

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

OVERCOMING MEMORY CONSTRAINTS IN ROBDD

CONSTRUCTION BY FUNCTIONAL DECOMPOSITION

AND PARTITIONING

by

Amit Narayan, Sunil P. Khatri, Jawahar Jain, Masahiro Fujita,
Robert K. Brayton, and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M95/91

6 November 1995

OVERCOMING MEMORY CONSTRAINTS IN ROBDD

CONSTRUCTION BY FUNCTIONAL DECOMPOSITION

AND PARTITIONING

by

Amit Narayan, Sunil P. Khatri, Jawahar Jain, Masahiro Fujita,
Robert K. Brayton, and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M95/91

6 November 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Overcoming Memory Constraints in ROBDD Construction by

Functional Decomposition and Partitioning

Amit Narayan1 (anarayan@ic.eecs.berkeley.edu)

Sunil P. Khatri1 (linus@ic.eecs.berkeley.edu)

Jawahar Jain2 (jawahar@fla.fujitsu.com)

Masahiro Fujita2 (masahiro@fla.fujitsu.com)

Robert K. Brayton1 (brayton@ic.eecs.berkeley.edu)

Alberto Sangiovanni-Vincentelli1 (alberto@ic.eecs.berkeley.edu)

November 6, 1995

1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720

2Fujitsu Laboratoriesof America, San Jose, CA 95134

Overcoming Memory Constraints in ROBDD Construction by Functional

Decomposition and Partitioning

Abstract

In this paper, we address the issue of memory explosion in ROBDD based Boolean function manipu

lation methods. To reduce the intermediate peak memory requirement, we select suitable decomposition

points and follow it by a symbolic composition process. In cases where the final memory requirement

itself is very large or where the intermediate explosion cannot be avoided by decomposition, we create

ROBDDs representing orthogonal partitions of the function. Since these partitions are orthogonal they

can be manipulated and verified independently. This results in a more efficient utilization of memory

resources. We discuss two partitioning approaches, one in which the partitions are chosen apriori, and

another in which this choice is made dynamically as the composition proceeds.

We demonstrate the utility of our schemes on the ISCAS85 benchmark circuits as well as some

industrial circuits. We are able to significantly reduce the memory requirements in most cases without

paying a large time penalty. Additionally, we are often able to build the ROBDDs of circuits for which

conventional methods fail. We experiment with many variable ordering schemes and get impressive

memory reductions in all cases.

1 Introduction

Reduced Ordered BinaryDecision Diagrams (ROBDDs) [7] arefrequently usedas the Boolean representation

of choice to solve various VLSI-CAD problems such us synthesis, digital system verification and testing.

ROBDDs are canonical for a given variable ordering and can require exponential memory resources for

construction. This large memory requirement places a limit on the complexity of circuits that can be

processed using ROBDDs. Hence techniques that can help in a more efficient construction of ROBDDs are

of practical significance.

In the traditional method of ROBDD manipulation, when a sequence of ROBDD operations has to be

performed, all intermediate ROBDDs are represented in terms of the primary inputs. This restriction of

building the ROBDDs of all the intermediate results in terms of primary inputs often results in a large

intermediate memory requirement even when the final (canonical) representation is small. On the other

hand, the final representation size is often itself very large. This is because a good variable order cannot be

found or the function is inherently intractable and has an exponential ROBDD under any variable order.

In this paper, weaddress both these issues. When the intermediate memory requirement is large compared

to the final memory requirement, it indicates that there is Booleansimplificationoccurring in the circuit. We

try to capture this simplificationby introducing suitable decomposition points. We construct a decomposed

ROBDDof the output in terms of these decomposition points. The decomposition points are then composed

into the output ROBDD to obtain the canonical output ROBDD over input variables. In this way, we are

able to significantly reduce the peak memory utilization in a large number of cases.

In cases where the final ROBDD memory requirement is large or the intermediate requirement can not

be reduced, we divide the Boolean function into orthogonal partitions. The partitions are obtained from

the decomposed representation of the function in a way which ensures that the memory required at each

of the intermediate stages of ROBDD construction for any partition is less than that for the monolithic

representation. Since we create orthogonal partitions, each of the partitions can be processed independently.

Boolean manipulation and verification of two functions can be carried out on their corresponding partitions

and the results can be combined at the end. Different partitions can be assigned a hash code and probabilistic

verification can be performed by combining the hash codes for different partitions [19]. Also, we are free to

choose a different variable order for each partition. In this manner, we eliminate the constraint of having a

common variable order for the entire ROBDD, thus extending the class of circuits which can be processed

by ROBDDs while consuming polynomial resources. We claim that this way of partitioning is more flexible

than FBDDs. We have two partitioning procedures: a static procedure to determine good partitions before

the composition step, as well as a dynamic one, which invokes partitioning whenever a memory explosion

occurs during the composition.

We combine all these ideas in an overall procedure for an ROBDD based tautology checker. Extensive

experiments are performed, both on the ISCAS85 benchmark circuits as wellas some industrial circuits. Our

results show an impressive reduction in the overall memory requirements without a significant time penalty.

We are able to build ROBDDs for many outputs for which the conventional methods fail.

