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Abstract

This paper introduces real and complex multi-parameter homotopy methods for
finding DC solutions of nonlinear circuits. We show, using arguments from algebraic
geometry, that multi-parameter homotopy methods can avoid folds and bifurcation
points along solution paths, and can find multiple solutions. Examples based on poly-
nomial equations and circuits are used to illustrate the concepts.

1 Introduction

Calculating the DC operating points of nonlinear circuits and systems is a difficult task
requiring the solution of nonlinear algebraic equations. Most circuit simulators use the
Newton-Raphson method or one of its variants to calculate DC operating points. While
these methods are robust and quadratically convergent if a starting point sufficiently close
to a solution is supplied, they may fail if no such point is known.

Continuation and probability-1 homotopy methods, with their potentially large or global
regions of convergence, have been used to solve circuit equations [4, 5, 7). The idea behind
a continuation method is to embed a parameter in the circuit’s nonlinear equations. Setting
the parameter to zero reduces the problem to a simple one that can be solved easily, or whose
solution is known. The solution to the simple problem is the starting point of a continuation
path. The set of equations is then continuously deformed into the originally-posed difficult
problem by varying the embedded parameter from zero to the required final value.

Continuation methods may suffer from a variety of ills, including the presence of bifur-
cations and sharp folds (turning points) along solution paths, infinite solutions, abbreviated
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Micro Program.
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Figure 1: Folding, abbreviated, divergent, and bifurcating homotopy solution paths.

paths, closely spaced solution curves, and disconnected branches [8]. Some of these possi-
bilities are illustrated in Figure 1. Closely spaced curves may lead to curve jumping, and
disconnected branches are problematic for methods that follow extended curves to find mul-
tiple solutions [5].

Probability-1 convergent homotopy methods guarantee, with the satisfaction of a coer-
civity condition, a bifurcation-free path with finite arc length to a simple solution for almost
all initial values (see [8] and references therein). However, the coercivity condition may not
always be satisfied, and the problem of finding multiple operating points is not addressed.

In this paper we introduce the concept of real and complex multi-parameter homotopy
maps and methods for solving nonlinear circuits. We explore their potential for avoiding folds
and fork bifurcations along solution paths, and for finding all circuit solutions. We illustrate
these concepts on polynomial and circuit examples. Simple, isolated solution points in a
compact region are assumed.

2 Multi-Parameter Maps and Methods

Standard homotopy functions, which we will refer to as single parameter homotopies, are a
special case of multi-parameter homotopies. A typical single parameter homotopy function

used to solve f(z) =0,f: R" — R", is
H(z,A) = (W) f(z) + (1 - N)g(z), A €[0,1]. (1)
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Figure 2: Ezpand dimensionality of homotopy function and try to forge better paths across
solution space from zg to z;.

Embedding f into H, a function with one added parameter and the starter system g(z) = 0,
transforms the solution set of f(z) = 0 from isolated points in " to a set of curves in
R" x [0,1], the characteristics of which will influence the efficiency of any curve tracing
algorithm. If, for example, the solution curves are long, circuitous and/or ill-conditioned,
the algorithm may be inefficient or may not converge.

Two examples of 2-parameter homotopy functions are

H(‘”? ’\l, ’\2) = (’\l)f(z) + (1 - ’\2)9(3)’ ’\la ’\2 € %’ (2)

and
H(z,)) = (A\)f(z) + (1 - Ng(=z), A € C. 3)

The first is an example of a real 2-parameter homotopy map and the second of a complez
parameter homotopy map. In the latter, the two parameters are the real and imaginary parts
of A. In the case of complex parameter homotopy, we assume that the resulting function
H is well defined for complex z and ), specifically that H has a useful region of analyticity
in C" x C. A function H(z,)), h: C" x C — C, is analytic if it has a local power series
expansion in all variables.

In these cases, embedding f into H, a function with two parameters, transforms the
solution set of f(z) = 0 from a set of isolated points to locally 2-d surfaces. See Figure 2 for
an illustration. Since the solution set is composed of surfaces rather than curves, there are (if
any) infinitely many solution paths passing from the solutions of the initial, simple problem
9(z) =0 at A\; = A, =0 (A, = ); = 0) to the solutions of the final, hard problem f(z) =0
at Ay = A; =1 (A, = 1, = 0). This lack of uniqueness opens up the possibility of forging
paths over the solution surfaces that may be better than the solution curves produced by the
corresponding single parameter homotopy, as well as relaxing the conditions on homotopy
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Figure 3: Example of a fold.

functions that guarantee smooth non-intersecting paths to solution points. Thus, an ideal
multi-parameter homotopy method is an algorithm capable of forging paths on solution
surfaces from the initial parameter vector Ao to the final parameter vector A; that are as
short and smooth as possible, and that avoid singularities and any other point and curve
features deemed undesirable.

The following two sections begin to answer the question of which ‘bad’ point and curve
features may be avoided by employing real multi-parameter homotopies or complex multi-
parameter homotopies. Specifically, Section 3 deals with folds along solution paths, while
Section 4 addresses bifurcations. These sections also outline some necessary features of
algorithms capable of avoiding such obstacles. Section 5 outlines the potential for finding
multiple solutions of a given circuit or system of algebraic equations via complex multi-
parameter homotopy.

3 Avoiding Folds

A folding solution path associated with a real 1-parameter homotopy function H(z,) =0
(H : ® x L — R",L C R) reverses direction along the parameter axis. Although a fold
can correspond to a repeated root of multiplicity greater than two, generic folds correspond
to real double roots, occurring at parameter values we refer to as generic fold values. At a
solution corresponding to a generic fold value, the Jacobian matrix DH(z, ) drops rank,
while the extended Jacobian matrix DH, x(z,)) maintains rank. Note that DH, indicates
the Jacobian matrix @H/8z with ) acting as a parameter. The term DH; »(z, ) refers to
the extended Jacobian matrix [0H/dz,8H/d)], with ) treated as an additional variable.

In the present paper, we deal only with singular points where the matrix DH, drops rank
exactly once. In this case, Lyapunov-Schmidt reduction, as discussed in [13] and summa-
rized in Appendix A, can be applied to develop a scalar equation locally characterizing the
singularity. In our discussions, we take advantage of this fact by analyzing scalar equations
to develop intuition that is then applied to multivariate systems of equations.
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The simplest example of a solution curve with a fold, or turning point, is shown in
Figure 3. At the critical fold value A = 0 of the homotopy function H(z, ) = z2—) = 0, two
real solution branches z+ = +v/A and z= = —v/) coalesce into a real double-root. Figures 9
and 11 illustrate further examples of solution curves with folds that, though arising from
more complicated equations, are locally equivalent to the simple quadratic example.

