radio receiver. A block diagram of the radio can be seen in Figure 3.1. The receiverin its

final form will be a hybrid or mixed-signal CMOS chip consisting of both analog and digital

circuitry. The analog blocks whichprecede thedemodulator will consistof anoff-chip image filter,

anLNA, anoff-chip noise filter, aunity gain buffer, analog sampling demoduators, automatic gain

control (AGC) circuitry, and a analog-to-digital converter(ADC). These five blocks plus the off-

14
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FIGURE 3.1: Block diagram of the Infopad direct sequence spread spectrum radio.
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chip filters convert the 1.088GHz RF signal down to two baseband four-bit sign-magnitude

interleaved 128MHz streams. It was determined through simulation work [Teus94] that the

quantization noise introduced by the ADC will begin to be the dominate contributor when the

quantizer order is reduced below four bits. It was found that reducing the order below four bits

significantly impacted the BER, while increasing the number of bits above four did little to

improve performance. The reason why the data representation is sign-magnitude will become

apparent when power issues are discussed. These two streams are then fed to the radio's digital

backend/demodulator section. A block diagram of the digital backend can be seen in Figure 3.2.

Once the data gets to the demoduator, a variety of operations are performed. First, the two

streams of interleaved 128MHz data from the ADC are converted into 2 parallel 64MHz in-phase

and quadrature phase (I/Q) streams (total of4 streams of 4 bits each) by the input datamux. Then,

depending on the current mode of the demodulator, various operations may happen. Although the

data recoveryunit only requires one 64MHz I/Q stream, the data has been oversampledby a factor

of two to achieve fine timing recovery which is why the ADC output is two 128MHz streams. The

data fed to the lock, data recovery block and the adjacent cell scan block is considered the on-time

data(Ion, Qon), while the data sent to the DPLL is considered the off-time data(Ioff, Qoff).

The first operation which must happen is the mobile must synchronize itself with the

basestation. Because there is no carrierphase-locked recovery loop in the analog section, all of the

synchronization, both initial lock and fine timing adjustment, must be done in the digital backend.

The initial synchronization guarantees that the mobile is locked to within ±7.8ns (Tchip/2) to the
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FIGURE 3.2 : Digital baseband receiver architectureFour of the correlators
are shared between the lock block and the channel estimator/adjacent cell scan
blocks [Wire94].

transmitter. After coarse lock, the fine timing adjustment, done by a digitial phase lock loop

(DPLL), periodically attempts (every 1us) to reduce this offset to within ±3.9ns (Tchip/4). The

initial synchronization block is described in Section 3.1 and the DPLL is described in Section 3.2.

One can see from Figure 3.2 that the lock block shares hardware with the adjacent cell scan block

and the channel estimation block. Thus, before lock is acquired the four correlators are used for

initial synchronization, and afterwards are used for adjacent cell scan and channel estimation. The

DPLL has two dedicated correlators.

After lock has been achieved, the digital backend must then despread and recover the user

data. This is done by first accumulating the data which has been multiplied by the appropriatebits

from the PN and user's Walsh sequences for 64 Tchips. Then, the accumlated I and Qdata is fed

into a DQPSK decoder and user data is output at a rate of 2Mb/s. The data recovery block is

described in Section 3.3.

Because the Infopad is operating in a mobile environment, there is no guarantee that it will
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only reside in one cell. A more likely scenario is it would remain in any given cell most of the

time, but move into a new cell some of the time. As a result, the Infopad must constantly scan for

adjacent cells andperform cell handoffwhen necessary. This is described in Section 3.4.

A more detailed description of the chip's individual blocks can be found in Chapter 5.

Low-Power Aspects

Beyond achieving functionality at the required thruput, minimizing power consumption was

critical, give the portable nature of the application. The main source of power dissipation in

CMOS circuits is dynamic power comsumed by the switching gates which can be expressed as

Pdyn^^V^.f^ (EQ3.1)

where Ctota) is the amountof capacitance switched, Vdd is the supply voltage, and fclk is the clock

frequency [Chand92]. In our system, the clock frequency was fixed, so only the first three

parameters could be varied to minimize power. One can see from eqn. 3.1, that reducingthe supply

voltage by a factor of two would result in a fourfold reduction in power consumption, whereas

reducing the total switched capacitance by a factor of two would result only in a twofold

reduction. In the design of the demodulator, both supply voltage reduction and minimization of

switched capacitance techniques were used in order to reduce the demodulator's overall power

dissipation.

Techniques to lower the supply voltage were explored on both a system and block level basis. On

the system level, three different supply voltage levels, 5V, 3.3V, and 1.5V were used in an attempt

to minimize power consumption. The 5V supply was used to power the clock generating circuitry

which has a critical path of 4 ns, the 3.3V supply was used to power the control circuitry and the

1.5V supply was used to power the correlators. Both the control circuitry and correlators run at 64

MHz. The idea was to give each block of the chip only as much power as needed. These three

voltage levels can be generated using off-chip low-power dc-dc converters [Strat94] and level

converters are used internally to interface blocks with different power supplies. A block diagram



of a level-converter can be seen in Figure 3.3.

VddH

IN-

Vss 4/2

VddH VddL

*8/2 *^28A2
20/2 8/2

1^20/2.
OUTLCup

20/2,
18/2 20/2

OUTLCdown

FIGURE 3.3 : Block diagram of a up/down level-
converter.
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The main block-level modification was done on the correlators. Originally, the correlators were

designed to run off a 3.3V supply. However, it was identified early on that they contributed heavily

to the demodulator's powerconsumption. Thus, they were redesigned to use a carry-save adder

archictecture instead of the original ripple-carry adder architecture. This approach effectively bit-

piplines the adder reducing the critical path down to a 1-bit adder and a register. By making this

architectural change, the correlators wereable to run off the aforementioned 1.5V supply.

The otherstrategy to reduce power consumption was to reduce the amount of capacitance being

switched. Since the signof the data is constantly beingtoggled due to multiplication with the PN

and Walsh sequences, it was found in [Chand92] that using a sign-magnitude number

representation will consume approximately 30% less power than a 2's complement number

representation for this application.
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3.1 Coarse Lock Acquisition

When the mobile unit is turned on, it must synchronize itself with the basestationbefore it can

start receiving user data. This is done by locking onto a pilot tone which is being continuously

transmittedby the basestation. The pilot tone, a PN sequence, is a periodic stream of bits or chips.

It has pseudorandom noise-like properties and good auto-correlation properties. Figure 3.4(a)

32767

vyM^M^ **"IU* ^/jfwfM^wt
Standard PN Sequence (N=32767) Modified PNSequence (N=32768)

(a) (b)

FIGURE 3.4: PN Autocorrelation Functions (1-bit data)
[Teus94].

shows an autocorrelation function for a PN sequence of length 32767 (N=32767). In terms of the

transmitted PN sequence, PNt and the PN sequence generated by the receiver, PNr the

autocorrelation function is shown in equation 3.1.

Cm= X«V™,.. (EQ3.2)

If the mobile's PN generator is in sync with the basestation's PN generator, then ideally, the

correlation Cm over one period would equal 32767. If the transmitter and receiver were not in

sync, then ideally the correlation over one period would sum to -1. The reason why it is not ideal is

because of multipath inteference (see Section 2.2) and quantization noise. The Infopad's spread

spectrum radio uses aPN sequence of length N=32768=215 with achipping rate of 64 MHz. One

bit has been added to ease in the hardware implemention and timing. The N=32768 sequence's

autocorrelation properties are shown in Figure 3.4(b). Because of the excellent autocorrelation

propertiesof the PN sequence we can compare Cmto a threshold register. With a certain degree of
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confidence, it canbe assumed that if Cm is greater than the value stored in the threshold register

then lock has been achieved.

Unfortunately, however,when the mobile is first turned on, the phase relationship between the

receiver's and transmitter's PN sequence is unknown. In the worst case, the demodulator would

have to correlate over all the phases of the PN sequence taking approximately 16.77 seconds

(215.215«1/64E6) to acquire lock. This is too long! Fortunately, simulations run inPtolemy

determined that it was only necessary to correlate over 1024 chips before making the

determination of whether lock has been achieved instead of correlating over the entire length of

the PN sequence of 32768 chips. This reduces the acquisition time by a factor of 32. The

acquisition time was further reduced by a factor of fourby using threeextra correlators running in

parallel, in which each one is offset in time from its neighbors by one TChjp. Thus, with these

changes, the worst case time-to-lock was reduced to approximately 131 ms. A diagram of the

coarse acquistion block can be seen in Figure 3.5. A more detailed block diagram of the long
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correlators can be seen in Figure 3.6. The signal CMPTH_L is fed from each of the long
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correlators to the lock circuitry. The other signals, IPQ_OR_I and Q are used for channel

estimation (see Section 3.X). When testing coarse lock acquistion (LOCK = 40'), IPQ_OR_I can

be used to evaluate whether the chip is receiving energy or not.

The coarse lock acquisition search algorithm is the following:

(!) Reset the PN generator to known state (i.e. Phasen). Therefore, correlator will cor-

RELATE OVER PHASEN, CORRELATORj OVER PHASE^, CORRELATOR2 OVER PHASEN.2, AND

CORRELATOR3 OVER PHASEN.3.

® RUN CORRELATORS FOR 1024 CYCLES.

<D Dump output of the correlators to latches.

® Compare the value stored in each latch to a threshold register which indicates how

much energy is required to acquire lock. in our case, this step costs us 64 cycles (1

symbol period).

<s> if one of the correlated energy values is greater than the threshold register, than

goto ®, else goto <d.

<D Stall the PN generator 4 four clock cycles and clear our the correlators. This will

shift correlatoro from phasen to phasen_4, correlatorj from phasen.! to phasen.5

correlator2 from phasen.2 to phasen.6, and correlator3 from phasen.3 to phasen.7.

Goto . Note: Phase.pPhase^^, Phase.2=Phase32766, etc.
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® stall the pn generator the number of cycles equal to the correlator which found

lock. c0->do not stall, c1->stall 1 cycle, c2->stall 2 cycles, c3->stall 3 cycles.

Table 3.1 illustrates this point.

recv'ddata Phase of CO PN Phase of CI PN Phase ofC2PN Phase of C3PN Stall

Dl 4 3 2 1

D2 5 4 3 2

D3 6 5 4 3

D4 6 5 4 3 X

D5 6 5 4 3 X

D6 6 5 4 3 X

D7 7 6 5 4

D8 8 7 6 5

Table 3.1 : Illustrates how stall is used to make CO become the on-time correlator. The numbers

represent the current bit # in the PN sequence (32768 total). In this example. C3 has found lock.
Stalling the receiver's PNgenerator for3 clock cycles causes CO to become the on-time correlator.
CI, C2, and C3 become multipathestimators afterlock.

dfi Got lock -> start acquiring data.

It should be noted that in our system, synchronization does not have to be guaranteed between

mobile units, only between the mobile unit and the basestation.

3.2 Digital Phase Lock Loop

The role of the digital phase lock loop (DPLL) is to maintain synchronization between the

receiver and transminer after initial lock has been acquired. Misalignment between the receiver

and transmittercan occur for two reasons: (1) coarse lock synchronizationonly guarantees that the

receiver and transmitter are aligned to within Tchip/2, (2) due to the mobile nature of the Infopad,

the channel can vary, and (3) due to oscillator offsets. To reduce the chance of bit errors, it is

desirable to maintain as small an offset as possible.

A high-level block diagram of the DPLL can be seen in Figure 3.7. One of the DPLL

correlators receives an I0ff/Qoff Pair» wni,e me otner receives an I0ff/Q0ff pair which has been

delayed byTchip. Both correlators extract the pilot tone information from the off-time data by

multiplyingthe I0ff/Q0ff P3*1"Dv a Dit ^°m me PN sequence, sincethe pilottoneis the PN sequence

sequenceby itself. The energy from the pilottone is accumulated for 1024cycles (16 us) and then
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dumped into latches. We have assumed that a DPLL with an update period of 16 us will be

sufficient to capture changes in the channel. A comparison is then made using the earlyand late

pilot tone energies (called E^y and E]ate respectively) in order to determine if and how the

clock's phase should be adjusted. A block diagram of this comparison circuitry can be seen in

Figure 3.8. The comparison compares the absolute value of the difference between E^y and Eiate

(lEeariy-EiafeJ) to athreshold register. The signal CMPTH3 shows the result. If the value is greater

than the threshold register, than E^y and Eiate are far enough apart to warrant the clock's phase

being adjusted. If the value is less, then the clock's phase should not be adjusted. This prevents

needless ping-ponging when E^y and EIate have similar values. By looking at the sign of E^y-

EIate, it canbe determined how the clock's phase should be adjusted. If the sign is positive, then

the system is sampling too late and the phase of the clock should be reduced. If the sign is

negative, then the system is sampling too early and the phase of the clock should be extended.

Figure 3.9 illustrates this point.

Ideally, one would like the DPLL's granularity for adjustingthe phaseof the sampling clock to

be of infinite precision. However, this would be prohibitively expensive both in power and

hardware complexity. Instead, a trade-off between granularity and power/hardware complexity

needed to be made. Initially, the DPLL was designed to adjust the phase of the sampling clock by

±Tchip/8 which required an input clock of 256MHz. This design was soon found to be
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FIGURE 3.8 : Block diagram of DPLL correlators along with backend decision
circuitry. CMPTH3 indicates whether the system clock's phase should be adjusted.
CMPTH2 indicates whether the received tone energy is largeenough to stay in lock.
Note: CMPTH2 is used in the lock control circuitry, but not the DPLL.
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Late (-Tchip/2)

Sampling too early
(a)

Sampling too late
(b)

FIGURE 3.9: Shows idealized pilot tone energy relationships between the
early, late, and on-time correlators, (a) since E^y is less than E^, weare
sampling too early, therefore extend phase ofthe clock, (b) since Eeariy is
greaterman Elate, we are sampling too late, therefore reduce phase of the
clock.
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unacceptable because the analog section only required the positive and negative phases of a

128MHz clock. Since only one sinusoidal oscillatorwas being used, this meant the analog section
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needed to perform a divide by two in order to obtain its two 128MHz clocks. Because of the

analog section had such tight phase offset requirements for the positive and negative phases of its

clock(i.e. their edges had to overlap almost perfectly), the skew introduced by the clockdividers

could notbe tolerated. Thus, amore conservative DPLL granularity of ±Tchip/4 was choosen

which could be accomplished using a 128MHz input clock. Unfortuanately, due to limations with

Ptolemy simulator [Buck93] using theSDF domain, theeffectof different DPLL granularities was

not simulated. There was one benefit, however, which resulted from this change-it was must

easierto build a DQPSK decoderwhich could handle a ±90° shift in it's coordinate axis, than a

±45° degree shift.

