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Abstract

We study the following problem: two agents Alice and Bob are con-
nected to each other by independent discrete memoryless channels. They
wish to generate common randomness by communicating interactively over
the two channels. Assuming that Alice and Bob are allowed access to
independent external random sources at rates (in bits per step of com-
munication) of H4 and Hp, respectively, we show that they can gener-
ate common randomness at a rate of max { min [H4 + H(W|Q), I(P; V)]+
min (Hp + H(V|P),1(Q;W)]} bits per step. Here, V is the channel from
Alice to Bob, and W is the channel from Bob to Alice. The maximum
is over all probability distributions P and Q on the input alphabets of V
and W respectively. We also prove a strong converse which establishes the
above rate as the highest attainable in this situation.
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1 Introduction

As pointed out by Ahlswede and Csiszar in [2], there are several situations in
which common randomness available to communicating agents plays a signifi-
cant role. For example, in the theory of identification via noisy channels ([3],
(4], [5]), the maximum achievable identification rate is essentially determined by
the amount of common randomness that the transmitter and receiver can set up.
Common randomness available to transmitter and receiver also allows them to
use random codes for data transmission, which can be far superior to determin-
istic codes in certain situations, e.g., with arbitrarily varying channels ([1], [7]).
Finally, in the theory of communication complexity, it is known that common ran-
domness can significantly reduce the amount of inter-processor communication
required to perform certain computations in a distributed setting ([8], [11]). For
these and other reasons, Ahlswede and Csiszar [2] proposed a systematic study
of the role of common randomness in information theory.

Now, in a situation where the communicating agents only have access to inde-
pendent random sources, they must set up common randomness by exchanging
the outputs of their respective sources. Typically, this exchange must take place
over noisy channels. However, in this situation, it is conceivable that they could
generate additional common randomness by somehow exploiting the noise on
those channels. In fact, intuition suggests that the agents should be able to gen-
erate common randomness even in the absence of any external random sources,
simply by communicating over the noisy channels and making use of the ran-
domness in the channel outputs. It is then naturally of interest to determine the
maximum rate, in bits per step of communication, at which common randomness
can be extracted from channel noise in this way.

In this paper, we answer the above question for the case of two agents Alice
and Bob connected to each other in both directions by independent discrete
memoryless channels. To illustrate the problem, consider the simple case where
the channel from Alice to Bob is binary symmetric with crossover probability 1/2,
and that from Bob to Alice is a noiseless binary channel. Suppose the following
communication takes place between them: Alice transmits 0 in n successive steps;
and in step k, 2 < k < n, Bob echoes the bit he received in step k£ — 1 back to
Alice. Then, after n steps, both Alice and Bob know the value of a random
variable uniformly distributed over a set of size 2”71, i.e., they have generated
n — 1 bits of “common randomness.”

Note that this common randomness is derived from the noise on the channel
from Alice to Bob at a rate of (n — 1)/n bits per step, which can be made
arbitrarily close to 1 by making n large enough. It is not hard to see that in the
absence of external sources no rate higher than 1 bit per step can be achieved
here. Thus, the common randomness “capacity” of this pair of channels is 1 bit



per step, even without external sources.

In the general case of arbitrary discrete memoryless channels both ways, the
situation is more complicated; it may not be possible to guarantee perfect agree-
ment between Alice and Bob, or to generate random variables with perfectly uni-
form distributions. Therefore, we will only require that Alice and Bob generate
random variables that agree with high probability, and have distributions close to
uniform on some common set. The question of interest, then, is how fast the size
of this set can grow with the number of steps of communication. The common
randomness capacity measures the maximum achievable rate of this growth.

The precise formulation of the problem appears in Section 2.2. The main
result, stated in Section 2.3, is the determination of the common randomness
capacity for an arbitrary pair of channels when no external sources of randomness
are available to either agent. We also consider the case where both agents have
access to independent i.i.d. sources of randomness, which they can sample once
for each step of communication (this constrains the rate at which they receive
external randomness). While this problem appears to be more general, we will
show in Section 2.4 that it can actually be reduced to the problem with no external
sources.

For the simple special case of a DMC with perfect instantaneous feedback,
the common randomness capacity was obtained by Ahlswede and Dueck in (3],
as an auxiliary result in the proof of their identification theorem. They consid-
ered two situations, one where no external randomness is available, and another
where the agent at the transmitting end of the DMC has unlimited randomness
(in both situations, the agent at the receiving end of the DMC is essentially “pas-
sive” since he cannot control the inputs to the feedback channel in any way). In
fact, in all the identification problems studied in [3] and [4], it turns out that the
(second-order) identification capacity equals the (first-order) common random-
ness capacity. These results were an important motivation for our study of the
common randomness capacity in the general case, where both agents can play an
“active” role and both channels are allowed to be noisy.

Another area in which common randomness has an obvious significance is
cryptography: if two agents share a random key about which an eavesdropper has
no information, they can use it to achieve secure communication between them,
through encryption of messages. In this context, the problem is one of secret
sharing, i.e., generating common randomness at two terminals without giving
information about it to an eavesdropper. This has recently been addressed by
Maurer ([9], [10]), and Ahlswede and Csiszar [2].