Single-parameter homotopy methods capable of handling solution curves with folds, such
as those in Figures 3, 9, and 11, must be able to respond by reversing direction along the
parameter axis. This maneuver can be inefficient for arc length parameterized methods such
as those in [8] because of the small step sizes required to make these turns. While faster than
the above mentioned methods, switched parameter algorithms [5] may miss sharp turning
points if the step size is not small enough, and can exhibit cyclic behavior near switching
points. In this section, we explore the potential of real and complex multi-parameter ho-
motopy methods for avoiding folds, and indicate how this avoidance, when possible, may be
accomplished. We show:

Result 1: Real multi-parameter methods generally cannot avoid folds along solution curves
without passing through a singular point, corresponding to a repeated root of order
two or greater.

Result 2: Complex parameter methods can avoid folds along solution curves. Generic
folds may be avoided by tracing a closed curve in complex parameter space around the
parameter value corresponding to the fold.

Results 1 and 2 may be explained by considering the codimension of bifurcation sets
in real and complex parameter space. For a system of parameterized nonlinear equations
H(z,)) = 0, the bifurcation set B consists of parameter vectors A for which the system of
equations has repeated roots. Here, the overbar notation (1) denotes a parameter vector. A
regular value is the term used to describe a parameter vector that does not result in repeated
roots, and hence does not belong to the bifurcation set.

A value ), in the bifurcation set B is characterized by the existence of an z, satisfying

H(z, /-\b) =0 (4)
rank(DH(zy, M) < n (5)

Since generic fold values are parameter values at which a homotopy function has a real double
root, generic fold values belong to the bifurcation set. Thus, bifurcation set properties are
intimately linked to the potential for fold avoidance in real and complex parameter spaces.

Figure 4 illustrates the codimension of bifurcation sets in real and complex parameter
space. A bifurcation set in real parameter space has codimension one and divides the param-
eter space. If a set may be described by a single constraint on a larger space (say "), then
it has codimension one with respect to that space. For instance, a curve has codimension
one within a plane (as shown in Figure 4(a)), and a locally 2-d surface has codimension one
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Figure 4: a)Bifurcation set of codimension-1 in real parameter space. b) Bifurcation set of
codimension-2 in complex parameter space.

within 3. As a specific example, the bifurcation set of the real-coefficient quadratic equa-
tion 22 + Mz + A; = 0 has codimension one since it is described by the curve A2 — 4); = 0
in ®2.

In complex parameter space, the bifurcation set has codimension two and does not divide
the parameter space. If a set may be described by two constraints on a larger space, it
has codimension two with respect to that space. For example, a point within a plane has
codimension two (shown in Figure 4(b)), as does a curve within ®2. The complex-coefficient
quadratic H(z,)) = 22+ A =0 (X € C), for instance, has the bifurcation set A = 0, a point
within the complex parameter plane.

To see why bifurcation sets in real parameter space have codimension one and and those
in complex parameter space have codimension two, consider equations (4) and (5), used to
characterize the bifurcation set. In the real case we have the n equations H(z, ) = 0 plus
the scalar real equation det(DH,(z,))) = 0. Hence, the implicit function theorem may be
applied to derive a single equation that locally describes the codimension one bifurcation set
(one constraint in parameter space). ! In contrast, equation (5) imposes two constraints in

the complex case, Re(det(DH,(z,\))) = 0 and Im(det(DH,(z,\s))) = 0, which leads to

1Recall that the implicit function theorem [19] implies that, given a continuously differentiable function
F:®" x 8™ — R and a point (2o, Ao) € R" x R™ such that the Jacobian DF;(zo, Ao) is full rank, then
there exists an open neighborhood of (o, Ao) and a unique function g over which z = g(). Applying this
theorem to a collection of n equations consisting of n — 1 of the n equations H(z, ) = 0, plus the equatlon
det(DH.(z,2)) = 0, at points (z3,X;) where the rank of the Jacobian of the n assembled equations is full,
allows z to be expressed as z = g()) over a neighborhood of (z, A3). One may then substitute the function
z = g(}) into the remaining equation of H(z,) = 0 to get an equation h;(g(1),X) = 0 locally describing
the bifurcation set of H.
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Figure 5: Complex 2-parameter homotopy for fold avoidance. a) A 27 rotation in complex
parameter space around the critical fold value. b) The complex, regular solution path (fold-
free) corresponding to the complex parameter excursion shown in (a).

the derivation of a codimension two bifurcation set by application of the implicit function
theorem.

In a parameter space with a codimension one bifurcation set, it is in general not possible
to trace a continuous path from one arbitrarily chosen point to another without passing
through the bifurcation set. If, for instance, one wants to trace a continuous path from
system S1 to system S3 in Figure 4(a), this path must pass through the bifurcation set B.
Since generic fold values belong to a codimension one bifurcation set with respect to real
parameter space, embedding additional real parameters in a homotopy function with folding
solution paths cannot, in general, lead to the possibility of paths through parameter space
that do not intersect the bifurcation set, which includes generic fold values and singular
points corresponding to repeated roots of multiplicity greater than two.

In a parameter space with a codimension two bifurcation set, it is possible to trace a con-
tinuous path from any arbitrarily chosen regular point to any other without passing through
the bifurcation set, as shown in Figure 4(b). Generic fold values belong to a codimension two
bifurcation set with respect to complex parameter space. Thus, generic fold values associated
with real 1-parameter homotopy functions may be avoided by complexification of the ho-
motopy parameter A and maneuvering through the complex parameter plane. As discussed
above, the corresponding solution path also becomes complex for the complex parameter \.

In summary, the codimension of bifurcation sets in real and complex parameter space has
the very important implication that given a real homotopy function H with folding solution
paths, there is a continuous path in complex parameter space from an initial ‘easy’ system
H(z, o) = 0 to the final ‘hard’ system H(z,\;) = F(z) = 0 that does not pass through the
bifurcation set. This is not true in real space. Results 1 and 2 are based on these properties.

Application: Avoiding Folds with Complex Parameter Homotopy We now move
on to fold-avoidance in complex space. As stated in Result 2, folds along solution curves



may generally be avoided by tracing a closed curve (27 rotation) in complex parameter
space around the parameter value corresponding to the fold. To illustrate, consider the
quadratic equation H(z,A) = 2 — A = 0, which, for varying A > 0, describes a generic fold
with turning point A = 0 (see Figure 3). If we want to pass from z = /¢ on the solution
manifold z = v/ to z = —/e on the solution manifold z = —+/\ without encountering a
turning point, we may make A complex and trace the curve A = ee? in parameter space
from 0 = 0 to § = 27 (see Figure 5(a)). This full circle traces the solution = = +/ee’?
from /e to —4/€ along a smooth, fold free path (see Figure 5(b)). More generally, if a
generic fold (locally representable by a scalar quadratic via Lyapunov-Schmidt reduction,
as discussed in Appendix A) is encountered while tracing a real homotopy path, then there
exists a starting value A*, a radius r, and a direction d € {—1,1}, such that the traversal
of a full circle in complex parameter space A = A* + dr(1 — €*),0 = 0 : 27, will result in
a fold- and bifurcation-free path around the generic fold value. In the quadratic example,
H(z,)) = 2 — X = 0, the path being traced toward the fold point is along decreasing X, so
d = —1. As noted previously, at a generic fold value the matrices DH, and DH,_ ) drop and
maintain rank, respectively, so their conditioning may be used as a local test to indicate the
approach to a fold.