3.2.1 Clock Generation

Although it will be discussed more in detail in Chapter 5, a brief overview of the clock

generator will be presented here. As can be seen in Figure 3.10, there are four phases of a 64MHz

CLK_128MHz

CLK64.0

CLK64J

CLK64_2

CLK64 3

—•|4nsL—

_r

~i

Extend Phase byT^jp/4

CLK 64MHz_OUT _| 1
H

UseCLK64_0

Reduce Phase by Tcmp/4

-JCLK 64MHz OUT

•H-*-

K- »M
UseCLK64 0

1

UseCLK64 1

UseCLK64 3

FIGURE 3.10 :Shows how the clock's phase is adjusted by±7^4.
For example purposes, it is assumed thatCLK64_0 is usedinitially for
both cases.

•H

•H
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clock each offset from each other by Tchip/4 which are used to produce the final output, a 64MHz

clock. By switching between these four clocks at the appropriate instances, the outputted clock's

phase can be adjusted by ±Tchip/4. To extend the phase of the clock, switch to

[(NUM_CLOCKcurrent+l) mod 4]; to reduce the phase of the clock, switch to

[(NUM_CLOCKCOITent+3) mod 4]. Care mustbe taken not to produce any glitches in the output

clock.

3.3 Data Recovery

Once synchronization has been achieved, the mobile unit can begin recovering user data.

Although this chip is only concerned with data recovery (i.e. despreading and decoding), is it

worthwhile here to first discuss how the data is encoded and why this encoding scheme was

choosen. A discussion of how the data is spread can be found in Section 2.2.

3.3.2 DQPSK Encoding
The oscillators choosen in our system have a typical frequency accuracy of 20 parts/million.

This variation means there will be a slight frequency offset between the carrier frequency and the

sampling frequency for both the in-phase and quadrature signals. Assuming an oscillator of

1.088GHz, the offset would be 21.76kHz. This offset can be viewed as a slowm relative to the

symbol rate, rotation of the DQPSK constellation in symbol space. In other words, the

constellation will rotate 7.8° in 1us (64 Tchips-symbol period), 125.2° in 16 us (1024 Tchips), or

360° in 46us (1/21.76kHz). Becauseof this frequency offset, differential quadrature phase shift

keying (DQPSK) waschoosen as themodulation scheme sinceit can tolerate slowrotations in the

constellationsymbol space and thus the use of a carrierphase-locked recoveryloop can be avoided

[Sheng94].. In our case, the symbol rate is 1 Mbaud,so there will be a 7.8° rotation in the symbol

space, which is tolerable.

A DQPSK encoder converts two bits of user data into one complex symbol from the following

set: 0 (1,0), Jt/2 (0, 1), n (-1,0), and 3n/2 (0, -1). The real part is called the in-phase signal (I) and
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the imaginary part is called the quadrature signal (Q). It works by encoding two bits as a phase

offset which is added to the previously transmitted symbol to determine the next transmitted

symbol.The phase offset which should be added to the previous symbol for eachcombination of

bits is described in the following table:

Bi«,+1 Bit,, Ag

0 0 0°

0 1 90°

1 0 270°

1 1 180°

Example. The following bit pairs need to be transmitted: (0, 0), (1,1), (1,0), (1, 0),

(0,0), (0, 1), (1, 0) (note: the order of transmission is assumed (bitn+1, bitn), (bitn+3,

bitn+2), •••)•The previous symbol transmitted was 7t/2. Thus, the next six symbols to

be transmitted would be tc/2, 3it/2, jc, tc/2, tc/2, tc, and tc/2.

3.3.3 Data Correlation

As discussed in Section 2.2, the method used to recover data is to first multiply the received

signal by the PN sequence and the Walsh sequence assigned to the user, then correlate the results

for 64 Tchips. In our system, there are 64 possible Walsh codes. Walsh code 0 is used for the pilot

tone, Walsh code 1 is used for the control channel, and Walsh codes 2-63 are used for the user data

channels. Because the signal is DQPSK encoded there are actually two streams which need to be

correlated-one for I and one for Q. A block diagram of the data recovery block can be seen in

Figure 3.11. The chips fed to both the I and Q data correlators are 4-bit sign-magnitude numbers.

Since the PN and Walsh sequences arejust streams of+Is and -Is, a multiplication by -1 is just a

sign-bit toggle, and a multiplication +1 will cause no sign-bit change. The correlation of a 4-bit

sign-magnitude number over 64TCfops will produce a 10-bit sign-magnitude result.

3.3.4 DQPSK Decoding
The accumulated I stream value (Iacc) and the accumated Q stream value (QaCC) is taken from

the correlators and fed into the DQPSK decoder. Because Iacc and Qacc are composed of the
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despread userdata plus the spread noise asopposed to only despread userdata, theirvalues will be

non-ideal. The error term will be small, andthe DQPSK slicer will correctlydetermine which bits

were transfered.

The slicermakes it's decision based on the phase difference between the current symbol S^

which is defined by In +jQn and the previous symbol 5^ which is defined by In., +jQn.,. The

angle between the two can be found by performing the following division

_?IL =iHzfe -9 ,) = il**®n) . (EQ3.3)
5^ [U n "-1 <i-i+iQ..i>

The equation can be simplified by multiplying the top and bottom by S^Vs"^*, thus

obtaining the following:

s s .*
n n-1 In +JQ„ I„.1-JQ„-1 (Wl+QnQ-l) +i(In.lQn-InQ„-l)

^ K7* ^-l+JQn-l In-l-JQ-1 ReaIPart
The angle is defined by the numerator and thus the denominator is not needed. In actuality, we

do not need to know the angle per se, but only the relationship between the absolutevalues of the

real and imaginary parts of the numerator and their sign. The following table describes the

decision regions and shows how we can use the absolute values and signs of the real and

(EQ 3.4)
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Note: Re = !„!„., +QnQn., and Im = In.1Qn-lnQn.1.

The one drawbackof using differential encoding is the BER for DQPSK is 3dB lower than the

SNR for coherent QPSK. This is because an error inthe n* bitaffects the difference between not

just the nth bit and the n-lth bit, but also between the nth bit and the n+lth bit. This is illustrated in

the following example:

Example. The symbols tc/2, tc/2, 3tc/2, tc, tc/2, tc/2, tc, and tc/2 are transmitted. However,

due to multipath interference, the symbols tc/2, tc/2, 3tc/2, 3tc/2, tc/2, tc/2, tc, and tc/2 are

received. As a result, the outpuned bits are (0,0), (1,1), (0,1), (0,1), (0,0), (0,1), and (1,0)

in which bits 6and 7 are incorrect. If QPSK encoding was used, then only a 1 bit error

would have occurred.

3.3.5 Can a RAKE1 help?
The signal being transmitted to the users is coming from one source-the basestation.

However, because of reflections from walls, ceilings, people, and furniture, there is attenuation

and multipath delay of the arriving signal. Hence, at any instant of time, the received signal is not

only composed of the primary line of sight component, but is also composed of several secondary

components due to reflections. The time between when the transmitted signal first arrives at the

receiver and the time when the last multipath arrival is received is called the delay spread. When

the delay spread of the channel is greater than the symbol period, intersymbol interference (ISI)

1. The matched filter demodulator is called a RAKE correlator because of the resemblance of the tapped-delay-line
matched filter to an ordinary garden rake. That is, the RAKE matched fileter/correlator resembles a garden rake in the
way it collects the signal energy from all the resolvablemultipath signal components [Proak89].
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ensues. Measurements done by [Seid91] have shown the delay spread for an indoor channel to be

between 20ns and 60ns. Since the signal isonly resolvable at multiples of the chip time, Tchip, the

number of resolvable multipaths is equal to the following equation:

N =TdeIayipnad/Tdlip+l (EQ3.5)

In our case, since Tdeiayspread and Tchip equal 40ns and 16ns respectively, the number is

resolvable multipaths is approximately three. If nothing is done, then themultipath arrivals will act

as interference and lower the SNR of the received signal. The idea behind a RAKE receiver,

however, is to somehow use the information contained in the multipath arrivals (essentially

delayed and attenuatedcopies of the original signal) to boost the SNR.

The RAKE receiver uses the pilot tone to obtain an estimate of the channel's impulse

response. For coherent detection, each finger's output is phase-corrected according to the carrier-

phase shift indicated by the channel estimate as well as attenuated according to the relative

magnitude of the multipath arrival versus the line-of-sight (LOS) component. All the phase-

corrected and weighted outputs are then summed and fed to the DQPSK slicer. A block diagram of

a RAKE receiver can be seen in Figure 3.12. For the case with two significant paths with path

delay amplitudes of p0 and pj and phase delays of 80and 0j, the decision variable wouldlook like

the following:

Pi -j(6i-e0),

This assumes additive white Gaussian noise (AWGN) is the dominant noise source. However,

Y =Y0 +JU' '" 0,Y, (EQ3.6)

in the Infopad system, interference, not AWGN, is assumed to be the dominant noise source. It

was shown in [Teus94], that the decision variable in an interference-limited system would instead

look like the following

V^'^Y, (EQ3.7)Y = Y0 +|.[Ell
1*0J

Notice that the weighting coefficient for the first multipath arrival increases as the cube of the

amplitude ratio instead of just linearly asin Eqn. 3.5. In otherwords, if pj, the amplitude of Y^ is
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smaller than p0, the amplitude of Y0, than the information contributed by the second term will be

minimal. Forexample, if pj is half p0then the weightingcoefficient will be 1/8. This scenario is

likely because of the Rician distributed natureof the channel (i.e. one LOS component and several

weaker multipath arrivals). Other techniques such as echo cancellation are being explored by

Teuscher.

3.4 Adjacent Cell Scan/Handoff

One of the major benefits of the Infopad is its inherent mobility resulting from operating in a

wireless LAN environment. The design specfication has placed no restrictions (within reason) on

which basestations the Infopad may be connected to. In other words, as long as there is available

capacity, the pad is free to wander from room to room, basestation to basestation and at all times it

should be able to maintain connection with the backbone network.

Initially, when the Infopad is first turned on, it will lock onto the nearest basestation. This is

done using the lock synchronization circuitry described in Section 3.1. However, it is very likely
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that as the padroamsaround, it will receivepilot tones from othernearbybasestations. As long as

the currentbasestation'spilot tone energy is the strongest, then the Infopad will remain locked to

the currentbasestation. However, if the Infopad nears the edge of the currentcell or even entersan

adjacent cell, then the pilot tone energy received from its currentbasestationmay be weaker than

the pilot tone energy received from the adjacent cell. In that case, it would be wise to stop

receiving the data from the original basestation and start receiving data from the new cell's

basestation. This process of determining which basestation's pilot tone signal is the strongest is

called adjacent cell scan and the process of moving from one basesation to another is called

handoff. This section focuses on these two functions.

3.4.6 Adjacent Cell Scan
At any given time, the mobile unit will be receiving information transmitted from the

basestation it is currently locked onto as well as from adjacent cells. A pan of each basestation's

transmined signal is the pilot tone which is just the periodic pseudorandom sequence of 32768

chips. Because the pilot tone is guaranteed to use at least20% of the signal power, it can be used to

provide a type of received signal strength indicator(RSSI). All that needs to be done is to correlate

the received signal containing the pilot tone using a local PN sequence to do the despreading. If

the transmitter's PN sequence (a.k.a. the pilot tone) and receiver's PN sequence are aligned to

within one chip, then there will be a large peak in the correlated energy. If they are not aligned,

then the correlated energy will be small. Because the property, the pilot tone can be used to

distinguish between basestations.

If each basestation is synchronized with the others, then they can each be assigned their own

unique phase of the pilot tone. For example, one cell, cell 0, could be assigned phase 0 and the

adjacent six cells, cells 1-6, could be assigned phases 2048,4096,6144, 8192, 10240, and 12288

respectively. By correlating over all 32768 phases of the pilot tone and keeping track of the top

three correlation energies and their phase offsets, one can determine which basestations are nearby.

The adjacent cell scan circutry (ACS) uses the following algorithm:
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(DWait for lock acquistion.

<D RESET THE ACS'S PN GENERATOR TO PHASE0 AND CLEAR OUT THE TOP ENERGY REGISTERS.

<D Correlate the received signal for 1024 cycles using the ACS's PN generator and

WALSHCODE0 (ALL ONES). THIS WILLEXTRACT THE PILOT TONE ENERGY FROM THE SIGNAL.

® IF THE CORRELATED ENERGY IS ONE OF THE TOP THREE CORRELATED ENERGIES SO FAR, THEN SAVE

THE CORRELATED ENERGY AND THE ACS'S PN GENERATOR'S CURRENT PHASE OFFSET.

<§> Clear out the accumulated energy. If the current phase of the ACS's PN generator is

LESS THAN 32767, THEN STALL THE PNGENERATOR FOR ONE T^p. THIS WILL SHIFT THE PN GEN-
ERATOR'S PHASE BY ONE CHIP. GOTO ®. ELSE, IF THE CURRENT PHASE IS 32767, THEN GOTO ®.

® DUMP THE TOP THREE ENERGIES AND THEIR CORRESPONDING PHASE OFFSETS TO ANOTHER SET OF

REGISTERS AND EMIT A SIGNAL OFF-CHIP INDICATING THAT NEW RSSIS ARE AVAILABLE. GOTO ©.

For example, if the mobile is in cell 1 and near cells 5 and 6, then the output of the ACS

circuitry might indicate that the top energy is at phase 10240, the next is at phase 2048, and the last

is at phase 12288.

This technique of using pilot tone as an RSSI is used in the lock circuitry, the channel

estimators, and the DPLL as well.

3.4.7 Handoff

The top three energies and their offsets are transmitted to the basestation. A decision can then

be made by the controlling network software ("cellserver") whether or not to perform a handoff.

The decision is not only based on the received RSSIs, but also on the current occupation of the

cells. For example, the signal received from cell 5 may be stronger than the current cell, cell 1, but

cell 5 is at capacity and cannot support any more users. Thus, even though, it would be desirable

for the user to switch from cell 1 to cell 5, it may not be feasible. If the cellserver decided,

however, to perform a handoff, then the following things must happen [Le95]:

<D THE CELLSERVER DATABASE MUST BE UPDATEDTO INDICATE THAT THE USER HAS MOVED TO A NEW

CELL.

<D THE CELLSERVER MUST ASSIGN A NEW WALSH CODE FOR THE USER'S DATA.

(3) THE NEW CELL MUST NOW TRANSMIT THE USER'S DATA USING THE APPROPRIATE WALSH CODE.

£) THE OLD BASESTATION MUST TRANSMIT THE NEW WALSH CODE TO THE INFOPAD.
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<§) THE INFOPAD MUST LOAD IN THE NEW WALSH CODE AND BEGIN RECEIVING DATA FROM THE NEW

BASESTATION.

<D THE OLD BASESTATION STOPS TRANSMITTING DATA FORTHE USER.



CHAPTER 4

External Documentation

4.1 I/O

The inputs, outputs, and power supply pins of the spread spectrum demodulator chip are

described in Table 5.1 and Table 5.2.

Table 4.1 : Pinout of demodulator chip listed in order of pin number.

