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Abstract

Multi-Parameter Homotopy and Complex Encirclement: Finding DC Operating

Points and Periodic Orbits of Nonlinear Circuits

by

Denise Miriam Wolf

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California at Berkeley

Professor Seth R. Sanders, Chair

This thesis develops algorithms and underlying theory for calculating dc operating

points and periodic orbits of nonlinear circuits. The focus is on homotopy continuation

methods, a class of numerical techniques for solving systems of nonlinear algebraic equations

based on higher-dimensional function embedding and solution tracing.

In Part I, the focus is on finding dc operating points. Part I introduces real and

complex multi-parameter homotopy methods for finding dc solutions of nonlinear circuits,

and shows that they can avoid folds and bifurcation points along solution paths, and can

find multiple solutions. Results from algebraic geometry indicate that given an irreducible,

analytic homotopy function H with a single complex parameter A, regular paths through

the complex parameter plane connect any solution of H(x, A/) = 0 to any other solution of
H(x,\f) = 0.

This part also develops complex encirclement, a novel way of computing all solu

tions of nonlinear systems of equations, based on the connectivity properties of complex

solution space. For circuit equations with a finite number of complex solutions, the idea is

to design a homotopy function that forces allcircuit solutions to be locally connected around
a single complex branch point.

The connectivity of real homotopy functions is also investigated. Part I concludes

with a preliminary analysis of the relationship between circuit dimensionality, real level set

characteristics, and the number/placement of real parameters guaranteeing real operating
point connectivity for a class of homotopy functions that uses additive terms in the circuit



equations as homotopy parameters

Part II of this thesis focuses on the dynamics of power electronic circuits, their

bifurcations and Poincare map properties, and the application of homotopy methods to

finding periodic orbits. Part II studies in detail cyclic fold bifurcations, period doubling

bifurcations, and bifurcations due to Poincare map discontinuities. Multi-parameter homo

topy methods are shown able to determine periodicorbits of circuits with sufficiently smooth

Poincare maps. The application of multi-parameter methods to finding periodic orbits is

compared and contrasted to the respective problems of finding dc operating points.

Professor Seth R. Sanders
Dissertation Committee Chair
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Chapter 1

Introduction and Outline

The goal of this thesis is to develop algorithms and underlying theory for calculat

ing all dc operating points of circuits with nonlinear elements like transistors and junction

diodes, and all periodic solutions of periodically forced circuits, such as those found in power

electronics. Because these circuits are known to possess multiple solutions, and some even

depend upon their existence for operation, the ability to find multiple solutions and clas

sify their stability is a potentially valuable feature of a circuit simulation program. Since

Newton-type methods are not always convergent for nonlinear circuits, and are not well

suited to finding multiple solutions, we focus on homotopy continuation approaches.

Homotopy continuation methods have been applied to the task of finding one or

multiple dc solutions of nonlinear circuits, and more recently, to finding periodic solutions
of circuits as well. Homotopy methods are numerical techniques for solving systems of

nonlinear algebraic equations (F(x) = 0,F : S -+ 5) based on higher-dimensional function

embedding and solution tracing. A continuously differentiable homotopy mapping H : S x
U —• S satisfying the properties

1. H(x,X0) = 0 is relatively easy to solve and

2. H(x,\j) = F(x)

is obtained, and one or more solutions to F(x) = 0 are then traced by following the so
lution^) of H(x, A) = 0 from A = A0 to A = A/. From a circuit perspective, the idea
behind a continuation method for finding a circuit solution is to embed a parameter in the
circuit's nonlinear equations. By setting the parameter to zero, the problem is reduced to

a simple problem that can be solved easily, or whosesolution is known. The solution to the



simple problem is the starting point of a continuation path. The set of equations is then
continuously deformed into the originally posed difficult problem. The main advantage of
homotopy methods over Newton-type methods is that the region of convergence can be

large or even global, and homotopy methods are well suited to finding multiple solutions.

Though better than locally convergent methods, existing homotopy and continu

ation methods may still encounter problems. In the absence of constraints, solution paths

can bifurcate, fold sharply, diverge to infinity, or not lead to a solution. Solution curves

may be closely spaced, and solution sets can be disconnected, which is a problem for so-

called Lambda Threading type algorithms, which follow a real single solution path past

A= A/ in the hope that the curve will reverse direction and pass through A= A/ multiple

times. Efficiency is always an issue, and the problem of finding all solutions remains largely

unsolved.

This thesis investigatesnovelapproaches to developing homotopy methods for find

ing dc operating points and periodic orbits of nonlinear circuits. To this end, it synthesizes

the subjects of algebraic geometry, homotopy-based computation, and circuit theory. The

remainder of this chapter details our approach and summarizes the contents of this work.

1.1 Scope of Thesis

This thesis integrates methodologies from three disciplines: Algebraic geometry,

Computation, and Circuit Simulation/Analysis. The following reasoning connects these

three subjects into an interdisciplinary whole.

Designing a homotopy method can be thought of as involving the two steps:

1. Design a homotopy function H. Ideally, it should be one that guarantees certain

algorithmic properties like existence of solutions, number of accessible solutions, and

efficiency.

2. Design a solution curve (or surface) tracing scheme compatible with the chosen ho

motopy function - one that possesses desirable algorithmic propererties.

A homotopy function H is a system of nonlinear equations with more variables

than equations. Such a function has a solution set consisting of curves or surfaces. In

order to develop 'good' homotopy methods, one would like to design homotopy functions



with qualities that lead to positive algorithmic properties like efficiency and accessibility of

solutions. To do this, one must understand the nature of solution spaces, and what makes a

homotopy solution curve or surface relatively good or bad, computationally speaking. This

leads to the topic of algebraic geometry, the study of the nature of real and complex solution

sets of analytic systems of equations.

This thesis seeks to understand fundamental properties of solution sets in real and

complex space, and to see (1) what they have to do with homotopy method computation,

and (2) whether this understanding can be used to come up with new and improved ways

of computing solutions to nonlinear equations.

Questions also arise about the kinds of equations associated with calculating dc

operating points, given the existence of a known set of circuit components and a range of

circuit topologies. Ideally, circuit properties used in conjunction with insight into algebraic

geometry should aid in the design of homotopy functions and associated methods.

The periodic orbit finding problem adds the complication of working with a two-

point boundary value problem rather than directly with a system of nonlinear equations.

The boundary value problem must be formulated as a system of nonlinear equations, and

we seek to understand (1) what is the effect of having the natural domain of the problem be

non-algebraic, and (2) for a particular class of circuits, say power electronic circuits, what

properties do the associated algebraic formulations have,and how do these properties relate

to the appropriateness of applying homotopy methods to finding periodic orbits.

Questions Addressed:

Some questions this thesis addresses are listed below, as are some fundamental

properties of solution spaces that we explore in an effort to answer them.

• Can adding extra real or complex parameters to a typical single-parameter homo
topy function, effectively increasing the dimension of the solution space available for
maneuvering, lead to improved homotopy methods?

• If so, what is the minimum number of real and/or complex homotopy parameters that
must be added to avoid folds, forks and other bifurcations along solution paths? How

can this avoidance be accomplished, and will all locally linked solution branches be
accessible?



• What is the minimum number of complex homotopy parameters that must be added

to guarantee a solution set that connects all circuit solutions? What is the nature

of these solution sets, and how might one exploit knowledge of the solution space

topologies in order to develop algorithms for finding all solutions?

• Is it possible to convert a global connectivity property of complex space to a local

connectivity property? If so, how? In particular, is it possible to connect all solutions

of a circuit in a single algebraic element around infinity?

• Do the answers to the above questions differ for finding dc operating points and

periodic orbits?

• Because the periodic-orbit finding problem is naturally posed as a two-point boundary

value problem rather than a system of algebraic equations, a question arises regard

ing parameter placement. When finding periodic orbits of circuits, does it make a

difference whether homotopy parameters are added directly to the differential circuit

equations, or to the algebraic formulation of the two-point boundary value problem?

If so, how and why?

• What are the properties of power electronic circuits and the periodic orbits associated

with them? How about the relationship between the Poincare map class of such

circuits, their periodic-orbit bifurcations, and the potential for applying the homotopy

concepts developed for finding dc operating points to finding periodic orbits of power

electronic circuits?

Fundamental Properties:

A preview of some fundamental properties of real and complex solution spaces that

we use to provide answers to these questions are as follows. Given a homotopy function

H(x,\):SxU -+S,

1. Bifurcation sets of H(x, A) = 0 are codimension one in real space, and codimension

two in complex space.

2. If the equations H(x,\) = 0 are irreducible, then the complex solution space of

H(x, A) = 0 is globally connected.



3. There are two kinds of branch points, singular and nonsingular. There are two kinds

of singular branch points, locally reducible and locally irreducible.

4. A branch point of multiplicity r serves to connect all r converging solution branches

of H(x, A) = 0 in a single algebraic element, if the function is locally irreducible at

the branch point.

5. A system of equations may be parameterized in such a way that it has the same

number of complex solutions for almost all parameter values. We call this property

conservation of solution number.

6. The concept of bifurcation set inheritence. Given a homotopy function derived from an

algebraic formulation of a two-point boundary value problem, the homotopy method

will inherit the bifurctaion set either of a generic algebraic system, or a generic dy

namical system, depending on how the homotopy parameters are added.

Italicized terms are defined in Section 4.2, Chapter 2, and Chapter 7. All of these

properties are woven into the coming chapters. Properties (1) and (2) help to answer ques

tions on the potential of multi-parameter and complex-parameter homotopy in Chapter 3.

Properties (4) and (5) provide a basis for Chapter 4, in which homotopy functions that con

nect all roots around a single branch point are designed. Concept (6) bedrocks the results
in Chapter 7.

This thesis is divided into two parts. The first part deals with finding dc operating

points, and the second part focuses on finding periodic orbits of power electronic circuits.

1.2 Contents/Contributions

• Part I focuses on applying homotopy methods to the dc operating point problem.

• Chapter 2 presents background information on homotopy methods in general, and
material related to part I of the thesis. It describes the dc operating point problem
and homotopy methods. Previous work applying homotopy methods to finding one
or multiple dc operating points is summarized, and the research presented in Part I
of the thesis is placed in context.



• Chapter 8 introduces multi-parameter homotopy methods for finding dc operating
points. The question ofwhether adding extra real or complex parameters to a single-
parameter homotopy function can lead to improved solution paths is investigated. It
is shown that no number of added real parameters can lead to fold avoidance, but
that generic folds may be efficiently avoided by complexifying the homotopy parame
ter and tracing a closed curve in complex parameter space around the the critical fold

value. A combination of real 2-parameter homotopy and complex parameter homo

topy is shown to be sufficient for avoiding real fork bifurcations and enumerating all

real, locally connected branches. Also, the potential of complex parameter homotopy

methods for finding all circuit solutions is explored. Applying results from algebraic

geometry indicates that given an irreducible, analytic homotopy function H with a

single complex parameter A, there exist regular paths through the complex parameter

plane connecting any solution of H(x,X') = 0 to any other solution of H(x,\') = 0.

So, in principle at least, complex parameter homotopy can be used to find all circuit

solutions. AppendicesA and B are associated with this chapter.

• Chapter 4 is the heart of the thesis. The idea this chapter explores is that of trans

forming the property of distributed global connectivity of complex solution surfaces

discussed in Chapter 2 to a localized connectivity property, through a well-reasoned

choice of homotopy function. In particular, the idea is to design homotopy functions

that force all circuit solutions to be locally connected around a single complex branch

point at infinity. Given such a homotopy function, repeatedly encircling this branch

point results in all solutions being calculated, with a built in stopping criterion in

herent in the cyclic nature of the local solution structure. This thesis will refer to

the notion of (1) designing a homotopy function to connect all solutions algebraically

around a single point, and (2) the accompanying algorithm, which involves repeatedly

encircling this branch point to find all solutions, complex encirclement.

• Chapter 5 considers the subject of real homotopy functions and their associated so

lution sets, a topic of importance when considering homotopy methods that rely on

real solution set connectivity to find all circuit solutions. This chapter contains a pre

liminary exploration of the real solution set connectivity of arbitrary, parameterized

nonlinear circuits. The relationship between circuit dimensionality, real level set char

acteristics, and the number/placement of real parameters guaranteeing real operating



point connectivity is examined for a class of homotopy functions that uses constant

terms in the circuit equations as homotopy parameters. A full set of results in 1- and

2-d are included, along with weaker results in higher dimensions.

• Part II focuses on applying homotopy methods to finding periodic orbits of periodi

cally forced nonlinear circuits in general, and power electronic circuits in particular.

• Chapter 6 studies various bifurcations of periodic orbits in power electronic circuits:

cyclicfold bifurcations, period doubling bifurcations, and bifurcations due to Poincare

map discontinuities. An interesting feature of power electronic circuits is that they

may have Poincare maps that are continuous but not everywhere differentiable, or

that are even discontinuous. Chapter 6 gives a comprehensive overview of period-

doubling phenomena in closed-loop DC-DC conversion circuits. Also, bifurcation

behavior in a thyristor controlled VAR compensator, understood in terms of Poincare

map discontinuities, is studied in detail. Appendix Cis associated with this chapter.
This chapter is a prelude to Chapter 7.

• Chapter 7 applies material developed in Chapter 3 to the problem of finding peri
odic orbits of nonlinear circuits, such as those found in power electronic applications
with differentiable Poincare maps. This chapter focus on differences between apply
ing multi-parameter homotopy to finding dc operating points and to finding periodic

orbits. These differences flow from the special structure of the algebraic equations de
scribing two point boundary value problems. The chapter shows that multi-parameter
homotopy methods can avoid period-doubling and cyclic fold bifurcations along solu
tion paths, and find all stable and unstable periodic solutions along folding or period-
doubling paths. Adistinction is made between circuit-direct and formulation-indirect
homotopy (embedding parameters directly in the differential equations vs. embedding
them in the algebraic formulation of the 2-point boundary value problem), and it is
shown that the latter (with two real parameters) can avoid period-doubling bifurca
tions, while the former cannot. A formulation-indirect homotopy function may be
interpreted dynamically as the addition of a time-varying, parameterized source to
the circuit.

• Chapter 8 summarizes the work presented in this thesis, and outlines some ideas for
related future work.



Chapter 4

Connecting Infinity: Complex

Encirclement

57

In principle at least, complex parameter homotopy has the potential for finding

all dc operating points of nonlinear circuits with analytic circuit element models. This

potential exists because complex solution manifolds of irreducible analytic homotopy func

tions are completely connected over the complex parameter plane, with an overall structure

determined by the location of the branch points.

This chapter explores one approach to utilizing this global complex connectivity

property, that of deliberately designing a homotopy function that is constructed so that all

roots are locally connected in the neighborhood of infinity.

For analytic circuit equations with a finite number of complex roots (either poly

nomial, or polynomial-bounded), the idea is to design a complex homotopy function with

all roots connected in a single algebraic element of finite order. Repeatedly encircling this

branch point, located at infinity, results in the numerical calculation of all solutions, and

there is a built in stopping criterion inherent in the cyclic nature of the local solution struc

ture. We call the notion of (1) designing a homotopy function to connect all solutions

algebraically around a branch point, and (2) the accompanying algorithm, which involves

repeatedly encircling this branch point to find all solutions, complex encirclement.

The main geometric property on which this approach is based relates local irre-

ducibility of a branch point to the existence of a single algebraic element connecting all
coalescing solution branches. In short, a branch point of multiplicity r serves to connect all
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r converging solution branches of H(x, A) = 0 in a single algebraic element, if the function

is locally irreducible at the branch point. Consequently, the goal is to design homotopy

functions with a locally irreducible branch point of maximal multiplicity, in order to locally

connect all circuit solutions.

This chapter also deals with analytic circuit equations with exponentials in them,

which are fundamentally different from polynomial systems of equations in that they gen

erally have an infinite number of complex roots. The notion of complex encirclement,

initially developed on polynomial-type equations, can be generalized to systems with an

infinite number of solutions. In this case the goal is to design a homotopy function that has

all roots going to infinity along with a parameter, and that can be used to find all complex

roots of the circuit equations within a compact space \x\ < r, via complex encirclement. As

for polynomial circuit equations, the notion of local irreducibility in the neighborhood of

infinity is key to the success of this approach.

The chapter is organized by function dimension and type, and our development

proceeds from scalar polynomials, to higher dimensional polynomials, to analytic systems

with exponentials in them. Ideas are illustrated on circuit and function examples, and with

line drawings.

4.1 Introduction

In the previous chapter, real and complex multi-parameter homotopy methods

for solving nonlinear circuits were introduced, and their potential for avoiding folds and

bifurcations along solution paths, and for finding all solutions, were explored. We found

that, in principle at least, complex parameter homotopy has the potential for finding all

solutions. This potential exists because complex solution manifolds are connected over

the complex parameter plane. Given an irreducible, analytic homotopy function H with

a complex parameter A, there exist regular paths through the complex parameter plane

connecting any solution of H(x, X') = 0 to any other solution of H{x, A') = 0. As explained

in Section 3.5,this connectivity may be understood in termsof the location of branch points

and branch cuts, which are generally not known apriori.

Given an arbitrary irreducible homotopy function, this global connectivity property

is a composite effect of the local connectivity at each branch point. That is, each branch

point generally connects only a small number of the n solution surfaces (perhaps two), as
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Figure 4.1: a) Complex homotopy function with distributed global connectivity. More
than one branch point must be encircled to find all three solutions, b) Complex homotopy
function with localized global connectivity. Only one branch point must be encircled (twice)
to find all solutions.

illustrated in Figure 4.1a for the case of a function of degree three with two branch points

corresponding to repeated roots of multiplicity two. In general, no one branch point locally

connects all n solution surfaces. Thus, global connectivity is a collective property of the

solution surface connections at all branch points. This is an important consideration in

approaching the next logical step of this research - the development of a homotopy-type

algorithm that uses the global complex connectivity property to its advantage.