A larger context for understanding fold avoidance in complex space may be found in
algebraic geometry [10], as follows. A key result in this field is that an ordinary branch
point, a (possibly) complex-valued parameter value corresponding to a repeated root of
multiplicity n, must be circled n times in complex space in order to return to the orginal
solution manifold. Each revolution has the effect of moving the solution point from one
solution manifold to another (there are n), until the nth revolution returns the solution
point to the original manifold. This local solution structure of n connected sheets is called
an algebraic element of order n — 1.

A generic fold in real parameter space is an algebraic element of order one, with a repeated
root of multiplicity two. A fold that does not correspond to a repeated root of multiplicity
two may be associated with a higher order algebraic element. In this case, the Hessian
matrix DH_, will drop rank, along with DH,. For a fold corresponding to a repeated root
of multiplicity n, locally representable by a change of coordinates to the form z™ — A = 0, 2
revolutions in complex parameter space will result in fold avoidance and a return to a real
solution branch. For example, consider the polynomial system z* — A\ = 0, which has four
repeated roots at A = 0 with two real solution branches. In order to pass from z = €'/4 to
z = —e!/* (around the fold value A = 0), two revolutions in complex parameter space are
required. In the case of a transcendental singularity, an infinite number of solution branches
may exist, so that no finite number of revolutions will return the solution trajectory to a
real branch. :

Next, we present fold-avoidance on an example circuit, and on the example homotopy
function H(z, ) = sin(1/z) — A. Our simulation results indicate that the efficiency of fold
avoidance in complex space is relatively independent of fold sharpness.
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Figure 6: a) Tunnel diode circuit b) Diode characteristics.
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Figure 7: Drawing of real solution curve with folds for the tunnel diode circuit, passing
through five solutions v = (v;,v;), at A = 1.

Example 1 (Tunnel Diode Circuit):

The tunnel diode circuit in Figure 8 (from [5]) has operating points determined by the loop
equation fi(v) = E — Rg1(v1) — (v1 + v2) = 0 and node equation f2(v) = g1(v1) — g2(v2) = 0,
with v = (v, v;). The tunnel diode currents are given by i; = g;(v1) = 2.503 —10.50v 4+ 11.8v,
and i; = go(v2) = 0.43v3 — 2.69v2 + 4.56v;. The real 1-parameter homotopy function used
in [5] is

Hy(v,)) = fi(v) + (A = 1) fi(vo)

Hy(v,A) = fo(v) + (A —1)f2(vo)
with A, v1,v; € R. At A = 0, a solution to H(v,)) = 0 is v = v, which serves as a starting
value for the continuation path. Figure 9 shows a real folding solution path emerging from
vo = (0,0). Critical fold values occur at around A =~ 0.8,1.2 and 2.1.

We obtain a complex parameter homotopy function from the single parameter function
defined in [5] by complexification (A = A, +i);). Now H' : C? x C — C2. The real

representation of these equations is as follows.
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Figure 8: a)Complex orbit in parameter space. b)Complex solution trajectory from v =
(0.199,3.754) to v = (1.775,3.707) around a fold.

Re(Hy(vy,viy Ay X)) =
Re(H;(vp,v;y Ar, X))
Im(Hl (v,, Vg, A,, /\.))
Im(Hy (v, 5, A, X)) =

]
)

with v, =Re(v) and v; =Im(v). The new solution vector is v = (vy,v;) = (vyy, V2r, V2i, V2;).

Figure 10 shows the smooth, fold-free complex solution path from v = (0.199,3.754) to
v = (1.775,3.707) obtained by tracing a full circle in parameter space around the fold point
Ax21.0

Example 2:

Simulation results on the homotopy function H(z,)) = sin(1/z) — X = 0, often used as
a benchmark for fold traversal in path following algorithms, indicate that the efficiency of
fold avoidance in complex space is relatively independent of fold sharpness.

The function H(z, A) = sin(1/z) — A = 0, shown in Figure 11(a), has folds of increasing
sharpness at A = *1 as ¢ — 0. Setting A\* = 0 and r = 1.2, the trajectory A = A\* +
r(1 — €®),0 = 0 : 27, through complex parameter space shown in Figure 11(b) leads to a

smooth, fold and bifurcation-free path in complex solution space from z = % to z = 7y

Figure 11(c) shows a solution trajectory from z = 555- to z = 15—

Using a simple Newton corrector scheme, performance in complex space appeared to
be independent of fold sharpness and mainly limited by machine precision. For instance,
at k = 10%,10%10¢, and 107, and with r = 1.2 and a step size of 22 (20 steps around the
complex parameter circle using a simple Newton corrector scheme), a single Newton iteration
per step was required to trace a path fromz =X toz = (k—_:l);, with a tolerance of 1/100k.

Note that while fold sharpness greatly increases with k, the performance of this simple,
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Figure 9: a) Graph of sin(1/z), b) Simple closed curve traced through complex parameter
space with A = 0 as an endpoint, encircling A = 1, ¢) Corresponding path through complex
solution space.

fixed step-size, monotonic Newton corrector scheme did not vary. These results are in direct
contrast to existing path following schemes in real space such as arclength parameterized
methods and interval methods, for which efficiency greatly depends on fold sharpness. O

4 Avoiding Real Fork Bifurcations

Homotopy paths with real bifurcations are characterized by splitting paths in solution
space, a nontransversal intersection of the path through parameter space with the bifurcation
set, and a loss of rank of the real extended Jacobian matrix DH; \ = [0H/dz,0H/8)] at the
bifurcating parameter value. An example of a real bifurcation along the solution curve of a
single parameter homotopy function is the fork shown in Figure 12(b), where one real solution
path bifurcates into three real solution paths. In the case of the third order polynomial
example H(z, Ay, A2) = z® — \yz + A2 = 0, this forked solution could correspond to a line in
parameter space passing through the midline of the bifurcation set. That is, the solution is
the set of points = such that H(z, A1, \;) = 23 — \jz + X, = 0 with A\; = 0 and ), varying
from -1 to 1. We call 3+ = 0 our initial system, and 23—z = 0 our final system of interest.
At A; = 0 the single real solution curve hits a bifurcation point (triple root) and then splits
into three real branches. Though not generic, fork bifurcations arise in circuit applications
because of symmetries and ideal element modeling (see Example 3 below). They also arise
when applying homotopy methods to finding periodic solutions of parameterized dynamical
systems exhibiting period doubling. Period doubling, described in [16], is essentially a fork
bifurcation.

