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ABSTRACT

Recent developments in Hyper's design space exploration and high-level
synthesis techniques have brought the realization of automated synthesis of
memory-intensive, low-power implementations closer. This work describes
the design path taken to synthesize the front end of a speech recognition
chip. It starts from the Hyper high-level synthesis tool by looking at possi
ble alternatives at the algorithmic level, as well as using suitable transfor
mations on the control flow data graph (CDFG) representation within
Hyper. The flowgraph is then mapped onto an architecture, and more power
analysis provides feedback for possible power improvements. Finally, with
the help of the LagerlV architectural-level tools, a silicon layout suitable
for fabrication is generated
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1.0 Introduction.

The objective of this work is to design the front end of a speech recognition system to

handle theacoustic signal processing. The algorithm adopts a proposal by Hermansky et al. [6],

RASTA-PLP, which is a refinement over the standard linear prediction (LPC) model.

Speech-recognition systemscomprise a wide collection of disciplines, including statisti

cal pattern recognition, communication theory, signal processing, combinatorial mathematics,

and linguistics, amongst others. Typically speech recognition starts with the digital sampling of

speech. The next stage is the acoustic signal processing, which converts the speech waveform to

some type of parametric representation. Most techniques include spectral analysis; e.g. LPC anal

ysis, MFCC, cochlea modeling and many, many more. The next stage is recognition of phonemes,

groups of phonemes and words. This stage can be achieved by many processes such asDTW

(Dynamic Time Warping) [2], HMM (hidden Markov modelling)[2], NNs (Neural Networks)[2],

expert systems [2] and combinations of techniques. HMM-based systems are currently the most

commonly used and most successful approach.

Following the current wave of interest in low-power portable applications such as Berke

ley's personal communications terminal, InfoPad, the power issueswill be emphasized. A speech

recognition system is an excellent substitute for the keyboard on portable devices that require

human input.

Hyper's [1] hardware library of low-power cells areused in the design. The entire behav

ioral inputdescription is done in Silage[4]. Employing different flowgraph transformations, vari

ous area, speed, and power optimization techniques were explored. The estimates provided by

Hyper gave a quick comparison of the relative effectiveness between various sets of transforma

tions.

After the scheduling and hardware mapping steps, architectural poweranalysis was done

using SPA. It identifies thebottlenecks of power consumption. The information is usedto suggest

further improvements to the architecture.
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As a final step, the architectural description is converted to silicon layout using the

LagerlV CAD tools. Running IRSIM on the extracted layouts provides some power figures that

can be compared with the SPA results.

1.1 Prediction Model Fundamentals

Some details of the algorithm are left out here, and described in more rigorous fashion in

Chapter 2. This section is intended to give an overall view of the RASTA-PLP algorithm, leading

to the block diagram in Figure 1.4.Chapter2 will discussthe algorithmused to implementeach of

the blocks, as well as the design space exploration.

1.1.1 Linear Prediction (LPC) Model

The greatest common denominator of all recognition systems is the acoustic signal pro

cessing. A common front-end is the linear predictivecoding (LPC) analysis [2]. The analysis

assumes that the speech synthesis consists of a digital filter, H(z), whose excitation source is cho

sen from either an impulse train (voiced speech) or a white noise generator (unvoiced sounds)

depending on a voiced/unvoiced switch. The switch is controlled by the voiced/unvoiced charac

ter of the speech. The filter has an all-pole transfer function which is controlled by the vocal tract

parameters characteristic of the speech being produced. The aim is therefore to predict the a^

coefficients ofthe filter H(z), also known as the LPC coefficients. Figure 1.1 shows apth order

autoregressive (AR) transfer function, with p poles.
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FIGURE 1.1 Speech synthesis model basedon LPC Model

From the transfer function, a given speech sample at time /i, x(n) can be represented as a

linear combination of the past p speech samples,

x(n) = Aw{n) +a]x(n-\) +a2x(n-2) + ... +apx(n-p)

(EQ 1.1)

Hence, the autocorrelation function can be related by

rx(k) = E[x{n)x*(n-k))

= E{ [w(n) +axx(n - 1) +a2x{n - 2)+... +apx(n -p)]x*(n -k)}

= E{[axx(n- \) +a2x(n-2) + ... +apx(n-p)]x*(n-k)}

= a^r^k - 1) +a2rx{k - 2)+... +aprx(k - p)

x* : complex conjugate of x.

(EQ 1.2)
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Apm order ARmodel has therefore, p unknowns, aj through ap. EQ1.3 shows p sets of

EQ1.2 with the value of k ranging from 1 throughp arranged in a matrix form. Since the speech

samples are real the autocorrelation function is symmetric, i.e. rjk) = rj-k). If thereis a way to

estimate the first p+7 entries (rJO) through rjp)) of the short term autocorrelation function, the

LPC coefficients can then be predicted by solving EQ1.3 with Durbin's algorithm[3] for Yule-

Walker equations, since the/? xp matrix is Toeplitz symmetric:

r(0) r(l) r(2)

r(D r(0) r(l)

r(2) r(l) r(0)

r(/?-l)r(p-2)r(p-3)

r(p-l)
ai r(l)

r(p-2) a2 r(2)

r(p-3)
• a3 = r(3)

r(0)
...

r(0) J
a_P_ /(Pi

(EQ 1.3)

The autocorrelation function is obtained by an inverse Fourier transformation of the power

spectrum. The short term (20ms~30ms window) spectrum is approximated by a periodogram esti

mate^], defined as

N

V") =
fl = 0

-yton
2 N

" X rxWe
n = 0

-ycon

(EQ 1.4)

The Fourier transform of the speech samples is usually obtained with a256-point or512-

point FFT on a speech input sampled between 8kHz to 16kHz. The transfer function of the vocal

tract, H(z) is assumed to remain unchanged throughout the short time segment

A very important LPCparameter set, which can be derived directly from the LPCcoeffi

cients, is the set of LPC cepstral coefficients, cm. These are thecoefficients of the Fourier trans

form representation of the log magnitude spectrum. Bogert et al. [17] observed that the logarithm

of the power spectrum of asignal containing an echo hasa n additive periodic component due to
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the echo, and thus its Fourier transform, thecepstrum, should exhibit a peakat the echo delay.

Thecepstral coefficients are associated withhomomorphic analysis, whichhavebeenshown to be

a more robust, reliable feature set for speech recognition than LPC [18].

The recursion used is given by the following equations, withA and am variablesdefined as

inEQl.landEQ1.3.

c0 = InA

m-l

c

Cm = 2-i \^jckam-k m> p
k= 1

(EQ 1.5)

1.1.2 Bank of Filter Analysis and Perceptual Linear Prediction (PLP)

LPC models all frequencies equally well. Unfortunately, this is not consistent with the

human auditor)' devices. It was shown by Hermansky [5] that recognizers equipped to utilize the

perceptually based spectra deliver recognition accuracy comparable to that of LPC, but with

smaller order autoregressive models, i.e. fewer LPC coefficients, thus gaining the advantage of a

reduced computational load.

The frequency analysis step in human speech processing is performed by the inner ear. It

is accomplished by waves travelling along the basilar membrane in the inner ear (cochlea).

Higher frequencies resonatenear the input while lowerfrequencies resonateprogressively nearer

the apex of the cochlea. The natural frequency scale of the ear, which corresponds to the total

length (~35mm) of the basilar membrane, has a resolution of about 1.5mm, giving rise to about

24 "critical bands" which span the audible range of approximately 20Hz~20000Hz.

~am+ X [~)Ckam-k \<m<p
*=1

m-l
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The PLP model suggests that the human perception of frequencies can be mimicked by

passing the sampled speech through a bank of Q bandpass filters, giving the signals:

st(n) = s{n)*hi(n) for \<i<Q

m = 0

CEQ1.6)

However, instead of using EQ1.6, the critical band filtering is done in the frequency

domain. The same effectcould be achieved by weighting theFFT coefficients according to the

magnitude frequency response of a filter bank. The center frequencies of the filters are spaced

equally on a Barkscale from OHz through 8Hz. Each filter spans acommon bandwidth on a Bark
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scale. The Bark scale is a non-linear transformation of theusual frequency scale, given below in

EQ 1.7. From Figure 1.3, it is clear that for the same bandwidth in Bark scale, band A, which is

centered at a higher frequency, spans a wider range of actual frequencies thenband B. Thismim

ics the progressively coarser resolution of human perception at increasing frequencies.

Frequency: 0) rad s*1
Bark Frequency: Q

Q(co) = 61n- CO

1200k

Bark
Frequency, Q.

yy-f

Usual Frequency, co

FIGURE 1.3 Non-LinearTransformation to Bark frequency.

(EQ 1.7)

1.1.3 Relative Spectral, Perceptual Linear Predictive model (RASTA-PLP)

The PLP model, however still suffers from linear distortions in the communications chan

nel. A simple muffling of speech could change the LPC coefficients sufficiently to fail a recog

nizer trained on clean data. Hermansky et al. [6] proposed a refinement to LPC to make it more

tolerant to channel modulation effects (convolution^ noise). The following were added in their

technique called RASTA-PLP (Relative Spectral, Perceptual Linear Predictive):

•Bandpass filtering estimates the temporal derivative of the Bark-scale-trans

formed spectrum by drawing a regression line through spectral values obtained in

the last 5 consecutive windows.
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•Add the equal loudness curve and raise the coefficients by power of0.33 to simu

late the power law ofhearing. The raise power function is simplified by using a

natural log, followed by amultiplication of factor 0.33, and an inverse logarithm

(exponential function), i.e. c0,33 =exp(0.33 *log(c)).

The complete block diagram is shown in Figure 1.4. The non shaded blocks make up the

most basic LPC analysis model. The critical band filtering block (medium shading) implements

the PLP improvement, while the most heavily shaded blocks complete the RASTA-PLP algo

rithm.

30ms window of

Speech sampled at
16kHz. Overlap of
20ms between conse

cutive windows
Power

Spectrum
sampled at
256 points

ficients

Cepstral Durbin
First 9
Coef
ficients

IDFT ^ Expix) J>^J
Power | "*^
Law ut ^">_—-.•
Hearing J .^

Equal
Loudncssi

8

LPC

Coefficients

FIGURE 1.4 Flowgraph of RASTA-PLP

1.2 The Hv per synthesis Environment

The Hyper system is an integrated synthesis environment for real time applications. It uses

the Silage[7] language for behavioral description input of the application. Silage is a signal-flow

language developed especially for DSP specifications. It is an applicative language whose funda

mental operation is function application. The term Static Single Assignment (SSA) is used to

describe the computation method of Silage. SSA avoids any false dependencies between interme

diate data, thus helping the exploitation of parallelism. Other advantages include built-in stream

and temporal operators for handling of continuous streams ofdiscrete-time inputs, and built-in

data types that allow user specification of data bit widths.
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Hyper parses the Silage description and compiles a Control/Data flow graph (CDFG).

The CDFG represents the algorithm asa flow graph consisting ofnodes, data edges, and control

edges.The nodes represent primitive dataoperators such as adders, comparators and memory

read/writes. The dataedges represent dataprecedences between thesenodes. Control edges are

introduced to enforce extra precedence rules between nodes (e.g. theexecution time of operation

X has to trail theexecution of operation Y byat least Nclock cycles). Aside from thestandard

arithmetic operations, the CDFG allows a number ofmacro control flow operations such as loops

and if-the-else blocks. The introduction ofthose control statements results ina hierarchical graph.

Thebody of a loop or a conditional is represented bya sub-graph, which is contracted intoa sin

gle node at thenext higher hierarchy level. The hierarchical representation has theadvantages of

compactness and descriptiveness. It also preserves any structural hintsfrom the designers.

The CDFG serves as a central database to which all other Hypertools (Figure 1.5), such

as min-bound estimations, flow graph transformations, and assignment/scheduling, refer when

executed. Theresults of these operations areback annotated onto thedatabase. Thefollowing is a

briefdescription of each class of operations

•.Memory Management: Performs memory moduleselection, memory merge

and address generation. Memory module selection assigns an appropriate memory

module from the hardware library for each array in the application. Memory

merge allows 2 or more different arrays to be merged ontoa single memory mod

ule. Address generation reads the memory address annotated on thearray read/

write nodes in the CDFG and creates nodes that will beexecuted asany other data

operation to generate the address.

•Module Selection: Selects anappropriate hardware library module foreach flow

graph operation.

•Estimation: Derives the minimum and maximum bounds onthe required hard

ware resources. This information will serve as an initial solution and willhelp

select the next synthesis operation to perform.

Automated Low-Power ASICDesign forSpeech Processing 10



Input : 8llaga Language

feme Ik (hi : fix) Out: ft» •

Out • Sum { 0 al-M):: cCQInei)

\

Simulation

/
Flowgraph Tranaformationa

L*To~|->Ca^,*1 ° I—G^om

/
Flowgraph Databaae

•""C^^^^l
^^Out

/
\

Estimation

\
Aaalgnment / Scheduling

Mat Bounds On Hardware

• Ragla Mr*

2 Suaaaa

Tana 13 9 4*07

AdOart

AdCtora

*hHI

a a a a a

a a a a

a a a

Hardware Mapping

Uncsvap^

-^b^5^ •hlH

t__2jt*-»*^

Silicon Compilation

FIGURE 1.5 The Hyper synthesis environment

•Transformation: Manipulates the signal flow graph of the algorithm to improve

the final implementation, without changing the input-output relation. Typical trans

formations are retiming, loop unrolling and common-subexpression elimination

and pipelining.

• Allocation, Assignment and Scheduling: Selects the amount of hardware

resources (execution units, registers and interconnect), needed for the execution of

the algorithm. Bind each flow graph operation to a particular hardware unit and

time slot.

•Hardware Mapping: Maps the allocated, assigned and scheduled flow graph

(called the decorated flow graph) onto the available hardware blocks. The result of

this process is a structural description of the processor architecture in the SDL[8]

language, which serves as the input to the LagerlV silicon assembly tool suite.
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Furthermore, the Hyper simulatorcan be invoked after any of the synthesis steps (though

Hardware Mapping does not alter the CDFG) to verify the functionality of algorithm and the cor

rectness of the transformations performed. Also, whenrunin the Bit-Truemode, which simulates

with a fixed pointrepresentation of the data with bit-widthsas specifiedby the user,the simulator

can optimize and check the value of a number of performance parameters, such as the signal to

noise ratio, or the effects of truncation on the transfer function.

Hyper allows the designer to play the area-time-power trade-off game. The effect of the

various built-in transformations areeasily reflected by the Estimator results. Also, Hyper provides

comparisons between different algorithms pertaining to the same behavior.

1.3 SPA - Stochastic Power Analysis

SPA is a tool that allows a designer to obtain predictions of area and power consumption

at the architectural level. The input to SPA is a register-transfer level description of the architec

ture to be analyzed and a set of input vectors. Both textual and graphical results are available,

with area and power estimates broken down by hardware class and type of component.

The primary RTL input describes the architecture underconsideration. Conceptually, this

consists of the information displayed in Figure 1.6. In particular, it contains a (possibly hierarchi

cal) description of datapath blocks used in the chip, as well as the interconnect network joining

these blocks. SPA uses a textual architectural description language (ADL) for this purpose. The

information about the interaction between the blocks is embodied in the control path of the chip.

Using a control description language (CDL), the control flow of the design can be described as a

set of state tables.These tables specify how the next stateand outputs of the control module relate

to the present state and inputs. In orderto maintain a relatively high level of abstraction, CDL

allows the userto specify controlsignals and states asenumerated (symbolic) types rather thanbit

vectors. For example, the instructions to a memory can take the form of "READ" or "WRITE"

rather then obscure binary codes.

Automated Low-PowerASIC Design for Speech Processing 12
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SPA makes use of power and area models that are stored in a hardware library.Unlike the

high-level power estimator used in Hyper which uses a white noise input to the design, SPA

accounts for the effect of hardware activity on power consumption. It collects activity statistics for

each bus and module through a complete functional simulation of the architecture.

SPA performs three types of analysis, interconnect analysis, area analysis, and power anal

ysis. Interconnect analysis estimates the physical capacitance associated with wires in the design.

The result of this is essential for analysis of both area and power. Power estimation is performed

using the Dual Bit Type (DBT) [13] model for datapath and memory elements and the Activity-

Based Control (ABC) [13] model for control path elements.

1.4 LagerlV

LagerlV is a CAD tool suite to enable rapid prototyping of Integrated Circuits. Designs

can be described in high-level languages / descriptions and converted to layout for fabrication.

The conversion is enabled by the use of structure processors and layout generators.A structure

processor performs a description/netlist transformation on an Oct Structural Master View (SMV),

and generates an Oct Structural Instance View (SIV). Structural processors used include dpp for

datapath modules and bdsyn for control cells. A layout generator performs the physical place-

Automated Low-Power ASIC Designfor Speech Processing 13



ment and signal routing given an SIV netlist description and generates an Oct physical view and

Magic output. Layout generators used include Flint and Stdcell.
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2.0 High Level Analysis

The design path begins withadescription of thealgorithm for thevarious blocksin Silage.

For each of the major blocks, several algorithms performing the same functionality are investi

gated. The Hyper simulator provides a functionality verification while the Hyper estimator gives

aninitialprofileof each algorithmby estimatingpowerconsumption, memory accesses, area, etc.

Initial estimates of all the blocks(Figure 2.1) in the RASTA-PLPalgorithm revealed the

power consumption and critical path of the ITT block to bewellabove any other blocks. From a

power prospective, that is where most of the design effort will bedirected towards. In addition,

other then the FFT and the Critical Band Filtering blocks, the remaining processes, such as the

Exponential, Equal Loudness and Power Law blocks, have fairly straightforward and short com

putations, leaving less room for design space exploration. The main effort of the high level analy

sis is therefore pointed atthe FFT and Critical Band Filtering blocks, while similar work on the

remaining blocks will see less detailed. The emphasis on power continues down to the architec

tural design level. The selected algorithms for the FFT and the Critical Band Filtering blocks will

be mapped onto aRegister Transfer Level (RTL), and have their layouts generated eventually.

Further architectural analysis of the FFT block will be provided by a power and area breakdown

using SPA.

The use of Silage description has inherent advantages compared to more commonly

known procedural languages such as C. However Silage requires the use of manifest loops and

manifest array indices which, as will be seen, is an obstacle to thedescription of less structured,

and less regular algorithms. In such cases, the appropriateness of a C++ input description

approach will be explored.

The sampling rate of the speech input was chosen to be 16kHz. A 30ms window is applied

on the sampled speech to obtain 480 data points. This is zero-filled tomake upthe 512 data points

needed for a512-point FFT. Consecutive 30ms-windows have an overlap of 20ms. The through

put of the RASTA front end must therefore be less than 10ms. In order tomeet the time criteria, a

Automated Low-Power ASICDesign for Speech Processing 15



2-staged pipe-lining is used. The 512-point FFT takes up most of the first stage while the rest of

the front-end is computed in the second stage.
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FIGURE 2 .1 Initial Estimates of Blocks in RASTA-PLP block showing a disproportionately large
amount of power consumed in the FFT block.

2.1 |FFT|2, Power Spectrum

The periodogram estimate of the power spectrum of a30ms segment of speech consisting

of M samples is defined as

*,(*>)- jj\x(e}an)\2
where

(EQ2.1)
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M-l

V) = £ x(n)e'Mn
n = 0

(EQ 2.2)

The power spectrumcan thereforebe estimated by the magnitudesquare of the FFT of the

input samples. The constant factor11^ isignored in the computations as doing so will simply mul

tiply every autocorrelation coefficient by a factor of M. Equation 1.3 remains unchanged, and

therefore, does not affect the final cepstral values.

The 480 speech samples contained in the 30ms window are added with 32 zeros in order

to make a Radix-2 FFT (512-pointFFT) feasible. Sincethe inputs are all real, the power spectrum

is symmetrical about w=7t, or about the 256thpoint of the FFT. Thus only the first 256 output-

coefficientsare required, and they represent the power spectrum from 0 through 8kHz.

A number of FFT algorithms exists. It is found that algorithms that reduce the computa

tion complexity in terms of number of additions and multiplications, will on the other hand, have

less regularity in their structures. Memory addressgeneration and number of memory accesses

also proves to be a big issue since the memory size is massive (512 for each array). In particular,

the following choices were examined:

• Radix 2 algorithm

• Radix2-Winograd Algorithm

• Split Radix (2,4) Algorithm

2.1.1 Radix 2 algorithm

The 29=512 point radix-2 FFT can be realized as a cascade of9 blocks. Each block con

sistsof repetitions of either a 2-input, 4-input 256-input or 512-input butterfly respectively.

There are 2x256 complex twiddle factors accounting for distinct values ofcos(k7C/256) and sin^/

256), for 0<=k<256. These are stored in two 256-word ROMs.
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In Silage, each block is realized asa nested loop of depth 2. The code within Figure 2.2

shows that of a typical block. The last four statements in the deepest nest implements the cross

additions (complex additions) in a butterfly. Laterblocks have fewer butterflieswith more inputs,

so the j variable iterates over fewer values, while the k variable iterates over more values.