Designing a homotopy method can be thought of as involving the two following

steps.

1. Design a homotopy function. Ideally, it should be one that guarantees certain al

gorithmic properties like existence of solutions, number of accessible solutions, and

efficiency.

2. Design a solution curve (or surface) tracing scheme compatible with the chosen ho

motopy function - one that posseses desirable algorithmic propererties.

We want to develop a deterministic complex-space algorithm provably guaranteed

to find all dc operating points, and to focus on step (1) of the homotopy method design

process in an attempt to reach this objective.

The idea explored in this chapter is that of transforming the property of distributed

global connectivity of complex solution surfaces discussed in Section 3.5 to a localized con-
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nectivity property, through a well-reasoned choice of homotopy function. We deliberately

design a homotopy function that is constructedso that all roots are locally connected in the

neighborhood of infinity.

For analytic circuit equations with a finite number of complex roots (either poly

nomial, or polynomial-bounded), the idea is to design homotopy functions that force all

circuit solutions to be locally connected around a single complex branch point in a single

algebraic element. Given such a homotopy function, repeatedlyencircling this branch point

would result in all solutions being calculated, with a built in stopping criterion inherent in

the cyclic nature of the local solution structure.

The idea is illustrated in Figure 4.1. In this figure we assume that the problem to

be solved is to find all three isolated roots of a function F(x) = 0, and that two homotopy

functions embedding F have been formed, H\ and H2, the first being irreducible, with the

overall connectivity distributed over a region (the typical scenario), and the second being

specifically designed to connect all three sheets at a single point. Assume that H2(x,Xm) =

F(x), and that one solution xi of H2(x, A.) = F(x) = 0 is given. Because all three sheets

are connected in a single algebraic element, the other two solutions of F(x) = 0, x2 and

x3, can be found by encircling the branch point twice, as shown in Figure 4.1b. A third

encirclement leads right back to x\, so we are automatically notified that all roots have

been calculated and there is no need to look further. Thus, there is a built in stopping

criterion in the cyclic nature of the algebraic element that connects all three solutions of

the function.

The simple maneuver of locally encircling a single branch point in an attempt to

calculate all three roots of F(x) = 0 would not be successful for our typical homotopy

function H\ with its distributed connectivity, as illustrated in Figure 4.1a. This is because

the connectivity of this function is distributed across a pair of branch points, so encircling

any one branch point would lead to a calculation of fewer than three roots.

We call the notion of (1) designing a homotopy function to connect all solutions

algebraically around a single point, and (2) the accompanying algorithm, which involves

repeatedly encircling this branch point to find all solutions, complex encirclement.

This chapter also deals with analytic circuit equations with exponentials in them,

which are fundamentally different from polynomial systems ofequations in that they gen
erally have an infinite number of complex roots. For engineers, this is an important class

of systems, because many circuit element models, such as the Ebers-Moll bipolar transistor
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model, include exponential terms. The notion of complex encirclement, initially developed

on polynomial-type equations, can be generalized to systems with an infinite number of

solutions. In this case the goal is to design a homotopy function that has all roots going
to infinity along with a parameter, and that can be used to find all complex roots of the

circuit equations within a compact space \x\ < r, via complex encirclement.

The remainder of the chapter focuses on developing the idea of complex encir

clement around infinity. We begin with one polynomial equation in one unknown, where

some of the answers can be found by inspection, or in classical root locus theory [49], or
through other simple analyses. Then we move on to an analysis of higher dimensional

polynomial equations, and then to non-polynomial equations and transistor circuits.

The chapter is organized as follows. In Section 4.2 we define terms, and present

some mathematical prelimaries. Section 4.3 deals with one dimensional, parameterized

polynomials. We design a homotopy function with an infinite branch point, and show that

all roots of the equation are connected in a single algebraic element around infinity. We
also address the question of exactly what it means, in practical terms, to encircle infinity,
and provide insight on how to visualize complex solution space. We end the section with

some examples, and a brief discussion of the kinds of complications one may encounter if

the parameter appears non-linearly in the equation.

In Section 4.4,polynomial homotopy functions with twoequations, two unknowns,

and acomplex parameter are investigated. A general homotopy function form isgiven, with
the parameter appearing linearly, and various potential root constellations are discussed.

Then a homotopy function design is presented, which is guaranteed to have all roots going

to infinity with the parameter, along with accompanying sufficient conditions on the original
problem ofinterest. Following that, some necessary and sufficient conditions ensuring that
the homotopy function will have all roots connected in a single algebraic element around

infinity are proved. The subsection ends with aseries ofexamples illustrating thegeometric
and algebraic facets of these results. Concepts important to this section include winding
numbers, complex solution curves seen as paths along tori, and local irreducibility around
branch points.

Section 4.5 generalizes basic results of the previous sections to higher dimensional

polynomial systems, and outlines a complete complex encirclement algorithm. Also, the
issue of conservation of solution number and its importance to complex encirclement is
discussed.
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•)

Figure 4.2: a) Nonsingular branch point, b) Singular, locally irreducible branch point, c)
Singular, locally reducible branch point.

The chapter ends with Section 4.6, which considers analytic systems of nonlinear

equations that include exponential as well as polynomial terms, systems that are funda

mentally different from polynomials because they can have an infinite number of complex

roots. The observations made in this section point to a more general notion of complex

encirclement for systems with an infinite number of complex solutions and branch points.

We conjecture that for certain types of functions, including those with exponential terms

that are linear in the argument (some diode and transistor models), a homotopy function

that has all roots going to infinity along with a parameter, and that is locally irreducible

at infinity, can be used to find any number of roots of h(x, A/) = 0. Specifically, numerical

experiments suggest that complex encirclement can be used to find all roots of H(x, Ay) = 0

within the compact space |x| < r, along regular paths.

Also, ideas for related future work are presented in a conclusion. But first, we

include a subsection containing a short self-contained summary of some of the main ideas

and objectives of this chapter.

4.1.1 Basic Idea and Research Goals: In a Nutshell

The purpose of this subsection is to present a concise account of the main ideas

and goals of the portion of this chapter that focuses on finding solutions of circuit equations

with a finite number of complex roots. We define repeated root and branch point, and

classify branch points as being either singular or nonsingular, locally reducible or locally

irreducible. We state the main geometric property on which this portion of the chapter is

based, that being the relationship between local irreducibility of a branch point and the
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existence of a single algebraic element connecting all coalescing solution branches. Then

an infinite branch point is defined, as is the encirclement of infinity. We end with a brief

presentation of the goals of this research, primary among them that of designing homotopy

functions with an infinite branch point connecting all circuit solutions in a single algebraic

element. Accompanying algorithms are outlined. For a discussion of the issues associated

with finding solutions of circuit equations with an infinite number of complex roots, see

Section 4.6.

Repeated root, branch point:

A branch point is a parameter value A 6 Cat which the homotopy function

H(x, A) = 0,H : Cn x C -*. Cn has a repeated root of multiplicity r > 1.

Two kinds of branch points, singular and nonsingular:

There are two kinds of branch points, singular and nonsingular. At a nonsingular

branch point, the extended Jacobian matrix [dH/dx,8H/dX] has full rank. At a singular

branch point, the extended Jacobian matrix drops rank. Figure 4.2a shows a nonsingular

branch point A = 0 with a repeated root x = 0. For example, the function h(x,X) =

x2 + A= 0 has a nonsingular branch point at A= 0.

Two kinds of singular branch points, locally reducible and locally irreducible:

There are two kinds ofsingular branch points, those at which the function is locally

reducible, and those at which the function is locally irreducible. Figure 4.2b shows a locally

irreducible singular branch point at A= 0 (h(x, A) = A3 + x2 = 0), while 4.2c shows a

locally reducible branch point at A= 0 (h(x, X) = x2 + A2 + A3 = 0). A function of two

variables f(x, A) = 0 that islocally reducible (and analytic) at a branch point may belocally

represented as the product of two non-trivial power series, / = gh. A locally irreducible
function is not locally reducible.

Locally irreducible implies connected manifold (Fundamental Property):

A branch point of multiplicity r serves to connect all r converging solution branches



64

ofH(x, A) = 0 ina single algebraic element, if the function is locally irreducible at the branch

point. (Consequence of proposition A5 in Section 4.2)

Nonsingular branch points are irreducible, connected:

If a branch point is nonsingular, it is also irreducible. Therefore all branches

coalescing in a nonsingular branch point are connected in a single algebraic element. This

curve has a winding number of one, meaning that encircling the branch point r times in the

parameter space A results in the calculation of a complete solution cycle of H = 0, and the

associated solution curve i(A) winds around the repeated root value x* exactly once.

Some singular branch points are irreducible, connected:

Singular branch points that are irreducible have all coalescing branches connected

in a single algebraic element. This curve will have a winding number greater than one. The

functions x(x + A) = 0 and x3 + A2 = 0 are examples of reducible and locally irreducible

functions, with branch points at A= 0. The latter has a single algebraic element connecting

all three roots with a winding number of two.

A branch point at infinity:

The function H(x, X) = 0 has a branch point at infinity if more than one root x

of H goes to infinity as the parameter Agoes to infinity. Meaning that A—» oo implies that

(xi,..,xn) -> (oo,..,oo). H(x,X) = 0 is said to have an infinite branch point at A= oo of

multiplicity r, where r is the number of coalescing complex branches.

Encircling infinity:

As explained in Section 4.3, tracing a circle through the complex parameter plane

A= |A.|eJ*,0 = 0 : 2tt, with the radius of the circle A, chosen to be large enough so that

the complex circle contains all finite branch points of the homotopy function, is equivalent

to encircling infinity. Since the location of complex branch points is not known apriori,

locating the connecting branch point at infinity is useful. Any large enough circle traced

through the complex parameter plane will connect all solutions of an algebraic element

located at infinity (Figure 4.6).
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Goals of this research:

1: Complex Encirclement: find all roots, real and complex.

• a) Design homotopy function H that forces all branches to coalesce in a single repeated
root at a single branch point.

• b) Find additional conditions on the homotopy function H that guarantee that this

branch point is either nonsingular, or singular but locally irreducible, so that all

coalescing branches will be locally connected in a single algebraic element.

Associated algorithm: 1) Find all n roots of the designed homotopy function H(x, A.) = 0

via n/2 encirclements of infinity, with A= Xme>9,8 = 0 : nir. Only n/2 are necessary

because if H(x,A.) is real, then the roots will appear in complex conjugate pairs.

2) Continue the n paths of H(x,X) = 0 from A = A. to A = 0, at which point
H(x, 0) = F(x), the circuit equations of interest.

Anticipated advantages: This algorithm finds all real and complex roots of a system, with

out apriori knowledge of the number of roots. Also, computation time is not wasted

on on homotopy curves that go to infinity rather than terminating on a solution,

as is the case for typical multi starting point homotopy methods. This is useful for

polynomial-bounded analytic equations and deficient polynomial systems (fewer roots
that the Bezout upper degree bound).

The real circuit solutions of interest are then extracted from the complete set of

real and complex solutions calculated by the algorithm.

2: A Complex Encirclement and real Lambda Threading hybrid: find all real
roots.

• a) Design a homotopy function H that forces all real disconnected branches to have

at least one root going to infinity.

• b) Find additional conditions on the homotopy function that guarantee that this
branch point is either nonsingular, or singular but locally irreducible, so that the col-
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lection of coalescing branches including at least one representative of each disconnected

real branch will be locally connected in a single algebraic element.

Associated algorithm: 1) Use a real curve tracing algorithm to find all real solutions of

H(x, A) = 0 along a single real branch. 2) Trace out a root going to infinity from the

real branch to a large A = Xm. 3) Apply infinite encirclement algorithm to find all

branches connected at infinity corresponding to real disconnected branches. 4) Trace

back roots to A= 0 and check to see if any are on a different real branch from that in

(1). If so, repeat (1) for all new branches.

Anticipated advantages: This algorithm is designed to find all real disconnected solution

branches of a homotopy function, and thus all real roots of the circuit. Apriori knowl

edge of the number of real roots is not necessary, and not much computation time is

wasted on complex roots.

This chapter mainly focuses on goal (1), with some observations along the lines of (2).

4.2 Definitions and Mathematical Preliminaries

Definition 4.2.1 (Analytic Function) Afunction h(x,X), h:Cn xC -> C, is analytic

if it has a local power series expansion in all variables at each (x, A) € {Cn x C}. Examples
of analytic functions are polynomials and exponentials.

Definition 4.2.2 (Branch Point) A branch point is a parameter value X€ C at which a

complex-parameter homotopy function H(x,X) = 0,H : Cn x C -• Cn, has repeated roots.

As such, the branch points correspond to parameter values where two or more solution

surfaces contact each other.

Definition 4.2.3 (Regular Point) Given an analytic function H(x,X) = Q,H : Cn x

C ~* Cn, a parameter value X € C is a regular point of H if it is not a branch point of

H. Regular points correspond to parameter values at which the associated solution surfaces
remain distinct.

Definition 4.2.4 (Irreducible) An analytic equation H(x, A) = 0 is reducible if it may be

written inproduct form H(x, A) = P(x, X)Q(x, A) = 0, so that the roots of H are the union of
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the roots of P and Q, both analytic functions in x and X passing through zero. The equation

H(x,X) = 0 is irreducible if it is not reducible, and a system of equations H(x,X) = 0,

H : Cn x C -> Cn, is irreducible if each hi is irreducible, where H = [hi,h2,..hn]', and

if the equations hi intersect genetically. For example, x\ —x\X = 0 is irreducible, as is

e~Xl(ao + a\X\ + 02X2 + .. + anxn) = 0. The former function does not factor into the

product of two analytic functions, while the latter function only factors into the product of a

polynomial and an exponential, an analytic function which does not pass through zero called

a unit. However, the solution set of x\ - x\X2 = 0 reduces to the product of the solution

sets of x\ - x2X = 0 and x\ -f X2A = 0. Hence this function is reducible.

Definition 4.2.5 (Locally Irreducible at a Point) Anequation is considered locally re

ducible at a point if it may be locally represented by a product of non-trivial power series.

The equation is locally irreducible at a point if it is not locally reducible at the same point.

An equation may be both globally irreducible yet locally reducible at a point. For example,

h(x,A) = x2-A2-A3 is irreducible, because it cannot be factored into the product of two poly

nomials, but is locally reducible at X= 0. We factor h(x,A) = (x - A>/l~+~A)(x + A\/l + A),

the product of two functions that, while not globally analytic, are analytic in the neighbor

hood of X = 0, and thus are locally representable by power series. For contrast, look to

x2 - A3 - A4 = 0, which factors to (x - Xy/Xy/1 + A)(x + X\/Xy/\ + A), functions that are
not analytic at X= 0 because of the presence of the term y/X. This equation is both globally
irreducible, and locally irreducible at X = 0.

Definition 4.2.6 (Degree of an Analytic Variety) Let f : S -> S' be an analytic map

between compact Riemann surfaces S and S'. The degree of a variety V, the solution space

°f f(x) = 0> ** ^e number of points of intersection ofV with a generic linear subspace of

complimentary dimension ([25],p.J71).

The degree of a function H{x, A) = 0, H : Cn x C -• Cn, is the number of distinct

solution points x satisfying H(x, A) = 0 at a regular parameter value A€ C. The degree of

a function can be finite, as it is for polynomial-bounded functions, or infinite.

Definition 4.2.7 (Dimension of an Irreducible Analytic Variety) The dimension of

an irreducible analytic variety V is the dimension of the complex manifold V* (V* = V- Va,

the set V minus the set Va, where Vs is the set the singular set of V). The singular set Vs

is composed of all repeated roots in V.
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Definition 4.2.8 (Algebraic Element) Let H : Cn xC -> Cn be an analytic map. The

solution set (x, A) of H(x,X) = 0 in the neighborhood of a branch point A& € C at the

solution point x € Cn is called an algebraic element of order d - 1 if the function can

be locally represented, via an isomorphic coordinate change, by a system of polynomial

equations of the form

xi = XVi (4.1)

xi = A"2

xdm = A*»

where the integers (d,vi,..vm) are coprime. A set of integers are coprime if they have no

common divisor other than one (e.g. 2 and3 are coprime, but 2 and4 are not, as they have

a common divisor of two).

Definition 4.2.9 (Algebraic Element - Scalar Case) Let f : C x C -> C be an an

alytic map. The solution set (x, A) of f(x, A) = 0 in the neighborhood of a branch point

A& € C at the solution point x € C is called an algebraic element of order d - 1 if the

function can be locally represented, via an isomorphic coordinate change, by a polynomial

of the form Xv = xd, where d and v are coprime integers.

A branch point of order d - 1 must be circled d times in complex space in order

to return to the orginal solution manifold. Each revolution has the effect of moving the

solution point from one solution manifold to another (there are d), until the nth revolution

returns the solution point to the original manifold. We refer to this local solution structure

of d helicoid connected sheets as an algebraic element of order d - 1.

Definition 4.2.10 (Winding Numbers-Vector Function) The winding numbers of an

algebraic element of order d- 1 arc an n-tuplet of integers (w\, w2, ..ly,-, ..iyn) signifying the

number of times each variable winds around the repeated root value as a complex circle is

traced around the associated branch point d times. Given an algebraic element of a vector

function, which can be locally represented byEquations (4-1), each variable x, of the solution

vector (xi,X2,..Xi,..x„) of ( 4>1) has its own winding number wt = v,-, which measures the

number of times that the variable path x,(A) = \e\v*ldeiBvld winds around x, = 0 as the
parameter X= ee^6,B = 0 : d2"K is traced around an infinitesimal circle of radius € centered
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Weierstrass Preparation Theorem ([25],p.8) : If the function f :Cn -> C is analytic
around the origin inCn and is not identically zero on the w-axis, then in some neighborhood
of the origin f can be written uniquely as

f(z, w) = g(z, w)h{z, w) (4.3)

where g is a Weierstrass polynomial of degree d in w and h(Q, 0) ^ 0.