PIN
1/0/

SUPPLY
NAME PIN

1/0/

SUPPLY
NAME PIN

1/0/

SUPPLY
NAME

~T™ 5 CNDJ 45 S VDDJ1 TT" I DATA1N5

2 0 0DATA27 46 I OSCH 90 0 ODATA10

3 s VDDJ 47 1 CURRBIAS 91 S VDD_6

4 1 ECRSTDUMP 48 I OSCL 92 0 ODATA9

5 0 ODATA26 49 S GND_5 93 s PWR1_5

6 I RESETL 50 S VDD.4 94 I QINX2

7 0 ODATA25 51 0 DUMP1024H 95 0 ODATA8

8 1 IINX3 52 1 DATAIN14 96 o DUMP64H

9 s PWR3.1 53 S PWR5_4 97 1 ECDATA2

10 s PWR5.1 54 S PWR3_2 98 0 ODATA7

11 1 I1N3 55 I UNO 99 o CMP3THL

12 I ADDR1 56 I DATAIN13 100 s GND_8

13 I ADDRO 57 0 0DATA17 101 0 ODATA6

14 0 ICLK 58 I DATAIN12 102 s VDD_7

15 0 QCLK 59 0 0DATA16 103 I ECDATA1

16 s PWR1J 60 I DATAIN11 104 o ODATA5

35
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Table 4.1 : Pinout of demodulator chip listed in order of pin number.

PIN
1/0/

SUPPLY
NAME PIN

I/O/

SUPPLY
NAME PIN

I/O/

SUPPLY
NAME

17 S PWR5J -5T- I 11NXU Toy S PWR1_6

18 S VDD_2 62 0 ODATA15 106 O ODATA4

19 I CSL 63 S PWR1.8 107 I QINX1

20 I WRL 64 I ECW 108 S PWR3.5

21 I EC64CLK 65 O ODATA14 109 S VDD_8

22 1 IIN2 66 0 CMP2THH no I QIN1

23 S PWR1_2 67 s VDD.5 HI 1 DATAIN4

24 o ODATA24 68 0 ODATA13 112 I DATAIN3

25 1 TSTMODE0 69 s PWR5_5 113 I CLKRST

26 o ODATA23 70 I ECDATA3 114 s VDD_9

27 I TSTMODE1 71 0 ODATA12 115 s PWR5.6

28 I IINX2 72 I DATAIN10 116 s PWR3_6

29 0 ODATA22 73 0 ODATA11 117 s PWR1.7

30 s GND_2 74 1 QINX3 118 s PWR5_7

31 I ECDUMP 75 1 DATAIN9 119 s PWR3_7

32 0 ODATA21 76 s GND.6 120 s GND_9

33 o LOCK 77 I Q1N3 121 1 QIN0

34 s PWR5.2 78 I DATAIN8 122 1 DATAIN2

35 0 ODATA20 79 s PWR1_3 123 0 ODATA3

36 I OMODE2 80 0 DUMPRST 124 I DATAIN1

37 1 ECPN 81 0 STALLL 125 o ODATA2

38 o ODATA19 82 s PWR1.4 126 I DATAIN0

39 s VDD.3 83 s PWR3.3 127 I QINX0

40 0 ODATA18 84 1 DATAIN7 128 0 ODATA1

41 I IINX1 85 s PWR3.4 129 s VDDJ0

42 1 OMODE1 86 s GND_7 130 I ECDATAO

43 I OMODEO 87 I DATAIN6 131 0 ODATAO

44 1 UNI 88 I QIN2 132 o STRETCHSAMP

Table 4.2 : Pinout for demodulator chip grouped by signal name.

NAME
PIN

COUNT
DESCRIPTION PIN(S)

CLKRST 1 Reset signal forelock generator 113

RESETL 2 Chip reset signal 6

OSCH 3 Positivephaseof 128MHzsinusoidal oscillator 46

OSCL 4 Negativephaseof 128MHz sinusoidaloscillator 48

CURRBIAS 5 Biasvoltage for clock pad 47

DATAIN[14:0] 20 Bus used to load values into registers 52,56,58,60.72.75.78,84.87.
89.111.112.122,124.126

ADDR[1:0] 22 Register address lines 12.13

CSL 23 Chip select 19

WRL 24 Write signal for register 20

OMODE[2:0J 27 Select which signals to output 36,42.43

TSTMODE[l:0J 29 Determinesthe type of input to the chip 27.25

IIN13:0] 33 Input datafrom ADC or transmitterchip 11.22,44,55

QIN[3:0] 37 Input data from ADC or transmitterchip 77.88.110.121
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Table 4.2: Pinout for demodulator chip grouped by signal name.

NAME
. PIN

COUNT
DESCRIPTION PIN(S)

11NX13:0J 41 Input data from transminer chip (for testing only) " 8,25.41,61

QINX|3:0] 45 Input data from transmitter chip(fortesting only) 74.94,107,127

ODATA[27:0] 73 Outputdatabus 2.5,7,24,26^9,32,35,38,40.
57,59,62,65,68.71.73,90.92.
95.98,101,104.106.123.125.

128.131

ICLK 74 unused-connected to ground 14

QCLK 75 internal system clock 15

LOCK 76 high when mobile hasacquired lock 33

STALLL 77 low when PN generator is being stalled 81

STRETCHSAMP 78 0:Adjusted phase by•T^jp/4
1: Adjusted phase by +Tch^/4

132

CMP2THH 79 0: No adjustment madeto phase of clock
1:Adjusted phaseof clock

66

CMP3THL 80 0: Not enough energy to be in lock
1:Still have energy to be in lock

99

DUMPRST 81 Indicates that the MP! correlator was cleared 80

DUMP64H 82 Indicates when output of data recovery correlator isvalid 96

DUMP1024H 83 dicates when outputof long correlators arevalid 51

ECRSTDUMP 84 Extracorrelator resetlatcheswhile dumping 4

EC64CLK 85 Extra correlator clock 21

ECDUMP 86 Extracorrelator dump output 31

ECPN 87 Extracorrelator PN input 37

ECW 88 Extra correlatorwalsh input 64

ECDATA13:0) 92 Extra correlator data 70.97.103.130

PWR1I 100 1.5V internalpower supply 16,23,63.79.82.93.105,117

PWR3 107 3.3V internalpower supply 9.54.83,85.108.116.119

PWR5 114 5V internal power supply 10.1734.53.69.115,118

VDD 125 5V pad power supply 3.18.39.45.50,67.91.102.

109.114,129

GND 132 ground 1.30.49,76,86,100.120

4.2 Programmable Registers

The registers in the demodulator are two-level latches. This allowsthe front half of the register

to be externally written into without affecting the internal operation of the chip which depends on

the registers' values. A block diagram of a register canbe see in Figure 5.1 along with its control

signals. The signal CLKX (X signifies the register number) is externally controlled by the CS_L,

WRJL and ADDR signals. Since there is only one set of the ADDR, CS_L and WR_L lines, only

one registercan be updated at a time. The backend of the register is updated when CLK_B ACK

goes high. This occurs every rising edge of CLK64 during reset and when the PN generator's
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output is all ones during normal operation.There are four registers in the demodulator whose

functions and bit-widths are described in Table 5.3.

Table 4.3 : Describes the demodulator's four writable registers.

ADDR NAME BIT WIDTH FUNCTION

00 WALSH 6 Walsh number

01 THRESA 14 Used to determine whether coarse lock has been acquired

10 THRESB 15 Usedto determine whetherthe Infopadis still in lock

1) THRESC 15 Used todetermine whether clock phase should beadjusted byTchip/4

4.3 Observation Modes

The OMODE signal is a 3-bit signal that controls which signals will be driven onto the 28-bit

output bus. A description of all eight possibilities along with an explanation of the signals

outputted can be seen in Figure 4.2.
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OUTPUT DATA BUSf27:01

20 19 10 9

111

110

101

100

on

010

001

000

00000000 DRI[9:0] DRQ[9:0]

27 14 13

MP1IPLUSQ[13:0] MP1Q[13:0]

27 14 13

MP2IPLUSQ[13:0] MP2Q[13:0]

27 14 13

MP3IPLUSQ[13:0] MP3Q[13:0]

27 14 13

MP4IPLUSQ[13:0] MP4Q[13:0]

27 14 13

IPQE[13:0] IPQL[13:0]

27 21201918 16 15 8 7 o

0000000
^

WALBITS[7:0]
L^ _ 1

PNB1TS[7:0]

LOCKST[1:0] CONTROLST[2:0]

2726 25 '? 12

00 ECQ[12:0] ECI[12:0]

DR: data recovery
MP: multipath
IPQE:dpll early

- IPQL: dpll late
WALBITS: walsh,

S-to-P l->8

0 PNBITS: pn,
S-to-P l->8

ST: state bits

EC: extra correlator

FIGURE 4.2 : Describes the different signals which can be driven onto
the output data bus.

4.4 Test Modes
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The demodulator has three functional modes (see Table 5.4) which are controlled by the 2-bit
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TSTMODE signal. Onemode is used for regular operation and two are used fortesting purposes.

Table 4.4: Description of the three operating modes for the demodulator.

TSTMODE MODE Inputs Comments

00 normal IIN.QIN Data is unmodified

01 test IIN.QIN Data convened from 4-bit binary (0to 15)to 4-bit sign magnitude (-7 to7)

10 test IIN.QIN.
IINX.QINX

Data converted from 4 parallel 2'scomplement (-8 to7) streams at1/2 OSCH's
frequency totwo interleaved sign-magnitude (-7 to7) streams atOSCH's fre

quency

11 UNDER UNDER UNDER

Independent of the test mode, after the data has passed through the testmode block, it will consist

of two 4-bit sign-magnitude interleaved streams at a frequency equal to one-half OSCH's

frequency.



CHAPTER 5

Internal Documentation

This chapter gives a high-level overview of each block in the chip; more detailed schematics

can be found in Appendix A.

5,1 Correlator

The heart of the demodulator chip is the correlator which can be thought of as an accumulator.

Its role is to accumulate the 64 MHz 4-bit sign-magnitude data whose sign bit has been multiplied

by a bit from the PN and from the Walsh sequence. It accumulates data until an external dump

signal is received, whereupon, the final sum is latched, the correlator's internal registers are

cleared and the accumulation process begin again.

5.1.1 Basic Architecture

The basic correlator block can be seen in Figure 5.1 It should be noted that the correlator

shown in Figure 5.1 is actually one-half of a complex I/Q correlator. The exact same circuitry is

41
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FIGURE 5.1 : Datapath forcorrelator (one-halfof complex I/Q).

used for the I path and the Q path. The correlator works in the following manner anincoming 4-

bit sign-magnitude pieceof data is latched by a 4-bit register. Then, depending on the data's sign

bit which has already been multipliedby bits from the PN andWalsh sequences, it will eitherbe

latched by the first register in the POSACC datapath or the NEGACC datapath. If, for example,

the data's sign was positive, then the data will be latched by the first POSACC register. At the

same time, the previously accumulated SUM and CARRY vectors are latched and fed back into

the adder. Thus, this new pieceof data is added with to the previouslyaccumlated positivedata. In

actuality, the addition is broken up into a 3-bit add and a 6-bit accumulate. The clocks to the

NEGACC datapath are gated off, so no switching activity occurs in the NEGACC datapath.

Likewise, if data is negative, the NEGACC datapath is used and the POSACC datapath remains

idle. By using a carry-save architecture instead of the more traditional ripple-carry approach, the

critical path was reduced to a half-adder and a register delay. Effectively, the adder becomes

pipelined at the bit-level. A bit-slice of the carry-save addercan be seen in Figure 5.2.
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The data is accumlated until a dump signal is received, whereupon, the final sum and carry vectors

are latched for each datapath and summed together to produce the negative and positive

accumulated data. The negative accumulated data is then subtracted from the positive and the

output is determined. Both the adders and the subtractor use a 2's-complement ripple-carry

architecture. If these final adds and subtract were a part of the critical path, then the maximum

speed of the carry-save adder would be limited by these slow blocks. Fortunately, in our system,

this is not the case. In our design, 64 chips of data are accumulated before being dumped. Thus, at

the same time the correlator is accumulating a new set of 64 samples, the backend circuitry

performs the final addition and subtraction, operating at 1MHz. As a result, the backend

processingonly needs to operateat 1MHz.

The correlator just described above can only correlate 64 samples at a time. For the data recovery

block, no additional circuitry is needed since only correlations over 64 chips areneeded. However,

for the remainder of the blocks, 1024 sample correlations are desired. For these longer
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correlations, theoutputted data, CORROUT, can be feed intoa 14bit accumulator whichwouldbe

updated 16 times (once every 1 us) before producing the final output.

5.1.2 Constellation Rotation

While the 21.76kHz constellation rotation described in Section 3.3.2 may be tolerable for the

DQPSK decoder, it is not tolerable for the channel estimation correlators. This is because they

correlate the pilot tone over 1024 Tchips, instead of64 Tchips, which results in a 125.2° rotation.

Each correlator sums for 1024 Tchips both the in-phase and quadrature phase components ofthe

received pilot tone. The equations can be expressed as

1023 1023

Q= £ S.sine.. I= ]£ SjCosOj (EQ 5.1)
i-0 i-0

where i represents the number of chips, Sj is the ith data sample received (assumed already

multipliedby the bits from the PN and Walsh sequences) and 9V is the amountthe constellation has

rotated (in degrees) since the beginning of thecorrelation. Again, the angle 8V varies from 0° when

i=0 to 125.2° when i=1023 or increases 0.12° perTchip. If the correlators operated in this manner

without being modified, then this rotation would produce severe errors in the estimationof the

pilot tone energy (used for lock and the DPLL) aswell aserrors in the estimation of the channel's

impulse response (used in the RAKE receiver).

The first pass of the demodulator only used the on-time data and did not try to improve the SNR

through ratio combining with the multipath arrivals. As a result, a solution was proposed which

attempted to fixed the rotation problem forpilottone energyestimation, but not forestimating the

channel's impulse response since channel estimation was not being performed. In actuality, the

currently implemented solution prohibits estimation of the channel's impulse response-the reason

why will be explained shortly.

The modified correlators still correlate over 1024 Tchips, but instead ofcorrelating continuously for
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1024 Tchips, they are broken into 16 correlations of64 Tchips. Ifthis were the only change, then the

correlators would be functionally identical to the original ones in Equation 5.1. The key

modification isthat the absolute value ofeach individual correlation over 64 Tchips istaken before

being added into the running accumulation of 1024 Tchips. Thus, the new correlation equations

look like the following:

is 63

Q-IXV^ii
i-0

IS

j-0 i-0

(EQ 5.2)

Taking the absolute value has the same effect as beginning a new correlation. Thus, since the

absolute value is taken every 64 Tchips, it is like the constellation only rotates 7.8° which is

tolerable. Unfortunately, though, taking the absolute value does not come without a price. The

price is that the magnitude information is maintained, but the phase information is lost. This is

acceptable for pilot tone energy estimation since it is only concerned with magitudes, but not for

channel impulse response measurements which requireboth magnitude and phase information. In

other words, using this technique prevents channel impulse response measurements from being

performed.