We test the procedure under a number of different variable ordering schemes including dynamic variable

reordering and consistently obtain good results. This shows that the procedure is robust and explores a

complementary aspect of memory explosion problem. None of the procedures use any structural information

at any stage. As a result, the overall algorithm is broad in scope and can be applied to any arbitrary sequence

of ROBDD operations. Specifically, it can be used to build transition relations for sequential circuits and

to check for language containment in formal design verification of digital circuits. The entire procedure can

be built as a shell around any existing ROBDD package. In this way, it is transparent to the end-user of

the ROBDD package. This gives our approach a considerable advantage over methods which use alternate

representations like FDDs, OKFDDs, IBDDs etc. to represent Boolean functions as many highly efficient

ROBDD packages already exist.

In Section 2, we look at the previous work that addresses the problem of memoryexplosion in ROBDD

construction and contrast it with our approach. In Section 3, we define the terminology used in the sequel.

We describe our approach in Section 4, and discuss the results obtained in Section 5. We conclude with

Section 6 where we discuss the possible extensions for our techniques.

2 Previous Work

Though BDDs have been researched for about four decades [24, 1], they found widespread use only after

Bryant [7] showed that suchgraphs, under somerestrictions, can be easilymanipulated. The tworestrictions

imposed are that the graph is reduced (i.e. no twonodes haveidenticalsubgraphs), and that a total ordering

of the variables is enforced. The resulting BDD is an ROBDD. The important symbolic manipulation

procedures introduced by Bryant were apply and compose; these techniques operate on two identically

ordered ROBDDs. Apply allows two ROBDDs to be combined under some Boolean operation, and compose

allows the substitution of an ROBDD variable with a function.

ROBDDs are typicallyconstructed using some variant of Bryant's apply procedure [7]; the ROBDD for

a gate g is synthesized by a symbolic manipulationof the ROBDDs of its inputs, based on the functionality

of g. The gates of the circuit are processed in a depth-first manner until the ROBDDs of the desired output

gate(s) are constructed. The ITEmethod [5] for constructing ROBDDs is similar; there are equivalent ITE

operators for apply and compose. For details on ROBDDs, and the implementation of a typical ROBDD

package, please refer to [5, 7, 9].

The problem of memory explosion during ROBDD construction has received a great deal of attention in

the past. In this section we briefly discuss the previous approaches and contrast them with our work.

The size of an ROBDD is strongly dependent on the ordering of its variables. Much of the prior research

has focused on finding good variable orders to reduce the memory requirements needed in the ROBDD

construction [25, 15, 31, 29] Good static as well as dynamic variable ordering algorithms are known which

perform very well is a large number of cases. However, the problem of finding optimum variable orders in

co-NP complete and there are many instances where these schemes do not perform satisfactorily. As we

will see later in the results section, our schemes provide significant additional memory reductions for all the

variable ordering schemes that we tried. In addition, in our methods, a Boolean function is not constrained

to have the same variable order; different partitions can be ordered independently. In this way our method

not only takes advantage from the advances made in the variable ordering research, but also increases the

benefits available from them.

In [28, 2], it was shown that by manipulating ROBDDs in a breadth-first fashion much larger ROBDDs

can be processed. This is achieved by keeping only a few levels of the ROBDD in the main memory at any

given time and storing the rest in the secondary memory which is typically much larger. As only a few

levels are kept in the main memory at a time, it is difficult to dynamically reorder the ROBDD during an

operation. Presently, to the best of our knowledge, no breadth-first manipulation based ROBDD package is

available which incorporates dynamic variable reordering. Also, the present implementations of breadth-first

manipulation based ROBDD packages are less efficient than the conventional depth-first manipulation based

packages, making them less practical. Again, we are focusing on an orthogonal dimension of the memory

explosion problem. Each of the partitions that we create can be manipulated in a breadth-first manner if an

efficient package becomes available in future.

Parallel algorithms for constructing ROBDDs were investigated in [23, 16, 30]. Large communication

requirements between different partitions limits their applicability. In [16, 30] the ROBDD nodes are dis

tributed among machines in a breadth-first manner. This practically rules out the possibility of dynamic

variable ordering across partitions. In our method we create orthogonal partitions of the Boolean function

represented by the ROBDD. Hence, each of the partitions can be scheduled on a different processor with

minimal communication overhead and without any restrictions on variable ordering.

Some novel non-canonical methods for analyzing Boolean functions have also been developed, such as

gBDDs[3], Extended-BDDs [21], IBDDs [4], and FDDs [22]. These techniques can more easily relax the

ordering constraints, and can handle some functions intractable for ROBDDs. However, they need further

development and thus lack widespread acceptance. Also, they lose the advantages of the canonicity of the

final representation.

Canonical but fundamentally different data structures such as Typed Free BDDs [17] and OKFDDs [13]

have also been proposed to extend the set of functions that can be efficiently symbolically manipulated. In

practice OKFDDs provide only a small improvement over ROBDDs and can in some cases require exponential

resources for manipulation. As we will discuss later, Typed Free BDDs are a special case of our approach.

Many of the functions discussed in [3, 8, 14] are represented in space polynomially bounded in the number

of inputs when subfunctions are ordered independently [18]. Circuits were verified by partitioning them into

these subfunctions. Most of the partitioning techniques suggested in [18] exploit specialized structural

knowledge about the circuit and are difficult to automate. No heuristics for partitioning a decomposed

representation are provided.

In [12], the notion of partitioning wasconsidered for the analysisand verification of finite state machines.

In [12], the terms range partitioning and domain partitioning are used in the context of recursively calculating

the range of a vector of Boolean functions by dividing it into two smaller subproblems and later combining

them into one ROBDD. They do not discuss the notion of processing different partitions independently.