Block of 256 Block of 128
2-input 4-input
Butterflies Butterflies

Block of 16

32-input
Butterflies

Block of 1

512-input
Butterflies

ln[0]
•Out[0]

In[511] Out[511]

0:0.. 15)::
begin
(k:0.. 15)::
begin
realjow = In_real[32*j + k]:
imagjow = In_imag[32*j + k);
cosw = Wr[16*k];
sinw = Wi[16*k];
temp5r = word(cosw * realjow) - word(sinw* imagjow);
temp5i = word(sinw * realjow) + word(cosw * imagjow);
Out_real[32 * j + k] = In_real[32*j + k + 16] + temp5r,
OutJmag[32 * j + k] = Injmag[32*j + k + 16] + temp5i;
Out_real[32 * j + k + 16] = In_real[32*j+ k + 16] - temp5r,
OutJmag[32 * j + k + 16] = Injmag[32*j + k + 16] - temp5i;

Cross
Additions of

Butterfly "S

FIGURE 2.2

end;

end;

Radix-2 FFT. 9 stages ofbutterflies and a I.I2 operation.
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Note that the array address indices of inputs and outputs in the Silage statements differ

only by either a constantaddition or a constant multiple. Common subexpression elimination for

the address generation of these array indices was therefore feasible. Instead of computing the

value of, say (32 *j + k + 16) and (32*j + k) every time those address areneeded, (32*j + k) is

computed only once duringeachiteration of the innermost loop, and 16 is addedto this value also

only once.

TABLE 1. Comparison of counts beforeand after Common Subexpression Elimination

Module Count Before CSE Count After CSE

Add 38142 17150

Multiply 26624 12032

Twiddle Factor Memories 4096 4096

Estimated Energy Consumption 12.7uJ 8.3luJ

It is observed that each butterfly produces outputs which occupy exactly the same

addresses as the inputs. The above example, for instance, obtains inputs from In[32*j + k] and

In[32*j +k + 16], and outputs to Out[32*j +k] and Out[32*j +k + 16]. Thus, using only one pair

of input memory hardware for the real and imaginary parts respectively, each iteration of the but

terfly obtains a number of inputs from the memories and overwrites the inputs with its outputs.

However, the description of such overwriting of array values will violate the static single assign

ment (SSA) checks in Silage. This problem is solved by using different array names in the Silage

description for the outputs of each block, and then implementing in-place storage of these differ

ent arrays by manually altering the intermediate CDFG.

The simplicity of the radix-2 algorithm is attractive. However, at a clock period of 550 ns

(Section 2.6 describes the choice of clock frequency), the critical path was 23807cycles. This

works out to ~10.3 ms which exceeds the required throughput of the RASTA front end. Although

more pipe-lining might solve the throughput constraint, this will invariably increase the power

consumption and area as additional hardware is required to handle the parallel computations of a

pipelined algorithm.
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Butterfly Operation

READ Inputs:
In[a],In[b],In[c],...

FIGURE 2.3

MEMORY
HARDWARE

In-place storage of Intermediate results

WRITE Outputs:

Out[a], Out[b], Out[c],

2.1.2 Radix-2-Winograd Algorithm

In the Radix-2-Winograd Algorithm, the first 3 blocks (2-input, 4-input, and 8-input) of

the Radix-2 algorithm are replaced with a single block consisting of 32 Winograd 8-point FFTs

[11]. The approach takesadvantage of the fact thatfor the first 3 blocksof the Radix-2algorithm,

more then half the number of complex twiddle factors are either +1 or + j, while the rest of the

them correspond to exp^) and exp("j774). These last 2terms, which have equal real and imagi

nary parts, constitute to the only non-trivial multiplication, afactor of 0.707106 0/sqn(2))- Eacn
8-point Winograd FFT, uses only 2 multiplications, compared to an 8-pointRadix-2 algorithm

which requires 8 multiplications. Also, instead of readingthe twiddle-factors from memory, the

only non-trivial twiddle-factor, 1/sqrt(2)is stored in aconstant register. This eliminates the need
for address generation of the twiddle factors as well as expensive memory accesses. Appendix B

shows the Silage description of theRadix2-Winograd algorithm. TheWinograd FFT, is described

in Silage as the function fft8. It is clean, hasno iteration loops, andconsists primarily of cheap

additions and subtractions.

As a result, the critical path is reduced to 17607,a reduction of 26%. This proves to be

critical, as it is possible to achieve a throughput below the 10mscriteria, withoutany furtherpipe-
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lining. At the same time, the reduction in computational complexity also leads to a 20% reduction

in power consumption.

TABLE 2. Comparison of EXU counts for a 512-point FFT using Radix-2 and Radix2-
Winograd

Module Radix-2

Radix2-

Winograd

Add 14590 12230

Subtract 5632 4928

Multiplie 12032 9472

Log Comparator 2558 1670

Transfer 9990 7756

Register Accesses 109064 87233

Memory Accesses 20224 16128

TOTAL EXU COUNT 174090 139417

CRITICAL PATH 23807 17607

ESTIMATED ENERGY CONSUMP

TION

8.3llJ 6.6uJ

16-input
Butterflies

32-input
Butterflies

512-input
Butterflies

256 Power

Spectrum

Coefficients

FIGURE 2.4 Radix-2-Winograd Algorithm. The FFT-8 is handled by a Winograd small-N FFT.

2.1.3 Split-Radix Algorithm

The split-radix (radix-2 and radix-4) algorithm combines the relatively small number of

addition terms in a radix-2 algorithm, and the smaller number of multiplications in a radix-4 algo-
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rithm. At any stage, aN-DFT is decomposed into aN/2-DFT using radix-2, and two N/4 DFT

using radix-4.

f>
*2*= I VtX" +̂ +„)

n = 0 2

S-«
(EQ2.3)

*«♦,- x^M^-^J^Kr^J]
* = 0

(EQ2.4)

?-»
*4* +3= X W///:^N3nrfjrn +̂ V/* N-X 3J]

„=0 4 LV 2+nJ V n+4 "+4^J

(EQ2.5)

Due to asymmetry in the decomposition, the structure of the algorithm is more involved

than either of the previous two algorithms. Appendix C shows the Silage description of the Split-

Radix Algorithm. It is highly unstructured, anddifficult to understand. Unlike the previous meth

ods where each stage can be described as a recursive decomposition and therefore, as manifest

loops, the split-radix algorithm distinguishes between the decomposition of X2k and X4k+1<

X4k+3. A Fortran description written by Sorenson[12] implements the split radix in loops that

have non-manifest, loop counters that havevariable lower andupper bounds. A similarrealization

in Hyper is difficult with Silage as the input description language becausethe current Silage

parser accepts only manifest loop counters. Therefore, a complete loop unroll of the Fortran code

is necessary, resulting in a long and irregular series of loops.

On the other hand, the problems associated with the Split Radix algorithmmay be solved

if a C++ input description language to Hyper were available. Typical C++ syntax would allow

both non-manifest loops and multipleassignments of variables. This would also solve the prob

lem of having excessive arrays, which wasthe side-effect of the loop unrolling, which in turn,

was needed to satisfy the manifest loops requirement in Silage.
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r
SUBSET OF FORTRAN CODE

DO 3010 = IS, N-l, ID
I1=I0 + N4

12 = II + N4

13 = I2 + N4

CONTINUE

IS = 2*ID-N2 + J

ID = 4*ID

IF (IS.LT.N) GOTO 40

SUBSET OF SILAGE CODE

FIGURE 2.5 Loop Unrolling during translation from Fortran code to Silage code.

It was discovered that the split-radix algorithm enjoys more then a twofold reduction in

critical path to 8307. The power consumption saw an impressive improvement of about 30%.

Table 3 gives a comparison between Radix2-Winograd algorithm and the Split-Radix algorithm.

It shows significant improvement in terms of number of additions and multiplications.Similar
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Common Subexpression Elimination transformations as that described earlier in Section 2.1.1

were also employed to achievethe following figures.

TABLE 3.Comparison of EXU counts for a512-point FFT using Radix2-
Winograd and Split-Radix Algorithms

Module

Radix2-

Winograd Split-Radix

Add 12230 8818

Subtract 4928 4224

Multiplies 9472 6016

Log Comparator 1670 946

Transfer 7756 5277

Register Accesses 87233 62570

Memory Accesses 16128 12800

TOTAL EXU COUNT 139417 100651

CRITICAL PATH 17607 8307

ESTIMATED ENERGY CONSUMP

TION

6.6^J 4.6^J

2.1.4 Choice of Algorithm for FFT

The Radix2-Winograd algorithm is chosen as the algorithm to implement the FFT due to

its ability to meet the target throughput, as well as itoverall regularity which simplifies the imple

mentation.and lowers amount of overhead.

The Radix2-Winograd algorithm isaswift and obvious improvement over the Radix-2

algorithm. With alittle modification ofthe Silage description, arespectable amount ofpower sav

ings is achieved. The extent ofirregularity introduced by the Winograd-8-point FFT is also mini
mal. Recall that the 8-point Winograd FFT isimplemented as aefficient code with mostly

additions and subtractions which have a low cost of power consumption.

It isworth noting, however, that the the initial Radix-2 algorithm isextremely regular. The

Silage code basically implements each ofthe 9blocks in the same way, differing only in the iter

ation bounds and constants in the array indices. In terms of architecture, theRadix-2 can be

implemented easily with only one structural block that is repeated 9times with the appropriate

modification of the iteration bounds and other constant values.
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The comparison between the Radix2-Winograd and the Split Radix algorithm, however,is

less clear cut. While the Split Radix algorithm described in the last section has obvious gains in

terms of both execution counts as well as powerestimates, the description in Silage has been dif

ficult, and even looks awkward when it finally works. Moreover, the less regular structure also

makes it less desirable then the radix-2-Winograd algorithm. Section 3.3, will describe how regu

larity in the algorithm can translate to a more compact architecture with less interconnect over

head, leading consequently to reduced power consumption. Regularalgorithmsalso typically

require less control. Though there has been some effort to detect and quantify such useful proper

ties of algorithms [15] and [16], transformations for enhancing these properties are largely unex

plored. There is therefore reason to believe that the difference of power consumption between the

Radix2-Winograd algorithm and the Split-Radix algorithm may not be as pronounced as the num

bers suggested in Table 3.

Currently, work is being done to allow C++ as the input behavioral language for Hyper.

This will allow a more concise description of the split radix algorithm, including provision for

non-manifest loop counters that will make the difference in both description and implementation.

Table 4: Summary of algorithms used for IFFTI2 block

Algorithm Power Reduction Technique
Incremental Power

Improvement
Benefits/Disadvantages

Radix -2

(Appendix A)

Common Subexpression
Elimination

36% Power

Reduction

Regularity of Structure

Radix2-Wino-

grad

(Appendix B)

Partly Different Algo
rithm

Twiddle factors no

longer need to be stored
in arrays => Reduced
Memory Power

20% Power

Reduction

Fewer Twiddle Factors

Less Regularity
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Table 4: Summary of algorithms used for IFFTI2 block

Algorithm PowerReductionTechnique Incremental Power

Improvement
Benefits/Disadvantages

Split Radix

(Appendix C)

Wholly Different Algo
rithm

Sizable reduction in addi

tions and multiplications.
Also reduced number of

other EXU counts, e.g.
memory accesses, com

parators, etc.

30% Power

Reduction over

Radix2-Winograd

Asymmetry of decom
position leads to diffi
cult behavioral

description in Silage.

Much less regularity

2.2 Critical Band Filters

Zwicker [10] proposed that the bandwidths of the critical bands are approximately con

stant on the Bark scale, Q whose relation with the usual frequency scale, co = 27tf, was given in

EQ 1.7. Schroeder's [9] proposal of the asymmetric critical band filtering function F(Q) (fre

quency response) in EQ 2.3 for a filter centered at Qq is approximated by piecewise linear func

tion given in EQ2.4.

lOlogFfQ-fto) =15.8 +7.5(Q - Cl0 +0.5) - 17.5 ,/l +(CI - Q0 +0.5)2

(EQ2.6)

Critical band filtering is done in the frequency domain since both the frequency response

of the critical band filters as well as the FFT of the signal are known. The power spectrum con

sists of 256 distinct samples that span 0 through 8kHz. The frequency response of the bankof fil

ters is sampled at aresolution of 8kHz/256 =31.25Hz. The power spectrum coefficients are then
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weighted correspondingly by the magnitude of these samples. The 19 bandpass filters, are cen

tered at equal Bark intervals, B, and span the frequency interval 0 through 8kHz.

HVQ) = <

f 0 forG-Qi< -1.3

^2.5(0-^+0.5) for-1.3<Q-Qi<=-0.5

1 for -0.5< G-Q^O.5

^-(0-^-0.5) for0.5<=Q-Oj<2.5

k o forft-0^2.5 ftj= ixB

i€ [1,19]

(EQ 2.7)

Bark Frequency, Q

Frequency, co

FIGURE 2.6 Critical Band Filters. Filters are centered at equal Bark intervals, B.

In accord with the RASTA-PLP, the first sample (d.c.) is copied from sample at Q=B, and

last samples (centered at 8kHz) is copied from sample at Q=19B to make a total of 21 samples

spanning 0 to 8kHz.
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2.2.1 Direct Computation

The initial algorithm for computing the critical-band outputs consists of19 loops. Each
loop essentially performs the critical-band masking. It uses an iterative multiply-add to sum the
multiplication of the power spectrum coefficients with the height of the masking curve. Atypical
loop is shownin the inset of Figure 2.7.

Array of

Power

Spectrum
Coefficients

Out2

r
Out3##l = word(O);
(i3:0..14)::
begin

Out3 = word(ln[i3+l]*cb3[i3])+Out3#l;
end;

^ Outl9^

FIGURE 2 .7 Implementation ofthe Critical Band Filtering in Frequency Domain. Inset shows
description ofatypical filter. cb3(i] is the height ofthe i* sample ofthe window centered at 0=3B (Bark
frequency scale).'The corresponding power spectrum coefficient, In[i], is weighted by the constant stored in
fW///. and the product is updated to the iterating sum Out3.

A

In this algorithm, each filter in the bank of filters works independently of one another, and
therefore appears to have ahigh degree of parallelism. In order to exploit any form of this concur
rency property, there must be away to simultaneously read more then one filter input, from the

array of IFFTI2 coefficients. The hardware used in Hyper does not allow multiple simultaneous
read/writes from the same memory. Hyper does however permit partitioning ofan array such that

different ranges of elements of the array may reside in different memory hardware. Multiple
simultaneous read/writes from the same array is thus possible as the data access will be made

from different memories. Nevertheless, due tothe overlap offrequencies between consecutive fil

ter bands, some of the array elements of the power spectrum coefficients will have to be repeated

in more then one partitioned memory. The total size ofthe partitioned memories will be necessar-
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ily greater then 256, which is the number of distinct values in the array. In this case, increased

concurrency is traded off for additional memory size, which can lead to higherpowercost of

memory accesses. The high level of concurrency is usuallyan importantproperty,but here, where

the 10ms limit is ample even when the filter outputs arecomputed serially (notconcurrently), it

would be a waste of power to operatethe filter functions in parallel.

Besides requiring additional hardware, running the filters in parallel also required an

excessive 832 reads (per set of sample inputs) from the 256 power spectrum coefficients. This is

the result of the filters operating independently, and the extensiveoverlap between consecutive

bands. Each power spectrum coefficient usually falls within the bandwidth of 3 or 4 neighboring

filters. This undue number of reads is not power efficient as energy is required for additional

address generation and memory accesses.

2.2.2 Improved Algorithm

To overcome the problem with excessive read operations, the 19 loops are taken apart, and

replaced with 30 loops which represents the run-length of the overlapped power spectrum coeffi

cients. For instance, if ln[62] through In[72] fall within the windows centered at £2=1 IB, 12B,

13B, and 14B, the following loop covers part ofthe 11th, 12th, 13th and 14th critical bands:

/*
* In: 62..72::

*/

Filtl 1_6##1 = Filtl 1_4;
Filtl2_5##l=Filtl2_3:
Filtl3_3##l=Filtl3_l;
Filtl4_l##l = word(O):
(il7:62..72)::
begin

al7 = In[il7]:

Filtl 16 = word(al7 * cbll[il7-361) +Filtl 1_6#1:(1)
Filtl25 = word(al7 * cbl2[il7-43]) + Filtl2_5#l;(2)
Filtl33 = word(al7 * cbl3[il7-52]) + Filtl 3_3#1;(3)
Filtl41 = word(al7 * cbl4[il7-62]) + Filtl4_l#l;(4)

end;

where Filtl 1_X, Filtl2_X, Filtl3_X, and Filtl4_X are the iterating sums for the 11th, 12* 13th,

and 14th critical bands respectively. This maneuver resulted in exactly 256 reads for the 256

power spectrum coefficients. Despite the increase from 19 loops to 30 loops, which would also

require more control power due to increased control activity, the reduced EXU counts, primarily
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due to reduced memory accesses, as well as address generation computations, overcomes this

negative effect.

TABLE 5. Comparisons of EXU counts between algorithm for Critical Band Filtering

Module

Original Direct
Computation Improved Algorithm

Add 2461 1903

Multiply 832 837

Log Comparator 832 255

Transfer 5 22

Register Accesses 10011 7584

Memory Accesses 1683 856

TOTAL EXU COUNT 15824 11715

CRITICAL PATH 3328

(Filter outputs are
computed serially,
not concurrently)

1042

ESTIMATED ENERGY CONSUMP

TION

327nJ 238nJ

The improved algorithm reads a single input, andcomputes the partial sum of several

band coefficients. In the example above, each input read into al7 is used to compute the four

instructions (1), (2), (3), and (4). The partial sums can be done simultaneously. The assignments

have no data-dependencies, lending to a certain amount of parallelism in the algorithm. In order

to exploit this advantage, the number of EXU's will also need to be increased. This increases the

switchingcapacitance of global signals such asCLK, andcontrol signals,which arealsoroutedto

otherparts of the circuit such as the global controller, and the power spectrum module (FFT

block). Nevertheless, if the global signals are gated and turned off between the immediate com

pletion of the critical-band filtering, and the next sampleperiod (when the critical band would be

in waiting mode), the reduced critical path would require fewer clock switches, and therefore a

net power consumption of 27%!
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f As mentioned in Section 2.0, the remaining blocks will be analysed in aless detailed fashion
since theyare computationally far less complexed thenthe first2 blocks that havebeen analyzed
thus far.The remaining sections of the Chapter describes the Silage input for each of the blocks,
concludingby a short discussion on selection of clock periodand a table of estimatesof impor
tant parameters such as critical path and power numbers,obtained at the chosen clock frequency.

2.3 Modeling of Critical Band Filter outputs

In order to improve the recognizer's tolerance to a changing communication channel,

RASTA-PLP estimates the temporal derivative of the Bark-scale-transformed spectrum by draw

ing a regression line through the spectral values obtained in the last 5 consecutive input sets.

Equal Loudness Preemphasis [19] and Intensity-loudness Power Law [21] both further simulate

human hearing conditions.

Due to the simplicity of computations involved during Estimation of Temporal Derivative,

Equal Loudness Preemphasis and Intensity-loudness Power Law, the Silage code for these 3

blocks are combined into one description given in Appendix F. The Natural Logarithm and Expo

nential algorithms assists in the implementation of the Power Law block, and allow the Equal

Loudness Preemphasis filtering to be done simultaneously. Sections 2.3.2 and 2.3.3 show why.

Appendix G and H list the Silage description for the Natural Logarithm and Exponential blocks

respectively.

2.3.1 Estimation of temporal derivative

Each of the 19 critical band coefficients is streamed into an averaging filter as shown in

Figure 2.8. Since consecutive speech windows have a 2/^ overlap in time (20ms overlap ofthe

30ms window), there is a high correlation between the current and previous critical band outputs.

The averaging removes some error due to possible changes in the channel. Silage description of

the filter is achieved by one simple sentence for each filter:

Out = ((Out@ 1 * 0.94) + (0.2 * In) + (0.1 * ln@l) - (0.1 * In@3) - (0.2) * In@4)); __ _ _.
(E\2 z.o)
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CnnLqll], C2[1],C3[1], H(z) =
0.2 +0.1z"~!-0.1r 3-02z~4

l-0.94z
-1

c0[2],c1[2],c2[2],c3[2], H(z)

c0[19],c1[19],c2[19],c3[19]

q[n] is the nm critical band output at time i.

FIGURE 2 .8 Filtering that implements Estimation of thetemporal derivative.

2.3.2 Equal Loudness preemphasis

The RASTA-PLP algorithm preempahsizes the sampled power spectrum with the 40dB

simulated equal loudness curve. The transfer function ofthe filter [20] is given below inthe nor

mal frequency scale.

E(co) =
O)4(co2 +56.8xl06)

(co2 +6.3 x106)2(co2 +0.38 x109)

(EQ 2.9)

The function £(co) is an approximation to the nonequal sensitivity of human hearing at

different freqeuencies [19] and simulates the sensitivity of hearing near the40-db level.

The E(co) spectrum is similarly sampled at 19 equal Bark intervals, Q=B, corresponding

to the middle frequency ofeach critical band. The Silage description for the equal loudness pre-
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emphasis is therefore, nothing more then weighting each critical-band coefficient with a constant,

E(o)i), for ^(©i^B in accord to the Bark scale transformation given in EQ1.7.