In the “channel-type” model introduced in [2], the two terminals are connected
by a discrete memoryless channel with one input and two outputs. One terminal
governs the input, while the outputs are seen by the other terminal and the
wiretapper, respectively. There is also a noiseless public two-way channel of



unlimited capacity connecting the two terminals. Both terminals have access to
independent and unlimited sources of randomness, to begin with. The authors
proved bounds on the maximum rate at which the two terminals could generate
a shared secret key, under various restrictions on the use of the public channel.

In contrast, no secrecy constraints are imposed in our model, i.e., the random
outputs generated by the two agents need not be kept secret from any eavesdrop-
pers. However, the results proved here are not implied by those of [2], because
both channels here are allowed to be noisy and constrained in capacity, and no
restrictions are imposed on the allowed use of these two channels.

2 Statement of problem and result

2.1 Preliminaries

A discrete memoryless channel (DMC) with input alphabet Z, output alphabet
Z, and transition probability function U/ will be denoted by (Z Z,U ), or just U
if no confusion can result.

P(Z) will denote the set of all probability distributions on the set Z, and

Pa(Z) C P(Z) will denote the set of all n-types, i.e., P € Po(Z) iff nP(z) is
an integer for all z € Z. W(Z, Z) will denote the set of all DMCs with input
alphabet Z and output alphabet Z. The notation for all standard information-
theoretic quantities is that of [6].

All logarithms and exponentials will be to the base two. Throughout, [L] will
denote the set of integers {1,2,...,L}.

2.2 Definition of a protocol

We will now formulate precisely the problem of generating common randomness
over noisy channels in the absence of external sources. Later, in Section 2.4, we
will show how the external sources can be incorporated into this framework.

Let the DMC from Alice to Bob be (%, X,V), and that from Bob to Alice be
., W). To generate common randomness, Alice and Bob communicate with
each other for a certain number of steps. In each step, Alice transmits a symbol
to Bob across V and, simultaneously, Bob transmits a symbol to Alice across W.
These symbols are determined by an agreed-upon strategy, as functions only of
all the past receptions available to the respective senders.

Formally, an n-step strategy is a pair (f,g), with f = (fi, f2,...,fs) and
g = (glag% ag'u) Here, fl € X’ o € y, and for 2 < k < n, fk ylc s X
and g : X%~ 5 Y. Let X, and Y; denote the symbols transmitted by Alice and
Bob respectively in the k* step, 1 < k < n, and let these be received as X and



Yi respectively. Then, X, = fi, Y; = g, and, for 2 < k < n, X; = fi(Y*"!) and
Yi = gi(X*1). Note that

Pr(Xm ==y = ﬁ[ (81 @) - W (3 lae(@ )] ()

The k = 1 term on the right hand side is to be understood as V (2, | f)-W (i1 | ¢1).

After n steps, each agent separately decides whether the attempt to generate
common randomness was successful or not, and i in the former case computes a
random output. Alice’s decision is based only on ¥, and Bob’s is based only on
X*. Their random outputs take values in the common finite set [K] = {1, ..
Formally, Alice computes § = S(Y™) and Bob computes T = T(X™), where
S:)3" 5> {JU[K]and T : A" — {e} U[K]. Here, e is a symbol indicating
fallure to generate common randomness.

The quadruple (f,g,S,T) defines an (n, k') protocol for generating common
randomness. Of course, the “amount” of randomness generated by the protocol,
and the extent to which it is “common,” are determined by the joint distribution
of § and T. Ideally, we would like

Pr [S(y"n) =T(X") =] = % for each ! € [K], (2)

with A" as large as possible. If (2) were true, S and T would be equal with
probability 1, and uniformly distributed over [K]. (There would be no “failure”
events of positive probability.)

In general, it is not possible to satisfy (2) except in the trivial case A = 1.
Therefore, we will have to settle for approzimate equality and uniformity of S
and T. To this end, we make the following definition: (f,g,S,T) is an (n, K, )
protocol if

-1—1,—'\- < Pr [S(f’") =T(X") = l] < 1;\-—'\ for each | € [R]. (3)
This definition is of interest only for A in [0,1). For, if A > 1, we can satisfy (3)
with arbitrarily large K (for any n) simply by taking S(§") and T(2") to be e
for all (£*,9"), thus making the problem trivial.
To motivate the above definition, note that (3) implies

Pr[U{S=T=z}]21—,\, (4)
l€(K]}

so that, if A is small, both agents compute the same random output with high
probability. In particular, the probability that either agent declares failure to



generate common randomness is small. Further, since Pr[S # T] < A, Fano’s
inequality gives
max {H (S|T),H (T|S)} <1 + Alog K. (5)

Also,

.
H(S,T) > -3 Pr(S=T=l]log Pr[S=T=l]

=1

X f1-2) K
> -
- Z}( K )IOg(1+A)
2 (1-=A)logh -1, since0 <A< 1. (6)
From (5) and (6),
min{H(S),H(T)} 2 (1 —2)\)log K — 2. (7)