4.2.2 Fundamental Theorem on Connectivity

From page 117 of [27], we take proposition (A.5), written below.

(A.5) Proposition: A germ of analytic space X C U C Cn at 0 is topologically unibranch
if and only if it is irreducible (at 0).

For a proof, see pages 117-118 of [27].

Interpretation:

Roughly speaking, a 'germ' of an analytic space is the solution set of a locally

analytic system ofequations in a sufficiently small neighborhood ofa branch point located

at 0. In [27], X is called topologically unibranch at 0 if there is a fundamental system of

neighborhoods Un of 0 such that Unf]X - Unf]Sing(X) are connected, where Sing(X)
refers to the singular points of X. One can think of the neighborhoods Un as successively
smaller balls around 0. The term Vn{\X refers the intersection of the set X and the ball,

and the term Un f]Sing(X) refers to the set ofall singular points ofA' in this ball, meaning
the set of all repeated roots. Thus, the expression Unf\X - Unf)Sing(X) refers to the
set ofregular points in a small neighborhood ofthe branch point. Proposition (A.5) states
that roughly speaking, the set of regular points in a small neighborhood of a branch point
is connected if the function is locally irreducible at that branch point.

Consequence:

A branch point ofmultiplicity r serves to connect all r converging solution branches

ofH(x, A) = 0 in a single algebraic element, if the function is locally irreducible at the branch
point.

Many ofthe results ofthischapter can beunderstood as applications ofProposition
(A.5).
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Figure 4.3: a) Algebraic element with winding number w = l. b) Agebraic element with
winding number w = 2.

around X= 0 d times. See Figures 4-12 and 4^3 for examples of algebraic elements with
different winding number vectors.

Definition 4.2.11 (Winding Number-Scalar Function) An algebraic element Xv =

x has a winding number w = v. The winding number measures the number of times the
solution path x(A) = \c\vfde>*vfd winds around x =0 as the parameter X= teie ,B = 0 :d2ir
is traced around an infinitesimal circle of radius c centered around X= 0 d times. It is the

number oftimes the image ofthe complex parameter circle, a closed curve in solution space,
winds around before closing in on itself, as shown in Figure 4.3.

Definition 4.2.12 (Generic [25]) When dealing with a family of objects parametrized lo
cally by a complex manifold or an analytic subvariety of a complex manifold, the statement

that ua generic member of the family has a certain property" means that the set of objects
in the family that do not have that property is contained in a subvariety of stricty smaller
dimension.

4.2.1 Local Representation of an Analytic Function as a Polynomial

Definition 4.2.13 (Weierstrass Polynomial ([25],p.7)) A Weierstrass polynomial in
w is a polynomial of the form

wd + a1(z)wd-1 + ... + ad(z)

where a,(0) = 0 and z is a complex vector.

(4.2)
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4.3 One Equation, One Unknown: Polynomials

This section deals with one dimensional, parameterized polynomials. We design a

homotopy function with an infinite branch point, and show that all roots of the equation

are connected in a single algebraic element around infinity. We also address the question

of exactly what it means, in practical terms, to encircle infinity, and provide insight on

how to visualize complex solution space. We end the section with some examples, and a

brief discussion of the kinds of complications one may encounter if the parameter appears

nonlinearly in the equation.

First we look at homotopy functions with A appearing linearly, as follows. For a

polynomial equation h(x,X) = 0, where

h(x,X) = p(x) + Ar(x) (4.4)

and p(x) and r(x) are polynomials, root locus theory [49] tells us that at A = 0, any finite

roots of h(x, A) = 0 must satisfy p{x) = 0. At A = oo, any finite solutions of h(x, A) = 0

must satisfy the equation r(x) = 0.

Homotopy Function Design:

As a consequence, if the function r : C -*• C is chosen to be a constant, r(x) =

k, k € C, then the function h(x, A)= 0 will have no finite solutions at infinite A. Choosing

a homotopy function of the form

h(x,X) = p(x)-rXk (4.5)

ensures that as the parameter A -> oo, all the solutions of h(x, A) = 0 will also approach

infinity (|x| -*• oo as |A| -• oo). This implies that h(x, A) = p(x) + Xk = 0 has an infinite

root of multiplicity n at A = oo, where n is the degree of the polynomial p(x).

In the proposition below ( Proposition 4.3.1.1-2), we prove that a homotopy func

tion of the form in Equation (4.5) has a repeated root of multiplicity n at A = oo. The next

question is that of local connectivity in the neighborhood of A = oo. That is, how many al

gebraic elements are there at A = oo? What determines the answer to this question? If there

are two or more algebraic elements, how are they grouped together? Proposition 4.3.1.3

provides the answer, which is that there is a single algebraic element at infinity that locally

connects all roots of the polynomial. More formally stated,
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Proposition 4.3.1:

1. The polynomialhomotopy function h(x, A) = p(x) + Xk = 0, k € C, has no finite roots

as X —• oo.

2. At X = oo, h(x,X) = 0 has an infinite root of multiplicity n, where n is the degree of

the polynomial p(x).

3. At X= oo, the polynomial homotopy function h(x, A) = p(x) + Xk = 0,& € C, has a

single algebraic element of order n - 1, where n is the degree of the polynomial.

Proof:

1. assertion: A —• oo =* x —• oo.

Assume not. Then 3M € R s.t. |x| < A/,VA € C. Let n(x, A) = p(x) + A, where p

is a non-constant polynomial. Then p(x) = -A, and |p(x)| = |A|. \x\ < M ^ 3N €

Rs.t. \p(x)\ < N. Thus |x| < M =• |p(x)| < N =• |A| < AT. But we let A - oo, so

proof by contradiction. 6

2. (and 3.) Let h(x, A) = p(x) - A = 0. Without loss of generality, let the polynomial

p(x) = xn + r(x), where n is the degree of p and r is a polynomial of degree less

than n. As A —• oo, x —• oo and the highest degree term of p(x) dominates and

h(x,X) « xn - X. Asymptotically as A -> oo, xn « A = \X\Se+k2lt\k € Z, and

x s» |A|(1/n)eJ(*+Ar2,r)/n, n roots equally spaced around a complex circle of radius
|A|̂ /n), as shown in Figure 4.4. The entire solution structure ofh in the neighborhood
of A = oo is thus a single algebraic element of order n - 1, and the branch point at

A= oo is an infinite repeated root of multiplicity n. 4

Alternate Proof (Proposition 4.3.1.3):

• Let h(x, X) = p(x) - A= 0. From Proposition 4.3.1.1-2 we know that h has an infinite

root of multiplicity n at (x, A) = (oo,oo), where n is the degree of p. Now, from [25]

we know that if branch point is nonsingular, then a single algebraic element connects

all coalescing roots of this function around the branch point.

To check for non-singularity, we first perform a change of variables y = 1/x and

A= l//i and substitute into h in order to move the infinite branch point to (y,fi) =
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Figure 4.4: Algebraic elements of order n - 1, hxn = A. Solutions - n roots equally spaced
around a circle of radius |A|^/n). a) n = 8. b) n= 3.

(0,0). The new analytic function /i'(y,/i) = ftynh(l/y,l/fi) = fiynp(l/y) - yn is
obtained by changing variables and multiplying out the denominator. Next we form

the extended Jacobian matrix of h\ [dh'/dx.dh'/dX] = [r(y,/*), 1], and check its rank

at (y,//) = (0,0) (r is a polynomial in y and /i). This matrix has a rank of one

at (y,n) = (0,0), which implies that the solution curve of h! passing through the

repeated root y = 0 at p = 0 is non-singular. This in turn implies that the solution

curve of h passing through the repeated infinite root at A = oo is also nonsingular,

and that a single algebraic element connects all n roots of h around infinity. 4

Encircling Infinity:

In this subsection we address the question of exactly what it means, in practical
terms, to encircle infinity. To understand this, first imagine the complex parameter plane,

A€ C extending out to infinity in all directions. Now curl up the far, infinite edges of this
plane, the entire horizon, like abig drawstring bag with the string all around infinity. Then
pull the edges upward and together until the infinite plane is deformed into a sphere with
all ofinfinity contracted to a single point at the north pole of this sphere, as in Figure 4.5.
This way of representing complex space as a sphere with a single infinite point is referred
to as a Riemann sphere [25]. When thinking of the complex parameter plane A, or sphere,
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4J.

•1 I

Figure 4.5: The complex parameter plane \ £ C represented as a Riemann Sphere, with
the north pole acting as infinity.

as it relates to the solutions of the homotopy function H(x,X) = 0,H : C x C -* C,

recall from Section 3.5 that there are at least two important types of points in the complex

plane/sphere: regular points and branch points. At branch points the homotopy function

has repeated roots, and at regular points the homotopy function has n distinct roots, where

n is the degree of the solution space, or variety, of H. In the neighborhood of a branch

point, solution surfaces are connected in one or more helicoid structures called algebraic

elements, while small open sets of regular points have solution images that look like a set

of n non-intersecting sheets.

Because of this, the important features on the Riemann parameter sphere asso

ciated with a homotopy function are the branch points, as they mark points at which the

solution manifolds touch each other. A homotopy function will in general have some limited

number of finite branch points, and an infinite branch point, marked as the north pole in

Figure 4.6. If one is interested in encircling infinity, one may think of tracing a tiny circle

around the north pole, as shown in Figure 4.6a. However, since all closed curves containing

just one branch point (in this case the one at infinity) are homotopically equivalent, we

might just as well pick a circle with a finite radius that is just large enough to contain all

finite branch points, as shown in Figures 4.6b and 4.6c. This excursion is equivalent to a

circle with a radius approaching infinity. Thus, in practical terms, one may encircle infinity

with the complex parameter plane circle A= |A»|e^,0 = 0 : 27r, with a radius A. chosen to

be just large enough to encircle all finite branch points. In the example that follows, a radius
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Figure 4.6: (a,b) The complex parameter plane A€ C represented as a Riemann Sphere,
with the north pole acting as infinity. a,b,c) All paths encircle infinity.

of about A. = 4.5 is required to encircle infinity. In the next section on two dimensional

functions, we will see examples where a radius ofaround A. = 1012 is required to encircle
infinity.

Implications of Proposition 4.3.1:

Given a single root xlx. of the equation h(x,Xm) = p{x) + Xmk = 0,& € C at
a value of A. € C chosen such that |A.| > r, where r is the finite radius of a circle in

the complex plane containing all finite branch points ofh, then tracing a full circle in the
complex parameter plane A= A.e-^,0 = 0 : 2tt, from the solution x = arlA. will lead to
a second solution x = x2x, of /i(x,A.) = 0. Tracing a second full circle in the complex
parameter plane A= A.e>',0 = 0: 2tt, from the solution x = x2A. will then lead to a third
solution of h(x, A.) = 0, x = x3A.. Then, if one continues to trace circles in the complex
parameter plane, moving from solution to solution, all solutions of h(x, A.) = 0 will be
found, and eventually, on the nth revolution, the algebraic element will have been fully
cycled through and the original root arlA, will re-appear. Thus, continuing to traverse a
circle in the complex parameter plane A= A.e^,0 = 0 : *2jt will lead to the numerical
calculation of a string of roots (*lA.,*2A.,..xnA.,xlA.,ar2A.,.) consisting of the repetition
of the n roots of the function h(x, A.) = 0. Once all n roots of h(x, A.) = 0 are found, all
the roots of h(x, X) = 0 at any arbitrary value of Amay be found, including that of the
original problem of interest to be solved.
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Figure 4.7: Root loci of n(x, A) = x5 + 2x3 + 3x2 - x + A = 0, A = Xmej9,$ = 0 : 2*, for
various radii A., a) Loci of h at A« = 0.05. b) Loci of h at A, = 0.5. c) Loci of h at A. = 2.0.
d) Loci of h at A* = 4.5. e) Loci of h at A. = 10. f) Loci of h at A. = 50.

Example 1:

The first example we will go through in detail is the function

h(x, A) = x5 + 2x3 + 3x2 - x - A (4.6)

Root Loci:

To help build up intuition on the connectivity of solution spaces of such functions,

look to the root loci plots of Figures 4.7a-f. These MATLAB plots wereobtained by plotting

all roots of h(x, A) = x5+2x3+3x2 - x - A = 0 at complex parametervalues sampled around

a circle A= |A«|e*'W,0 = 0 :2?r. Each plot shown in Figures 4.7a-f is a locus corresponding

to a different fixed value of the complex parameter circle radius A..

Figure 4.7a shows a root locus plot of n(x, A) = 0 at samples of A around the

circle A = \Xm\e>(9\0 = 0 : 2?r, A. = 0.05. Tracing out this tiny circle in the parameter

plane leads to five tiny circles being traced in the complex solution plane, three centered

on the real axis, and two away from it. This means that the complex circle of radius

A, = 0.05 does not encircle any finite branch points of h, and if one were to trace out a

solution trajectory starting from any of the five roots of h(x,Xm) = 0, such a revolution in

the complex parameter plane would not lead to another root of h(x, A.) = 0.
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Figures 4.7b,c show root loci plots of /»(x,A) = 0 at samples of A around the circles

A= \Xm\eH9\$ = 0 :2jt, A. = 0.5 and A. = 2.0, respectively. Clearly, these larger complex

circles do encircle one or more critical points of ft(x, A.) = 0, since each locus contains fewer

than five closed curves in complex solution space. Figure 4.7b shows four closed curves,

meaning that two of the five roots are connected in a structure equivalent to an algebraic

element of order one, while the other three roots are in disconnected zero-order elements.

Figure 4.7c shows three closed curves, meaning that three of the five roots are connected

in a structure akin to an algebraic element of order two, while the other two roots are in

disconnected zero-order elements. If onewere to start the trajectory A= \Xm\e^9\0 = 0 :2?r,

A. = 2.0, at any of the three algebraically connected roots of /i(x,2.0) = 0, x = xlA#, a

revolution in the complex parameter plane would lead to a second root of /i(x,2.0) = 0,

* = *2A-, while a third revolution in the complex parameter plane would lead to a third

root of /i(x,2.0) = 0, x = x3A.. A fourth revolution in the complex parameter plane would

lead back to the orginal root of ft(x, 2.0) = 0, x = xlA#.

Figures 4.7d-fshow root loci plots of h(x, A)= 0 at samples of Aaround the circles

A= \Xm\eM\0 =0:2jt, with radii A. =4.5, A. = 10.0, and A. = 50.0, respectively. These
even larger complex circles encircle all finite critical values, as is evidenced by the fact that

each locus contains exactly one closed curve in complex solution space. This means that
tracing acomplex circle in the complex parameter plane oflarge enough radius is equivalent
to encircling infintity. If one were to start the trajectory A= |A.|eJW,0 = 0 :2?r, A. >4.5,
at any of the five algebraically connected roots of h(xy A.) = 0, tracing a revolution in the
complex parameter plane would lead to a second root of A(x,A.) = 0. Tracing a second,
third, fourth, and then fifth revolution in the complex parameter plane would lead to a
third, fourth, and then fifth root ofh(x, A.) =0, and then to a return to the original root
from which the path started. Also notice that as A. increases, the locus smooths out and

approaches theshape ofa circle with five equally spaced roots around it, the root structure
in the neighborhood ofinfinity as shown below in the analysis section ofthe example.

Numerical Calculation:

Figure 4.8f shows the complex parameter circle A= \Xm\eX9\0 =0 :2*, A. = 10,
a circle of large enough radius to be equivalent to encircling infinity. In Figure 4.8a we
start at (x, A) =(1.25, -10), the only real solution of/»(x, -10) =0, and trace the complex
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Figure 4.8: The complex solution trajectory obtained by traversing the circle in (f) r times,
starting from the real solution of /i(x, -10) = 0. a) r = 1. b) r = 2. c) r = 3. d) r = 4. e)
r = 5. f) Complex parameter circle, radius equal 10.

parameter circle a single time to reach a second solution of h(x, -10) = 0, along the path

shown in Figure 4.8a. Tracing a second, third, fourth, and then fifth revolution around the

complex parameter circle leads to a third, fourth, and then fifth root of h(x, -10) = 0, as

shown in Figures 4.8b-d, and then a return to the original root from which the path started.

After five complex parameter revolutions, the closed curve shown in Figure 4.8e is traced

out, with all five roots of /i(x, —10) = 0 appearing at approximately equal intervals around

the closed solution curve.

Analysis around oo:

Proposition 4.3.1 applies to the homotopy function /i(x, A) = x5+2x3+3x2-x-A =

0, so we know that as A —• oo, all roots of h also go to infinity, and are connected in a single

algebraic element around the branch point at A = oo.

As A -» oo, the highest order term in x of h dominates, and asymptotically

/i(x,A) « x5 - A = 0. Therefore, for large enough |A|, the root structure of h resem

bles x = |A|^/5V^+*2,r^5,ib € Zy a constellation of five roots equally distributed around a

complex circle of radius |A|^/5^.
Recall that as long as the radius of the circle traversed in complex parameter space,

A*, is large enough so that the circle A= \Xm\e^e\0 = 0 :2tt contains allfinite branch points

of h(x, A) = 0, then the root structure will be homotopic to that around A = oo, the single

algebraic element connecting all solutions of h(x, A) = 0.
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radlu*~2.0 radius«50

Figure 4.9: Root loci of /i(x,A) = x5 + 3x4 - 2x3 + .5x2 -x + A= 0, A= A.e*, 0 = 0 :2*,
for various radii A., a) Loci of h at A. = 2.0. b) Loci of h at A. = 50. c) Loci of h at
A. = 65. d) Loci of h at A. = 200.