2.3.3 Intensity-loudness Power Law

A cubic-root amplitude compression approximates thepower law of hearing [21] andsim

ulates thenonlinear relation between the intensity of sound and its perceived loudness. Together

with the psychopathic equal-loudness preemphasis, this reduces the spectral-amplitude variation

of the critical-band spectrum so that the following all-pole modeling can be done by a relatively

low model order.

In order to simulate the power law of hearing, the critical band coefficientsare raised to

the power of 0.33. The equal loudness preemphasis and intensity-loudness Power Law are real

ized together by taking the natural log of the critical band coefficients, so that the constant multi

plication in equal loudness preemphasis becomesa constantaddition, which is cheaper

computationally, while the raise power operation is equivalentiy realized by a constant multiplica

tion. An exponential operation completes the manipulation, shown below:-

E(Qi) X°33(Oi) Exp{ [0.33 *ln[X(Qj)]] +ln[E(Qj)]}

(EQ2.10)

2.3.4 Natural Log

The following describes how the natural log of a number, x is computed.

ln(x) = In (2P * y)
= p*ln(2) + ln(y)
=p*ln(2) +al*y +22*^ +a3*y3 +a4*y4 +a5y5

al= 0.99949556
a2 =-0.49190896
a3 = 0.28947478
a4 =-0.13606275
a5 = 0.03215845

where p = Most Significant Bit «=> 1 < y < 2. This reduces the computation to a multipli

cation, p* ln(2), while ln(y) is evaluated by polynomial expansion. The value of p is obtained by a
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MSB detector, while y (= X/(2P) )isobtained byshifting the binary of x tothe right p times. Two

implementations of the MSB detector were examined. A log detector and a linear detector.

The log detector, with order0(log n), may speed up the computation for worst case

inputs (Speed ofMSB a Vp). However, from the view ofpower consumption, the log comparator

is less efficient, as it will be comparing bits whose comparisons might have been omitted by the

linear comparator. For example, the figure below shows a 16 bit MSB log detector used to detect

the MSB of the bit string, 0000-0101-1011-0011. The bypass registers a T if a '1' bit has been

detected in (a). The 8-bit MSB detector (b) will always perform its computations regardless of the

output of detector (a). While gaining speed, this set-updoes not consider the redundancies

between (a) and (b).

8 bit MSB
detector (a)

MSB detected

flag

ttt ••••

e.gofal6bitMSB
log detector.

FIGURE 2.9 16-bit Log detector for MSB

8 bit MSB
Detector (b)

w
MUX

Outputs all '0's
if a T has been
detected in (a)

w

A linearMSB detector, on the otherhand,omits all further operationsafter the first' 1' has

been detected, thereby conserving energy. An improved linear MSB detector combines the MSB

detection and the division by 2P operation in aloop with niterations (n= Bit length ofx =33) by

taking advantage ofthe fact that adivision by 2P is equivalent to Pbinary right shifts. The algo-
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rithm starts with Pl=n and maintains 2 copies of binarystreamXI and Yl, which are both set ini

tially equal to x,

fori:l..n,

if leading bit (MSB) of XI is a 40\

XI«1;

PI = PI -1; /* MSB of x not found yet. Continue shifting XI to

the left by one step,and decrement PI by 1 */
else

Y1» 1; /* MSB of x detected. For each of remaining PI
iterations, shift Yl to the right by one step */

Eventually, at the end of n iterations, Pl=p, and Yl would have shifted left by p times such

thatYl=y.

The combined MSB detector and division by 2P, therefore has a data-independent delay.

This simplifies the design as the worst case input does not produce a delay that is any longer than

a best case input. The critical path to compute the log for 19 critical band coefficients turned out

to be 1027, which when run at a clock rate of 537ns, is only 0.551ms. This is not of much conse

quence considering the 10ms throughput time limit of the RASTA-PLP front end. It is chosen for

its design simplicity and power advantages.

2.3.5 Exponential

The following describes how the exponential of a number, x is computed.

Let e* = 2P

=21 *2f where i isan integer and 0<f < 1

i tPolynomial Approximation: 1+bif+ r^f2 +l^f3 +b4f4

Shift b,= 0.693147
And P is found by: b2= 0.240227

ln(ex) = ln(2P) b3= 0.055504
x=p*ln(2) b4= 0.009618

p=x* Vin(2) '•> constant multiplication

f isthe decimal portion ofP, with 2f computed by polynomial approximation, i is therefore

the integerportion of P, and 2' is realized by binary shifts. If x is negative, i will be negative, and
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2* corresponds to i left shifts. Otherwise it is i right shifts. The critical path for computing 19

exponentials is 685, which, ata clock period of 550ns, is only0.377ms. Again, well under the

10ms limit.

TABLE 6. Estimates obtained with Vdd=1.2V; Clock Period 550ns

Computation Block
Critical

Path

Delay
(ms)

Power

(HW)

Log 1027 0.55 21.2

Rasta Filtering, Equal Loudness &
Power Law

389 0.21 7.85

Exp 685 0.37 10.7

2.4 Inverse Discrete Fourier Transform, Autocorrelation Coefficients

This far, the algorithm has only involved obtaining the power spectrum and reshaping it in

such a way to mimic the human perceptual hearing. From the modeled power spectrum, the

autocorrelation function is obtained through an inverse discrete Fourier Transform. Since the 21

critical band coefficients cover the frequencies 0< co < rc, the IDFT is given by,

r(n) = £ Rp(k)e 41 R(k) =R(AO-k) fork >20
* = o

The power spectrum is real and even, which implies that the autocorrelation function is

real. Ignoring all imaginary product terms,
19

r(n) =Rp(0)-Rp(20) +^Rp(k)^cos{^kny cos{^(40-k)nj^
k = 1

19

=/? (0)-/?p(20)+ X*(*K*
k= 1

HW = cos(!H+cos8t (40 -k)n)

However, only the first nine autocorrelation coefficients are needed for a8th order LPC

analysis. Therefore, instead ofattempting to use ageneral n* order FFT (in this case, n=21)
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which would computeall the 21 autocorrelation coefficients. It wasdecided thatevaluating the

first 9 coefficients by direct summation would simplify thedesign. The algorithm, asdescribed in

Silage, consistsof a nested loop of depth 2 with the outer loopiterating from n=0 to n=8, andthe

inner loop iterating from k=l tok=19. The wnJi values are stored ina2-dimensional 9by 19 array.

The result is a partial IDFT which uses 11.2|iW, and takes 0.6ms to complete. The figures are

insignificant when compared with the overall power consumption orthroughput of the entire

front-end. Even if the power consumption of the IDFT block could be improved by 30%, the net

effect in the global picture would still be negligible. The Silage description for this block can be

found in Appendix I.

2.5 Durbin Analysis[3]

Equation 1.3 is solved here to obtain 8 cepstral values. The autocorrelation coefficients

are first normalized by Vr(0) •There is no loss of generality by doing so. The cepstral values are

solved iteratively by the Durbin algorithm. This solves the equation in 0(n2) as compared to

0(n-) if a more general Gaussian elimination approach is taken. The normalization of the coeffi

cients requires an inverse operation (x"1). In addition, each iteration of the algorithm also requires

the inverse of avariable (3. The front-end was simulated over a large pool of speech samplesand it

was observed that the values of r(0) are always in excess of 15, while the values of p are always

between 0.7 to 1.0. The inversions are done by non-restoring division. In order to simplify the

design ofthe divider, the operands of the inverse are adjusted so that the quotient x/y observes the

rule x < y. In this way, the absolute value of the output of the divisor is strictly less than or equal to

1. Therefore, there is no integer bit in the divider.

As r(0) >1, Vr(0) automatically satisfies the x<yrequirement. However, Vp is processed
in the following manner:
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Since (1.0 <!|p|< 0.7) j _ i _ t\ \
P=W\ =UPI )

= LdPJ +1
IPI

where im <^ isevaluated bythe divider

Silage code for the Durbin's algorithm is given in Appendix J.

2.6 Cepstral Conversion

In accord with EQ 1.5, the Silage description in Appendix K uses a loopto iterate the

summation. The gain isassumed, for simplicity, tobe 1. Sothe first cepstral coefficient c0 =ln(l)

=0, atrivial solution. The Vm factor needed for computation ofall other coefficients isobtained

from the array minverse, which can be implemented on an srom.

2.7 Clock Period

The single mostdelay comes from a33-bit by 25-bit multiplier in the Natural Logblock.

Operating at 1.2V, clock overhead is added and the minimum time estimated for completion of

the multiply is 1033ns. This aside, all theother multipliers have fewer bit lengths and usually

have a delay between 600ns to 750ns. The adders have even lower delays, with the largest 25-bit

adder having a delay of only 294ns.

Using a multi-cycle system, the execution of each EXU is scheduled over sufficientnum

berof clock cycles to achieve a stable output For instance, the operation of a 25-bit adder may

take 2 clock cycles, while that of a 32-bit multipliermay take 5 clock cycles. This allows better

utilization of a shorter clock period, reducing the amount of redundant time wherecertain EXUs

may idle while waiting for the next clock input, and the overall delay of the system. Also, a

shorter clock period results in more available cycles within the 10ms limit that the design
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throughput must conform to. The additional cycles could allow more resource sharing, thereby

reducing the overall area.

Nevertheless, the increased clock frequency of amulti-cycle system also results in higher

clock power and control power due to the higher switching activity. Such trends are visible in an

experiment where the properties of the FFT block with respect to different clockperiods are

investigated using Hyper's estimator. Result are shown in Table 7.

TABLE 7. Variation of properties with clock rate for FFT block

Setup A Setup B Setup C

Trend of

Property as
Clock

Frequency
Increases

Clock Period 0.9ns 0.5ns 0.1ns Decrease

Available Cycles within
10ms

11111 20000 100000 Increase

Critical Path 15815

(Exceeds
10ms)

18951 49485 Increase

Area 155.53 mm2 137.76 mm2 33.11mm2 Decrease

ENERGY (nJ)

Registers 427 431 504 Increase

Control 112 134 707 Increase

Bus 925 870 428 Decrease

Clock 450 508 967 Increase

Sub-Total of Register, Con
trol, Bus and Clock Power

1914 1943 2606

Table 7 shows that using a faster clock, the control poweras well as clock power are

increased, as expected. Critical path also goes up as a result of EXU's which execute over multi

ple cycles, and also due to the use of fewer hardware units, which was made possible by the

increased available cycles within the 10ms time margin. The decrease in bus power with a faster

clock rate can be attributed to the reduced area, which meant shorter interconnects with less

capacitance.

In view of the drive for low power, the clock period was set near the maximum value that

would still meet the 10ms throughput criteria. The multi-cycle system was set up such that run-
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ning at aclock period of537ns (~ 0.5* 1033ns), most operations (which have execution delays

less then 537ns) are executed over one clock period, while others such as the wide betwixt multi

plications use 2 clock cycles.

The amount of time and energy consumed by each block is tabulated inTable 8.

TABLE 8. Estimates of individual blocks with Clock period537ns, Vdd=1.2V

IFFTI'

Critical Band Filter

ing

Natural Log

Rasta Filtering,
Equal Loudness &
Power Law

Exponential

IDFT

Durbin

Cepstral Analysis

Total i. juMdfc.RCA ..' > K«3S
*** **:•¥:

Critical

Path

17607

1043

1027

389

685

1063

1820

528

Delay (ms)

9.45

0.56

0.55

0.21

0.37

0.57

0.98

0.28

No. of

Nodes

52184

4131

3098

1204

1673

1603

4851

1105

Active Area

(mm2)

15.48

12.36

13.23

9.79

6.72

7.18

20.86

17.19

Power (jiW)

624.05

24.32

21.18

7.84

10.70

11.24

26.54

9.53

2.8 Behavioral Simulation of RASTA-PLP System

The functionality of algorithm for each block is verified by invoking the Hyper simulator

that translates the CDFG into C-code, which is then compiled and executed. The simulation data

also allows the system designer to make appropriate decisions with regard to the bit widths as

well as other observations such as those that allow the divider in the Durbin analysis block to be

simplified (Section 2.5).

The simulation results for one particular 30ms window of speech, consisting of 512 sam

ples obtained at 16kHz is shown on the following page:-
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3.0 Architecture

For each of the two blocks, (FFT and critical band filters) the Hyper hardware mapperwas

used to create aregister transfer level (RTL) netlist described inpart by Structural Description

Language (SDL), with the combinational logic ofcontrol signals described in Bdsyn. Mapping

transforms the decorated flow graph into three types of structural cells; thedatapath-structure

cells, the controller state-machine cells, and the controller-interface cells. The datapath-structure

(dp) cells describe the use ofhardware instances referenced from the a low-power hardware

library. The controller-interface cells work with the controller state-machine cells to determine

the relation between global control signals (clock and current state) and the local datapath con

troller signals.

The architecture adopted makes extensive use ofregisters. Each EXU (e.g. adder, multi

plier, shifter, etc.) obtains its operands by reading from some set ofregisters, and outputs its result

to another set of registers.

At the positive rising edge
of the clock, both RD
inputs of Reg] andReg2, and
the WR input ofRegj are set
on high.

Reg!: A Wl Reg2:B K
\ /

©

1
Reg3:C -

RDM

WRT

FIGURE 3 .1 Example of an addition operation inone clock cycle: C=A+B

(The complete sdl netlist generated by the Hyper hardware mapperfor both the FFT and Critical
Band block can beretrieved via anonymous ftp from infopad.EECSBerkeley.EDI)Ipublyeolsdl.)
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Two essential steps in the hardware mappingare register-file recognition, and multiplexer

reduction. They will be described in detail in the sections 3.3 and 3.4. Register-file recognition

merges individual registers into register files. Since allregisters in a register file share a common

inputand outputbus, merging registers within adatapath cell reduces the number of data wires

within the cell. Multiplexer reduction reduces the numberof data bus multiplexers andnumberof

global buses.

The hardware mapping step produces the SDL/Bdsyn description, which is input to the

LagerlV silicon assembly environment. The LagerlV tool set is used to convert this architectural

description to silicon layout in Magic format.

3.1 Clock Timing

The immediate advantage of using such an architecture is that it allows usage of the

LagerlV hardware libraries without the need for investigating elaborate timing issues. The timing

constraints are met by a multi-cycle system discussed in Section 2.7.

3.2 Merging of Hardware EXUs

The radix2-Winograd FFT algorithm uses 3 different fixed point representations for its

intermediate data: fix<13,l 1>, fix<22,12> and fix<32,17>; where fix<a,(3> means a total of a

bitswith (3 decimal bits. The majority of theEXUexecutions operate with inputs and outputs rep

resented by fix<22,12>. It would be costly to allocate 3 different kinds of EXUs for each type of

operation (add, multiply, etc.) in order to handle the 3 different data types. Instead, resource shar

ing is enhanced by an 'operation merge'option during moduleselection in Hyper. Each operation

is replaced by one with the same functionality, but with the largest number of bits asrequired by

the algorithm. For instance, if an algorithm contains both 8-bit as well as 16-bit additions, 'oper

ation merge' replaces the 8-bit addition with a 16-bit operation. Thus, only one 16-bit adder is

required to be allocated, as opposed to one 16-bit and another 8-bit adderrequired by the original

algorithm.
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Using 'operation merge* during module selection, operators with the same functionality

share the same bit widths. In the FFT block, all adders are 32-bits wide, all subtracters 22 bits,

and all multipliers, 22 bits.

3.3 Interconnect

By default, the original netlist hasa flat structure. Each EXU, along with the necessary

input registers, multiplexers, and output buffers, are mapped into asingle datapath cell. Each

block of memory, ontheother hand, is mapped onto 3 separate datapath cells: input data selection

datapath, memory instance, and output buffer. This easily results in about twenty separate datap

ath cells, and an equal number of Ctl cells, each controlling the operation of hardware units

within adatapath cell. Layout placement of these cells is difficult with such alarge number. Since

there is extensive amount of resource sharing, almost everyEXU has anoutput which is con

nected to the input of every other EXU. Global routing becomes a significant task in the layout

generation.

The complexity of the interconnect, could bereduced by recognizing and taking full

advantage of the regularity of the algorithm. The Critical Band Filter block serves as a good

example to illustrate this.

In the critical band filters block, each set of the 19 nested-loops iterations has sentences

that look like:

FiltlOS = word(al5 * cbl0[il5-30]) + Filtl05#l
Filtl 14 = word(al5 * cbl l[il5-36]) + Filtl 14#1
Filtl23 = word(al5 * cbl2[il5-43]) + Filtl23#l

additionB
multiplicationA additionC

FIGURE 3 .2 Typical SentenceswithinNested Loops found in Silage description of the Critical Band
Filters
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with not more then 4 sentences per iteration. Theaddress generation (e.g. U5 - 36, for address of

datain the cbll array to be read) is handed byan addition to a constant negative number (e.g. -

36). Thus, each of the above sentences requires 1 multiplication (operation multiplicationA) and

2 additions (operations additionB and additionC).

A total of 3 multipliers(Ml, M2, and M3), and 3 adders (Al, A2, and A3) were allocated.

Note that the multipliers and adders could have been assigned consistently and systematically

such that the output of Al (handlingadditionB) always goes to input of Ml (handlingmultiplica

tionA), whose output, in turn goes back to Al (nowhandlingadditionQ. Similarly, output of A2

goes to input of M2; whose output goes back to A2, etc. By allowing the output of one adder to be

consistently connected to only 1 multiplier, the interconnectbetween the adders and the multipli

ers can be reduced. This however, puts some restriction on the scheduling. Currently, the auto

matic assignment generated by Hyper is inconsistent between different sets of nested loops, and

therefore requires connections between inputs/outputs of all 3 multipliers with all 3 adders. Any

scheduling of the sort just mentioned would therefore have to be done manually by editing the

CDFG.

il5 -30

al5 " 0

-v t -Ml(x)

—Vrs

FhU05

i!5 -36

1! "0

"0

t
Filtl4

FIGURE 3 . 3 Improved Schedulingof regular Silage code.

115 -43

,15 "0

v i- -
M3 0
...x

FDtl23
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On the other hand, the Hyper hardware mapperdoes allow the user to partition the inter

connect problem by merging separate datapath cells. Ideally, merging is done for datapathcells

with a strong data correlation, such that the hardware of cells A and B are located near one

another on the layout. It reduces both the total number of input/outputs seen at the top hierarchy

(global), as well as the length of interconnect between A and B. However, it was observed that

the SDL syntax was a limiting factor in the amount of merging that could be done.

The SDL syntax requires that mergeddatapath cells have modules that share a common

bit-width because one-dimensional placement strategy is employed in the datapath cells. Each

module consists of a number of bit slices stacked vertically, such that the datapath cell has a uni

form height dependent upon the bit-width of its modules. Section 3.6 discusses more of this tiling

scheme.

Since hardware merging was done during module selection, the adders in the FFT block

are all 32-bit wide, the subtractors 22-bit wide, and the multipliers, 43-bit wide. Likewise, the

adders in the critical-band block are 13-bit wide, and the multipliers, 25-bit wide. As a result,

merging can only be done, and is only done, to combine instances with the same functionality, i.e.

32-bit adders with 32-bit adders, or 25-bit multipliers with 25-bit multipliers). Nevertheless, the

amount of global interconnect is reduced because some adder-to-adder connections are con

tracted into one lower hierarchy.

3.4 Registers

Register file recognition merges individual registers into register files.Within a datapath

cell, the registers that are merged into a register file share common input and output terminals.

Merging registers therefore reduces the number of local terminals. The registers are merged

accordingto the functionality of their output node. Forinstance, the input registers of an adder are

merged into 2 register files representing the left operand and the right operand of the addition

respectively. The input registers of a write array node, on the other hand, are merged into 2 regis

ter files representing the address, and the data to be written respectively.
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Each register file allows only one READ or one WRITE (a simultaneousREAD and

WRITE can be achieved by reading from a register and writing to a different register) over each

clock cycle. Therefore, the scheduler must avoid the production of multiple inputs to the same

register file at the same time step.

step 1: (Si

step 2:

step 3:

Scheduler Multiple write Error: Outputsof bothRead
Nodes, X&Y are left operands of the adder A1, so the
outputs are stored in the same register file. Both outputs
are produced concurrently in step 1. However the regis
ter file would not be able to simultaneously write both
data at step 1.

Scheduler Simultaneous Read/Write Constraint: It

is necessary during step 2, to read the value of X from
the same register file as that in which the value of Y is
written to. Therefore, the registers used for storing val
ues of X & Ymust be different.

FIGURE 3 .4 Read/Write conflicts andconstraints of Register files. Note that there is only one instance
of an adder. A1, available at any time step.

However, within an iteration loop, the scheduler can sometimes mistakenly schedule the

production of a variable (e.g. the iteration counter) for the next iteration at the same time as the

consumption of the variable during the current iteration. The situation causes simultaneous

READ and WRITE to the same register, and a race condition ensues. An example in Figure 3.5

illustrates this:
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Reg, Reg2

V
Consider an iteration loop:

for i=l to 10 do ...

Then there is an iteration counter adder that does:
i = i+l

Since the value of i+1 is going to be used during the execution
of the adder in the next iteration, it is stored back in Reg].

FIGURE 3 .5 Race Conditions during simultaneous READand WRITEto the sameregisterRegi if
Loop Delay is not implementedas an additional register.