In [10], the notion of partitioned transition relations is developed. The transition relation of a given

finite state machine is expressed as either a disjunction (using an interleaved model) or a conjunction (using

a synchronous model) of ROBDDs representing individual outputs and latches, and algorithms for model

checking are presented. Partitioning is restricted to building the ROBDDs of the outputs and latches

separately.

3 Preliminaries

In this section we establish the terminology for the rest of this paper.

Assume we are given a circuit representing a boolean function F = F : Bn —>• J5°, with n primary inputs

X = {xi,.. .,xn}, and o primary outputs. Let ^ = {V>i,...,V'fe} be a set of variables corresponding to

a decomposition set of the circuit. Here each V,- corresponds to a decomposition point or a decomposition

variable.

To simplify the discussion, we will focus on a single output G. Let Gd{W,X) represent the decomposed

ROBDD of G. Let Vbdd = bl>%bdd, •••> *l>kbdd} represent the array containing the ROBDDs of decomposition

points in term of previously introduced decomposition points and Pis i.e., each ^,- G* has a corresponding

ROBDD, V»M«, € *6<w, in terms ofprimary input variables as well as (possibly) other iffj € *, where Vj 9r

V>|. Elements of * can be ordered such that ipjMd depends on & only if i < j.

The composition [7] of V< in Gd(*,X) is denoted by Gd(&tX).(i>i *- $ikM) where,

GK*.X).(fc <- KJ = 1*»4.Gd(9tX)j; + iHM.Gd(*,X)+i (1)

Here, Gdi^tX)^ represents the restriction of Gd{V,X) at ipi = 1, and is obtained by directing all the

incoming edges to the node with variable id ipi to its ipi = 1 branch and reducing the resulting graph. Other

techniques for ROBDD composition have been proposed [26]; for our purpose we will consider the approach

described above.

The vector composition ofthe $ in Gd{V,X) is denoted as Gd{V,X).(W £- Vbdd) where

Gd(*,X).(* £• *bdd) = (••• ((Gd(¥,X).Wr(i) «- ^(l)MJ).(^ir(2) «- lkr(2)M„)) •••).(**(*) «- 0«(*)MJ (2)

Here, n : N -> N is a one to one and onto mapping from the set of Natural numbers to itself representing

the order in which tfo are composed in Gd- Gd{^,X).{^i £- Vbdd) represents the successive composition of

the tpiS into Gd{^,X), in the order specified by jr.

If G is the monolithic ROBDD of the output in terms of Pis, and Gd(*, X) is the corresponding decom

posed version with ^bdd as the array of decomposition variables, then G can be obtained from Gd and ^bdd

by successive composition of ty in Gd i.e.

G = G<i(tf,;o.(tf £-*6d<<) (3)

The problem of decomposition is to find a set tf with the corresponding ^bdd-

We define a window function, w, such that w : Bn -> 5. The window function is defined over Pis and

represents a part of the truth table on which Gis defined. For a Boolean function /, |/| denotes the size of

its ROBDD under a given variable ordering.

4 Our Approach

During a typical bottom-up ROBDD construction procedure there is frequent functional simplification due

to Boolean Absorption: fV{fAg) = f, and Boolean Cancellation: / A(/ A$) = 0. Here, / and g represent

intermediate results ina sequence ofROBDD operations. Suppose g isan inherently complex function having

an exponential ROBDD. In the traditional approach ofbuilding ROBDDs ofall the intermediate points in

terms ofPis, we would have to create the ROBDD for g. On the other hand, if we represent the ROBDDs

of/ and g in a decomposed form, we can detect the Boolean simplifications without having to ever build

the canonical ROBDD ofg. In this way we avoid the intermediate memory explosion. In addition, since we

work onsmaller graphs, we often gain in time as well. For cases where the final memory requirement is large

or where decomposition cannot capture Boolean simplification, we partition the function into disjoint parts

so that the total memory requirement in processing each of these partitions is significantly lower than that

required for the monolithic representation.

So the overall strategy consists of the following parts:

• Building the decomposed representation of the final result.

• Determining a good order of composition of the 9s into Gd.

• Partitioning the function so that the ROBDD for each partition is smaller than the ROBDD of the

entire function.

We will now discuss each of these parts in some detail.

4.1 Decomposition Approach:

We employ a 'functional* decomposition approach. In this approach decomposition points are introduced

based on the increase in the ROBDD sizes during the intermediate stages of ROBDD construction. During

a sequence of ROBDD operations, whenever the total number of nodes in a ROBDD manager increases by

a disproportionate measure due to some operation, we introduce a decomposition point. By doing this we

postpone the instances of difficult functional manipulations to a later stage. Due to Boolean cancellation and

absorption many of these cases will never occur in the final result, especially if the final memory requirement

is much less than the peak intermediate requirement. If we are trying to build the ROBDD for an output

node of a Boolean network, a decomposition point may be introduced when some operation on the cubes

within a node causes the threshold to be exceeded. In this case, there is no physical correspondence between

decomposition points and circuit nodes.

In our current implementation, the check for memory explosion is done only if the manager size is larger

than a predetermined minimum. Also, decomposition points are added when the individual ROBDD grows

beyond another threshold value, to ensure that the decomposition points themselves do not become very

large.

When the target function is represented as a Boolean netlist, this purely functional scheme can be

augmented with structural decomposition methods [11, 20].

4.2 Order of Composition

For every candidate variable that can be composed into G<f, we assign a cost which estimates the size of

resulting composed ROBDD. The variable with the lowest cost estimate is composed. This problem of

determining a good order ofcomposition was studied in considerable detail in [27]. Various cost functions

were tried, based on the worst case complexity ofROBDD manipulation under compose. It was shown that a

costfunction based onsupportset size performs well in practice. Accordingly, we choose that decomposition

variable which leads to the smallest increase in the size of the support set of the ROBDD after composition.