The channel impulse response measurement determines the nature of the channel for the on-time

data and the data which has been delayed byone and two Tchips due tomultipath. This will be used

in the RAKE receiver. The details of the RAKE are discussed in Section 3.3.5, but it suffices to say

that only the relative phase information between the on-time channel reponse and the two

multipath channel responses is needed. One technique to maintain the relative phase information is

shown in the following equations:

L = Re

V;i*0

( 63 63 \

XS.. Bcos6.. +jY S.. nsina.
i-0 W)

63 63~^

2mt ij.on-time ij.on-timc J,^ ij.on-time ij.on-tin
isO

(EQ 5.3)
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63 63

SSij.on4imeCOseij/.n-time +j2Sij^>n-timesine
i-0 i-0
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(EQ 5.4)

ij,on-timc

where n is the nth multipathbounce. This technique shouldremove the effect of the constellation

rotation, but it will distort the magnitude.The difference between the magnitude of In in Equation
1023 1023

4.4 and Y s; sine. /Vs. Hm,sine. nn,. is similar to the difference between 2±ij and -+-j,
mmm 1Jl \Ji Xmd I.On-tUTtC l/jn-tUtlC C + Q CO

i-0 i-0

which is small if a = b and c «= d.

5.1.3 Power Consumption

The correlator was designed with low power consumption in mind. Two important

architectural features were incorporated to achieve this goal. The first was that the correlator uses a

sign-magnitude adder-there are separate adders forthe positive andnegativedata; the secondwas

that each adderuses a carry-save architecture. The benefits of these areexplained below.

Sign-magitude vs. Ripple-carry adder

Simulations done in [Chand94] compared the power consumption of a 2's complement versus

a sign-magnitude adder fordifferent input patterns (seeTable 5.1). Both adders used a ripple-carry

architecture. It was shown that for random data, which characterizes the correlator's input pattern,

a sign-magnitude adderconsumes approximately 30% less power than a 2's complement adder.

This is due to reduced switching activity.

Table 5-1: Comparison of the power dissipation of 2's complement addervs. sign-
magnitude adder.

input Pattern
(1024 cycles)

2's Complement Power
(3V)

Sign-Magnitude Power
(3V)

constant (IN=7) 1.97 mW 2.25 mW

ramp

(-7,-6 6,7)
2.13 roW 2.43 mW

random 3.42 mW 2.51 mW

min-Mnax->min

(-7.7.-7.7....)

5.28 mW 2.46 mW
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Carry-save architecture

By using the carry-save adder, instead of the slower ripple-carry, it was possible to reduce the

supply voltage to 1.5V from 3V and almost a fourfold reduction in power consumption was

achieved. Power reduction wasn't quite fourfold because the carry-save adder uses twice the

number of registers as the ripple-carry, and as a result there is more switching and the clock is

more heavily loaded.

5.1.4 Estimation of Pilot Tone Energy

The long correlators are used by the demodulator to estimate the received signal's energy by

measuring theenergy of thepilot tone. Ideally, one would liketo usethemagnitude of thecomplex

pilot tone signal, Vl2 +Q2» or even I2 +Q2 as ameasure of the energy. However, in order to avoid

using multipliers, the pilot toneenergy was approximated as HI +|Q|. Figure 5.3, shows the error

which is incurred from using this approximation. The approxmation is plotted as |sin6| +|cose|,

where 0 varies from 0° to 360°. The normalized errorranges from 0 to 0.41. By chosing proper

values forthe threshold registers, the impactof this error can be minimized.

5.2 Clock Mux

The role of the clock mux is twofold. One is to synthesize the clocks for the chip and the

second is to convert the incoming interleaved data at rate OSCH into four parallel streams at rate

OSCH/2.

5.2.5 Clock Generator

The Infopad's spread spectrum demodulator simultaneously requires 4 phases of a64 MHz where

each phase is separtated from one another by 4 ns. Another requirement imposed by the chip's

digital phase lock loop is that the phase of the clocks must be adjustable by ±4ns. This section

explains how the4 phases are generated as well ashow theirphase canbe adjusted.
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FIGURE 5.3 :Graph comparingthe absolute value magnitude
approximation vs. angle against the true magnitudecalculation. The
values have been normalized.

Input/Outputs

Table 5.2 shows the input and output signals for the clock generator.

Table 5.2 : I/Os for clock generator

Signal Name Description Direction

clk!28_l dock Input

clkl28_h dock Input

dkrst_h resetclock generator flip-flops to known state Input

resetj reset signal for control flip-flips Input

valid_data indicateswhen clock's phaseshouldbe adjusted;
high for one 64 Mhz clock cycle every 1024Tchips

Input

extend_phase 0 • reduce phase,
1 - extend phase

Input

change_phase_l 0 - change phase
1 • keep phase the same

Input

lock 0-out of lock

1 - got lock
Input

48



Table 5.2: I/Os for clock generator

Signal Name Description Direction

shrj.ld (killpulse) This signal"kills" one risingedge of the clock that
is fed to the correlators. Used when reducing phase
ofdockby-Tcfaip/4.

clk64 64 Mhz clock Output
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Implementation

The heartof the clock generating circuitry is two flip-flops (FF) whose outputs are inverted

and used as their inputs (see Figure 5.4). One FF is clocked by the positive phase of a 128MHz

RST

T%L
FF

A
CLKI28H

CLKRST

I rLt I
FF

CLKI28L

RESET_L

•HXI-
SEL_CLKA.L

CLK>

SEL.

rW
SEL CLKC L

SEL CLKDL

RESETL

BUI CLKY

FIGURE 5.4 : Generates four phases of a 64MHz clock (clka, clkb, clkc,
and clkd) which areoffset from each other by 4 ns. Only one of the clocks
is outputed as clkx.

clock and the other is clocked by the negative phase. The output of these FFs and the output of

their trailing inverters generate the four phases of a 64 Mhz clock each offset in time by 4 ns (see

Figure 5.5). At any given time, only one of the four active-low pass gates controlled by the sel_clk

signals will be activated~the rest will be tristated.

There are two reset signals used in the circuitry shown in Figure 5.4. CLKRST is used to set

the two FFs into a deterministic state. This signal only needs to be low for 10ns. RESET.L is the
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FIGURE 5.5 : Fourphasesof 64MHz clock
generated inside clock generator.
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global reset signal. When RESET_L is low CLKA is selected (the SEL_CLK pass gates are

bypassed). Because the clock generator is supplying the clocks for the chip, we must guarantee

that it is outputting a clock even during the reset mode in order to reset/clear the internal latches.

The SEL_CLK signals depend on the clock which is produced by the clock generator in Figure

5.4. If we did not have the bypass pass-gates for reset, then the select lines would have to be

initialized in orderto producethe internal clock. However,this is impossible since they themselves

depend on the internal clock to be initialized. When RESET_L is high, the output of the four

SEL_CLK pass-gates is passed to CLKY. The outputof this circuit,CLKY, is fed to a block of

dual edge-triggered flip-flops (see Section 5.1.3) which generates the four phases of the 64MHz

clock needed by the chip. The correlators have been designed to run at 64MHz (15.6ns period)

when operating at 1.5 volts. However, when the clock's phase is reduced, forone cycle, the clock's

periodis reducedby 4 ns down to 11.7ns. Unfortunately, if this 11.7ns periodclock were passed to

the correlators, then non-deterministic results would ensue. In order to combat this problem, we

"kill off' a rising edge of the clock by setting killpulsej low for one cycle. Thus, the effective

period of the clock for this cycle becomes 27.3ns (see Figure5.8). The penalty which is paid, is

that the correlators lose one sample every time the clock's period is reduced. Therefore, the worst

case is that one sample is lost every 1024 samples; this effect is tolerable. Unfortunately, the

control circuitry cannot lose any rising-edges. This is because once we have lock, the transmitter's

and receiver's PN generatorsare synchonized. If the receiver's PN generator loses a cycle due to

having a rising-edge of it's clock removed, then it would no longer be synchronized with the



FIGURE 5.7 :Timing diagram for extending the clock's phase.
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FIGURE 5.8 :Timing diagram for reducing the clock's phase.
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Timing

A critical issue in design of the clock generator was making sure the critical path was met

everywhere. For most of the circuitry the critical path was 16 ns. However, for several parts, the

critical path was 4 ns. Because of the relatively large propagation time and setup time of the D-FF

(about 2.0 ns), only about 1-2 levels of combinational logic could be tolerated. This 4ns critical

path time consisted of the propagation time through a D-FF,the propagation time through two pass
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transmitter's PN generator. This would becatastrophic since themobile would lose lockwith the

transmitter. As a result, there are two clocks which are generated; one for the control logic

(CLKJON.PN) and one for the correlators (CLKJON).

The CLK_SEL signals are actually the state bits of a four-bit one-hot encoded state machine.

Initially, thestate is setto I'Olll". This means the CLKA pass-gate will be transparent while the

others will be tristated. The three other valid states are 1011,1101, and 1110 which cause CLKB,

CLKC, orCLKD tobeoutput respectively. The state transistion diagram can beseen inFigure 5.6.

reset 1=*0'

pre.extj = changephasej • lock •v«lid_dau •extendjshasc

pre_shij « changephasej• lock•valid_data •extend_phase

extj • latch(prc_extj)
shrj • lateh(prc_shrj)

Note: slate remains the same if e*t_l=* 1*and shr_l='1' and
reset 1=T

FIGURE 5.6 : State transition diagram for SEL_CLK signals. Each statebit
corresponds to a control bit forclock generator's pass-gates. Thus,
bit3(msb)=SEL_CLKA, bit2=SEL_CLKB, bit3=SEL_CLKC, and
bit4(lsb)=SEL_CLKD.

Normally, extj and shrj equal *1\ The only time their values can change is once every 1024

cycles, whenthe digital phase lock loop may assert a change in the clock phase. At this time,

valid_data will gohigh for oneclock period. If changephasej is low and lock is high, then either

extj or shrj will go low for one clock cycle depending on extend_phase. Example timing

diagrams can be seen in Figure 5.7 and Figure 5.8.
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gates, and the setup time for a D-FF. It was also found necessary to run the clock generator

circuitry with a 5V supply to meet the timing requirements.

5.2,6 Dual-edge Trigger Flip-flop (DETFF) Block

This block generates the four phases of the 64MHz clock which are needed in the chip. In

order to generate these four phases which are offset from one another by Tchip/4 or~ 4ns, it is

necessary to use a 128MHz clock to drive the DETFFs.

Inputs/Outputs

Table 5.3 : I/Os for DETFF block

Signal Name Description Direction

CLK1N 128MHz clock used to drive DETFFs Input

DATAIN 64MHz clock from clock generator circuitry Input

KILLPULSEJ, 0 • keepselkJon, clk_qon,dkjoff, clkjqoff low
1 • clkjon, clk_qon.elkJoff. clk_qoff are unmodified

Input

CLKJONJ>N 64 MHz clock used to drive control logic Output

CLKJON 64 MHz clock used to drive correlators. Also, used to

sampledata fromthe ADC.
Output

CLK_QON 64 MHz clock offset by+Tchip/4 from CLKJON.
Used to sampledata fromthe ADC.

Output

CLKJOFF 64 MHz clock offset by+Tchip/8 from CLKJON.
Used to sampledatafromthe ADC.

Output

CLK.QOFF 64 MHz clock offset by+Tehip/12 from CLKJON.
Used to sample data from the ADC.

Output

Implementation

A block diagram of the DETFF block can be seen in Figure 5.9. The dual-edge triggered flops

are taken from [Afgh91]. The basic schematic can be seen in Figure 5.10. One can see that the

upper-half of the schematic is a standard rising-edge TSPCR (true-single phase clocking register)

which can be found in [Burd94]. The lower-half is a falling-edge triggered TSPCR (fetFF) which

is simply the dual of the rising-edgeTSPCR (retFF). One can obtain the fetFF from the retFF by
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FIGURE 5.9 : Block diagramof DETFF block.
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FIGURE 5.10: Schematic for dual-edge triggered flip-
flop.
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flipping over each leg, then swapping NMOS for PMOS transistors and vice-versa. At any given

time, either the retFF or the fetFF's output will be active-the other will be tri-stated.

5.2.7 Data Multiplexor

In the final incarnation of the radio, all aspects of the receiver, both analog and digital, will be

integrated onto a single die. The interface between these two sections is, of course, the A/D

converter (ADC). By design, the ADC produces two 4-bit sign-magnitude interleaved streams of

data running at 128MHz. The data multiplexor was added to convertthis stream to 4 parallel non-

interleaved (aligned) 4-bit streams running at 64MHz to simplify implementation and to provide

Tc/4 timingresolution. Because the data hasbeenoversampled by 2x, there is bothontimeI and Q

(ION and QON) data which is used for data recovery and lock acquisition and offtime I and Q

(IOFF and QOFF) data which is used in the digital phase lock loop for fine timing adjustment.



Inputs/Outputs

Table 5.4: I/Os forclkmux.datamux

Singnal Name Description Bit Width Direction

CLK1A Clock used to latch DATA1A signal. 1 Input

CLK1B Clock used to latch DATA IB signal 1 Input

CLKR2JX Clock signalused to align loafQoa «" loflAJoff- 1 Input

CLKR3_1X Clock signal used to alignIM/QMflofl'Qon% 1 Input

CLKR4JX Clock signalusedto help synchronizedatamuxand
correlators.

1 Input

MUXSEL1A Used to select between DATA 1A and DATA IB 1 Input

DATA1A ADC stream which is 2x CLK1 A's frequency 4 Input

DATA IB ADC streamwhich is 2x CLK1A's frequency, 180°
out of phasewith DATA! A

4 Input

CLK2A Clock used to latch DATA2A signal. 1 Input

CLK2B Clock used to latch DATA2B signal 1 Input

CLKR2.2X Clock signalused to align I0DA}OT or I0fr/Q0ff- 1 Input

CLKR3_2X Clock signal usedto alignIon/QoiAf^Qoff- 1 Input

CLKR4.2X Gock signalused to help synchronizedatamux and
correlators.

1 Input

MUXSEL2A Used to select between DATA 1A and DATA IB 1 Input

DATA2A ADC streamwhich is 2x CLK2A's frequency 4 Input

DATA2B ADC stream which is 2x CLK2A's frequency. 180°
out of phasewith DATA2A

4 Input

DATAIOUT Synch*d with DATA20UT; either1OT or loff. 4 Output

DATA20UT Synch'd with DATAIOUT;eitherQ0D orQoff. 4 Output
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Implementation

The circuitry which performs the parallelization can be seen in Figure 5.11. It consists of 4

identical 4-bit wide data paths. The first thing to note is that the two interleaved 128MHz streams

of 4-bit data are called xdata and ydata, instead of I and Q. This is because there is no notion of I

and Q yet in the two input streams. Depending on the sampling clocks, at any point in time XO

could be considered ION, QON, IOFF, or QOFF. As an example, in Figure 5.11, we see the even

XDATA samples are first considered as the ION data. However, after the clock's phase is

extended, the even XDATA samples become the QOFF data. The second thing to note is that only

half of the Rl clocks are active. All the Rl clocks could be continuously running, but since only
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FIGURE 5.11: Block diagram of the data
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half of the outputs are used, power was saved by shutting off the clocks of the unused registers.