Thus, if A is small, each agent generates a random output whose distribution is
close to uniform on [K]. For future reference, note also that

I($;T)>2 (1 =3\ log K - 3. (8)

2.3 Main result

Fix A € [0,1). For each n > 1, define A’(n, A) to be the largest K such that there
exists an (n, K, A) protocol. The main result proved here is the following:

Theorem 2.1 (Main Theorem) Let

R(V,W) = max { min[H(W|Q), I(P; V)] + min[H(V|P), (@ W)] }.  (9)

QeP(y)
Then:
(a) (Direct part)

limiorolfilog K(n,\)> R* forall A€ (0,1). (10)

(b) (Converse part)

lim sup % log K(n,A) < R* for all X € [0,1). (11)
n=$00

Thus, limp—00(1/n)log K (n,A) = R* for all X € (0,1).



Define rate R of generating common randomness to be achievable if there
exists a sequence of (n, A',, A,;) protocols such that

lim A, =0 and lim inf log A
n=co . n—00 n

> R. (12)

Then, (10) is obviously equivalent to the statement that any rate not exceeding R*
is achievable. A “weak” converse to (10) would merely assert that rates above R*
are not achievable. In the Appendix, we outline the simple proof of the following
statement which implies the weak converse:

1
im lim sup = log K(n, A) < R".
l,{ﬂ} llf‘lls;l‘}p - log A(n,A) <R (13)

However, (11) says much more than (13); in the usual terminology, (11) is a
“strong” converse to (10). Together, (10) and (11) justify the interpretation of R*
as the common randomness capacity of the given pair of channels (in the absence
of external sources). We will prove (10) in Section 3 and (11) in Section 4.

2.4 Incorporating external random sources

We will now address the following question: in the above framework, suppose
Alice and Bob do have access to external sources of randomness at certain rates.
What would the common randomness capacity then be, as a function of these
rates and the characteristics of the channels?

While this problem appears to be more general, we will show that it is not
really so. Suppose Alice and Bob have independent i.i.d. sources with respective
entropies H4 and Hp bits per symbol. Let A;, A, ... be the sequence of outputs
from Alice’s source, and B, B, ... that from Bob’s source. We will assume that
Alice and Bob can sample their sources once for each step of communication,
i.e., just before the k'* step of communication, Alice learns A; and Bob learns
By. (Thus, they receive external randomness at the rates of H4 and H B bits per
step.) They are then allowed to choose X} and Y as functions of (4%, Y*~!) and
(B*, X*-1) respectively. Similarly, § = S(A",¥") and T = T(B", X") (assuming
the protocol has n steps). The requirement for an (n, K, \) protocol is the same
as before, viz., for each | € [K], Pr[S = T = {] (which involves an averaging over
(A", B") also) should be within A/K of 1/A’.

If K'(n, )) is the largest K such that there exists an (n, K, \) protocol in this
situation, then for any A € (0,1) we claim that limn,o00(1/n) log K'(n, A) equals

max { min[Ha + H(W|Q), I(P; V)] + min [Hg + H(V|P), I(Q; W)] }. e
QEP(Y)

-~



To see this, consider the original problem (without external sources) but with the
channels (.Y, X, V) and (), Y, W) replaced by (X, X x B, V) and (y,y x A, W)
respectively. Here, A and B are the alphabets in which A; and By respectively
take values, V(#,b|z) = V(&|z) Pr[B; = b], and W (9, aly) = W(ily) Pr[Ax = q).
Then, we may think of the channel V as providing the sequence B, B,, . .. to Bob,
and the channel W as providing A, A,,... to Alice (in addition to behaving like
V and W respectively).

Clearly, to any (n, K, A) protocol in the problem with external sources over
V and W, there corresponds an (n + 1, A, A) protocol in the problem without
external sources over V and W (an extra step is required at the beginning just
to provide A, to Alice and B; to Bob); and to any (n, K,)) protocol in the
latter problem, there corresponds an (n, K, A) protocol in the former. Therefore,
lim,00(1/n)log K(n,A) = limuooo(1/n)log K'(n, A), for any A € [0,1). It only
remains to observe that R*(V, W) reduces to (14).

In fact, the capacity remains the same even if A™ and B" are revealed to Alice
and Bob right at the start of an n-step protocol. The proof of this only requires
some simple modifications to the proof of the converse in Section 4.

2.5 Examples

Let HY = max, H(V(:|z)) and HY = max, H(W(-|y)). Let C¥ = maxp I(P;V)
and C% = maxg I(Q; W) be the Shannon capacities of V and W.

1) Suppose H(V(-|z)) = HY for all z, and H(W(-|ly)) = HY for all y (this
holds, e.g., for all symmetric channels). Then, the maximum in (14) is attained
by the P and @ that achieve the Shannon capacities of V and W, respectively,
and the common randomness capacity reduces to min[H4 + HY,C V] +min[Hp +
HV,CV). In fact, this is always an upper bound on the capacity.

