

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

DESIGN SPACE EXPLORATION FOR

BUILDING-BLOCK PLACEMENTS

by

Henrik Esbensen and Ernest S. Kuh

Memorandum No. UCB/ERL M95/84

24 October 1995

DESIGN SPACE EXPLORATION FOR

BUILDING-BLOCK PLACEMENTS

by

Henrik Esbensen and Ernest S. Kuh

Memorandum No. UCB/ERL M95/84

24 October 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University ofCalifornia, Berkeley

94720

Abstract

A genetic algorithm for building-block placement of ICs and MCMs is presented. Layout
area, routing congestion and an Elmore-based estimate of the maximum path delay is min
imized while trying to meet a target aspect ratio. The design space is explicitly explored by
using a vector-valued, 4-dimensional cost function and searching for a set of distinct solu
tions representing the best tradeoffsof the cost dimensions. Designers can then choose from
the output solution set. In contrast to existing approaches such as simulated annealing, no
weights or bounds are needed, thereby eliminating the inherentproblems of specifying these
quantities. Furthermore, due to the explicit minimization of routing congestion, the needfor
iterations betweenplacement and global routing is reduced. Promising experimental results
are obtained for various placement problems.

1 Introduction

During placement of an integrated circuit (IC) or a multichip module (MCM) the objective is
to find a solution which is satisfactory with respect to a number of competing criteria. Most
often specific constraints has to be met for some criteria, while for others, a good tradeoff is
wanted. However, at this point in the design process, the available information as to which
values are obtainable for each criteria is based on relatively rough estimates only. Consequently,
the designers notion of the overall design objective is rarely clearly definable.

Virtually all existing placement tools minimizes a weighted sum of some criteria subject to
constraints on others. I.e., if k criteria are considered, the objective is to minimize the single-
valued cost function

j

c = 5ZWiC* su^ject to V i = j + 1,..., k : c, < C, (1)
t=i

for somej, 1 < j' < k. Here c* measures the cost of the solution with respect to the t'th criterion
and the iy,'s and C;'s are user-defined weights and bounds, respectively.

However, in practice it may be very difficult for the designer to specify a set of bounds and
weights which makes the placement tool find a satisfactory solution. If the bounds are too loose,
perhaps a better solution could have been found, while if they are too tight, a solution may not
be found at all. Furthermore, it is far from clear how to derive a suitable set of weight values
from the vaguely defined design objectives. An additional complication is that, depending on
the nature of the c, functions, the relative magnitude of the iu,c, terms may change during the
optimization process itself, in which case constant weights are unlikely to keep the cost function
properly balanced throughout the process.

Our work is motivated by the need to overcome these fundamental problems. A building-block
placement algorithm for both ICs and MCMs is presented, which supports explicit design space
exploration in the sense that 1) a set of alternative solutions rather than a single solution is
generated by a single program execution, and 2) solutions are characterized explicitly by a cost
value for each criterion instead of a single, aggregated cost value. The algorithm simultaneously
minimizes layout area, routing congestion, maximum path delay and the deviation from a target
aspect ratio. It searches for a set of alternative, good solutions where "good" is defined by the
user in a simple manner. From the output solution set, the designer chooses a specific solution
representing the preferred tradeoff. The use of both the weights and the bounds of (1) are avoided
and consequently the above mentioned problems concerning weight and bound specification are
eliminated.

The approach has three additional significant characteristics:
1) The maximum routing congestion is minimized, thereby improving the likelihood that the
placement is routable without further modification. Consequently, the traditional need for mul
tiple iterations of the placement and global routing phases is significantly reduced.
2) Despite the fact that delay is inherently path oriented, most existing timing-driven placement
approaches are net-based. While simple, these approaches usually over-constrains the problem,
thereby potentially excluding good solutions from being found [13]. The few existing path-based
approaches includes [14, 16, 18], all of which, however, relies on very simple net models (stars

2

and bounding boxes). The approach presented here obtains a more accurate path delay estimate
by approximating each net by an Elmore-optimized Steiner tree.
3) The approach is based on the genetic algorithm (GA), since it is particularly well suited
for design space exploration in the above sense [12]. We are only aware of three previous GA
approaches to building-block placement [6, 7, 11], none of which considers delay or routing
congestion or performs explicit design space exploration. In fact, for CAD problems in general,
existing work on design space exploration is very limited, although approaches for scheduling
and channel routing are presented in [8].

The remaining of this paper is organized as follows. Section 2 presents the problem definition
used. The algorithm is described in Section 3 and in Section 4 experimental results are presented.
Conclusions are given in Section 5. The work presented in this paper is based on significant
extensions and improvements of our earlier placement approach described in [10].

2 Problem Definition

The placement model described in Section 2.1 is relevant for both MCMs and for IC technologies
with at least two metal layers available for routing. Section 2.2 characterizes the solution set
searched for by the algorithm.

2.1 Placement Model

A placement problem is specified by the following input :

• A set of rectangular building-blocks of arbitrary sizes and aspect ratios with a set of pins
located anywhere within each block.

• A set of IO-pins/pads. Constraints on relative IO-pin positions are expressed using a two-
dimensional array IuXv as illustrated in Fig. 1. Each IO-pin can be assigned to an entry of
J and the physicallocation corresponding to entry (i,j) will be (idx/(u —1), jdy/[v —1)),
where dx and dy are the horizontal and vertical dimensions of the layout, respectively1.
An IO-pin assigned to / by the user is called a fixed IO-pin, while the remaining 10-pins
are flexible. Each flexible IO-pin will automatically be assigned to a vacant entry of / not
specified as illegal. Since any subset of the entries of J can be specified as illegal, pins
can be restricted to placement along the periphery of the layout, they can be uniformly
distributed over the entire layout, etc.