For this example, a relatively small radius of A. > 4.5 suffices to connect all

solutions, as is evident in Figures 4.7a-f, though in general the required radius A. may be

much larger. For example, the equation /*(x, A) = x5 + 3x4 - 2x3 + .5x2 - x + A = 0

requires a radius of A. > 65 to connect all roots, as is evident in the root locus plot shown
in Figure 4.9. •

A Note on Visualization:

One of the more difficult things about working with complex space, as compared
to real space, is that of visualizing it. Complex functions take us one dimension out of

our 3-d realm, since the very simplest scalar homotopy function in one variable and one

parameter, h(x,A) = 0, has a solution set that (generically) is a locally two dimensional
object in 4-d.

A way of visualizing complex solution space that we have found to be intuitively
rich is as follows. First, take the complex parameter plane and imagine it as a continuum
of concentric circles of radii A. varying from zero to infinity, as shown in Figure 4.10a.
Because of the nature of complex solution space, the image of a circle in the complex
parameter plane is a collection ofclosed curves in the complex solution plane (as long as the
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Figure 4.10: Visualizing complex solution space, a) Concentric circles of radii 0 < A. < oo
compose the complex parameter plane A € C. b) Visualizethe solution space of /i(x, A) = 0
as a locally two dimensional surface in three-D, with the axes being the Imag(x)i Real{x),
vs. the parameter plane radius A..

homotopy function has finite degree). For example, if a homotopy function h(x, X) = 0 has

five solutions at a fixed value of A= A,, then the image of the circle A= \Xm\e^0\0 = 0 : 27r

is a collection of between one and five closed curves, depending on the chosen radius A».

We represent the complex solution set of a homotopy function by plotting the

root locus (x/h(x, A) = 0) of the homotopy function along the parameter plane circle A =

|A«|e^*),0 = 0 :2tt, as a function of circle radius A*. At a fixed circle radius A,, the locus

consists of one or more closed complex solution curves. As the radius varies, the complex

parameter circle will intersect branch points. When this happens, closed solution curves

will merge or divide, in a sort of topological bifurcation. Viewed along the entire A. axis,

solution surfaces of homotopy functions designed to connect around infinity, represented in

this way, will resemble a hand, with the fingertips lined up against the A. = 0 plane, or tree

roots merging into a trunk.

The above described 3-d representation is illustrated in Figure 4.10b for a homo

topy function of degree five, with a completely connected solution structure in the neigh-
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f

Figure 4.11: a) Complex parameter circle, A= Xme^9\0 = 0 : 27r. b) Associated root locus
ofA(x,A) = x4-2x2A + A4 = 0

borhood of infinity. Observe that this picture is of the same general shape as the root loci

plots of Examples 1 and 2, shown in Figures 4.7 and 4.9.

Remark on Real vs. Complex Connectivity in 1-D:

In Section 5.3, we explain that a homotopy function of the form h(x, A) = /(x) +

A= 0 has a real solution curve (x, A€ &,h{x, A) = 0) that is connected. In this section we

have shown that such a homotopy function also has a single algebraic element around the

branch point A= oo that serves to connect all real and complex roots of h(x,Xm) = 0 for

large enough |A.|. One is tempted to wonder what the relationship is between real solution

curve connectivity and complex connectivity around infinity, and to guess that one might

imply the other. As we shall see in the next section, in higher dimensions this proves not

to be the case. In general, a connection around complex infinity does not imply that the

real solution space is connected.

Other Homotopy Functions, Potential Complications:

The purpose of this subsection is to point out that the existence of a repeated

root of multiplicity n of a function h(x, A) = 0 at some value of the parameter A does

not in general imply the existence of a single algebraic element connecting all n coalescing

branches in the neighborhood of the parameter value. For instance, if the parameter A

appears nonlinearly in the function, other scenarios may arise. The general concept is

that a branch point may be either singular or nonsingular. Nonsingular branch points

automatically connect all coalescing roots in a singlealgebraic element. At a singular branch

point, the associated function must be locally irreducible for this branch point to connect
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all coalescing roots in a single algebraic element. The following examples are of singular

branch points, meaning that the extended Jacobians of the functions, [dh/dx,dh/dX] have

rank zero at a branch point. Also, all of the following examples are locally reducible at zero.

The following equation provides an example.

/»(x,A) = x2-A2 = 0 (4.7)

Notice that at A= 0, we get /i(x, A)= x2 = 0, so there is a root x = 0 of multiplicity two at

the parameter value A = 0. One might think that the existence of a double root at A = 0

implies that there is an algebraic element joining the two coalescing solution branches, so

that a revolution in the complex parameter plane A= e^9\0 = 0 : 2tt, would result in the

permutation of the two branches. However, h is reducible to A(x, A) = (x-A)(x+A) = 0, and

there are two intersecting regular solution branches at A= 0 rather than a single algebraic

element of order 1. Tracing a full revolution in complex parameter space around the branch

point from either real branch, x = € or x = -*, results in a return to the same branch. For

contrast, consider the function /i(x, A) = x2 - A = 0, which also has a double root x = 0

at A = 0, but which has a single algebraic element about A = 0. For this function, the two

branches in the neighborhood of small Aare x = [cf^2^9^ and x = |e|1/V'̂ +,r^2, which
permute upon a full revolution A= e&9\0 = 0 :2tt around the branch point A= 0.

Other, somewhat more complicated examples may be found in the following two

equations.

/i(x,A) = x2-A2-A3 = 0 (4.8)

h(x, A) = x4 - 2x2A + A4 = 0 (4.9)

These two equations are not reducible, as was Equation (4.7), but they are locally

reducible in the neighborhood of zero, the branch point. First, we look at Equation (4.8),

and notice that at A = 0, h(x, A) = x2 - A2 - A3 = 0 has a double root x = 0, and at

A = oo, /i(x, A) = 0 has an infinite double root. To check for local reducibility at A = 0,

we check to see whether h(x>X) can be locally represented as a product of power series

in the neighborhood of zero. To test for local reducibility, we factor Equation (4.8) into

(x-AVl + A)(x+Av/1 + A). Then wecheck to see whether the factors are analytic at A= 0.

They are, because neither factor includes a term like \/A, sothey maybe represented locally
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by power series. Thus, Equation (4.8) is locally reducible at the branch point A= 0, and
has a local solution structure that is not an algebraic element of order 1, but rather the

superposition of tworegular branches, like in Equation (4.7). In the nighborhood of A= oo,

however, h is locally irreducible. In this neighborhood, h(x, A) « x2 - A3, an irreducible

function. Thus, h cannot be written as a product of power series in the neighborhood of

infinity; it is locally irreducible with a solution structure that is an algebraic element of

order one, with a winding number of three (from the approximation x2 - A3 « 0).

Next, consider Equation (4.9) in the neighborhood of A = 0, at which the function

hasa root x = 0 of multiplicity four. Near A= 0, we factor Equation (4.9) into the product

(x2 - A- Av/T=~A2)(x2 - A+ Av/l - A2). The next step is to check and see whether the
factors are analytic at A = 0. They are, so /i(x, A)can be locally represented around zero as

a product of power series, and thus is locally reducible at zero. Rather than finding a single

algebraic element of order three connecting all branches at A = 0, there are two algebraic

elements of order two at A = 0, each of which locally connects two of the four branches.

In the neighborhood of A = oo, the higher order terms dominate and h(x, X) «

x4 —A4, resulting in four regular branches in the neighborhood of infinity, as shown in the

root locus of Figure 4.11.

These examples were factored and tested for local reducibility near zero in an

ad hoc manner. Systematic algorithms for testing local reducibility, implementable by

a computer program, are based on applying the Weierstrass preparation theorem, given

in Section 4.2, to the function of interest, and then using Hensels Lemma to develop an

inductive procedure. This lemma can be found in [28].

4.4 Two Equations, Two Unknowns: Polynomials

In this subsection, we investigate polynomial homotopy functions with two equa

tions, two unknowns, and a complex parameter. First, a general homotopy function form

is given, with the parameter appearing linearly, and various potential root constellations

are discussed. Then we present a homotopy function design, along with conditions on the

original problem of interest that guarantees that all roots go to infinity with the parameter.

Following that, we present conditions for ensuring that the homotopy function will have all

roots connected in a single algebraic element around infinity. The subsection ends with a

series of examples illustrating the geometric and algebraic facets of these results. Concepts
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important to this portion of the chapter include winding numbers, complex solution curves

seen as paths along tori, and local irreducibility around branch points.

Polynomial homotopy function: A general linear form:

Consider the following homotopy function form, where the parameter A appears

linearly.

/ii(xi,x2,A) = pi(xi,x2) + Ar!(xi,x2) (4.10)

M*i>x2, X) = p2(x1,x2) -I- Ar2(x!,x2)

The functions r\ and r2 are as yet unspecified polynomials, and the problem of (eventual)

interest is considered to be that of finding all roots of P\(x\,x2) = p2(xi,x2) = 0, or

equivalent^ H(x,X)= (hi(x,X),h2(x,X))' =Q at A= 0, where x = (zi,x2).

The goal of this section is to design a homotopy function with a branch point at

infinity that connects all roots ofH in a single algebraic element, and we begin by looking
at the possible root configurations of H = 0 at A= oo for various functions r\ and r2. But

first, solution vectors at infinity must be classified.

For a single function in a single variable, infinity is a fairly simple concept. A

solution x of /(x,A) = 0,/ : C x C -♦ C, approaches infinity as Aapproaches infinity
ifx->ooasA->oo. Infinity is a point on the Riemann sphere. For the case of two

equations in two unknowns, infinity is a somewhat more difficult concept. The solution is

now a vector, (a?i,x2), and infinity is no longer a single point, as it was in the scalar case,

but is now the union of (oo,*2),(*i,oo), and (oo,oo),*t ^ oo. That is, it is composed of
the point (oo, oo), and the two sets C x oo and oo x C. At A= oo we classify a solution
x of H(x,X) = 0,# : C2 x C -• C2, as being either finite or infinite, where an infinite

solution vector x = (x!,x2) has either a single component at infinity, (xux2) = (oo,fc2) or
(xi,x2) = (&i,oo) , or both components at infinity, as in (ari,x2) = (oo,oo). In general,
Equations 4.10 can have finite roots, infinite roots of the form (oo, k2) or (ku oo), orinfinite
roots of the form (oo, oo) at A= oo.

Homotopy Function Design: No Finite Roots.
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We show that by choosing either r\ or r2 to be a non-zero constant, Equa

tions (4.10) are prevented from having any finite roots at A= oo.

Proposition 4.4.1 (No Finite Roots) If either ri(xi,X2) is a non-zero constant or

r2(xi,x2) is a non-zero constant, then the homotopy function given in Equations (4.10) can

have no finite roots at X = oo.

Proof: Assume not. Let ri(xi,x2) = k,k € C,fc •£ 0. For H to have a finite solution

(x\,x2) = (^1,^2), equations

ri(*i,*a) = 0 (4.11)

r2(kuk2) = 0

must be satisfied. To see this, let fj. = 1/A and substitute into Equations 4.10. Then

multiply out the denominators and take the limit as \i -* 0. Equation (4.11) leads to the

inconsistency ri(xi,X2) = k = 0. 4

As a consequence, the following homotopy function has no finite roots at an infinite

parameter value, A = 00.

/i1(x1,x2,A) = pi(xi,x2) + X (4.12)

M*ii*2,A) = p2(xux2) + Xr2(xux2)

Homotopy Function Design: All roots to (00,00).

Next, we seek conditions on h2 that force all roots of Equations (4.12) to go to

(00,00) as A -*> 00. Specifically, we let r\ be a non-zero constant, set r2 = 0, and derive

conditions on p2.

The idea, more formally stated in the following proposition, is that if the poly

nomial p2 consists of a sum of monomials such that the highest degreed terms of each

variable, xj2 and xj12, appear alone - without crossterms - or at least not in form x^x^2

where deg^fa) = 112 and degX2(p2) = m2, then the homotopy function is structured so

that all roots are forced to infinity along with the parameter.
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Proposition 4.4.2 (Infinite Roots) Assume that p\ is a function of both variables, xx

and x2, and that ri is a non-zero constant. Ifr2 = 0 andp2 is a function of both x\ and x2

without a cross term of the form x^xj*2, where degXl(p2) = n2 anddegX3(p2) = m2, then the

homotopy function given by Equations 4.12can have no roots of the form (xi,x2) = (oo,£2)

or (xi,x2) = (fci,oo) at X= 00. All roots go to infinity, the point (xj,X2) = (00,00),
along with the parameter.

Proof:

Assertion: No roots of the form (11,2:2) = (oo,fc2) or (xux2) = (fci,oo).

Assume not. Substitute xi = 1/j/j, x2 = 1/jfe and P = 1/A into Equations (4.12), multiply

out the denominators, and then take the limit as /* -> 0 to get

Villl2l = ° (4.13)

y?y?2P2(i/yui/y2) = o (4.14)

By Equation (4.13), either y\ = 0 or y2 = 0, or both. Without loss ofgenerality, we assume

the polynomial p2 is of the form P2(*i,*2) = x?x'27 + xj^xj1 + /(xi,x2), where s2 < m2,
5! < n2, and the polynomial / is such that degXl(l) < n2 and degX2(l) < m2. The term

y?y23P2{l/yu l/y2) then equals y,"2"*1 + yj*2"*2 + y^y^l^/yu l/y2)- Next, we assume
that there exists a solution ofthe form (x:, x2) = (00, k2) at A= 00, where k2 is a finite, non

zero number (yi = 0, y2 # 0). Then setting yx = 0 in Equation (4.14) leads to yj12"*2 = 0,
and by translation x2 = 00. However, we assumed x2 = k2, so proofby contradiction. The

same reasoning excludes the possibility ofa root of the form (ari,ar2) = (A?i,oo). 4

Connectivity at Infinity:

We have now seen that a homotopy function satisfying Proposition 4.4.2 of the

form (4.12) with r\ constant and r2 = 0 has an infinite repeated root of multiplicity n at
A= 00. The next question is that oflocal connectivity in theneighborhood ofA= 00. That
is, how many algebraic elements are there at A= 00? What determines the answer to this

question? If there are two ormore algebraic elements, how are they grouped together?
In thefollowing Proposition, theexpression gcd(n, m)isdefined below, and winding

numbers W{ are defined in Section 4.2.
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Definition 4.4.1 (Greatest Common Divisor) The term gcd(n, m) refers to the great

est common divisor of integers n and m. For example, gcd(4,8) = 4, and gcd(5,&) = 1.

Lemma 4.4: A polynomial function of the form h(xi,x2iX) = pi(xi,X2) + A is irre

ducible. It is also locally irreducible in the neighborhood of the infinite point, (xi,x2, A) =
(00,00,00).

Proof: (1) If h is reducible, then it can be written as a product of polynomials h =

/(xi, X2, A)y(xi,X2, A). The polynomials / and g are composed of finite sums of monomials,

/(*» A) = Zk>o"k*k +T:k>ohxk +Zk,j>oCj,kXkXi, and p(x, A) = £*>(> <****+£*>o rkxk +
Hfc,j>o fj,kXkXK Multiplying out / and g, term by term, shows that it is impossible to form
a polynomial where Aappears only as a scalar, additive term, as it does in /i(xi,x2,A) =

Pi(xi,x2) + A. Therefore, h is irreducible. (2) To prove that h is locally irreducible at

infinity, we first move the infinite point (xi,X2,A) = (00,00,00) to zero by transforming

coordinates xi = 1/yi, X2 = l/y2, and A= l//x, and multiplying out the denominator to

get the polynomial KyJyTPi^/yiA/yi) + yfy? = 0. 1 The term y1ny2nPi(l/yi,l/y2) is
a polynomial in yi and y2, which we will call 9, so we write At(yry2nPi(l/yi,l/y2) + y^y^

as nq(yi,y2) + y\y2- If h is locally reducible at infinity, then iiq(y\,y2) + yiy2 is locally

reducible at zero, and may be locally represented as a product of power series around zero.

Writing out two power series, and then multiplying them out term by term, reveals that it

is impossible to form a power series where /x appears as it does in fiq(yi>y2) + yiy™ - 0,

linearly but not reducibly so. Thus, Iiq{y\,y2) + y\y™ = 0 is locally irreducible around zero,

and /i(si,X2, A) = pi(xi,x2) -I- Ais locally irreducible around infinity. 4

Proposition 4.4.3 (Connecting Infinity): Given the polynomial homotopy function

H = (huh2)'

/i1(x1,x2,A) = pi(xi,x2) + A (4.15)

M*l,*2) = P2(*l,*2)

with pi and P2 such that as X-+ 00 all roots (xi,x2) of H = 0 approach (xi,x2) = (00,00),

'Though the coordinate transformation 1 = 1/yisnot in general isomorphic, it can be applied to move a
point from infinity to zeroif the function hasonly a single point at infinity. This is the case for the homotopy
function specified in Propositions 4.4.2 and 4.4.3, by design. These functions have only a single point at
infinity, (ii,i2,A) = (00,00,00) (and no points of the form (xi.xj, A) = (00,*, 00).)
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J. 7/|>2 is locally irreducible around (xi,x2) = (00,00), then all solution branches of

H = 0 are connected in a single algebraic element around A = 00.

2. Ifp2 is of the form p2 = x?+ xj12 +r(xt, x2), where the total degree of the polynomial

r is less than or equal to mtn(n2, m2), and n2 and m2 are coprime, then p2 is locally
irreducible around (ari,x2) = (00,00).

Proof:

1. Let h2 be locally irreducible in the neighborhood of the infinite branch point. By

Proposition A5 in Section 4.2, along with Bertini's Theorem 2ongeneric intersections,

if hi and h2 are locally irreducible around the branch point A= 00, then all d branches

coalescing to (xi,x2) = (00,00) at A= 00 are joined in a single algebraic element

around A= 00. It remains to beproved that hx isalso irreducible in this neighborhood.