Such a problem arises because the loop delay node in the CDFG is mapped onto a trans

fer EXU. In other words the hardware does not explicitlyimplement the delay. The solution calls

for manual changes to store thevalue i+1 temporarily in another register, Reg3 and then read the

data from Reg3 into Regi at a later time step. This is equivalent to mapping the loop delay node

onto a temporary storage. The additional transfer of data between Reg3 and Regj may increase

the critical path by 1.

3.5 Control Signals

Control signals in the design are described by the controller cells, which is the combina

tion of controller state machine cells, and an interfacecell. Each datapath cell has a local control

ler cell which provides the output control signals in relation to the inputs, which are namely, the

clock and current state. The use of local control signalsreduces the complexityof layout/ place

ment by reducing the total number of global control signals. Current state is generated by a glo

bal finite state machine.

The relationship between the local control signals and global control signals is described

textually as a truth table. Fromthis, Bdsyn produces a collection of logicfunctions which imple

ment the described function. The logic functions were implemented by a combination of standard

cells1 from the low power library with the aid of misll, as part of the LagerlV synthesis process.
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The generation of the control blocks' layout from the state-machine description usually represent

about 70% of the total LagerlV synthesis process CPU time.

Within the each datapath cell, the control signals are required to:-

•Control multiplexers which select the appropriate inputs to register files, from a

number of input data buses

•Control the READ/WRITE operations of register files and memories, including

srams and sroms.

•Control activity of tristate buffers which write data onto global buses. Several dif

ferent buffers may have their outputs connected to the same bus, but there can be

no more then one buffer, at any time, writing data onto the bus, while the others are

tristated.

The extensive use of registers (Table 9) in the architecture requires not only an equally

huge number of Read/Write control signals, but also average thrice as many multiplexer control

signals which select the input to the register files. Generation of these control signalsresult in both

additional area (control area), as well as power consumption (control power). It turns out from

SPA results that control power is a major source of powerconsumption for this design. The result

is not surprising, considering the high numberof registers used, which is a good indication of the

amount of control activity.

TABLE 9. Use of Registers in FFT and Critical Band Filters blocks

Property FFT Critical Band Filters

Number of Registers 116 250

Percentage of active area the registers
occupy

20 40

3.6 Example of a typical Datapath cell: 16-bit Adder

This section looks at the components of a typical datapath cells which performs the func

tionality of a 16-bit adder.Besides the 16-bit adder itself, the datapath cell also describes the nec-

1. Standardcells here includea multitude of ANDgates.AND-OR gales,NAND gates,buffers, flip-flops, multiplex
ers, etc.
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essary registers thatare merged into register files, additional mutiplexers which select from a

multitude of 7 distinct inputs data buses, and7 buffers which write the adderoutput onto as many

global buses. The latterconsists of both tristate buffers as well as conventional buffers that simply

copy the inputs to the large output data buses.

The adders in the FFT block are all 32-bit wide. For simplicity, all the adders, registers,

etc. in this example have been reduced to 16-bit wide. The hardware declarations are shown in

Figure 3.6.

f (subcells '
' (add

(addl60)
((N16)(CS_TYPE"z"))

)

(regfile

(addl60_regl)
((N 16)(R 16)(NC 6XREGPLANE X'tJOOOOOOOOOOOOOll" " 0000000000000100"

" WXXXWOOOOOOOlOr'" (XXKXXXJOOOOOOllO" " 0000000000000111" " OOCXXJOOOOOOOIOOO"

" OOOOOOOOOOOIOOOO" " 00000(X)0001000(Xr " 0000000001000000" " 0(XXXXXX)10000000")))

)

(regfile

(addl60_reg0)

((N 16)(R 5)(NC 3)(REGPLANE TWOOOOOOOOOOOOOl" " 0000000100000000")))

)
(mux

( mux_15 mux_16 mux_19 mux_20)
((N16)(NUM_IN4))

)
(mux

(mux_18mux_22)
((N 16)(NUM_IN3))

)
(buf

(buf_14buf_18buf_20)
((N 16)(SIZE "1"))

)
(tribuf

(buf_15 buf_16 buf_17 buf_19)
((N 16)(SIZE "1"))

)

FIGURE 3 . 6 Declaration of Modules in a Typical datapath cell of a 16-bitadder.
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Each register file selectsits write input data from 1of 8 input buses. This is done with

(Figure 3.7) a combination of 2,3, and 4-input multiplexers available from the hardware library.

The permutation of these depends on the number of inputs.

Out of the 7 output buffers,4 of them are tristate bufferswhich allowthe output global

buses to be multiplexed. Multiplexing of global busesallowsreduction of total interconnectarea,

at the expense of additional area of tristate buffers. In this case, each tristate buffer is about 25%

larger then the conventional buffers used to drive non-multiplexed buses.

ii_i_Li_Li

FIGURE 3 .7 Selection of input from 7 input data buses.

Table 10 shows a breakdown of the area. Although the task of the datapath cell is to per

form a 16-bit addition, the actual area used by the 16-bit adder is only 8%. The overhead of all the

registers, multiplexers, etc. should therefore not be overlooked. More importantly, the intercon

nect represents an alarming 287c of the area.

TABLE 10. Hardware Allocation for 16-bit Adder and related Control Signals and Registers

Type of Hardware
Number

of Units

6

Area

(mm2) Percentage Total Area

16-bits Multiplexers 0.37 20

16-bit Registers in 2 Regfiles 17 0.62 33

16-bit Tristate Buffers 4 0.15 8

16-bit Buffers 2 0.06 3

16-bit Adder116 1 0.15 8

Interconnect 0.53 28

Total 1.88 100
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Since data often flows through a datapath in a fairly linear fashion, one-dimensional

placement strategy is employed in datapath cells. Each module consists of 16 bit slices stacked

verticaUy as shown in Inset A of Figure 3.9. Figure 3.8 shows a bit-slice of a typical datapath

block. As the number of interconnect wires that need to transverse vertically in the routing chan

nel increases, the width of the channel has to be increased. It therefore extends the layout horizon

tally. Also all data inputs/outputs are located on the extreme right of the datapath cell (Figure

3.9). There is a necessity to be able to feedthrough data from the inputs on the far right to all the

hardware modules. Arguably, the interconnect area could havebeen optimized by less rigidplace

ment strategy of hardware units, and inputs/outputs connected to the nearest side of the datapath

cell. However, this only complicates the design space with little improvement in terms of global

results. It is also likely to make the global routing of buses more difficult Instead of providing

just one routing channel from a side of the datapath cell, it would then require channels on all 4

sides.

A[i]-

B[i]-

Cfi]

D[i].

E[i]-

F[i]

FIGURE 3 .8 Placement strategy for arepresentative bit-slice of a datapath complex
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FIGURE 3.9 A 16-bit adder with inputmultiplexers, outputbuffers and registerfiles. INSETs:
Interconnect between adjacent multiplexers.
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3.7 Layout

The designs of the FFT block and the Critical Band Filters were taken through to the lay

out level. Layout of eachdatapath cell was generated automatically by dpp, using also, the layout

cells of hardware modules from the low_power library. Control cells areput togetherby Bdsyn

usingthe standard cells asdescribed in Section 3.5.The top hierarchy placement and channel def

inition was, howeverdone manually, as the search space was much larger then that of individual

cells, and the output of an automatic placementby Flintat the top level was generallyunaccept

able.

In order to handle the large number of interconnects, a central column was devoted for

global interconnect routing. Local interface cells are placed next to the datapath cells that they

control. Since the local interface cells are usually only a fraction the area of the respective datap

ath cells, they fit into the little spaces sandwiched between bigger, datapath cells.

Details of the layout are as follow:

TABLE 11. Hardware Allocation for |FFT|2 block

Type of Hardware Number

9-bit Log Comparator 1

22-bit Multipliers (22bit x 22bit) 4

22-bit Subtracter 2

32-bit Adders 2

Muxes 104

Registers 116

TABLE 12. Hardware Allocation for critical band filters block

Type of Hardware Number

9-bit Log Comparator 2

25-bit Multipliers (13bit x 13bit) 3

13-bit Adders 3

Muxes 78

Registers 250
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TABLE 13. Layout Dimensions using 12um SCMOS Design Rules (X - 0.6um)

Design
Height
(mm

Width

(mm) Area (mm2)
No. of

Transistors

1FFT 12 17.9 12.2 218 400,000

Critical Band Filters 11.0 8.08 89.02 180,000

FIGURE 3.10 Lavout of FFT
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FIGURE 3.11 Layout of Critical Band Filters
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4.0 SPA Analysis of FFT Architecture

The stand-alone version of SPA is used for architectural power/area analysis. The primary

inputto the system is a register-transfer level description of the design to be analyzed. The

description consists in part, a hierarchical structural netlistwritten in the Architectural Descrip

tion Language (ADL) for description of thedatapath. The datapath control signals in the structure

are specified in the Control Description Language (CDL).

TABLE 14. Comparison between input languages to LagerlV and SPA

Type of Cell Description

Language used:

LagerlV input SPA input

Datapath (e.g. Adders, Memories,
Registers)

SDL ADL

Controller State Machine Bdsyn CDL

Controller Interface SDL ADL

Given the architectural description, SPA leads the user through four phases of analysis:

parsing, VHDL analysis, VHDL simulation, and power/area analysis. In order to accurately

account for the effect of hardware activity on power, the system performs functional simulation of

the architecture to gather activity statistics. Therefore, the user must also provide a set of input

vectors to be used during simulation. These input vectors were chosen from a set of speech sam

pleswith bothvoiced and unvoiced data, normalized so that the maximum magnitude of the entire

set of data is 1, and quantized to 13 bits, with 11 decimal bits.

4.1 Input Description

Both ADL and CDL are Lisp-like languages. ADL is used for specifying the structural

view of an architecture, while CDL is used for specifying the control path componentsin termsof

high-level symbolic truth tables. Parsing of the ADL/CDL description translates the netlist into

VHDL description. Besides describing the primary functions of the EXU's and their control sig

nals, the VHDL description also includes the necessary SPA processes that monitor the hardware

switching activity during VHDL simulation.
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The main tool used for thedesign, Hyper, only outputs a netlist in either VHDLor SDL/

Bdsyn description after itshardware mapping step. While the structure ofADL/CDL closely

resembles that of SDL/Bdsyn, a SPA-compatible VHDL description was theactual code that

would be simulated to obtain the switching statistics. The SPA-compatible VHDL is obtained by

parsing the ADL/CDL description, and consists of a description of thearchitecture, as well as

additional SPA processes (DBT and ABC [13] models) required to generate thesimulation data

necessary for the SPApower analysis.

Thus, a designer could either choose to translate theSDL/Bdsyn output of theHyper hard

ware mapper to ADL/CDL description, or append the SPA processes to the VHDL output of the

hardware mapper. Either way has to bedone manually as there is currently noparser thatcan

automatically handle the SDL/Bdsyn translation or theVHDL correction. It was decided finally

that the simplicity of the ADL/CDL language made it preferable over theVHDL description. In

addition, ADL was structurally a subset-like of SDL. Both describe a datapath in terms of hierar

chical cells built from a hardware library. Both make use of a set of parameters to indicate vari

ables such as the bit widths of the EXU, or word sizes of memories. But while ADL treats its

inputs/outputs as symbolic variables or integer variables quantized to thespecified number of

bits, SDLtreats all its inputs/outputs as netsmade up of binary bits. It turns out that this abstrac

tion actually makes description of the control tables easier then the bit stream method in Bdsyn.

Thefollowing sections 4.1.1 and 4.1.2 describes the translation process from SDL/Bdsyn

to ADL/CDL. The knowledge will be helpful towards any future development of an automated

translator.

4.1.1 SDL to ADL translation

The differences between ADL and SDL, using a 32-bit register file example with 4 regis

ters, are highlighted in Figure 4.2.

The initial task during SDL to ADL translation is toconsolidate all thecontrol signals,

and rename them in terms ofsymbolic variables. These control signals include the register file

READ/WRITE controls described, as well as other control signals thatdetermine theexecution
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patterns of tristate buffers, multiplexers, and memories. Table 15shows a comparison between the

symbols used in ADL and those used in SDL.

TABLE 15. List of Control Variable differences between library cells written in ADL and SDL

Type of Cell Type of ADL Control Type of SDL Control

Register File 1 RD Terminal & 1 WR Terminal;
Integer inputs which determine which
register to Read/Write

N RD terminals, and NC WR termi
nals for N registers, with NC of them
storing non-constant values. At any
time, there can only be at most one
"1" bit on any of the N RD terminals,
and NC Write terminals respectively.

Tristate Buff

ers

FN terminal. Input Symbols: {TRI
(tristate), OE (operation enable)}

EN (enable) bit control

Multiplexers SEL terminal. Input Symbols: {SEL1,
SEL2,etc.}

Binary number inputs. A 2-input mux
will be controlled by a bit. 3 or 4-
input muxes input a 2-bit binary num
ber: '00' selects datal, '01' selects
data2. etc.

SRAM FN terminal. Input Symbols: {RD.
WR. NOP (No Operation)}

WRITEB bit which determines Read

or Write operations. If NOP is
desired, the Clock input is gated.

SROM FN terminal. Input Symbols: {RD,
NOP}

None. Operation is purely Read only.
If NOP is desired, the Clock input is
gated.

The other major task in the translation from SDL to ADL is the bit manipulation during

connection of some of the buses. For instance, the data on a 8-bit bus can be shifted 1-bit left/right

by simply hardwiring.

FIGURE 4.1 Hardwiring Connection between data bus and datapath cell. CELLA.
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ADL

Declares add320_reg0 as a registerfile with 4registers and 32 bits (parameters 432) and make net connections.

mux_22_out andadd320jeg0_put
(instance add320_reg0 regfile (parameters 4 32) (nets mux__22_out 1 are represented asintegers within

add320 regOout J range of0 to 232 -1.add320_reg0_out J range ofO
^Sr^rrSS V Read and Write signals are described in terms ofinteger symbols.
add320_regO.WR J eg Q>T Qn add320_regOWR would set theWRlTE signal

ofregister2 on.CK1))

SDL

Declares add320_reg0 asa registerfile (regfile) with 32bits (N) and 4 registers (4)
(regfile

(add320_reg0)
((N32)(R 4)(NC 3)(REGPLANE 'rOOOOOOOOOX)OOOOX)0000000^

Describes a constant value to be stored in one of the 4 registers.
Connects nets to instance of add320_reg0

(instanceadd320_reg0( _ J _,_,_.
(IN mux_22_out) \ mux_22_out and add320_reg0_out are
(OUTadd320_reg0_out) J represented by a 32 bit. wide net.
(CLKCK1)
(RD CtlSgl_46 (term-index 0))
(RD CtlSgl_47 (term-index 1))
(RD CtlSgl_48 (term-index 2))
(RD CtlSgl_49 (term-index 3))
(WR CtlSgl_43 (term-index 0))
(WR CUSgl_41 (term-index 1))
(WR CUSgl_66 (term-index 2))

V Read and Write signals are described in terms of individual
r bits. Ahigh bit sets the READ/WRITE signal ofa register

on.

FIGURE 4.2 Example ofa 32-bit register file with 4 registers inboth ADL and SDL descriptions

This can be described in SDL by:-

instance cellA (
(busdata CELLAinput(width8) (term-base 1))

)

which would simply connect busdata pins 0 through 6 to CELLAinput pins 1through 7.
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In ADL, however, there is no such bit-wise representation of the data. If the bus is 8-bits

wide, its data is represented by an integer ranging from 0 through 255 (28-l). In order to achieve

the same result as a left-shift of onebit, the following behavior is added in the VHDL code:

CELLAinput = (busdata * 2) rem 256;

which basically shifts the busdata data by 1bit to the left, and truncates to 8 bits wide with the

remainder function. Table 16 summarizes the methods used to manipulate bit connections.

TABLE 16.Operations used in VHDL to simulate bit operations

Type of Bit Manipulation

Left Shift by N bits

Right Shift by N bits

Truncate to lower M bits

Type of Operation

*2N

*2 •N

rem2M

Extract the MMSB bits from aN-bit data. x^1'**). Equivalent to Right Shift by M-N
bits

4.1.2 Bdsyn to CDL translation

Since the control signals in the SDL description of the architecture are all binary bits, the

Bdsyn description of the control cells describe a bit stream output in relation to the 2 global con

trol signals, the Current State, and the clock. A simple example would be a 12-bitwide outputbit

stream:

00 1000 001011

3-input mux
Selection

Read Control
of a 4-register
Register File

Tristate Buffer Enables

Write Control
of the 3 non-
constant registers
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On the other hand, theCDL description describes these signals in terms of symbolic vari

ables. Thus it would benecessary todecipher the Bdsyn bitstream output and replace it with sev

eral different control variables. For the 12-bit example, the equivalent CDLdescription would be:

SELO 4 1 TRI OE OE

Selects 0th input / \ \ ^O; ^ ^ U1 Jofa3-inputmux / \ \ ^ Buffers Enabled
Read from Write to Buffer Tristated
Register 4 Register 1

The interface cell identifies the kind of functionality of each bit-position in the bit stream.

This information is compared with the Bdsyn output bit stream to provide the symbolic CDL

control variables.Since the functionality of each bit-position varies from cell to cell, a separate

script was written for each control cell to analyze the bit stream output and translate it to a series

of control variables. The process could be automated in future by a fairly simple program which

builts a hash table that specifies the relationship between type of control and the position of the bit

in the bit stream, and then compares the Bdsyn description with the table, to give the correct sym

bolic CDL control variables.

4.2 Simulations

After parsing the ADL/CDL architecture description and analyzing the VHDL descrip

tion, the Synopses VHDL simulator was used to gather data on the switching activity. An approx

imately 3.2s segment of speech, sampled at 16kHz is shown in Figure 4.3. It is impractical to

simulate the entire segment becuase the full simnulation1 of each set of 512-point FFT takes

about 2 hours. Therefore, only 4 sets of data, each consisting of 512 samples which represent a

30ms window, were chosen for simulation. They roughly represent inputs with both highest

power, lowest power.

1. Full simulation refers to the entire simulation of the 10ms required to obtain the FFT output from a set of data
consisting of 512 samples.
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FIGURE 4 . 3 Approximately 3.2s segment ofspeech sampled at 16kHz. Since simulation ofentire
segment is impractical. 4 segments of30ms window were selected for VHDL simulation in order to obtain the
switching statistics for power analysis.

4.3 Power Analysis

The SPA analysis charts for one particular 512-point FFTis shown in Figure 4.4. with the

numerical results consolidated in Table 17. They provide a breakdown of the powerand area esti

mates based on previously derived models [13] in the low power hardware library.

As will be seen later, the implementation overhead consisting of the control interconnect

and implementation related memory/register take its toll on the power consumption. Reason for

this is that the algorithm lacks both spatial and temporal locality. Spatial locality refers to the

extent to which an algorithm can itself be partitioned into natural clusters based on connectivity

while temporaral locality refers to the average lifetimes of variables.

TABLE 17. Output of SPA Analysis for FFT block

CLASS

AREA

(mm ) % Area Cap (pF)
Energy

(nj)

Power

(m\V) % Power

DATAJWXRE 57.26 36.3 1016108 1463.2 a i 12.7

CTRL.WIRE 1.91 1.2 222966 321.1 0.0 2.8

EXU 15.56 9.9 638197 919.0 0.1 8.0

MUX 2.53 1.6 727946 1048.2 0.1 9.1

MEMORY 18.08 11.4 1186234 1708.9 0.2 14.9

CLK_WIRE 0.81 0.5 632371 910.6 0.1 7.9
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TABLE 17. Output of SPA Analysis for FFT block

CLASS

AREA

(mm2) % Area Cap (pF)
Energy
(nj)

Power

(mW) % Power

CONTROLLER 3.93: 2.5 2059134 2965.2 03 25.8

REGISTER 4.45 2.8 1279922 1843.1 0.2 16.0

BUFFER 2.19 1.4 219490 316.1 0;0 mm

OVERHEAD 51.02 32.4 0 0.0 0.0 0.0

TOTAL 157.65 100 7982368 11494.3 1.1 100

FIGURE 4.4 Graphical Output of SPA Analysis for FFT block

4.3.1 Controllers and Registers

Clearly, the major source of power consumption comes from the controllers. At approxi

mately 269£ of the total power consumed, it should be the primary target for powerreduction.

Recall from Section 3.5 that the controllers are responsible for the functionality of primarily 4

kinds of hardware: registers, memories, multiplexers and tristate buffers.The statistics (Table 9,
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and Table 18) obtained earlier using Hyper also support this finding. In Table 18, a breakdown of

TABLE 18. Register Count obtained from Hyper Estimator based on CDFG

Type of EXU Count

subtract 9856

add 24662

multiply 19014

Memory (sramlnl; array of sampled
speech inputs)

512

Memory (sramBF3R, sramBF3i;
array of intermediate data between
blocks of butterflies)

18432

Memory (sromWr, sromWi; array of
Twiddle Factors)

3072

Memory (sramPower; array of output
Power Spectrum coefficients)

512

transfer 7756

log comparator 3417

TOTAL 87233

the register usage in terms of hardware class is given. Each count of register is responsible for 1

read and 1 write operation, though a small percentage of the registers may have constant values, in

which case. 1 count is equivalent to only 1 read operation. Therefore, there are 87233 register

reads and at least 65000 (-75% of 87233) register writes. Similarly, table 19 gives the breakdown

of Memory accesses by type of memory.