• A specification of all nets, including for each net 1) the capacitance of each sink pin, and
2) a designated source pin p, its driver resistance and an associated internal delay t(p) in
the block m(p) to which p belongs. t(p) is the time it takes a signal to travel through m(p)
top.2

1Relative to the building-blocks, the entire set of IO-pins can be oriented and/or reflected in eight distinct
ways, while stillsatisfying the constraints on relative positions specified by /. The given absolute position ofentry
(i,j) assumes that the IO-pin set is positioned on top of the blocks without changing neither the orientation nor
the reflection relative to the blocks.

2Ifp is an IO-pin, m(p) is p itselfand if it is also a source, t{p) = 0, i.e., input IO-pins have no internal delay.

• A specification of a set of paths V. A path connects either two registers of distinct blocks
or an IO-pin and a register, i.e., it is an alternating sequence of wires passing through
blocks and net segments. For a sink pin p, denote by s(p) the source pin of the net to
which p belongs. Each path P € V is then uniquely specified by an ordered set of sink
pins P = {po>Pi» •••iPi-i} of distinct nets, suchthat m(p() = m(s(p,+i)), i = 0,1,..., / —2.
s(po) or p/_i may be an IO-pin. Each path in an MCM will have length / = 1 assuming
that all signals are latched at the inputs of the components.

• Technology information : Number of metal layers available for routing on top of blocks and
between blocks, denoted by luock and /4paCe, respectively. The routing wire resistance f and
capacitance c per unit wire length, and the wire pitch wpuch. For simplicity, these values
are all assumed to be constants.

layout area

orientation/

reflection

<)— o
o

o <•—O o
<)—

ii—ii—o
o 4»—<»—o <•—<>
o <•—o
o <h-n
i—i—i—i—i—i—<•_<>

10 pin array

o fixed pin

• illegal entry

Figure 1: Specification of constraints on placement of IO-pins. Here I has dimensions 8 x 10 and
11 fixed IO-pins are assigned to specific entries of I while 14 entries are illegal. The remaining
entries are available for flexible IO-pins. I will be oriented and/or reflected and subsequently
scaled so that it exactly covers the layout area of the placement.

Each output solution is a specification of

• An absolute position of each block so that no pair of blocks or a block and an IO-pin are
closer than a specified minimum distance A > 0. This parameter allow physical constraints
(design rules) to be met and is not intended for routing area allocation. Since multi-layer
designs are considered, it is assumed that a significant part of the routing is performed on
top of the blocks.

• An orientation and reflection of each block. Throughout this paper, the term orientation
of a block refers to a possible 90 degree rotation, while reflection of a block refers to the
possibility of mirroring the block around a horizontal and/or a vertical axis. Changing the
orientation of a block generally alters its contour, while reflecting it does not. In an IC,
each block can be oriented and/or reflected in a total of eight distinct ways. For MCMs,
only two distinct reflections exist, since the direction of its pins is fixed, giving a total of
four distinct orientations/reflections.

• An absolute position of each IO-pin, satisfying the specified constraints on their relative
positions.

2.2 What is a "Good" Tradeoff ?

Let II be the set of all placements and 5R+ = [0,oo[. The cost of a solution is defined by the
vector-valued function c :U *-* $l\ which will be described in Section 3.2. This Section describes
how to specify what a "good" cost tradeoff is, and how to compare the cost of two solutions
without resorting to a single-valued cost measure.

The user specifies a goal vector g = (#i,02,03,04) € (2R+ U {oo})4 and a feasibility vector
f = (/i,/2,/3,/4) € (&+ U {oo})4 such that 0 < gt < /,- < 00 for i = 1,2,3,4. For the z'th
criterion, gi is the maximum value wanted, if obtainable, while /,• specifies a limit beyond which
the solution is unconditionally of no interest. For example, if the i'th criterion is layout area,
gi = 20 and fi = 100 states that an area of 20 or less is wanted if it can be obtained, while an
area larger than 100 is unacceptable. Areas between 20 and 100 are acceptable, although not as
good as hoped for.

The vectors g and / defines a set of satisfactory solutions S — {x £ II | Vi : x, < #,} and a
set of acceptable solutions A = {x £ II | Vi : ar,- < /,}, where x, is the cost of x wrt. the i'th
dimension, i.e., c(x) = (ii,X2,xz,X4). S C .4 C II, i.e., a satisfactory solution is also acceptable.
The values specified by g and / are merely used to guide the search process and in contrast
to traditional, user-specified bounds, need not be obtainable. Therefore, they are significantly
easier to specify than traditional bounds.

infeasible solutions

A: acceptable solutions

S: satisfactory
solutions

(0,0) criterion 1 Si

Figure 2: The sets of satisfactory and acceptable solutions, illustrated in two dimensions.

In order for the algorithm to compare solutions, a notion of relative solution quality is needed,
which takes the goal and feasibility vectors intoaccount. Let x, y G II. The relation x dominates 3/,
written x <d y, is defined by

x<dV ^ (Vi:xi<yi)A{3i:xi<yi) (2)

Using <d, the relation x is preferable to y, written x -<p y, is then defined as follows, depending
on how c(x) compares to g : If x satisfy all goals, i.e., x € 5, then

x^pV «* (x<dy)V(y &S) (3)

If x satisfies none of the goals, i.e., Vi : x; > gi then

xXpy <* (x<dy)v[(x6A)A(y<tA)] (4)

Finally, x may satisfy somebut not all goals. Assuming a convenient ordering of the optimization
criteria, 3 k € {2,3,4} : (Vi < k : x{ < gt) A (Vi > fc : x, > gt). Then

x<py <* [(Vi > &: x, < y.) A(3 i > k : x,- < y,)] (5)
V

[(x € A) A (y i A)] (6)
V

[(Vz>fc:x.= y,)A (7)