In particular, consider the case where V' and W are both binary symmetric
channels, with crossover probabilities p and g respectively. Then, assuming Hy =
Hp = 0, the common randomness capacity equals min{h(p)+h(q),2—h(p)—h(q)},
where h(-) is the binary entropy function. Note that this is 0 iff ~(p) = h(q) =0
or h(p) = h(q) = 1. In the first case, the two channels do not provide any ran-
domness (zero entropy), although they allow for perfect agreement between the
two a.gents (high capacity). In the second case, the situation is reversed; a trans-
mission by either agent provides a totally random bit to the other (high entropy),
but the randomness generated this way cannot be reliably communicated back to
the sender (zero capacity).

On the other hand, the capacity attains its maximum value of 1 whenever the
entropies and capacities balance each other, i.e., when h(p) + h(q) = (1 — h(p)) +
(1 — h(q)). It is somewhat surprising that it is possible to generate common
randomness at a rate of 1 bit per step in all these cases.



In the binary symmetric case, a much simpler proof of Theorem 2.1 is given in
[12]. This proof can easily be extended to the case where V and W are symmetric
DM(Cs.

2) Suppose HY = 0, i.e.,, W is completely noiseless. Then, (14) reduces to
maxp{min[H4, I(P;V)] + min[Hg + H(V|P),C¥]}. In addition, (a) if H4 = 0,
then the capacity is min[Hg + HV,C¥]); (b) if C¥ > HY, Hy > CV, and
Hg < C% — HY, then the capacity is Hp + maxp H(PV). These are slight
generalizations of the results of Ahlswede and Dueck (3] for DMCs with feedback,
mentioned in the Introduction.

On the other hand, if C¥ = 0 (i.e., W is completely noisy), then (14) reduces
to min[H, + HY,CV).

3) If Hy > CY and Hg > C¥, then (14) just equals CY + C%. Thus, if
Alice and Bob have external randomness available at sufficiently large rates, then
there is nothing to be gained from channel noise (they can simply exchange their
source outputs, using the usual channel coding techniques, in order to generate
common randomness at the optimal rate).

3 Proof of the direct part

We will now prove that Alice and Bob can generate common randomness at rates
arbitrarily close to R*, i.e., for any R < R*, we will prove the existence of a
sequence of (n, K, A,) protocols satisfying (12). This suffices to prove the direct
part of Theorem 2.1.

Actually, to prove that rate R is achievable, it is sufficient to exhibit a
(t%, Kz, A\2) protocol for each ¢, such that

log K2 >R

lim A2 =0 and lim inf

t—oco t—o0
For, given any n satisfying 2 < n < (¢ + 1)?, Alice and Bob could execute
the (t2, K2, A;2) protocol and fill the remaining n — t2 steps arbitrarily, without
affecting the rate achieved. (Essentially, this is because lim;o, t?/(t + 1)® = 1.)
We will therefore restrict attention to protocols with ¢2 steps, in all that follows.
But, first, we state some results that will be needed in the proof.

3.1 Preliminary results

Definition 3.1 A (t,L,v) block code for the DMC (Z,ﬁ,U) is a collection
{(er,C1) : 1=1,2,...,L}, where c; € Z* for each ! € [L], C;,Cs,...,CL partition
2!, and U (Cz | cl) 21—~ for each | € [L].



Lemma 3.1 Lett > 1, R >0, and L < 2'R. Then, for any P € 12,(3), there
exists a (t, L,exp[—tE(R, P,U) + o(t)]) block code for the DMC (Z,Z,U), all of
whose codewords have type P. Here,

E(R,P,U) = i [DWUIP) + (1(P;U") - RY*].

E(R, P,U) is a continuous function of R and P, which is positive if R < I(P;U)

and zero otherwise.

Proof: Standard. See Theorem 5.2 on p. 165 of [6]. 0

Definition 3.2 Letc € 2* andC C Z'. An (L, 7) equipartition of C w.r.t. c,
over the DMC (2, Z,U), is a partition of C into L+1 subsets C(e),C(1),...,C(L)
such that U* (C(1) | ) is the same for all L € [L], and U* (C(e) | ) < .

Lemma 3.2 Lett > 1, R >0, and L < 2'F. Then, for anyc € 2t and C C 2‘,
there erists an (L,exp[—tF(R,Q,U) + o(t)]) equipartition of ¢ w.r.t. C, over the
DMC (Z2,Z,U). Here, Q € P(Z2) is the type of ¢, and

F(R,QU)= min [D(U'|UIQ)+(H(U'IQ)-R)*].
Uew(z,3)

F(R,Q,U) is a continuous function of R and Q, which is positive if R < H(U|Q)

and zero otherwise.

Proof: Appendix. ]

3.2 Block codes and equipartitions of their decoding re-
gions

Let P* € P(X) and @Q* € P(Y) be the distributions achieving the maximum

in (9). Assume that V and W are such that both min[H(W|Q"), I(P*; V)] and

min [H(V|P*), I(Q"; W)] are positive. The degenerate cases where one of these

terms is zero can be handled with obvious modifications, and will therefore not
be considered. Let

Rs = min[H(W|Q*),I(P*V)] —¢,
Rg = min[H(V|P"),I(Q*;W)] —k,
where € > 0 is small enough that R4 and Rp are positive. Then, E(Rg4, P*,V),

E(Rp,Q",W), F(Rp, P*,V), and F(R4,Q",W) are all positive. Choose types
P, € Pi(X) and @: € P(Y), t =1,2,...,such that P, - P*and Q, = Q" as t —

10



co. By continuity, E(Ra4, P, V), E(Rg,Q:,W), F(Rg, P,,V), and F(Ry4,Q:, W)
are all bounded away from zero if ¢ is sufficiently large.