In the functional decomposition approach, a decomposition point is frequently nested inside other de

composition points. For example, i})jbdd corresponding to the jth decomposition point can have variable fa

in its support set if the ith decomposition point is introduced before the jth decomposition point i.e., t < j.

This dependency information is stored in the form ofa dependency graph. The worst case complexity for

a general order n ofcomposing * in Gd(V,X)t is 0{n2). At each step, we restrict the candidate # for

composition to those decomposition points which are not present inany ofthe other V'&ddS. This guarantees

that a decomposition variable needs to be composed only once in Gd and we never need more compositions

than the cardinality ofthe set ofdecomposition variables. In this way we reduce the complexity ofcomposi

tion process from 0{n2) to 0(n). It can be easily shown that this is the minimum number ofcompositions

to get the monolithic representation of the target function from a decomposed representation in terms of n

decomposition points. Since composition is the most time consuming operation in the entire algorithm, this

reduction in the algorithm complexity is of significance.

4.3 Methods of Partitioning

The problem oforthogonal partitioning can be defined as follows: given aBoolean function /, we want tofind

k window functions u»if w2l ...w* and k partition functions /i, /a, —/* such that / = wifi + W2/2 + ••• + ™kfk

and W{Wj = 0 for » ^ j and wi +102+ ...u>* = 1.

This method of dividing a boolean function into orthogonal partitions has a number of applications.

1. Boolean manipulation: If / and g be two functions which have been partitioned using the win

dow functions u*i,tU2,.. .,«/* with /1,/ji.. ./* and £1,02.••-9k as the corresponding partitions. Any

Boolean operation between / and g can be expressed as follows:

/ °9=(%2 Wifi) o(%2 Wi9i) (4)
»=i »=i

Using the fact that WiWj = 0 we get,

k

f09 =^2^i{fi°9i) (5)
1=1

The above equation implies that these partitions can be manipulated completely independent of the

each other.

2. Formal Design and Implementation Verification: To check the equivalence of two functions / and g

we can check if /©g = 0. Let G = / ©g. If Gi,G2,...,Gfc are the partitions of G then G = 0 if

and only if G,- = 0 for Vt. If any one of the partitions G,- ^ 0 then we can conclude that the functions

are not equivalent. This procedure can be used to check the correctness of a design according to

its specification or for comparing equivalence of two implementations described at different levels of

abstraction.

3. Probabilistic verification: In probabilistic verification [19] every true minterm of a function F is con

verted into an integer value under some random integer assignment p to the input variables. All the

integer values are then arithmetically added to get the hash code HP(F) for F. One can assert, with

a negligible probability of error, that F = G iff HP(F) = HP(G). After a function F is orthogonally

9

partitioned, no two partitions share any common minterm. Hence, we can hash each partition sepa

rately, and just add their hash codes to obtain HP(F). This implies that to check if HP(F) = HP(G),

we can partition and hash both F and G independently. It is not necessary that both F and G have

corresponding partitions with the same window functions.

Now we outline our partitioning method. First, given a window function tu,-, a decomposed representation

Gd{V, X) and ^Ibdd of /, we want to find /,- such that the ROBDD representing /,• is smaller than /. Here

we make the following observation:

Observation: Let fi = Gdvi. {V,X){V <- *6dd„,) and / = Gd{V,X){$ <- Vbdd)- If m is a cube on Pis

then |/,-1 < |/| for any given variable order for / and /,-.

Proof: Given,

fi = GdWi(y,X){-*±-VbddWi) (6)

If W{ depends only on Pis the order of cofactoring and composition can be changed,

/i = [Gd(¥,X)(*<-*6dd)k (?)

This gives,

fi = U, (8)

If Wi is a cube, then \fWl\ < \f\ and hence |/,| < |/|.

Therefore, given Gd, ffi and W{S which are cubes, we can create the cofactors \&u,, in Gdv. • Then by

composing ^Wl we get partition function /,• which is guaranteed to have a smaller size than the monolithic

representation /. Even if the window function is a more complex function of Pis than a cube, /,• = fw, where

fWt is the generalized cofactor of / on iu,-. The generalized cofactor of / on W{ is generally much smaller than

/. Also, as the size of the result of each composition while building /,• will be less than that while building

/, the intermediate peak memory requirement is also reduced. Note that the above result doesn't hold \i

fi and / can have different variable orderings, which typically is the case with dynamic variable reordering.

10

But in practice, since dynamic variable reordering works on smaller graphs in the case of partitions it is

more effective in finding smaller representations for the partitions resulting in even higher gains.

After decidinghowto construct the partition functionfrom a givenwindow function weexaminemethods

to obtain good window functions. These methods can be divided into two categories: apriori selection and

'explosion* based selection. As the names suggest, in apriori selection we select the window functions based

on Gd and V at the beginning of composition process and compose each of the partitions separately. In the

'explosion' based method, we try to compose a rpi into the Gd and if the graph size increases disproportion

ately then we select a window function based on Gd and V>i and recursively call the routine on each of the

partitions.