{((Vi <k:xi< y.) A (3 i < k : x,- < y,)) V (3 i < fc : y, > 0,)}] (8)

Due to (3), (4) and (6) an acceptable solution is always preferable to an unacceptable solution.
The right hand side of (5) states that x dominates y wrt. the dimensions for which x does not
satisfy the goals. (7) and (8) states that in the special case when x equals y wrt. the non-satisfied
dimensions, then x is still preferable to y if it either dominates y wrt. the satisfactory dimensions
or if y does not satisfy a goal satisfied by x. Notice from (5) that when two solutions satisfy the
same subset of goals, they are considered equal with respect to these goals, regardless of their
specific values in these dimensions. Hence, when goals are satisfied, they are "factored out",
focusing the search on the remaining, unsatisfactory dimensions.

The algorithm outputs a set of distinct solutions $o which are the best found in the sense
defined by -<p. As a special case, if g = (0,0,0,0) the algorithm searches for (a sample of)
the Pareto-optimal set, i.e., the set of solutions, in which no solution can be improved in any
dimension without being deteriorated in another. Since V x,y £ <1>Q : -i(x -<p y) the output
solutions represents distinct design alternatives.

The above definition of -<p is an extension of the definition introduced in [12], adding the
feasibility vector / and the concept of acceptable solutions. The extension can be shown to
preserve the transitivity of the ordering, as intuitively needed. The purpose of introducing /
is to promote restriction of the search to the region of practical interest, that is, to prevent
the algorithm from wasting time exploring solutions which are non-dominated but in practice
infeasible, e.g., layouts yielding very good delays but having unacceptable areas.

3 Description of the Algorithm

The concept of genetic algorithms is based on natural evolution. In nature, the individuals
constituting a population adapt to the environment in which they live. The fittest individuals
have the highest probability of survival and tend to increase in numbers, while the less fit
individuals tend to die out. This survival-of-the-fittest Darwinian principle is the basic idea
behind the GA. The algorithm maintains a population of individuals, each of which corresponds
to a specific solution to the optimization problem considered. Based on a given cost function, a
measure of fitness defines the relative quality of individuals. An evolution process is simulated,

starting from a set of random individuals. The main components of this process are crossover,
which mimics propagation, and mutation, which mimics the random changes occurring in nature.
After a number of generations, highly fit individuals will emerge corresponding to good solutions
to the optimization problem.

A phenotype is the physicalappearance of an individual, while a genotype is the corresponding
representation or genetic encoding of the individual. Crossover and mutation are performed in
terms of genotypes, while fitness/cost is defined in terms of phenotypes. For a given genotype,
the corresponding phenotype is computed by a decoder. A good overview of genetic algorithms
is given in [2, 3]. Section 3.1 outlines our specific GA, Section 3.2 presents the genotype and its
interpretation, and Sections 3.3 and 3.4 describe the selection strategy and the genetic operators,
respectively.

3.1 Overview

Fig. 3 outlines our GA. Let 0 = {<f>o,<f>\,...,<f>N-i} denote the current population. The rank
r(<j>) of <j> € $ is the number of currently existing individuals which are preferable to <j>, i.e.,
r(4) = \{y € $ 17 -<p 0}|. Furthermore, let $0 = {<t> € $ | r(<f>) = 0} C $, i.e., $0 is the current
best solutions. Initially, $ is constructed by routine generate (line 1) from random individuals
subject only to the restriction that they all have distinct cost values, i.e., V <p, ty 6 $: c(q>) ^ c(t/>).
One iteration of the repeat loop (lines 2-12) corresponds to the simulation of one generation.
Throughout the optimization process N = |<I>| is kept constant and all solutions will have distinct
cost values.

01 generate($);
02 repeat :

03 select <j>i,<f>2 £ $;
04 def02 := crossover(<£i, to, V'i, 02);
05 mutate(^i);
06 insert(<]>, «/>i);
07 if def02 •
08 mutate^);
09 insert($,02);
10 if convergedQ :
11 optimize($o);
12 until goals() or converged() or cpuLimit();
13 output $o;

Figure 3: Outline of the algorithm.

In each generation, two parent individuals 0i and 02 are selected for crossover as described
in Section 3.3 (line 3). The crossover operator, described in Section 3.4, generates offspring 0i
and possibly 02 (line 4). def02 is true if and only if 02 was also generated. The algorithm is
a steady-state GA, which means that only one crossover operation is performed per generation.
Routine mutate, described in Section 3.4, subjects the generated offspring to random changes
(lines 5, 8) and the resulting individuals are inserted in $ by routine insert (lines 6, 9). An
inserted individual 0 replaces a maximum rank solution to which it is preferable or, if 0 is not
preferable to any solution, it replaces a maximum rank solution, which is not preferable to 0.
However, 0 is not inserted if c(0) is already represented by another solution. Fig. 4 describes
the detailed replacement scheme.

ifV0£ $:c(0)^<c(0) :
$0 := {<t>e $|0 •<p<t>}\
if $0 = 0:

$0 := {0 G $ | -•(0XP 0) A r(0) >r(0)};
if $0 ^ 0 :

randomly select 0 G $,/, with r(0) maximal;

$:=($\{0}) U{0};

Figure 4: Routine iri£ert(<b,ij>). $ may be unaltered.

Routine converged (line 10) detects if no improvement has occurred in T consecutive gener
ations, that is, if $o has not changed in this period. In that case routine optimize (line 11)
attempts to optimize all rank zero individuals by simple hillclimbing. On each individual 0 G $ o
a sequenceof mutations is tried. Each mutation yielding <j>' from 0 is only executed if 0' <p 0
and if c(0') is not already represented by another solution. The algorithm terminates (line 12)
when either a) $o contains a solution satisfying all goals (detected by routine goals()), b) the
process has converged, or c) a CPU-time limit has been reached (detected by cpuLimit()). $o is
then the output set of solutions (line 13).