The sequence of protocols to be described will achieve the rate R* — 2¢. The
protocol with t? steps requires two block codes of blocklength ¢ (one for each
channel), and equipartitions of their decoding regions w.r.t. the corresponding
codewords. We will describe these now.

Let M = lZ‘RAJ -1, N= [‘2‘”"] -1, p = exp{-tF(Rp, P,V) + o(t)}, and
o = exp{—tF(R4,Q:, W) + o(t)}. Pick arbitrary sequences a € X* and b € }*
of types P, and Q) respectively. Then, Lemma 3.2 guarantees that:

(a) there exists an (N, p) equipartition of X! w.r.t. a over V, into subsets
Ale), A(1),..., A(N).
(b) there exists an (M, o) equipartition of }* w.r.t. b over W, into subsets

B(e), B(1),...,B(M).

From the definition of equipartition. it follows that

1 . . 1-p .
_— > st >
N 2 VH{(A()|a) > N for each j € [N], (15)
1 l-0
— > Wt ; > 2 : i
i 2 W (B(i)|b) > A for each i € [M] (16)

Before communication begins, Alice and Bob agree upon such sequences and
equipartitions.

Next, let a = exp{—tE(Ra, P,,V') + o(t)} and 8 = exp{—tE(Rp,Q:, W) +
o(t)}. Then, by Lemmas 3.1 and 3.2,

(a) there exists a (¢, M + 1, a) block code {(a;,A;): i € {e} U[M]} for V, all

of whose codewords have type P,. Further, for each i € {e}U[M], there exists an
(N, p) equipartition of A; w.r.t. a; over V, into subsets A;(e), Ai(1),..., Ai(N).

(b) there exists a (¢, N + 1, 8) block code {(b;,B;) : j € {e} U [N]} for W, all
of whose codewords have type @,. Further, for each j € {e} U[N], there exists an
(M, o) equipartition of B; w.r.t. b; over W, into subsets Bj(e), Bj(1),...,B;(M).

Since 1 > V*(Aila;) 2 1 — a and 1 > W(B,|b;) > 1 — 3, we have

% > VHAG)la) > 1—% for each j' € [N], (17)
1 y 1-8-0 .
i > WHYB;(i')|b;) > i for each i’ € [M]. (18)

Before communication begins, Alice and Bob agree upon such block codes and
equipartitions of their decoding regions.

11



3.3 Outline of the protocol

The protocol proceeds in t rounds, indexed 0,1,...,t — 1. In each round, Alice
and Bob send each other sequences of length ¢, so that the total number of steps
is t2. We will describe these ¢ rounds recursively.

In round 0, Alice and Bob transmit the sequences a and b respectively. Alice
defines S; to be the i € {e} U [M] such that the sequence she received from Bob
falls in B(¢). Similarly, Bob defines T, to be the j € {e} U [N] such that the
sequence he received from Alice falls in A(j). This completes round 0.

Now let 1 < k < t. Assume that Alice and Bob have computed Sx € {e}U[M]
and Ti € {e} U [N], respectively, based on the sequences they received in round
k — 1. Then, in round k, Alice transmits the codeword a(Sx) and Bob transmits
the codeword b(T;). (The indices are written in parentheses, rather than as
subscripts, for typographical convenience.)

Based on the sequences they receive from each other, Alice and Bob try to
guess the index of the codeword sent by the other, and also decide the index of
the codeword to transmit in the nert round. This is done as follows: Alice finds
the (i, j) € ({e} U [M]) x ({e} U[N]) such that the sequence she received falls in
B;(i). She then estimates T} as T; = j, and takes Si4; = i. Similarly, Bob finds
the (i.j) € ({e} U[M]) x ({e} U[N]) such that the sequence he received falls in
A;i(j). He then estimates Si as Si = i, and takes Ti+1 = j. This completes round
k.

Let

s = ((5uh),(585) oo, (S Tmr) ),
T = ((S'l,Tl) y (S'Q,TQ) ey (gt—laTt-l) )

Both S and T can take on [(M + 1)(N + 1)]'"! different values. Of these, there
are (M N)*~! in which none of the 2(¢ — 1) components is e. Let R be an arbitrary
function that maps these (M N)!~! possibilities onto [(M N)*~!], and maps all the
remaining possibilities to e.

Then, after round ¢ — 1, Alice and Bob take their random outputs to be
S = R(S) and T = R(T), respectively. Thus, both S and T take values in
{e} U [K], where K = (M N)!-!,

3.4 Analysis

We will now prove that the sequence of protocols just described does achieve the
rate R — 2e.