A solution path corresponding to a single-parameter homotopy encountering a bifurcation
point will either fail when the Jacobian DH;  drops rank (unlikely because of sampling and
finite precision) or suffer from ill-conditioning in the neighboring region. We want to know
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Figure 10: a) A path through real, 2-d parameter space passing through the cusp (A\; = Ay =
0) of the bifurcation set, given by the equation —(\;/3) + (A2/2)? = 0. In Regions 1 and 2,
H(z,)1,22) = 0 has one and three real solutions, respectively. b) The forked real solution
path of the homotopy function H(z,A;,A2) = 23 — \;z + Az = 0 corresponding to the path
through parameter space shown in a).

whether real and/or complex multi-parameter methods can avoid a fork bifurcation point,
and, if so, whether all three branches will be accessible. We have found that:

Result 3: Real 2-parameter homotopy can be used to forge a path around the fork bifur-
cation point to access either outer branch without passing over a fold. Such methods,
however, cannot be used to forge a path around the bifurcation point to access the
middle branch without passing over a fold.

Result 4: Complex 2-parameter homotopy can be used to forge a path around the fork
bifurcation point to access the middle branch without passing over a fold.

In the case of our polynomial example, Figure 13 shows the changes in solution curve
topology that occur when real 2-parameter homotopy is used to bypass the triple root. Upon
approaching the bifurcation point A\; = A, = 0, areal half circle (A1, A2) = (—€cosd, € sinf), e >
0 is traversed from 6 = 0 to § = 7 around the bifurcation point. This has the effect of split-
ting the fork into a fold, and a simple curve which is traced to an outer solution branch,
as shown in Figure 13(b). While either of the two outer solution branches of the fork may
be reached without encountering a bifurcation point by tracing a half circle through real
2-parameter space (§ > 0 for one, § < 0 for the other), the middle solution branch cannot
be reached without passing over a fold.

Results in algebraic geometry can explain these observations as follows.  As a class,
bifurcation values corresponding to roots of multiplicity three (such as A; = Az = 0 in the
real parameter plane of our polynomial 2 — A\;z + A; = 0) generally have codimension
two in parameter space. This means that any perturbation of (A1, A;) away from (0,0) will
take us to solutions that are not triple roots. Also, since a real bifurcation corresponds to a
nontransversal intersection with the bifurcation set in parameter space, a perturbation of the

12
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Figure 11: Real 2-parameter homotopy is used to avoid the fork bifurcation and access either
outer solution branch. a) A path through the real parameter plane avoiding the bifurcation
point A; = A; = 0. b) The solution topology of the function H(z, A1, A2) = 23—~ Mz +X; =0
corresponding to the path shown in (a). Note that the fork has decomposed into a simple
curve leading to an outer solution branch and a fold.

path through parameter space generally resolves the real bifurcation. Thus, we would expect
a path through parameter space that avoids (0,0), such as the one shown in Figure 13(a),
to transversally intersect the bifurcation set, to be free of triple root values, and for the
corresponding solution curve(s) to be free of real bifurcations. This expectation is borne
out, as evidenced in Figure 13(b). In fact, forging a real path around the fork bifurcation
point is equivalent to the classical remedy against codimension-two or higher bifurcations,
that of perturbing the equations by a small amount.

However, as discussed in Section 3, bifurcation sets in real parameter space have codi-
mension one and divide the space. The bifurcation set of H(z,A1,A;) = 2% — Mz + A2 =0,
described by the equation —(\;/3)® + (12/2)? = 0 and shown in Figure 12(a), is entirely
composed of generic fold values (parameter values at which H has a double root), with the
exception of the triple root value A\; = A\; = 0. This means that although we expect that
a path through real parameter space from (A, A2) = (=1,0) to (A1, A2) = (1,0) avoiding
(A1,A2) = (0,0) will not be associated with a bifurcating solution path, we do expect any
such path through parameter space to include a generic fold value, and thus be associated
with a fold. As seen in Figure 13(b), this fold is not a problem for the homotopy method
because the solution path being followed is not the one with the fold. Notice that there are
two disconnected curves, one simple and the other folded.

Bifurcation avoidance in complex parameter space is illustrated in Figure 14. Parameter
Az is held constant at zero, and a curve A, = ee” from § = 0 to 0 = 7, a half circle, is
traversed in the complex parameter plane. With this excursion in the complex domain, the
two outer solution branches separate into the complex plane from the central real branch,
as shown in Figure 14(b). Thus, a complex half-circle in parameter space will bypass the
bifurcation point and lead to the center root.

To understand fork bifurcation avoidance in complex space, we introduce the concept of
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Figure 12: Complex 2-parameter homotopy is used to access the center root. a) A half-circle
excursion in the complex parameter plane around the bifurcation point A = 0. b) The root
locus of H(z,\,, ;) = 2® + (), + 1))z = 0 corresponding to the parameter path shown in
a). The outer branches separate from the central branch.

reducibility [12, 11}. An equation H(z,)) = 0 is reducible if it may be written in product
form H(z, ) = P(z,))Q(z,)) = 0, so that for any value of ), the roots of H are the union
of the roots of P and @, both analytic functions in £ and )\ passing through zero. Examples
of analytic functions are polynomials and exponentials.

With the exception of parameter values A for which P and @ have the same solutions,
the solution set of H is composed of invariant sets. That is, a homotopy path that starts
on the solution surface of P or @), respectively, will stay there, regardless of the path taken
through parameter space. As we will see in the next section, this is not true for irreducible
systems of equations, for which solution surfaces are connected.

Let us now consider the path along the midline (A; = 0) of the bifurcation set of the
homotopy function H(z,);,A2) = 23 — \iz + A, = 0. Along this path this homotopy
function is reducible and becomes H(z, ;) = (z? — A1)z, the product of complex-coefficient
polynomials P(z,);) = z2 — \; and Q(z) = z. At A; = 0, the double root of P(z,);) =0
coincides with the single root of Q(z), giving H a triple root. This junction is the fork
bifurcation shown in Figure 12(b). Since H is reducible along the midline (A; = 0), and
the single real solution branch from \; < 0 is on the same solution manifold as the central
solution branch for A; > 0, forging a path in complex parameter space from \; = —e to
A1 = € around the bifurcation point A; = 0 not only pre-empts a bifurcating or folded
solution path; it also eliminates the possibility of the solution curve leaving the solution
set of Q. Thus, a half-circle traversal in complex parameter space must lead to the central
branch.