Routines insert and optimize assures that a solution 0' can never replace 0 if 0 -<p 0'. Hence,
the number of acceptable solutions |A| is a non-decreasing function of time and so is $oi in the
senseinferred by -<p, while |$o| is not. For single-valued cost functions, GAs keeping the current
best solution throughout the optimization are often referred to as elitist GAs. The above scheme
can therefore be seen as a generalization of the elitist GA to vector-valued domains.

3.2 Solution Representation and Decoder

The representation, or genotype, of a placement consist of five components a) through e) :

a) An inverse Polish expression of length 26-1 over the alphabet {0,1,... ,6—1,+,*}, where
b is the number of blocks. The operands 0,1,..., 6 —1 denotes block identities and +, *
are operators. The expression uniquely specifies a slicing-tree for the placement, as first
introduced in [22], with + and * denoting a horizontal and a vertical slice, respectively.

b) A bitstring of length 26 for ICs and 6 for MCMs, representing the reflection of each block.
For ICs, the reflection of the i'th block is specified by bits 2t and 2a + 1 and for MCMs, it
is specified by bit i.

c) An integer in the interval [0;7] selecting one of the eight possible orientations/reflections
of the IO-pin array J relative to the placed blocks, cf. Fig. 1.

d) A string of nio integers, where njo is the number of nets having at least one flexible IO-pin.
The string is a permutation of the numbers 0,1,... ,njo —1 and specifies an ordering of
these nets to be used when placing flexible IO-pins.

e) A string of nmum integers, where nmum is the number of multi-pin nets, i.e., nets having at
least 3 pins. If the i'th multi-pin net has $,• sinks, the i'th integer A:, satisfies 0 < fc, < st[—1
and specifies ki as being the critical sink of net i, to be used when routing the net.

Let ft denote the set of all such representations and let d: ft »-> n be the decoder. The search
space ft considered by the algorithm is by definition the image ofd, i.e., ft = d(ft) C n. Given a
representation the corresponding placement (phenotype) and its cost c = (carca, cratio, Qe/oy, cco„5)
is computed by the decoder in eight steps as follows :

1. From the slicing-tree specified by the Polish expression, the orientation of each block is
determined such that layout area is minimized. The orientations are computed using
an exact algorithm by Stockmeyer [19] which guarantees a minimum area layout for the
given slicing-structure. The reflection of each block is as specified by component b) of the
representation.

2. Absolute coordinates are determined for all blocks by a top-down traversal of the slicing-
tree. At each operator node, if relative movement of the two subtrees along the slicing axis
is possible, the centerpoints of the subtrees are aligned (perpendicular to the slicing axis).

3. The layout is compacted, first vertically and then horizontally, using a simplified version
of the one-dimensional channel compaction algorithm presented in [23], which adapts a
scan-line approach. Fig. 5 illustrates the first three steps of decoding.

4. Given the orientation/reflection of the 10 array / specified by component c) each flexible
IO-pin is assigned to an unused entry of /. The nio nets having flexible IO-pins are
treated one at a time, in the order defined by component d). For each net, each flexible pin
isassigned to theunused entry of /, which isclosest to thecenter ofgravity of theremaining

pins of the net. Then the area and aspect ratio of the layout can be computed. carea is the
area of the smallest rectangle enclosing all blocks and IO-pins and cratlo = |rac4ua/ —rtarget\,
where ractuai is the actual aspect ratio of the layout (height divided by width) and rtarget is
a user-defined target aspect ratio.

4

C2
4

3

0

8
59

2
6

i

1

Figure 5: Given 10 blocks and the Polish expression 12+6*90+ + 34 + + 5* 7 8 + *,
the placement on the left is the result of step 2 of the decoding. Subtrees are recursively centered
and oriented optimally. Since the height of the layout is determined by the blocks 1,2,9,0,3,4, no
blocks are moved when attempting vertical compaction. Subsequent horizontal compaction moves
blocks 8,7,5,9 and 0 towards the left, so that blocks 2,6,7 now determines the width of the layout.
The placement to the right is the result of compaction (step 3), i.e., the final placement.

5. A global routing graph G —(V, E) is constructed which forms a two-dimensional, uniformly
spaced lattice, exactly covering the entire layout. The pitch of the lattice is determined by
the user-defined parameter gpuch. Each pin is then assigned to the closest vertex in V.

6. The topology of each net is approximated by a Steiner tree embedded in G. Each Steiner tree
is computed independently by the SERT-C algorithm ("Steiner Elmore Routing Tree with
identified Critical sink") introduced in [5]. SERT-C is a deterministic heuristic inspired
by Prims algorithm, which explicitly minimizes the Elmore delay from the source to a
designated critical sink, illustrated in Fig. 6. For nets with more than one sink, the critical
sink is specified by component e) of the representation. Since all pins were mapped to V
in the previous step all trees are automatically embedded in G.

7. The delay D(P) of each path P = {po,pi,... ,p/_i} is estimated as

iw)«i;[<feta)+'Mw))i
i=0

where ds(pi) is the Elmore delay [9] from s(p.) to p, computed in the Elmore-optimized
Steiner tree. The delay cost Cdeiay is the maximumpath delay, i.e.,Cdeiay = maxp€p{.D(P)}.