12



Claim 3.1 (a) For each k € {1,2,...,t — 1}, choose any (i, ji) € [M] x [N].
Then,

1
GayeT 2 Pr{S =T = (lind)

where A\=t(a+p+P8+0)—=0 ast— oo.
() limy_,o0(1/t2) log(MN)-! = R* — 2.

Proof: Let G = {Sk = ik, Tk = ji} and ék = {.S"k = ik,Tk = jk} . Then,

] = (MN)‘ -1

Pr[S="T = ((ir,x))i2] = Pr [ﬁ (Gen c‘:k)] . (19)

k=1

Now, for each & > 1, (ﬁ'k,Tk,Sk.,.l,TkH) is conditionally independent of
(S’f"l,TI'l,Sk‘l Tk ) given (Sk, T:). Therefore,

Pr|() (Gen )| = Prical (T Pr[6en Gena[6s)) Pr [GealGin] . 20)
k=1 k=1

We will bound each of the terms in the above product separately. To begin with,

PT[GI] = Pr [T) =j1] - Pr [Sl = 21]
= VI(A()la) - W' (B(i1)Ib).

From (15) and (16), it follows that

o=z (5 (5.

Next,for 1 <k <t-2,

Pr(GinGuut|Ge] = Pr[8k =ik Tiwr = jkur[Se = ia] -
-Pr [Tk = Jks Sk41 = ik+1|Tk = jk]
= VA Uk+1)lai,) - W(Bj, (k1) [bj)-
From (17) and (18), it follows that

1 l—-a-p\(1-B-0
W>Pr[GkﬁGk+1|Gk]2( = )( - ) 1<k<t-2 (22)

Finally, Pr [Gie1|Gear| = V¥(Ai_, lai,_,) - W(B;,_, [bj._, ), so that

12 Pr{Gia|Ge] 2 (1 - a) (1 - B). (23)

13



By (19), (20), (21), (22), and (23), 1/(MN)'~* > Pr[S = T = ((ik, i)z} ] and

Pr [S =T= (('ik,jk));c__l]

t-2

> (1;[ l—a l-a- ﬁ/{(}b—ﬁ o)l a)(1 = B)
, l—a- mu—ﬁ—ﬂ]

- (MN)t-t

> l=tla+p+pB+o0)

which proves Part (a). That A — 0 as t = oo follows from the fact that
E(R4,P,V), E(RB,Q:,W), F(Rg,P,,V), and F(R4,Q:, W) converge to pos-
itive numbers as t = oo.

Part (b) is obvious from the definitions of M and N. D

4 Proof of the converse part

Let (f,g,S,T) be any (n, A, A) protocol, with A < 1. The aim is to prove that
K < 2nR+e(™)_ This will be done by exhibiting a P € P(X) and a Q € P())
such that (1/n)log A" is bounded above by

min [H(PV), HQW), H(V|P) + H(WI|Q),I(P; V) + I(Q;W)] +o(1). (24)

The minimum in (24) equals min[H(W|Q), I(P; V)] + min[H(V|P), [(Q; W)).
For convenience, let p(z" ,y ") denote the right hand side of (1), i.e., the prob-
ability that (X™,¥") = (2", ") under the strategy (f,g). If C C X™ x Y, then

let
pC)= > wE@i").
(Zmgn)ec

We will also need some notation for various empirical distributions induced by
an (Z",y") pair. Let

(a) N(Z|2") = [{k: &x = 2}, N(§19") = [{k : g = §}.

(b) N(z|g") = {k: fi(§*) = e}, N(yl3™) = |{k : ge(2*"") = g}I.

(c) N(z,z|z", ") = I{k : ful§*!) = 2,8 = £}|.

(d) N(y, 912", 3") = [{k : ge(2*7') = y, Gk = §}|.
Finally, let HY(z) = H(V(-|z)) and H¥ (y) = H(W(-|]y)).

The key idea in the proof is the following lemma, which helps identify a
suitable high-probability subset of “jointly typical” (z",y") sequences.

14



Lemma 4.1 Let £ be the set of all (F*.§") € X™ x Y" satisfying the following
conditions:

(a) IN(#]") = &, N(z|§™)V(&]z)| < 87 for all 3 € X.

(8) |N(3l§™) - £, N(lz" W (3ly)| < 67 for all § € 3.

(¢) [log u(".9") + £ N(=lg™) HY () + T, N(ylz") H" (y)| < /.
Then, for any v > 0, there ezists 0 < co such that u () > 1 — v for all n.
Proof: Appendix. O

For the rest of the proof, assume that 8 is so large that u (€) > (1+A)/2. For
le (K], let & = {z":T(2") =1} x {g": S(§") ={}. Then,

u(sn U &) > u(s)—u(ﬂ €f)

le[R) le[K)

1+ A
2 (T)"‘
1-2A
- ( = ) (25)

For 0’ € Pu(X xX) and 7' € Po(Yx DY), let £, .« be the set of (£, §") € £ such
that N(z,#|z",§") = no'(x,%) and N(y,§|z",§") = n7'(y,§) for all z,%,y, 7.
Since the number of such (¢”, ') pairs can be bounded above by n¢, for a suitably
large ¢, there must exist (o, 7) such that