The above conclusions also apply to irreducible homotopy functions exhibiting forked,
bifurcating solution paths. To see this, consider a perturbed version of the previous example,
namely H(z, A;,A2) = 23 — Az + A3 with A2 = eA}. This homotopy function is irreducible,
and has bifurcating behavior equivalent to that of the previous example. In this perturbed
case, varying A, from -1 to 1 amounts to following a smooth path, tangent to A, = 0, through
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the point (0,0) of the bifurcation set shown in Figure 12(a). The resulting behavior obtained
by complexifying ); is topologically identical to that obtained in the preceding example.
Specifically, the real (z = 0) and complex (z = %+/};) solution branches are perturbed by a
term of order €);, which is an asymptotically negligible perturbation for sufficiently small €
and );. Hence, the behavior is locally identical to that of the unperturbed homotopy. 2

In summary, real bifurcations are characterized by a drop of rank in the extended Ja-
cobian DH x(z,\)=[0H/0z,0H/d)], a nontransversal intersection with the bifurcation set
in parameter space, and nongenericity. When encountering a real forked bifurcation along
a homotopy path as in Figure 12, real two-parameter homotopy may be used to avoid the
bifurcation point and access the two outer solution branches, and complex parameter homo-
topy may be used to access the central solution branch without passing over a fold. Similarly,
if the fork bifurcation is approached from the opposite direction, real two-parameter homo-
topy may be used to trace a fold- and bifurcation-free path from either outer branch to
the single solution branch beyond the bifurcation point, and complex parameter homotopy
may be used to trace a regular path from the central branch of the fork to the single so-
lution branch beyond the fork bifurcation point. In all cases local ¢ half-circle excursions
through parameter space signaled by a drop in the rank of the Jacobian D, \H are sufficient
to accomplish this avoidance. Though scalar equations were used to develop the reasoning
supporting these results, the application of Lyapunov-Schmidt reduction (as mentioned in
the previous section and summarized in Appendix A) ensures that the reasoning applies to
multivariate systems of equations as well, such as those describing nonlinear circuits. We
now present a simple circuit example.

Circuit Example 3 (Flip-Flop):

The flip-flop of Figure 15 has a bifurcation that is topologically identical to the fork
described above when voltage source continuation is used to find DC operating points [6].
We take the real 2-parameter homotopy function

Hy(v,)) = (ve; — MVee)/RC + (ver — vb)/RB + gcl(vbl,vcl)
Hy(v,)) = (vby —ve;)/RB + by (vby, vey)
H3(v,A) = (ves — AVee)/RC + (vez — vby)/RB + icy(vhy, vey)

Reference [9] contains a scheme equivalent to the half circle in complex parameter space that we have
prescribed for accessing center solution branches of real forked bifurcations. The authors of [9) suggest that
such a scheme is appropriate for avoiding all types of singular points, an assertion that is problematic if one
is interested in real solution curves only, or in tracing all solution curves. If the singular point encountered
corresponds to an ordinary branch point, but not to a real bifurcation, a half-circle excursion in complex
parameter space will result in a trajectory leading to a complex solution curve. For example, if one takes the
polynomial H(z,z) = 23+ A2 = 0 and traces a path through parameter space along the A, axis, the singular
point at A3 = 0 now corresponds to an ordinary triple root, rather than to a fork bifurcation. A half-circle
excursion in the complex plane around the singular point A2 = 0 will take the solution to a complex branch

z = |A5|!/3¢2%/3, In this case a 3« rotation is required to bypass the triple root and return to a real solution
curve.
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Figure 14: Real two-parameter homotopy is used to access outer solution branches. a) A
curve through the real parameter plane avoiding the bifurcation point A\; = A; = .1135. b,c)
Corresponding solution curves to stable points.

Hy(v,)) = (vby —ve;)/RB + iby(vhy, vey)

where i¢; = I,(e"/" — 1) — I,[a,(e®—vedw — 1), b, = —1g; — (~I,[as(e™/™ — 1) +
I(eli-vel/w 1)), a; = 0.945, I, = 10~14, v, = 0.025v, a, = 0.65, and with node voltages
v = (vep, vby, vey, vby) and parameters A = (A;, A;). This function was obtained from the
single-parameter voltage continuation in [6] by converting ) in the first and third equations,
which multiply the voltage source, into two independent variables.

Figures 16(b,c) show the solution trajectory obtained by tracing a clockwise half-circle
path in the real parameter plane around the bifurcation point A\; = A; & .1135, shown in
Figure 16(a). As discussed in the polynomial example, a stable solution is accessed and the
bifurcation point is avoided. Because of symmetry, a counterclockwise half-encirclement of
the bifurcation point leads to the other stable circuit solution.

A complex 2-parameter homotopy function may be obtained from the same single-
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Figure 15: Complex two-parameter homotopy is used to access the central, metastable so-
lution branch (A; = A2 = A, +i);). a) Path through complex parameter space avoiding the
bifurcation point. b) Associated solution paths to the metastable branch, real except for
region inside of circle. c) A blow up of the complex solution path around the bifurcation
point (blow up of circle shown in (b)).

parameter homotopy function by letting A be complex in the above equations (A, = A; =
Ar + ;). Figures 17(b,c) show the bifurcation-free solution trajectories obtained by a half-
circle excursion in complex parameter space (Figure 17(a)). Figure 17(c) shows a blow-up
of the excursion in the complex domain. As expected, the central, metastable solution is
accessed at the end of a bifurcation-free path. O

5 Finding Multiple Solutions

Homotopy methods have been applied to the task of finding multiple dc solutions of
nonlinear circuits, a potentially valuable feature of a circuit simulation program. Most

A

P

\

Figure 16: Extended curve following. Illustration of disconnected solution branches.
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continuous, single-parameter homotopy methods for finding multiple solutions of nonlinear
circuits take either a multiple starting point or an extended curve following approach. The
multiple starting point approaches involve choosing a number of points to serve as initial
values of continuation paths, corresponding either to an ‘easy’ starter system with multiple
solutions, or to numerous starter systems with different, unique solutions. In either case, all
the paths are then followed to circuit solutions at A = 1. Since for some homotopies, paths
may diverge to infinity, meet at a fold or at a bifurcation point, or lead to the same solution,
these methods may not find all real solutions, and can be inefficient.