ByLemma 4.4,anyfunction ofthe form h(xy A) = p(x)+X is locally irreducible around

infinity. Locally, the algebraic element may be represented by equations of the form

xi = XWl

xi = X"*

where d— 1is the order oftheelement and theintegers (<f, wiyw2) arerelatively prime.

Because the homotopy function is constructed so that all roots coalesce at infinity, d
is also the degree of the solution space (variety) of l/(x, A) = 0 .

2. Let P2 = x"2 + x™2 + r(xi, x2), where the total degree of the polynomial r is less than

or equal to min(n2,m2). Move the branch point to zero by changing coordinates to

yi = l/*i and y2 = l/x2, substituting the new coordinates into p2, and multiplying

out the denominator to get the polynomial p2(yi,y2) = y?2y2n7P2(l/yi, l/y2) = y?2 +
y?2 + yi2V22r(l/yu 1/ys). We investigate p'2 in the neighborhood of(yt, y2) = (0,0).
If pf2 is locally reducible around zero, it may be locally represented as the product of
power series p2(yi,y2) = /(yi,y2Myi,y2). Let m2 < n2. By the degree assumption

on r, p2(yi,y2) = y?2 + y?12 + E,j5,+i>m2 "iAti- Near zero, p2(y,,y2) * y,"2 + y?12-
It is known that ifn2 and m2 are coprime, a polynomial of the form y"2 + yj*2 cannot

We assume that the equations h\ and h2 intersect generically, as in Bertini's Theorem on page 8 of
[29]. An example ofwhat we do not expect, two irreducible equations that intersect in anon-generic way,
is xi - x2A = 0 and x\ = 0. Though each equation is irreducible, the intersection of the two equations is
x3A = 0, a reducible equation.
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be factored into a product of polynomials. Therefore, j/2(yi,y2) is locally irreducible

around zero, and P2(*i>*2) is locally irreducible around (x\^x2) = (00,00). 4

Remark (Winding Numbers): IfP2 is of the form P2 = *?2 + x™7 + r(xi, x2), where the

total degree of the polynomial r is less than or equal to min(n2,m2)y and n2 and m2 are

coprime, then the winding numbers (u>i, w2) of the algebraicelement connecting all solutions

of Equations (4.15) around infinity, as defined in Section 4.2, can be read directly off the

equations. The winding numbers (wi,w2) = (m2,n2), meaning that as the parameter A

encircles infinity d times, where d is the number of solutions of the homotopy function at a

regular value, the solution component xi winds around infinity a total of m2 times, while

that of X2 winds around infinity a total of n2 times.

Corollary 4.4.3: Given the polynomial homotopy function H = (h\,h2)'

h\(x\,x2,X) = pi(x!,x2) + A

h2{xUX2) = P2(*l,*2)

with pi andp2 such that as X-• 00 all roots (xi,x2) ofH = 0 approach (si,x2) = (00,00),
andpi oftheformp2 = x"2+x2n2+r(xux2), withdeg(r) < min(n2,m2), then the following
four statements are equivalent.

1. gca\n2,m2) = 1, where degXl(p2) = n2 and degX7(p2) = m2.

2. xj2 + xj12 is irreducible. Equivalently, h2 is locally irreducible at infinity.

S. 3 a single algebraic element connecting all solution branches ofH = 0 around A= 00.

4. gcd(wi^w2) = 1, where w\ and w2 are the winding numbers ofxi and x2.

Proof: Follows directly from Proposition 4.4.3 and the above remark on winding numbers.

Interpretation (Proposition 4.4.3, Corollary 4.4.3):
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Figure 4.12: Visualize trajectories as tori with various windings (101,102) of (xi,X2). a)
Winding numbers (101,102) = (1, !)• b) Winding numbers (101,t02) = (1,2).

Geometric Interpretation: Tori windings

Because of the nature of complex solution space, the image of a circle in the

complex parameter plane is a collection of closed curves in the complex solution plane (as

long as the homotopy function has finite degree). In this section we deal with solution

vectors (xi,x2) rather than scalars. A closed solution curve may be thought of as a pair

of projected components, each of which forms a closed curve. This allows us to visualize

a closed complex curve (21,22)* an object in 4-d, as a path along a torus, as shown in

Figures 4.12 and 4.13. To do this, let x\ revolve along one axis of rotation, and x2 along the

other. In this geometric context, the concept of winding number of an algebraic element

is clear. A closed curve on a torus can be described by a set of winding numbers, the

number of times the curve wraps around each axis. Figures 4.12a-b show closed complex

solution trajectories with winding numbers (101,102) = (1,1) and (101,102) = (1,2). Solution

trajectories with winding numbers (101,102) = (1,3) and (101,102) = (2,2) are illustrated in

Figures 4.13a-b.
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Figure 4.13: Visualize trajectories as tori with various windings (101,102) of (xi,x2). a)
Winding numbers (101,102) = (1,3). b) Winding numbers (101,102) = (2,2).

Numerical Consequences: Calculating Solutions

The implications of Proposition 4.4.3 are analogous to those of Propositions 4.6.1

and 4.3.1, but for two-dimensional polynomial functions. Assume that a single root xIa.

of the homotopy function consisting of Equations (4.15) at a value of A, € C is chosen

such that IA.I> r, where r is the finite radius of a complex parameter circle containing all

finite branch points of H, is known. Tracing a full circle in the complex parameter plane

A= Xme>9,0 = 0 : 2tt, starting from the solution x = xIa. at A= A., will lead to a second

solution x = x2a. of .r7(x, A.) = 0. Tracing a second full circle in the complex parameter

plane A = A«e>*,0 = 0 : 2tt, from the solution x = x2a. will lead to a third solution of

H(x,Xm) = 0, x = x3a.. If one continues to trace circles in the complex parameter plane,

moving from solution surface to solution surface, then all solutions of H(x,\.) = 0 will

be found, and eventually, on the nth revolution, the algebraic element will have been fully

cycled through and the original root xIa. will re-appear. Thus, continuing to traverse a

circle in the complex parameter plane A = Xme*9,0 = 0 : k2ir will lead to the numerical
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calculation a string of roots (x1a.,x2a.,..x!ia.,x1a.,x2a.,.) consisting of the repetition of

the n roots of the function H(x, A.) = 0. Once all n roots of fT(x, A.) = 0 are found, all

the roots of H(x, A) = 0 at any arbitrary value of Amay be found, including that of the

original problem of interest to be solved, as discussed in Sections 4.1.1 and 4.5.

Disconnected Elements at Infinity:

Next we addressthe question ofthe number of algebraic elements at infinity should

the conditions of Proposition 4.4.3 not be satisfied.

Proposition 4.4.4 (Disconnected Elements at oo): Given the polynomial homotopy

function H = (h\,h2)'

hi(xux2) = pi(xi,x2) + A (4.16)

h2(xux2,X) = P2(*i,22) (4.17)

withpi and p2 such that as A-• oo all roots (xi,x2) of H = 0 approach (xi,x2) = (oo,oo),

1. The number of algebraic elements at infinity, r, is equal to the maximum number of

non-unit power series factors of p2 at infinity.

2. If p2 is of the form p2 = xj2 + x™2 + r(xi,x2), with deg(r) < min(n2,m2), then

the number of algebraic elements at infinity, r, is equal to the maximum number of

non-trivial polynomial factors of xj2 + xj12.

Proof: 1. Assume that at infinity, the power series expansion of p2 factors maximally into

r non-unit products g\g2..gr. This means that locally, the solution set of H = 0 consists of

the union of the solution sets of (h\ = 0Ogi = 0) for all i < r. Each one of these r solution

sets defines an algebraic element, whose only contact with the remaining algebraic elements
is at the branch point (because of local reducibility). Per usual, we assume that h\ and h2

intersect generically, as discussed in Proposition 4.4.3. 2. Since deg(r) < min(n2,m2)y the

number of power series factors of p2 at infinity equals the number of polynomial factors of

xj2 +X™2. To see this, change coordinates xi = 1/yi and X2 = l/y2 in p2 and multiply out
the denominator to move the infinite branch point to zero. See the proofof Proposition 4.4.3
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Figure 4.14: a) Tunnel diode circuit b) Diode characteristics.

to see how the higher order terms drop off and the number of factors of the power series

equals the number of products of xj2 + xj*2. 4

Examples:

See Examples 2 and 5 in Subsection 4.4.1.

4.4.1 2-D Polynomial Example Series

What follows is a series ofexamples that illustrate Proposition 4.4.3,Corollary 4.4.3,

and Proposition 4.4.4. We begin with the tunnel diode example of Figure 3.7,repeated here

in Figure 4.14 for convenience. In Example 1of Section 5.4.1 weexplore the real connectiv

ity of this example for various real homotopy functions, in terms of function level sets. In

this section we complexify the homotopy functions and examine their solution set structures

around complex infinity, aiming for connectivity.

The nine operating points of the circuit in Figure 4.14 are determined by the loop

equation fi(v) = E - Jtyi(i>i) - (vi + v2) = 0 and the node equation f2(v) = pi(vi) -

92(1*2) = 0, with v = (i>i,i>2). The tunnel diode currents are given by 1*1 = g\(v) =
2.5i>3 - 10.5v2 + 11.8v and i2 = g2(v) = 0.43v3 - 2.69v2 +4.56i>. So the circuit equations
are F = (/1, f2)' = (0,0)', with /1 and f2 as follows

/i(xi,x2) = jE +aixJ + ftxf +71X1 -(xi+x2)

/2(xi,x2) = o,1xf +/?5x5 +7;x1-(a2xf +/?2xi +72X2)

(4.18)

(4.19)

and where the two variables are now written as x = (xi,x2) rather than 1; = (t>i,t>2)- Let
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Figure 4.15: MATLAB plots for Example 1. a) Solution trajectory corresponding to encir
cling the parameter circle in (b) nine times. The solution trajectory passes through all nine
solutions. Notice that both components of the solution vector, xi and X2, appear in the
plot. The large closed curve, of radius approximately sixty, is X2, while the small curve in
the center is x\. See the next figure for a close-up of the trajectory xi as Aencircles infinity
repeatedly, b) The complex parameter circle.

the constants E = 30,Oi = -33.25, ft = 139.6,71 = -156.9, a2 = 0.43, & = -2.69,72 =

4.56,0; = 2.5,/?J = -10.5, and 7} = 11.8, to match the circuit of Figure 4.14.

Example 1 (parameter in second equation):

In this example we let the homotopy function be of the form

/i(xi,x2) = 0 (4.20)

/2(xi,x2)-A = 0 (4.21)

where fx and f2 are as defined in Equations (4.18) and (4.19). At A= 0 the above function

has the same solutions as thoseof Equations (4.18) and (4.19). The goal is to find all roots

of Equations 4.20 and 4.21 at some regular value of the parameter A. In the next sections

we deal with the problem of how to get from a complete set of roots at an arbitrary regular

parameter value to all the roots of the problem of interest, at A = 0. For now, we divide

the example into two parts, numerical computation and analysis.

Numerical Calculation:

Figures 4.15 and 4.16 show MATLAB plots of a simple, complex encirclement

algorithm applied to the homotopy function in Equations (4.20) and (4.21). The algorithm
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Figure 4.16: More MATLAB plots for Example 1. A close up of solution component xi as the
complex parameter circle in the previous figure is traced 8 times, a) One encirclement, b)
Two encirclements, c) Three encirclements, d) Four encirclements, d) Five encirclements,
f) Six encirclements, g) Sevel encirclements, h) Eight encirclements.

involves tracing a root of H(x,X) = 0 out to a large parameter value A = -A., and then

stepping around a complex circle of radius A. repeatedly until all other available roots

of H(x, -A.) = 0 are found. At each new step A,- around the circle, a Newton-Raphson

corrector is applied to get the next point along the trajectory.

Figure 4.15b shows the complex parameter circle A = \Xm\e^9\0 = 0 : 2?r, A. =

5x 104, acircle oflarge enough radius to beequivalent to encircling infinity for this example.

Figure 4.15a shows the MATLAB solution trajectorycorresponding to nine encirclements of

the circle in Figure 4.15b. This trajectory passes through all nine solutions of .ff(x, -A.) = 0.

Notice that the solution vector (xi,x2) has a winding number vector of (u>i,tu2) = (1,3),

meaning that as the parameter Aencircles infinity nine times, xi winds around infinity only

once, while x2 winds around infinity three times. Figure 4.16 shows a close up of the path

of solution component xi as the complex parameter circle is traversed repeatedly.

Analysis around oo:

By Proposition 4.4.2, the homotopy function of this example has all roots ap

proaching the double infinity point (xi,x2) = (oo,oo) as A —• oo. But to show this more

concretely, perform the following change of variables xi = 1/yi, x2 = 1/jfe, and A = 1///,

substitute the new variables into Equations (4.20) and (4.21), and then multiply out the
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Figure 4.17: Calculated root structure for Example 1. a) The root components xt take
the form of nine roots equally spaced around a complex circle of radius rm. b) The root
components X2 form an equally spaced triad around a complex circle of radius r2.

denominators to get

y\y2E +Qiy2 +0iyiy2 +7iyfy2 - (y2y2 + yf) =
,3.,3 _/^(yi.jfej + yiy! =

(4.22)

(4.23)

where p(yi,y2) is a polynomial in yi and y2. Since we are interested in what happens as

A -• oo we look for p -*• 0 in the new coordinate system. As \i -• 0, Equation (4.23)

becomes y\y\ = 0, so at \i = 0 either yi = 0 or y2 = 0 or both variables are zero. First, we

check out the possibility that y2 = 0 and y2 ^ 0. With yi = 0, Equation (4.22) reduces to

<*iy2 = 0, so the hypothesis y2 ^ 0 is shown to be false. Next, we check out the possibility

that y2 = 0 and yi ^ 0. With y2 = 0, Equation (4.22) reduces to y3 = 0, so the hypothesis

yi ^ 0 is also ruled out. Thus the only possibility is that as \l -> 0 both yi -• 0 and

y2 -* 0, which is equivalent to saying that all roots of Equations (4.20) and (4.21) approach

(xi,x2) = (oo,oo) as A -• oo.

The next step in our analysis is to investigate the structure of of the solutions of

Equations (4.20) and (4.21) in the neighborhood of infinity. To do this it is convenient to

return to our original coordinate system (xi,x2, A) and to proceed from there. As A -> oo,

the variables Xi and x2 also go to infinity, and Equations (4.20) and (4.21) become domi

nated by the monomials of highest degree in each equation. Near infinity, Equations (4.20)
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and (4.21) approach the following equations.

o:\x\-x2 = 0 (4.24)

o/1x?-a2x?-A = 0 (4.25)

Then, substituting xj = x2jct\ from Equation (4.24) into Equation (4.25) leads to

the equation

(q;/qi)x2 - a2x\ - A= 0 (4.26)

which, in the neighborhood of infinity, is dominated by the higher degreed term and may

be approximated by the equation

- q2x\ - A= 0. (4.27)

Setting the parameter A = |A|e^ = \X\e^9+k2ir,k € Z, and solving Equation (4.27) for

x2 gives us x2 « IA/g^I^V^"1"*2*"1"*)/3, which is a triad of roots equally spaced around a
complex circle ofradius r2 = \X/a2\lf3 asshown inFigure 4.17a. Since from Equation (4.24),
x\ as x2/oi, then xi « (r2/ai)1/V^+/c2'r+,r)/9, a setofnine roots equally distributed around

a complex circle ofradius r\ = fa/ai)1'3, as shown in Figure 4.17b.

Finally, we check the derived root structure of Figures 4.17a-b against the nu

merical computations shown in Figures 4.15a-b and 4.16, and see that the radii and root

configurations shown match. At |A| = 50,000, r2 = 48.8 and T\ = 1.13, which match Fig

ures 4.15a-b closely. Also notice that the winding numbers of the two variables, w\ = 1 for

the variable xi and w2 = 3 for the variable X2 are consistent in the numerically obtained

plots, the derived plots, and can be read orT Equation (4.24) by lookingat the degreesof each

of the variables, as stated in the remark associated with Proposition 4.4.3. Additionally,

observe that Equation (4.24) is irreducible and consists of monomials with degrees whose

greatest common divisor is one, also consistent with Corollary 4.4.3. O

Example 2 (parameter in first equation):

In this next example we let the homotopy function be of the form

/i(xi,x2)-A = 0 (4.28)

/2(xi,x2) = 0 (4.29)
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Figure4.18:MATLABplotforExample2.Therearethreealgebraicelements,eachcon
nectingthreeoftheninesolutions,a-c)Thesolutionpathforone,twoandthenthree
excursionsaroundthecomplexparametercirclein(d),startingfrom(xi,x2)=(A,D)in
thepreviousfigure,e-g)Ditto,startingfrom(xi,x2)=(A,F).i-k)Ditto,startingfrom
(xux2)=(A,E).

where/iandf2areasdefinedinEquations(4.18)and(4.19).Thisexamplediffersfrom

thepreviousoneinthatthehomotopyfunctionwasderivedbyaddingaparameterto

thefirstequationratherthanthesecondone.AsinExample1,theabovefunctionhas

thesamesolutionsasthoseofEquations(4.18)and(4.19)atA=0.Wenumerically

andanalyticallyexaminetheconnectivityoftherootstructureofthehomotopyfunction

consistingofEquations(4.28)and(4.29)intheneighborhoodofinfinity.