TABLE 19. Memory Accesses obtained from Hyper Estimator based on CDFG

Memory Access

sramlnl 512 Reads

sramBF3R 3072 Reads; 3072 Writes

sramBF3i 3072 Reads; 3072 Writes

sromWr 1536 Reads

sromWi 1536 Reads

sramPower 256 Writes

TOTAL 9728 Reads; 6400 Writes

With the total number of read or writes (registers and memories combined) in excess of

168 000, these operations outnumber the EXU execution counts (52184 combined from all the
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different EXUs) roughly 3:1. This is explained by the fact that most EXUs obtain their inputs by

reading from 2 registers, and write the output onto a 3rd register. In some cases, when the EXU

evaluates a common subexpression of several different computations, the output may be written

to more then one register, thus further increasing the 3:1 ratio of read/write operations to EXU

executions. Furthermore, each registerwrite is usually preceded by a selection of mux inputs,

while eachEXU execution is usually followed by the enablingof at least one tristatebuffer which

outputs the result onto a global data bus. Thus, the massive number of control signals required.

Besides using the switching statistics, SPA also uses aMin-Term1 parameter declared in

the ADL description of the controller to determine the size and capacitance of the controllers,

since the number of standard cells used to construct the controller depends on the number of min

terms. The min-term parametercould be obtained accurately by running the CDL truth table

through a minimization tool such as U.C. Berkeley's espresso. However, a faster, more pessimis

tic estimate is used here by counting the number of rows in the CDL description, and excluding

those that cause the controller outputs to idle.

As a demonstration of the effect of the min-term parameter, one of the controllerswhich

magnages a datapath consisting of 1 adder, 2 register files, 6 multiplexers, and 6 output buffers

was analyzed using SPA. The switching statistics used in all cases was the same:-

TABLE 20. Effect of MIN-TERM parameter in ADL description

MIN-TERM

parameter

set to:

SPA Estimates

AREA(um2)
Capacitance
(pF)

30 214239.60 100977.10

40 345268.80 130270.16

50 506106.00 159563.22

The results suggest that with a 10-20% optimization of the CDL truth tables, the control

power is likely to decrease by the same percentage.

1. The minimum equivalent boolean representation of the function of the controller. The controller matchesits out
puts with aCuirentState input through a seriesof boolean equation.
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The control powerdepends on both the regularity of the algorithm, as well as the number

of execution counts. A regular structure such asthe consistent loopingof computations keeps the

number of min-terms down by repeatedly using the same set of controls. This results in areduc

tion of the numberof standard cellsused, thus achieving reduced control power aswell ascom

plexity of controller structure. At the same time, the number of register read/write controls,mux

controls, and buffer controls are observed earlier to have a positive correlation with the numberof

EXU execution counts. Therefore the control power is expected to decrease with reduced execu

tion counts. However, most algorithms obtain a reduction in execution counts at the expense of

increased non-regularity. It is therefore, difficult to lower the control power by simply changing

the algorithm. As seen earlier in Section 2.1, the Radix2-Winograd FFT algorithm used was a

compromise between control complexity and number of execution counts.

4.3.2 Memories

Besides aiming the low powerefforts at the registers, it might also be helpful to target the

memories. The intermediate memories sramBF3R and sramBF3i (for real and imaginary interme

diate results respectively) were introducedto allow more hardware resource sharing. Recall that

the radix-2 partof the FFT algorithm basically consists of 6 cascaded blocks. Each block is fur

therdivided into a series of butterflies whose computations could be carried out in parallel, but

were implemented in series since the hardware requirement for a parallel computation would be

too huge. The series application meant that memories are necessary to store the results of each

butterfly computation until the entire block has been processed. This is where the algorithm lacks

temporal locality in terms of memories. The results of each iteration of the butterfly is not used

until the next block

Memory power consumption is kept low by gating the clock input to the memory. Since

the memories are static, and precharges the bit lines at the beginning of eachcycle, the load capac

itance is relatively data independent. Due to the huge size of memories (e.g. sramBF3i and

sramBF3Reach consists of 2 huge blocks of 22 bits by 256 words) the precharge is a major power

concern. By gating the clock (Figure 4.5) until a read or write is intended, the memory, which is

triggered by the positive edge of the clock, is turned off when not in use.
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Global Clock n CK input

Memory
Control

AB

Read: 1 1
Write: 10

Otherwise: 0 0

J—b±J^~
MemoryBit A

BitB WRTTEBAR input

FIGURE 4.5 Gating CLK input to memory

The sram/srom models used in SPA and HYPER were inappropriate as the memories have

been overhauled since the models were built Instead, the power estimates were obtained from

IRSIM by simulating the read and write operationswith the data obtained from the VHDL simu

lation done prior to running SPA. As expected, the switch capacitance was relatively data inde

pendent. More work is currendy being done to model the new srams/sroms used here and

incorporate them into the Hyper/Spa estimation model. The values shown in Figure4.4 andTable

17 show the corrected power figures for the memories.

TABLE 21. Power Breakdown of Memories

Type of Memory

Average Capacitance
Switched

per Read Cycle

Average Capacitance
Switched

per Write Cycle

sramBF3r, sramBF3i

(22bitsx 512 words)

65pF lOOpF

sromWr, sromWi

(13bits x 256 words)

22pF N.A

sramlnl

(13bits x 512 words)

50pF N.A.

sramPower

(32bits x 256 words)

N.A. 82pF
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4.3.3 Interconnect, Data/Control Buses

Data bus power consists of power dissipated in global data buses which connect different

datapath cells, as well as the data wire within each datapath cell. Since the local datapath control

cell is described separatelyfrom the datapath cell it controls, the control signal buses are also con

sidered as part of the global interconnect Buspower estimation is based on an estimated wire

capacitance, as well as switching activity of the bus accesses. The mainfactors determining the

physical capacitance associated with a wire are itswidth, its length and thethickness of oxide sep

arating it from the substrate. In the two-level metal process used in this design, the oxide layer

thickness is estimated as the average of thatfound under metal 1 and metal 2 layers, with the

assumption that half the routing is expected to be in metal 1, while the rest is in metal 2. Width of

data wires/ data buses is the minimum allowed by the 1.2 micron process (3X width) in order to

reduce wiring capacitance. Since the clock frequency is sufficiently low, the RC-delay effect of

these minimum-width wires does not affect the results.

The remaining parameter required todetermine wire capacitance is the wire length. The

top-down wire length estimation process begins with the composite datapath at the top level of

hierarchy. Moving down, each datapath cell is invoked with the estimation process which gives an

average wire length that will be used for all nets (both data buses and control buses) within that

cell. In the actual implementation, wire lengths vary, with shorter, local wires, andlonger, more

global wires. Datapath cells are placed such that high activity buses are shorter then low activity

buses. For instance, the control buses that connect the registers and buffers of an adderdatapath

cell with the controller cell are switching constantly inorder to handle the large number ofaddi

tions. The controller is naturally placed near the datapath cell in order to take advantage ofa

shorter wire length. However, SPA interprets any signal transfer between these cells as global bus

accesses, on a global wire with the estimated average wire length. Power estimates are therefore

pessimistic.
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A few comparisons were made between estimated wire length of the data wires and the

actual wire lengths in the implementation (Table 22).

TABLE 22. Comparison of data wire area. All data wires are minimum width in order to
minimize capacitance, and since clock frequency is sufficiently low to allow slower data
transitions.

Description of Bus

GLOBAL BUSES

Adder to Subtractor

Multiplier to Adder

Memory to memory buffers

Datapath Oil: dp2

SPA Estimate

(Mm2)

4917

4917

4917

Implemented

(um2)

13810

5000

1309
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•MM :»m

itboifar

M\ to Mux

I 111

wm.

IHII
215

N»iyyi|i|i|i

WM-y:

Since there are fewer degrees of freedom compared to a 2-dimensional placement/routing,

the wire length estimates were generally more accurate for datapath cells where one dimensional

placement strategies have been used.

The lack of spatial locality in the algorithm causes a high bus power consumption. The

pseudo code in Figure 3.2 shows that the EXU operations such as multiply, add and subtract, as

well as memory accesses are intertwined with one another. Temporary results or data are trans

ferred from the output of a EXU to the input registers of another EXU through these global buses,

thereby causing a high amount of bus activity.

4.3.4 EXU

The main source of EXU power consumption is the multipliers. Even so, the total power

consumed by all EXUs is only about 89c of the total powerconsumption (see Table 17).There-

fore. the overall gain of any improvement done to the EXU power is likely to be negligible (5%

improvement versus a power accuracy of about 20%?). Nevertheless, 2 suggestions will be made

to improve the multiplier power.
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Note that in the algorithmrepeated below, the result of (64*j3) is used repeatedly for

03:0..7)::
begin
(k3:0..31)::
begin

(i) R5high = BF5R[64* j3 + k3];
(ii) R51ow = BF5R[64 * j3 + k3 + 32];
(iii) I5high = BF5i[64*j3 + k3];
(iv) I51ow = BF5i[64 * j3 + k3 + 32];
(v) v = Wr[8*k3];
(vi) w = Wi[8 * k3];
(vii) temp6r = word(v * R51ow) - word(w * I51ow);
(viii) temp6i = word(w * R51ow) + word(v * 151ow);
(ix) BF6R[64 * j3 + k3] = R5high + temp6r;
(x) BF6i[64 * j3 + k3] = I5high + temp6i;
(xi) BF6R[64 * j3 + k3 + 32] = R5high - temp6r;
(xii) BF6i[64 * j3 + k3 + 32] = I5high - temp6i;

end;

address generation of every memory access. It is also repeated over each of the 32 iterations

where k3 increases from 0 to 31, before the value j3 is updated. Although common-subexpression

elimination prevents the computation of the product repeatedly for the addresses, each new itera

tion of the inner loop still computes the product regardless of whether the value of j3 has changed.

The reason lies with the representation of nested loops in the Hyper CDFG. The Silage parser in

Hyper represents the array subscripts as coefficients of a basis spanned by the variables in the

loop. For the nested loops just presented, the variables would be/? and k3, and a typical set of

coefficients would be (64,1,32) which represents (64*j3 + l*k3 + 32). The parser does not allow

an array address index to be described as a data edge. It is therefore not possible to describe the

algorithm as below, which would have forced the computation of the product outside the inner

most loop.

(j3:0..70
begin

temp = 64*j3; /* temp becomes a data edge */
(k3:0..32)::
begin

R5high = BF5R[temp + k3]; /* Using temp as an array index */

Instead, the parser produces a CDFG which 'sees' the 64*j3 product only in the innermost loop.

Memory management, which follows the parser, then takes care of address generation by creating

nodes to compute the product, but only in the innermost loop. An obvious improvement would
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havebeen to move the multiply node out of the innermost loop, thus saving31 out of every 32

multiplications.
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5.0 Conclusion

This work describes the design path to realize a memory-intensive, low-power speech rec

ognizer implementation. A high level analysis of the entire RASTA-PLP front end of a speech

recognition chip hasbeen done. In particular, the FFTblock andthe Critical Band Filtering blocks

were each mapped onto a RTL description, and a layout has been generated for each of these two

blocks. An architectural power analysis was also performed on the FFTblock using SPA.

The FFT block, which actually computes a periodogram estimate of the power spectrum

of the speech input, from a 512-point FFT, has an estimated core power of l.lmW with a 1.2V

supply voltage. Much of this power comes from the generation of the massive number of control

signals, a consequence of the register-intensive architecture. Despite this, the registers allow the

designer to avoid detailed timing analysis, and allow automatic scheduling which basically dis-

cretizes the execution of all operations.

The most beneficial improvement to the Hyper framework may be the C++ parser that is

currently being developed. The Split-Radix FFT algorithm is certainly better then the Radix2-

Winograd which was implemented, in terms of number of execution counts. It would be interest

ing to see a way to describe the algorithm in a more structured manner, given the procedural style

of C++ that also doesn't require manifest loops, or manifest array indices. Other suggested

improvements include a scheduler that recognizes and utilizes regularity of algorithms, and a pos

sible automated translator that handles the SDL/Bdsyn to ADL/CDL process.
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Appendix A
Radix-2 Algorithm

/* Radix 2 algorith for 512-point FFT, 2A9*/
#define wordin fix<13,12>

#define word fix<22,12>

#define wordout fix<32,17>

func main(Inl:wordin[512]; Wr, Wi:word[256])

Powenwordoutf] =

begin

(j:0..255)::

begin

a = Inl[(2*j)];

b = Inl[(2*j)+l];

BFrl[2*j] = a + b;

BFrl[(2*j)+l] = a-b;
end;

(j:0..127)::

begin

(k:0..1)::

begin

Rllow = BFrl[(4*j)+2+k];

Rlhigh = BFrl[(4*j)+k];

temp2r = word(Wr[128*k] * Rllow);

temp2i = word( Wi[128*k] * Rllow);

BF2R[(4*j)+k]= Rlhigh +temp2r,

BF2i[(4*j)+k] = temp2i;

BF2R[(4*j)+k+2] = Rlhigh - temp2r;

BF2i[(4*j)+k+2] = -temp2i;

end;

end;

(j:0..63);;

begin

(k:0..3)::

begin

c = Wr[64*k];

d = Wi[64*k];

R2high = BF2R[(8*j)+k];
R21ow = BF2R[(8*j)+k44];

I2high = BF2i[(8*j)+k];

I21ow = BF2i[(8*j)+k+4];

temp3r = word(c * R21ow) - word(d * I21ow);

temp3i = word(d * R21ow) + word(c * 121ow);

BF3Rl(8*j)+k] = R2high + temp3n
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BF3i[(8*j)+k]= I2high + temp3i;
BF3R[(8*j)+4+k] = R2high - temp3r;

BF3i[(8*j)+4+k]= I2high - temp3i;

end;

end;

(j:0..31)::

begin

(k:0..7)::

begin

e = Wr[32*k];

f=Wi[32*k];

R3high = BF3R[(16*j)+k];

R31ow = BF3R[(16*j)+8+k];

I3high = BF3i[(16*j)+k];

I31ow = BF3i[(16*j)+8+k];

temp4r =word(e * R31ow) - word(f * Blow);
temp4i =word(f* R31ow) +word(e * I31ow);
BF4R[(16*j)+k] = R3high + temp4r;

BF4i[(16*j)+k] = I3high+ temp4i;
BF4R[(16*j)+k+8] = R3high - temp4r,

BF4i[(16*j)+k+8] = I3high - temp4i;

end;

end;

0:0.. 15)::

begin

(k: 0.. 15)::

begin

R41ow = BF4R[32 * j + k + 16];

R4high = BF4R[32*j + k];

I41ow = BF4i[32*j + k+16];

I4high = BF4i[32*j + k];

g = Wr[16*k];
h = Wi[16*k];

tempSr=word(g * R41ow) - word(h * I41ow);
temp5i=word(h * R41ow) +word(g * I41ow);
BF5R[32 * j + k] = R4high + temp5r;

BF5i[32* j + k] = I4high + tempSi;
BF5R[32* j +k + 16] =R4high - temp5r;
BF5i[32 * j + k + 16] = I4high - temp5i;

end;

Appendix A
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end;

0:0..7)::
begin

(k:0..31)::

begin

R5high = BF5R[64*j + k];

R51ow = BF5R[64 * j + k + 32];

I5high = BF5i[64*j + k];

I51ow = BF5i[64*j + k + 32];

v = Wr[8*k];

w = Wi[8*k];

temp6r = word(v * R51ow) - word(w * I51ow);

temp6i = word(w * R51ow) + word(v * I51ow);

BF6R[64 * j + k] = R5high + temper;

BF6i[64 * j + k] = I5high + temp6i;

BF6R[64 * j + k + 32]= R5high - temp6r;

BF6i[64 * j + k + 32] = I5high - temp6i;

end;

end;

0:0.. 3)::

begin

(k: 0.. 63)::

begin

R6high = BF6R[128*j + k];

I6high = BF6i[128*j + k];

R61ow= BF6R[128 * j +k + 64];

I61ow = BF6i[128*j + k + 64];

r = Wr[4*k];

p = Wi[4*k];

temp7r = word(r * R61ow) - word(p * I61ow);

temp7i = word(p * R61ow) + word(r * I61ow);

BF7R[128 * j + k] = R6high + temp7r;

BF7i[128 * j + k] = I6high + temp7i;

BF7R[128 * j + k + 64] = R6high - temp7r;

BF7i[128 * j + k + 64] = I6high - temp7i;

end;

end;

0:0.. 1)::

begin

(k : 0 .. 127)::

begin

R7high = BF7R[256*j + k];

I7high = BF7i[256*j + k];

R71ow= BF7R[256 * j + k + 128];

I71ow = BF7i[256 * j + k + 128]:

s = Wr[2*k];

t = Wi[2*k];
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Radix-2 Algorithm

temp8r = word(s * R71ow) - word(t * I71ow);
temp8i as word(t * R71ow) + word(s * I71ow);

BF8R[256 * j + k]» R7high + temp8r,

BF8i[256 * j + k] = I7high + temp8i;

BF8R[256* j + k + 128] =R7high - temp8r,
BF8i[256* j + k + 128] = I7high- temp8i;

end;

end;

(k:0..255)::

begin

R81ow = BF8R[k + 256];

I81ow = BF8i[k + 256];

x = Wr[k];

y = Wi[k];
temp9r =word(x * R81ow) - word(y * I81ow);
temp9i =word(y * R81ow) +word(x * I81ow);
BF9R[k] = BF8R[k] + temp9r;

BF9i[k] = BF8i[k] + temp9i;
Power[k] =wordout(BF9R[k] * BF9R[k]) +wordout(BF9i[k] * BF9i[k]);

end:

end:
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Appendix B
Radix2 Winograd Algorithm

#define wordin fix<13,ll>

#define word fix<22.12>

#define wordout fix<32,17>

#define cosu word(0.707106781)

#dennesinu (0.707106781)

tunc main(Inl: wordin[512]; Wr, Wi: wordin[256]) Power :wordoutQ =

begin

(i:0..7)::

begin

0:0..7)::

begin

(mO, ml, m2, m5, si, s2, s3, s4) =

fft8(Inl[64*i+8*j], Inl[64*i+8*j+l], Inl[64*i+8*j+2],

Inl[64*i+8*j+3], lnl[64*i+8*j44], Inl[64*i+8*j+5],

Inl[64*i+8*j+6], lnl[64*i+8*j+7]);

(BF3R[64*i+8*j]3F3R[64*i+8*j+l],BF3R[64*i+8*j+2],

BF3R[64*i+8*j+3], BF3R[64*i+8*J44], BF3R[64*i+8*j+5],

BF3R[64*i+8*j+6], BF3R[64*i+8*j+7]) =

(mO, si, m2, s2, ml, s2, m2, si);

(BF3i[64*i+8*j],BF3i[64*i+8*j+l],BF3i[64*i+8*j+2],

BF3i[64*i+8*j+3],BF3i[64*i+8*j+4], BF3i[64*i+8*j+5],

BF3i[64*i+8*j+6],BF3i[64*i+8*j+7]) = (0, s4, m5, -s3,0, s3, -m5, -s4);

end:

end:

01:0.-31)::

begin

(kl:0..7)::

begin

e = Wr[32*kl];

f=Wi[32*kl];

R3high = BF3R[(16*jl)+kl];

R3low = BF3R[(16*jl)+8+kl];

I3high = BF3i[(16*jl)+kl];

I31ow = BF3i[(16*jl)+8+kl];

temp4r = word(e * R31ow) - word(f * Blow);

temp4i = word(f * R31ow) + word(e * I31ow);

BF4R[(16*jl)+kl] =R3high + temp4r;

BF4i[(16*jl)+kl] =I3high + temp4i;

BF4R[(16*jl)+kl+8] = R3high - temp4r;

BF4i[(16*jl)+kl+8] = I3high - temp4i;
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end;

end;

02:0.. 15)::

begin

(k2 :0.. 15)::

begin

R41ow= BF4R[32 * j2 +k2 + 16];

R4high = BF4R[32* j2 +k2];
I41ow = BF4i[32 * j2 + k2 + 16];

I4high = BF4i[32*j2 +k2];

g = Wr[16*k2];

h = Wi[16*k2];

temp5r =word(g * R41ow) - word(h * I41ow);
temp5i =word(h * R41ow) +word(g * I41ow);
BF5R[32* j2 +k2] =R4high + temp5r;
BF5i[32 * j2 + k2] = I4high +temp5i;
BF5R[32* j2 +k2 + 16] = R4high - temp5r,

BF5i[32 * j2 +k2 + 16] = I4high - tempSi;

end:

end;

03:0.. 7)::

begin

(k3:0..31)::

begin

R5high = BF5R[64*j3 +k3];
R51ow = BF5R[64 * j3 +k3 + 32];

I5high= BF5i[64*j3 +k3];
151ow = BF5i[64 * j3 + k3 + 32];

v = Wr[8*k3];

w = Wi[8 * k3];

temp6r =word(v * R51ow) - word(w * I51ow);
temp6i= word(w* R51ow) +word(v * ISlow);
BF6R[64* j3 + k3] =R5high + temp6r;
BF6i[64 * j3 + k3] = I5high+ temp6i;
BF6R[64 * j3 +k3 + 32]= R5high - temp6r,
BF6i[64 * j3 + k3 + 32]= I5high - temp6i;

end;

end;

(j4 : 0 .. 3)::

begin

(k4 : 0 .. 63)::

begin

R6high = BF6R[128 * j4 + k4];
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I6high = BF6i[128*j4 + k4];

R61ow = BF6R[128 * j4 + k4 + 64];

I61ow= BF6i[128 * j4 + k4 + 64];

r = Wr[4*k4];

p = Wi[4*k4];

temp7r = word(r * R61ow) - word(p * I61ow);

temp7i = word(p * R61ow) + word(r * I61ow);

BF7R[128 * j4 + k4] = R6high + temp7r;
BF7i[128 * j4 + k4] = I6high + temp7i;

BF7R[128 * j4 + k4 + 64] = R6high - temp7r;

BF7i[128 * j4 + k4 +64] = I6high - temp7i;
end;

end;

05:0.. 1)::

begin

(k5 :0.. 127)::

begin

R7high = BF7R[256 * j5 + k5];

I7high = BF7i[256*j5 + k5];

R71ow = BF7R[256 * j5 + k5 + 128];

I71ow= BF7i[256 * j5 + k5 + 128];

s = Wr[2*k5];

t = Wi[2*k5];

temp8r = word(s * R71ow) - word(t * I71ow);

temp8i = word(t * R71ow) + word(s * I71ow);

BF8R[256 * j5 + k5] = R7high + temp8r;

BF8i[256 * j5 + k5] = I7high + temp8i;

BF8R[256 * j5 + k5 + 128]= R7high - temp8r;

BF8i[256 * j5 + k5 + 128]= I7high - iemp8i;

end:

end;

(k6 : 0 .. 255)::

begin

R81ow = BF8R[k6 + 256];

I81ow = BF8i[k6 + 256];

x = Wr[k6];

y = Wi[k6];

temp9r = word(x * R81ow)- word(y * I81ow);

temp9i = word(y * R81ow)+ word(x * I81ow);

BF9R[k6] = BF8R[k6] + temp9r;

BF9irk6] = BF8i[k6] + temp9i;

Power[k6] = wordout(BF9R[k6] * BF9R[k6]) + wordout(BF9i[k6] *
BF9i[k6]);

end;

end;
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Radix2 Winograd Algorithm

func fft8 (x0,xl,x2,x3,x4,x5,x6,x7: woidin) mO.ml,m2,m5,sl,s2,s3,s4 : word

begin

/*

Source - Elliott, D„ "Handbook of DigitalSignal Processing

Engineering Applications," p. 597.