4.3.1 Apriori Partitioning

In this method we select a predetermined number of Pis to partition. If we decide to partition on 'k' Pis

then we create 2* partitions corresponding to all the binary assignments of these variables. For example, if

we decide to partition on say x\ and xi then we create four partitions 11X2, ^1^2, ^1X2 and x\Xi. From

the observation made in the previous section, we know that this way of partitioning on Pis guarantees that

the memory requirements of these partitions will be less than the memory requirement of the monolithic

function. The question that remains to be answered is how to select the Pis on which to partition. The

goal is to maximize the partitioning achieved while minimizing the redundancy that may arise in creating

different partitions independently. For this purpose wedefinethe cost of partitioning a function / on variable

x as

costx(f) = a\partition.factorx(f)] + /3[redundancy.factorx(f)] (9)

where,

partition.factorx(f) =max(^,^) (10)

and,

redundancy.factorx{f) =^l*^ (11)

11

Notice that a lower partition-factor is good as it implies that the worse of the two partitions is small and

similarly a lower redundancyJactor is good since it implies that the total work involved in creating the two

partitions is less. The variable x which has the lower overall cost is chosen for partitioning.

Similarly, for a given vector of functions T —/i,/2,..., fk and a variable x, the cost of partitioning is

defined as:
k

co8tx(?) = J2costx{fi) (12)
i=l

We order all the Pis in increasing order of their cost of partitioning Gd and * and select the best 'k'

(where 'k' is a predetermined number specified by the user). This type of selection, where all the Pis are

ranked according to their cost of partitioning Gd and $, is called static partition selection. On the other

hand, we can have a dynamic partitioning strategy in which the best PI (say x) is selected based on Gd

and * and then the subsequent PI is recursively selected based on Gds and Wx in one partition and in Gd?

and *y in the other partition. The dynamic partitioning method will require an exponential number of

cofactors and can be expensive. This cost can somewhat be reduced by exploiting the fact that the only

values that we are interested in are the sizes of the cofactors of Gd and ^<M(is. An upper bound of the value

of |Gd,| can be calculated by traversing the ROBDD of Gd and takingthe x = 1 branch whenever the node

with variable id corresponding to x is encountered. This method doesn't give the exact count as the BDD

obtained by traversing the ROBDD in this manner is not reduced. The advantage is that no new nodes need

to be created and the traversal is fast.

4.3.2 Explosion based partitioning

In this method we successively compose the il>iMd8 in Gd until the graph size increases drastically for some

composition (say Vj)- When this explosion in graph size occurs, we select a window function based on the

current Gd and ipjM<l. The window function iseither a PI and its complement or a il>kh<u which is expressed

in terms of Pis only. The cost function for selecting the window function is defined in a manner analogous

to the previous section, except that cofactor operations become generalized cofactor operations for window

functions which arenon-cubes. Once the window function w, is obtained, we create two partitions (Gdtt,^w)

and {Gd^, Ww) and recursively call the routine on each of the partitions.

12

4.3.3 Functional Partitioning and Typed Free BDDs

Typed Free BDDs are a canonical, manipulable, and compact BDD scheme where a BDD-like structure,

referred to as a type, is generated on a subset of variables [17]. Each of the k leafs in this structure roots a

canonical BDD suchthat no variable is repeated from the root ofthe resulting graph to its terminals. A path

from the common root to the leaf is similar to the windowfunction and the subgraph rooted from the leaf is

analogous to the partition function. Hence, a typed Free BDD is a special case of our partitioned ROBDD

where all the partitions are represented simultaneously and are merged with a common root. Partitioned

ROBDDs are moregeneral because each partition can exist independently and the window functions do not

need to share a common structure. The window function and the partition function for each partition can

have an independent variable order and we believe that this flexibility can make them exponentially more

compact that Typed Free BDDs in some cases.

5 Results

Wehaveimplemented an ROBDD basedtautologychecker in the SIS [32] environment. Forour experiments,

we use the ISCAS85 benchmark circuits as well as some industrial circuits. Results are reported for those

outputs which are considered 'hard' from the standpoint of building ROBDDs. We modify each of the

circuits using script,rugged in SIS and check the equivalence of the original and modified circuits.

Results for the ISCAS85 benchmarks were run on a DECstation 5000/260 with 128MB of memory.

Results on industrial circuits were run on a DEC 3000/500 Alpha server, with 160MB of memory.

In tables 1, 3,5, and 7 the "Reference" column refers to the traditional depth-first method of constructing

ROBDDs. In this method the nodes are traversed in a depth first manner and ROBDD of each intermediate

node is created in terms of Pis before the ROBDD of the output is created. In our implementation of this

method, we changed the code in the ntbdd.node.to.bdd function of SIS, so that if an ROBDD of a node

is not required in subsequent computations, it is freed, to reduce memory utilization. This results in a

1.5X improvement over the ntbdd.nodeJo.bdd function as released in SIS. "Decomposition" uses functional

decomposition followed by composition, but without any partitioning.

13

Results on partitioning are reported in tables 2, 4, 6, 8, and 9. In order to demonstrate the generality of

our methods, we tested them using different variable ordering schemes. Table 2 uses natural input ordering

(NO) without dynamicvariable reordering (DR) [29]. Table4 uses Malik'sordering (MO) [25] without DR.

Table 6 uses NO with DR, while Table 8 uses MO along with DR. These tables report results using the

apriori partitioning heuristic. Table 9 reports our experiments on industrial circuits.

In all the tables, the "size" column represents the peak ROBDD manager size. All experiments were run

with a million node limit on the size of the ROBDD manager, and a time limit of three hours.