NumericalCalculation:

Figure4.18showsMATLABplotsofcomplexencirclementappliedtothehomo

topyfunctioninEquations(4.28)and(4.29).Figure4.18dshowsthecomplexparameter
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Figure 4.19: Calculated root structure for Example 2. a) The root components xiform an
equally spaced triad around a complex circle of radius r\. b) The root components X2 form
an equally spaced triad around a complex circle of radius r2.

circle A= |A„|e^),0 = 0 :27r, A, = 5 x 104, a circle of large enough radius to be equivalent

to encircling infinity for this example. Figure 4.18c shows the solution trajectory corre

sponding to three encirclements of 4.18d. This trajectory passes through just three of the

nine solutions of /f(x, -A.) = 0. As the parameter A encircles infinity three times, both xi

and X2 encircle infinity once. Figures 4.18(a,b) shows a close up of the solution path(xi, X2)

as the complex parameter circle is traversed repeatedly. The two other algebraic elements

at infinity, each of which connects three of the nine total solutions of H(x,-Xm) = 0, are

shown in Figures 4.18(e-g) and (i-k).

Analysis around 00:

By Proposition 4.4.2, the homotopy function of this example has all roots ap

proaching the double infinity point (xi,X2) = (00,00) as A-» 00. Since we went through a

concrete derivation of this result in the previous example, we will not repeat the full exercise

here, but the reader can check as follows. As in the last example, perform the change of

variables xi = 1/yi, X2 = l/y2, and A = l/p and then substitute the new variables into

Equations (4.28) and (4.29) and multiply out the denominators. Setting fi = 0 leads to the
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following equations,

y\y2 = 0 (4.30)

<*\y2 + ftyhi+Yiyhi-(°2yi+p2yiy2 + i2yiy2) = o (4.31)

From Equation (4.30) either yi = 0 or y2 = 0 or both variables are zero. With yi = 0,

Equation (4.31) reduces to a[ y3, = 0, sothe hypothesis (yi = 0, y2 £ 0) is shown to be false.

Setting y2 = 0, reduces Equation (4.31) to a2y\ = 0, so the hypothesis (yi ^ 0, y2 = 0)

is also ruled out. The only remaining possibility is that as fi -*> 0 both yi -+ 0 and

y2 -* 0, which is equivalent to saying that all roots of Equations (4.28) and (4.29) approach

(xi,X2) = (oo,oo) as A —• oo.

The next step in our analysis is to investigate the structure of the solutions of

Equations (4.28) and (4.29) in the neighborhood of infinity. As A -+ oo, the variables

xi and x2 also go to infinity, and Equations (4.28) and (4.29) become dominated by the

monomials of highest degree in each equation. Near infinity, Equations (4.28) and (4.29)

approach the following equations.

«ix?-x2-A = 0 (4.32)

a\x\-a2x\ = 0 (4.33)

Substituting x\ = (q2/q'1 )x% from Equation (4.33) into Equation (4.32) leads to
the equation

(aiQ2/Q'i)x^ - x2 - A= 0 (4.34)

which, in the neighborhood of infinity, is dominated by the higher degreed term and may

be approximated by the equation

(Qia2/oi)xf-A = 0. (4.35)

In preparation forencircling infinity we represent the complex parameter in polar form, A =

|A|c^,and note that A= \X\e>9 = |A|e^+*2\ k € £,. Then we solve Equation (4.35) for x2 to
get x2 « |(Aa,1)/(a20i)|1/V^+*2,r)/3, three roots equally spaced around a complex circle of

radius r2 = |(Aai)/(a2ai)|1/3. r>om Equation (4.33), we get Xj « (r2Q2/ai)1/V^+*2,r)/V^2,T)/3,
lyk € Z, a set of three roots equally spaced around a complex circle of radius ri =

l^o^/ttil1'3. See Figures 4.19a,b for the two circles in complex solution space, with points
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Figure 4.20: A MATLAB plot of Example 3. a) The solution path traced as the complex
parameter circle in (b) is traversed nine times. A single algebraic element connects all nine
solutions, b) The complex parameter circle.

marked (a, 6,c) on the x\ circle and (d, e, /) on the x2 circle. The nine solutions of Equa

tions (4.28) and (4.29) at large Aare the cross products of the sets (4, B,C) and (Z>, £, F),

(xi,x2) = (A,D), (xi,x2) = (B,E), (xi,x2) = (C,F), (x,,x2) = (A,E), (xux2) = (B,F),

(xi,x2) = (C,D), (xi,x2) = (4,F), (xi,x2) = (B,D), and (xi,x2) = (C,£). These nine

solutions do not lie on a single closed curve in complex solution space associated with a

large complex parameter circle. Rather, in this example, the inverse image of a circle in

complex parameter space encircling infinity is a set of three non-intersecting closed curves

in solution space, each of which connects three of the nine solutions of H(x, -A.) = 0. Each

of these closed curves is an algebraic element of order two.

Next, we check the derived root structure of Figures 4.19a-b against the numeri

cal computations shown in Figure 4.18a-b, and see that the radii and root configurations

shown match. At |A| = 5 x 1014, rx = 2.4683 x 104 and r2 = 4.4383 x 104, which match Fig

ures 4.19a-b closely. Also notice that the numerical calculations verify that all the solutions

of Equations (4.28) and (4.29) are, as predicted by the analysis and by Propositions 4.4.3

and 4.4.4, not connectedly a single algebraic element at infinity, but rather are distributed

among three disconnected algebraic elements. Consistent with Propositions 4.4.3 and 4.4.4,

Equation (4.33) is reducible, with monomials in xi and x2 each of degree three, (a greatest

common divisor of three instead than one). •

Example 3 (change degree of a lead monomial in f\):
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Figure 4.21: Another MATLAB plotof Example 3. a) A close-up of the solution component
xi as the complex parameter circle shown in the previous figure, part (b), is traversed nine
times. Notice the winding number W\ = 2. b) A close-up of the solution component X2 as
the complex parameter circle shown in the previous figure, part (b), is traversed nine times.
Notice the winding number w2 = 3.

In this example we let the homotopy function be of the form

h(xux\) = 0

/2(xi,x2)-A = 0

where f\ and f2 are as written below.

(4.36)

(4.37)

f\(x\,x\) = f? +Oix3 +Axf-r7iXi-(x1+x^)

/2(xi,x2) = aix?+#x2 +7;xi-(a2X2 + /?2X2 +72X2)

This example has a parameter in the second equation, asdoes Example 1, but the variable X2

appears quadratically rather than linearly. The purposeof this modification is to numerically

investigate the effect of a monomial degree change on the rootstructure in the neighborhood

of infinity. The degree change was deliberately chosen to be one that does not result in a

change of the total degree of the system from that of Example 1 (it is still nine). In a later

example, Example 7, the degree of a monomial is increased to four, thereby increasing the

total degree of the system to twelve. Recall that the total degree of a system of polynomial

equations is the product of the degrees of each of the equations.

Numerical Calculation:
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Figure 4.22: Calculated root structure for Example 3. a) The root components xi take
the form of nine roots that wind twice around a complex circle of radius T\, b) The root
components x2 form an equally spaced triad around a complex circle of radius r2.

Figures 4.20 and 4.21 show MATLAB plots of complex encirclement applied to

the homotopy function in Equations (4.36) and (4.37). Figure 4.20b shows the complex

parameter circle A = \Xm\ei(9\0 = 0 : 2jt, A. = 5 x 104, a circle of large enough radius
to be equivalent to encircling infinity for this example. Figure 4.20a shows the solution

trajectory corresponding to nine encirclements of 4.15b. This trajectory passes through all

nine solutions of 17(x,-A.) = 0. Notice that the solution vector (xi,X2) has a winding

number vector of (w\,w2) = (2,3), meaning that as the parameter A encircles infinity nine

times, xi winds around infinity twice, while X2 winds around infinity three times. Figure 4.21

shows a close-up of the path of solution components xi and X2 as the complex parameter

circle is traversed repeatedly.

Analysis around oo:

By Proposition 4.4.2, the homotopy function of this example has all roots ap

proaching the double infinity point (xi,x2) = (oo,oo) as A -• oo. Since we went through

derivations of this result for Examples 1 and 2, we will not go through another derivation,

but it is analogous to the others.

Next, we investigate the structure of the solutions of Equations (4.36) and (4.37)
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in the neighborhood of infinity. As A-♦ oo, the variables xi and x2 also go to infinity, and

Equations (4.36) and (4.37) become dominated by the monomials ofhighest degree in each

equation. Near infinity, Equations (4.36) and (4.37) approach the following equations.

aixj-xj* = 0 (4.38)

or'ixJ-o^-A = 0 (4.39)

Substituting x? = (l/ai)x^ from Equation (4.38) into Equation (4.39) leads to the equation

((*\lctx)x\ - a2x\ - A= 0 (4.40)

which, in the neighborhood of infinity, is dominated by the higher degreed term and may
be approximated by the equation

-a2x3-A = 0 (4.41)

Then we set the parameter A = \X\e>9+k2*,k € Z, and solve Equation (4.41) for x2 to
get x2 « |A/a2|1/V('+*2,r+'r>/3, three equally spaced roots (for 0 held constant) around a
complex circle of radius r2 = |A/a2|1/3 as shown in Figure 4.22a. From Equation (4.38),
xf « x^/ai, so xi « (r2/3/aj/3)ert*+*2,r+,r)2/9, a set of nine roots that wind twice around a
complex circle of radius rt = (rl^/a]*3), as shown in Figure 4.22b.

Next, we compare the derived root structure of Figures 4.22a-b against the nu

merical computations shown in Figures 4.20a-b and 4.21, and see that the radii and root

configurations shown are close. At |A| = 50,000, r2 = 48.8 and ri = 4.15, which are

good approximations to the radii of the trajectories shown in Figures 4.22a-b. Also notice

that the winding numbers of the two variables, w\ = 2 for the variable xi and u>2 = 3

for the variable X2 are consistent in the numerically obtained plots and the derived plots,

and can be read off Equation (4.38) by looking at the degrees of each of the variables,

as stated in Corollary 4.4.3. Additionally, observe that Equation (4.38) is irreducible and

consists of monomials with degrees whose greatest common divisor is one, also consistent

with Corollary 4.4.3. •

Example 4 (add cross term to /i):

In this example the homotopy function is as follows

fi(xuxl + xlX2) = 0 (4.42)

/2(xi,x2)-A = 0 (4.43)
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Figure 4.23: A MATLAB plot for Example 4. Like in Example 3, there is a single algebraic
element around infinity connecting all nine solutions, and xi winds around zero twice while
x2 winds around zero three times, a) The solution trajectory as infinity is encircled nine
times, b) A close up of the double winding variable, xi.

where f\ and f2 are as shown below.

/i(xi,x^ + xix2) = £ +aix3 +/?ixJ +7iXi-(xi + x?j-|-xiX2)

/2(xi,x2) = aix? +#x5 +7(xi-(a2X2* + /?2X2i + 72X2)

This example has a parameter in the second equation and the variable x2 appears

quadratically in the first equation, as it does in Example 3. In addition, a crossterm x\x2 has

been added to f\. The purpose of this added term is to numerically investigate the effect

of the presence of crossterms on the root structure in the neighborhood of infinity. The

crossterm was deliberately chosen to be of low enough degree so that Proposition 4.4.3-2

applies and the homotopy function is guaranteed to have all roots going to infinity with the

parameter. This example illustrates another aspect of Proposition 4.4.3 - that the presence

of crossterms of less than maximal degree does not effect the root structure of the homotopy

function in the neighborhood of infinity.

Numerical Calculation:

Figure 4.23 shows MATLAB plots of complex encirclement applied to the homo

topy function in Equations (4.42) and (4.43). Adding a cross term does not result in any

significant topological difference from the solution structure around infinity of Example 3.

To conclude, this example illustrates that crossterms of relatively low degree, as specivied

in Proposition 4.4.3, do not affect the solution set connectivity or winding topology around
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Figure 4.24: A MATLAB plot for Example 5. There are three algebraic elements around
the infinite branch point, each of which connects three of the nine solutions, a-c) Algebraic
elements 1-3.

infinity. O

Example 5 (make /i locally reducible at oo ):

In this example the homotopy function is

with /i and f2 defined below.

/i(xi,X2*) = 0

/2(xi,x2)-A = 0

(4.44)

(4.45)

h(xux\) = £ + oix?-|-Axi+7iXi-(xi-|-x|)

/2(xi,x2) = aixj + /?;x; + 7;xi-(a2xf+ ^2xl + 72X2)

Like Example 1, the parameter A is embedded in the second equation, but the

variable X2 appears cubically in f\ rather than linearly. The purpose of this example was to

try to understand the effect of having both lead monomials of the function f\ of the same

degreeon the root structure of the homotopy function in the neighborhood of infinity. As we

shall see, though f\(xi,x\) is not globally reducible, it is locally reducible in the neighborhood
of infinity, so the homotopy function given byEquations (4.44) and (4.45) hasa disconnected

set of algebraic elements around infinity. In fact, in the neighborhood of infinity, this

example has a root structure that is nearly identical to that of Example 2, even though the

homotopy functions are quite different. This example illustrates, through a counterexample,
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Figure 4.25: Calculated root structure for Example 5. a) The root components xi take
the form of three roots equally spaced around a complex circle of radius r\. b) The root
components X2 take the form of three roots equally spaced around a complex circle of radius

why Statement 4 of Corollary 4.4.3 is necessary for connectivity around the infinite branch

point. It also illustrates, along with Example 2, the results of Proposition 4.4.4.

Analysis around oo:

By Proposition 4.4.4, the homotopy function of this example has all roots ap

proaching the double infinity point (xi,x2) = (oo,oo) as A -♦ oo. Because the variables

xi and x2 go to infinity as the parameter A goes to infinity, Equations (4.44) and (4.45)

become dominated by the monomials of highest degree in each equation. Near infinity,

Equations (4.44) and (4.45) approach the equations

aix?-x| = 0 (4.46)

a\x\-a2x\-X = 0 (4.47)

Substituting x\ = (l/a^x3, from Equation (4.46) into Equation (4.47) leads to

(a\lai)x\ - a2x\ - A= 0 (4.48)

Setting the parameter A = \X\ej9+k2*,k € Z, and solving Equation (4.48) for x2 gives
us x2 * \X/((a[/ai) - Q2)|1/3ci(*+*2*+*)/3? three roots around a circle of radius r2 =
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l^/((«i/oi)-«2)|1/3 like the one shown in Figure 4.19b. FVom Equation (4.46), xj wx^/ai,
so xi « (r2)/a|/3)eJ^+*2,r+*)/3eJ(/2,r)/3, /, k€ Z, a set of three roots equally spaced around
a complex circle of radius r\ = \(r2)lax' |. From here on out, this discussion and analysis

mimics that of Example 2, aside from a phase shift of */3 of the roots of xi (compare

Figures 4.25 and 4.18). See Example 2 for a more detailed discussion of the three different,

disconnected algebraic elements of order two at infinity, each of which connects three of the

nine solutions. An approximate calculation of the radii rx and r2 at A= 100,000, rx = 20.38

and r2 = 65.56 show the MATLAB plotsof Figure 4.24a-b to be a good match for the above

analysis. O

Example 6 (change degree of lead monomial in f2):

For this example we let the homotopy function be of the form

/i(xi,x2) = 0 (4.49)

/2(xi,x2)-aixJ-A = 0 (4.50)

where f\ and f2 are as defined below

/i(xi,x2) = £+aix3 + /?ix; + 7iXi-(x1 + X2)

/2(xi,x2)-aix3 = 0[xl + 7jxj - (a2X2* + fax\ + 72x2)

investigated in Example 1, except that the lead monomial in Xi has been deleted

from Equation (4.21), making the polynomial cubic in X2 but only quadratic in xi.

Numerical Calculation/Analysis:

The purpose of this example is to see what effect changing the degree of xi in the

second equation without changing the total degreeof this equation has on the root structure

of H at infinity. Figure 4.26 shows MATLAB plots of a simple, complex encirclement

algorithm applied to the homotopy function in Equations (4.49) and (4.50).

The complex parameter trajectory traced is A= |A.|e,"W,f9 = 0 : 2*r, A. = 5 x 104,

a circle of large enough radius to be equivalent to encircling infinity for this example.

Figure 4.26a shows the MATLAB solution trajectory corresponding to nine encirclements

of the circle in Figure 4.15b. As in Example 1, this trajectory passes through all nine
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Figure 4.26: A MATLAB plot of Example 6. A single algebraic element connects all nine
solutions, a) Solution trajectory as infinity is encircled nine times, b) A close up of xx,
which winds around zero once, c) A close up of X2, which winds around zero three times.

solutions of H(x, -A.) = 0, and the solution vector (xi,X2) has a winding number vector

of (ti>i,u;2) = (1,3). Figure 4.26b-c shows a close up of the path of solution components

Xi and X2- Consistent with Proposition 4.4.3 and Corollary 4.4.3, reducing the monomial

degree in this way has no effect on the connectivity or winding structure of the function at

infinity.

D

Example 7 (change total degree from 9 to 12):

For the final example we choose the following homotopy function,

h(xux\) = 0 (4.51)

/2(xi,x2)-A = 0 (4.52)

with /i and f2 defined as below.

fi(xux\) = £ + aix3 + /?,xf + 7iXi-(xi+xJ)

/2(xi,x2) = a'1x? + /?5xJ + 7;xi-(a2xi + /?2X2i + 72X2)

This example has a parameter in the second equation, as does Example 3, but the

variable x2 appears quartically rather than cubically. This degree change was deliberately

chosen to be one that results in a change of total degree of the system, from nine to twelve.

This example serves to illustrate Proposition 4.4.3 on a function with twelve roots. As will
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Figure 4.27: A MATLAB plot of Example 7. A single algebraic element connects all
twelve solutions. The variables (xi,x2) have winding numbers (w\,w2) = (4,3) a) Solution
trajectory as infinity is encircled twelve times, as in (b). b) The complex parameter circle.

be shown, in the neighborhood of infinity there is a single algebraic element connecting all

twelve solutions, with winding numbers w\ = 4 and w2 = 3, the maximal monomial degrees

of/i.