The extended curve-following approach, also called Lambda Threading [4, 5, 6], follows
a single solution path past A =1 in the hope that the curve will reverse direction and pass
through A = 1 multiple times. This method may fail to find all solutions if the path followed
does not pass through all solution points [5], as illustrated in Figure 18. For example,
the single parameter homotopy function in Example 1 (the tunnel diode circuit) produces
solution curves that pass through a number of solution points that depend on the starting
point vo. Though the solution curve beginning at v = (v1,v2) = (3,0) passes through all
nine solutions [5], Figure 9 shows a curve, stemming from v, = (0,0), that passes through
only five solutions.

We focus on multi-parameter versions of the extended curve following approach. We ad-
dress the question of whether adding extra homotopy parameters opens up the possibility of
finding all solutions of an arbitrary circuit. Since a fundamental problem with the extended
curve following approach is the presence of real disconnected solution branches, we are in-
terested in the potential of multi-parameter methods for joining disjoint branches. That is,
given a real, single parameter homotopy function with disconnected solution branches, can
adding or complexifying parameters result in a completely connected solution manifold that,
in principle, can be navigated from solution point to solution point until all circuit solutions
are found? Also of interest, if solution surface connectivity results are to lead to practical
algorithms, is how these paths might be traced.

This section concentrates on complex parameter homotopy as applied to the extended
curve following approach. Essential to this discussion is the notion of an irreducible analytic
homotopy function, and its complex solution structure [11, 12]. As previously discussed, an
analytic equation H(z,)) = 0 is reducible if it may be written in product form H(z,A) =
P(z,))Q(z,\) = 0, so that the roots of H are the union of the roots of P and @, both
analytic functions in = and A passing through zero. The equation H(z,)) = 0 is irreducible
if it is not reducible, and a system of equations H(z,\) =0, H : C" x C — C", is irreducible
if each k; is irreducible, where H = [hy, h2,..h,)'. For example, 23 — 23\ = 0 is irreducible,
as is e™*1(ap + a12y + a2 + .. + anx,) = 0, because the former function does not factor into
the product of two analytic functions, while the latter function only factors into the product
of a polynomial and an exponential, an analytic function which does not pass through zero
called a unit. However, the solution set of z§ — z2)? = 0 reduces to the product of the
solution sets of z2 — z,A = 0 and z2 + 23 = 0.

Appendix B details the statement and proof of the following proposition of [12, p21)].

Proposition: An analytic variety V is irreducible if and only if V* is connected, where V*
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is the locus of smooth points of V.

Simply put, the proposition indicates that the complez solution set of an irreducible sys-
tem of equations H(z,A) = 0, H : C® x C — C™, which takes the form of a number of
surfaces above a neighborhood of each regular point ), is connected over the complex pa-
rameter plane. This means that given an irreducible, analytic homotopy function H with a
complex parameter A, there exist regular paths through the complex parameter plane con-
necting any solution z; of H(z,)’) = 0 to any other solution z; of H(z, ') = 0, provided X’
is a regular parameter value. A consequence of this solution manifold connectivity, in con-
junction with the codimension two bifurcation sets in complex parameter space, as discussed
in Section 3, is that complex parameter homotopy methods have the potential for finding all
solutions of nonlinear circuits via regular paths. We list this consequence in the following
result.

Result 5: Complex parameter homotopy methods can, in principle, find all solutions of a
circuit modeled by analytic functions, without passing through folds or singular points.

Because exponential, sinusoidal and polynomial equations are all analytic, the class of circuits
that Result 5 applies to is large, allowing for many standard diode and transistor models.
An obvious question is how easy or difficult it is to design an irreducible homotopy function.
While in general it may be difficult to determine whether an arbitrary multi-variate function
is irreducible, it is significantly more straightforward to deliberately design an irreducible
embedding. For example, given any function f(z) = 0, f : C* — C, either reducible or
irreducible, the embedding h(z,)) = f(z) + X is an irreducible homotopy function. And
with some thought, many other irreducible homotopy functions can be designed as well.

To summarize this section so far, assume that the dc operating points are defined as
being the real solutions of the analytic circuit equations

F(z)=0 (6)
where F' : C® — C™. Then the homotopy function
H(z,A\)=0,H:C"xC — C", (M

with each h;(z, A) irreducible and H(z,A*) = F(z) at some A\* € C has a complex solution
space that regularly connects all dc operating points.

Now that results from algebraic geometry have been invoked to establish that solution
manifolds are regularly connected in complex space, and thus are navigable from solution
surface to solution surface, we move on to explore the nature of this connectivity and how it
might be exploited to join real disjoint solution branches and to find multiple circuit solutions.
We revisit the third order polynomial H(z, 1, A;) = 2° — A\jz + Az = 0 discussed in Section
4 to illustrate the nature of solution-surface connectivity, and to provide an example of
complex solution paths joining real disjoint solution branches.
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Figure 17: a) The solution topology of the function H(z,)) = z® — Az + .1 = 0. Note
disconnected paths. b) The three finite branch points of H(z,A) = 22 — Az +.1 = 0, evenly
distributed on a circle of radius 0.4072, and branch cuts A,B and C.

Complex Solution Surface Connectivity: Joining Real Disjoint Solution Branches
The polynomial H(z,)) = 23— Az + b, with real, fixed, non-zero b, is a simple example of an
irreducible homotopy function with disjoint solution branches. As shown in Figure 19(a), the
homotopy function H(z,)) = z®—Az+.1 = 0 (b = .1 for the remainder of the discussion) has
two real disconnected branches, a simple curve and a fold. If one were interested in finding
all solutions of H(z,0.5) = 0 from the real solution of H(z,—1) = 0, zo = —0.099, using real
extended curve following, one would come to the erroneous conclusion that H(z,0.5) = 0
has a single real solution at z; = —0.791. However, Result 5 indicates that there exist paths
through complex parameter space that regularly join the two real, disconnected branches.

In fact, if after finding the solution z; = —0.791 we make A complex and trace a full
circle in complex parameter space starting from A = 0.5, with center A = 0.5 — r and a
radius r > 0.45 (shown in Figure 22(e)), the corresponding complex solution trajectory
(shown in Figure 22(f)) follows a path from z; = —0.791 to a solution residing on the folded,
disconnected branch, z3 = 0.569. From there, the solution z; = 0.222 may be easily found,
either by following the real folded solution path or by performing another complex-parameter
branch point encirclement. That way, all three solutions are found instead of just the one
on the simple, disconnected branch.