B (go,Tn U gl) 2> l‘—,\- (26)

) C
le[K) =n

From now on, we will focus only on those (2",3") that belong to the subset
5:6.7' Let Pa(:t) = 2 0’(1‘,.’%), Q'r(y) = Zg T(yd})v Pa(i') =2 U(Iv‘i)v and
Q@-(9) = Ly 7(v,9) be the marginals of o and 7. We will in fact prove (24) with
P, and @, in place of P and Q. )

Now, by condition (a) in the definition of £, we have |P,(2)— P,V (2)| < 8//n
for all z. It follows by the continuity of the entropy function (see, e.g., Lemma 2.7
on p. 33 of [6]) that, for all large n,

\H(P,) — H(P,V)| < |X|(8//n)log(v/n/6). (27)
Similarly, by condition (b) in the definition of £, |Q,(§) — Q. W (9)| < 6//n for
all , and R X

|H(Q:) — H(Q,W)| < |V|(6/v/n)log(v/n/8), (28)
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for all large n.

If (z,§") € &.r, then N(z|§") = nP,(x) and N(y|z") = nQ.(y). Hence,
(I, g") = exp{—n[H(V|P,) + HW|Q:)] — 8/n}, by condition (c) in the defi-
nition of £, so that

16, 1| < 2V HVIPHWIQAI 467 (29)
Also, the type of #* must be P,, so that Pr(zm) = exp{—-nH (13,)} Therefore,

{&" : 3§" s.t. (3",9") € E,-}| < exp{nH(P,)}
< exp{nH(P,V)+ o(n)}, (30)

by (27). Similarly, §™ must have type ., so that Q"(j") = exp{—nH(Q,)}, and
(" 38" st (3,57) € Eordl < exp(nH(Q-W) +0(n)},  (31)

by (28). Finally,

n—l log( [J(.’E ' Y ) )

Pe(&)Qn(im)
< —(H(VIP)+ HW|Q.) - 6/Vn) + (H(P,V) + H(Q-W) + o(1))
= I(P; V) + I(Q: W) + (1), (32)

where the inequality is by condition (c) in the definition of £, (27), and (28).
We will now show that many of the decision regions £ must intersect signifi-
cantly with &, .. More precisely, let

1-2
= ] a7 2> = .
L {le [K]:p(EerN&) > 4I\nc}

We will prove that |£] > K (1 — A)/8n°. To this end, note that

1-2A
e S H (Eo,rn U 81)

1€[R)
= U (ga,'r N U gl) +u (ga.-r N U gl)
leC ¢c
i 1-)
< u (g&) + (K - [£]) (m)

2 1—-A
< adl -4
< |c|(K)+ —,

from which the desired bound on |£] follows.
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Ifl € £, then u(&,.NE) > 0,50 that £,.NE is non-empty. But this means
that

(@) I£] < & < exp{n[H(V|P,)+ H(W|Q,)] + 6y/n}.

(b) I£] < [{&":3g" s.t. (&°,") € &2} < exp{nH(P,V) + o(n)}.

(c) €] < [{g": 32" s.t. (&™,9") € &2} < exp{nH(Q,W) + o(n)}.
The right inequalities in (a), (b), and (c) are by (29), (30), and (31) respectively.
Together with the lower bound on ||, these inequalities yield three of the desired
terms in the minimum occuring in (24). For the fourth term, note that

1> [é@wﬂu»][ﬁc‘z:(s-‘(i»]

=1

K . . 2
> (Z\/PJ‘(T“U))Q?(S“(I)))
=1

2
> (Z\/P:(T-'<l>)©¢(s-l(l))) , (33)

el

where the second step is by the Cauchy-Schwarz inequality. Now,

PMTY)QMS\)) = S PrEmQr@h)

(zn.gm)es

> Y BEMQNEY)
(E™gn)eEINE s
2 ST p(an, g2 PeV)HQriW)]-o(n)

(™" )ESiNEs,r

L= A) gonllBeiv )4 1@ewl-otm) i1 ¢ £,
4Rk'n¢ ’

The second inequality is by (32). Substituting back in (33), and using the fact
that |£]| > A'(1 — A)/8n¢, we get K < exp{n[I/(Py; V) + I(Q+; W)] + o(n)}. This
completes the proof. o

Appendix

Proof of the weak converse:

We will now sketch the proof of (13). Let (f,g,S,T) be any (n, K, A) protocol.
Let Pi(z) = Pr(X:e = z], Qu(y) = PrYi = y], P(z) = n' T} Pi(z), and



Q(y) =n"' L, Qi(y). Then,
H(X™) < if{(}l’k)

= Y H(RV)
k=1
< nH(PV), (34)
Similarly, )
H(Y™) < nH(QW). (35)
Also,
HX™ Y™ = Y H(X, X4 vt
k=1
= Y H(X Y XLV X7 (36)
k=1
= z[H (Xl Xe) + H(FilY3)] (37)

= Y (H(VIR) + HOWIQW)
k=1

= n[H(VIP)+ HW|Q), (38)

where (36) is because (X, Yx) is a_function of (Xk-1, Y’“ ), and (37) is be-
cause X is independent of (X510 ¥k ¥ given Xi, and V4 is independent of
(Y*=1, X*, X,) given Y;.
By (34), (35), and (38),
I(X™Y") = H(X")+H(¥™) - HEX", V")
(P

n[I(P;V)+ 1(Q;W)]. (39)

IA

But o

(a) (1 =A)logK -1 < H(S,T) < H( X", Y™).