Numerical Calculation:

Figure 4.27 shows MATLAB plots of complex encirclement applied to the homo

topy function in Equations (4.51) and (4.52). Figure 4.27b shows the complex parameter

circle A= \Xm\e>W,0 = 0 :27r, A. = 109, a circle oflarge enough radius to be equivalent to
encircling infinity for this example. Figure 4.27a shows the solution trajectory correspond

ing to twelve encirclements of 4.27b. This trajectory passes through all twelve solutions of

.r7(x,-A») = 0. Notice that the solution vector (xi,X2) has a winding number vector of

(w\,w2) —(4,3), meaning that as the parameter Aencircles infinity twelve times, xi winds

around infinity four times, while x2 winds around infinity three times.

Analysis around oo:

By Proposition 4.4.2, the homotopy function of this example has all roots ap

proaching the double infinity point (xi,X2) = (oo,oo) as A -* oo. As A -+ oo, the variables

xi and X2 also go to infinity, and Equations (4.51) and (4.52) become dominated by the

monomials of highest degree in each equation. Near infinity, Equations (4.51) and (4.52)
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Figure 4.28: Calculated root structure for Example 7. a) The root components xi take
the form of three roots equally spaced around a complex circle of radius T\. b) The root
components X2 take the form of four roots equally spaced around a complex circle of radius
r2.

approach

aix?-x^ = 0 (4.53)

a\x\-a2xl-X = 0 (4.54)

Substituting x\ = (l/oi)xJ from Equation (4.53) into Equation (4.54) leads to

(a\lo.\)x\ - o2x^ - A= 0 (4.55)

which, as Agets large, is asymptotically dominated by the higher degreed term and may be
approximated by

(a[/ai)xi-X = 0 (4.56)

Then we set the parameter A = \X\ejHk2ir,k € Z, and solve Equation (4.56) for x2 to
get x2 « lAcki/a!!1/4^*"4-*2*)/4, four equally spaced roots around a complex circle of ra
dius r2 = lAaJ/ail1/4 as shown in Figure 4.28b. From Equation (4.53), x? « xj/ai, so
*i * (r^/a^V"^**2*)/3, aset of three roots on acomplex circle ofradius n =(r2/3/a\/3)
as shown in Figure 4.28a. Next, we compare the derived root structure of Figures 4.28a-b
against the numerical computations shown in Figures 4.27a-b, and see that the topolo
gies are identical. The winding numbers are wt = 3 for the variable xi and w2 = 4 for
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the variable X2, meaning that as the parameter space circle is traversed twelve times, the

Xi root circle of Figure 4.28a is traversed three times, while the X2 root circle of Fig

ure 4.28b is traversed four times. The twelve roots emerge from the winding considerations

to be (A1,A2), (B1,B2), (Cl,C2), (A1,D2), (B1,A2), (C1,B2), (A1,C2), (B1,D2),(C1,A2),

(A1,B2), (B1,C2), and (Cl,D2). This checks out with the MATLAB plots in Figures4.27a-b

at a parameter plane circle radius of |A| = 109. Finally, notice that, consistent with Corol

lary 4.4.3, Equation (4.53) is irreducible and consists of monomials with degrees whose

greatest common divisor is one. O

Summary of Polynomial Example Series 1-7:

These examples serve to illustrate Proposition 4.4.2, Proposition 4.4.3, Corol

lary 4.4.3, and Proposition 4.4.4. The concepts of local irreducibility around infinity, wind

ing numbers, and connectivity around infinity are discussed in the analyses. The example

series is presented in a hypothesis testing style, in that each one is meant to answer a ques

tion about the effect of parameter placement, or adding or deleting certain monomials, on

the solution set topology in the neighborhood of infinity.

4.5 Polynomials: n-D

This section generalizes basic results of the previous sections to higher dimensions

and outlines a complete complex encirclement algorithm. Also, the issue of conservation

of solution number and its importance to complex encirclement is discussed. We present

a simple local analog to the results of Section 3.5, where it was pointed out that homo

topy function irreducibility leads to global connectivity of the complex solution surface of

^(x,A) = 0 over the complex parameter plane A € C. Stated in Proposition 4.5.1 is a

simple unifying principle of local connectivity around a branch point that extends across

the dimensions.

Proposition 4.5.1 (Connectivity around infinity, n-d polynomial systems):

Given: a polynomial homotopy function

H(x,A) = 0, ff : Cn x C - Cn (4.57)

designed such that as A—• ooall solutionsxa = (xi,X2, ..xn) of H = 0 approach (xi, X2, ..xn) =
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(oo,oo,..oo),

• If H is locally irreducible at the branch point at A= oo, then

1. all solutions of H(x,X) = 0 are connected in a single algebraic element around

infinity.

2. 3 a number Amtn € ft s.t. tracing a circle A= \Xm\e'9,0 = 0 : 2jt, A. > Amin, /

successive times, where / is at least the number of solutions of H = 0, leads to the

numerical calculation ofa string ofroots (x\9tx\^.,x^x\^x\^.) consisting of
the repetition of the m roots of the function H(x, Xm) = 0.

Proof: Follows directly from Proposition (A5) in Section 4.2.

The above proposition summarizes the basic principle of solution set connectiv

ity around infinity. It says that if the function H is designed so that all its roots go to

infinity along with the parameter, and if H is locally irreducible at infinity, then all roots

of H(x,Xm) = 0, A. > Amin, can be found by repeatedly traversing the parameter circle

A= lA.le^fl = 0 : 2*. This parameter circle must be large enough to be equivalent to
encircling infinity, meaning that it must contain all the finite branch points of H.

However, the goal is to find all roots of 7/ at a particular value of the parameter,

the one at which the homotopy function is identical to the original problem of interest

(H(x, A/) = F(x) = 0). We must fill in a missing link in the argument. The missing link is

the relationship between the number of solutions of H(x,Xm) = 0 and F(x) = 0, assuming

that |A/| < |A.|. If we are to continue the solutions of H(x,Xm) = 0 to all solutions of

F(x) = 0, the two functions must have the same number of solutions.

In fact, most natural parameterizations, including the homotopy functions de

signed in this chapter, have this property. We borrow the following theorem from [11],

which states that all systems of polynomials with the same structure have the same number

of roots (counting multiplicity).

Conservation of Solution-Number: Natural Maps

Let

Pi(ci,..Cr,xu...xn) = 0
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Pn(ci,..Cr,X!,...Xn) = 0

be a system of polynomial equations in the variables ci, ..cr and xi, ...xn. For each choice

of c = (ci, ..cr) in Cr, this is a system of polynomial equations in the variables xi, ...xrt. Let

d be the total degree of the system for a generic choice of c.

Theorem 4.5.1 [11]: Let c belong to Cr. There exists an open, dense, full-measure subset

U of Cn+r such that for (6J, ...&;, cj, ...c?) € V, the following holds:

a) The set X" of solutions x = (xi, ..xn) of

9i(xi,..x„) = pi(cj,..c;,xi,...xn) + 6J = 0

9n(xi,..x„) = pn(cJ,..c;,xi,...xn) + 6; = 0

consists of do isolated points, for some do < d.

b) The smoothness and accessibility properties hold for the homotopy

ff(x,A) = P(XCl + (1 - A)cJ,..Acr+ (1 - A)c;,x,,..,x„) + (1 - A)6' (4.58)

where b* = (&J, ..,&*). It follows that every solution of P(x) = 0 is reached by a path

beginning at a point of X*. 4}

For a proof, see pages 1245 - 1249 of [11].

The above theorem implies that as long as a homotopy function H is derived from

the problem of interest F(x) = 0 by adding scalar parameters and/or linearly embedding

parameters in the polynomial coefficients, the system H(x, A) = 0 will have the same number

of solutions, at random, regular A, as F(x) = 0 does. This is true whether or not F(x) = 0

is deficient (fewer solutions than the Bezout degree bound, as discussed in Chapter 2).

Complex Encirclement for Finding all Roots:

Now that the link between the problem this chapter concentrates on, that of solu

tion set connectivity around an infinite branch point, and the original problem to be solved

has been established, weoutline an algorithm. All roots of a polynomial system of equations

P(x) = 0, P : Cn -* Cn, may be found as follows:
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1. Design an analytic homotopy function H :Cn x C —• Cn such that..

(a) there exists a parameter value Xj Buch that H(x, A/) = P(x).

(b) all roots of H(x, X) = 0 are connected in a single algebraic elementaround infinity

for A > A*.

2. Use the connectivity property to find all roots of H(x, A.) = 0 by encircling infinity

m times, where m is the total number of roots.

3. Finally, use the homotopy function H'(x, X) = AP(x)+(l - X)H(x, A.) to trace exactly

m paths to all m roots of P(x) = 0. (Or use the homotopy function H(x, A.) to trace
m paths from A= A. to A= A/.)

This procedure takes the place ofthe first step ofthe Cheater's Homotopy discussed
in [11], and is beneficial in that it makes the algorithm efficient and useful even if the equa
tions need to be solved only once with a single set of coefficients, rather than repetitively
with varying coefficients, or if the equations are not polynomial. Where such homotopy
functions are available, the procedure is expecially useful for the highly deficient polyno
mial systems found in practice, for example the indirect position problem for revolute-joint
kinematic manipulators, which result in asystem ofequations with total degree of256, but
only 32 solutions [11].

4.6 Extension to Non-Polynomial-Bounded Analytic Func
tions, Transistor Circuit Models

In this section we consider analytic systems ofnonlinear equations F(x) =0, F:
Cn -> Cn, that include exponential as well as polynomial terms. Such systems are fun
damentally different from purely polynomial systems in that they can possess an infinite
number of complex roots, rather than a finite number of complex roots as is the case for
polynomials and functions that are bounded by polynomials. This is an important class
of systems, because many circuit element models include exponential terms. For example,
circuits that include bipolar transistors modeled by Ebers-Moll equations have circuit equa
tions with exponential terms ofthe form ex^k and c<r> "*»>/*, where X! and x2 are device
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Real(X)

Figure 4.29: a) A drawing showing the two real roots of h(x, A) = e"x + x - A = 0. The
line A- x is drawn along with e~x, and for a fixed value of A, the intersection of these two
curves gives the real roots of h(x, A) = 0 (two or none), b) The non-polynomial function
h(x, X) has an infinite number of complex branch points at A= 1 + (2njr),;', Vn € Z.

port voltages [47]. Typically, these circuit equations will consist of linear terms, exponen

tial terms, and constants, corresponding to linear resistors, transistors, diodes, independent

sources, and dependent sources.

In the following subsections, we generalize the complex encirclement ideas devel

oped previously in the chapter, to systems with exponential terms. The observations made

in this section, summarized in Conjecture 4.6.3, point to a more general notion of complex

encirclement for systems with an infinite number of complex solutions and branch points.

The idea is that for certain types of functions, including those with exponential terms that

are linear in the argument (some diode and transistor models), a homotopy function that

has all roots going to infinity along with a parameter, and is locally irreducible at infinity,

can be used to find any number of roots of h(x, A/) = 0. Specifically, we conjecture that

complex encirclement can be used to find all roots of H(x, Xj) = 0 within the compact space

|x| < r, along (generically) regular paths.

We start our development with the scalar case.

4.6.1 Parameterized Scalar Equations With Exponential Terms

This section examines homotopy functions oftheform h(x, A) = p(x)+ce*x-X = 0,
where c and k are non-zero real constants, p is a non-constant polynomial, and A is a
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Figure 4.30: Complex encirclement of the homotopy function h(x, X) = e~x -f x - A = 0. a)
The complex solution path of /i(x, A) = 0 corresponding to encircling the parameter plane
circle in (b) twice. The two real roots of h(x, 1.3) = 0 are joined via an algebraic element
of order one. b) The complex parameter circle contains a single branch point at A = 1.

parameter. In general, at fixed real A this function has a finite number of real roots and

an infinite number of complex roots. Also, the equation n(x,A) = 0 generally has an

infinite number of complex branch points A, and the property that A —• oo =» x —» oo. We

illustrate some properties of this class of analytic functions through a detailed exploration

of the equation n(x, X) = e~x + x - A = 0.

As shown in Figure 4.29a, the equation n(x, X) = e~x+ x - A = 0 has two distinct

real solutions at real A > 1, no real solutions at real A < 1, and a real double root at the

branch point A = 1. The line A- x is drawn along with e"x, and for a fixed real value of A

the intersection of these two curves gives the real roots of h(x, A) = 0. Also, the equation

h(x, X) = 0 has an infinite number of complex roots at most fixed A, and an infinite number

of branch points (parameter values A at which h —0 has repeated roots).

Figure 4.29b illustrates the location of the infinite number of complex branch

points of h(x, A), calculated by differentiating h with respect to x to get 1 - e~x = 0, and

then solving for x = 2nxj, Vn € Z. Substituting x = 2nitj into e~x + x - A = 0 gives the

branch points A„ = 1+ (2nir)j,Vn € Z, as shown in the figure. Each finite branch point An

corresponds to a double repeated root of n(x, A) = 0. This can be verified by noticing that

differentiating h twice with respect to x leads to an equation with no finite solutions.

Next, we go through a series of complex encirclement experiments on this func

tion using a MATLAB program, to illustrate the nature of the solution set of h and its

connectivity in complex space.
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Figure 4.31: Complex encirclement of the homotopy function h(x, X) = e~x + x —A = 0.
a) The complex solution path of n(x, A) = 0 corresponding to encircling the parameter
plane circle in (b) four times. The two real roots of h(x, 1.3) = 0 and two complex roots of
h(x, 1.3) = 0 are joined in closed solution structure akin to an algebraic element of order
three, b) The complex parameter circle contains three branch points atA = l,A=l + 2nj,
and A = 1 - 2nj.

Figure 4.30a shows a MATLAB plot of the complex solution path x(A) of h(x, X) =

0 corresponding to encircling the parameter plane circle in Figure 4.30b twice, starting from

one of the two real roots of n(x, 1.3) = 0. The parameter path traced is A= |A.|eJ*,0 = 0 :

4tt, with A. = 1.3. Notice that the solution path shown in Figure 4.30a is a closed curve

joining the two real roots of h(x, 1.3) = 0. The complex parameter circle in Figure 4.30b

contains exactly one branch point, at A = 1, which serves to connect the two real roots of

h(x, 1.3) = 0 in an algebraic element of order one.

Figure 4.31b shows a larger complex parameter circle, with a radius of seven. This

complex parameter circle contains not one, but three complex branch points of h, at A = 1

and A = 1±2ttj. Figure 4.31a shows a MATLAB plot of the the complex solution path x(A)

of n(x, A) = 0 corresponding to encircling the parameter plane circle in Figure 4.31b four

times, starting from one of the two real roots of h(x, 7) = 0. The parameter path traced is

A= |A.|e^,0 = 0 : 8?r, with A* = 7. Once again, the solution path shown in Figure 4.31a

is a closed curve joining the two real roots of h(x, A.) = 0, but this larger circle also joins

two complex roots of h(x, A*) = 0 as part of the solution cycle. Encircling two more branch

points than were encircled in Figure 4.30b (A = 1±2*7, along with the branch point A = 1)

results in the addition of two complex roots to the root cycle.

This trend continues indefinitely. As the complex parameter circle gets larger and

larger, including more and more branch point pairs A = 1 ± 2nwj, the associated solution
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Figure 4.32: Complex encirclement of the homotopy function n(x, A) = e~x + x - A = 0.
a) The complex solution path of h(x,A) = 0 corresponding to encircling the parameter
plane circle in (b) eight times. The two real roots of h(x, 1.3) = 0 and six complex roots
of n(x,1.3) = 0 are joined in closed solution structure akin to an algebraic element of
order seven, b) The complex parameter circle contains seven branch points at A = 1 and
A=l + r27rj,r = ±l,±2,±3.

cycle includes more and more complex solutions of #(x,A.) = 0, two for each pair of

encircled branch points. For example, Figure 4.32b shows a complex parameter circle of

radius A. = 20 containing seven branch points. Starting from a real solution x(A.) of

H(x,Xm) = 0, encircling the parameter circle eight times (A = |A.|e->*,0 = 0 : 16?r,) leads

to the calculation of a total of eight solutions of h(x,20)= 0, which lie on the closed curve

shown in Figure 4.32a. Notice that as the radius of the complex parameter circle gets larger

and larger, the shape of the associated closed solution curve approaches that of a half-disk.

Another observation is that the finite solution cycles associated with parameter

plane circles of radius r, seem to have an inclusion property for increasing radii. In order

to define an inclusion property, thenotion ofa root identification of h(x, A) = 0 at different
parameter values A is necessary.

If one were to label a finite number (m) of solutions x of h(x,A.i) = 0 for real,

regular, A.i, then it is possible to make an identification between these m solutions and

m solutions of n(x, A) = 0 at another regular parameter value, say real A = Xm2. We

make this identification, which is in general not unique, by continuing m solution paths
of h(x,A) = 0 along the regular path P(A.i,A*2) in the parameter plane from A= A.i to

A= A»2, starting at the m chosen solutions at A= A.i, and ending at m solutions of h = 0

at A= A.2. We define the path P(A.i, A.2) to be a line segment connecting A.i and A.2, if
there are no branch points along this segment. If this line segment does include a branch
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point, we define the path P(A.i,A.2) from A.i to A.2 to be the slightly perturbed curve

* = ^1 + (A.2 - Ai) sin 0/2+ s'csin 0,0= 0 :*, with small t chosen to ensure that the path
traced is regular.