Table 1compares the "Reference"and the "Decomposition" methods. We observe that the latter method

performs better in memory utilization, in almost all cases. An average gain of 1.5Xis obtained in memory

utilization over the "Reference". A "*" against an entry indicates that this example was run with different

memory explosion thresholds than the rest of the examples. As shown in Table 2, the use of partitioning

results in a significant reduction (between 1.5X and 2.5X) in memory utilization overthe "Decomposition"

method. This gain is accompanied by an increase in the time taken. In two examples, C2670 (output

140) and C6288 (output 14), the partitioning methods could build the BDD while the "Decomposition"

method and the "Reference" failed. We also observe that among the partitioning methods, as the number of

partitions is increased, there is a decreasing trend in the memory utilization along with a gradual increasing

trend in the time taken. This is as anticipated. In this table, we notice a 30% time penalty between 4

partitions and 16 partitions, for a 1.5X reduction in memory utilization.

Ckt Out Reference Decomposition

Time Size Time Size

C880 26 14.91 200157 4.35 80157

C1355 32 1.43 30562 0.45 9891

C1908 24 5.11 47791 5.01 47164

C1908 25 6.76 33859 6.26 70800

C2670 140 - Spaceout Timeout -

C3540 22 283.02 988587 391.11* 401291*

C5315 123 - Spaceout - Spaceout
C6288 12 58.77 375189 55.40 361434

C6288 13 169.57 980583 173.37 654850

Total 539.57 2656728 635.95 1625587

Table 1: Natural Ordering without Dynamic Reordering

14

-•••:..

Ckt Out 4 Partitions 8 Partitions 16 Partitions 32 Partitions

Time Size Time Size Time Size Time Size

C880 26 27.82 22930 27.15 21801 30.54 20926 35.12 20264

C1355 32 6.14 8056 6.23 8001 6.98 7234 8.85 7074

C1908 24 47.04 58291 32.07 50115 36.39 42536 43.57 40399

C1908 25 44.67 39887 43.71 34667 47.39 29394 56.29 29050

C2670 140 10332.68 263479 1676.74 247641 1719.84 245165 2669.90 245165

C3540 22 423.34* 151662* 467.09* 123449* 500.46* 111506* 524.08* 84471*

C5315 123 - Spaceout - Spaceout - Spaceout - Spaceout

C6288 12 163.92 264325 163.31 222342 210.91 180174 192.80 164368

C6288 13 337.70 418668 369.25 381981 388.28 344703 492.25 325001

C6288 14 945.03 829218 1030.12 764307 1353.00 682015 1512.75 579619

Total 1050.63 963819 1108.81 842355 1220.95 736473 1352.96 670627

Table 2: Natural Ordering, without Dynamic Reordering and Partitioning

In Table 3, we once again observe that the "Decomposition" algorithm has better memory performance

(by about 1.3X) over the "Reference" method. Examples C880, C1355, C1908, and C5315 could be built

without any intermediate memory explosion, hencedecomposition was not invoked. Accordingly, the memory

utilizationof both algorithmsis identical for these examples. For this reason, these examples are not included

in Table 4, even though the time and memory requirements were very small. This table once again shows an

impressive reduction in the memory utilization. With 32 partitions, example C3540 was verified in a little

under an hour. Further, output 14 of C6288 was verified by most of the partitioning methods while neither

the "Reference" nor "Decomposition" schemes could do so. Once again the same trends in time and memory

utilization are observed with an increasing number of partitions.

Tables 5, 6, 7 and 8 exhibit the same trends as before, validating the claim that our partitioning schemes

work well even when Dynamic Reordering is used. In Tables 5 and 6, we obtain great memory improvements

over the "Reference" and "Decomposition" algorithms (about 1.75X) with very little time penalty. In fact,

the partitioning methods perform consistently better than the "Decomposition" method.

Once again, in Tables 7 and 8, we obtain vast time and memory improvements by using partitioning.

In Tables 7, we once again observe that examples C880, C1355, C1908 and C5315 were built without the

decomposition step being invoked. As a result, these examples are not included in Table 8.

We were able to obtain a couple of large industrial examples to run our examples on. The results of