10

8. Finally, the maximum routing congestion isestimated. For each edge e G E, cap(e) denotes
the capacity of e and equals (gpitch/wpitch) x /Wodfe if (a part of) e is on top of a block, and
(9piteh/wpitch) x hpace, otherwise, usage(e) is the number of nets using e. The congestion
cost Ccong is computed as

^ =100xmaX[^{-^-^)},0]
i.e., Ccong is the maximum percentage by which an edge capacity has been exceeded.

r r~n—

\r
Figure 6: The Elmore-optimized Steiner tree computed by SERT-C for a 44~P^n net-
source and ki the selected critical sink.

s is the

The decoders use of Stockmeyers algorithm as well as the compactor may seem to introduce
an unwanted bias towards optimizing area at the cost of other criteria. However, they only
favor area for a given, fixed Polish expression, while the GA will optimize the Polish expressions
themselves. Experiments have shown that the algorithms have a positive impact on the overall
optimization process.

Although the nets are routed independently, the resulting Steiner trees represents a very
accurate estimation of the net topologies compared to the estimations of previous approaches,
cf. Section 1, which in turn indicates that Cdeiay is an accurate estimate. Furthermore, for ICs the
topology dependent Elmore delay estimate has high fidelity in the sense that a solution which
is near-optimal according to the estimate will also be near-optimal wrt. actual delay [4]. The
smaller the congestion estimate Ccong is, the fewer nets needs to be rerouted to obtain 100% global
routing completion and, by assumption, the easier is the global routing task.

Since thousands of representations willbe decoded during a typical executionof the algorithm,
the computational complexity of the decoder is crucial and has been the most important criterion
when choosing the algorithms applied. Stockmeyers algorithm and our implementation of the
compactor each requires time 0(b2), and SERT-C is quadratic in the number of pins. The
calculation of Ccong has been implemented in such a way that it is, in practice, independent of
9pitch- This is obtained by not expHcitly forming G and by using upper bounds on the possible
congestion of an edge such that only few edges need be considered.

11

3.3 Selection Strategy

The scheme for selection of parents for crossover (line 3 of Fig. 3) should reflect the principle of
survival-of-the-fittest. The parents are selected independently of each other, subject only to the
constraint that they are distinct. Assume that the current population $ = {0o*0i>- •>0N-i}
is sorted in ascending order according to rank, i.e., r(0o) < r(0i) < ... < r(0/v-i). Each par
ent 0 is selected using a scheme presented in [12, 20], which have two properties : 1) The
probability that r(0) equals r(0*), written P[r(<f>) = r(0jfc)], decreases linearly with k and
P[r(<f>) = r(0o)] = 0P[r(<j)) = r(<f>N/2)], where 1 < /? < 2 is a user-defined parameter control
ling the selection pressure. 2) All individuals having the same rank have the same probability of
being selected.

In the traditional GA, selection is based on a fitness function, which defines the relative quality
of each individual by a (non-trivial) transformation of the cost values, cf. Section 3. In contrast,
the rank-based selection scheme described eliminates the need for an explicit fitness function.

3.4 Genetic Operators

The crossover operator (line 4 of Fig. 3) as well as the mutation operator (lines 5, 8), which is
also used by routine optimize (line 11), operates on each of the five components of the genotype
(cf. Section 3.2) independently. For components b), c) and e), standard operators extensively
studied in the GA literature are applied. Crossover of bitstrings, component b), is done using
uniform crossover [3] : Scanning through the bitstrings of the given parent individuals, the value
of the i'th bit in the offspring is copied from one of its parents, chosen at random and with
equal probability. The term 'uniform' means that each value of the offspring string is determined
independently of the rest of the string. Mutation is pointwise, i.e., each bit is independently
inverted with a small user-defined probability pmut. Integers and strings of independent integers,
i.e.,components c) and e), are handled similarly [3]: Crossover isuniformand the value of the i'th
integer of the offspring is computed as the average of the corresponding parent values. Mutation
is pointwise, randomly altering each integer within its feasible range with probability pmut.

Polish expressions, component a), are handled by highly specialized operators introduced
in [7]3. For crossover, one of four distinct operators COl, C02, C03 and C04 is chosen uni
formly at random. COl, C02 and C03 generates a single offspring, while C04 generates two
offspring. When using COl, the offspring inherits the order and positions of all operands from
the same parent. Similarly when using C02, the order and positions of all operators are inher
ited from the same parent i.e., C02 preserves the slicing-structure. In addition to also preserving
the complete slicing-structure from one parent, C03 preserves a complete subtree. Finally, C04
generates two offspring by interchanging two subtrees of the parents. If this is not possible while
preserving feasibility of the generated expressions, C04 fails and one of the other operators are
applied instead. Four operations exists for mutation of a Polish expression : A pair of operands
can be interchanged, a pair of operators can be interchanged, the type of an operator can be

3While operations onPolish expressions are as in [7], it should be noted that the interpretation ofan expression,
i.e., the decoder, is significantly different. This is a consequence of the fundamental differences of the two
approaches, e.g., the distinct optimization criteria, multi-dimensional versus one-dimensional optimization, etc.

12

changed and an operator and an operand can be interchanged. Only the latter operation requires
a check for feasibility of the produced expression.

Finally, component d), a permutation of a set of integers, ishandled using the operators of [21].
The crossover operator applies a simple heuristic to preserve as many immediate predecessor-
successor relationships as possible. The only mutation operation is the interchange of two values.

For further description of the genetic operators the reader is referred to the references cited, in
which detailed descriptions can be found. A crucial property of both the crossover operator and
the mutation operator is that they preserve feasibility, i.e., only feasible genotypes, whichcan be
interpreted by the decoder, are ever generated. If feasibility werenot preservedby the operators,
either a potentially time-consuming repair algorithm would be required in the decoder, or a cost
penalty method would be needed, jeopardizing a main objective of our approach, the need to
eliminate weight factors.