Description - S. Winograd small-N DFTfor N =8, u =2/8*pi.
Output -

X(0) = mO;

X(l) = si +j*s4; Imaginary indices of X(l), X(2), X(5), X(6)
checked,andadjusted. -Engling 10/7/94

X(2) = m2 + j*m5;

X(3) = s2-j*s3;

X(4) = ml;

X(5) = s2 + j*s3;

X(6) = m2-j*m5;

X(7) = sl-j*s4;

*/

tl = x0 + x4;

t2 = x2 + x6;

t3 = xl + x5;

t4 = xl-x5;

t5 = x3 + x7;

t6 = x3 - x7;

t7 = tl +12;

t8 = t3 +15;

mO = word(t7 +18):

ml = word(t7-t8);

m2 = word(tl -12):

m3 = word(xO - x4);

m4 = word(cosu * (t4 -16));

m5 = word(t5 -13);

m6 = word(x6 - x2);

m7 = word(wordin(1.0 * sinu) * (t4 +16));

si = word(m3 + m4);

s2 = word(m3 - m4);

s3 = word(m6 + m7);

s4 = word(m6 - m7);

end;
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Appendix C
Split Radix Algorithm

#define twopi 6.283185307179586
#define wordin fix<13,12>

#defineword fix<22,12>

#define wordout fix<45,24>

func main(x: word[512]; Wc, Ws: word[384]) Power wordoutQ =
begin

/* Length two transforms */

(J:0..0)::

begin

(k4:0..0)::

begin

rlfive = x[510];

slfive = x[511];

xl[510] = rlfive + slfive;

xl[511] = rlfive - slfive;

end:

(k3:0..1)::

begin

rlfour = x[126+256*k3];

slfour = x[127+256*k3];

xl[126 + 256*k3] = rlfour + slfour,

xl [127 + 256*k3] = rlfour - slfour;

end;

(k2:0..7)::

begin

end:

(kl:0..31):

begin

end;

(k:0..127):

begin

end:

rlthree = x[30+64*k2];

slthree = x[31+64*k2];

xl[30+64*k2] = rl three + slthree;

xl[31+64*k2] = rlthree - slthree;

rltwo = x[6+16*kl];

sltwo = x[7+16*kl];

xl[6+16*kl] = rltwo + sltwo;

xl[7+16*kl] = rltwo - sltwo;

rlone = x[4*k];

slone=x[4*k+l];

xl[4*k] = rlone + slone;

xl[4*k+l] = rlone - slone;
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end;

/* L Shaped Butterflies */

/*k = 2 */

(J:0..0)::

begin

(io:0..0)::

begin

ya24 = 0

yb24 = 0

yc24 = 0

yd24 = 0:

xa24 = xl[254]

xb24 = xl[255]

xc24 = xl[252]

xd24 = xl[253]

R12four =

S12four =

R22four =

S22four =

r32four =

r22four =

rl2four =

s22four =

:xa24;

ya24;

:xb24;

yb24;

R12four + R22four;

R12four - R22four;

S12four + S22four;

S12four-S22four;

x2[254] = xc24-r32four;

x2[252] = xc24 + r32four;

x2[255] = xd24 - s22four;

x2[253] = xd24 + s22four;

y2[254] = yc24-rl2four;

y2[252] = yc24 + rl2four;

y2[255] = yd24 + r22four;

y2[253] = yd24-r22four;

end;

(io:0..3)::

begin

ya23 = 0;

yb23 = 0;

yc23 = 0;

yd23 = 0;

xa23 = xl[128*io+62];

xb23 = xl[128*io+63];
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end;

xc23 = xl[128*io+60];

xd23 = xl[128*io+61];

R12three = xa23;

S12three = ya23;
R22three = xb23;

S22three= yb23;
r32three = R12three + R22three;

r22three = R12three - R22three;

rl2three = S12three + S22three;

s22three = S12three - S22three;

x2[128*io+62] = xc23 - r32three;

x2[128*io+60] = xc23 + r32three;

x2[128*io+63] = xd23 - s22three;

x2[128*io+61] = xd23 + s22three;

y2[128*io+62] = yc23 - rl2three;

y2[128*io+60] = yc23 + rl2three;

y2[128*io+63] = yd23 + r22three;

y2[128*io+61]= yd23 - r22three:

(io:0..15)::

begin

ya22 = 0;

yb22 = 0;

yc22 = 0;

yd22 = 0;

xa22 = xl[32*io+14];

xb22 = xl[32*io+15];

xc22 = xl[32*io+12];

xd22 = xl[32*io+13];

R12two = xa22;

S12two = ya22;

R22two a xb22;

S22two = yb22;

r32two = R12two + R22two;

r22two = R12two - R22two;

rl2two = S12two + S22two;

s22two = S12two - S22two;

x2[32*io+14] = xc22 - r32two;

x2[32*io+12] = xc22 + r32two;

x2[32*io+15] = xd22 - s22two;

x2[32*io+13] = xd22 + s22two;

y2[32*io+14] = yc22 - rl2two;
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end;

y2[32*io+12] = yc22+ rl2two;
y2[32*io+15]= yd22 + r22two;
y2[32*io+13]= yd22 - r22two;

(io:0..63)::

begin

ya21 = 0;

yb21=0;
yc21 = 0;

yd21 = 0;

xa21 = xl[8*io+2];

xb21=xl[8*io+3];

xc21 = xl[8*io];

xd21=xl[8*io+l];

R12one = xa21;

S12one = ya21;

R22one = xb21;

S22one = yb21;

r32one = R12one + R22one;

r22one = R12one - R22one;

rl2one = S12one + S22one;

s22one = S 12one - S22one;

x2[8*io+2] = xc21 - r32one;

x2[8*io] = xc21 + r32one;

x2[8*io+3] = xd21 - s22one;

x2[8*io+l] = xd21 + s22one;

y2[8*io+2] = yc21 - rl2one;

y2[8*io] = yc21 +rl2one;

y2[8*io+3] = yd21 + r22one;

y2[8*io+l] = yd21 - r22one;

end;

end;

/* k = 3 */

0:0.-1)::
begin

(io:0..0)::

begin

ya34 = y2[508+j];

yb34 = y2[510+jl:
yc34 = y2[504+j];

yd34 = y2[506+j];

xa34 = x2[508+j);

Appendix C
Split Radix Algorithm
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xb34 = x2[510+j];
xc34 = x2[504+j];

xd34 = x2[506+j];

R13four = word(xa34*Wc[64*j]) + word(ya34*Ws[64*j]);
S13four = word(ya34*Wc[64*j]) - word(xa34*Ws[64*j]);

R23four = word(xb34*Wc[192*j]) + word(yb34*Ws[192*j]);

S23four = word(yb34*Wc[192*j]) - word(xb34*Ws[192*j]);
r33four = R13four + R23four,

r23four = R13four - R23four,

rl3four = S13four + S23four;

s23four = S13four - S23four;

x3[508+j] = xc34 - r33four;

x3[504+j] = xc34 + r33four;

x3[510+j] = xd34 - s23four;

x3[506+j] = xd34 + s23four;

y3[508+j] = yc34-rl3four;

y3[504+j] = yc34 + rl3four;

y3[510+j] = yd34 + r23four;

y3[506+j] = yd34-r23four;

end;

(io:0..1)::

begin

ya33 = y2[256*io+124+j];

yb33 = y2[256*io+126+j];

yc33 = y2[256*io+120+j];

yd33 = y2[256*io+122+j];

xa33 = x2[256*io+124+j];

xb33 = x2[256*io+126+j];

xc33 = x2[256*io+120+j];

xd33 = x2[256*io+122+j];

R13three = word(xa33*Wc[64*j]) + word(ya33*Ws[64*j]);
S13three = word(ya33*Wc[64*j]) - word(xa33*Ws[64*j]);

R23three = word(xb33*Wc[192*j]) + word(yb33*Ws[192*j]);

S23three = word(yb33*Wc[192*j]) - word(xb33*Ws[192*j]);

r33three = R13three + R23three;

r23three = R13three - R23three;

rl3three = S13three + S23three;

s23three = S 13three - S23three;

x3[256*io+124+j] = xc33 - r33three;

x3[256*io+120+j] = xc33 + r33three;

x3[256*io+126+j] = xd33 - s23three;

x3[256*io+122+j] = xd33 + s23three;

y3[256*io+124+j] = yc33 - rl3three;
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y3[256*io+120+j] = yc33+rl3three;
y3[256*io+126+j] = yd33+r23three;
y3[256*io+122+j] = yd33 - r23three;

end;

(io:0..7)::

begin

ya32 = y2[64*io+28+j];
yb32 = y2[64*io+30+j];

yc32 = y2[64*io+24+j];

yd32 = y2[64*io+26+j];
xa32 = x2[64*io+28+j];

xb32 = x2[64*io+30+j];
xc32 = x2[64*io+24+j];

xd32 = x2[64*io+26+j];

R13two = word(xa32*Wc[64*j]) + word(ya32*Ws[64*j]);

S13two = word(ya32*Wc[64*j]) - word(xa32*Ws[64*j]);

R23two = word(xb32*Wc[192*j]) + word(yb32*Ws[192*j]);

S23two = word(yb32*Wc[192*j]) - word(xb32*Ws[192*j]);
r33two = R13two + R23two;

r23two = R13two - R23two;

rl3two = S13two + S23two;

s23two = S13two-S23two;

x3[64*io+28+j]= xc32 - r33two;

x3[64*io+24+j] = xc32 + r33two;

x3[64*io+30+jl= xd32 - s23two;
x3[64*io+26+j] = xd32 + s23two;

y3[64*io+28+j] = yc32 - rl3two;

y3[64*io+24+j] = yc32 + rl3two;

y3[64*io+30+j] = yd32 + r23two;
y3[64*io+26+j]= yd32 - r23two;

end;

(io:0..31)::

begin

ya31 = y2[16*io+4+j];

yb31=y2[16*io+6+j];

yc31 = y2[16*io+j];
yd31=y2[16*io+2+j];

xa31 = x2[16*io+4+j];

xb31=x2[16*io+6fj];

xc31 = x2[16*io+j];

xd31=x2[16*i(H-2+j];

R13one = word(xa31*Wc[64*j]) + word(ya31*Ws[64*j]);
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S13one = word(ya31*Wc[64*j]) - word(xa31*Ws[64*j]);
R23one = word(xb31*Wc[192*j]) + word(yb31*Ws[192*j]);
S23one = word(yb31*Wc[192*j]) - word(xb31*Ws[192*j]);

r33one = R13one + R23one;

r23one = R13one - R23one;

rl3one = S13one + S23one;

s23one = S Bone - S23one;

x3[16*io+4+j] = xc31 - r33one;

x3[16*io+j]= xc31 + r33one;

x3[16*io+6+j] = xd31 - s23one;

x3[16*io+2+j] = xd31 + s23one;

y3[16*io+4+j] = yc31 - rl3one;

y3[16*io+j] = yc31 + rl3one;

y3[16*icH-6+j] = yd31 + r23one;

y3[16*io+2+j] = yd31 - r23one;

/*k = 4*/

0:0.3)::

begin

(io:0..0)::

begin

ya43 = y3[240+2*4+j];

yb43 = y3[240+3*4+j];

yc43 = y3[240+j]:

yd43 = y3[240+4+j];

xa43 = x3[240+2*4+j];
xb43 = x3[240+3*4+j];

xc43 = x3[240+j];

xd43 = x3[240+4+j];

R14three = word(xa43*Wc[32*j]) + word(ya43*Ws[32*j]);

S14three = word(ya43*Wc[32*j]) - word(xa43*Ws[32*j]);

R24three = word(xb43*Wc[96*j]) + word(yb43*Ws[96*j]);

S24three = word(yb43*Wc[96*j]) - word(xb43*Ws[96*j]);
r34three = R14three + R24three;

r24three = RHthree - R24three;

rl4three = S14three + S24three;

s24three = S14three - S24three;

x4[240+j+2*4]= xc43 - r34three;

x4[240+j] = xc43 + r34three;
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x4[240+j+3*4] = xd43 - s24three;

x4[240+j+4] = xd43 + s24three;

y4[240+j+2*4] = yc43 - rl4three;

y4[240+j] = yc43 + rl4thrce;
y4[240+j+3*4] = yd43 +r24three;
y4[240+j+4] = yd43 - r24three;

end;

(io:0..3)::

begin

ya42 = y3[128*io+48+2*4+j];
yb42 = y3[128*io+48+3*4+j];

yc42 = y3[128*io+48+j];

yd42 = y3[128*io+48+4+j];

xa42 = x3[128*io+48+2*4+j];

xb42 = x3[128*i(H48+3*4+j];

xc42 = x3[128*io+48+j];

xd42 = x3[128*i0448+4+j];

RHtwo = word(xa42*Wc[32*j])+ word(ya42*Ws[32*j]);

S14rwo = word(ya42*Wc[32*j]) - word(xa42*Ws[32*j]);

R24two = word(xb42*Wc[96*j]) + word(yb42*Ws[96*j]);

S24two = word(yb42*Wc[96*j]) - word(xb42*Ws[96*j]);

r34two = RHtwo + R24two;

r24two = RHtwo - R24two;

rHtwo = SHtwo + S24two;

s24two = SHtwo - S24two;

x4[128*io+48+2*4+j] = xc42 - r34two;

x4[128*io448+j] = xc42 + r34two;

x4[128*io+48+3*4+j] = xd42 - r24two;

x4[128*io44844+j] = xd42 + r24two;

y4[128*io+48+2*4+j] = yc42 - rHtwo;

y4[128*io+48+j] = yc42 + rHtwo;

y4[128*io+48+3*4+j] = yd42 + r24two;

y4[128*io+48+4+j] = yd42 - r24two;

end;

(io:0..15)::

begin

ya41 = y3[32*io + 2*4+j];

yb41=y3[32*io + 3*4+j];

yc41 = y3[32*io+j];

yd41 = y3[32*io+4+j];

xa41 = x3[32*io+2*4+j];

xb41 = x3[32*io+3*4+j];

xc41 = x3[32*io+j];
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xd41=x3[32*io+4+j];

R14one = word(xa41*Wc[32*j]) + word(ya41*Ws[32*j]);

S14one = word(ya41*Wc[32*j]) - word(xa41*Ws[32*j]);

R24one = word(xb41*Wc[96*j]) + word(yb41*Ws[96*j]);
S24one = word(yb41*Wc[96*j]) - word(xb41*Ws[96*j]);

r34one = R14one + R24one;

r24one = R14one - R24one;

rHone = S Hone + S24one;

s24one = S Hone - S24one;

x4[32*io+2*4+j] = xc41 - r34one;

x4[32*io+j] = xc41 + r34one;

x4[32*io+3*4+j] = xd41 - s24one;

x4[32*io+4+j]= xd41 + s24one;

y4[32*io+2*4+j] = yc41 - rHone;

y4[32*io+j]= yc41 + rHone;

y4[32*io+3*4+j] = yd41 + r24one;

y4[32*io+4+j]= yd41 - r24one;

end;

end;

/* k = 5 */

0:0..7)::

begin

(io:0..0)::

begin

ya53 = y4[480 + 2*8+j];

yb53 = y4[480 + 3*8+j];

yc53 = y4[480+j]:

yd53 = y4[480+8+j];

xa53 = x4[480+2*8+j];
xb53 = x4[480+3*8+j];

xc53 = x4[480+j];

xd53 = x4[480+8+j];

R15three = word(xa53*Wc(16*j]) + word(ya53*Ws[16*j]);

S15three = word(ya53*Wc[16*j]) - word(xa53*Ws[16*j]);

R25three = word(xb53*Wc[48*j]) + word(yb53*Ws[48*j]);
S25three = word(yb53*Wc[48*j]) - word(xb53*Ws[48*j]);
r35three = R15three + R25three;

r25three = R15three - R25three;

rl5three = S15three + S25three;

s25three = S15three - S25three;

x5[480+j+2*8] = xc53 - r35three;
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x5[480+j]= *c53 + r35three;
x5[480+j+3*8] = xd53 - s25three;

x5[480+j+8] = xd53 + s25three;

y5[480+j+2*8] = yc53 - rl5three;
y5[480+j] = yc53 + rl5three;

y5[480+j+3*8] = yd53 + r25three;

y5[480+j+8] = yd53 - r25three;

end;

(io:0..1)::

begin

ya52 = y4[256*io+96 + 2*8+j];
yb52 = y4[256*io+96+ 3*8+j];

yc52 = y4[256*io+96+j];

yd52 = y4[256*io+96+8+j];

xa52 = x4[256*io+96+2*8+j];

xb52 = x4[256*io+96+3*8+j];

xc52 = x4[256*io+96+j];

xd52 = x4[256*io+96+8+j];

R15two = word(xa52*Wc[16*j]) + word(ya52*Ws[16*j]);

S15two = word(ya52*Wc[16*j]) - word(xa52*Ws[16*j]);

R25two = word(xb52*Wc[48*j]) + word(yb52*Ws[48*j]);

S25two = word(yb52*Wc[48*j]) - word(xb52*Ws[48*j]);

r35two = R15two + R25two;

r25two = R15two - R25two;

rlStwo = S15two + S25two;

s25two = S15two - S25two;

x5[256*io+96+2*8+j]= xc52 - r35two;

x5[256*io+96+j] = xc52 + r35two;

x5[256*io+96+3*8+j] = xd52 - s25two;

x5[256*io+96+8+j] = xd52 + s25two;

y5[256*io+96+2*8+j] = yc52 - rl5two;

y5[256*io+96+j] = yc52 + rl5two;
y5[256*io+96+3*8+j] = yd52 + r25two;

y5[256*io+96+8+j] = yd52 - r25two;

end;

(io:0..7)::

begin

ya51=y4[64*io + 2*8+j];

yb51=y4[64*io+3*8+j];

yc51 = y4[64*io+j];

yd51 = y4[64*io+8+j];

xa51 = x4[64*io+2*8+j];

xb51=x4[64*io+3*8+j];
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xc51 = x4[64*io+j];

xd51=x4[64*io+8+j];

R15one = word(xa51*Wc[16*j])+ word(ya51*Ws[16*j]);

S15one = word(ya51*Wc[16*j]) - word(xa51*Ws[16*j]);
R25one = word(xb51*Wc[48*j]) + word(yb51*Ws[48*j]);