However, the R2, R3, and R4 clocks can never be turned off because these registers need to be

latched every cycle. Lastly, it should be noted that there are two voltages levels being used in the
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datapath shown in Figure 5.11. This is done because the data coming off the ADC is at 3.3V, but

the correlators are running at 1.5V. The correlators couldhave been fed with 3.3V data, but this

would mean we are driving the large capacitance wires which connectthe correlators to the data

block; thus, burningunnecessary power. The ION and QON outputs are fed to the datarecovery

correlator and the channel estimation correlators. IOFF and QOFF as well as IOFF and QOFF

delayed by one clock cycle are fed to the early and late correlators used in the digital phase lock

loop.

A timing diagram for the data multiplexor block can be seen in Figure 5.12. The Rl registers

latch the incoming data, the R2 registers align ION with QON and IOFFwith QOFF, and the R3

registers align ION, QON, IOFF and QOFF. The R4 registers are clocked by CLKION1.5X,

instead of CLKION. By relatching the data with the correlators' clock, the data has more time to

propagate from the data multiplexor to the correlators.

5.3 Clock Buffers

There are three main clock buffers in the demodulator. The first is a differential amplifier

embedded in the pad frame which used to convert an off-chip differential sinusoidal oscillator's

signal into two 50% duty cycle square-wave clock signals which are 180° out of phase. The

second buffer is used to drive the control circuitry and the last is used to drive the correlators'

clocks.

5.3.8 Clock Pad Buffer

The clock pad buffer converts an differential sinusoidal signal into differential 50% duty cycle

square waves of equal frequency. A schematic and layout of the clock pad can be seen in Figure

5.13. The signals OSCL, OSCH, and CURRBIAS come from ofif-chip. OSCL and OSCH are from

the sinusoidal oscillator and CURRBIAS is used to set the current down the two legs of the pre-
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y yo y--^->r-YT->ric7->ricry^oT^

y yi y-YT-y^?r->r-xr-y^nrx-^o<

bncr->rxr->r-xr-y^yr-y-Yr-x^n-^

FIGURE 5.12: Timing diagram forthe data multiplexor.G=Garbage.

amplifier. CURRBIAS should be adjusted sothe current down each leg is approximately 1mA.

The outputs of the clock pad buffer are CLK_L and CLK_H. One can set CURRBIAS by

connecting the CURRBIAS pin to a potentiometer or anoffchip precision current source. The

potentiometer's other input should be connectedto ground.
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FIGURE 5.13 : Schematic and layout of differential input clock
buffer. From the layout, one can see that the input clock buffer uses
three pads, two for the oscillator's inputs and one for biasing the
current down the preamplifer's two legs.
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5.3.9 Control Logic Clock Buffer

The output of this clock buffer is used to drive the 3.3V control logic. The clock buffer has

been designed to drive up to 2 pF with a 2ns worst-case rise/fall time. A high-level block diagram

of the control logic clock buffer can be seen in Figure 5.14.
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FIGURE5.14: Block diagram of the control logic clock
buffer.
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5.3.10 Correlator Clock Buffer

The clock buffer is used to drive the correlators. Each correlator's clock sees approximately

lpFof capacitance from the gate capacitances plus another 0.5pffrom theclock wire capacitance.

As aresult the total capacitance is7 x 1.5 pF = 10.5 pF. Itwas decided to design the clock buffer

as a tree with 7 branches, one for each correlator. Thus, each branch or leg must drive

approximately 1.5 pF. A block diagram of the correlator clock buffer can be seen inFigure 5.15

below.Oneextrabranch wasadded to drive miscellaneous logicsuchasthe final set of registers in

the data multiplexor.

5.4 Control Logic

This section describes most of the control logic used in the demodulator. It is recommended

that the reader read Section 2, Background on Spread Spectrum, before proceeding to read this

section.
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FIGURE 5.15 : Block diagram of the correlator clock
buffer tree. More detailed diagrams of the CTLDRV and
DRV2 buffTers can be seen in Figure 5.14.
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5.4.11 Walsh Generator

Walsh codes are orthogonal codes used to differentiate an individual user's signals from other

people's signals. Each user is assigned their own unique Walsh number which is loaded into the

walshnum register by the Infopad. There is no default Walsh number, so upon power-up, the

Infopad must load the walshnum register before the Walsh generator/data recovery unit can

function correctly. During startup, Walsh number 1 is used as a control channel. After proper

handshake and initialization has been achieved, the user will be assigned a Walsh number between

2 and 63. The Walsh codes are generated by using the difference between successive elements of a

Gray code sequence plus the Walsh number to control a toggle flip-flop. This section describesthe

I/O for the Walsh unit and it's implementation.



Inputs/Outputs

Table 5.5 : I/Os for Walsh block

Signal Name Description Bit Width Direction

CLK64 64MHz dock 1 Input

RESET_L Global reset signal 1 Input

STALLJL When 0 gatesthe clock which keeps the Walshgen
erator in the same state.

1 Input

PN_ALLONESJL When 0 resetsthe Walsh generator to some initial
state.Used to synchronize the Walshgenerator and
the PN generator

1 Input

WALSHNUM User number-controlled by the externally loadable
walshnum register.

6 Input

WALSHOUT Current bit of the Walsh sequence corresponding to
user WALSHNUM

1 Output

WALSHCNT Current state of the walsh counter 6 Output
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Implementation

The Walsh code generator followed the basic architecture shown in Section2.4, except its datapath

is 6 bits instead of 3 bits. The majority of the Walsh generator was implemented as synthesized

VHDL which canbe seen in Appendix B. However, in order to meet critical path timing the 6-bit

counter and the nand block were designed using schematic capture. The counter was designed to

exploit the fact that the msb's of the counter are stable for a long time and can thus pass through

more gates before reaching the flip-flop input. Thus, the critical pathonly involves the countoutO

signal passing through an and-gate, an xor-gate and a flip-flop. A generic version of this counter

can be seen in Figure 5.16. This technique was alsoused to design the 11-bitcounter found in the

update control block. The 6-bit and 11-bit counters are slightly modified from the one shown in

Figure 5.16 because reset and enable signals were added.This change, however, only added one

extra gate to the critical path.
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FIGURE 5.16: Generic n-bit counter implementation designed to
minimize the critical path. In this counter, the critical path is tpropff +
T>rop,and "*" ^prop.xor "*" ^setup.ff*
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5.4.12 PN Generator

This block generates the PN sequence used for despreading the data.This section describes the

I/Os as well as the PN generator's implementation.

Inputs/Outputs

Table 5.6 : I/Os for the PN Generator.

Signal Name Description Bit Width Direction

CLK64 64MHz clock 1 Input

RESETJL Global reset signal, loads seed into PN generator's shift register. 1 Input

STALLJL When 0 gatesthe clock which keeps the PN generatorin the
same state.Used in lock acquisition to shift the phaseof the
receiver's PN seuqencewith the transmitter'sPN sequence.

1 Input

SEED The initial startingpoint for the PN generator. Reloaded every
time the PN generator wishes to begin againits 32768 chip
sequence.

16 Input

PN.ALLONESJL Indicates that the all the bits in the PN generator's shift regisister
allones.The next clock will start the PN sequenceover again by
loading in the SEED value. This signalis used to synchronize the
Walsh generator with the PN generator.

1 Output



Table 5.6: I/Os for the PN Generator.

Signal Name Description Bit Width Direction

PN.OUT Output of PNgenerator. Considered the"on-time" phase (i.e.
should be aligned withthetransmitter's PNsequence). Feed to
correlator0, DPLLcorrelators, andthedata recovery correlator.

1 Output

PN.OUT1D PN_OUTdelayed by 1clockcycle. Feed to correlator!. 1 Output

PNJDUT2D PN_OUTdelayedby 2 dock cycles. Feedto correlator^ 1 Output

PN..OUT3D PN_OUTdelayedby 3 clock cycles. Feedto correlator* 1 Output
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Implementation

The system specification for theInfopad radio called for aPN sequence of length 32768 chips.

The normal method is just to use the lsbof a feedback shift register as the PN sequence. However,

the closest sequences in length are 32767 chips produced by a 15-bit feedback shift register and

66535 produced by a 16-bit feedback shift register (note: length = 2n -1). There were two options

considered: (1) Implement it as a 15-bit feedback shift register with one extrabit added at the end,

or (2) implement it asa 16-bit feedback shift register, but only use 32768 of the 65536chipsbefore

resetting the sequence. Option (2) was chosen.

The PN generator which was designed using VHDL (see Appendix B) and schematic capture is

implemented as a 16-bit feedback shift register. The feedback which provides the next msb (bit 15)

for the shift register is composed of the xor of bits 15,13,4 and 0 together.The seed was choosen

so that when the 32768th bit was outputted all the taps of the shift registerwould be all ones. Thus,

when the all ones case is detected, the seed is loaded into the shift register on the clock's next

rising edge and the PN sequence startsanew. In actuality," 1111111111111110" is detected instead

of all ones because there was not enough time to check for the all ones case as well as setup the

seed as the next value to be loaded into the shift register in one clock cycle. Thus,

" 1111111111111110" is detected in one clock cycle. In the next cycle, the seed is setup to be loaded

into the shift register. During reset, the seed is loaded into the shift register and the PN generatoris

synchronized with the Walsh generator.
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5.4.13 Lock State Block

This blockkeeps track of whether thepad is in lockornot. It does not control the initial coarse

synchronization. This is done in the updatecontrol block (Section 5.4.14).

Upon startup, the lock block is in state W indicating that lock has not been acquired yet. The

output LOCK and LOCKRESET are both 40\ Every 1088 cycles, the VALID__DATA signal will

gohighindicating that C^L, C^L, C3J-, and C4J- are valid. The CX_L signal indicates whether

ornot the accumlated energy in correlatorx is greater than/equal to or less thanthe value stored in

threshold register l-'O' indicates greater than/equal to and *1' indicates less than. If any Cx_L

signal is 40' and VALID_DATA is *1\ then lock has been achieved, the new state is '01 \ and the

LOCK signal is set to T.

Once in lock, the system will stay there unless the summation of the energies accumulated in the

earlyand latecorrelators falls below the value stored in threshold register 3. This will be indicated

when T.RESET and VALID.DATA both equal' V. If the system does fall out of lock, then the

lock status state machinewill first progress to state ' 10' andset LOCK to '0' andLOCKRESET to

' 1\ then return to state '00' where both LOCK and LOCKRESET are 40\

Inputs/Outputs

Table 5.7 : I/Os for lock control block

Signal Name Description Bit Width Direction

CLK64 64MHz clock 1 Input

RESET.L Global reset signal, sets the lock statemachinein the
"need to acquire lock" state.

1 Input

T.RESET Signal comes from DPLL block. AT indicates
that the radio fell out of lock. Determined by com
paringthe summation of the correlated energy in
the earlyand late correlators with threshold register
2.

1 Input

VALID.DATA Indicates C1_L. C2_L, C3_L. C4JL are valid. 1 Input



Table 5.7: I/Os for lock control block

Signal Name Description Bit Width Direction

C1JL 0-Accumulatedenergyin correlatoro is greater than
or equalto threshold regisiter 1.
1-Accumulatedenergyin correlatoro is less than
threshold regisiter 1.

1 Input

C2_L 0-Accumulated energyin correlator) is greater than
or equalto thresholdregisiter1.
1•Accumulated energy in correlator! is lessthan
threshold regisiter 1.

1 Input

C3_L 0-Accumulated energyin correlatoris greater than
or equalto threshold regisiter 1.
1-Accumulatedenergyin correlator is less than
threshold regisiter 1.

1 Input

C4_L 0-Accumulatedenergyin correlators is greater than
or equalto thresholdregisiter1.
1•Accumulatedenergyin correlator} is less than
threshold regisiter 1.

1 Input

LOCK 0-no lock

Mock

1 Output

LOCKSTBITS State bits of the lock state machine. Used for debug
ging purposesonly.

2 Output
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Implementation

The lock control block was implemented as a state machine in VHDL and then synthesized

down to standard cells. Figure 5.17 shows the lock block's state transition diagram. The

RESET.U'O' or VARx='0'

VARX=T

01

LOXKRS%'0'r) VARY='0'

VARX=VAUD DATA &not(Cl L & C2_L& C3_L&C4_L)
VARY=VALID_DATA & T_RESET

FIGURE 5.17: State machine for lock status block.
VARx andVARY have been added for legibility
purposes only.
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VALID_DATA signal is controlled by the update control block. It is valid approximately once

every 1088 cycles.

5.4.14 Update Control

The heart of the demodulator's control is the update control block. The functionality of this

block can be divided into four areas: coming out of reset, coarse lock acquisition, data recovery

and channel estimation, and falling out of lock.

Inputs/Outputs

Table 5.8 : I/Os for Update Control Block

Signal Name Description Bit Width Direction

CLK64 64MHz clock 1 Input

RESET.L Global reset signal,sets the lock statemachinein the
"need to acquire lock" state.

1 Input

C1_L 0-Accumulated energy in correlatoro's greaterthan
or equalto thresholdregisiter1.
1-Accumulated energy in correlatoro's 'css tnan
threshold regisiter 1.

1 Input

C2_L 0-Accumulated energy in correlatori is greaterthan
or equal to threshold regisiter 1.
I-Accumulated energyin correlator! is less than
threshold regisiter 1.

1 Input

C3_L 0-Accumulatedenergyin correlator is greater than
or equal to threshold regisiter 1.
1-Accumulated energy in correlator! is less than
threshold regisiter 1.

1 Input

C4_L 0-Accumulated energy in correlator^ is greater than
or equal to threshold regisiter 1.
1-Accumulatedenergy in correlator is less than
threshold regisiter 1.

1 Input

LOCK 0-no lock

Hock

1 Input

VALID.DATA
(UPD1087)

Indicates C1_L, C2_L. C3_L. C4_L are valid. Also,
tells the backend section of the correlators to latch

in the new accumulated data.

1 Output

DR.RST Clear out the contents of the data recovery correla
tors

1 Output

CORR_RST clearout the contents of the carry-saveadder's
"dump-into" registers

1 Output

UPD63 When T indicates counted for 64 valid Tcbips 1 Output

PNSTALL.L When '0' stalls the PN and Walsh generators 1 Output



Table 5.8 : I/Os for Update Control Block

Signal Name Description Bit Width Direction

UPDSTBITS Statebits of the updatestatemachine.Used for
debuggingpurposesonly.

3 Output
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Implementation

The updctrl block was written in VHDL (see Appendix XXX) and then synthesized via

standard cells. It's main components are a 3-bit (8 state) statemachine, an 11-bit counter, and 8

latches used to delay the control signals. The counter was designed using the sametechniques as

the one described in Section 5.3.X.

The minimum clock period of the control block isTchip - Tchip/4 or 3Tchip/4. This will happen for

one clock cycle when the DPLL reduces the clock's phase byTchip/4. Because of this strict timing

requirement, the outputted control signals must be pipelined andthus are generated several clocks

in advance of when they are needed.This is shownin Figure 5.18.The pipelining is problematical

when one forgets that it takes several clock cycles forthe signal to change,causingthe old value to

be around for several clocks longerthan desired. For example, when coming out of reset,care had

to be taken to prevent lingering values from causing errors.