15

Ckt Out Reference Decomposition

Time Size Time Size

C880 26 0.27 9944 0.33 9944

C1355 32 0.85 12671 0.88 12671

C1908 24 1.40 14039 1.48 14039

C1908 25 1.71 13790 1.88 13790

C2670 140 26.16 234562 1.55 28002

C3540 22 - Spaceout - Spaceout
C5315 123 0.97 10008 1.15 10008

C6288 12 35.94 366237 25.25 197341

C6288 13 97.91 861241 207.98 932092

Total 160.01 1462040 234.78 1157435

Table 3: Malik Ordering without Dynamic Reordering

Ckt Out 4 Partitions 8 Partitions 16 Partitions 32 Partitions

Time Size Time Size Time Size Time Size

C2670 140 137.94 35301 141.04 26108 148.41 23166 153.00 21632

C3540 22 - Spaceout - Spaceout - Spaceout 3268.42 998070

C6288 12 116.06 136114 116.54 111020 125.64 101727 139.89 96903

C6288 13 344.80 566148 347.08 410485 418.70 376649 489.15 324906

C6288 14 - Spaceout 1970.08 963159 2152.01 989251 3013.71 895904

Total 598.80 737563 604.66 547613 692.75 501542 782.04 443441

Table 4: Malik Ordering, without Dynamic Reordering and Partitioning

Ckt Out Reference Decomposition

Time Size Time Size

C880 26 6.84 9809 7.54 12723

C1355 32 15.95 8745 0.46 9891

C1908 24 6.28 13975 9.42 12901

C1908 25 4.16 10065 4.41 10523

C2670 140 118.09 12579 172.99 11051

C3540 22 466.26 117210 943.37* 127598*

C5315 123 16.96 11107 11.54 9874

C6288 12 855.35 413792 4289.16 343331

Total 1489.89 597282 5438.89 537892

Table 5: Natural Ordering with Dynamic Reordering

16

Ckt Out 4 Partitions 8 Partitions

Time Size Time Size

C880 26 9.83 1926 9.96 1777

C1355 32 12.20 5744 13.07 5745

C1908 24 12.80 4339 13.28 4156

C1908 25 6.03 1484 6.20 1802

C2670 140 204.19 8947 133.80 9203

C3540 22 525.68* 82857* 704.06* 88552*

C5315 123 13.13 572 13.02 579

C6288 12 1508.14 221099 1091.36 174987

Total 2292.00 326968 1984.75 286801

Table 6: Natural Ordering, with Dynamic Reordering and Partitioning

Ckt Out Reference Decomposition

Time Size Time Size

C880 26 0.74 9944 0.67 9944

C1355 32 1.97 12671 1.93 12671

C1908 24 12.64 11307 12.77 11307

C1908 25 11.48 10679 11.70 10679

C2670 140 12.70 10041 10.56 9191

C3540 22 2984.75 553817 3166.14 453807

C5315 123 2.23 10008 2.36 10008

C6288 12 1890.81 293221 1190.55 184685

C6288 13 7822.49 751922 - Spaceout

Total 12710.75 1609001 4367.25 647683

Table 7: Malik Ordering with Dynamic Reordering

Ckt Out 4 Partitions 8 Partitions

Time Size Time Size

C2670 140 14.54 576 14.89 582

C3540 22 2083.47 307335 2465.80 400511

C6288 12 801.49 107576 481.12 49700

C6288 13 4297.38 502645 5618.27 361018

Total 2899.50 415487 2961.81 450793

Table 8: Malik Ordering, with Dynamic Reordering and Partitioning

17

these runs are shown Table 9. Both these circuits have more than 200 inputs and 2000 complex multi-level

gates. They could not be verified using a non-ROBDD based scheme [6]. The "Reference" algorithm was

not able to build the ROBDDs for either 'Indl' or 'Ind2\ using Malik Ordering with DR. For Tndl\ the

"Decomposition" method was able to build the ROBDD. Our partitioning method shows further gains in

memory on this example. For 'Ind2', the partitioning method timed out in 5 hours. The "Decomposition"

method was able to build the ROBDD in just under 5 hours.

Ckt Reference Decomposition 4 Partitions

Time Size Time Size Time Size

Indl - Spaceout 2547.77 100852 2551.22 74760

Ind2 - Spaceout 17754.99 993345 Timeout —

Table 9: Industrial Circuits, Malik Ordering, with Dynamic Reordering

6 Conclusions

The main conclusions of our work are as follows:

• Wehaveimplemented a general ROBDD construction procedure. Using decomposition and partitioning

we are able to effectively reduce the memory requirements in the ROBDD construction process by

trading off memory with time.

• Two heuristics for generating orthogonal partitions arepresented. One is based on an apriori analysis of

the decomposed output function, while the other relies on an analysis of the growth of the decomposed

output function, as the composition proceeds.

• Our decomposition and partitioning strategies are based on purely functional considerations, and as

a result, our overall scheme can be applied to any general sequence of ROBDD operations. More

specifically, the method can also be used in the construction of transition relations of finite state

machines and for language containment and model checking in formal design verification.

18

• Results were run on known hard circuits from the ISCAS85 benchmark suite, as well as on some hard

industrial circuits. We show significant improvements over the conventional bottom-up procedures of

verifying ROBDDs. In some cases, our methods were ableto build ROBDDs where the existing schemes

failed. All the experiments are done using only the default values for memory explosion thresholds,

unless where otherwise noted. This shows that the methods are robust. Much better results can be

obtained by some experimentation with the thresholds.

• Results are reported for different variable orderingschemes includingdynamic ordering and are consis

tently better than the conventional methods. These results show that our approach complements the

research on variable ordering and can be used in conjunction with any ordering scheme to get further

reductions in memory utilization.

• Since different partitions can have different variable orders our approach extends the class of functions

that can be manipulated with polynomial resources using ROBDDs. We show that our partitioned

representation is more general than Typed Free BDD.

• Our scheme is flexible in that if the output ROBDD can be built without any memory explosion, no

decomposition variables are introduced. Also, different schemes for decomposition and composition

can be used, resulting in a powerful array of ROBDD construction techniques.

Future research is directed towards identifying other ways of partitioning the ROBDDs. We also plan

to augment the functional decomposition scheme with structural methods for the purpose of combinational

verification. We plan to use this approach to reduce the resources required in computing transition relations,

reachability and for model checking and language containment in the context of formal design verification.

References

[1] Sheldon B. Akers. Binary decision diagrams. IEEE Transactions on Computers, 027:509-516, June
1978.

[2] P. Ashar and M. Cheong. Efficient breadth-first manipulation of binary decision diagrams. ICCAD,
pages 622-627, 1994.

\S\ P. Ashar, A. Ghosh, and S. Devadas. Boolean satisfiability and equivalence checking using general
binary decision diagrams. ICCD, pages 259-264, October 1991.

19

[4] J. Bitner, J. Jain, D. S. Fussell, J. A. Abraham, and M. Abadir. Efficient algorithmic circuit verification
using indexed bdds. International Symposium on Fault Tolerant Computing, pages 266-275, 1994.