S25one = word(yb51*Wc[48*j])- word(xb51*Ws[48*j]);

r35one = R15one + R25one;

r25one = R15one - R25one;

rl5one = S15one + S25one;

s25one = S15one - S25one;

x5[64*io+2*8+j] = xc51 - r35one;

x5[64*io+j] = xc51 + r35one;

x5[64*io+3*8+j] = xd51- s25one;

x5[64*io+8+j] = xd51 + s25one;

y5[64*io+2*8+j] = yc51 - rl5one;

y5[64*io+j]= yc51 + rl5one;

y5[64*io+3*8+j] = yd51 + r25one;

y5[64*io+8+j] = yd51 - r25one;

end;

/*k = 6*/

0:0.-15)::

begin

(io:0..0):

begin

ya62 = y5[192 + 2*16+j];

yb62 = y5[192 + 3*16+j];
yc62 = y5[192+j];

yd62 = y5[192+16+j];

xa62 = x5[192+2*16+j];

xb62 = x5[192+3*16+j];

xc62 = x5[192+j];

xd62 = x5[192+16+j];

R16two = word(xa62*Wc[8*j]) + word(ya62*Ws[8*j]);
S16two = word(ya62*Wc[8*j]) - word(xa62*Ws[8*j]);
R26two= word(xb62*Wc[24*j]) + word(yb62*Ws[24*j]);
S26two= word(yb62*Wc[24*j]) - word(xb62*Ws[24*j]);

r36two = R16two + R26two;

r26two - R16two - R26two;

rl6two = S16two + S26two;
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s26two = S16two - S26two;

x6[192+j+2*16] = xc62 - r36two;

x6[192+j] = xc62 + r36two;

x6[192+j+3*16] = xd62 - s26two;

x6[192+j+16] = xd62 + s26two;

y6[192+j+2*16] = yc62 - rl6two;
y6[192+j] = yc62 + rl6two;

y6[192+j+3*16] = yd62 +r26two;

y6[192+j+16] = yd62 - r26two;
end;

(io:0..3):

begin

ya61 = y5[128*io + 2*16+j];

yb61 = y5[128*io+3*16+j];

yc61 = y5[128*io+j];

yd61 = y5[128*io+16+j];

xa61 = x5[128*io+2*16+j];

xb61=x5[128*io+3*16+j];

xc61=x5[128*io+j];

xd61=x5[128*io+16+j];

R16one = word(xa61*Wc[8*j]) + word(ya61*Ws[8*j]);

S16one = word(ya61*Wc[8*j]) - word(xa61*Ws[8*j]);
R26one = word(xb61*Wc[24*j]) + word(yb61*Ws[24*j]);

S26one = word(yb61*Wc[24*j]) - word(xb61*Ws[24*j]);

r36one = R16one + R26one;

r26one = Rloone - R26one;

rl6one = Sloone + S26one;

s26one = S 16one - S26one;

x6[128*io+2*16+j] = xc61 - r36one;

x6[128*io+j] a xc61 + r36one;

x6[128*io+3*16+j] = xd61 - s26one;

x6[128*io+16+j] = xd61 + s26one;
y6[128*io+2*16+j] = yc61 -rl6one;

y6[128*io+j] = yc61 + rloone;

y6[128*io+3*16+j] = yd61 + r26one;
y6[128*io+16+j] = yd61 - r26one;

end;

end;

/*k = 7*/

0:0..31)::

begin

(io:0..0)::
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ya72= y6[384+2*32+j];
yb72 = y6[384+3*32+j];
yc72 = y6[384+j];
yd72 = y6[384+32+j];
xa72 = x6[384+2*32+j];
xb72 = x6[384+3*32+j];

xc72 = x6[384+j];

xd72 = x6[384+32+j];

R17two = word(xa72*Wc[4*j]) + word(ya72*Ws[4*j]);

S17two = word(ya72*Wc[4*j]) - word(xa72*Ws[4*j]);

R27two = word(xb72*Wc[12*j]) + word(yb72*Ws[12*j]);

S27two = word(yb72*Wc[12*j]) - word(xb72*Ws[12*j]);

r37two = R17two + R27two;

r27two = R17two - R27two;

rl7two = S17two + S27two;

s27two = S17two - S27two;

x7[384+j+2*32]= xc72 - r37two;

x7[384+j] = xc72 + r37two;

x7[384+j+3*32]= xd72 - s27two;

x7[384+j+32] = xd72 + s27two;

y7[384+j+2*32] = yc72 - rl7two;

y7[384+j] = yc72 + rl7two;

y7[384+j+3*32] = yd72 + r27two;

y7[384+j+32] = yd72 - r27two;

end;

(io:0..1):

begin

ya71 = y6[256*io + 2*32+j];

yb71=y6[256*io+3*32+j];

yc71 = y6[256*io+j];

yd71 = y6[256*io+32+j];

xa71 = x6[256*io+2*32+j];

xb71=x6[256*io+3*32+j];

xc71=x6[256*io+j];

xd71 = x6[256*io+32+j];

R17one = word(xa71*Wc[4*j]) + word(ya71*Ws[4*j]);
S17one = word(ya71*Wc[4*j]) - word(xa71*Ws[4*j]);

R27one = word(xb71*Wc[12*j]) + word(yb71*Ws[12*j]);

S27one = word(yb71*Wc[12*j]) - word(xb71*Ws[12*j]);

r37one = R17one + R27one;

r27one = R17one - R27one;

rl7one = S17one + S27one;

s27one = S 17one - S27one;
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end;

end;

/*k = 8*/

0:0..63)::

begin

end;

/*k = 9*/

x7[256*io+2*32+j] = xc71 - r37one;
x7[256*io+j]= xc71 + r37one;

x7[256*io+3*32+j] = xd71 - s27one;
x7[256*io+32+j] = xd71 + s27one;

y7[256*io+64+j] = yc71 - rl7one;

y7[256*io+j] = yc71+ rl7one;

y7[256*io+3*32+j] = yd71 + r27one;

y7[256*io+32+j] = yd71 - r27one;

ya81=y7[2*64+j];

yb81 = y7[3*64+j];

yc81 = y7fj];

yd81=y7[64+j];

xa81=x7[2*64+j];

xb81=x7[3*64+j];

xc81=x7[j];

xd81=x7[64+j];

Appendix C
Split Radix Algorithm

R18one = word(xa81*Wc[2*j])+ word(ya81*Ws[2*j]);

S18one = word(ya81*Wc[2*j]) - word(xa81*Ws[2*j]);

R28one = word(xb81*Wc[6*j]) + word(yb81*Ws[6*j]);

S28one = word(yb81*Wc[6*j]) - word(xb81*Ws[6*j]);

r38one = Rl 8one + R28one;

r28one = R18one - R28one;

rl8one = S18one + S28one;

s28one = S18one - S28one;

x8[j+2*64]= xc81 - r38one;

x8[j] = xc81 + r38one;

x8[j+3*64]= xd81-s28one;

x8[j+64] = xd81 + s28one;

y8[j+2*64] = yc81 - rl8one;

y8[j] = yc81+rl8one;

y8(j+3*64] b yd81 + r28one;

y8[j+64]= yd81 - r28one;
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0:0..127)::

begin

ya91= y8[2*128+j];
yb91=y8[3*128+j];
yc91 = y8[j];

yd91=y8[128+j];

xa91=x8[2*128+j];
xb91=x8[3*128+j];

xc91 = x8[j];

xd91=x8[128+j];

R19 = word(xa91*Wc[j]) + word(ya91*Ws[j]);

S19 = word(ya91*Wc[j]) - word(xa91*Ws|j]);

R29 = word(xb91*Wc[3*j]) + word(yb91*Ws[3*j]);

S29 = word(yb91*Wc[3*j]) - word(xb91*Ws[3*j]);

r39 = R19 + R29;

r29 = R19-R29;

rl9 = S19 + S29;

s29 = S19-S29;

xa ==xc91+r39;

xb = xd91 + s29;

ya = yc91 +rl9;

yb = yd91 - r29;

Power[j] = wordout(xa * xa) + wordout(ya * ya);

Power(j+128] = wordout(xb * xb) + wordout(yb * yb);

end:

end:
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/*

*Author - Engling Yeo

* cbi.sil implementsall cbweights asconstants by puttingthe numbers
* into an array. Could be implemented on hardware as constants in ROMs

*/

#define word fix<13,12>

func main(In:word[256]; cbl:word[8]; cb2:word[12];

cb3:word[15];cb4:word[15];cb5:word[17];

cb6:word[18]; cb7:word[21]; cb8:word[23];

cb9:word[27]; cbl0:word[31]; cbll:word[36];

cbl2:word[42]; cbl3:word[49]; cbH:word[57];

cbl5:word[67]; cbl6:word[79]; cbl7:word[93];

cbl8:word[109]; cbl9:word[113]) Out: wordG =

begin

Outl##l = word(0);

(il:0..7)::

begin

Outl = word(In[il] * cblfil]) + Outl#l;

end:

Out[0] = Outl;

Out2##l = word(0);

(i2:0.. ID-

begin

Out2 = word(In[i2] * cb2[i2]) + Out2#l;

end;

Out[l] = Out2;

Out3##l = word(0);

(i3:0..H)::

begin

Out3 =word(In[i3+l]*cb3[i3]) + Out3#l;

end;

Out[2] = Out3;

Out4##l = word(0);

(i4:0..H)::

begin

Out4 = word(In[i4+5] * cb4[i4]) + Out4#l;

end:
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Out[3] = Out4;

Out5##l = word(0);

(i5:0..16)::

begin

Out5 = word(In[i5+8] * cb5[i5])+ Out5#l;
end;

Out[4] = Out5;

Out6##l = word(O);

(i6:0..17)::

begin

Out6 = word(In[i6+12] * cb6[i6]) + Out6#l;

end;

Out[5] = Out6;

Out7##l = word(O);

(i7:0..20)::

begin

Out7 = word(In[i7+15] * cb7[i7]) + Out7#l;

end;

Out[6] = Out7;

Out8##l = word(O);

(i8:0..22)::

begin

Out8 = word(ln[i8 + 20] * cb8[i8]) + Out8#l;

end;

Out[7] = Out8;

Out9##l = word(O);

(i9:0..26)::

begin

Out9 = word(ln[i9+24] * cb9[i9]) + Out9#l;

end;

Out[8] = Out9;

Outl0##l = word(O):

(il0:0..30)::

begin

OutlO = word(ln[il0+30] * cblOfilO]) + Outl0#l;
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end;

Out[9] = Outl0;

Outll##l = word(0);
(ill:0..35)::

begin

Outll = word(In[ill+36] * cbllpll]) +Outll#l;
end;

Out[10] = Outll;

Outl2##l = word(O);

(il2:0..41)::

begin

Outl2 = word(In[il2+43] * cbl2[il2]) + Outl2#l;
end;

Out[ll] = Outl2;

Outl3##l = word(O);

(il3:0..48)::

begin

Outl3 = word(In[il3+52] * cbl3[il3]) +Outl3#l;
end;

Out[12] = Outl3;

Outl4##l = word(O);

(il4:0..56)::

begin

OutH = word(In[i14+62] * cbH[iH]) + Outl4#l;
end:

Out[13] = OutH;

Outl5##l=word(0);

(il5:0..66)::

begin

Outl5 = word(In[il5+73] * cbl5[il5]) + Outl5#l;
end:

0ut[14] = 0utl5;

Outl6##l = word(O);

(il6:0..78)::

begin
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Outl6= word(In[il6+86]* cbl6[il6]) + Outl6#l;
end;

Out[15] = Outl6;

Outl7##l = word(O);

(il7:0..92)::

begin

Outl7 = word(In[il7+102] * cbl7[il7]) + Outl7#l;
end;

Out[16] = Outl7;

Outl8##l=word(0):

(il8:0..108)::

begin

Outl8 = word(In[il8+121] * cbl8[il8]) + Outl8#l;

end;

Out[17] = Outl8;

Outl9##l = word(O);

(i 19:0..112)::

begin

Outl9 = word(In[il9+H3] * cbl9[il9]) + Outl9#l;

end;

Out[18] = Outl9;

end;
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♦Author - Engling Yeo

* - Sean Huang

* cbiNew.sil implements all cbweightsas constants by putting the numbers
* into an array. Could be implementedon hardware as constantsin ROMs
*

*/

#define wordc fix<13,12>

#define wordin fix<43,24>

#define word fix<50,24>

#define cosu word(0.707106781)

#definesinu (0.707106781)

#define half_pi word(1.57079633)

#define pi word(3.14159265)

#define bl_0 word(0.987862135574673807)

#define b3_0 word(-0.155271410633428645)

#define b5_0 word(0.0056431179763468104)

#define WN word(0.012271846) I* = (2*pi)/512 */

#define barkstep word(1.09)

func main(In:wordin[256]; cbl:wordc[8]

cb2:wordc[12]

cb3:wordc[15];

cb4:wordc[15];

cb5:wordc[17];

cb6:wordc[18];

cb7:wordc[21];

cb8:wordc[23];

cb9:wordc[27];

cbl0:wordc[31];

cbll:wordc[36];

cbl2:wordc[42];

cbl3:wordc[49];

cbH:wordc[57];

cbl5:wordc[67];

cbl6:wordc[79];

cbl7:wordc[93];

cbl8:wordc[109];

cbl9:wordc[113])

Out wordcQ =

begin

/*

*ln:0

*/

al = ln[0];
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Filtll = word(al*cbl[0]);

Filt21 = word(al * cb2[0]);

/*

* In: 1..4

*/

Filtl2##l= Filtl 1;

Filt22##l=Filt21;

Filt31##l=word(0);

(i2:0..3)::

begin

a2 = ln[i2+l];

Filtl2 = word(a2 * cbl[i2+l]) + Filtl2#l;

Filt22 = word(a2 * cb2[i2+l]) + Filt22#l;

Filt31 = word(a2 * cb3[i2]) + Filt31#l;

end:

/*

* In: 5..7

*/

Filtl3##l=Filtl2;

Fill23##l =Filt22;

Filt32##l=Filt31;

Filt41##l = word(0):

(i3:0..2)::

begin

a3 = In[i3+5];

Filtl3 = word(a3 * cbl[i3+5]) + Filtl3#l;

Filt23 = word(a3 * cb2[i3+5]) + Filt23#l;

Filt32 = word(a3 * cb3[i3+4]) + Filt32#l;

Filt41 = word(a3 * cb4[i3]) + Filt41#l;

end;

/*

* In: 8..11

*/

Filt24##l=Filt23;

Filt33##l=Fill32;

Filt42##l=Filt41;

Filt51##l = word(0);

(i4:0..3)::

begin

a5 = In[i4+8];

Filt24 = word(a5 * cb2[i4+8]) + Filt24#l;

Filt33 = word(a5 * cb3[i4+7]) + Filt33#l;

Appendix E
Improved Algorithm forCriticalBand Filtering
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Filt42 = word(a5 * cb4[i4+3])+ Filt42#l;

Filt51 = word(a5 * cb5[i4]) + Filt51#l;

end;

/*

* In: 12..14

*/

Filt34##l=Filt33;

Filt43##l=Filt42;

Filt52##l=Filt51;

Filt61##l = word(O);

(i6:0..2)::

begin

a6 = In[i6+12];

Filt34 = word(a6 * cb3[i6+l 1])+ Filt34#l;

Filt43 = word(a6 * cb4[i6+7]) + Filt43#l;

Filt52 = word(a6 * cb5[i6+4]) + Filt52#l;

Filt61 = word(a6 * cb6[i6]) + Filt61#l;

end;

/"

* In: 15

*/

Filt35##l=Filt34

Filt44##l = Filt43

Filt53##l=Filt52

Filt62##l=Filt61

Filt71##l = word(0);

(i7:0..0)::

begin

a7 = In[15];

Filt35 = word(a7 * cb3[i7+14]) + Filt35#l;

Filt44 = word(a7 * cb4[i7+10]) + Filt44#l;

Filt53 = word(a7 * cb5[i7+7]) + Filt53#l

Filt62 = word(a7 * cb6[i7+3]) + Filt62#l

Filt71 = word(a7 * cb7[i7+0]) + Filt71#l

end;

/*

*In: 16..19

*/

Filt45##l=Filt44

Filt54##l=Filt53

Filt63##l=Filt62

Filt72##l=Filt71

(i8:0..3)::

begin
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a8 = In[i8+16];

Filt45 = word(a8 * cb4[i8+ll]) + Filt45#l;

FUt54 = word(a8 * cb5[i8+8]) + Filt54#l

Filt63 = word(a8 * cb6[i8+4]) + Filt63#l

Filt72 = word(a8 * cb7[i8+l]) + Filt72#l

end;

Appendix E
Improved Algorithm for Critical Band Filtering

/*

* In: 20..24

*/

Filt55##l=Filt54;

Filt64##l = Filt63;

Filt73##l=Filt72;

Filt81##l = word(O);

(i9:0..4)::

begin

a9 = ln[i9+20];

Filt55 = word(a9 * cb5[i9+12]) + Filt55#l;

Filt64 = word(a9 * cb6[i9+8])+ Filt64#l;

Filt73 = word(a9 * cb7[i9+5]) + Filt73#l;

Filt81 = word(a9 * cb8[i9]) + Filt81#l;

end;

/*

* In: 25..29

*/

Filt65##l=Filt64;

Filt74##l = Filt73;

Filt82##l=FUt81;

Filt91##l = word(In[24] * cb9[0]);

(il0:0..4)::

begin

alO = In[ilO+25);

Filt65 = word(alO * cb6[il0+13]) + Filt65#l;

Filt74 = word(alO * cb7[il0+10]) + Filt74#l;

Filt82 = word(alO * cb8[ilO+5]) + Filt82#l;

Filt91 = word(alO * cb9[il0+l]) + Filt91#l;

end;

/*

* In: 30..35

*/

Filt75##l=Filt74;

Filt83##l=Filt82;

Filt92##l=Filt91;

Filtl01##l = word(O);

(ill:0..5)::
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begin

all =In[i 11+30];

Filt75 = word(all * cb7[ill+15]) +Filt75#l;

Filt83 = word(all * cb8[ill+10]) + Filt83#l;
Filt92 = word(all * cb9[ill+6]) + Filt92#l;

FiltlOl = word(al 1 * cbl0[il 1])+ Filtl01#l;

end;

/*

* In: 36..42

*/

Filt84##l=Filt83;

Filt93##l=Filt92;

Fihl02##l =Filtl01;

Filtl ll##l=word(0);

(il2:0..6)::

begin

al2 = In[il2+36];

Filt84 = word(al2 * cb8[il2+16]) + Filt84#l;

Filt93 = word(al2 * cb9[il2+12]) + Filt93#l;

Filtl02 = word(al2 * cbl0[il2+6]) + Filtl02#l;

Filtl 11 = wca-d(al2 * cbil[il2]) + Filtl 11#1;

end;

I*

* In: 43..50

*/

Filt94##l=Filt93;

Filtl03##l=Filtl02:

Filtl 12##1= Filtl 11;

Filtl21##l=word(0);

(il3:0..7)::

begin

al3 = In[il3+43];

Filt94 = word(al3 * cb9[il3+19]) + Filt94#l;

Filtl03 = word(al3 * cbl0[il3+13]) + Filtl03#l;

Filtl 12 = word(al3 * cbll[il3+7]) + Filtll2#l;

Filtl21 = word(al3 * cbl2[il3]) + Filtl21#l;

end;

/*

* In: 51

*/

Filtl04##l=Filtl03

Filtl 13##1= Filtl 12

Filtl22##l=FUtl21
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(iH:0..0)::

begin

aH = In[51];

Filtl04 = word(aH * cbl0[21+iH]) + Filtl04#l;

Filtl 13 = word(aH * cbll[15+iH]) + Filtll3#l;

Filtl22 = word(aH * cbl2[8+iH]) + Filtl22#l;

end;

/*

* In: 52..60

*/

Filtl05##l=Filtl04;

Filtl 14##1= Filtl 13;

Filtl23##l=Filtl22;

Filtl31##l=word(0):

(il5:0..8)::

begin

al5 = In[il5+52];

Filtl05 = word(al5 * cbl0[il5+22]) + Filtl05#l;

Filtl 14 = word(al5 * cbll[il5+16]) +Filtl 14#1;

Filtl23 = word(al5 * cbl2[il5+9]) + Filtl23#l;

Filtl31 = word(al5*cbl3[il5]) + Filtl31#l;

end;

/*

* In: 61

*/

Filtl 15##1= Filtl H;

Filtl24##l=Filtl23;

Filtl32##l=Filtl31:

(i!6:0..0)::

begin

al6 = In[61]:

Filtl 15 = word(al6 * cbi l[25+il6]) + Filtl 15#1;

Filtl24 = word(al6 * cbl2[18+il6]) + Filtl24#l;

Filtl32 = word(al6 * cbl3[9+il6]) + Filtl32#l;

end;

/*

* In: 62..71::

*/

Filtl 16##1= Filtl 15;

FUtl25##l=Filtl24;

FUtl33##l =Filtl32:

Filtl41##l = word(O);

(il7:0..9)::
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begin

al7 = In[il7+62];

Filtl 16= word(al7 * cbi 1[il7+26]) +Filtl 16#1
Filtl25 = word(al7 * cbl2[il7+19]) + Filtl25#l

Filtl33 = word(al7 * cbl3[il7+10])+Filtl33#l
FiltHl = word(al7 * cbH[il7]) + FiltHl#l;

end;