Solution manifold connectivity, for this example and for any parameterized analytic sys-
tem of equations, can be understood in terms of the existence and positioning of branch
points and branch cuts. A regular point ) has a neighborhood, above which, the solution
structure takes the form of a set of manifolds. A branch point is a parameter value A € C
at which a complex-parameter homotopy function H(z,A) = 0 has repeated roots. As such,
the branch points correspond to parameter values where one or more solution manifolds
contact each other. In our polynomial example H(z,)) = z3 — Az + .1 = 0, there are three
manifolds above each regular point, and four parameter values corresponding to repeated
roots: A = 0.4072, A = 0.4072¢'2*/3, A = 0.4072¢'4"/3, and A = co. The three finite branch
points, shown in Figure 19(b) and superimposed on the complex parameter paths illustrated
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Figure 18: a) Revolution in the complex parameter plane encircling one branch point and
passing through branch cut A. b) Closed solution trajectory from z, corresponding to path in
(a). c) Solution trajectory from z3 to z; corresponding to path in (a). d) Solution trajectory
from z, to z3 corresponding to path in (a). e) Revolution in the complex parameter plane
encircling three branch points. f) Solution trajectory from z, to z3 corresponding to path
in (e). g) Closed solution trajectory from z, corresponding to path in (e). h) Solution
trajectory from z3 to z, corresponding to path in (e).

in Figure 22, were derived by solving the simultaneous constraints H(z,\) = 0 and the re-
peated root condition D H(z,)) = 0, for A. They correspond to double roots of H(z,)) =0
Each of these three finite branch points locally connects two of the three solution manifolds
in such a way that tracing a small closed curve through complex parameter space around
a single branch point will result in a solution trajectory from one manifold to another. For
example, a closed path around the branch point A = 0.4072 with A = 0.5 as a starting point,
as shown in Figure 22(a), traces a solution path from z; to z3, or vice-versa, as shown in
Figures 22 (c,d).

Now that branch points have been explained and identified for our polynomial example,
we move on to branch cuts. A branch cut is a nonunique curve through parameter space
with finite or infinite branch points at the endpoints, symbolizing a connection between
solution manifolds. Branch cuts for our polynomial example are shown in Figure 19(b), and
superimposed on Figure 22(a,e). Assuming that the solution point z; is locally identified
with solution surface 1, and that solutions z; and z3 are locally identified with solution
surfaces 2 and 3, respectively, branch cut A connects surface 2 to surface 3, branch cut B
connects surface 1 to surface 2, and branch cut C connects surface 1 to surface 3. Each is a
ray connecting a finite branch point to the infinite branch point.

21



The location of branch points and branch cuts determine solution surface connectivity,
and thus the set of paths that will connect a solution of H(z, ') = 0 ()’ fixed) to any other
solution of H(z,)’) = 0. One way of thinking about (and keeping track of) the movement
of a solution path from solution manifold to solution manifold as the complex parameter
is varied, is as a sequence of permutations in the ordering of solution manifolds, signaled
by branch cut crossings. For example, a simple closed curve in complex parameter space
through branch cut A, as shown in Figure 22(a), will result in a change of solution ordering,
from (1,2,3) to (1,3,2), because A joins surfaces 2 and 3. As shown in Figures 22(c,d), the
corresponding solution path starting at z; will lead to z3, while one starting at z3 will lead
to z3. If a solution path were started at z;, it would stay on surface 1 and not lead to a new
solution, because no branch cut connecting solution surface 1 to another solution surface
was crossed.

Similarly, a simple closed path in complex parameter space encircling all three finite
branch points and crossing all three branch cuts, like the one shown in Figure 22e, permutes
the solution surface ordering from (1,2,3) to (2,1,3) to (2,3,1) to (3,2,1), because branch
cuts B, C, and then A are crossed. The net permutation is from (1,2,3) to (3,2,1) (with
corresponding solution paths from (z,, z;, z3) to (z3,22,21)). Such a path through parameter
space will lead from solution z; to z3, or from z3 to z;, but cannot lead to a new solution
if z is a starting value, as illustrated in Figures 22 f,g,h. Associated solution paths for any
other curve through the complex parameter plane may be analogously predicted, given our
knowledge of the the existence and positioning of branch points and branch cuts for this
example.

Next, we present a branch point encirclement experiment on the tunnel diode circuit in
Example 1 with nine real solutions, only five of which are accessible using ordinary extended
curve following from the starting value v = (0, 0).

Circuit Example 4 (Tunnel Diode Circuit Revisited):

A simple algorithm that involves tracing non-infinitesimal closed curves in complex param-
eter space with A = 1 as an endpoint was found capable of finding all circuit solutions
efficiently on several examples, even from solution branches of homotopy functions that do
not pass through all solution points (disjoint branches as in Figure 18). To illustrate, we
return to the tunnel diode circuit in Example 1 and step through the procedure. -

First, we traced the real solution curve of H(v,A) = 0 from vo = (v1,v3) = (0,0) at
A = 0 to a solution of the circuit, v = (0.228,0.827) at A = 1. Instead of continuing along
the real solution curve to find the next solution, as one would in a real, single-parameter
extended curve following algorithm [5], we made A complex and traced a full circle in complex
parameter space starting from A = 1, with center A = 1+ r, and radius r, (see Figure 23(a)).
If the circle traversed intersects a branch cut and contains a branch point, the revolution
in complex parameter space can result in a fold-free solution path from the initial solution
v = (0.228,0.827) to another circuit solution. For instance, v = (0.219,1.673) is reached
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Figure 19: a) First revolution in complex parameter space. b) Corresponding solution trajec-
tory from v = (0.228, 0.827) to v = (0.219,1.673). c) Second revolution in complex parameter
space. d) Corresponding solution trajectory from v = (0.219,1.673) to v = (0.199, 3.754).

when a circle of radius r; = 0.2 is traversed in complex parameter space. The corresponding
solution trajectory is shown in Figure 23(b). '

To find yet another solution, we traced a circle in complex parameter space starting at
A = 1 with center A = 1 — r; (see Figure 23(c)), and followed a curve from the second
solution v = (0.219,1.673) to a third solution v = (0.199,3.754) (r; = 0.25). Continuing
in this manner, from solution to solution, alternating the center of parameter revolution
between 1+r and 1—r, we were able to find all solutions of the circuit, even though we used
a homotopy function with a real solution curve passing through only five solutions. With the
simplest of schemes - no predictor and only a Newton corrector - we calculated each of the
nine solutions (except the first) in under 15 steps (as opposed to hundreds), with an average
of two corrector iterations per step. O

This example suggests that the complex solution surface connectivity discussed in this
section could prove useful for connecting real disjoint solution branches and efficiently finding
all solutions of nonlinear circuits. A topic for future study is that of developing ways of
exploiting this global connectivity property in complex space, for example by designing
homotopy functions that force all circuit solutions to be locally connected in a single algebraic
element.
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6 Conclusion/Summary

In this paper we introduced real and complex multi-parameter homotopy methods for solv-
ing nonlinear circuits, and explored their potential for avoiding folds and bifurcations along
solution paths, and for finding multiple solutions. Generic folds, we learned, are real double
roots occuring at generic fold values. We showed, using arguments from algebraic geom-
etry, that in general no number of added real parameters can lead to fold avoidance, but
that generic folds may be efficiently avoided by complexifying the homotopy parameter and
tracing a closed curve in complex parameter space around the the critical fold value.