Once such an identification is made, the notion of a solution set inclusion property

can be defined. Consider the following sequence ofevents. First, choose alarge, real, regular

parameter value A.i. Then, calculate a finite root cycle of h(x,Xmi) = 0 associated with

a radius of A.i, by repeatedly encircling a complex parameter circle with radius r = A.i

and tracing out the associated closed solution path x(A), as shown in Figures 4.30a and

4.31a. Once the m roots in this root cycle have been calculated, choose a new regular

parameter value A.2, |A.2| > |A»i|, and continue the m calculated roots along the regular

path P(A.i, A.2) to A = A.2. Then, take one of the m continued roots of h at A = A.2,

and calculate the finite root cycle of h(x, A.2) = 0 associated with a radius of A.2. To do

this, repeatedly encircle a complex parameter circle with radius r = A.2, starting from the

continued root, until the solution path x(A) closes on itself. Though this root cycle is likely

to contain more roots than does the root cycle of h at A = A.i, if h satisfies the solution

inclusion property, then the new root cycle at A = A.2 will include continuations of all m

roots in the calculated root cycle ofhatX = A.i. For a large enough parameter circle radius

Ai, each root cycle corresponding to a parameter circle of larger radius A2, |A2| > |Ai|,

includes the continuation of all the roots of an associated cycle at radius Ai. This is what

is meant by a solution set inclusion property, which we illustrate on the example equation

e"* + x —A = 0, which appears to have this property.

For example, the two real roots shown in Figure 4.30a, which form the root cycle

associated with a parameter plane circle of radius 1.3 at A. = 1.3, can be continued to the

two real roots in the root cycles shown in Figure 4.31a, and Figure 4.32a, by increasing A.

from A. = 1.3, to A. = 7, and to A. = 20, respectively. Likewise, all four roots shown in

Figure 4.31a, which form the root cycle associated with a parameter plane circle of radius 7

at A. = 7, can be continued to four of the eight roots in the root cycle shownin Figure 4.32a

by increasing A. from A. = 7 to A. = 20.

It is the consideration of this inclusion property, along with the conjecture that all

the roots of h(x, A.) = 0 within a compact region |x| < r can be calculated by (1) choosing

a large enough parameter circle radius r, and (2) encircling the complex parameter circle

with radius r repeatedly to find an associated root cycle, and then (3) continuing these

roots back to the parameter value of interest A = A., that forms the core of a generalized
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complex encirclement approach for systems with an infinite number of solutions.

To formalize and generalize the above discussion, and our observations, we prove

some properties and then state a conjecture. First, we prove the property that A —• oo =^

x -♦ oo for analytic functions of the form f(x) + A= 0, in general.

Proposition 4.6.1: Let f(x) be an analytic function f : C -* C. Define a homotopy
function h(x, A) = /(x) + Xk, k € C.

• The analytic homotopy function equation h(x,X) = /(x) + A* = 0,k € C, has nofinite
roots as X —+ oo.

Proof:

• assertion: A —• oo =>> x —• oo.

Assume not. Then 3x. € C, |x.| < M, such that limx_*x. |/(x)| = oo (since /(x) =
-kX). This implies that f(x) has a singularity at x = x.. However, / is assumed
analytic, so proof by contradiction. 4

This proposition is important because for complex encirclement to be successful

at calculating all roots of interest of a function, the homotopy function must be designed
so that all of its roots approach infinity as the parameter approaches infinity.

The next proposition sets the stage for Conjecture 4.6.3, by showing that the

inverse-image of a simple, regular, closed curve of finite length in the complex parameter

plane Aassociated with h(x, A) = 0 is a closed curve in the complex solution plane x. To

see the importance of this property, consider the function h(x, X) = ex + A, which violates

the assumptions of Proposition 4.6.2 (because the polynomial p is a constant), and which
does not have this property. For the equation h(x, A) = ex + A= 0, the inverse-image of
a closed curve in the parameter plane Ais not a closed a curve in the x plane, but rather
a sort of helix that winds around zero infinitely many times. If one wanted apply complex
encirclement to calculating all the roots of h(x, A) = ex + A = 0 within some region of
solution space |x| < r, it would not be possible to do so by tracing out an associated closed
curve in solution space.

Proposition 4.6.2: Let f(x),f : C -* C be an analytic function of the form f(x) =
p(x) + ce x, where p is a non-constant polynomial, and c and k are non-zero constants.
Define a homotopy function h(x,X) = /(x) - A.
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Figure 4.33: A drawingshowing the four real roots ofh(x, A) = x5+2x3+3x2-x-e*+A = 0.
The polynomial x5 + 2x3 + 3x2 - x + Ais drawn along with ex, and for a fixed value of A,
the intersection of these two curves gives the roots of h(x, X) = 0. This function has from
zero to four real roots, depending on A.

1. The analytic homotopy function equation h(x,A) = f(x) - A= p(x)+cekx - A= 0 has

nofinite branch point Xcorresponding to a finite repeated root x of infinite multiplicity.

(i.e. each finite branch point of h corresponds to an algebraic element of finite order).

2. The analytic homotopy function equation h(x,X) = /(x) - A= p(x) + cekx - A= 0 has

a finite number of branch points in a compact region of the complex parameter plane,

\X\<t, for finite t.

S. The inverse-image of a simple, regular, closed curve of finite length in the complex

parameter plane X associated with h(x, A) = 0 is a set of closed curves in the complex

solution plane x.

Proof:

1. A finite branch point Aassociated with a root x of multiplicity m satisfies the following
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Figure 4.34: Complex encirclement of the homotopy function h(x,A) = x5 + 2x3 + 3x2 -
x - ex + X= 0. The complex solution path of h(x,A) = 0 corresponding to the parameter
trajectory A = -Xme>9,0 = 0 : k2ir, with A: = 6, starting at a contiuation of one of the
real roots of h = 0. In this case the radius A. = 120,000, and two extra complex roots are
picked up in the cycle.

set of equations.

p(x)+ ce*x-A = 0

dp(x)/dx + ckekx = 0

dm-1p(x)/dxm-1+ckm-1ekx = 0

However, if the polynomial phas degree d, then dip(x)/dxi = 0 for 1> d. This implies
that differentiating h with respect to x d times leads to the equation ckdekx = 0,

which has no finite roots. Therefore, no finite branch point A can correspond to a
finite repeated root x of multiplicity greater than d + 1.

2. Branch points ofh satisfy theequations p(x) +cekx-X= 0 and dp(x)/dx+ ckekx = 0.

By substitution, we get kp(x)-dp(x)/dx =*A. Confining Atoacompact region |A| <
t implies that at any branch point Ain this region, x is bounded. This then implies
that in the compact region |A| < t, theexponential term cekx can be represented to an

arbitrary level ofaccuracy byapolynomial in x. Thus, theequations p(x)+ee*x-A = 0
and dp(x)/dx+ckekx =0become bounded by polynomial equations within the region
|A| < t, and since polynomial equations only admit a finite number ofroots, there are
only a finite number of branch points in the region |A| < t.
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3. Items (1) and (2) of Proposition 4.6.2 imply item (3). 4

Next, we formalize our observations about the connectivity and accessibility of

solutions of h(x, A) = 0, and apply the above propositions. The goal is to be able to find

all roots x of h(x, Xj) = 0 in any compact region |x| < r.

Conjecture 4.6.3: Let f(x), f : C -* C be an analytic function of the form f(x) =

p(x)+ cekx, where p is a non-constant polynomial, and c and k are non-zero constants.
Define a homotopy function h(x, A)= f(x) - A.

• For any finite number r € £, there exists a finite number t € ft such that:

1. repeatedly encircling a regular complex parameter circle X= |A»|eJ*,0 = 0 : 2n?r

of radius |A.| > t, leads to the calculation of a finite number (n) of roots of

h(x, A.) = 0. This set of roots forms a closed cycle akin to an algebraic element

of order n - 1.

2. These n roots can then be continued with probability-1 along non-intersecting

paths to n solutions of the homotopy function at any parameter value of interest,

X= Xj, byapplying multi-starter homotopy to the function h2(x,A) = Xh(x, A/)+

(1 - X)h(x, A.) = 0 (or directly to h(x,X) = 0 from X= A. to X= A/. The set

of n calculated roots of h(x,Xj) = 0 includes all roots x of h(x,A/) = 0

in the compact space |x| < r.

Supporting ideas, towards a proof:

The equation h(x, A) = /(x) - A= 0 has several properties that support the truth

of Conjecture 4.6.3. Propositions 4.6.1-3 indicate that the function h has all roots going

to infinity along with the parameter, and that the inverse-image of a closed curve in the

complex parameter plane is a set of closed curves in the complex solution plane. Also, the

description of a topologically unibranch set X, found in association with Proposition A.5

in Section 4.2, is general, and can be applied to functions with an infinite number of branch

points in the neighborhood of infinity in order to define irreducibility of Ain a neighborhood

of infinity, (x, A) = (oo, oo). It must then be shown that h is in fact locally irreducible at

infinity. Finally, one needs to know that 1) the homotopyfunction h2 has the same number

of roots at all regular parameter values, and 2) these roots can be regularly continued from

one regular parameter value to another. Also, the idea that the branch points are not dense
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Figure 4.35: Complex encirclement of the homotopy function h(x, X) = x5 + 2x3 + 3x2 -
x - ex + A= 0. The complex solution path of h(x, A) = 0 corresponding to the parameter
trajectory A= -X»e>9,0 = 0 : k2ic, with k = 8, starting at a contiuation of oneof the real
roots of h = 0. In this case the radius A. = 1,200,00, and four extra complex roots are
picked up in the cycle.

in A is important to the notion of a parameter circle as an appropriate shape of closed

parameter plane curve. Altogether, these ideas, when formalized, should contribute to a

proof of this conjecture. 4

Implications of Conjecture 4.6.3:

The observations made in this subsection, summarized in Conjecture 4.6.3, point

to a more general notion of complex encirclement for systems with an infinite number

of complex solutions and branch points. The generalization is that for certain types of

functions, including those with exponential terms that are linear in the argument (some

diode models), a homotopy function that has all rootsgo to infinity along with a parameter,

and is locally irreducible at infinity, can be used to find any number of rootsofh(x,A/) = 0.

Specifically, complex encirclement can be used to find all roots of h(x,A/) = 0 within the

compact space |x| < r, along (generically) regular paths.

Example 1:

An example function is h(x, X) = x5 + 2x3 + 3x2 - x - ex + A = 0, which is the

same as Example 1 in Section 4.3 except for the addition of an exponential term.

The equation h(x, A) = 0 has an infinite number of complex solutions, with a max

imum of four of them being real at a given value of A, and a minimum of none. Figure 4.33
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illustrates the four real roots of h(x, A)= 0. The polynomial x5+ 2x3+ 3x2- x + Ais drawn

along with ex, and the intersection of these two curves gives the real roots of h(x, X) = 0.

Notice that the polynomial in Example 1of Section 4.3, x5+2x3+3x2-x+ A = 0,

has a maximum of three real roots, but the addition of the exponential term has the effect

of adding another real root whose position is much less sensitive to the parameter A than

are the other real root6 of h(x, A) = 0. Since the complex encirclement algorithm requires

finding a radius A. that is large enough so that the complex parameter circle contains all

branch points associated with the real roots of the function, having a real root that is

relatively insensitive to the parameter implies that the radius required will be large, as

it is in this example. In this example, h(x,X) = 0 does not have the minimum number

of real roots (none) until A « -120000. This is why such a large radius A. is needed to

connect all real solutions of h for this particular homotopy function. Figure 4.34 shows the

closed solution curve of h(x, X) = 0 associated with a circle A = Xme*e,0 = 0 : k2n in the

complex parameter plane with radius A. = 120,000. This MATLAB plot was obtained by

traversing the complex parameter circle six times, starting from one of the complex roots

of h(x, -A.) = 0, a continuation of one of the four real roots of h(x,Q) = 0. After the first

revolution, l/6th of the closed curve shownin Figure 4.34 is traversed, and a second root of

h(x, -A.) = 0 is found. A second, third, fourth, and then fifth parameter plane revolution

leads to a third, fourth, fifth, and then a sixth solution of h(x, -A.) = 0. A final, sixth,

revolution leads to the original solution from which the trajectory started. This six-root

cycle includes continuations of all four real roots of h(x,X) = 0 at real parameter values

at which they exist, implying that the six roots can be traced back to the real solutions of

interest. Also observe that since the function h(x, -A.) = 0 is real, its roots must occur in

complex conjugate pairs, so only three encirclements , rather than six, are necessary to find

all the roots of h(x, -A.) = 0 in the six-root cycle.

In keeping with Proposition 4.6.2, and the previous discussion in this subsection,

repeatedly traversing a larger circle in the complex parameter plane results in tracing out

a larger root cycle, with more complex roots drawn in the closed half-disk. Figure 4.35

shows the solution trajectory obtained by encirling a complex parameter circle with radius

A. = 1,200,000 eight times, starting from a continuation of one of the four real roots of

h = 0. As expected, the larger parameter circle picked up extra complex roots of h (two of

them, in this case), though the new root cycle includes a continuation of the entire solution

cycle at the smaller radius A. = 120,000 shown in Figure 4.34. Naturally, extensions of all



127

r»olu«—10*0. aa tlmo* around

Figure 4.36: Complex encirclement of the homotopy function h(x,X) = x5 + 2x3 + 3x2 -
x - ex + A = 0. The complex solution path of h(x,A)= 0 corresponding to the parameter
trajectory A = -Xmei9,0 = 0 : k2*, with k = 22, starting at a contiuation of one of the
real roots of h = 0. In this case the radius A. = 109, and eighteen extra complex roots are
picked up in the cycle.

four real roots of h are present in each, successively larger cycle. See Figure 4.36 to get

a better sense of the half-disk shape the closed solution paths take on in the limit, as the

complex parameter radius gets very large. The complex parameter circle associated with

Figure 4.36 has a radius of A. = 109, and the solution cycle includes 22 complex roots of

n(x,-A.) = 0. D

4.7 Conclusion/Future Work

This chapter lays out the groundwork for a new way of computing all solutions

of nonlinear systems of equations F(x) = 0, such as those corresponding to dc operating
points of nonlinear circuits. For systems of equations with a finite number of complex

solutions, the general idea is to design homotopy functions that force all circuit solutions

to be locally connected around a single complex branch point in a single algebraic element.

Such a homotopy function H(x,A) = 0 must 1) force all solutions of a system of equations

to go to a single branch point, say infinity, and 2) be constructed to be locally irreducible

at this maximal branch point. All solutions of /J(x,A.) = 0 (large parameter value A.) are
then found by encircling the branch point (infinity, in this chapter, though other choices are

possible) repeatedly, until the solutions begin to cycle, or until the first complex conjugate
solution is calculated. Once all solutions of H(x,Xm) = 0 are found, they can be used as

starting points ofmulti-starter homotopy method to find all solutions of H(x, A/) = F(x) =
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0, the problem of interest. In this chapter the notion of (1) designing a homotopy function

to connect all solutions algebraically around a single point, and (2) the accompanying

algorithm, which involves repeatedly encircling this branch point to find all solutions, is

refered to as complex encirclement. The main advantage of complex encirclement over

other homotopy methods is that complex encirclement finds all solutions without having
to know, apriori, how many solutions a function has. This is especially useful for non-

polynomial and deficient systems ofequations, because the number of solutions may not be
known.

This chapter also deals with analytic circuit equations with exponentials in them,

which are fundamentally different from polynomial systems of equations in that they gen
erally have an infinite number of complex roots. The notion of complex encirclement,

initially developed on polynomial-type equations, can be generalized to systems with an

infinite number of solutions. In this case the goal is to design a homotopy function that has

all roots going to infinity along with a parameter, and that can be used to find all complex

roots of the circuit equations within a compact space \x\ < r, via complex encirclement.

In addition to developing the theoretical and algorithmic foundation of complex

encirclement, this chapter goes through adetailed design and analysis of homotopy functions

in one and two dimensions, for polynomials and certain analytic functions.

Section 4.3 deals with one dimensional, parameterized polynomials. A homotopy

function with an infinite branch point is designed, and we prove that all coalescing roots of

the equation are connected in a single algebraic element around infinity. The question of

exactly what it means, in practical terms, to encircle infinity, is addressed, and insight is

provided on how to visualize complex solution space. The section ends with some examples,

and a brief discussion of the kinds of complications one may encounter if the parameter

appears non-linearly in the equation.

In Section 4.4, polynomial homotopy functions with two equations, two unknowns,

and a complex parameter are investigated. A general homotopy function form is given, with

the parameter appearing linearly, and various potential root constellations are discussed.

Then a homotopy function design is presented, which is guaranteed to have all roots going

to infinity with the parameter, along with accompanying sufficient conditions onthe original

problem of interest. Following that, some necessary and sufficient conditions ensuring that

the homotopy function will have all roots connected in a single algebraic element around

infinity are proved. The section ends with a series of examples illustrating the geometric
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and algebraic facets of these results. Concepts important to this section include winding
numbers, complex solution curves seen as paths along tori, and local irreducibility around
branch points.

Section 4.5 gives general connectivity results in n-d for polynomials. A complete

complex encirclement algorithm is outlined, and the issue of solution-number conservation
is discussed.

The chapter ends with Section 4.6, which considers analytic systems of nonlinear

equations that include exponential as well as polynomial terms, systems that are funda

mentally different from polynomials because they can have an infinite number of complex
roots. The observations made in this section point to a more general notion of complex

encirclement for systems with an infinite number of complex solutions and branch points.

We conjecture that for certain types of functions, including those with exponential terms

that are linear in the argument (some diode and transistor models), a homotopy function
that has all roots going to infinity along with a parameter, and that is locally irreducible
at infinity, can be used to find any number of roots of h(x, A/) = 0. Specifically, numerical
experiments suggest that complex encirclement can be used to find all roots ofH(x, A/) =0
within the compact space |x| < r, along regular paths.

Our future work plans focus on applying the general principles developed in this
chapter todesigning homotopy functions that connect all solutions around infinity for special
classes of equations in high dimensions. The goal is to duplicate the development found
in this chapter to transistor circuit equations, and other special types of systems found in
various electrical engineering applications.
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