4 Experimental Results

Evaluating performance by comparison to an existing approach is complicated by a number
of factors. Firstly, the placement model assumption of routing on top of the blocks, is not
compatible to earlier channel-based IC models applied by previous approaches. Secondly, there
are no building-block benchmarks which includes appropriate timing information. And thirdly,
and most importantly, it is inherently difficult to fairly compare the 4-dimensional optimiza
tion approach to existing 1-dimensional approaches. However, using the examples described in
Section 4.1, comparisons to simulated annealing and random search have been established as
described in Section 4.2. Results are presented in Sections 4.3 and 4.4.

4.1 Test Examples

The characteristics of four of the circuits used for testing are given in Table 1. xeroxT, ami33T
and ami49T are constructed from the CBL/NCSU building-block benchmarks xerox, ami33 and
ami49, respectively, by adding the required timing information. Paths are generated in a random
fashion and internal block delays, output driver resistances and input capacities are assigned
randomly assuming normal distributions and using mean values from [4, 18], representative of a
0.8 ^m CMOS process.

Circuit Type Blocks Pins 10 Nets Paths

xeroxT IC 10 698 2 203 86

ami33T IC 33 522 42 123 230

ami49T IC 49 953 22 408 116

SPERT MCM 20 1,168 36 248 574

Table 1: Main characteristics of test examples. The columns are : type, no. of blocks, total no.
of pins, no. of IO-pins, no. of nets and no. of paths.

SPERT is an MCM consisting of a vector processor (ASIC), 16 SRAMs and 3 buffer compo
nents. It is the key component of a dedicated hardware system for speech recognition based on

13

neural networks, currently being developed at the International Computer Science Institute in
Berkeley, California [1].

For all examples, the target aspect ratio is rtarget = 1.0, the number ofrouting layers on blocks
is Ibiock = 2 and between blocks lapace = 3. For the ICs all IO-pins are fixed, wpUch = 4 pm and
9piteh =40 pm. The routing wire resistance f is 0.03 fl//*m and the capacitance cis 0.352 /F//xm,
again typical for an 0.8 /mi CMOS process [4]. The minimum block spacing is A= 0, i.e., blocks
can be abutted. For the MCM, all IO-pins are flexible but restricted to positioning along two
parallel sides of the layout. We assume wpitch = 40 fim, gpitch = 400 fxm, f = 0.008 to/fim,
c = 0.06 fF/pm, and a minimum spacing of A = 5.0 mm.

4.2 Method

The GA is implemented in 9,000 lines of C and runs on a DEC station 5000/125. Performance is
compared to that of a simulated annealing algorithm, denoted SA, and a random walk, denoted
RW. Both algorithms uses the same placement representation and decoder as the GA. The RW
simply generates genotypes at random, evaluates them and stores the best (rank 0) solutions ever
found. The SA generates moves using the mutation operator of the GA and the cooling schedule
is implemented following [15,17] : The initial temperature is determined so that the probability
of accepting a move increasing cost by 2<7 is 0.8, where or is an estimate of the standard deviation
of cost obtained by initial sampling of the search space. The inner loop criterion is that 26moves
have been accepted or that 66 moves have been tried. The temperature is then decreased by the
factor 0.92 and the stop criterion is that the probability of accepting a move increasing the cost
by 10~3a is less than 10~6 or that the average cost at a fixed temperature has not decreased for
5 consecutive temperatures.

The use of the same representation and decoder by all three algorithms means that the effects
of the representation and the decoder algorithms, e.g., Stockmeyers algorithm and the compactor,
does not a priori give an advantage to any of the algorithms. Furthermore, all algorithms explore
exactly the same search space, namely ft. Consequently, any performance differences observed
can be attributed to the different search strategies themselves, rather than e.g. the decoder
algorithms.

Since RW does not rely on cost comparisons, it can use the same 4-dimensional cost function
as the GA, allowing the two approaches to be directly compared. In contrast, the traditional
SA algorithm relies on absolute quantification of change of cost when determining if a move
should be accepted, and consequently, cost has to be single-valued. Using a SA cost function
of the form (1), it is far from clear how to fairly compare the single solution output by the SA
algorithm to the set of solutions output by the GA. Therefore, comparisons of the GA to SA has
to be based on optimizing one criterion only, in which case the GA output reduces to a single
solution, comparable to the single SA solution. On the other hand, such comparisons are still
very informative since they reveal whether the GA is competitive in this special case.

A fixed parameter setting is used for each algorithm, disallowing problem-specific tuning.
The GA parameters are : Population size N = 40, selection bias /? = 2.0 and mutation rate
pmut = 0.0005. The hillclimber attempts 1,000 mutations on a given individual, and the search
is considered converged if no improvement has been observed for T = 10,000 generations.

14

4.3 One-Dimensional Optimization

Neitheraspectratio deviation nor routing congestion are suitabledimensions for one-dimensional
comparisons since optimal results can easily beobtained by distributing the blocks over a large
area. Instead, one-dimensional optimization for area and delay are performed, for which the GA
uses the goal vectors g = (0, oo, co,oo) and g = (oo, oo, 0,oo), respectively.

Fig. 7 illustrates the results. For each circuit and each of the two criteria, the three algorithms
was executed 10 times each and the result indicated by a bar. The center point of each bar
indicates the average result obtained in the 10 runs and the height of each bar is two times the
standard deviation. For eachcircuit and criterion, the average resultof RW is normalized to 1.00.

EIrw

area delay area delay area delay area delay

Figure 7: Relative performance of the GA, SA and RW for one-dimensional optimization.