[5] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of a BDD Package. In Proc. of
the Design Automation Conf., pages 40-45, June 1990.

[6] D. Brand. Verification of Large Synthesized Designs. In Proc. of the Intl. Conf. on Computer-Aided
Design, pages 534-537, November 1993.

[7] R. E. Bryant. Graph based algorithms for Boolean function representation. IEEE Transactions on
Computers, C-35:677-690, August 1986.

[8] R. E. Bryant. On the complexity of VLSI implementations and graph representations of Boolean
functions with application to integer multiplication. IEEE Transactions on Computers, C-40:206-213,
February 1991.

[9] R. E. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams. ACM Computing
Surveys, 24:293-318, September 1992.

[10] J. R. Burch, E. M. Clarke, D. E. Long, Kenneth L. McMillan, and David L. Dill. Symbolic Model
Checking for Sequential Circuit Verification. IEEE Transactions on Computer-Aided Design of Inte
grated Circuits, 13(4):401-424, April 1994.

[11] G. Cabodi, P. Camurati, and Stefano Quer. Auxiliary variables for extending symbolic traversal tech
niques to data paths. 31st Design Automation Conference, pages 289-293, 1994.

[12] O Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines based on symbolic exe
cution. International Workshop on Automatic Verification Methods for Finite State Systems, Lecture
Notes in Computer Science, 407:365-373, 1989.

[13] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski. Efficient representation and
manipulation of switching functions based on ordered kronecker functional decision diagrams. 31st
Design Automation Conference, pages 415-419, 1994.

[14] L. Fortune, J. Hopcroft, and E. M. Schmidt. The complexity of equivalence and containment for
free single variable program schemes. Goos, Hartmanis, Ausiello and Bohm, Eds., Lecture Notes in
Computer Science 62, Springer-Verlag, pages 227-240, 1978.

[15] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and Improvements of Boolean Comparison Method
Based on Boolean Decision Diagrams. In Proc. of the Intl. Conf. on Computer-Aided Design, pages 2-5,
November 1988.

[16] M. Rebaudengo G. Cabodi, S. Gai and M. Sonza Reorda. Adata parallel approach to Boolean function
manipulation using BDDs. In First International Conference on Massively Parallel Computing Systems
(MPCS), pages 163-75, May 1994.

[17] J. Gergov and C. Meinel. Efficient analysis and manipulation ofOBDDs can be extended to read-once-
only bracnhing programs. IEEE Transcations on Computers, C-43:1197-1209, October 1994.

[18] J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham. Functional partitioning for verification and related
problems. Brown/MIT VLSI Conference, March 1992.

[19] J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham. Probabilistic verification of Boolean functions.
Formal Methods in System Design, 1, 1992.

[20] J. Jain, A. Narayan, C. Coelho, S. Khatri, A. Sangiovanni-Vincentelli, R. Brayton, and M. Fujita. Com
bining Top-down and Bottom-up Approaches for ROBDD Construction. Technical Report UCB/ERL
M95/30, Electronics Research Lab, Univ. of California, Berkeley, CA 94720, April 1995.

20

[21] S.-W. Jeong, B. Plessier, G. Hachtel, and F. Somenzi. Structural BDDs: Tradingcanonicity forstructure
in verification algorithms. ICCAD, 1991.

[22] U. Kebschull, E. Schubert, and W. Rosentiel. Multilevel logic based on functional decision diagrams.
European Design Automation Conference, pages 43-47,1992.

[23] S. Kimura and E. M. Clarke. A parallel algorithm for constructing binary decision diagrams. ICCD,
pages 220-223,1990.

[24] C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell Syst. Tech. J.,
38:985-999,1959.

[25] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Logic Verification using Binary
Decision Diagrams in a Logic Synthesis Environment. In Proc. of the Intl. Conf. on Computer-Aided
Design, pages 6-9, November 1988.

[26] K. L. McMillan. Symbolic model checking: An approach to the state explosion problem. Ph.D Thesis,
Dept. of Computer Sciences, Carnegie Mellon University, 1992.

[27] A. Narayan, S. P. Khatri, J. Jain, M. Fujita, R. K. Brayton, and A. Sangiovanni-Vincentelli. Compo
sitional Techniques for Mixed Bottom-Up / Top-Down Construction of ROBDDs . Technical Report
UCB/ERL M95/51, Electronics Research Lab, Univ. of California, Berkeley, CA 94720, June 1995.

[28] H. Ochi, K. Yasuoka, and S Yajima. Breadth-first manipulation of very large binary decision diagrams.
ICCAD, pages 48-55,1993.

[29] R. L. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams . In Proc. of the Intl.
Conf. on Computer-Aided Design, pages 42-47, November 1993.

[30] M Rebaudengo S. Gai and M. Sonza Reorda. An improved data parallel algorithmfor Boolean function
manipulation using BDDs. In Euromicro Workshop on Parallel and Distributed Processing, pages33-9,
January 1995.

[31] F. Somenzi S. Panda and B. F. Plessier. Symmetry Detection and Dynamic Variable Ordering of
Decision Diagrams. In Proc. of the Intl. Conf. on Computer-Aided Design, pages 628-631, November
1994.

[32] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan,
R. K. Brayton, and A. L. Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis.
Technical Report UCB/ERL M92/41, Electronics Research Lab, Univ. of California, Berkeley, CA
94720, May 1992.

21

	Copyright notice 1995
	ERL-95-91