Real bifurcations are characterized by a drop of rank in the extended Jacobian DH;
and nongenericity. When encountering a real forked bifurcation along a homotopy path,
real 2-parameter homotopy was shown to be useful in avoiding the bifurcation point and
accessing the two outer solution branches, while complex parameter homotopy was shown
capable of accessing the central solution branch without passing over a fold. Local € half-
circle excursions through parameter space (signaled by a drop in the rank of the Jacobian
D »H) were found sufficient to accomplish this avoidance.

We also explored the potential of complex parameter homotopy methods for finding all
circuit solutions, and found that in principle, at least, such methods have the potential for
finding all solutions. This potential exists because complex solution manifolds are connected
over the complex parameter plane. That is, given an irreducible, analytic homotopy function
H with a complex parameter A, there exist regular paths through the complex parameter
plane connecting any solution of H(z,)’) = 0 to any other solution of H(z, X') = 0. Solution
manifold connectivity was explained in terms of the location of branch points and branch
cuts. All solutions of two example systems, a circuit and a polynomial, were found efficiently
using branch point encirclement from homotopy functions with real disconnected branches.
Though a path through parameter space leading from one solution surface to another must
encircle a branch point and intersect a branch cut, the location of which are generally not
known apriori, experiments suggest that complex solution surface connectivity could prove
useful in connecting real disjoint solution branches and/or efficiently finding all solutions of
nontrivial circuits. Our future work plans include exploiting this global connectivity property
in complex space by designing homotopy functions that force all circuit solutions to be locally
connected in a single algebraic element.

A Lyapunov-Schmidt Reduction
Assume we are given a function H : ™ x RF — ®™, .
H(z,)) =0, ®

with a bifurcation at the point (zg,Ao), and an associated drop of rank in the Jacobian
D.H(zo, Xo) at the bifurcation point. The goal is to find a simple way of locally characterizing
and studying this bifurcation. One way of doing this is the method of Lyapunov-Schmidt
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[13], which involves changing coordinates in the neighborhood of the bifurcation point and
reducing the problem of locally representing a bifurcation to its smallest dimension. The
dimension is that of the null space of the Jacobian of H with respect to z at the bifurcation
point, D, H(zg, Ao).

The idea behind this method, described in detail in [13] and the references therein, is to
create nonsingular matrices [P, : U] and [P, : V], where U,V € R™*?, and p is the rank
deficit of the Jacobian D, H(z¢,Ao). The matrix U consists of basis vectors for the null space
of D;H(zo, Ao), 80 D H(zo, o)U = 0. The matrix V is chosen so that VT D H(zo, o) = 0.
The matrix P,J D, H(zo,Ao)P, is nonsingular. Then (10) may be decomposed into

PTH(z,))=0 9)

and
VTH(z,)) =0, (10).

and r € R™ may be represented by z = P,w + Uq, with w € R™~? and ¢ € R?. Notice
that the solution vector z has been decomposed into two parts, one in the null space of
D.H(zo, o), and one in the range space of D, H(zo,o)".

With this change in coordinates, equations (11) and (12) become

PTH(P,w+Ugq,\) =0 (11)
VTH(Pw+Ugq ) =0 (12)

and if wo and g are chosen so that zo = P,wg + Ugo, then the Implicit Function Theorem
may be applied to equation (13) in the neighborhood of the bifurcation point (wo,go, Ao)
to get the function w*(g, ), where wo = w*(go, Ao). This function, when substituted in
equation (14), leads to the definition of a bifurcation function

N(g,)) = VTH(Pw*(g,)) + Ug,)) =0 (13)

of p equations in p unknowns characterized by N(go, o) = 0 and D,N(go, Ao) = 0. This
function locally characterizes the bifurcation. Since this paper is concerned with bifurcations
at which the Jacobian D, H(zo, o) drops rank exactly once, p = 1, the bifurcation function
consists of a single parameterized equation. Thus, in this case it suffices to study a uni-
variate parameterized equation that captures the qualitative features of a bifurcation, even
though the circuit equations of interest are multi-variate.

B Global Connectivity Property of Analytic Varieties

Analytic Hypersurface: V is called an analytic hypersurface if V is locally the zero locus
of a single nonzero analytic function f.

Analytic Variety: A subset V of an open set U C C" is an analytic variety in U if, for
any p € U, there exists a neighborhood U’ of p in U such that V N U’ is the common
zero locus of a finite collection of analytic functions f;,...fi on U’.
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Irreducible Analytic Variety: An analytic variety V C U C C™ is said to be irreducible
if V cannot be written as the union of two analytic varieties V;,V; C U with V;,V, # V.

The above definitions can be found on page 12 of [12]. The following proposition may
be found on page 21 of [12], along with a proof for the case of a single analytic function,
outlined below. A more general proof may be found in the references cited within [12].

Proposition: An analytic variety V is irreducible if and only if V* is connected.

In the above proposition V* is the locus of smooth points of V, meaning that the
singular locus V, has been removed from V (V* =V - V,).

Outline of Proof:
=> (if V is reducible then V* is disconnected)
If V is reducible, then it is the sum of distinct analytic varieties, meaning V = VU V3,

with V3, V, ;:é V. Note that any overlap between V; and V, will correspond to repeated
roots of analytic equations, and thus will belong to the singular set of V ((ViNV2) C V).
Since V* is the set V minus the singular set V,, and any overlap between V; and V; is
part of this singular set, V* is disconnected.

<= (if V* is disconnected then V is reducible)

1. Assume V* disconnected, with {V;} connected components.

2. Take closure of each connected component, V;. The goal is to show that V; is an
analytic variety.

3. Use Weierstrass polynomials [12] to prove that V; is the zero set of the analytic
function fi(2) = 2% + 04(2')zF! + .. + ou(2'), 2’ € C™1,0:(0) = 0. This proves
that each V; is an analytic variety, and thus V is reducible.

Consequence of Proposition:

The proposition states that irreducible analytic varieties are regularly connected. The
complex solution set of a parameterized set of analytic equations is an analytic variety. An
example of such a variety is the complex solution set of parameterized circuit equations,
where the circuit elements are modeled exclusively by analytic functions like linear elements,
polynomials, and exponentials, and the parameter(s) also appear analytically.

If the parameterized circuit equations are irreducible, then the complex solution space
is connected. This means that if one designs a homotopy function for finding dc operating
points of a circuit that is both analytic and irreducible, then the solution space will be con-
nected, and in principle one can trace regular paths from circuit solution to circuit solution,
until all operating points are found.
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