After coming out of reset, updctrl enters the coarse lock aquisition mode. As presented in Section

3.1, the controllereffectively counts for 1088 cycles before checking the CX_L signalsto see if

lock has been acquired. The reason why updctrl counts for 1088 cycles instead of 1024 is due to

the way the correlators operate (see Section 5.1). In orderto prevent the constellationrotation error

for becoming too great, the correlators are dumped every 64 cycles and the absolutevalue of their

outputs are accumulated. Thus, at cycle 1024, the correlators are dumped for the 16th time. The

outputs of the I and Q correlators must then be summed and compared to threshold register 1.This

takes time, so the CX_L are not ready until approximately cycle 1050. To make it easieron the

control, the CX_L signals are checked at cycle 1088 instead of around cycle 1050. At the same

time the CX_L signalsarechecked, the 11-bit counteris reset If lock has been achieved, then the
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CTRL.CRST
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CTRL62
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UPDCTRL

BLOCK

SIGBUF

BLOCK

UPD1087

L/C

CORR_RST

UPD1088
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FIGURE 5.18: Describes how the correlators' control signals are
generated.The CTRL signals areoutputs of the state machine and
the FLAG signals are formed from the outputs of the 11-bit
counter.
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PN and Walsh generators are stalled the appropriate number of clock cycles (0,1,2 or 3) and the

update control state machine enters the data acquisition state. If lock is not achieved, then the PN

and Walsh generators are stalled for four clocks cycles, the correlators are cleared out, and the

process repeats. In either case, the counter will have proceeded 0,1,2, or 3 cycles before the new

data has begun to accumulate. This means that there will be up to three chips worth of invalid data

incorporated into the next accumulation and only 1083 chips worth of valid data. This was

necessary because the counter could only be reset on multiples of 64 in order to stay in

synchronization with the PN and Walsh generators. During the lock mode, updctrl must generate

control signals to update the correlators every 64 cycles as well as every 1088 cycles.
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CHAPTER 6

Conclusion

6.1 Summary

This report describes the overall architecture for the Infopad's CDMA radio's demodulator

chip as well as details the implemention of the first version.The first version was an 80K transistor

chip fabricated in HP's psuedo 0.8um process. It occupied 56.56 mm2 (7.69 mm x 7.36 mm) and

was packaged in a large cavity 132 PGA. It implemented all the functions described in the

architecture description, except for the DQPSK decoder and the adjacent cell scan circuitry. A die

photo of the chip can be seen in Figure 6-1. As of the date of this thesis' filing, the first version

demodulator chip was only functionally tested using Tektronix's DAS9200 system. It was found

that all functions performed (mostly) correctly at low speeds (up to 25 MHz).

6.2 Future Work

There is still plenty of work left to be done. There were two blocks which were not

implemented in the first version of the demodulator chip: the DQPSK decoder and the adjacent
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Figure 6-1 : Micrograph of the spread spectrum demodulator chip.

cell scan and handoff circuitry.The DQPSK decoder can be implemented either as another on-chip

block or since it is running at 1 MHz, as a separate chip. The adjacent cell scan and handoff

circuitry can be realized using an extra correlator with some different backend logic and another

PN generator.

The demodulator chip was implemented as a stand-alone chip. However, the since final

implemention of the Infopad's radio receiver was envisaged as a single chip solution (i.e. both the

analog and digital sections integrated onto a single die), someone needs to look into the effect of
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having digital and analog circuitry on the same die to determine whether a single chip solution is

practical and/or feasible versus something like and MCM orchip-on-board solution. The current

version of thedemodulator was designed to perform hard handoff. Looking athowto do a soft

handoff can also be explored.

Techniques are being explored by Teuscher which focus on reducing the SNR through

equalization and interference cancellation techniques. If some type of combining strategy is

implemented, then the long correlations must be modified to handle the phase correction while

maintaining the phase information.

At the higher level, what type of numbers can/should be provided to the network folks (i.e. SNR,

RSSI, BER estimates) can be explored.Currently, only RSSI numbers areprovided.
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Appendix A-Schematics

The actual schematics are located in the demodulator's schematicdirectory. They can be viewed

using Viewlogic's viewdraw schematic capture program. The following isa list ofschematics with

their corresponding hierarchy:

corrpad - contains core ofchip along with pad ring (schematic can beseen below)

corrcore - contains all the blocks of the chip(schematic can be seenbelow)

mpcorr - multipath correlator with backend logic

i_basecorr - actual 13-bit correlator block

mpback - compares III + IQI against thresregl; outputs Q and either I or
IPLUSQ depending on whether lockhas beenacquired or not.

xbuffer - dpp buffer of size *H' which is used to drive output signals

tlt2corr - early and late correlators with backend logic

tlt2base - contains early and late I/Q correlator pairs

ijbasecorr - actual 13-bit correlator block

tlt2back -compares [(III +IQOeariy +Oil +IQ0iate] with thresregb to see if
energy energy is being received to stay in lock; compares [(III +
IQOearly - 011 + IQOiatel with thresregc to see if the clock's phase
lock loop should be adjusted, and if so, whether it should be
extended or shrunk.
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tlt2ss - converts 15-bit sign-magnitude number to 15-bit one's
complement number

drcorr - data recovery correlator with backend logic

i frontend - actual 9-bit correlator block

drback - latches and buffers output of I/Q correlators

extracorr - extra correlator used for debugging and power measurements

ibasecorr - actual 13-bit correlator block

regblk - registers with control logic

regbufs - registers and buffers

regctrl - control logic for registers

datablock - generates 64MHz clock; converts two 128MHz interleaved data
streams to four parallel 64MHz streams as well as adjusts data depending
on which testmode is selected.

testmode - adjusts data depending on which testmode is selected

bin2sm - converts binary number (0 to 15) to sign-magnitude

two2smx - converts two's complement number to sign-
magnitude

xmtrJnt - interface to transmitter chip. Converts four parallel
streams to 2 interleaved streams at twice the input
frequency

muxbuf - selects which type of data to send to the rest of the chip
depending on the testmode bits

clkmux - generates 64MHz clock; converts two 128MHz interleaved data
streams to four parallel 64MHz streams

clkmuxnodetff - generates 64 MHz clock which can be
adjusted by ±Tchip/4; generates control signals for
clkmux_datamux

clkmux_detff - bank of dual-edge-triggered flip-flops which
generate four phases of the 64MHz clock from a single
64MHz input clock.

clkmuxbufs - buffers for the clock signals

clkmuxdatamux - converts 2 interleaved 128MHz data streams

into 4 parallel 64MHz streams

clkmuxdelay - delay element and buffer for data (used to create

loff and Qoff-

clkcntrldrv - buffers clock for control logic

Ivlcvt - level converter
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clk3_3driver - clock buffer forcontrol circuitry

clkcorrdrv - buffers clock for correlators

Ivlcvt - level converter

clkl_5driver - generates 8 clocks to drive 7 correlators +
miscellaneous logic

ctrlblk - control circuitry

walsh - generates Walsh sequence according to Walsh usernumber

pn - generates PN sequence

lock - lock control circuitry

updctrl - generates update control signals for the correlators

sigbufs - levelconverts, latches, and bufferssignals

upddly - latches and buffers signals

clk8mhzgen - latches bit2 of walshcnt to generate8Mhzclock

rstbufx - latches and buffers signal

xbuffer - buffers signals

osb - observation block which is used to select which outputs to view on the odata
bus

osbscan - converts l->8 serial to parallel converter

osbss - generates grounds which are used for some of the msbs of the
inputs to osbback

osbback - 28-bit wide 8:1 mux

Two example schematics are shown on the following two pages: corrpad and comcore.
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corrcore



Appendix B-VHDL

List of VHDL files

Lbasecorr 81
Lfrontend 83
walsh 85
walsh_nand 87
count64sync 88
lock 89
pn 91
muxl5_3tol 94
updctrl 94
cnt20481ds 101
regctrl 102
two2smx 103

Cell: i_basecorr
Description: base block for correlator
Author: Ian O'Donnell

Date:

Modified: 8/1/94-Hodified Kevin Stone's previous base_dp.vhd to this
Note: Does not model hardware, only functionality at
input and output. Internal nodes do not correspond.
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— Do not synthesize this and then expect it to work.

entity i_basecorr is
port (

clock : in vlbit;

rst_dump : in vlbit;
dump : in vlbit;
pn : in vlbit;
walsh : in vlbit;
datain : in vlbit_vector(3 downto 0);
vdd : in vlbit;

gnd : in vlbit;
dataout : out vlbit_vector(12 downto 0)

);
end i_basecorr;

architecture behavior of i_basecorr is

signal rst_dumpld, dumpId, pnld, walshld : vlbit;
signal datald : vlbit_vector(3 downto 0);
signal rst_dump2d, dump2d : vlbit;
signal data2d, data3d : vlbit_vector(3 downto 0);
signal datasum, dataacc, dumpdata : vlbit_vector(9 downto 0);
signal dumpsum, dumpacc : vlbit_vector(12 downto 0);

begin
process(clock)

variable dumpsum_temp : vlbit_vector(13 downto 0);
variable alio : vlbit_vector(12 downto 0);
variable datasum_temp, dump_temp : vlbit_vector(10 downto 0);
variable datasumO : vlbit_vector(9 downto 0);
variable data2d_temp : vlbit_vector(3 downto 0);

begin
assert (vdd='l' andgndo'0')

report "Vdd and GND not connected properly!"
severity Failure;

allO := "0000000000000";

datasumO := "0000000000";

if prising(clock) then
if dump2d='l' then

if rst_dump2ds'l' then
dumpacc <«= alio(12 downto 0);
dumpdata <b alio(9 downto 0);

else

dumpacc <« dumpsum(12 downto 0);
if datasumO) = '1' then

dump_temp :• sub2c(datasumO, datasum);
else

dump_temp := add2c(datasumO, datasum);
end if;

dumpdata <= dump_temp(9 downto 0);
end if;
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dataacc <• all0(9 downto 0);

else

dataacc <» datasum( 9 downto 0);

end if;

rst_dump2d <• rst_dumpld;
dump2d <c dumpId;
data3d <« data2d(3 downto 0);
data2d(3) <- (pnld xor walshld xor datald(3));
data2d(2 downto 0) <« datald(2 downto 0);
rst_dumpld <« rflt_dump;

dumpld <• dump;
pnld <« pn;
walshld <« walsh;

datald <* datain(3 downto 0);

end if;

if pfailing(clock) then
dumpsum_temp :• add2c(dumpacc, dumpdata);
dumpsum <* dumpsum_temp (12 downto 0);
dataout <s dumpsum_temp(12 downto 0);

if data3d(3)='l' then
This step is necessary to convert the input data (which
is signed mag.) to 2's complement (which is how this vhdl
model keeps the sum).

data2d_temp(3) := all0(0);
data2d_temp(2 downto 0) :« data3d(2 downto 0);

If the sign bit is high, we subtract the magnitude from
the current sum.

datasum_temp :b sub2c(dataacc, data2d_temp);
datasum <= datasum_temp(9 downto 0);

else

datasum_temp := add2c(dataacc, data3d);
datasum <« datasum_temp(9 downto 0);

end if;

end if;

end process;

end behavior;

Cell: i_frontend
Description: front end block of correlator
Author: Ian O'Dormell

Date:

Modified: 8/1/94-Modified Kevin Stone's previous base_dp.vhd to this
Note: Does not model hardware, only functionality at
input and output. Internal nodes do not correspond.
Do not synthesize this and then expect it to work.

entity i_frontend is
port (



clock : in vlbit;
rst_dump : in vlbit;
dump : in vlbit;
pn : in vlbit;
walsh : in vlbit;
datain : in vlbit_vector(3 downto 0);
vdd : in vlbit;

gnd : in vlbit;
bufdump : out vlbit;
datasign : out vlbit;
dataout : out vlbit_vector(8 downto 0)

);

end i_frontend;

architecture behavior of i_frontend is

signal rst_dumpld, dumpId, pnld, walshld : vlbit;
signal datald : vlbit_vector(3 downto 0);
signal rst_dump2d, dump2d : vlbit;
signal data2d, data3d : vlbit.vector(3 downto 0);
signal datasum, dataacc : vlbit_vector(9 downto 0);

begin
process(clock)

variable alio : vlbit_vector(12 downto 0);
variable datasum_temp, dump_temp : vlbit_vector(10 downto 0);
variable datasign_temp : vlbit;
variable datasumO : vlbit_vector(9 downto 0);
variable data2d_temp : vlbit_vector(3 downto 0);

begin
assert (vdd='l' and gnde'0')

report "Vdd and GND not connected properly!"
severity Failure;

allO := "0000000000000";

datasumO := "0000000000";

if prising(clock) then
if dump2d='l' then

if rst_dump2d='1' then
dataout <« all0(8 downto 0);

datasign <= '0';
else

if datasum(9)='1' then

dump_temp :b sub2c(datasumO, datasum);
datasign_temp :« '1';

else

dump_temp :« add2c(datasumO, datasum);
datasign_temp := '0';

end if;
dataout <b dump__temp(8 downto 0);
datasign <« datasign_temp;

end if;
dataacc <= alio(9 downto 0);

else

dataacc <= datasum( 9 downto 0);
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end if;

rst_dump2d <« rst_dumpld;
dump2d <b dumpId;
data3d <b data2d(3 downto 0);

data2d(3) <b (pnld xor walshld xor datald(3));
data2d(2 downto 0) <« datald(2 downto 0);

rst_dumpld <b rst_dump;
dumpld <b dump;
pnld <b pn;
walshld <b walsh;

datald <b datain(3 downto 0);

end if;

if pfailing(clock) then
bufdump <b dump2d;
if data3d(3)»'l' then

This step is necessary to convert the input data (which
is signed mag.) to 2's complement (which is how this vhdl
model keeps the sum).

data2d_temp(3) :« all0(0);
data2d_temp(2 downto 0) := data3d(2 downto 0);

If the sign bit is high, we subtract the magnitude from
the current sum.

datasum_temp := sub2c(dataacc, data2d_temp);
datasum <b datasum_temp(9 downto 0);

else

datasum_temp :« add2c(dataacc, data3d);
datasum <b datasum_temp(9 downto 0);

end if;

end if;

end process;

end behavior;

Cell: walsh

Description: walsh generator
Author: Kevin Stone

Date: 3/24/94

NOTE: FOR CORRECT SYNTHESIS MUST SYNTHESIZE WALSH BEFORE WALSH.NAND.