The SA was executed first, and the average consumed CPU-time enforced on each of the GA
and RW as a CPU-time limit, thereby obtaining the exact same average runtime for all three
algorithms. However, the SA approach has an advantage of defining the CPU-time require
ment. Average CPU-time per run varied from 183 seconds for area optimization of SPERT to
3,903 seconds for delay optimization of ami49T. For area optimization of xeroxT and SPERT
the SA averages are slightly worse than those of RW, indicating that the SA got trapped at
local minima. However, in all other cases, both the GA and SA performs significantly better
than RW. Overall, the GA and SA performance is very similar, indicating that the efficiency of
the GA search is comparable to that of SA in the special case of one-dimensional optimization.
Fig. 8 shows the smallest layouts obtained by the GA.

15

i>8

o9

i io3

t io2

,m
4 io40

i[io23.
io6

io5

io4

io7

iSSP
<> io22

io20

iol

ieH-

C16

C25

C20

C12

C2

*153T

ioO

C7 CO

C2
C9

i<34 C5
ri

C8 C6 CI

ioll •iol3 »iol2 iol5 «4 io36 »io31 >iol6

C27 Cll

C15

C17 C6 C21 C3
C8 C5

C32 C14 C23
CI

C22
C4

C19

C30 C13
C28

C9 CIS CIO

C16

CO
C7

• io21 •io.37

C31

o30 >io38 tio26 io25 Wio32 •ioljl »io30

io7 iolO
-•—

iol 3

fl C28 | C14
C9 Cll

C37

C43 I
_OC3G2ll

C41

iol4 ioll

CIO

C46 C4(C44\32 ^
o CI
hi. C12

03*
C15 C13

C39I C25 C26
"201 :3J"4! C45 C48

io20

Sf9
C3

C22

C47
C21

ggl C19

C2

COid

C38

C20 ioJ6 _J-J H&7I Ijp r- j ^i_j io]8

io21

♦ iolO

iol7

• iol9

io9

io8

iol8

ioO

io27

*k>28

ia4

nl2
o
iDl5

i dO

136

!>
135
O

Figure 8: The minimum area results obtained by the GA in 10 runs for xeroxT (top), amiSST
(center) and ami49T (bottom). The empty space constitutes 3.1 %, 9.3% and 7.5 %of the layout
area, respectively.

16

4.4 Four-Dimensional Optimization

For4-dimensional optimization, Figures 9 and 10 compares the solution sets $o found by a sample
execution of the GA using a 1 CPU-hour time limit to those found by RW using a 10 CPU-hour
limit. For all examples, the GA uses the goal vector g = (0,0.2,0,30) and the feasibility vector
/ = (1.52?, 0.5, oo,200), where B is the sum of the areas of all blocks of the circuit in question.
The GA results are always significantly better than the RW results in all dimensions.

The solution for SPERT indicated by a circle in Fig. 11 is shown in Fig. 12 and illustrates the
effect of minimizing routing congestion. The processor block TO has 416 connected pins and is
the cause of potential congestion problems. However, by moving TO close to the center of the
layout, cf. Fig. 12, a congestion cost cconfl of only 15 % is obtained. The other solutions in $o
have higher congestion, but better areas and/or delays, cf. Fig. 11.

4.75

ami33T

1

o

o

4.7
o

%

o

4.65 '

'

4.6

o

•

4.55

X

X *x

4.5

A AK. ' i i 1— ' . 1.

1.25 1.3 1.35 1.4 1.45 1.5 1.55
Area (sq.mm)

1.6 1.65 1.7 1.75

Figure 9: Comparison of the solution sets <fr0 found by RW and the GA for amiSST. The o 's are
RW solutions and the x 's are GA solutions. Only solutions satisfying both the aspect ratio goal
and the congestion goal are shown.

17

ami49T

Area (sq.mm) Delay (ns)

Figure 10: Comparison of the solution sets $0 found by RW and the GA for ami^9T. All solutions
shown satisfy the routing congestion goal, while all GA solutions also satisfy the aspect ratio goal.

40

-.35.

|30>

825. ..•••'"': x

£20.

15*
.... •-.•;.""

56

s*"^^
52

Delay (ns)

50

SPERT

6160

6140

6220
6240

6200

6160

Area (sq.mm)

Figure 11: The solution set $0 found by the GA for SPERT. Only solutions satisfying the aspect
ratio goal are shown.

18

•^SRAMIO
• Jo

9 SRAM2
• 36

•pS
• 31 SRAM5

•kl
•55
.19 SRAM6

•«3

43

40

37

J37 SRAM 11
16

BUF2

44

34 SRAM1

SRAMO

SRAM13

SRAM3

TO

SRAM1 2IRAM

SRAM8

• 25

• 22

• 45

.17

• 2

13

16

• 23

• 15

• 20

• 8

.7

• 24

• 28

• 29

• 1

.27

• 26

RAMI a RAMlS

SRAM9

SRAM4

3UF(3UF]

Figure 12: A placement of SPERT with low routing congestion, obtained by moving the processor
TO towards the center of the layout, at the cost of increased area and delay.

5 Conclusions

A genetic algorithm for building-block placement of ICs and MCMs has been presented, which
minimizes area, path delay and routing congestion while attempting to meet a target aspect
ratio. The key feature is the explicit design space exploration performed, which results in the
generation of a solution set representing good, alternative cost tradeoffs.

The inherent problem of existing approaches wrt. specification of suitable weights and bounds
is solved by eliminatingthese quantities, and another practical problem, the traditionally required
placement-routing iterations, is significantly reduced by explicitly minimizing routing congestion.

The experimental work includes results for a real-world design and shows that the solution
sets found represent good, balanced tradeoffs. The usefulness of minimizing routing congestion
is also illustrated and it is shown that the efficiency of the search process is comparable to that
of simulated annealing in the special case of one-dimensional optimization. Furthermore, the
required runtime ranging from about 3 CPU-minutes to 1 CPU-hour is very reasonable from a
practical point of view. It is concluded that the presented algorithm is a promising approach for
building-block placement.