(b) (1 = 2X)log K — 2 < min{H(S), H(T)} < min{H(Y™), H(X™)}.

(c) (1 -3\ log K -3 < I(S;T) < I(Y™; X™).
The left inequalities in (a), (b), and (c) are by (6), (7), and (8), respectively. The
right inequalities hold because S is a function of Y™ and T is a function of X™.
Combining these with (34), (35), (38), and (39), we have

n~! [(1 —3)\)log K — 3]

min{H(PV), HQW),H(V|P) + HW|Q),I(P;V) + I(@Q; W)}
min{H(W(Q), I(P; V)} + min{H(V|P), I(Q; W)}
R

IA 1A

18



The weak converse follows from this. 0

Proof of Lemma 3.2:

Let W(Q) be the set of those U’ € W(Z, Z) such that tQ(z)U’(|z) is an
integer, for all z,2. For any such U’, define Ti(c) to be the set of 3 such that
N(z,%|c,2') = tQ(z)U'(%]z) for all z,2. Here, N(z,%|c,2") is the number of
occurences of the pair (z, £) in (c, 2!). (Recall that @ is the type of c.)

For each U’ € W(Q), construct L pairwise disjoint subsets of C N Ty(c), say
Cu:(1),...,Cu:(L), each of size exactly ||C N Ty+(c)|/L| (the subsets are otherwise
arbitrary). Let

cy= U cw), lell]
U'ewe(Q)

It is then clear that U*(C(!)|c) is the same for all [ € [L}], since every C(!) has
the same number of sequences of any given conditional type w.r.t. ¢. It remains
to upper bound U*(C(e)|c), where C(e) is the set of those sequences in C that are
not in any of the C({). To this end, note that

[CNTu(c)lmod L < min{L,|Ty(c)|}
< min{2'R,2HU1Q)

= ot{HUIQ-(HUIQ)-R*]

Therefore,
U'Cle)le) = 3 [ICNTin(c)| mod L] - 2-HWIRQH+DWILIQ)]
U'ew(Q)
< : -'[D(U’IIUIQ)+(H(U'|Q)-R)+]}
< IWz(Q)IU,renvg‘fQ){2

< 2-tF(RvaU)+o(t),

since |[W,(Q@)| can be bounded above by a polynomial in ¢. The stated properties

of F(R,Q,U) are easy to establish. D'

Proof of Lemma 4.1:
Let Cr = log V(Xklfk(Y" 1)) + log W(}klgk(X" ), 1 € k < n. Then,
E[Ci|X*-1, Y1 = —HV(fi(Y*™")) = HY (ge(X*1)). Therefore,
logp (X", Y") + 3. N(z|Y™) HY (z) + Y. N(y|X™)HY (y)
x y

n

= 3 [log VIKlfu(7*) + log W (Flgn(X*-1)]
k=1

19



+ kz [HY (fu(7*1)) + BHY (gu(X*1))]

3 (Ce = B [Culf=,v+1]),

k=1
so that

Pr{l log (f(", ]7'") +Y N@EY)HY (z)+ Y N(yIX")HW(y)l > 0\/5}
= Pr{ Z (C - B [Cul X, V%)) | > ov}
k=1
1 LIS
< (%) Var [kgl Ck] (40)

< §/8% (41)
Here, Cy = Ci — E[Ci|X*1, Y"“] and (40) is by Chebyshev’s inequality. To
justify (41), observe that the C’s are pairwise uncorrelated, and that there exists
a constant §, determined by V and W only, such that Var(Cy) < ¢ for all k.

Next, for any &, define the random \arlable Ak to be 1 if Xk =z and 0
otherwise (1 < k < n). Then, E[4:|X*"1, Y*~1] = V(2| fi(Y*!)). Therefore,

n

N(&X™) = 3 N(z|Y")V (3lz) = k (1% = 2) - V(@£ Y*1))]

z =1
= i (Ak = E [Au X*1,751])

k=1

so that
o A . 1 L
Pr{lN(le")—ZN(:::IY")V(:rlx)I>0\/r_z} < (ﬁ) Var L‘;Ak]
< 1/6%

Here, Ay = A; — E[AkIX k-1 f"‘“]. The last inequality holds because the Ax’s
are pairwise uncorrelated, and their variances cannot exceed 1. By taking a union
bound over all &, we have

Pr{3i st. |N(3|X") - 3 N(=|Y")V(ilz)| > 6vn} < | R1/62.  (42)
A similar argument proves that

Pr{3j st. [N@IY™) - T N@IXW(Gly)| > v/} < DI/6%. (43)

By (41), (42), and (43), the probability that ()2",17“) violates any of the
conditions in the definition of £ can be made arbitrarily small by choosing 8 large
enough. (]
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