Counter was hand designed -> do not synthesize
6/20/94: Changed counter from asynch reset to synch reset

entity walsh is
port (

reset_l :
pn_allones_l
stall_l :

walshnum :

pnsynch :
clk64 :

in vlbit;

in vlbit;

in vlbit;

in vlbit_vector(5 downto 0);
in vlbit;
in vlbit;



walshout : out vlbit;

walshcount : out vlbit_vector(5 downto 0)

);
end walsh;

architecture behavior of walsh is

component count64sync
port (

elk : in vlbit;
rst : in vlbit;
cnt : in vlbit;
countout : out vlbit_vector (5 downto 0)

);
end component;

component walsh_nand
port (
walshnum : in vlbit_vector(5 downto 0);
walcnt_int : in vlbit_vector(5 downto 0);
walcnt_dl : in vlbit_vector(5 downto 0);
nandout : out vlbit

);
end component;

signal walcnt_int : vlbit_vector(5 downto 0);
signal walcnt_dl_temp : vlbit_vector(5 downto 0);
signal walcnt_dl : vlbit_vector(5 downto 0);
signal tempnand6 : vlbit;
signal walshout_int : vlbit;
signal walshout_temp : vlbit;
signal walcnt_rst : vlbit;
signal walsh_rst : vlbit;
signal stall_l_b : vlbit;
signal reset_l_b : vlbit;
signal pn_allones_l_b : vlbit;

begin

walcounter : count64sync — synchronous reset, no load
port map(

elk «> clk64,

rst b> walcnt_rst,
cnt b> stall_l,
countout b> walcnt_int

);

walnand : walsh_nand

port map(
walshnum b> walshnum,

walcnt_int b> walcnt_int,
walcnt_dl b> walcnt_dl,
nandout »> tempnand6

);

walcnt_rst <s reset_l_b or pn_allones_l_b or pnsynch;
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pn_allones_l_b <» not(pn_allones_l);
reset_l_b <« not(reset_l);
stall_l_b <b not(stall_l);
walshout <b walshout_int;

walshcount <• walcnt_int;

process(reset_l, pn_allones_l, stall_l, walcnt_int, walshout_int,
tempnand6, walcnt_dl, walsh_rst)

variable alio : vlbit_vector(5 downto 0);
begin

allO :- "000000";

if ((walcnt_int b allO) or reset_lB'0' or pn_allones_lB'0') then
walsh_rst<B'o';

else

walsh_rst<a»l»;

end if;

if walsh_rsts'0' then
walshout_temp <* '0';

elsif stall_l='0' then
walshout_temp <b walshout_int;

elsif (tempnand6 « '1') then — flip bit
walshout_temp <= not (walshout_int);

else

walshout_temp <= walshout_int;
end if;

if (reset_ls'0' or pn_allones_lB'0') then
walcnt_dl_temp <« allO;

elsif stall_l='0' then

walcnt_dl_temp <b walcnt_dl;
else

walcnt_dl_temp <b not(walcnt_int);
end if;

end process;

latch_procl : process

begin
wait until prising(clk64);
walshout_int <= walshout_temp;

end process latch_procl;

latch_proc2 : process

begin
wait until prising(clk64);
walcnt_dl <b walcnt_dl_temp;

end process latch_proc2;

end behavior;

— Cell: walsh_nand

Description:
— Author: Kevin Stone

— Date: 6/12/94
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entity walsh_nand is
port (

walshnum :

walcnt_int :
walcnt_dl :
nandout :

);
end walsh_nand;

in vlbit_vector(5 downto 0);
in vlbit_vector(5 downto 0);
in vlbit_vector(5 downto 0);

out vlbit

architecture behavior of walsh_nand is

signal
signal
signal
signal
signal
signal

begin

tempnandO
tempnandl
tempnand2
tempnand3

tempnand4
tempnandS

vlbit;

vlbit;
vlbit;

vlbit;

vlbit;

vlbit;

tempnandO

tempnandl
tempnand2
tempnand3

tempnand4
tempnandS

nandout

<= not (walshnum(O)

<& not (walshnum(l)

<& not (walshnum(2)

<s not (walshnum(3)

<= not (walshnum(4)

<& not (walshnum(5)

<b not

and walcnt_int(0)
and walcnt_int(l)
and walcnt_int(2)
and walcnt_int(3)
and walcnt_int(4)
and walcnt_int(5)

(tempnandO and tempnandl and tempnand2 and
tempnand3 and tempnand4 and tempnand5);

end behavior;

Cell: count64sync

Description: sync rst, no load
— Author: Kevin Stone

-- Date: 6/20/94

—library synth;
—use synth.stdsynth.all;

entity count64sync is
port (

elk : in vlbit;

rst : in vlbit;

cnt : in vlbit;

countout :

);
end count64sync;

out vlbit_vector (5 downto 0)

and walcnt_dl(0))

and walcnt_dl(D)
and walcnt_dl(2))
and walcnt_dl(3))
and walcnt_dl(4))

and walcnt_dl(5));
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architecture behavior of count64sync is
signal countout_int : vlbit_vector(5 downto 0);
signal count_temp : vlbit_vector(5 downto 0);
constant alio : vlbit_vector(5 downto 0)

:b "000000";

constant one : vlbit_vector(5 downto 0)
:b "000001";

begin

count_proc : process(cnt, count_temp, countout_int, rst)
variable count_temp2 : vlbit_vector(6 downto 0);

begin
count_temp2 :« addum(countout_int, one);

if rsts'i' then

count_temp <• allO;
elsif cnto'l' then

count_temp <s count_temp2(5 downto 0);
else

count_temp <= countout_int;
/ end if;

end process count_proc;

latch_procl : process

begin
wait until prising(elk);
countout_int <« count_temp after 100 ps;

end process latch_procl;

countout <» countout_int;

end behavior;

Cell: lock

Description:
Author: Kevin Stone

Date: 7/6/94

Inputs

CLK64

RESET_L: chip reset
T_RBSET: Indicates radio fell out of lock
VALID_DATA: Occurs approx every 1024 cycles
CI

C2

C3

C4

outputs

LOCK

LOCKRESET: High for one cycle, right after radio falls
out of lock
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entity lock is
port (

clk64 : in vlbit

reset_l : in vlbit

t_reset : in vlbit

valid_data : in vlbit

cl_l : in vlbit

c2_l : in vlbit

c3_l : in vlbit

c4_l : in vlbit

lock : out vlbit

lockreset: out vlbit

statebits : out vlbit.

);
end lock;

_vector(l downto 0) -- take out state for

- debugging purposes

architecture behavior of lock is

signal nextstate : vlbit_vector(1 downto 0);
signal presentstate : vlbit_vector(1 downto 0);
signal nextlock : vlbit;

begin

statebits <= presentstate;

process(clk64, presentstate, reset_l, valid_data, cl_l, c2_l, c3_l,
c4_l, t—reset)

variable statetemp : integer;
begin

statetemp := vld2int(presentstate);
case statetemp is

when 0 •=> — no lock

lockreset <«= '0';

nextstate(O) <b (valid_data and not(cl_l and c2_l and c3_l and
c4_l))

c4_l))

nextstate(l) <= '0';

nextlock <b (valid_data and not(cl_l and c2_l and c3_l and

when 1 «> — got lock
lockreset <« '0';
nextstate(0) <= not(valid_data and t_reset);
nextstate(l) <« valid_data and t_reset;
nextlock <= not(t_reset and valid_data);

when 2 b> — lost lock

lockreset <« '1';

nextstate <b "00";

nextlock <• '0';

when others b> — invalid state

lockreset <= '0';

nextstate <« "00";

nextlock <b '0';

end case;

end process;



latchlProc : process
begin

wait until prising(clk64) or reset_l='0';
if reset.ls'O' then

presentstate <b "00";
else

presentstate <b nextstate;

end if;

end process latchlProc;

latch2Proc : process

begin
wait until prising(clk64) or reset_l»'0';
if reset_l«'0' then

lock <b '0';

else

lock <b nextlock;

end if;

end process latch2Proc;

end behavior;

— Cell: pn
Description: pn generator

— Author: Kevin Stone

— Date: 3/23/94

—library synth;
--use synth.stdsynth.all;

entity pn is
port (

reset_l : in vlbit;

pnsynch : in vlbit;

clk64 : in vlbit;

stall_l : in vlbit;

pn_ld : in vlbit;

seed : in vlbit_vector(15 downto 0);

pncode : out vlbit_vector(15 downto 0);

pn_out : out vlbit;

pn_outld : out vlbit;

pn_out2d : out vlbit;

pn_out3d : out vlbit;

pn_xorout : out vlbit;

pn_allones_l :

);
end pn;

out vlbit

architecture behavior of pn is

component muxl5_3tol
port (

A : in vlbit_yector(15 downto 0);

91



B : in vlbit_yector(15 downto 0);
C : in vlbit_vector(15 downto 0);
sel : in vlbit_vector(1 downto 0);
Q : out vlbit_vector(15 downto 0)

);
end component;

component delayl
port (

input : in vlbit;
reset_l : in vlbit;
elk : in vlbit;
output : out vlbit

);
end component;

signal pncode_int : vlbit_vector(15 downto 0);
signal load_l_temp, load_l_dl : vlbit;
signal pn_xorout_int : vlbit;
constant tempi : vlbit_vector(15 downto 0)

:b "1111111111111110";

signal pnload_shift : vlbit_vector(15 downto 0);
signal pnload_temp : vlbit_vector(15 downto 0);
signal muxl5sel : vlbit_vector(l downto 0);
signal pn_reset_l : vlbit;
signal tmpl : vlbit;
signal pn_outld_int : vlbit;
signal pn_out2d_int : vlbit;

begin

mux15 : muxl5_3tol

port map(
A => pncode_int,
B »> seed,

C &> pnload_shift,
sel s> muxl5sel,

Q s> pnload_temp

);

dlyl : delayl
port map(

input b> pncode_int(0),
reset_l b> tmpl,

elk b> clk64,

output b> pn_outld_int

);

dly2 : delayl
port map(

input b> pn_outld_int,
reset_l => tmpl,
elk b> clk64,

output b> pn_out2d_int

);

dly3 : delayl
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port map(
input b> pn_out2d_int,
reset_l «> tmpl,
elk b> elk64,
output •> pn_out3d

);

-- pn_reset_l <« reset_l and not(pnsynch);
tmpl <b '1';

pn_outld <b pn_outld_int;
pn_out2d <b pn__out2d_int;
pn_reset_l <b reset_l;

pn_xorout_int <• pncode_int(15) xor pncode_int(13) xor
pncode_int(4) xor pncode_int(0);

pn_xorout <b pn_xorout_int;
pneode <« pncode_int;
pn_out <s pncode_int(0);
pn_allones_l <b load_l_dl;
pnload_shift <b pn_xorout_int & pneode_int(15 downto 1);

load_proc : process(pncode_int, reset_l, pn_xorout_int, seed,
load_l_dl,

stall_l, pn_ld)
begin

— 4/2/94: different from original sdl/bds file. Changed polarity of
load

-- Note: checking for all ones case one cycle ahead
if stall_lB'0' then

load_l_temp <* load_l_dl;
elsif (pncode_int b tempi) then

load_l_temp <b '0';
else

load_l__temp <s *i»;

end if;

— load_l_dl goes when pncode_int is all ones or when resetting
if stall.la'O' then

muxl5sel <= "00";

elsif load_l_dl='0' or pn_ld='l' then
muxl5sel <n "01";

else

muxl5sel <b "10";

end if;
end process load_proc;

latch_procl : process

begin
wait until prising(clk64);
pncode_int <b pnload_temp;

end process latch_procl;

latch_proc2 : process
begin

wait until prising(clk64) or pn_reset_ls»0';
if pn_reset_lB»0' then

load_l_dl <b '0';



else

load_l_dl <b load_l_temp;
end if;

end process lateh_proc2;

end behavior;

— Cell: muxl5_3tol
— Description: 15 bit wide 3 to 1 mux
-- Author: Kevin Stone

— Date: 6/13/94

—library synth;
—use synth.stdsynth.all;

entity muxl5_3tol is
port (

A :

B :

C :

sel :

Q :

);
end muxl5_3tol;

in vlbit_vector(15 downto 0)
in vlbit_vector(15 downto 0)
in vlbit_vector(15 downto 0)
in vlbit_vector(1 downto 0);
out vlbit_vector(15 downto 0)

architecture behavior of muxl5_3tol is
begin

muxProc : process(sel, A, B, C)
variable muxsel_temp : integer;

begin
muxsel_temp := vld2int(sel);
case muxsel_temp is

when 0 s> — select seed

Q <« A;
when 1 b> — select pnsc_a

Q <= B;
when 2 s> -- select pnsc_b

Q <= C;

when others «> — should never get here
Q <b "XXXXXXXXXXXXXXXX";

end case;

end process muxProc;

end behavior;
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Cell: updctrl

Description:
Author: Kevin Stone

Date: 7/5/94

Note: upd63, updl087, and corr_rst need to be level
converted to 1.5V, then latched to produce upd64, updl088, corr_rstl_5
7/6/94: changed pn_stall_l to pnstall



-- 7/17/94: using updl087 as valid_data signal. This means that
-- the outputs from the correlators must be before the fdLnal
-- latch instead of after.

— 8/1/94: add flop create a delay reset_l signal. This is used to
— make sure the proper thing is done when coming out of reset

library synth;
use synth.stdsynth.all;

entity updctrl is
port (

clk64 :

reset_l :

cl_l

c2_l

c3_l
c4_l :

valid_data

loek :

pnstall_l :
pnsynch :

when

upd63 :
updl087 :
corr_rst :

adder'a

dr_rst :

statebits :

in vlbit;

in vlbit;
in vlbit;

in vlbit

in vlbit

in vlbitj

in vlbit;

in vlbit;

out vlbit;
out vlbit; — used to keep counter/pn/walsh in synch

— coming out of reset
out vlbit; — counted for 64 valid Tchips
out vlbit; — tells backend of corr's to latch data

out vlbit; -- clear out contents of carry-save

— "dump-into" registers
out vlbit; — clear out contents of dr_corr regs.

out vlbit_vector(2 downto 0) — take out state for
— debugging purposes

);
end updctrl;

architecture behavior of updctrl is

component cnt2048Ids
port (

countin : in vlbit_vector(10 downto 0);
elk : in vlbit;

rst : in vlbit;

Id : in vlbit;

ent : in vlbit;

countout :

);
end component;

out vlbit_vector(10 downto 0)

component delayl
port (

input : in vlbit;

reset_l : in vlbit;

elk : in vlbit;

output :

);
end component;

out vlbit
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signal presentstate : vlbit_vector (2 downto 0);
signal nextstate : vlbit_vector (2 downto 0);
signal count : vlbit.vector (10 downto 0);
signal tmp64 : vlbit_vector (10 downto 0); — used as constant input to

cnt2048

signal valid_data : vlbit; — tells control that output from correla
tors is valid

signal rstflag : vlbit; — indicates that we are in state«000\b
signal flag61 : vlbit; — based only on value of count
signal flag62 : vlbit; — latched flag61
signal ctrl62 : vlbit; — control signal generated by state machine

— which can also set upd63
signal preupd63 : vlbit; — input to flop where upd63 is the output
signal flagl085 : vlbit; — based only on value of count
signal flagl086 : vlbit; — latched flagl085
signal ctrll086 : vlbit; — control signal generated by state machine

— which can also set updl087
signal preupdl087 : vlbit; — input to flop where updl087 is the output
signal upd63_int : vlbit;
signal updl087_int : vlbit;
signal corr_rst_int : vlbit;
signal ctrl_crst : vlbit; — control signal generated by state machine