19

Acknowledgments

The authors would like to thank Dongsheng Wang at University of California, Berkeley, CA, for
implementing the simulated annealing algorithm, and James Beck and Brian Kingsbury at the
International Computer Science Institute, Berkeley, CA, for providing us with their data for the
SPERT design. This research was supported by SRC grant no. DC-324-012 and by the Danish
Technical Research Council.

References

[1] K. Asanovic, J. Beck, "TO Engineering Data, Revision 0.14," TechnicalReport, International
Computer Science Institute, Berkeley, CA, 1994.

[2] D. Beasley, D. R. Bull, R. R. Martin, "An Overview of Genetic Algorithms : Part 1,
Fundamentals," University Computing,, Vol. 15, No. 2, pp. 58-69, 1993.

[3] D. Beasley, D. R. Bull, R. R. Martin, "An Overviewof Genetic Algorithms : Part 2, Research
Topics," University Computing,, Vol. 15, No. 4, pp. 170-181, 1993.

[4] K. D. Boese, A. B. Kahng, B. A. McCoy, G. Robins, "Fidelity and Near-Optimality
of Elmore-Based Routing Constructions," Proc. of the Intl. Conf. on Computer Design,
pp. 81-84, 1993.

[5] K. D. Boese, A. B. Kahng, G. Robins, "High-Performance Routing Trees With Identified
Critical Sinks," Proc. of the 30th Design Automation Conference, pp. 182-187, 1993.

[6] H. Chan, P. Mazumder, K. Shahookar, "Macro-cell and module placement by genetic adap
tive search with bitmap-represented chromosome," Integration, the VLSI Journal, Vol. 12,
No. 1, pp. 49-77, Nov. 1991.

[7] J. P. Cohoon, S. U. Hedge, W. N. Martin, D. Richards, "Distributed Genetic Algorithms
for the Floorplan Design Problem," IEEE Transactions on Computer-Aided Design, Vol. 10,
pp. 484-492, April 1991.

[8] P. Dasgupta, P. Mitra, P. P. Chakrabarti, S. C. DeSarkar, "Multiobjective Search in VLSI
Design," Proc. of The 7th International Conference on VLSI Design, pp. 395-400, 1994.

[9] W. C. Elmore, "The Transient Response of Damped Linear Network with Particular Regard
to Wideband Amplifiers," J. Applied Physics, Vol. 19, pp. 55-63, 1948.

[10] H. Esbensen, E. S. Kuh, "An MCM/IC Timing-Driven Placement Algorithm Featuring
Explicit Design Space Exploration," Proc. of the 1996 IEEE Multi-Chip Module Conference,
1996 (to appear).

[11] H. Esbensen, P. Mazumder, "SAGA: A Unification of the Genetic Algorithm with Simulated
Annealing and its Application to Macro-Cell Placement," Proc. of The 7th International
Conference on VLSI Design, pp. 211-214, 1994.

20

12] C. M. Fonseca, P. J. Fleming, "Multiobjective Optimization and Multiple Constraint Han
dling with Evolutionary Algorithms I: A Unified Formulation," Research Report 564, Dept.
of Automatic Control and Systems Eng., University of Sheffield, U.K., January 1995.

13] T. Gao, P. M. Vaidya, C. L. Liu, "A Performance Driven Macro-Cell Placement Algorithm,"
Proc. of the 29th Design Automation Conference, pp. 147-152, 1992.

14] T. Hamada, C.-K. Cheng, P. M. Chau, "Prime : A Timing-Driven Placement Tool using
A Piecewise Linear Resistive Network Approach," Proc. of the 30th Design Automation
Conference, pp. 531-536, 1993.

15] M. D. Huang, F. Romeo, A. Sangiovanni-Vincentelli, "An Efficient General Cooling Schedule
for Simulated Annealing," Proc. of the 1986 International Conference on Computer-Aided
Design, pp. 381-384, 1986.

16] M. A. B. Jackson, E. S. Kuh, "Performance-Driven Placement of Cell Based ICs," Proc. of
the 26th Design Automation Conference, pp. 370-375, 1989.

17] C. Sechen, A. Sangiovanni-Vincentelli, "TimberWolf3.2 : A New Standard Cell Place
ment and Global Routing Package," Proc. of the 23rd Design Automation Conference,
pp. 432-439, 1986.

18] A. Srinivasan, K. Chaudhary, E. S. Kuh, "RITUAL : A Performance-Driven Placement
Algorithm," IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Pro
cessing, Vol. 39, pp. 825-840, Nov. 1992.

19] L. Stockmeyer, "Optimal Orientations of Cells in Slicing Floorplan Designs," Information
and Control, Vol. 57, pp. 91-101, 1983.

20] D. Whitley, "The Genitor Algorithm and Selection Pressure: Why Rank-Based Allocation
of Reproductive Trials is Best," Proc. of the Third International Conference on Genetic
Algorithms, pp. 116-121, 1989.

21] D. Whitley, T. Starkweather, D. Fuquay, "Scheduling Problems and Traveling Salesmen:
The Genetic Edge Recombination Operator," Proc. of the Third International Conference
on Genetic Algorithms, pp. 133-140, 1989.

22] D. F. Wong, C. L. Liu, "A new algorithm for floorplan design," Proc. of the 23rd Design
Automation Conference, pp. 101-107, 1986.

23] X.-M. Xiong, E. S. Kuh, "Geometric Approach to VLSI Layout Compaction," International
Journal of Circuit Theory and Applications, Vol. 18, pp. 411-430, 1990.

21

	Copyright notice 1995
	ERL-95-84