/*

* In: 72

*/

Filtl 26##l=Filtl25

Filtl 34##l=Filtl33

FUtH2##l=FUtl41

(il8:0..0)::

begin

al8 = In[72];

Filtl26 = word(al8 * cbl2[29+il8]) + Filtl26#l

Filtl34 = word(al8 * cbl3[20+il8]) + Filtl34#l

Filt 142 = word(al8 * cbH[10+il8]) + FiltH2#l

end;

/*

* In: 73..84

*/

Filtl27##l=Filtl26

Filtl35##l =Filtl34

Filtl43##l =Filtl42

Filtl51##l=word(0);

(il9:0..11)::

begin

al9 = ln[il9+73];

Filtl27 = word(al9 * cbl2[il9+30]) + Filtl27#l

Filtl35 = word(al9 * cbl3[il9+21]) + Filtl35#l

FiltH3 = word(al9 * cbH[il9+l 1])+ FiltH3#l

Filtl51 = word(al9 * cbl5[il9]) + Filtl51#l;

end:

/*

* In: 85

*/

Filtl36##l=Filtl35

Filtl44##l=FiltH3

Filtl52##l=Filtl51

(i20:0..0)::

begin

a20 = ln[85];
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FUH36 = word(a20 * cbl3[i20+33]) +Filtl36#l
Filtl44 = word(a20 * cbH[i20+23]) + Filtl44#l

Filtl52 = word(a20 * cbl5[i20+12]) + Filtl52#l
end;

/*

* In: 86.. 100

*/

Filtl37##l=Filtl36

Filtl45##l=FiltH4

Filtl53##l=Filtl52

Filtl61##l = word(O);

(i21:0..H)::

begin

a21=In[i21+86];

Filtl37 = word(a21 * cbl3[i21+34]) + Filtl37#l

FiltH5 = word(a21 * cbH[i21+24]) + FiltH5#l

Filtl53 = word(a21 * cbl5[i21+13]) + Filtl53#l

Filtl61 = word(a21 * cbl6[i21]) + Filtl61#l;

end;

r

*In

*/

FiltH6##l=FUtH5

Filtl54##l=Filtl53

Filtl62##l=Filtl61

(i22:0..0)::

begin

a22 = In[101];

FiltH6 = word(a22 * cbH[39+i22]) + FiltH6#l

Filtl54 = word(a22 * cbl5[28+i22]) + Filtl54#l

Filtl62 = word(a22 * cbl6[15+i22]) + Filtl62#l

end:

101

/*

*In: 102..118

*/

FiltH7##l=FiltH6;

Filtl55##l=Filtl54;

Filtl63##l=Filtl62;

Filtl71##l = word(O);

(i23:0..16)::

begin

a23 = ln[i23+102];

FiltH7 = word(a23 * cbH[i23+40]) + FiltH7#l;
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Filtl55 = word(a23* cbl5[i23+29])+ Filtl55#l;

Filtl63 = word(a23 * cbl6[i23+16]) + Filtl63#l;
Filtl71 = word(a23 * cbl7[i23]) + Filtl71#l;

end;

/*

*ln: 119..120

*/

Filtl56##l=Filtl55

Filtl64##l=Filtl63

Filtl72##l=Filtl71

(i24:0..1)::

begin

a24 = In[i24+119];

Filtl56 = word(a24 * cbl5[i24+46]) + Filtl56#l

Filtl64 = word(a24 * cbl6[i24+33]) + Filtl64#l

Filtl72 = word(a24 * cbl7[i24+17]) + Filtl72#l

end;

I*

* In: 121..139

*/

FiItl57##l=Filtl56

Filtl65##l=Filtl64

Filtl 73##l=Filt 172

Filtl81##l=word(0);

(i25:0..18)::

begin

a25 = In[i25+121];

Filtl57 = word(a25 * cbl5[i25+48]) + Filtl57#l

Filtl65 = word(a25 * cbl6[i25+35]) + Filtl65#l

Filtl73 = word(a25 * cbl7[i25+19]) + Filtl73#l

Filtl81 = word(a25 * cbl8[i25]) + Filtl81#l;

end;

/*

* In: 140.. 142

*/

Filtl66##l=Filtl65;

Filtl74##l=Filtl73;

Filtl82##l=Filtl81;

(i26:0..2)::

begin

a26 = In[i26+H0];

Filtl66 = word(a26 * cbl6[i26+54]) + FUtl66#l;

Fill 174 = word(a26 * cbl7[i26+38]) + Filtl74#l;
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Filtl82 = word(a26 * cbl8[i26+19]) + Filtl82#l;

end;

/*

*In:H3..164

*/

Filtl67##l=Filtl66

Filtl75##l=Filtl74

Filtl83##l=Filtl82

Filtl91##l=word(0);

(i27:0..21)::

begin

a27 = In[i27+H3];

Filtl67 = word(a27 * cbl6[i27+57]) + Filtl67#l

Filtl75 = word(a27 * cbl7[i27+41]) + Filtl75#l

Filtl83 = word(a27 * cbl8[i27+22]) + Filtl83#l

Filtl91 = word(a27 * cbl9[i27]) + Filtl91#l;

end:

/*

*In: 165..194

*/

Filtl76##l=Filtl75

Filtl 84##l=Filtl83

Filtl92##l=Filtl91

(i28:0..29)::

begin

a28 = In[i28+165];

Filtl76 = word(a28 * cbl7[i28+63]) + Filtl76#l

Filtl84 = word(a28 * cbl8[i28+44]) + Filtl84#l

Filtl92 = word(a28 * cbl9[i28+22]) + Filtl92#l

end;

/*

*In: 195..229

*/

Filtl85##l=Filtl84;

Filtl93##l=FUtl92;

(i29:0..34)::

begin

a29 = In[i29+195];

Filtl85 = word(a29 * cbl8[i29+74]) + Filtl85#l:

Filtl93 = word(a29 * cbl9[i29+52]) + Filtl93#l;

end;
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/*

*In: 230..255

*/

Filtl94##l=Filtl93;

(i30:0..25)::

begin

a30 = In[i30+230];

Filtl94 = word(a30 * cbl9[i30+87]) + Filtl94#l;

end;

****************************j

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

end;

10]

11]

12]

13]

H]

15]

16]

17]

18]

;Filtl3

:Filt24

:Filt35

=Filt45

=Filt55

: Filt65

:Filt75

;Filt84

:Filt94

:Filtl05;

= Filtl 16

= Filtl27

= FUtl37

= FUtl47

= FUtl57

= Filtl67

= FUtl76

= FUtl85

= Filtl94
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Appendix F
Algorithm for Modelingof Critical

/* Band Filter Outputs

♦Author - Engling Yeo
*

*

#define word fix<25,20>

#define cosu word(0.707106781)

#define sinu (0.707106781)

#define half_pi word(1.57079633)

#define pi word(3.14159265)

#define bl_0 word(0.987862135574673807)

#define b3_0 word(-0.155271410633428645)

#define b5_0 word(0.0056431179763468104)

#define WN word(0.012271846) /* = (2*pi)/512

func main(In:word[19]) RastaOut: word[] =

begin

(n:0..18)::

begin

Out[n]@@l = word(0):

lnl[n]@@l = word(0);

Inl[n]@@2 = word(0);

Inl[n]@@3 = word(0);

Inl[n]@@4 = word(0);

end;

(i:0..18):: I* Rasta Filtering */

begin

Inl[i] = In[i];

Outfi] = word(word(Out[i]@l * word(0.94))

+ word(word(0.2)*Inl[i])

+ word(word(0.1) * In1[i]@1)

- word(word(0.1) * Inl[i]@3)

- word(word(0.2) * lnl[i]@4));

end:

/* Power Law and Equal Loudness Preemphasis */

RastaOut[0

RastaOut[1

RastaOut[2

RastaOut[3

RastaOut[4

RastaOut[5

RastaOut[6

= word(word(0.33) * (word(-7.598859) + Out[0]))

= word(word(0.33) * (word(-5.084743) + Out[l]))

= word(word(0.33) * (word(-3.824229) + Out[2]))

= word(word(0.33) * (word(-3.077419) + Out[3]))

= word(word(0.33) * (word(-2.588522) + Out[4]))

= word(word(0.33) * (word(-2.237648) + Out[5]))

= word(word(0.33) * (word(-1.96175) + Out[6]));
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RastaOut[7]

RastaOut[8]

RastaOut[9]

RastaOut[10;

RastaOut[ll

RastaOut[12

RastaOut[13

RastaOut[H

RastaOut[15

RastaOut! 16

RastaOut[17

RastaOut! 18

end;

Appendix F
Algoritiim for Modeling ofCritical
Band Filter Outputs

• word(word(0.33) * (word(-1.726257) + Out[7]));
: word(word(0.33) * (word(-1.512501) + Out[8]));
•. word(word(0.33) * (word(-1.311570) + Out[9]));

= word(word(0.33)* (word(-1.12068) + Out[10]));

= word(word(0.33) * (word(-0.940791) + Out[l 1]));

= word(word(0.33) * (word(-0.774623) + Out[12]));

= word(word(0.33) * (word(-0.625262) + Out[13]));

= word(word(0.33) * (word(-0.495046) + Out[14]));

= word(word(0.33) * (word(-0.384992) + Out[15]));

= word(word(0.33) * (word(-0.294683) + Out[16]));

= word(word(0.33) * (word(-0.222522) + Out[17]));

= word(word(0.33) * (word(-0.166165) + Out[18]));
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*File:

* ln.sil by SteveStoiber & EnglingYeo
* Latest, best working ln operation 3/24/95
*

♦Purpose:

* returnln(x)ifx>0

* else return EXCEPTION
*

*

* How it works:

* ln(x) = ln(2Ap*y) l<=y<2
* = p*ln(2) + ln(y)

* = p*ln(2) + al *y + a2*yA2 + a3*yA3 + a4*yM + a5*yA5

*/

#defineword fix<33,17>

#define wordout fix<25,17>

#define N14

#define MIN_NUMword(6.103515e-05)

#define MSB.POWH /* mag msb has weight 2AMSB_POW*/

#define MSB_WGHT16384 /* mag msb has weight MSB.WGHT */

#define al wordout( 0.99949556)

#define a2 wordout(-0.49190896)

#define a3 wordout( 0.28947478)

#define a4 wordout(-0.13606275)

#define a5 wordout( 0.03215845)

#defineln2 wordout( 0.69314718)

#defineOne wordout(l)

func main (x : word[19]) y: wordoutD =

begin

(i:0..18)::

begin

y[i] = log_gtz(x[i]);

end;

end:

func log_gtz(x : word) y : wordout =
begin

x_tmp[0] = x;

y_tmp[0] = x;

Appendix G
Ln Algorithm
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Appendix G
Exponential Algorithm

lead_one_pow[0] = word(MSB_POW);

(i:l..N)::

begin

(x_tmp[i], y_tmp[i],lead_one_pow[i]) =
if ((x_tmp[i -1] & MSB.WGHT) =0) ->

(x_tmp[i-l] « 1, y_tmp[i-l], lead_one_pow[i-l] -1)
II

(x_tmp[i-l], y_tmp[i-l]» 1, lead_one_pow[i-l])

fi;

end;

ln_mantissa = log_restricted(wordout(y_tmp[N]));
ln_power= wordout(ln2 * lead_one_pow[N]);

y = In_power + ln_mantissa;

end:

func log_restricted (in : wordout) out: wordout =

begin

out = wordout(al*(in-One)) +

wordout(a2*wordout((in-One)*(in-One))) +

wordout(wordout(a3*(in-One))*wordout((in-One)*(in-One)))+
_ wordout(wordout(wordout(a4*(in-One))*(in-One))*wordout((in-One)*(in-
One))) +

^ wprdout(wordout(wordout(a5*(in-One))*wordout((in-One)*(in-
One)))*wordout((in-One)*(in-One)));
end:
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Appendix H
Exponential Algorithm

/*

*File:

* exp.sil by Steve Stoiber

♦Purpose:

* return exp(x)

* How it works:

* first notice that the convergence rate of the geometric series
is awful (consider x < 0), so we need to do something else*

* eAx = 2Ap

= 2Ai * 2Afwhere i is an integer and 0 <= f < 1

= (shift) * (polynomial approximation)

how to find p?

eAx = 2Ap

ln(eAx) = ln(2Ap)

x = p*ln(2)

p = x/ln(2)

= x * log2(e)

#define word fix<25,20>

#define LOG_2_eword( 1.442695)

#define DNT_MASK15

#define FRAC_MASK0.999999046

#define W_BITS4 /* No. of integer bits */

#define al word(0.693147) /* log_e_2 */

#define a2 word(0.240227) /* 1/2 * log_e_2A2 */

#define a3 word(0.055504) /* 1/6 * log_e_2A3 */

#define a4 word(0.009618) /* 1/24 * log_e_2M */

func main (x : word[19]) y: word[19] =

begin

(b:0..18)::

begin

y[b] = exp_generic(x[b]);

end:

end;
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func exp_generic (x: word) y: word
begin

p = word(LOG_2_e * x);

z =

if(p>=0.0)->

get_integer(p)

II

word(1.0 + get_integer(-p))

fi;

f =

if(p>=0.0)->
get_frac(p)

II

word(1.0 - get_frac(-p))

fi;

a = pow2(0;

y =

if(p>=0.0)->

word(a * mult_by_two(z))

II

word(a * div_by_two(z))

fi;

end;

func mult_by_two(miter: word) y: word

begin

y_tmp[0] = word(1.0);

count[0] = miter;

(i:l..W_BITS)::

begin

y_tmp[i] =

if (count[i-l] = 0)->

y_tmp[i-l]

II

word(y_tmp[i-l]« 1)

fi:

count[i] =

if(count[i-l] = 0)->

0

II

count[i-l] -1

fi:

end;

y = y_tmp[W_BITS];

end;

Appendix H
Exponential Algorithm
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func div_by_two(diter: word) y: word

begin

y_tmp[0] = 1.0;

count[0] = diter;

(i:l..W_BITS)::

begin

y_tmp[i] =

if (count[i-l] = 0)->

y_tmp[i-l]

II

word(y_tmp[i-1 ]»1)

fi;

countfi] =

if(count[i-l]==0)->

0

II

countfi-1] -1

fi;

end:

y = y_tmp[W_BITS];

end;

func pow2(f: word) y : word =

begin

t0 = word(1.0);

tl = word(al * 0:

t2 = word(word(a2 * 0 * 0;

t3 = word(word(a3*0 * word(f*f)):

t4 = word(word(a4 * word(ff)) * word(f*f));

y = word(t0 + tl + t2 +13 +14);

end;

func get_integer (x : word) y : word =

begin

y = x & INT.MASK;

end;

func get_frac (x : word) y: word =

begin

y = x&FRAC_MASK;

end;

Appendix H
Exponential Algorithm
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Appendix I
IDFT Algorithm

#define wordfix<25,20>

#defineNFREQ 21

#defineNAUT09

I* IDFT computes the first 9 autocorrelation coefficients from power
spectrum coefficients, freqfl throough 19] areobtaineddirectly
from previous computations, whilethe first and lastvalues (freq[0]
and freq[20]) arecopied firom theirneighbors, i.e. fireq[0] = fireqfl],
and freq[20] = freq[19]

*/

func main (fireq: word[NFREQ]; wcos: wcml[NAUTO] [NFREQ-2]) autoid:
word[] =

begin

(i: 0.. NAUTO -1)::

begin

tmp[i][0] = freq[0]-fireq[20];
(j: 1 .. NFREQ-2)::

begin

tmp[i][j] = tmp[i][j-l] + word(freq[j] * wcos[i][j-l]);
end;

autoid[i] = tmp[i][NFREQ-2];

end;

end;

Automated LowPower ASIC Design forSpeech Processing 121



Appendix J
Durbin's Algorithm

/* Ingrid Verbauwhede */
I* Durbin algorithm */

/* see Golub, "Matrix Computations",p. 127
* 13 aug 1990

* works for the example of pp. 127 !!
* Solves the problem

T x y = r.
*

* where: r = -(rl, r2 rN)

* T: a persymmetric NxN matrix
* y = (yl,y2,...,yN)

*/

#define N 8 /* for an NxN matrix */

#define NDIV 24

#definereal fix<25,20>

#defineNDIVl 25

#define numDIVfix<NDIV+l,0>

#define numlDIVfix<NDIV+2,0>

#define num2DIVfix<NDIV+l^TDIV>

#define num3DIVfix<NDIV+2,NDIV>

#define num4DIV fix<(2*NDIV)+l,NDIV>

func main (In : real[N+l])

out: real[] =

begin

norm = ReciprocalnonFraction(In[0]);

G:1..N)::
begin

r[j-l] = real(norm*In(j]);

end;

y[0][0] = -r[0];

beta##l = real(l);

alpha##l = - r[0];

(k:l..N-l)::

begin

lastalpha = alpha#l;

beta = real(( 1 - real(lastalpha*lastalpha)) * beta#l);
sum[0][k] = r[k];

(i:0..k-l)::

begin

sum[i+l][k] = sum[i][k] + real(r[k-i-l]*y[i][k-l])
end;
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B = ReciprocalFraction(beta);

I* Since 1<beta<0.5 for all samples tested */
alpha = - real(sum[k][k] * B);

(i:0..k-l)::

begin

y[i][k] = y[i][k-l] + real(alpha*y[k-i-l][k-l]);

end;

y[k][k] = alpha;
end;

(i:0..N-l)::

begin

out[i+l] = y[i][N-l];
end;

end;

func divfix2(a,b: num2DIV) quo: num2DIV =
begin

R[0] = a;

P[0] = num2DIV(0);

(m: 1 .. NDIV)::

begin

(R[m],P[m]) =

if ((R[m-1]>=0 & b>=0) I(R[m-1]<0 & b<0))

-> (num2DIV(num3DIV(R[m-l])«l - num3DIV(b)),

num2DIV(P[m-l]«l + num2DIV(6.08e-8)))

II ((R[m-1]>=0 & b<0) I(R[m-1]<0 & b>=0))

-> (num2DIV(num3DIV(R[m-l])«l + num3DIV(b)),

num2DIV(P[m-l]«l))

fi;

end;

quo = num2DIV(num3DIV(P[NDIV])«l - num3DIV(l) +

num3DIV(6.08e-8));

end;

func divfix(a,b: num2DIV) quo: num2DIV =

begin

R[0] = a;

P[0] = num2DIV(0);

(m: 1 .. NDIV)::

begin

(R[m],P[m]) =

if ((R[m-1]>=0 & b>=0) I(R[m-1]<0 & b<0))

-> (num2DIV(num3DIV(R[m-l])«l - num3DIV(b)),

num2DIV(P[m-l]«l + num2DIY(6.08e-8)))
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II ((R[m-1]>=0 & b<0)I(R[m-1]<0 & b>=0))

-> (num2DIV(num3DIV(R[m-l])«l + num3DIV(b)),
num2DIV(P[m-l]«l))

fi;

end;

quo = num2DIV(num3DIV(P[NDiY])«l - num3DIV(l) +

num3DIV(6.08e-8));

end;

func ReciprocalnonFraction(x: real) q: num4DIV =
/*lxl>l*/

begin

xl = if (x<0)->-x

II x

fi:

xtemp=num2DIV(fix<(2*NDIV)+l^DIV>(xl)»10);

ql = num4DIV(divfix(num2DIV(0.000976563),xtemp));

/*2M0*/

q = if (x<0)->-ql

II ql

fi;

end;

func ReciprocalFraction(x: real) qf: num4DIV =

/* 1 <= Ixl <= 0.5 */

begin

xl =if (x<0)-> -x

II x

fi;

xtemp =num2DIV(fix<(2*NDIV)+1 ,NDIV>(xl)»10);

ql = num4DIV (divfix2( (num2DIV(0.000976563) - xtemp),xtemp));

qf=if(x<0)->-ql-l

llql+1

fi;

end;
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Appendix K
Cepstral Analysis

#define word fix<25,14>

#define AR.ORDER8

tunc main (lpcminverse: word[AR_ORDER + 1]) cep: wordD =
begin

/* The LPC coefficientsarestoredin lpc[l] throughlpc[AR_ORDER]. */
/* The constant gain, A, of the AR model is assumed for simplicity */

/* to be 1, so that c[0] = ln(l) = 0. */

/* minverse[ ] is the array of 1/m values for m = 1 through 8, */
/* i.e. 0,0,0.5,0.333333333,0.25,0.2,0.166666666,0.142857142,0.125 */

cep[0] = 0;

cep[l] = -lpc[l];

ll##l=word(2);

(1:2.. AR_ORDER)::

begin

s[l][0] = word(O);

/*

* loop variable cannot be used as a signal right now

* so jl is needed simply to replicate j

* and il is needed simply to replicate 1

* This needs duplicates multiplications unneccesarily

* and may increase the power consumed.

*/

jl##l = word(l);

(j:l..l-l)::
begin

s[l][j] = s[l][j-l]+ word(lpc[j]*cep[l-j]*word(ll#l-jl#l));
jl=jl#l+word(l);

end;

s[l][l]= word(word(s[l][l-l]) * word(minverse[l-l]));

cep[l] = -(lpcm+s[I][l]);

11 = 11#1 + 1;

end;

end;
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