— which can also set corr_rst

signal ctrl_drst : vlbit; — control signal generated by state machine
-- which can also set dr_rst

signal precorr_rst : vlbit; — input to flop where corr_rst is the out
put

signal predr_rst : vlbit; -- input to flop where dr_rst is the output
signal pnstall_l_int : vlbit;
signal prepnstall_l : vlbit; — input to flop where pnstall is the out

put

signal rst_count : vlbit;
signal cnt_count : vlbit;
signal ld_count : vlbit;
signal tmpl : vlbit;
signal tmpO : vlbit;
signal rstflag_dl : vlbit;

begin

tmpO <b '0';
tmpl <= '1';

tmp64 <= "00001000000";
preupd63 <b flag62 or ctrl62;
preupdl087 <b flagl086 or ctrll086;
precorr_rst <b flagl086 or ctrl_crst;
upd63 <c upd63_int;
updl087 <b updl087_int;
valid_data <b updl087_int;
corr_rst <* corr_rst_int;
pnstall_l <b pnstall_l_int;
statebits <= presentstate;
cnt_count <b pnstall_l_int; — keep count in sync with data/pn/walsh
-- pnsynch <= not(presentstate(2) or presentstate(1) or present-
state (0)) ;

rstflag <«= presentstate(2) or presentstate (1) or presentstate(0) ;



cnt2048 : cnt20481ds

port map(
countin «> tmp64,
elk b> clk64,

rst b> rst_count,

Id b> tmpO,
cnt b> cnt_count,

countout b> count

);

— pipeline control signals to minimize the number of levels of
— logic between flops. Want only 3 levels of logic, 4 at most
dlyl : delayl

port map(

input b> flag61,
reset_l => tmpl,
elk b> clk64,

output => flag62

);

dly2 : delayl
port map(

input b> preupd63,
reset_l => tmpl,
elk b> clk64,

output b> upd63__int

);

dly3 : delayl

port map(
input b> flagl085,
reset_l b> tmpl,
elk b> clk64,

output s> flagl086

);

dly4 : delayl
port map(

input => preupdl087,
reset_l &> tmpl,

elk b> clk64,

output b> updl087_int

);

dly5 : delayl
port map(

input b> precorr_rst,
reset_l => tmpl,
elk b> clk64,

output b> corr_rst_int

);

dly6 : delayl
port map(

input s> ctrl_drst,
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reset_l b> tmpl,
elk -> clk64,
output b> dr_rst

);

dly7 : delayl
port map(

input b> prepnstall_l,
reset_l b> tmpl,

elk -> clk64,
output b> pnstall_l_int

);

dly8 : delayl
port map(

input b> rstflag,
reset_l »> tmpl,
elk b> elk64,

output b> rstflag_dl

);

flag_proc : process(count)
variable tmp61 : vlbit_vector(5 downto 0);
variable tmpl085 : vlbit_vector(10 downto 0);

begin
tmp61 :b "111101";
tmpl085 :« "10000111101";
if (count(5 downto 0) «= tmp61(5 downto 0)) then

flag61 <« 'l';

else

flag61 <= '0';

end if;

if (count b tmpl085) then
flagl085 <« 'l';

else

flagl085 <« '0';

end if;

end process flag_proc;

stmachProc : process(lock, cl_l, c2_l, c3_l, c4_l, presentstate,
updl087_int, valid_data, rstflag.dl)

variable statetemp : integer;
begin

statetemp := vld2int(presentstate);
case statetemp is

— note: wierd things happen in reset because upd63, updl087,
corr_rst are flopped values'. Thus, after reset_l
goes high, updl087 will be high for one extra cycle.
This means the controller will be in state 1 and see

updl087 is high and thus want to reset the counter.
This will screw up the counter's synch with pn/walsh.
Therefore, the kluge is to generate a signal which
will keep counter/pn/walsh in synch when coming out
of reset,

when 0 s> -- reset state



99

nextstate <« "001";

prepnstall_l <• '1';

ctrl62 <b 'l'; — reset correlators

etrll086 <b 'l'; — clear out backend

ctrl_cret <b »i»;
ctrl_drst <b 'i'|
rst_count <b 'l'; — reset count

ld_count <b '0';

when 1 •> — trying to acquire lock
prepnstall_l <• '1';
ctrl62 <b '0';

etrll086 <• '0';

ctrl_crst <b '0';

ctrl_drst <b '0';
ld_count <b '0';

if updl087_intB'i' and rstflag_dlB'i' then
rst_count <b '1';

else

rst_count <= '0'; -- used to keep pn, walsh, count in sync
end if;

— use rstflag_dl make that the correlators'
-- comparators' outputs are not used right
— after coming out of lock
if valid_data«'l' and rstflag_dlB'l' then

if c1_1b»0' then
nextstate <= "110"; — stall 0 cycles

elsif c2_l«'0' then
nextstate <b "101"; — stall 1 cycle

elsif c3_l»'0' then
nextstate <= "100"; — stall 2 cycles

elsif c4_1b'0' then
nextstate <= "011"; — stall 3 cycles

else

nextstate <= "010"; — stall 4 cycles
end if;

else — don't do anything
nextstate <» "001";

end if;

when 2 => — stall 4 cycles
prepnstall_l <b '0';

nextstate <b "011";

ctrl62 <» '0';

ctrll086 <• '0';

ctrl_crst <b '0';
ctrl_drst <b '0';

rst_count <b *0';

ld_count <b '0';

when 3 •> — stall 3 cycles
prepnstall_l <« '0';
nextstate <b "100";

ctrl62 <b '0';

ctrll086 <b '0';

ctrl_crst <b '0';
ctrl_drst <b '0';



rst_count <b '0';
ld_count <b '0';

when 4 -> -- stall 2 cycles
prepnstall_l <b '0';
nextstate <- "101";

ctrl62 <b '0';
ctrll086 <b '0';

ctrl_crst <b '0';
ctrl_drst <b '0';

rst_count <b *0';

ld_count <b '0';
when 5 s> — stall 1 cycle

prepnstall_l <• '0';
nextstate <• "110";

ctrl62 <b '0';

ctrll086 <b '0';

ctrl_crst <b '0';

ctrl_drst <b '0';

rst_count <b '0';
ld_count <b '0';

when 6 »>

if lockB'i' then

nextstate <« "111";

else

nextstate <b "001";

end if;

prepnstall_l <= '1';
ctrl62 <b *i'; — clear out correlator

ctrll086 <b '0';
ctrl_crst <b 'l'; — clear out correlator
ctrl__drst <b '0';

rst_count <b '0';

ld_count <b '0';
when 7 b> — got lock

prepnstall_l <« '1';
ctrl62 <b '0';

ctrll086 <s '0';

ctrl_crst <b '0';
ctrl_drst <b '0';
ld__count <b '0';

if updl087_int b'1' then
rst_count <b 'l';

else

rst_count <b '0';

end if;

if lockB'i' then

nextstate <b "ill";

else

nextstate <« "000";

end if;
when others b> — should never get here

prepnstall_l <• '1';
nextstate <b "000";
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ctrl62 <b '0';

ctrll086 <b '0';

ctrl_crst <b '0';

ctrl_drst <b '0';
rst_count <b '0';

ld_count <b '0' ;

end case;

end process stmachProc;

latchlProc : process
begin

wait until prising(clk64) or reset_l='0';
if reset_l«'0' then

presentstate <* "000";
else

presentstate <* nextstate;

end if;

end process latchlProc;

end behavior;

— Cell: cnt20481ds

— Description: 11 bit counter with synchronous load and reset
— Author: Kevin Stone

— Date: 7/4/94
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--library synth;
—use synth.stdsynth.all;

entity cnt2048Ids is
port (

countin : in vlbit_vector (10 downto 0);
elk : in vlbit;

rst : in vlbit;

Id : in vlbit;

cnt : in vlbit;

countout : out vlbit_vector (10 downto 0)

);
end ont20481ds;

architecture behavior of cnt20481ds is

signal countout_int : vlbit_vector(10 downto 0);
signal count_temp : vlbit_vector(10 downto 0);
constant allO : vlbit_vector(10 downto 0)

:b "00000000000";

constant one : vlbit_vector(10 downto 0)
:b "00000000001";

begin

count_proc : process(rst, Id, cnt, countin, count_temp, countout_int)
variable count_temp2 : vlbit_vector(11 downto 0);

begin



count_temp2 :• addum(countout_int, one);

if rst-'l' then

count_temp <« allO;
elsif ld-'l' then

count_temp <« countin;
elsif cnt«'l' then

count_temp <• count_temp2(10 downto 0);
else

count_temp <b countout_int;
end if;

end process count_proc;

latch_procl : process
begin

wait until prising(elk);
countout_int <b count_temp after 100 ps;

end process latch_procl;

countout <& countout_int;

end behavior;

-- Cell: regctrl
— Description: Registers for thres #1, #2, #3 and walsh number
-- Author: Kevin Stone

— Date: 3/26/94

9/13/94: Added pnclk

library synth;
use synth.stdsynth.all;

entity regctrl is

port (
reset 1 : in vlbit;

clk64 : in vlbit;

pn_allonesi..1 : in vlbit;

cs_l : in vlbit;

wr_l j in vlbit;

addr . in vlbit_vector(1 downto 0);

clka out vlbit;

clkb out vlbit;

elkc out vlbit;

elkd out vlbit;

elkback : out vlbit — low when pn shiftreg is allones

) s

end regctirl;

architecture behavior of regctrl is
begin

clka <b not(cs_l or wr_l) and not(addr(1)) and not(addr(0));
clkb <b not(cs_l or wr_l) and not(addr(1)) and (addr(0));
elkc <b not(cs_l or wr_l) and (addr(D) and not (addr(0));
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clkd <b not(cs_l or wr_l) and (addr(l)) and (addr(O));
clkback <« (not(reset_l) and clk64) or (reset_l and pn_allones_l);

end behavior;

Cell: two2smx

Description: convert two's complement numbers (-8 to 7) to
sign magnitude (-7 to 7). Sign of INB and INC are inverted.
This is done to interface with the transmitter chip.
Author: Kevin Stone

Date: 10/18/94

entity two2smx is
port (

ina : in vlbit_vector(3 downto 0)

inb : in vlbit_vector(3 downto 0)

inc : in vlbit_vector(3 downto 0)

ind : in vlbit_vector(3 downto 0)

outa : out vlbit_vector(3 downto 0)

outb : out vlbit_vector(3 downto 0)

outc : out vlbit_vector(3 downto 0)

outd :

);
end two2smx;

out vlbit_vector(3 downto 0)

architecture behavior of two2smx is

component buffl04_4
port (

input :
output :

);
end component;

in vlbit_vector (3 downto 0);
out vlbit_vector (3 downto 0)

signal outa_temp
signal outb_temp
signal outc_temp
signal outd_temp

vlbit_vector(3 downto 0);

vlbit_vector(3 downto 0);
vlbit_vector(3 downto 0);
vlbit_vector(3 downto 0);

begin
bufa : buffl04_4

port map(
input b> outa_temp,
output b> outa

);

bufb : buffl04_4

port map(
input b> outb_temp,
output s> outb

);
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bufc : buffl04_4
port map(

input b> outc_temp,
output b> outc

);

bufd : buffl04_4
port map(

input b> outd_temp,
output b> outd

);

process(ina)
variable ina_temp : integer;

begin
ina_temp :« vld2int(ina);
case ina_temp is

when 0 b>

outa_temp <* "0000";
when 1 b>

outa_temp <b "0001";

when 2 *>

outa_temp <b "0010";
when 3 b>

outa_temp <b "0011";
when 4 b>

outa_temp <b "0100";

when 5 «>

outa_temp <b "0101";
when 6 b>

outa_temp <s "0110";
when 7 b>

outa_temp <b "0111";

when 8 •>

outa_temp <b "1111";

when 9 b>

outa_temp <b "1111";

when 10 =>

outa_temp <b "1110";

when 11 b>

outa_temp <b "1101";

when 12 o

outa_temp <b "1100";

when 13 «>

outa.temp <b "1011";
when 14 &>

outa_temp <b "1010";

when 15 =>

outa.temp <b "1001";
when others b>

outa_temp <b "XXXX";

end case;

end process;

process(inb)
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variable inb_temp : integer;
begin

inb.temp :« vld2int(inb);
case inb_temp is

when 0 b>

outb_temp <« "1000";
when 1 b>

outb_temp <b "1001";
when 2 «>

outb_temp <b "1010";
when 3 «>

outb_temp <b "1011";
when 4 •>

outb_temp <b "1100";
when 5 b>

outb_temp <a "1101";
when 6 *>

outb_temp <b "1110";
when 7 b>

outb_temp <a "llll";
when 8 «>

outb_temp <b "0111";
when 9 «>

outb_temp <s "0111";
when 10 =>

outb_temp <b "0110";
when 11 s>

outb_temp <e "0101";
when 12 »>

outb_temp <= "0100";
when 13 &>

outb_temp <= "0011";
when 14 b>

outb_temp <b "0010";
when 15 b>

outb__temp <b "0001";
when others «>

outb_temp <b "XXXX";
end case;

end process;

process(inc)

variable inc_temp : integer;
begin

inc_temp := vld2int(inc);
case inc_temp is

when 0 b>

outc_temp <b "1000";
when 1 b>

outc_temp <b "1001";
when 2 b>

outc_temp <b "1010";

when 3 b>

outc_temp <s "1011";

when 4 »>

outc_temp <s "1100";
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when 5 «>

outc_temp <= "1101";
when 6 «>

outc_temp <« "1110";

when 7 «>

outc_temp <« "1111";
when 8 =>

outc_temp <« "0111";

when 9 •>

outc_temp <= "0111";

when 10 •>

outc_temp <= "0110";

when 11 «>

outc_temp <« "0101";

when 12 •>

outc_temp <= "0100";

when 13 «>

outc_temp <= "0011";
when 14 •>

outc_temp <« "0010";

when 15 =>

outc_temp <= "0001";

when others =>

outc_temp <= "XXXX";

end case;

end process;

process(ind)
variable ind_temp : integer;

begin
ind_temp := vld2int(ind);
case ind_temp is

when 0 b>

outd_temp <«= "0000";

when 1 =>

outd_temp <= "0001";

when 2 =>

outd_temp <= "0010";

when 3 =>

outd_temp <= "0011";

when 4 =>

outd_temp <= "0100";

when 5 =>

outd_temp <- "0101";

when 6 =>

outd_temp <= "0110";

when 7 =>

outd_temp <= "0111";
when 8 »>

outd_temp <= "1111";
when 9 =>

outd_temp <= "1111";

when 10 =>

outd_temp <= "1110";

when 11 =>

outd_temp <= "1101";
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when 12 *>

outd_temp <b "1100";
when 13 •>

outd_temp <b "1011";
when 14 *>

outd_temp <b "1010";
when 15 •>

outd_temp <b "1001";
when others •>

outd_temp <b "XXXX";
end case;

end process;

end behavior;
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